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Foreword 

I was introduced to cities as “ecosystems” by the late Professor Forest 
Stearns (University of Wisconsin, Milwaukee) who was an early pioneer in 
the studies of the urban ecology in the 1970s.  I still recall the various 
terms: “Urban ecosystem”, “Urban zones” Urban corridors” Megacities” 
or “Megacities’ complexes” and “Megalopolis” used by various discipline 
experts as they grappled with the complex of all the terrestrial habitats-the 
city. Cities have been humanity’s habitat since ancient times and one can 
find references to the cities even in biblical writings and other ancient texts 
from many parts of the world. So what is different now? It is the rate of 
global urbanization that has brought urban systems and urban environ-
ments into focus once again. This has captured our attention in the past 
several months. For example, the British Broadcasting Corporation News 
(BBC news) devoted a series of highly educational programs titled “Urban 
planet” in July 2006. I was impressed with the breadth and the depth of ur-
ban issues discussed in the series and the fact that many academic and 
government experts were featured to provide an assessment of the current 
state of global urbanization. The United Nations reports that increased ur-
banization has created a range of serious issues, including access to clean 
water, sanitation, shelter, urban poverty, HIV/AIDS and problems with ur-
ban governance, not to mention the issues related to urban environments. 
What is significant is the report that sometime in 2007 and somewhere on 
the planet, someone migrating from a rural area to a city will tip the global 
urban/rural balance. United Nations agencies forecasts that majority of 
human population will live in urban settings very soon. These estimates 
indicate that about 180,000 people are being added to the urban population 
every day. Can the world's urban infrastructure absorb the equivalent of 
the population of two Toykos each year? As a news reporter put it “Homo 
sapiens” are fast becoming “Homo urbanis”! 

In historical literature, there are fascinating examples of the use of “early 
forms of geospatial technologies” such as photographs of cities acquired 
from the hot air balloons, from cameras suspended from kites, and the very 
first aerial photograph of a city from Wilbur Wright’s plane in 1909 and 
many early maps from geographic field surveys. 
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As we rapidly urbanize as a society, we need to usher in new and innova-
tive technologies, social and policy initiatives, and political and economic 
instruments to improve the quality of life in urban environments. A set of 
rapidly maturing technologies termed the “Geospatial” technologies are 
becoming a vital part of this new urbanized world. Geospatial technologies 
have already had a major impact of many aspects of how we analyze, 
model and manage the urban systems and their environments. From popu-
lation census using remote sensing and satellite technologies to modeling 
the impact of a contagious disease using GIS; we have come to realize the 
promise and potential of these rapidly maturing technologies. Despite 
many strides in the application of geospatial technologies for urban appli-
cations; this science is still in its infancy.  

This book edited by Ryan Jensen, Jay Gatrell, and Daniel McLean is, 
therefore a much awaited contribution to the literature. The editors have 
assembled an extraordinarily talented contributors for the book. It is a pio-
neering effort in many ways for it uniquely brings together the physical 
and social aspects of urban environments via geospatial technology appli-
cations. 

The book chapters address some difficult and important aspects of applica-
tion of geospatial technologies in urban environments. The authors have 
discussed cutting-edge geospatial technologies for issues ranging from ur-
ban change detection, estimating urban population to urban health and heat 
wave and urban child obesity. Chapter on role of geospatial technologies 
in environmental justice is a good example how social and physical aspects 
of urban landscape can be brought together using these technologies. 
Also, the issues unique to the semi-rural counties have been addressed in 
the book. 

I believe this timely publication will spur further development of geospa-
tial technology applications for urban systems. Many challenges remain 
and need to be addressed if we are to fully apply these technologies for ur-
ban environments. I am confident that this book will inspire a new genera-
tion of researchers who will apply geospatial technologies to urban sys-
tems before the impact of rapid global urbanization becomes a crisis for 
our societies in both the developed and the developing world. 

Kamlesh P. Lulla, Ph.D; Ph.D. 
NASA Johnson Space Center 
Houston, Texas 77058 
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1 Applying Geospatial Technologies in Urban 

Environments

Ryan R. Jensen, Department of Geography, Geology & Anthropology, 

Indiana State University, Terre Haute, IN 

Jay D. Gatrell, Department of Geography, Geology & Anthropology, 

Indiana State University, Terre Haute, IN 

Daniel D. McLean, Department of Recreation and Sport Management, 

Indiana State University, Terre Haute, IN 

The world has entered the urban millennium. Nearly half the world’s peo-

ple are now city dwellers (Annan, 2001).  The city is everywhere and eve-

rything (Amin and Thrift 2002).  … Towns and cities are (the) focus of to-

day’s social and ecological problems. Urban activities are the foundation 

of economic prosperity. Cities are strategic places (Annan, 2001).  Cities 
compete. Cities are going through a renaissance (Amin and Thrift, 2002).  

European Science Foundation, Urban Science, 2006 

1.1 About this book 

As the epigraph above indicates, cities have become an important part of 

human existence, and they represent and support most human activity.  

Urban areas have been the primary locations for social movements, intel-

lectual discoveries, and the rise and fall of nations and civilizations 

(Greene and Pick, 2006).  It is projected that cities will only become more 

important as societies continue to go through the demographic transforma-

tion process.  Geospatial technologies will probably play a critical role 

throughout this because of their ability to examine things synoptically, 

help manage existing infrastructure and services, and predict and model fu-

ture growth.   
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According to the United Nations Information Service (2004), 48 per cent 
of the world’s population lived in urban areas in 2003, and urban popula-
tion is projected to exceed the 50 per cent mark by 2007.  Additionally, the 
proportion of the world’s population that is urban is expected to rise to 61 
per cent by 2030. Conversely, rural population is anticipated to decline 
slightly from 3.3 billion in 2003 to 3.2 billion in 2030.  Further, during 
2000-2030, the world’s urban population is projected to grow at an aver-
age annual rate of 1.8 per cent, nearly double the rate expected for the total 
population of the world (almost 1 per cent per year).  At this rate of 
growth, the world’s urban population will double in 38 years.  

Most of the urban growth will probably occur in lesser-developed regions 
where the percentage of urban population is lower (42% in 2003; expected 
to rise to 57% by 2030). This urban growth trend in less developed regions 
is forecast to average 2.3 per cent per year during 2000-2030.  In fact, al-
most all the growth of the world’s total population between 2000 and 2030 
is expected to be absorbed by the urban areas of less developed regions, 
and by 2017, the number of urban dwellers will equal the number of rural 
dwellers in the less developed regions (United Nations Information Ser-
vice, 2004). 

In contrast, the urban population of more developed regions is expected to 
increase very slowly, from 0.9 billion in 2003 to 1 billion in 2030, because 
the process of urbanization is already advanced in these regions, where 74 
per cent of the population lived in 2003.  The percentage of the population 
in more developed regions living in urban areas is expected to increase to 
82 per cent by 2030 (United Nations Information Service, 2004).  

As these figures and projections suggest, people will continue to migrate to 
urban areas – particularly in developing countries.  The ability to examine 
and mitigate the potential negative impacts of this migration is very impor-
tant today and will be even more important tomorrow.  Also, the ability to 
adequately prepare for this migration probably will rest on the shoulders of 
those urban scientists currently studying the urban environment.  This 
book presents many ways that the urban environment can be studied using 
geo-spatial data and techniques. 
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1.2 Chapters 

There are many ways to classify the chapters of this book including geo-
spatial techniques used, size of urban area studied (population, area, etc.), 
data sets used, spatial resolution or scale of the data and so on.  Because of 
this breadth, classifying the chapters into specific groups was very diffi-
cult.  Simply put, this book provides many examples of cutting-edge geo-
spatial technology research in urban areas.  Many chapters demonstrate the 
potential role of geospatial technologies in examining, mapping, and mod-
eling urban problems.  Specifically, chapter 2 describes how geospatial 
technologies can be used to study urban change using LIDAR and digital 
frame camera data.  Chapter 3 shows how these technologies help to assess 
risk in urban areas using two case studies.  Chapters 4 and 8 provide re-
views the role that geospatial technologies have in measuring and model-
ing urban population and growth, respectively. These chapters also provide 
case studies to describe the concepts that are discussed. Those who wish to 
see how satellite remote sensing data can be used to quantify the urban 
forest using Artificial Neural Networks should read chapter 5.  Chapter 6 
describes the role of Public Participation GIS to study urban health.  Chap-
ter 7 describes how the urban environment affects childhood physical ac-
tivity (and corresponding obesity).  The spatial relationship of deer-
vechicle collisions along the suburban fringe is presented in chapter 9, and 
the role that scale plays in spatial autocorrelation studies is described in 
chapter 10.  Finally, a spatial perspective of environmental justice is pre-
sented in Chapter 11.  

Table 1. . Summary of substantive chapters in this book.
Author(s) Subject 

2 J. Jensen et al. Urban change detection with digital frame and 
LIDAR data 

3 Lawrence et al. Geo-spatial technologies to study risk 
4 Hardin et al.  Estimating urban population 
5 Jensen and Hardin Measuring urban forest canopy with remote 

sensing data 
6 Johnson Public Participation GIS’s role in studying ur-

ban health and heat waves 
7 Liu et al. Urban physical activity and childhood obesity  
8 Hardin et al.  Mapping, measuring, and modeling urban 

growth 
9 Gonser and Horn Deer vehicle collisions along the suburban 

fringe
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10 Spiker and Warner Scale considerations and spatial autocorrela-
tion

11 Fuller et al. Spatial imperatives of environmental justice 

The authors and editors hope that the applications described in this book 
will serve as an impetus to better understand the complex urban environ-
ment.  Indeed, the future will probably present many challenges in urban 
areas.  These challenges may be centered on such diverse issues as envi-
ronmental justice, urban quality of life, effective planning, and many oth-
ers.  As will be shown in this book, geospatial technologies are uniquely 
suited to study these and many other urban problems.   

This book will help anyone concerned about the urban environment to 
learn about additional geospatial data and techniques to study the changing 
dynamics in urban areas.  With so much policy discourse and concern 
given to many other organisms and the environments in which they live, 
we hope that more discourse and concern will be aimed at humans and the 
human environment.  Further, we hope that the ideas, applications, meth-
ods, and data presented in this book will enable planners, landscape archi-
tects, urban foresters, GIS and remote sensing specialists, and many others 
to improve quality of life in the urban environment.  Finally, we hope that 
the studies and methods contained within this book will be used as a point 
of reference for those who might imagine and re-imagine the range of po-
tential geo-technical applications to assist urban decision making and pro-
mote the overall sustainability of social and physical systems.   

As the opening epigraph of this chapter suggests, cities will continue to 
become very important throughout the world.  Our ability to model, map, 
and predict changes in the urban environment will be very important as 
humanity becomes evermore urbanized. 
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2 Remote Sensing Change Detection in Urban 
Environments

John R. Jensen, Department of Geography, University of South Carolina, 
Columbia, SC 

Jungho Im, Department of Geography, University of South Carolina, Co-
lumbia, SC 

2.1 Introduction 

Timely and accurate change information in the urban environment is es-
sential for successful planning and management.  The change detection 
may range from 1) monitoring general land cover/land use found in multi-
ple dates of imagery, to 2) anomaly (e.g., subsidence) detection on hazard-
ous waste sites.  Remote sensing approaches to change detection have been 
widely used due to its cost-effectiveness, extensibility, and temporal fre-
quency.  Since the advent of high-spatial resolution satellite imagery, it has 
become increasing popular to detect, analyze, and monitor detailed 
changes such as new buildings, roads, and even patios in the urban envi-
ronment. Basically, there are two types of change detection methods: 1) 
detection of the change using various image enhancement methods, and 2) 
extraction of detailed types of land-cover change based on the use of clas-
sification techniques (Chan et al. 2001; Jensen 2005) 

Traditional remote sensing change detection techniques, which are gener-
ally applicable to coarse spatial resolution optical imagery, include image 
algebra multi-band differencing (Coppin and Bauer 1996), image trans-
formation such as principal components analysis (Collins and Woodcock 
1996), and the widely used post-classification comparison method (Jensen 
et al. 1995). More recent change detection methods are based on expert 
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systems, artificial neural networks, fuzzy sets, and object-oriented ap-
proaches.  These change detection methods are explained in Lu et al. 
(2004) and Jensen (2005). 

This chapter provides several examples of remote sensing change detection 
based on new change detection techniques using the remote sensor data 
obtained from 1) a digital frame camera, and 2) a LIDAR (Light Detection 
and Ranging) sensor system.  These sensors function according to the logic 
shown in Figure 1.  The change detection techniques include neighborhood 
correlation image analysis and single date elevation-based subsidence de-
tection. 

2.2 Remote Sensing Change Detection Process 

Jensen (2005) reviews the general steps that are used to conduct change 
detection using remotely sensed data.  The steps include 1) specifying the 
nature of the change detection problem, 2) identifying the remote sensing 
system and environmental considerations associated with change detec-
tion, 3) processing remote sensor data to extract change information by 
applying appropriate change detection techniques, and 4) evaluating the 
change detection results.  Using these steps, scientists are able to decide 
whether their change detection results are of value.  Selecting appropriate 
remote sensor data and change detection techniques according to the na-
ture of the change detection problem under investigation is critical in 
change detection studies.   
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Fig. 1. Two remote sensor systems often used to collect information in the urban 
environment. a) Digital frame camera based on area arrays. b) LIDAR scanner.  
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2.2.1 Digital Frame Camera Remote Sensing 

Digital frame cameras have many similarities to regular cameras.  Instead 
of film, however, they use an area array of charge-couple-devices (CCD) 
detectors (Figure 1).  Like a traditional camera system, the digital CCD 
area array records a “frame” of terrain during a single exposure.  Three pa-
rameters determine the geographic area of the terrain recorded by the CCD 
area array, including 1) the dimension of the CCD array in rows and col-
umns, 2) the focal length of the camera lens (the distance from the rear 
nodal point of the lens to the CCD array), and 3) the altitude of the aircraft 
above ground level (Jensen 2005).  A major advantage of digital frame 
camera remote sensing is its timeliness.  The remote sensor data are avail-
able as soon as they are collected since there is no need for an analog-to-
digital (A to D) conversion.   

2.2.2 LIDAR Remote Sensing 

LIDAR is an optical remote sensing system that uses near-infrared laser 
light to measure the range from the sensor to a target on the surface of the 
Earth.  Three fundamental technologies are used in the LIDAR system, in-
cluding 1) laser range-finding, 2) differential global positioning system 
(DGPS), and 3) inertial measurement units (IMUs).  LIDAR was initially 
introduced to facilitate the data collection for digital elevation models 
(DEM).  Digital elevation information is a critical component of most geo-
graphic databases used by many agencies such as the USGS and FEMA.  
Digital elevation models can be subdivided into digital surface models 
(DSM) and digital terrain models (DTM).  DSM contain elevation infor-
mation about all features in the landscape, including vegetation and build-
ings.  DTM contain elevation information solely about the bare-Earth sur-
face (Jensen 2006).  LIDAR technology can be used to generate the two 
types of elevation models. 

Most LIDAR systems that are used for terrestrial topographic mapping use 
near-infrared light from 1040 to 1060 nm.  Blue-green laser light centered 
at approximately 532 nm is used for bathymetric mapping due to its water 
penetration capability (Mikhail et al. 2001; Boland et al. 2004).  Since 
LIDAR is an active system, it can also be used at night.  The accurate 
measurement of the laser pulse travel time from a light transmitter to a tar-
get on the ground and back to a receiver is critical in the LIDAR systems.  
The range measurement process produces elevation data points, which are 
commonly referred to as masspoints.   
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One of the advantages of LIDAR remote sensing is that each LIDAR point 
is already georeferenced.  It does not require additional geometric correc-
tion (Flood and Gutelius 1997).   LIDAR systems receive multiple returns 
depending on the type of a target on the Earth surface.  If a laser pulse hits 
directly on the ground, it will be recorded as a single return.  If there are 
any materials (trees, grass) with local relief within the instantaneous foot-
print of a pulse, then the pulse will produce multiple returns (first, second 
… last returns).  First returns including single returns can be used to gen-
erate a DSM, while last returns can be used to create a DTM.  Additional 
processing is generally required to generate a DTM from last returns be-
cause some laser pulses never make it to the ground in heavily forested ar-
eas.

Most LIDAR systems provide intensity information in addition to the mul-
tiple return range data.  The recorded intensity is in most cases just the 
maximum of the returned signals (Baltsavias 1999). The intensity values 
are dependent on several factors including gain setting, bidirectional ef-
fects, the size of the target, range to the target, angle of incidence and at-
mospheric dispersion (Leonard, 2005).   

Neighborhood Correlation Image Analysis 

The Neighborhood Correlation Image (NCI) analysis concept was intro-
duced by Im and Jensen (2005).  Correlation analysis can be applied to bi-
temporal imagery in a specified neighborhood to extract spectral contex-
tual information, which contains three unique variables associated with the 
change in two dates of imagery.  These variables include neighborhood 
correlation, neighborhood slope, and neighborhood intercept.  The 
neighborhood correlation variable represents Pearson’s product-moment 
correlation coefficient between the brightness values from bi-temporal im-
agery in a specified neighborhood.  The neighborhood slope and intercept 
variables are calculated using the least squares estimates from the sets of 
brightness values: 
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where n is the number of pixels in a specified neighborhood, and k is the 
number of bands in each dataset.  s1 and s2 are the standard deviations of 
the brightness values found in all bands of each dataset in a specified 
neighborhood, respectively.  BVij1 and BVij2 are the ith brightness values of 
the pixels found in band k of the Date 1 and Date 2 images in a specified 
neighborhood, and µ1 and µ2 are the means of brightness values found in 
all bands of the Date 1 and Date 2 images in a specified neighborhood, re-
spectively. 

If the spectral changes of the pixels within a specified neighborhood be-
tween the two dates are significant, the correlation coefficient between the 
two sets of brightness values in the neighborhood will decrease to a lower 
value.  The slope and intercept values may increase or decrease depending 
on the magnitude and direction of the spectral changes.   Ideally, if there is 
no change in a certain pixel location between two dates, the pixel will have 
high correlation, a slope around 1, and an intercept around 0.  An example 
of correlation analysis with two sample locations (change vs. no change) 
from bi-temporal ADAR digital frame camera imagery is shown in Figure 
2. 
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Fig. 2. An example of correlation analysis with two sample locations (change ver-
sus no change) based on the analysis of bi-temporal ADAR imagery.  

Several shapes of neighborhood can be applied to neighborhood correla-
tion image analysis within a GIS context, including rectangle, circle, annu-
lus, wedge, and irregular.  A module to create NCIs was developed as a 
dynamic linked library (DLL) in the ESRI ArcMap 9.1 environment using 
Visual Basic.  Two general shapes – rectangle (square) and circle – of 
neighborhood were incorporated into the module.  The size of neighbor-
hood can be specified by users (e.g., 3 × 3). 
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2.3 Case Study 1 – Land Cover Change Detection Using 
NCI Analysis and Decision Tree Classification 

The objectives of this study were to explore three types of neighborhood 
correlation image variables using several neighborhood configurations and 
to extract detailed “from-to” change information from bi-temporal imagery 
plus the NCIs using a decision tree classifier (Im and Jensen 2005).  This 
study examined five different sizes of circular neighborhoods (i.e., 1- to 5-
pixel radius).  The study area, located in Edisto Beach near Charleston, 
SC, exhibited considerable residential development between two dates of 
imagery.  The processing steps required to implement the change detection 
study based on neighborhood correlation image analysis and decision tree 
classification are summarized in Figure 3. 
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Fig. 3. Data processing flow diagram of the urban case study.  

Bi-temporal remote sensing data were collected on September 23, 1999 
and October 10, 2000 over the study area using an ADAR 5500 area array 
frame camera in four spectral bands, which included the blue, green, red, 
and near-infrared (Figure 4a,b).  The multispectral data were preprocessed 
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(coregistered and radiometrically normalized) before the creation of 
neighborhood correlation images and subsequent change detection.   

Eight hundred checkpoints were randomly generated and used as ground 
reference information.  Each checkpoint was investigated using visual in-
terpretation and assigned to one of thirteen land cover change classes.  The 
classes included eight change classes (Barren to Developed, Tree to De-
veloped, Tree to Barren, Grass to Barren, Barren to Grass, Tree to Grass, 
Tree to Shadow, and Change in Grass) and five unchanged classes (Devel-
oped, Barren, Tree, Grass, and Shadow).  Five hundred of the samples 
were used to train a decision tree classifier.  The remaining three hundred 
samples were used to evaluate the accuracy of the change classification. 

Five sizes of circle neighborhoods were explored (1- to 5-pixel radius).  
Figures 4c-e depict the 1-pixel radius neighborhood correlation image 
variables.  Based on visual inspection, large neighborhood sizes (e.g., 5-
pixel radius) reduced noise e.g., caused by shadow difference in the NCIs, 
yielding a smoothing effect in the images.  However, it altered change in-
formation (size) to some extent, e.g., a narrow linear change was barely 
distinguishable in the NCIs.  Conversely, the use of a small neighborhood 
size helps detect change more precisely, but can introduce some noise.  
Two-dimensional planes between the 3-pixel neighborhood correlation im-
age variables based on the eight hundred reference data are shown in Fig-
ure 5.  In most cases, the unchanged samples resulted in high correlation 
values and slope values ~1 and intercept values ~ 0.  Conversely, the 
changed samples generally exhibited low correlation values and variant 
slope and intercept values.  Although a few changed samples yielded rela-
tively high correlation (e.g., Barren to Developed), they were distinguish-
able using the other two variables (i.e., slope and intercept).  These three 
unique change variables were very useful for the identification of change 
versus no change in the study area. 
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Fig. 4.  a), b) Bi-temporal ADAR near-infrared imagery obtained on September 
23, 1999 and on October 10, respectively. c) - e) Neighborhood correlation images 
(correlation, slope, and intercept) created from the bi-temporal ADAR imagery.



18      Jensen and Im 

Fig. 5. Two-dimensional planes between the three NCI variables using the refer-
ence data. 

The C5.0 decision tree was utilized to classify the land cover change using 
the bi-temporal data plus the NCI information.  A detail discussion of C5.0 
is found in Jensen (2005) and Quinlan (2003).  Five hundred samples were 
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used to train a decision tree classifier and the remaining three hundred 
samples were used to evaluate the change classification.  In order to apply 
the decision tree generated from C5.0 to the corresponding imagery, a 
C5.0 decision tree inference engine was developed and embedded in the 
ESRI ArcMap 9.1.  All change classifications that included the NCIs re-
sulted in significantly higher Kappa accuracies than the change classifica-
tion based solely on the use of bi-temporal imagery (Table 1a).  The 
change classification that incorporated the 3-pixel neighborhood correla-
tion images produced the highest accuracy (overall accuracy = 94.3%; 
Kappa = 0.94).  Figure 6 shows the change classification output image us-
ing the 3-pixel radius NCIs and the change detection matrix between the 
two dates. 

Table 1. a) Land-cover change classification results based on the thirteen classes 
using a decision tree classifier. 

Category Overall
accuracy Kappa ASE Kappa Z-test (between 

the first case and others) 
Bi-temporal data 87.3% 0.86 0.0216 N/A

Bi-temporal data plus 
1-pixel radius NCIs 92.3% 0.91 0.0175 Significant (1.99) 

Bi-temporal data plus 
2-pixel radius NCIs 93.3% 0.92 0.0164 Significant (2.47) 

Bi-temporal data plus 
3-pixel radius NCIs 94.3% 0.94 0.0152 Significant (2.97) 

Bi-temporal data plus 
4-pixel radius NCIs 93.3% 0.92 0.0164 Significant (2.47) 

Bi-temporal data plus 
5-pixel radius NCIs 92.7% 0.92 0.0171 Significant (2.16) 
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b) Binary change classification results using a decision tree classifier.

Category Number of 
rules 

Overall 
accuracy Kappa Kappa Z-test (between 

the first case and others) 
Bi-temporal data 10 90.7% 0.81 N/A

Bi-temporal data plus 
1-pixel radius NCIs 4 98% 0.96 Significant (1.99) 

Bi-temporal data plus 
2-pixel radius NCIs 3 98.3% 0.96 Significant (2.47) 

Bi-temporal data plus 
3-pixel radius NCIs 5 99% 0.98 Significant (2.97) 

Bi-temporal data plus 
4-pixel radius NCIs 4 98.3% 0.96 Significant (2.47) 

Bi-temporal data plus 
5-pixel radius NCIs 6 97.7% 0.95 Significant (2.16) 
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Fig. 6. a) Change classification output including the 3-pixel radius NCIs. b) 
Change detection matrix between two dates. 
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Three hundred samples were not sufficient to evaluate the change classifi-
cation with the thirteen classes.  For more reliable evaluation statistics, bi-
nary change detection was also conducted using the same reference data 
and decision tree classification.  The decision tree binary classifications 
with the NCIs resulted in higher accuracies compared to the binary change 
detection without the NCIs (Table 1b).  In addition, the number of rules 
generated from the decision trees was generally less than one-half of the 
number of rules from the decision tree without the NCIs.  Binary change 
detection using the NCIs (i.e., without bi-temporal imagery) yielded very 
high accuracies over 97%.   

These results support the use of neighborhood correlation image variables 
for change detection.  Various levels of neighborhood correlation images 
have their own characteristics.  The concept of neighborhood correlation 
images can be extended to “objects,” and object correlation images (OCIs) 
may be incorporated into object-oriented change detection. 

2.4 Case Study 2 – Subsidence Detection Using Single-
date LIDAR-derived Elevation Data 

Human beings have produced large amounts of hazardous waste.  Hazard-
ous waste must be stored in safe places to avoid contaminating the envi-
ronment.  Monitoring hazardous waste sites is also an essential safety 
measure.  One of the possible failures on hazardous waste sites is subsi-
dence of surface materials such as claycaps due to damage to the storage 
underneath.  The purpose of this study was to investigate the potential of 
single-date LIDAR data with dense postings to detect subsidence in ex-
perimental waste sites at the Savannah River National Laboratory (SRNL) 
near Aiken, SC.   

SRNL installed claycaps to hold nuclear-related hazardous waste products 
buried in shallow pits (Jensen et al. 2006).  Claycap monitoring is nor-
mally conducted through in-situ visual inspection, which is very costly and 
may miss early claycap failure.  Conversely, it is possible to use remote 
sensing techniques such as photogrammetry or lidargrammetry to identify 
subsidence or other direct topographic expressions of claycap failure on 
the order of just a few centimeters (Garcia-Quijano 2006).    

This project used LIDAR data obtained by an Optech ALTM 2050 sensor 
mounted on a Cessna 337 aircraft flown by Sanborn, Inc. of Charlotte, NC.  
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The LIDAR data were collected over SRNL on November 14, 2004.  The 
LIDAR data collection included small footprint first and last return loca-
tion (x, y, and z) and intensity data using a 1064 nm laser at a pulse repeti-
tion frequency (PRF) of 50 kHz.  The nominal post spacing was 0.4 m at 
an altitude of 700 m above ground level (AGL) over an area of 2.6 km2.
Last return LIDR data were processed using TerraModel’s TerraScan mor-
phological filtering software, eliminating obstructions on the ground such 
as trees and buildings to generate a bare-Earth elevation.  An accuracy as-
sessment of the LIDAR-derived elevation is found in Garcia-Quijano et al. 
(2006).  The elevation and hillshaded surfaces of the first returns and bare 
Earth LIDAR data using the IDW interpolation method are shown Figure 
7.  The experimental waste sites, which were used for subsidence investi-
gation, are located in the middle-left of the surfaces.  Figure 8 depicts the 
LIDAR-derived digital terrain model overlaid with 25 cm contours show-
ing two locations of potential subsidence. 
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Fig. 7. Elevation surfaces of the first returns and bare-Earth LIDAR data using the 
IDW interpolation method (a and c) and the hillshaded surfaces of the elevation 
data (b and d).



2 Remote Sensing Change Detection in Urban Environments      25 

Fig. 8. LIDAR-derived digital terrain model with 25 cm contours showing two lo-
cations of potential subsidence. 
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The processing flow diagram of the study focusing on single date eleva-
tion-based subsidence analysis is summarized in Figure 9.  The tabular 
LIDAR bare Earth data were imported into ESRI ArcMap 9.1 as a point 
shapefile.  An elevation surface was generated based on the LIDAR bare 
Earth masspoints using an Inverse Distance Weighted (IDW) interpolation 
method (Figure 7).  The elevation surface was used as reference elevation 
in the single elevation-based subsidence detection module.  The logic of 
the single elevation-based subsidence detection include extraction of regu-
lar samples using the user-defined parameters, generation of simulated 
elevation surface using the regular samples and the IDW interpolation 
method, and creation of subsidence images from the difference between 
the reference and simulated elevation surfaces with a user-specified subsi-
dence threshold. 
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Fig. 9. Data processing flow diagram of single LIDAR-derived elevation-based 
subsidence detection. 
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Various user-specified parameters were applied to the single elevation-
based subsidence detection module.  The four selected subsidence detec-
tion results are shown in Figure 10.  The subsidence detection based on the 
3 m-interval sampling and 0.4 m threshold parameters yielded the best re-
sult (two locations inside the circle in Figure 10b).  Although other combi-
nations of parameters also detected the subsidence, most of them tended to 
overestimate subsidence, which resulted in false alarms on the normal 
claycaps.  Those false alarms can be easily found in Figures 10c and 10d. 
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Fig. 10. Subsidence detection results associated with the experimental waste sites 
and using different parameters.  The 3 m-interval sampling and 0.4 m threshold 
for subsidence resulted in the best result based on visual inspection. 
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Subsidence detection using multiple date (LIDAR-derived) elevation data 
may provide much more accurate and precise subsidence information.  
However, obtaining multiple date elevation data with high quality is not 
always possible.  This study suggests that single-date quality elevation-
based subsidence analysis can be an alternative to the multiple date ap-
proach in hazardous waste site monitoring.   

2.5 Conclusion 

As advanced remote sensors provide improved high-quality data, new 
and/or more sophisticated techniques are needed to extract accurate and re-
liable change information from the data.  This chapter provided examples 
of the application of new digital change detection techniques using two 
different remote sensing data sources for change detection in urban envi-
ronments. 
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3 Assessment of Risk in Urban Environments 
Using Geo-Spatial Analysis 

James D. Hipple, USDA Risk Management Agency, Washington, DC, 
USA 

Geospatial technologies are focused around the acquisition, integration, 
analysis, visualization, management and distribution of data having an ex-
plicit spatial and temporal context (Wachter et al. 2006).  These data are 
usually analyzed within geographic information systems (GIS).  These 
technologies have grown to include a wide array of technologies, many of 
which are actively used in urban risk assessment.  First, these geospatial 
tools and technologies are often used for the identification of “hazards” or 
the establishment of “risk” parameters, like height above flood stage (ele-
vation derived through photogrammetric methods or LIDAR) and prox-
imity to hazards (distance).  Second, they can be used to actively map risk 
(e.g., active wildfires detected through remote sensing).  Finally, these 
geospatial technologies can be integrative through visualization tools and 
models often delivered through internet-based mapping and services. 

3.1 Defining Risk 

Risk is defined as probability that an event will occur, whereas hazard is a 
qualitative term referring to the potential of an environmental element do-
ing harm (WHO 1988).  The assessment of risk in urban places broadly 
covers hazard identification and risk quantification resulting from a spe-
cific hazard or vulnerability (WHO 1988).  Quantifying these risks and 
their potential impact on urban places ideally requires the establishment of 
measures of the magnitude of effect and response relationships of the indi-
viduals and environment within that urban place. 

All too often, we see what is defined as risk compensation occurring.  Risk 
compensation is “effect whereby individual animals” (humans) “may tend 
to adjust their behavior in response to perceived changes in risk (Adams 
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1995).”  When the perception of risk increases individuals are expected to 
act more cautiously; conversely, when individuals feel safer or more pro-
tected they will behave less cautiously (Adams 1995).  As illustrated by 
the 1993 flooding of the Missouri and Mississippi Rivers covered in the 
case study section, or the flooding associated with the 2005 Hurricane 
Katrina in New Orleans, Louisiana, areas taken out of the 100-year or 500-
year floodplain due to flood-wall construction or levee construction can 
indeed flood. 

3.2 Methods for Hazard Identification and Risk Assessment 

The disaster risk management tools derived from geospatial technologies 
include an active updated information base, risk assessment methods, haz-
ard mapping, early warning systems, or disaster response plans.  This sec-
tion looks briefly at two methods, photogrammetric derivation of geospa-
tial information and remote sensing as a source of data for integration into 
geospatial tools. 

3.2.1 Photogrammetry 

A highly accurate urban base map (or image) is often the starting point for 
most geospatial applications.  This base, sometimes referred to as a plani-
metric base, is a layer that presents only the horizontal positions for fea-
tures represented (Hipple & Haithcoat 2005).  This base establishes the 
“truth” in a point in time of the status of the urban area upon which all 
other changes to are recorded and all other layers of information are asso-
ciated.  The cadastre serves as a foundation for other urban infrastructure 
applications, such as urban infrastructure condition assessment, utility line 
mapping, and precisely locating utility poles, signs, fire hydrants, and 
other infrastructure elements. 

The geospatial technologies used for the generation of these cadastral 
bases include aerial photography (both analog and digital), with resolu-
tions of 0.25 to 0.62 meters, high resolution satellite imaging from the 
panchromatic band of the commercial high-resolution satellites (IKONOS, 
QuickBird, OrbView) with spatial resolutions of 0.70 to 1.0 meters (Hipple 
& Haithcoat 2005).  These images are usually acquired by jurisdictions 
once every one to five years and must be orthorectified (a process in which 
terrain and camera displacements have been removed from the image).  
Often, many vector-based data layers, “including street centerlines, parcel 
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boundaries, and sewer lines, are routinely superimposed upon the image 
base, these images must have a high degree of horizontal resolution and 
planar accuracy (Hipple & Haithcoat 2005).” 

Detailed topography is another layer of geographic data often used in haz-
ard identification and risk assessment.  Parameters derived from the eleva-
tion data (slope & aspect) play important roles in many derived hazard and 
risk products and serve as important inputs to risk models.  Traditional 
methods extract elevation through stereoscopic analysis of aerial photog-
raphy, or in situ methods such as surveying.  New methods for deriving 
elevation include airborne Interferometric Synthetic Aperture Radar 
(IFSAR), LIDAR (LIght Detection And Ranging), and Global Positioning 
System (GPS)-based surveying. 

3.2.2 Remote Sensing 

Remote sensing is a valuable tool for the identification of hazards, poten-
tial hazards and the evaluation of risk.  The benefits of remote sensing in-
clude, but are not limited to, synoptic coverage, high temporal frequency, 
multi spectral capabilities, and the ability to fuse different data sets for 
analysis.  Because the image footprints of satellites are so large, ranging 
from tens of kilometers (with the high resolution sensor systems like 
IKONOS, QuickBird and OrbView) through thousands of kilometers (with 
sensors such as MODIS and AVHRR) large areas or synoptic scale cover-
age permits the analysis of hazards in single scenes or in mosaics.  Typi-
cally, we see moderate resolution data sets like Landsat TM and ETM+ 
(30-m spatial resolution with a 16-tday repeat), Indian Resourcesat AwIFS 
(56-meter spatial resolution with upwards of a 5-day repeat duer to  exten-
sive scene overlaps); and SPOT (20-meter spatial resolution). 

Through synoptic scale analysis entire regions can be analyzed concur-
rently, whereas with aerial photography or ground-based methods, numer-
ous images must be analyzed or numerous site visits must take place.  
Many sensor systems, particularly those with coarser resolutions like 
AVHRR (1-km pixel) or MODIS (250-m pixel)) have daily revisit rates 
(high temporal frequency).  These sensors can be used to monitor emerg-
ing risks and are essential in post- event evaluation.  Figure 1 is an image 
from the Moderate Resolution Imaging Spectroradiometer (MODIS) sen-
sor system of the emerging devastation surrounding Hurricane Katrina ac-
quired on September 7, 2005.  The extent of the flooding can be seen 
southeast of Lake Pontchartrain which is in the center of the image.  Other 
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systems with longer repeat cycles (temporal frequency) have less of an op-
portunity to collect cloud free imagery close to the date of an event. 

Fig. 1. September 7, 2005 MODIS image of New Orleans, LA (Courtesy: NASA). 

The added ability to collect and analyze multiple spectral bands (multis-
pectral) of information in the visible and infrared portions of the electro-
magnetic spectrum allows for the quantitative detection of objects in the 
image, classification of land covers, and ability to monitor changes in the 
images and allows for the automation of these for hazard detection and risk 
analysis.  Once the images are acquired the data can be fused or integrated 
with different types of remote sensing products, elevation data and with 
other geospatial data sets. 
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Case Study: Wildfire Mapping

An example of combining many geospatial technologies in the evaluation 
of risk is the USDA Forest Service MODIS Active Fire Mapping Program.  
Although the primary purpose of this program was to monitor the fire ac-
tivity that occurs annually in the western states, it has further been ex-
panded to the Eastern and Southern United States.  Such wild fires pose di-
rect risk to human settlements and urban areas throughout the United 
States (McNamera et al. 2002, Quale 2005). 

The Active Fire Mapping Program is based upon the NASA remote sens-
ing platform MODIS TERRA and AQUA satellites.  The data from these 
satellites provide four-times daily coverage (10:30am, 1:30pm, 10:30pm, 
1:30am local times) to the mid- and high- latitudes.  Data is downloaded 
and processed by the USDA Forest Service Remote Sensing Application 
Center (RSAC) in Salt Lake City for the western United States and by the 
NASA Goddard Space Flight Center (GSFC)  for the eastern United 
States.  The data is acquired near-real time (3-6 hour delay) (Quale 2005). 

Fire locations are detected using the thermal bands of MODIS (1-km band 
21 with the 3.929-3.989 micrometer wavelength and the 1-km band 31 
with a10.780-11.280 micrometer wavelength) (NASA 2005).  The algo-
rithms used by the Active Fire Mapping Program are described Gigolo et 
al. (2003) and consist of outputs of fire locations as centroids of 1-km pix-
els in a gis format.  Once fire locations are detected, the data is fed into an 
Internet mapping service (see Figure 2). 
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Fig. 2 MODIS Active Fire Map (http://activefiremaps.fs.fed.us).

FireLine ™, a commercial product of ISO Properties, Inc., utilizes satellite 
imagery and other geospatial information to quantify and locate potential 
wildfire hazards.  FireLine ™ is a geospatial technology based hazard de-
tection program from which the data can be fed into a risk model for un-
derwriting hazard property insurance (ISO Properties, Inc. 2004).  The 
FireLine ™ database uses Landsat TM sensor data for determining avail-
ability of fuels, data about accessibility of sites based upon road access, 
and slope, a significant factor in wildfire spread and creates hazard scores 
for fuels, slope, and road access tied to given residential and commercial 
addresses.

Both the Active Fire Mapping Program and the FireLine ™ product from 
ISO Properties, Inc. provide geospatial technologies useful for hazard 
identification and risk assessment in and around urban environments.  The 
evolution of geospatial technologies over the past decade, including the 
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growth and refinement of internet mapping services, makes these data sets 
accessible for urban risk assessment. 

Case Study: Flood Impact Assessment 

The Flooding in the Upper Mississippi River Basin during the summer of 
1993 caused between US$ 12 and 16 billion worth of damage to urban and 
rural infrastructure and cropland.  Since 1993, millions of dollars of new 
development have poured into the flood-impacted areas much of it in or 
around urban areas like St. Louis, Missouri, contrary to the recommenda-
tions of Interagency Floodplain Management Review Committee, among 
others (Hipple et al. 2005; Pinter 2005). Tracking development is difficult 
due to the diverse regulations and land use controls that vary widely by ju-
risdiction, causing varying amounts of development in the Upper Missis-
sippi River Basin (Hipple et al. 2005).  The amount of such infrastructure 
has dramatically increased, with approximately 28,000 new homes built, a 
23% increase in population, and 26.8 km2 (6630 acres) of commercial and 
industrial development added on land that was inundated during the 1993 
flood (Hipple et al. 2005).  In all, $2.2 billion in new development has oc-
curred in the St. Louis area alone on land that was under water in 1993 
(Carey 2005, Shipley 2005). 

Immediately after the 1993 flooding, the interdisciplinary Scientific As-
sessment and Strategy Team (SAST) was formed which included special-
ists from the Soil Conservation Service (now referred to as the Natural Re-
source Conservation Service0, US Army Corps of Engineers (USCOE), 
US Fish and Wildlife USFWS), US Geological Survey (USGS), National 
Biological Service (NBS, now the Biological Services Division of the 
USGS), Environmental Protection Agency (EPA), and the Federal Emer-
gency Management Agency (FEMA) (SAS, 1994). 

The SAST developed a large spatial database for the Upper Mississippi 
and Missouri River Basins providing a baseline for the report of the Inter-
agency Floodplain Management Review Committee (IFMRC), titled Shar-
ing the Challenge: Floodplain Management into the 21st Century (com-
monly referred to as the Galloway Report) (IFMRC 1994), as well as the 
Report of the Scientific Assessment and Strategy Team (SAST) (SAST 
1994).  Large integrated spatial databases were created (perhaps the largest 
of the time) of elevation data sets, soil survey information, flood zone 
maps, flood extent maps, and census data, to name a few.  This baseline 
included many key pieces of spatial information essential for the under-
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standing and reconstruction of the Upper Mississippi and Missouri River 
Basins. 

The drawback was that many of these data sets were less accessible previ-
ous to the disaster for real time evaluation and monitoring, partly due to 
data sharing issues at the time and partly due to the state of the technology 
in 1993; similarly, during Hurricanes Rita and Katrina in 2005, similar 
geospatial data sharing and delivery issues were experienced. 

In response to events such as these, a Federal government task called The 
Homeland Infrastructure Foundation-Level Database (HIFLD) Working 
Group was formed consisting of “a coalition of federal, state, and local 
government organizations, Federally-funded Research and Development 
Centers (FFRDC), and supporting private industry partners” 
(http://www.hifld.org) who are involved with geospatial issues related to 
homeland defense and security, or emergency preparedness and response.   
The HFLD team created a Foundation-level data set for use by these agen-
cies for emergency preparedness and disaster response. 

Hipple et al. (2005) conducted a systematic study of development in the 
Upper Mississippi River Basin to document the changes in the basin af-
fected by the 1993 floods ten years after the event by conducting an analy-
sis to identify new development within the 500-year floodplain and in the 
floodwater inundated areas.  The purpose of the study was to document 
development and analyze areas at risk should another event of similar 
magnitude occur. Since the completion of the SAST datasets and the report 
to the US Congress on the effects of the 1993 flooding by the IFMRC and 
SAST, no follow-up study had yet taken place. 

The study conducted by Hipple et al. (2005) sought to analyze the devel-
opment that occurred in the bluff-to-bluff area and floodwater inundated 
areas of the Upper Mississippi and Missouri River main stem that occurred 
during the period of 1993 to the present.  This study defined the Upper 
Mississippi River Basin as the major Mississippi River tributaries up-
stream of Cairo, Illinois in the States of Illinois, Iowa, Kansas, Minnesota, 
Missouri, Nebraska, North Dakota, South Dakota, and Wisconsin.  The 
analysis focused on changes from floodplain agriculture or undeveloped 
land to developed floodplain.  Developed is defined as having an artificial 
surface covering or replacing the natural surface that existed during the 
pre-1993 flood period.  Artificial surfaces could include buildings, con-
crete, asphalt or turf, and adjacent land area.  In addition, US Census Bu-
reau data were analyzed to quantify housing unit and population changes 
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within each of these two areas, allowing a county-by-county and state-by-
state comparison of population change and housing unit change within the 
flood affected areas (Hipple et al. 2005). 

In order to quantify new development in the flood affected areas Landsat 
satellite imagery was classified looking for residential, commer-
cial/industrial, and highway & interchange development.  Fourteen Land-
sat scenes were analyzed for two dates. Landsat ETM+ data was acquired 
to analyze the most recent developments (“post-flood”) and included 
cloud-free imagery from 2003, with some areas covered by imagery from 
the 2001 to 2002 time period.  The “pre-flood” imagery consisted of Land-
sat TM imagery.  The “pre-flood” Landsat data were the same images as 
used by the SAST team.  The images were analyzed to identify and deter-
mine the aerial extent (in acres) of development in the floodplain (Hipple 
et al. 2005). 

The U.S. Census data used in this project included housing and population 
statistics at the Census Block level; county level statistics were summed in 
ArcGIS.  The 1990 and 2000 U.S. census Block boundary files were se-
lected out based upon their inclusion in the SAST Floodplain boundary 
and the SAST Flood Extent boundary.  Selecting criteria used was whether 
the block centroid was located within the selection. The U.S. Census data 
analysis gives some insight into the development in the flood plain, but 
what it fails to capture is population and housing unit changes from 1990 
to 1993 (which could be either a gain or loss); and population and housing 
unit changes from 2000 through to the present (also, a gain or loss). 

3.2.3 Results of the Analysis 

In the St Louis Metropolitan Region, new development is identified in 
Maryland Heights, Hazelwood, Bridgeton, and county land in St Louis 
County and in St Charles, St Peter and Chesterfield in St Charles County 
in Missouri.  These developments primarily occur in the floodplain and, 
with few exceptions, the tracks of new development in and around the St. 
Louis Metropolitan region are found wholly or in part in the 1993 flood 
inundated area.  Development on the Illinois side of the St Louis Metro-
politan Region, in contrast to the Missouri side, is almost entirely in areas 
of the floodplain not water inundated by the 1993 flooding (Hipple et al. 
2005). 

In the Kansas City Metropolitan Region, new development is identified in 
Kansas City in Clay and Jackson Counties.  The development consists of 
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commercial or industrial development.  This development is almost wholly 
in the 1993 flood inundated area. 

Development and the addition or improvement of flood control structures, 
including urban and agricultural levees, in the Missouri and Mississippi 
River floodplain within Missouri follows no regional plan.  Regional land 
use plans in Missouri are either nonexistent or lack sufficient regulatory 
power. Most land use planning takes place at the county or municipal 
level, where land use regulation, implemented through zoning, is locally 
regulated often leading to local interests being put ahead of the larger re-
gional good. 

3.2.4 How much development is occurring and of what type of 
development is it? 

Commercial/Industrial
The types of development we observe from the satellite image analysis are 
not limited to any single class of development.  Satellite image analysis 
identified residential, commercial, industrial, and recreational use devel-
opment.  Within the flood plain there were over 6630 acres of new com-
mercial and industrial development, 2557 acres of residential development, 
and 2327 acres of highway and interchange development. 

Missouri ranked first in new commercial and industrial development – 
56% of the approximately 6,630 total acres of development occurred in 
Missouri – with 51% of the approximately 6,630 total acres of develop-
ment just in St. Louis and St. Charles Counties (Hipple et al. 2005). 

Residential
The majority of new residential development occurred in Wisconsin and 
Nebraska.  Approximately 2,557 acres of new development were identified 
in Wisconsin mostly in La Crosse County near the city of Holmen.  This 
development accounted for approximately 43% of the new residential de-
velopment detected by satellite imagery analysis within the floodplain.  
Residential development in Nebraska accounted for nearly 40% of the 
2557 acres of new residential development observed.  All detected residen-
tial development, exclusive of one site in Wood River, Illinois occurred in 
floodplain areas not water inundated by the 1993 floods (Hipple et al. 
2005). 

Highway & Interchange
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There have been a large number of highway and interchange developments 
within the floodplain and many have stretches built in the 1993 flood water 
inundated areas.  Not only does this pose a risk to the highway and inter-
change (which estimates for construction range fro $20-million to $40-
million per mile) but also to the often and inevitable pressures for devel-
opment around highway interchanges (Moon 1988)   

Fig. 3. The Missouri River Basin 1993 flood extent as delineated by the SAST 
with areas of new development within the flooded area (SAST 1994; Hipple et al. 
2005). 

3.2.5 Case Study Conclusions 

Floodplain projects in the United States are constrained by Federal Emer-
gency Management (FEMA) National Flood Insurance Program (NFIP), 
the Clean Water Act administered by the Army Corps of Engineers, and by 
more stringent state and local regulations.  In general, guidelines limit de-
velopment in the central portion of the floodplain (the "floodway"), but 
prohibit almost unlimited development in the rest of the floodplain so long 
as the development is raised above or a levee has been constructed with 
100-year protection (1% chance of occurring in any given year) (Pinter 
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2005).  Pinter (2005) points out that in some areas development has been 
enabled by the local governments in flood-prone areas, “in Sacramento, 
California, at least 60,000 new homes and billions of dollars of new infra-
structure have been recently built or are planned on several floodplain 
tracts of the American, Feather, and Sacramento rivers (Leavenworth 
2004a, 2004b).” Other municipalities “--including Denver and Boulder, 
Colorado; Austin, Texas; Phoenix, Arizona; and Charlotte, North Carolina 
-- have limited encroachment and guided development to more compatible 
locations and land uses (Pinter 2005).”  With either more lax restrictions 
on floodplain development or greater control over development, the need 
for geospatial tools for monitoring growth in urban places prone to flood-
ing is essential. 

A valid public perception following the record 1993 flood damages are 
that a repeat flood would not cause similar damages; structures were re-
moved from the floodplain; and it probably won’t be that bad again, after 
all the Federal government had a major study and task force convened to 
address the flood and put mechanisms in place to prevent that scale of 
damage in the future.  However, if private levees have been raised since 
the 93 flood, if the watershed has lost any storage capability, if the flood-
plain has been further reduced by new levees or the repair of levees that 
broke in 1993, then a similar event could be even more devastating and put 
new construction at increased risk if it is behind a levee of 1993 level of 
protection.  All or any combination of these factors will increase the stage 
for the areas they occur in. 

3.3 Summary 

The disaster risk management tools derived from geospatial technologies 
are widely varied.  The two examples presented here represent only a small 
fraction of applications of geospatial technologies for assessing risk in ur-
ban environments.  The ability to provide real time monitoring of hazards, 
like with the US Forest Service Active Fire Mapping Program and the ISO 
Properties, Inc. FireLine ™ system, is becoming a reality with technolo-
gies such as direct broadcast of satellite imagery and web mapping ser-
vices for the near real-time delivery of derived products.  The value of ar-
chive geospatial data sets with the integration of more current data is 
illustrated in the post-event assessment shown in the case study dealing 
with the 1993 flooding of the Upper Mississippi and Missouri River Basin.  
Post-hoc analyses such as these are important to conduct to determine 
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where policies regarding risk to the urban environment may not have been 
adhered to. 
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Of the Earth’s 6.5 billion human inhabitants, nearly three billion live in ur-
ban settlements (UNCHS, 2001).  Natural increase, land tenure practices, 
political policy, environmental degradation, and the dynamics of regional / 
global economics are largely responsible for the ongoing population shift 
from rural agrarian regions to cities.  This increased urbanization is not just 
a developing country phenomenon. Urban areas of North America in 1900 
were home to only 50% of the continent’s population.  In 2000, the per-
centage of North American urban inhabitants rose to 75%. 

Given the importance of urban regions as human habitat, there is an estab-
lished need for accurate intraurban population counts to support decision 
making.  In comparison to population estimates or projections, an exhaus-
tive per-dwelling enumeration acquired through fieldwork is the accepted 
gold standard for counting people and determining their sociodemographic 
characteristics.  A census is a complex undertaking; it requires significant 
human, technological, and fiscal resources to plan and execute.  Because 
of high cost, industrialized nations conduct enumerations only periodi-
cally.  The American decennial census mandated by the U.S. constitution 
is an example.  The United Kingdom also conducts census surveys every 
ten years.  The Australian Bureau of Statistics conducts a census every half 
decade.  In contrast, developing nations experience almost insurmountable 
obstacles to obtain accurate and regular enumerations of their national 
population.  These include vast rural areas, nomadic populations, func-
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tional sovereignty limitations, cultural mistrust, and a lack of technical and 
financial wherewithal. 

The Decennial Census of the US is intended as a temporal snapshot; a de-
piction of the national population on April 1 of the census year.  In areas of 
rapid urban growth, the population counts recorded in a decennial census 
become progressively less representative as the decade progresses.  Rec-
ognizing this, intercensal population estimations are commonly required.  
Additionally, small area population estimates provide a key source of data 
for local planning agencies and businesses.  Often the data are required at a 
geographic level smaller than what is easily found in census data.  In these 
cases, population estimates are the most cost-efficient way to generate the 
required small area data. 

In this chapter we will first briefly review the traditional methods for 
population estimation. Three broad methodologies for estimating intraur-
ban population totals and densities using overhead imagery will then be 
discussed.  Our focus is on the developed urban world rather than develop-
ing or rural areas.  Remote sensing may provide a vital role for population 
estimation in developing countries with significant rural regions, but it is 
not our expertise. 

Once the three broad methodologies have been appraised, a short case 
study will be presented.  In this case study, we use rudimentary image 
processing techniques to estimate the population of the Wasatch Front ur-
ban corridor in Utah, U.S.  After the case study, some concluding com-
ments are then offered about future research directions. 

4.1 Traditional Approaches to Population Estimation 

Population estimates should not be confused with population projections.  
Although data and methods may differ, the primary difference is one of 
time period.  Population estimates are used for the present and the past, 
whereas population projections are used to guesstimate future population 
size.  In this chapter, our focus is on population estimates. 

Estimating population of small areas at various scales of space and time is 
a difficult demographic task. However, because small area population es-
timates are often necessary for local planning departments and businesses 
(billions of dollars in federal funds are allocated to states and local entities 
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based on the estimates), there have been several estimation methodologies 
developed.  Regardless of the method, four preliminary factors must be 
considered; 1) the purpose of the estimation, 2) the spatial scale of the es-
timation, 3) the target temporal period for the estimation, and 4) data 
availability. Once those factors have been considered, three other issues 
must likewise be addressed; 1) the collection of any necessary data, 2) the 
selection of correct statistical methods, and 3) the method for judging the 
goodness of the estimates. 

The collection of necessary data is framed by the purpose and geographic 
scale of the required estimate.  At smaller geographic scales certain admin-
istrative records are aggregated at a county or metropolitan scale and may 
not be available at sub-county levels (e.g. tax returns).  Deciding the scale 
and purpose of the estimate often determines what data can be used, which 
in-turn constricts the choice of appropriate methods.  However, almost all 
traditional population estimation techniques use various types of adminis-
trative records that are correlated with population change. Predictors de-
rived from these records are called symptomatic variables (Plane and 
Rogerson 1994). Ideally, symptomatic variables should be updated regu-
larly.  They should also temporally co-vary with population change in a 
predictable fashion.  Exemplar symptomatic variables include residential 
building permits, utility connections, school enrollments, tax returns, and 
Medicare enrollments. A second important data source is vital records – 
particularly birth and death certificates.  These data are used as major in-
puts into the cohort-component method of population estimation described 
below. 

The U.S. Census Bureau, in cooperation with state partners, is legally re-
quired to provide intercensal population estimates to support federal fund 
allocations.  To comply, the Census Bureau has developed three principle 
methods:   

1. Ratio-correlation procedures.  As the name implies, ratio-correlation 
procedures use the ratio of symptomatic variable values for adjacent 
time periods as independent and dependent variables to estimate 
population.  Changing ratios of symptomatic variables within a 
geographic region are assumed to be a function of the region’s 
changing population ratio (Plane and Rogerson 1994). The ratio of a 
subregion’s population to the larger region population for two time 
periods is regressed on similarly formed symptomatic variables (ratio 
of ratios). These models will generally use vital records (i.e., births 
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and deaths) and administrative records (e.g.,elementary school 
enrollment, vehicle registration, voter registration).   

2. Component-method II procedures.  All component methods are 
predicated on demographic accounting, i.e. population change = 
births - deaths + net migration.  The greatest difficulty with this 
approach is correctly specifying the migration factor.  The 
component-method II procedure utilizes registration data on births 
and deaths, and tries to estimate net migration using other 
administrative information.  The U.S. Census Bureau splits the use of 
different administrative data genres based on age.  For populations 
less than 65 years of age individual tax returns are used.1 For 
populations older than 65 years of age, medicare enrollment is used. 
In this method, migration – based on different tax return addresses or 
medicare payment addresses – is estimated.  Both sources also have 
information on household size.  For entities without access to 
individual tax returns, school enrollment is often used and assumed to 
be indicative of migration in the total population – with adjustments 
being made for the historical differences between the school-age 
migration rate and the total population's rate of migration.  

3. The housing-unit method is based on change in the housing stock of 
an area from the base date to the estimate date.  Data on the housing 
stock and flow are generally derived from; 1) U.S. Bureau of the 
Census survey of building permits and demolitions, and 2) State Data 
Center survey of counties and cities issuing permits for residential 
buildings and demolitions. The housing unit method requires the 
specification (assumption) of  vacancy rates and average household 
size.  Once specified, housing unit count change between base and 
estimate dates is multiplied by the occupancy rate and average 
household size to estimate population change.  Individuals in group 
quarters (prisons, college dormitories, nursing homes, and military 
barracks) are included in the total.  As a refinement, separate 
estimates are constructed by housing structure type (e.g., single-
family dwellings, 2-to-4 unit, 5+ units, mobile homes).  This 
refinement permits different vacancy and household size factors to be 
more precisely tailored to the structure types within the housing 
stock.  

                                                     
1 Only the Census Bureau has access, from the IRS, to the individual tax returns.  

Other governmental or private businesses will use school enrollment data in lieu 
of individual tax returns. 
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Perhaps the most important aspect of population estimation is validation. 
Population estimates are typically based on assumptions of temporally sta-
ble relationships between population change (i.e., births, deaths, migration) 
and their symptomatic variables. The temporal stability of the symptomatic 
variables themselves is likewise assumed.  These are generally safe as-
sumptions, but the estimate will always contain error.  The only way to as-
sess the error is to do an actual count.  This would of course obviate the 
need for the estimate in the first place.   

4.2 Population Estimation Using Remote Sensing 

There are four primary approaches to estimating population with remotely 
sensed data: 

1. The use of allometric population growth models based on place size.  
Typically the area of cities, towns and villages is measured from 
small scale air photography or satellite imagery and submitted to a 
calibrated allometric model to estimate population.  Central place 
theory and road connectivity are sometimes employed to improve 
accuracy.  The allometric technique is very useful in developing 
countries where ground enumeration is impossible and a single 
population total for each city, village, or region is acceptable.  It is 
less useful when population estimates are required for small 
enumeration districts such as US census tracts.  This method is 
beyond the scope of this paper but Lo (2006) provides an excellent 
review.   

2. The use of dwelling unit type as a surrogate for family size.2 This 
technique requires an interpreter to identify, classify, and count 
dwelling units manually from large scale imagery.  A simple model 
relates dwelling type to resident family size.   

3. The use of landtype zones3 as a surrogate for population density.  
Different landtype zones are identified on medium-scale imagery and 

                                                     
2 With some loss of precision, we call this approach dwelling identification.
3 Every student of remote sensing quickly learns the difference between land 

use and land cover. Nonetheless, to simplify phraseology by avoiding the repeti-
tion of the phrase “land use and/or land cover” throughout this chapter, the term 
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a model is employed that links landtype with population density.  
This approach has historically been used with medium scale air 
photography and satellite imagery. 

4. Pixel based approaches that seek to model population or housing unit 
density directly as a function of spectral reflectance or spectral 
texture on a medium-scale satellite images. 

4.2.1 Dwelling Identification 
The process of estimating population density via dwelling identification is 
conceptually simple and requires the following general steps.  A schema of 
dwelling unit types based on family size is initially itemized.  For example, 
the schema may include designations such as duplexes, single family resi-
dential homes, and apartments.  Using information acquired from census 
data, interviews, or rental agencies, average resident counts for each dwell-
ing unit type in the schema are determined.  Each dwelling unit in the 
study area is then placed into one of the a priori schema classes by its ap-
pearance on large scale photography.  Total estimated population is the 
sum of the dwelling units of each type weighted by their corresponding 
average resident population. 

The success of the procedure outlined above depends on the successful 
identification of various dwelling types from high-resolution imagery. This 
was established early by Green (1956, 1957) who postulated that the social 
structure of a city could be determined through the analysis of aerial pho-
tography. Green suggested that this identification of dwelling type is the 
first step to the use of air photography for demographic, sociological, and 
urban ecological applications.  In this pioneering research, Green (1956) 
examined 17 residential neighborhoods in Birmingham, AL to ascertain 
whether stereo air photography (1:8,000 scale) facilitated the identification 
of urban dwelling structure type.  Although the research focused on meas-
uring; 1) the percentage of detached single-unit homes, and 2) the dwelling 
unit density per block, several other residential structural types were dis-
criminated as part of the study (e.g., duplexes, multiunit).  Green utilized 
the following characteristics in his photographic key to housing identifica-
tion: 

                                                                                                                         
“landtype” will be used instead.  Where differentiating between land cover and 
land use is important to the discussion, the two separate terms will be used. 
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1. Roof structure and form (i.e., gables, dormers, porches) including the 
existence and number of chimney stacks and rooftop plumbing 
fixtures.

2. The overall shape and size of the building. 
3. The situation of the building i.e., “the location of the building with 

respect to the street, the building line, and other structures” (p. 143). 
4. Vehicle accommodations, including carports, parking areas, garages, 

and driveways. 
5. Pedestrian accommodations such as footpaths, sidewalks, and 

entryways. 
6. The shape and size of yards, courts, etc. 

Not surprisingly, Green found that the error rates in classification were de-
pendent on structure type rather than uniformly distributed across all struc-
ture classes. Nearly all the problems involved multiunit residences.4   Spe-
cifically, Green had trouble with universally distinguishing multiunit 
complexes from duplexes, and differentiating between duplexes and sin-
gle-unit dwellings. Summarizing, the total study area housing unit count 
and multiunit structure count were slightly underestimated whereas the 
single-unit dwellings were overestimated.  Overall however, “the results 
[showed] 1) that 99.8 percent of the 3,629 existing residential structures in 
the 228 city blocks observed were correctly identified as such, and 2) that 
89 percent of these structures were correctly classified by categories of 
numbers of dwelling units.”   For other related dwelling unit studies akin 
to Green (1956), see Hadfield (1963) and Binsell (1967). 

Extending Green’s groundbreaking research, the objective of Lindgren’s 
(1971) study was to determine; 1) whether the same dwelling unit identifi-
cation success reported in foregoing research could be obtained with me-
dium-scale imagery (1:20,000), and 2) whether the use of color infrared 
(CIR) photography improved dwelling type identification success rates ob-
tainable from natural color or panchromatic imagery.  Lindgren’s operat-
ing assumption was that “in high-density areas, CIR imagery would allow 
for easier identification of urban signatures” (p. 374).  Although originat-
ing with Binsell (1967), Lindgren’s final list of dwelling identification 
keys deviates little from Green (1956).    

After developing the clues using three blocks of high-density housing in 
the metropolitan Boston area (i.e., East Boston, Chelsea, Charlestown), the 
                                                     

4 The identification and treatment of multiunit structures is a reoccurring theme 
in population estimation with overhead imagery. 
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indicators were tested in 15 additional blocks containing 655 residential 
structures and 1744 dwellings.  Lindgren’s total residential structure count 
from the photography underestimated the actual total by only three.  How-
ever, the ability to count infrastructure dwelling units was more difficult 
because of the prevalence of multiunit buildings within the study area – the 
interpretation underestimated the total number of dwelling units by 54.  
These summary figures obscure the seriousness of some interpretation 
problems – in both residential structure and dwelling unit counts, signifi-
cant overestimates were offset by substantial underestimates. Overall, only 
59% of the residential structures were assigned the correct number of 
dwelling units.   

In concluding, Lindgren offered two observations.  First, any personal fa-
miliarity of the study area enjoyed by the interpreter would dramatically 
increase chances for a successful outcome.  For example, structures that 
Lindgren found in Charlestown with a particular roof-type were consis-
tently mis-categorized.  A single visit to Charlestown before the interpreta-
tion began would have prevented the mistake. Second, the high quality of 
the CIR transparencies used (i.e., their sharpness and contrast), in conjunc-
tion with the infrared distinction between built-up and nonbuilt-up urban 
areas more than counteracted any disadvantage of the small CIR image 
scale. 

In coincident research, Collins and El-Beik (1971) used dwelling identifi-
cation methods to estimate the population of the City of Leeds.  The goal 
of the study was to determine whether population estimates made from air 
photography agreed with census estimates. Like researchers before them, 
the operational hypothesis was that dwelling type was strongly correlated 
with resident population count.  Given earlier work by El-Beik (1967) 
demonstrating that housing types in Leeds could be identified classified 
from air photography, that hypothesis was reasonable.   

The schema for the population estimation study required the discrimination 
of semidetached, terraced, and back-to-back dwelling types.  Based on the 
interpretation of 1963 photographs of 1:10,000 scale, all the housing struc-
tures within the study area were classified into one of those three catego-
ries.  Multiplication factors linking dwelling type to inhabitant number 
were derived from 1961 census enumeration maps and data.  Only half of 
the enumeration districts were used to derive these factors whereas the 
other half was cloistered for validation purposes.  For semidetached dwell-
ings, it was found that 3.03 people lived in each house.  The linear nature 
of semidetached and terraced dwellings in Leeds suggested a different tack 
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for designating a multiplier.  For these structures the multiplier was the to-
tal housefront linear feet per person with 4.62 and 4.27 ft / person being 
adopted for terraced and back-to-back houses respectively.   

For validation, these factors were applied to the housing within the seques-
tered enumeration districts and population totals were calculated.  When 
compared against 1961 census data, Collins and El-Beik found that the av-
erage error for enumeration districts dominated by terraced houses, back-
to-back houses, and semidetached dwellings was +0.87%, +0.32%, and -
6.4% respectively.  The largest errors among individual enumeration dis-
tricts were underestimates among semidetached homes with unexpectedly 
large families.   

According to Collins and El-Beik, the accuracy of this approach depended 
primarily on two variables.  The first was the ability of the photointerpreter 
to properly identify housing type.  The second was how well the calibrated 
multiplier correctly represented target areas of the same dwelling category.  
The authors also observed that refinements in the method were possible.  
Multipliers could be adjusted according to structure age and proximity to 
schools.  Social and economic variables could likewise be used to create a 
more sophisticated multiplier set. 

Watkins (1984) focused his research on the problem of correctly counting 
the number of dwelling units in a multiunit structure.  Error resulting from 
this prevalent problem was also investigated – Watkins observed that “no 
studies to date have explicitly investigated the nature of multiple dwelling 
unit counting errors with respect to the ways in which they relate to differ-
ent structure types, nor have they considered the actual impact that multi-
ple unit structures as a whole have on the accuracy of enumerations of all 
dwelling units within a residential area” (p. 1599).   

Watkins subdivided multiunit structures into two groups; 1) those origi-
nally designed to house multiple families, and 2) structures originally built 
as single-family dwellings.  Watkins observed that the diagnostic photo-
graphic elements needed to estimate the number of households were dif-
ferent in each group.  The photographic key developed included not only 
guidelines for differentiating between residential and nonresidential but in-
structions for discriminating between converted single-family structures 
and archetypical apartment structures.  Telltale features of apartment 
buildings included roof divisions, outside fire escapes and porches, en-
trance location and number, parking, and apparent socioeconomic level.  
Converted structures were distinguished by structure symmetry, quality 
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and amount of vegetation, number of sidewalks from the structure to the 
roadway, walkways between sides of the same structure, site context, and 
the apparent method of property subdivision.  Structure size, shape and 
height, as well as vents and chimneys were important to identifying both 
types.  

After developing the photographic key employing these factors, Watkins 
conducted tests in Boulder, Colorado for three study areas.  Dwelling 
count estimates made from 1:20,000 panchromatic imagery acquired in 
1970 were compared to 1970 census block dwelling counts.  Similarly, 
dwelling counts from the 1980 census were compared to estimates derived 
from 1979 1:6000 scale panchromatic photography.  The photographic key 
was highly successful.  For the 1970 data involving 695 buildings, errors 
in multiunit counts within the three study areas ranged from an underesti-
mation of 1.61% to 0.37%.   The error rates for 1980 (2545 buildings) 
were significantly higher, ranging from 1.64% to 4.91%.   As hypothe-
sized, error rates differed by multiunit structure type.  Converted single 
dwelling units were overestimated by 8.45% whereas dwelling units within 
traditional apartment buildings were underestimated by 5.51%.  Single 
units (unconverted) were underestimated by 4.80%. 

Lo (1986) stands alone as the only researcher who has actually applied the 
dwelling unit identification method to an entire city.  The goal of Lo’s re-
search was to estimate population in 93 traffic zones in Athens, Georgia 
from 1:20,000 aerial photography.  Like preceding researchers, Lo used a 
simplified residential structure schema that included only a few structural 
types; 1) small single family structures, 2) large single family structures, 
and 3) multifamily structures.  Estimated resident counts used in the popu-
lation calculations were 3.0 and 4.0 for small and large family dwellings 
respectively, and 2.0 per dwelling unit within multifamily structures.  

Comparison of the photointerpretation results with 1980 census data re-
vealed an average population count underestimate of 1.7% per traffic zone 
with considerable variation from zone to zone.   Counting errors were at-
tributed to the following factors; 1) family sizes different from those as-
sumed in the estimation process, 2) photointerpreter skill, 3) the number of 
multiunit structures, 4) the area of the traffic zone, and 5) the quality of the 
photographic source.   Lo demonstrated that urban population estimation 
for an entire city was feasible, and resulting accuracy could be high.  We 
consider Lo (1986) to represent the state-of-the-art in the dwelling unit 
identification / counting approach to intraurban population estimation.     
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Comments 

Although the identification and counting of dwelling units showed signifi-
cant promise for intraurban population estimation, there is little literature 
mentioning it after Lo (1986).  Of all three methods for intraurban popula-
tion estimation discussed in this chapter, it remains the most accurate, par-
ticularly when enumeration districts are small.  In addition, there is in-
creasing availability of high resolution digital orthophoto and high altitude 
CIR coverage for many urban areas in the U.S. that can be analyzed with 
the method.  These data can generally be downloaded online from state or 
university GIS repositories without cost.  In our experience, these data 
range around 30 to 15 cm in pixel resolution, are geocorrected to a map 
base, and are excellent quality.  These characteristics make the interpreta-
tion of most dwelling diagnostic features a straightforward task.  

These high resolution digital image data have some limitations.  One limi-
tation is the inability to view the photographs in stereo.  Because of this, 
other clues such as shadows must be used to measure building heights. In 
addition, the end user has no control over the date of the photography.  
This not only includes year, but season as well.  Figure 1 is a medium-
density residential block near downtown Salt Lake City, Utah.  The pho-
tography (originally in color) was acquired in late summer 2003 as part of 
a USGS program to acquire high resolution imagery of the most populated 
urban areas in the United States.  The data are available to the public from 
the U.S. Geological Survey, EROS Data Center, Sioux Falls, SD 
(http://www.usgs.gov/). 
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The pixel resolution is 30 cm.  Figure 2 is a similar block in Pittsburgh, 
Pennsylvania, taken in leaf-off conditions.  Classifying the buildings in the 
Pittsburgh imagery would prove a simpler task because the deciduous trees 
are not obscuring dwelling yards, roofs, etc.  In contrast, the interpretation 
of the leaf-on Salt Lake City imagery would be more challenging.  Of 
course if tree cover were an important diagnostic feature in a landtype 
schema, leaf-on imagery may be preferred. 

Adeniyi (1983) summarizes our viewpoint on the dwelling unit identifica-
tion approach when writing “The results have revealed, in general, that 
remotely sensed data have the capability to provide timely, verifiable, and 
relatively accurate intercensal population data, based on uniform criteria at 
local, metropolitan, and regional levels” (p. 546).  Adeniyi is equally per-

Figure 1. Leaf-on 30cm aerial photo of Salt Lake City, UT.
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ceptive regarding the method’s greatest limitation when stating, “[Each] 

exercise of estimating population using remote sensing techniques tends to 
be valid only for the particular area under consideration.  Consequently, 
there seems to be a need to formulate for each cultural area a suitable 
model based on relevant attributes of the area” (p. 546). 

Figure 2. Leaf-off 30cm aerial photo of suburban Pittsburgh, PA. 
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4.2.2 Landtype Surrogates 
Along with the lack of generality in interpretation keys, another drawback 
to counting dwelling units is the intensive labor required to do the photo 
interpretation.  The method also requires the use of large scale photogra-
phy and is not suitable for use with satellite imagery having a pixel resolu-
tion coarser than about 1 meter.  Because of these shortcomings, the use of 
landtype zone as a population surrogate was developed.  The premise of 
the approach is that landtype is related to housing densities which are in- 
stage coupled to population density.    

Two variants are common.  In the first variant, a schema of landtypes is 
developed and a characteristic population density for each type is assumed, 
measured, or estimated.  The landtype zones are delineated on overhead 
imagery.  Given that a district can contain different landtypes, the popula-
tion for a district is next estimated in three steps.  First, the area of each 
landtype in the district is determined.  Landtype area is then multiplied by 
the population density assumed for the category.  The resulting product is 
the total population for that landtype within the district.  Summing those 
totals across all the landtypes in the district produces the total district 
population.   In the second variant, the imagery of the enumeration districts 
is investigated to determine the different landtype percentages constituting 
the district.  Those percentages become carrier variables in transfer equa-
tions relating the landtype constituent amounts to the district population 
density.   

The need for accurate population data with which to calibrate the landtype
 population transfer functions is the logical equivalent of calculating the 

average number of people per dwelling unit type in the structure counting 
approach.  It is generally required for both variants. 

Kraus et al. (1974) were some of the first researchers to advance the land-
type surrogate approach for population estimation.  In their experiment, 
four cities in California (Fresno, Bakersfield, Santa Barbara, and Salinas) 
were chosen for study.  The goal of the research was to estimate the cities’ 
population from high-altitude aerial photography with scales of 1:600,000 
(panchromatic), 1:120,000 (CIR), and 1:60,000 (CIR).   The interpretation 
schema utilized only four land use types; single family residential, multi-
family residential, trailer park residential, and commercial / industrial.  The 
entire built-up area of the four cities was placed into one of those four 
classes based on landscape appearance in the photographs.  The area of 
each land use type was measured with a polar planimeter.   “In order to ob-



4 Intraurban Population Estimation      61 

tain characteristic spatial population densities for the three residential land 
use categories, 1970 U.S. Census Block Data was used.  Areas of a single 
residential land use were identified from the land use maps and located on 
Census Block data maps.  Random samples of blocks within each residen-
tial land use category were then obtained to determine population densities 
per square kilometer for that land use.  The spatial population density fig-
ures derived from each random sampling were then averaged to obtain 
characteristic spatial population densities for each residential land use 
category within each city” (p. 39).  The total population for one of the 
mapped zones was the product of the characteristic population density and 
zone area.  Summation of the zonal population across the city produced the 
total population estimate. 

The results of the zonal procedure were a 7.0% population overestimation 
in Santa Barbara, and an average 7.2% underestimation in the other three 
cities.  Two causes of the underestimation in Fresno, Salinas, and Bakers-
field were given.  The first was the inability to identify residences in older 
built-up business districts.  Secondly, the enlargement of the original pho-
tography for easier interpretation unexpectedly increased the difficulty of 
identifying isolated individual apartments, causing an underestimation of 
area in the multifamily residential class.  The overestimation in Santa Bar-
bara was primarily due to the large lot sizes in many single-family residen-
tial zones – the characteristic population density applied to those zones in 
Santa Barbara was too large.  To ameliorate these problems, Kraus et al. 
recommended; 1) a correction factor for “hidden” residential uses in com-
mercial districts, 2) the use of larger scale air photography, and 3) a refined 
residential land classification system that permitted fine tuning of charac-
teristic zonal population density factors. 

In research reported by Adeniyi (1983), the objective was to examine the 
feasibility of systematically estimating Nigerian population with aerial 
photography.  The research was warranted by the historic failure to accu-
rately estimate Nigerian population using traditional methods, a failure at-
tributed to the paucity of accurate social and administrative data.   Addi-
tionally, urban planning demands of Nigeria required population 
estimation for small areas (e.g., voting districts) undergoing rapid urbani-
zation. Based on significant preceding research (Adeniyi 1976, 1980) the 
project began with the simple hypothesis that population estimation based 
on land use zones would be appropriate for Nigeria.  Two reasons were 
given for the use of the landtype zone method in preference to the dwelling 
unit method described above, both related to the communal housing struc-
tures used in Nigeria.  First, the individual dwelling units were not readily 
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countable on the available air photographs.  Second, because each single 
storied structure might house between three and ten families of consider-
able and variable size, the utility of an “average family size factor” was 
dubious and would have produced significant estimation error. 

Adeniyi chose the Federal Capital of Nigeria (Lagos) as the study site.  
The methodology was complex, required several steps, and will only be 
summarized below.  Initially, different residential areas were delineated 
and classified on the 1:20,000 panchromatic photographs acquired in 1974.   
Housing quality and other sociocultural information was next collected 
from the air photographs.  These photographically measured variables in-
cluded building density, plot size, layout, garden existence, number of sto-
ries, dwelling type (e.g., apartment, communal), and building usage. 

Examination of these variables suggested a landtype schema with nine 
species.  Once the schema was completed, the analysis required that the 
population densities of each residential landuse category be gauged.  Using 
a random sampling scheme stratified by landuse category, information on 
family size and number of families for each residential structure type was 
determined by limited field survey.  The total number of field samples 
(i.e., residential blocks) was 58 with the number of samples per land use 
ranging from 1 to 20.  A total of 3,479 buildings were included in the 58 
blocks.  A cluster analysis of these 58 field samples using the field data 
alone regrouped the field samples into nine temporary subsets for the pur-
pose of exploring intraresidential and interresidential class differences and 
similarities.  The clustering exposed two broad divisions in the land zones.  
The first division was the planned land zones – planned residential areas 
with apartment housing of moderate density.  The second division con-
sisted of the higher density communal dwelling structures considered tradi-
tional and unplanned.   It was also observed that many of the residential 
landtypes could be distinguished almost completely by the density of resi-
dential buildings typifying them. 

Average population density figures were calculated from the field data for 
each residential land use.  Regression analyses were then used to optimally 
model the population density of each land use using all of the survey and 
air photograph variables as candidate independents.  For the complete 
sample of 58 blocks, three variables were able to explain 90% of the varia-
tion in the population density; 1) density of communal type buildings, 2) 
average population per building, and the 3) density of all buildings.  Dif-
ferent residential land use classes had different models; however the two 
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variables appearing the most frequently in the models were density of 
communal type buildings and average population per building. 

Because the data gathered had been exhausted in the model building phase, 
validation of the models was impossible, but Adeniyi made the following 
observations. 

1. The Lagos population estimates in zones of planned residential 
development were quite accurate, primarily because the average 
population density value for the planned residential land uses was 
uniformly applicable to all samples of that type.  If air photos were 
used operationally to estimate Nigerian population, fieldwork to 
establish the average building population for planned zones would be 
minimal.   

2. In contrast, fieldwork to support estimates for the unplanned 
residential landuse categories would be necessarily extensive.  The 
highly variable average population density factor would require 
tailoring for different regional areas. 

Another example of the residential landtype approach with a simpler 
methodology is Olorunfemi (1984).  This study was conducted in the city 
of Ilorin, Nigeria, a city of ½ million population that serves as the capital 
of Kwara State.  The goal of the study was to “define a mathematical 
model which may be used in conjunction with data on housing land area 
measured from aerial photography to obtain urban population estimates for 
Nigerian cities” (p. 221).  The photographs for the study were acquired in 
1950 and 1963 at scales of 1:2400 and 1:12000 respectively.  Census data 
to support the research was taken by survey method in 1952 and 1963.  

A total of 74 square sample sites of 4 hectares each were randomly se-
lected from topographic maps and their location transferred to the two sets 
of aerial photography.  The area (percentage) of each major landtype 
within each sample site was measured using a dot grid.  The landtype clas-
sification schema used six categories; 1) indigenous residential type hous-
ing, 2) barrack / flat housing, 3) flat housing, 4) uncompleted housing, 5) 
bare ground / grass / agricultural land, and 6) trees.  The population of 
each sample site was determined from the census data.  Multiple regres-
sion analysis was conducted to model population within the 4 hectare sam-
ple sites as a function of the area in each of the six categories.   
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For the 1950 case, population was significantly correlated with the per-
centage area of uncompleted housing (r = 0.66)5, the percentage of trees (r
= -0.66) and percentage area devoted to barrack / flat housing (r = 0.57).   
A linear regression model using all six variables explained 72.6% of the 
variation in population density.  For the 1963 data set, the only significant 
explanatory variable was the percentage of area devoted to flat housing (r
= - 0.51). 

Olorunfemi concluded there was a functional relationship between land-
type and population density which justified the use of landtype as a popu-
lation surrogate.  The goodness of the regression models was deemed suf-
ficient to warrant an examination of its utility for wider application in 
Nigeria.  “It should be stressed, however, that, for this method to be useful 
in generating nationwide data, there is need for further research aimed at 
testing the applicability of the model in cities with similar and/or different 
characteristics” (p. 227).  Olorunfemi also considers the method particu-
larly appropriate in communities where housing land area is known be-
forehand or population data is unavailable because of “remoteness, politi-
cal obfuscation, or insufficient resources to conduct frequent census 
enumerations” (p.227).  

Since the launch of Landsat-1 in 1972, the mapping of landcover from me-
dium resolution satellites has become operational in many disciplines such 
as range management and agriculture. The potential for adapting the land-
type zone population estimation method from aerial photography to satel-
lite imagery was natural.  The work of Langford et al. (1991) serves as an 
excellent example of this adaptation.  One objective of this study was to 
model the 1981 population of 49 wards in four districts of northern Leices-
tershire, England using the landtype surrogate approach.  The methodology 
was straightforward.  First, using automated image processing methods, a 
satellite image dated July 1984 was classified into various landtype catego-
ries on a pixel-by-pixel basis.  The single satellite image covered all 49 
wards of the study area.  Creation of the landtype map proved challenging, 
primarily because the unsupervised classification highlighted land cover 
differences in the rural hinterlands of the area but did not sufficiently dis-
criminate between important urban landtypes.  After some trial and error, 
principal components analysis of the original seven band TM image re-
sulted in three principal component bands that revealed urban land cover 
differences necessary for accurate discrimination.  The resulting map con-
sisted of 12 landtypes collapsed into five broader categories; 1) commer-
                                                     

5 Unless otherwise noted, correlation coefficients (r) refer to Pearson’s r.   
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cial and industrial, 2) high-density residential, 3) ordinary residential, 4) 
quarries, woods, water bodies, and 5) agriculture.  Once the landtype map 
was complete, the 1981 census ward boundaries were digitized, rasterized, 
and imposed on the digital landtype map.  This permitted the area of each 
type (listed above) to be tallied for each of the 49 wards.   Except for agri-
culture, the greatest difference in cover amounts between the various 
wards was in the ordinary residential category – ordinary residential land 
cover within a ward varied from 10 to 430 hectares with a mean and stan-
dard deviation of 158 and 95 hectares respectively. 

Simple correlation analysis revealed that total ward population was most 
highly correlated with the ordinary residential (r = 0.75) and commercial / 
industrial (r = 0.60) land area in the ward.  Total population was more 
weakly correlated with agriculture (r = -0.28) and high-density residential 
(r = 0.33) area.  Encouraged by the results of the correlation analysis, sev-
eral regression models were created that explained total ward population as 
a function of the five independent variables listed above.  The models dif-
fered primarily on the number of variables used, the use (or not) of a Pois-
son error term, the fitting (or not) of an intercept, and whether negative co-
efficients were permitted.  The last requirement (no negative coefficients) 
was designed to preclude models that might generate negative population 
counts.  Regression equations that had a non-zero intercept were also con-
sidered logically flawed. 6  In summary, it was “argued that that any statis-
tical model linking pixel counts of land cover to population should be sim-
ple, linear, additive, and without any intercept constant” (p. 67).   The most 
effective model produced by Langford et al. included only two variables, 
ordinary residential landcover and high density landcover area. This ordi-
nary least squares model with only additive coefficients produced an R2 of 
0.82.  Areas of underestimation and overestimation, sometimes severe, 
were noted by spatially analyzing the residuals from the regression.  The 
residual patterns from the different models were similar. 

Comments 

Although the required methodology differs slightly, the use of landtypes as 
population surrogates is equally applicable to air photos and satellite data 
alike.  The use of satellite data has some particular advantages.  Unlike 
analog air photography, satellite imagery lends itself to automated inter-
pretation, classification, and georeferencing.  For large areas with no pre-

                                                     
6 Harvey (2002a; p. 2086) discusses the issues of negative coefficients and zero 

intercepts in some detail and provides alternative opinions. 
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existing air photo coverage, purchasing satellite data is much less expen-
sive than contracting for an aerial photography acquisition mission.  For 
example, one Landsat image covering about 34,000 km2 can cost less than 
$1000 U.S.  Because of its lower expense, satellite imagery can be ac-
quired more often (or on demand) and can thus facilitate more timely 
population estimates than air photography.  Although high resolution satel-
lite data are available, the landtype surrogate approach only requires less 
expensive moderate resolution imagery (i.e. 30m - 50m pixel resolution).  
Satellite data can also provide a fine degree of spatial granularity over 
large urban areas. 

The landtype surrogate approach does have disadvantages.  It is less accu-
rate than counting dwelling units.  Although a landtype classification 
schema may only contain five or six categories, the task of creating the 
landtype schema is critical for success.  As illustrated by Langford et al. 
(1991), the task of generating an urban landtype map with sufficient detail 
to support population estimation may require substantial trial and error.  
Nonetheless, the use of landtype surrogates continues to be an important 
tool in geographic urban analysis.   

4.2.3 Pixel-based Estimation 
Pixel-based estimation is an approach designed entirely for moderate reso-
lution satellite imagery.  In its basic form, the goal of pixel-based estima-
tion is to model population or population density directly as either a func-
tion of multiband satellite sensor reflectance values or some mathematical 
derivative thereof.7   Adopting the logic of Iisaka and Hegedus (1982), the 
justification for this approach lies in the nature of the pixel itself.  In an ur-
ban area, a single satellite pixel will contain a variety of land cover types 
that contribute to the spectral reflectance of the pixel.  Figure 3 shows an 
area of several pixels covered by a Landsat MSS image compared to an ae-
rial photo with 6 inch resolution to demonstrate the variety of objects 
within a single 79 x 79 meter pixel.  Exemplar cover types are rooftop 
shingle, road surface concrete, lawn grass, and parking lot asphalt.  As 
population density varies, the relative percentage of these cover types co-
varies.  This variation accordingly modulates the spectral signature of the 
pixels having an urban footprint (Iisaka and Hegedus, 1982).  While the 
causal relationship may be population  housing  landtype  spectral 

                                                     
7 The term “spectral features” is given to these mathematical derivations.  It 

should not be confused with “spatial features.”  Example spectral features include 
vegetation indices, principle components, and texture measures. 
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signature, the pixel based estimation usually proceeds spectral signature
population with the landtype and housing treated implicitly. 

The goal of Iisaka and Hegedus (1982) was to model the relationship be-
tween spectral reflectance and the population of metropolitan Tokyo.  The 
satellite images acquired from Landsat 1 and Landsat 3 were dated No-
vember 1972 and January 1979 respectively.  Census data required to cali-
brate and validate the modeling were acquired in 1970 and 1975.  One of 
the assumptions required in modeling population as a function of spectral 
signature “is that the environmental alteration…should share similar char-
acteristics in different areas, in both quantitative and qualitative respects” 
(p.261).  This permits measurements made in sample areas to be logically 
applied to other locales.  The authors claimed that the homogeneity of 
housing materials, dwelling size, land use systems, and housing density in 
residential Tokyo satisfied this assumption. 

A total of 88 sample sites (25 hectares each) outside the Tokyo central 
business district were initially identified.  The size of the sample sites (500 
m  500 m) corresponded to the resolution of the government census maps 
of the Tokyo ward area.  Once identified, the population for each sample 
site was extracted from the 1970 and 1975 census maps.  The satellite im-
agery was resampled and georegistered to the census maps and the mean 

Figure 3. Landsat MSS image compared to aerial photo of Provo, Utah.  
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spectral values for the four multispectral scanner (MSS) bands determined 
for each of the 88 sample sites. This created a data set of 88 records having 
five fields each.  Population was the dependent variable whereas the car-
rier variables were the four MSS bands.  

Exploration of the data indicated that the green and infrared bands were 
strongly correlated (linearly) with population.  Regression analyses were 
conducted to determine whether population for the sample sites could be 
explained as a function of the four-band spectral signatures.  As expected, 
regression equations utilizing the green and infrared bands were most ca-
pable of predicting population density. The signs for the coefficients re-
mained the same for the 1972 and 1979 data although the magnitudes of 
the coefficients were different.  Examination of the regression equations 
showed reflectance in the green band increasing and reflection in the two 
infrared bands decreasing with increasing population density.   Iisaka and 
Hegedus do not explain the physical basis for the signs of the coefficients 
or the reason why they are different between the two years.   Based on our 
own research in North America, we cautiously suggest that denser urban 
build-up associated with greater population densities co-occur with less 
urban vegetation, hence the inverse relationship with infrared reflectance.8

At first blush the same argument might also suggest the same inverse rela-
tionship between population and green reflectance.  However the increased 
green reflectance from concrete and other lightly colored inert materials 
more than compensates for the loss of green reflectance from sparse urban 
vegetation in such situations.  Likewise, we suggest that the difference in 
the reported regression coefficient magnitude between the two years might
have been reduced by employing radiometric / atmospheric correction and 
standardization methods which have become common in Landsat data 
processing since that time (e.g. Singh, 1989).  

Overall, the models generated multiple R values of 0.84 and 0.77 for the 
1972 and 1979 studies respectively.  Judicious removal of a few atypical 
sites improved the multiple R values to 0.94 (n = 60) for 1972 and 0.90 (n
= 62) for 1979.  Nonconformant sites were residential sample sites con-
taining train stations, schools, churches and other features not prevalent in 
the Tokyo residential area.   

The next important milestone of intraurban population estimation research 
was reached by Lo (1995) who rigorously evaluated the use of SPOT im-
                                                     

8 An increase in shadow from increased urban “canyonization” is an alternative 
explanation. 
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agery for population estimation9 using methods predicated on Iisaka and 
Hegedus’ (1982) earlier success. Whereas the Landsat MSS used by Iisaka 
and Hegedus (1982) utilized four spectral bands with a pixel size of 79 m,  
the SPOT imagery used by Lo had three bands (i.e., green, red, infrared) 
and a pixel resolution of 20 m.  When the project was initiated, it was 
thought that the smaller SPOT pixel size would be a decided advantage, 
“Because of the low spatial resolution of the Landsat-MSS data, the spec-
tral radiance is the average of reflectance of different cover types over an 
area of 79 m by 79 m in a pixel.  The spectral reflectance of the residential 
cover, on which population estimation has to be based, is therefore highly 
diluted.  This dilution will likely affect the accuracy of the population es-
timates. … Because of its better resolution, each SPOT image pixel covers 
a much smaller area on the ground, and hence the spectra radiance is more 
representative of its ground cover characteristics than the 79-m Landsat-
MSS counterpart” (p. 18).  In the exploratory work of Iisaka and Hegedus 
(1982) cited above no attempt was made by the authors to incorporate any 
a priori knowledge about the study area that might permit different regres-
sion models to be used in different neighborhoods.  In contrast, the objec-
tive of  Lo was to model population density in a metropolitan Hong Kong 
study area (i.e., Kowloon) as a function of SPOT spectral reflectance while 
employing GIS technology to permit different regression transfer equa-
tions to be used with different landtypes. 

As mentioned by Lo, the mixed landuse in Kowloon was a significant 
challenge.  Landuse was complex with residential areas intricately mixed 
with non residential areas.  Transitions between low-density residential ar-
eas and high-density overcrowded areas were abrupt.  Multistoried build-
ings in Kowloon not only housed multiple dwelling units, but the buildings 
themselves were multiple-use, serving commercial and industrial functions 
too.

Population data for Kowloon used to support the research was collected by 
the Hong Kong Census and Statistics Department in 1986 for 60 planning 
units via complete enumeration.  Because of computer storage limitations, 
only 44 of the planning units were examined in the study.  These ranged in 
area from 6 to 291 hectares.  The SPOT data used for the population esti-
mation was acquired in January, 1987.  After significant preprocessing, the 

                                                     
9 Lo (1995) also treated the counting of dwelling units with SPOT imagery.  To 

simplify the review, we cite only the results for the population estimation compo-
nent of the research.  The dwelling unit estimation results closely paralleled those 
of the population estimation.   
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SPOT data was georegistered to the boundaries of the planning units.  This 
permitted mean spectral reflectance values to be calculated for each unit.  
By calculating the area of each planning unit with the GIS, population den-
sities for each were also determined. 

Exploratory analysis indicated a moderate negative correlation (r = -0.62) 
between mean infrared reflectance and population density.  After these ini-
tial findings, several regression analyses were performed to model plan-
ning unit population as a function of mean planning unit spectral reflec-
tance.  Twelve of the planning units were manually selected to calibrate 
the regression equations and the remaining 32 were reserved for testing re-
gression goodness.  Regression models were built using all three bands as 
well as simplified regression models using only the infrared band.    The 
dependent variable in the regression model was population density rather 
than population counts.10 The model using three bands was capable of es-
timating population of the whole study area with a relative error of 1.7%, 
whereas the infrared band model resulted in an error of 15.0%.  When 
population estimation was attempted at the smaller scale of the planning 
unit, serious estimation errors sometimes exceeding 500% were encoun-
tered, primarily in commercial and industrial planning units.  The mean 
relative error for the micro-scale planning unit estimation was about 75%. 

Because each planning unit in both Kowloon and the greater Hong Kong 
metropolitan area was a mixture of both residential and nonresidential land 
uses, Lo sought to refine the population estimation process.  The refine-
ment required that the pixels actually representing residential land use be 
identified within each planning unit.  This would permit the regression 
equations to be applied to those residential pixels alone and avoided the er-
rors associated with attempting prediction for those pixels known to be 
predominantly commercial or industrial. 

This refinement was completed by classifying the SPOT image into eight 
landtypes which included both low-density residential and high-density 
residential categories.  An average per-pixel population density for high 
and low density residential zones was calculated using the census data for 
the 12 calibration planning units.  The refinement produced a modest de-
crease in the population estimation errors of the smaller planning units, 
and the absolute mean relative error dropped to 67%. 

                                                     
10 When multiplied by the area of a single SPOT pixel (0.04 hectares), the 

population per pixel could be easily estimated from the density.   



4 Intraurban Population Estimation      71 

For its rigor in methodology and actual success in modeling population 
density of small districts, Harvey (2002a) represents a landmark work of 
significant dimensions that should be read in its entirety.  Harvey’s goal 
was to model small-area population densities for Australian census collec-
tion districts (CDs) using spectral features measured from Landsat TM im-
agery. 

Imagery of Ballarat Statistical District (west of Melbourne Australia) con-
taining 138 CDs was used to build models of urban population density.  
Thematic Mapper imagery of Geelong Statistical District (225 CDs), 
nearly 100 km southeast of Ballarat was then used for model validation.  
Population data supporting the study was collected in 1986 by the Austra-
lian Bureau of Statistics and was preprocessed to correspond more closely 
to the February 1988 imagery date.11

Recognizing that “one obvious problem was that the values of the depend-
ent variable ranged over three orders of magnitude” (p. 2079), both loga-
rithmic and square root transformations of CD population density were 
calculated before multiple regression modeling began.  A set of 80 predic-
tor variables was submitted to a host of stepwise regression analyses in an 
effort to find the best predictive variable subset.  These included the fol-
lowing classes of transformations, calculated for each CD by using the 
pixels captured within the digitized boundaries of the CD: 

- Mean TM band reflectance 
- The square of the mean of TM band reflectance 
- The cross product of the mean TM band reflectance 
- The ratio of mean reflectance for two TM bands 
- The difference-to-sum ratio for two TM bands 
- The TM band variance 
- The TM band standard deviation 
- The TM band coefficient of variation 
- Normalized bands 

The following spectral transforms were calculated on a per-pixel basis and 
then summarized for each CD by calculating means and measures of varia-
tion.  These were numbered among the 80 multiple regression variables. 

- Selected normalized bands 
- Selected band ratios 
- Difference / sum ratios of selected bands 

                                                     
11 See Harvey (1999) for a discussion of this preprocessing. 
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- Hue transforms of selected bands using both rectangular and 
cylindrical coordinates.12

Summarizing Harvey’s voluminous results, model R2 values of about 0.90 
were obtained with model subsets containing between four and nine vari-
ables.  The best predictors were the mean and standard deviation of per-
pixel spectral features listed above.  The dependent variable transform as-
sociated with the highest R2 regressions was the square root rather than 
logarithmic transform. 

For validation, six multiple regression models predicated on the Ballarat 
study area were applied to the TM imagery of the Geelong Statistical Dis-
trict.  Population counts and densities for the 225 Geelong Statistical Dis-
trict CDs were thus estimated and then compared against the true CD 
population counts.  The two models based on band means alone produced 
very poor total population estimates.  The model based on the per pixel 
measures listed above produced the best total population estimate in the 
validation CDs and had an urban total underestimation of only 3%.  The 
following observations were made: 

1. Models of high complexity performed better than simpler models.   

2. Populations of lower density in rural areas were consistently and 
seriously overestimated.  The errors were not large in terms of 
population numbers, but rather in percentages of the true population 
counts.  Regarding this rural overestimation, Harvey comments, “It is 
concluded that the potential of this methodology is limited by 
heterogeneity of both land cover and population density within the 
individual CDs, and that are, in principle, unlikely using this 
approach.  In particular, the sacrifice of detailed spatial information 
leaves no way to respond to the problem of over-estimation of 
population in large areas of low density” (p. 2093).  

3. Given that models driven by per-pixel spectral indicators were 
superior to those calculated for the CDs (e.g., CD band means), 
Harvey conjectures that “models formulated [at a lower] spatial level 
can produce relatively accurate…population estimates for larger 
spatial aggregates, but not for spatial units at the same level of 
aggregation” (p. 2093).   Harvey concludes that future modeling 

                                                     
12 See Jensen (2005; pp. 164-167) for a discussion of hue transforms. 
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should be logically done at a lower level of aggregation than the CD 
to minimize errors in population prediction.  He also points out the 
difficulty operationalizing this within his Australia study area – while 
spectral data may be available at the smaller pixel level, the census 
calibration data is available only at the larger level of the CD, and 
thus precludes lower level modeling.  Methods to overcome this 
obstacle by exploiting an expectation-maximization statistical 
algorithm are presented in Harvey (2002b). 

The primary objective of the research conducted by Li and Weng (2005) 
was to develop and compare methodologies for estimating the population 
density of Indianapolis, Indiana using Landsat ETM+ data.  As a justifica-
tion for their research, Li and Weng claimed that previous research “rarely 
[had] explored the integration of spectral, textural, temperature data, and 
advanced transformed remote sensing variables to estimate population. 13

Such incorporation may provide new insights for population density esti-
mation” (p. 948).  The ETM+ satellite data were acquired on 22 June 2000.  
The population data, based on census blocks, were obtained from a GIS 
vendor and aggregated into census block groups (CBGs). 

Li and Weng’s research objective required that several spectral features be 
examined to determine their correlation strength with population density.  
These spectral features included; 1) the first principle components of the 
ETM+ visible and optical infrared bands, 2) six different vegetation indi-
ces, 3) variance images (with various local window sizes) calculated from 
ETM+ red and middle-infrared bands, 4) surface temperature from ETM+ 
Band 614  and 5) impervious surface and green vegetation fraction images 
produced from decomposition of the six ETM+ visible and optical infrared 
bands.15

The study area consisted of 658 CBGs.  An initial investigation required 
162 samples for model building and the remainder for model validation.  
Like their predecessors, the samples used for creating the models were not 
entirely chosen at random.  In this Indianapolis study, all the block groups 
with low and high population densities were included among the 162, 
whereas the medium population density CBGs were sampled randomly.   

                                                     
13 Harvey (2002a) is an obvious exception to this generalization. 
14 See Weng et al. (2004) for detailed information on how surface temperature 

was derived. 
15 See Lu and Weng (2004) for more explanation about the fraction images. 
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Simple correlation analysis was used to explore the relationship between 
population density and the spectral features mentioned above.  The simple 
Pearson’s r showed only a weak correlation between population density 
and the spectral bands, principle components, vegetation indices, fraction 
data, and texture r never exceeded 0.4 in absolute value.  The correlation 
between temperature and population density was moderate (r = 0.519).  It 
is notable that while the correlation between population density and the 
middle-infrared band was nearly zero, the correlation between the texture 
calculated in that band with a 7 x 7 window was substantive (r = -0.402).  
It was also found that transformations of the dependent variable (i.e., natu-
ral logarithm, square root) improved correlations moderately.  The best 
multiple regression equation using a subset of the spectral features gener-
ated an R2 of 0.83. A residual error map showed the greatest misestimation 
occurring in CBGs of extremely high and low population density. 

According to Li and Weng, “In order to improve population estimation re-
sults, separating the population density into sub-categories such as low, 
medium and high densities, and developing models for each category” (p. 
952) was deemed a necessity.  However, the results of using separate re-
gression models for the three strata of population density were mixed.  In 
general, stratification improved the results, nonetheless, with R2 values for 
low and high density population density CBGs never even reaching 0.2, Li 
and Weng questioned whether Landsat ETM+ data was suitable for model-
ing extremes in population.  For medium density population, the results 
were much better with R2 approaching 0.90.  The best predictor variables 
for the medium density models included red band texture (7 x 7 window), 
thermal temperature, the simple ratio of the near infrared and red bands, 
the transformed normalized difference vegetation index,16 the soil adjusted 
vegetation index,17 infrared reflectance, and the value of the first principle 
component image.  Although misestimations for low and high density 
population CBGs were still significant the total population estimate error 
for the Indianapolis study area was only 3.2%. 

Comments 

We consider pixel-based estimation insufficiently explored to provide a 
generalized judgment of its worth. Because of differences in urban physi-
ognomy, the results of the urban Tokyo, Ballarat, Hong Kong, and Indian-
apolis studies are difficult to apply to other worldwide cites.  However, we 

                                                     
16 See Deering et al. (1975) 
17 See Huete (1988) 
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agree with Li and Weng (2005) that “using remote sensing techniques to 
estimate population density is still a challenging task both in terms of the-
ory and methodology, due to remotely sensed data, the complexity of ur-
ban landscapes, and the complexity of population distribution” (p. 955).   

The foregoing review suggests several things.  First, practitioners using 
per-pixel estimation should expect estimation problems in areas of ex-
tremely low or high population density.  Second, per-pixel estimation us-
ing spectral radiance can benefit from stratification of the landscape that 
permits different regression equations to be built for specific landtypes.  
Third, because population errors of underestimation and overestimation 
tend to be compensating, accuracy of the approach will increase propor-
tionally with the area of the enumeration units.  Fourth, efforts to define 
spectral features more related to population density than reflected spectral 
radiance are warranted.  The use of texture by Li and Weng (2005) and the 
spectral measures of Harvey (2002a) have already been mentioned.  Web-
ster (1996) presented several other texture measures appropriate to urban 
population modeling, all of which can be automatically derived from satel-
lite imagery.  In addition, indices derived from spectral reflectance com-
monly used in vegetation analysis18 may likewise be more closely related 
to population density than spectral reflectance values used alone.  Other 
indices specifically related to population density may require development.   
Finally, as illustrated by Li and Weng (2005), urban temperature measured 
by satellites is modulated by the amount of inert or built-up land within the 
thermal sensor footprint.  Further exploring the use of thermal temperature 
as a surrogate for population density might likewise prove fruitful.  If so, 
then the use of imagery from the Advanced Spaceborne Thermal Emission 
and Reflection Radiometer (ASTER) with its five thermal bands may pro-
vide improved estimates of population density than those possible with 
ETM+. 

4.3 Case Study 

The goal of this preliminary case study was to determine whether the 
pixel-based approach to population estimation developed by Iisaka and 
Hegedus (1982) and extended by Lo (1995) would be successful in model-
ing population density in the Wasatch Front of Utah.  Three specific objec-
tives were outlined. 

                                                     
18 See Jensen (2007; pp. 382-393) for a review of popular vegetation indices. 
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1. To determine whether the population density among 1990 census 
block groups (CBGs) could be modeled as a function of the spectral 
characteristics of the census blocks as measured by Landsat Thematic 
Mapper data acquired in 1990. 

2. To determine whether other spectral measures such as texture and the 
Normalized Difference Vegetation Index could model population 
density more accurately than simple spectral reflectance used alone. 

3. To determine whether thermal data collected by Landsat Thematic 
Mapper could be effectively used to model population density in the 
study area. 

This case study is a small part of a larger project to determine whether the 
pixel-based approach can be used to create accurate intercensal population 
estimates of the same Wasatch Front region. 

Study Area 

Demographics.  As shown in Figure 4, the study region includes the major 
metropolitan areas of Utah.  Over a dozen incorporated entities are part of 
the study area, including Bountiful, Salt Lake City, Taylorsville, Sandy 
City, Orem, Provo, American Fork, and Spanish Fork.  It is an area of 
steady population increase. The average population growth along the Wa-
satch Front between 1970 and 2005 was about 2.5% per year.19  The popu-
lation growth has been steady primarily because of Utah’s historically 
large family size and relatively high fertility levels. These factors make 
Utah somewhat unique in the U.S.; the majority of its population growth 
(80%) is from natural increase (GOPB 2005).  Even when net migration is 
low or negative, Utah still experiences population growth driven by natural 
increase.  Nonetheless, migration will continue to be an important factor in 
Utah population growth. Over the last fifteen years the Wasatch Front has 
averaged about 25,000 new residents a year and the GOPB predicts that 
about 42,000 new residents a year will make the Wasatch Front region 
their home between 2005 and 2030. Given the rapid and steady population 
growth, as well as its concomitant affect on the housing and construction 
sector and land use change, the Wasatch Front region is an excellent case 
study site. 
                                                     

19 This is slightly below the 2.6% average annual population growth experi-
enced by other states in the Mountain West census region, but significantly higher 
than the U.S. annual average population growth of 1.1% 
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Figure 4. Municipalities in the study area along Utah’s Wasatch Front. 

Landtypes.  Based on research conducted primarily in Salt Lake City, 
Utah, Ridd (1995) categorized urban fabric into three components; 1) 
vegetation, 2) impervious surfaces, and 3) bare soil.  The common abbre-
viation for this triad is VIS.  Impervious surfaces include concrete, asphalt 
streets, asphalt roofing, shingles, and metal roofing.  Vegetation includes 
grass, tree, and shrub categories (after Ridd, 1995). 
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Using Ridd’s model, Hung (2002) extensively studied the VIS components 
in Salt Lake City, findings we consider generally applicable to the whole 
study area.  Hung found that urban commercial districts in Salt Lake City 
are strongly dominated by impervious surface (86%).  Low density resi-
dential (i.e., single-family residential) zones are a mix of vegetation and 
impervious surface with vegetation representing nearly 70% of the land 
cover.  Change from low through moderate to high density residential 
zones showed an increase in impervious surface area (24%  34% 
46%) at the expense of vegetation (69%  56%  43%).   Soil was a 
large component only in industrial zones (24%) and was about equal to 
vegetation coverage (26%). 

Data and Methods 

Two data sources were required to conduct this study.  The first source 
was the 1990 Decennial Census of the United States.  The specific variable 
extracted from the census was total population aggregated by census block 
groups (CBGs).  A total of 812 CBGs were initially part of the study area.  
The average CBG size was 3053 hectares with a range from 11.3 to 
520,000 hectares. Figure 5 is a map of population density in 1990 for the 
study area.  The average population density among CBGs was 16.8 people 
/ hectare (s = 12.6) and the average density of housing units was 6.3 units / 
hectare (s = 5.8).  The densest population and housing recorded among the 
CBGs was 110.4 people / hectare and 48.5 units / hectare respectively.  
These high densities are found in areas of student housing adjacent to 
Brigham Young University in Provo, Utah.   

The second data source was a Landsat ETM+ image dated May 28, 2000 
(Figure 6).  Table 1 shows the fundamental characteristics of the Landsat 
TM sensor.  The quality of the image was good, but cloud cover masking 
was required to avoid problems relating spectral signature to population 
density -- portions of CBGs containing clouds were removed from the 
analysis.  Unfortunately, thin smoke also partially obscured a few of the 
CBGs.  Since this smoke was found at the interface between the suburban 
and rural areas, the affected image areas were not eliminated from the 
study.  Instead, the areas were manually delimited and the contrast and 
brightness adjusted until they matched the surrounding area.  This manual 
approach was only partially successful.  The image data was radiometri-
cally corrected, and standardized to reflectance/emittance as measured at 
the sensor.   
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Recognizing from the reviewed literature that derived spectral features 
may be more predictive of population density than simple spectral reflec-
tance alone, several derived variables were generated from the seven TM 
bands for each CBG.   

Figure 5. Population density of census block groups in the study area. 
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Figure 6. Band 4 (IR-1) of a Landsat ETM+ image acquired of the study area  
May 28, 2000 (2  contrast stretch).
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Table 1. Fundamental characteristics of the Landsat TM sensor.  Columns 1, 3, 
and 4 from Landsat 4 Data Users Handbook (1984). 

Band 
Number 

Band 
Name

Band Wavelength (micrometers) Nominal 
Resolution 

(meters)
1 Blue 0.45-0.52 30 
2 Green 0.52-0.60 30 
3 Red 0.63-0.69 30 
4 IR-1 0.76-0.90 30 
5 IR-2 1.55-1.75 30 
6 Thermal 10.40-12.50 120 
7 Mid-IR 2.08-2.35 30 

The final variable set used in the correlation and regression analyses in-
cluded the following: 

- Mean Blue reflectance (B )
- Mean Green  reflectance (G )
- Mean Red reflectance (R )
- Mean IR-1 reflectance (I1 )
- Mean IR-2 reflectance (I2 )
- Mean thermal brightness temperature (T )
- Mean Mid-IR reflectance (I3 )
- Standard deviation of Blue reflectance (B )
- Standard deviation of Green reflectance (G )
- Standard deviation of Red reflectance (R )
- Standard deviation of IR-1 reflectance (I1 )
- Standard deviation of IR-2 reflectance (I2 )
- Standard deviation of thermal brightness temperature (T )
- Minimum of thermal brightness temperature (Tn)
- Maximum of thermal brightness temperature (Tx)
- Range of thermal brightness temperature (Tr)
- Standard deviation of Mid-IR reflectance (I3 )

The standard deviation, range variables, maximums and minimums were 
designed to be rough measure of spectral texture20 in the CBG.   

After exploratory correlation analysis, stepwise multiple regression analy-
sis was utilized to build regression models explaining population density in 

                                                     
20 Several popular texture measures, including fractal measures, were tried, but 

all proved less effective than these simple statistics. 
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the CBGs as a function of the variables listed above.  Following the pattern 
of Harvey (2000a), several issues were considered in judging the goodness 
of a regression.  The magnitude of the adjusted R2 was considered.  If all 
else were equal, a regression equation producing a higher R2 was preferred.  
Simplicity was a second consideration.  When regression equations pro-
ducing similar R2 values were compared, the equation using the fewest 
predictor variables was deemed best.  Logical consistency was also neces-
sary.  Equations likely to produce negative population densities were dis-
carded.  Equations with variable combinations that appeared illogical were 
discarded.  For example, it made little sense to include both I1 and I2  in 
the same equation unless we could reasonably explain why the addition of 
the second band added explanatory power not contained in the first.  Equa-
tions exhibiting multicollinearity symptoms in the stepwise regression 
process were also discarded.  Although a logarithmic transform of popula-
tion density was required to improve linearity, we otherwise avoided vari-
able transformations and higher order terms. 

Results 

Table 2 shows the simple correlation between the natural logarithm of 
population density (Pln) and the independent variables listed above.  The 
correlation between population density and spectral reflectance follows the 
same pattern reported by Li and Weng (2005, Table 3).  Correlations are 
low but explainable patterns emerge.  Blue, Green, Red, and IR-1 reflec-
tance increase with increasing population density.  Thermal temperature 
also increased with increasing density.  In contrast, Mid-IR reflectance and 
IR-2 reflectance are inversely related to population density. 

In the context of Hung (2002) summarized above, we consider these rela-
tionships largely a function of the relative amounts of vegetation and im-
pervious material within the CBG.  As housing unit density increases, the 
amount of concrete, asphalt, shingle, and other nonporous surfaces in-
creases with the concurrent loss of grass, trees, and shrubbery.  Since im-
pervious surfaces reflect a larger proportion of incident visible light than 
vegetation does, the increase in reflectance with increased housing density 
is logical.  Our interpretation of the similar increase in IR-1 reflectance is 
less obvious.  Vegetation has a high IR-1 reflectance.   Our tentative ex-
planation for the sign in Table 2 is that the IR-1 reflectance increase from 
impervious surfaces more than offsets the loss of IR-1 reflectance due to 
vegetation loss. 
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Table 2. Pearson’s r correlation between CBG spectral features and Pln.
Given the sample size of 807 CBGs, all are significant at the 0.01 level. 

Spectral feature r
Blue reflectance Mean 0.202 
 S.D. -0.184 
Green reflectance Mean 0.185 
 S.D. -0.190 

Red reflectance Mean 0.117 
 S.D. -0.219 

IR-1 reflectance Mean 0.210 
 S.D. -0.203 

IR-2 reflectance Mean -0.176 
 S.D. -0.427 

Thermal temperature Mean 0.238 
 S.D. -0.671 
 Minimum 0.653 
 Maximum -0.488 
 Range -0.773 

Mid-IR reflectance Mean -0.127 
 S.D. -0.352 

Table 2 also demonstrates that spectral reflectance variability within a 
CBG is frequently a better predictor of population density than mean spec-
tral reflectance.  This agrees with the results of Harvey (2002) among oth-
ers.   This is clearly the case for the IR-2, Mid-IR and Thermal bands.  In 
all cases, population density was inversely related to the variability fea-
tures.  We tentatively suggest that the increase in impervious surface asso-
ciated with increased housing density is betrayed as an increase in urban 
surface homogeneity as vegetation amounts become more limited. 

Given the weak correlations generally throughout the table, the strength of 
the thermal band features as predictors of population density is striking.   
This agrees with findings by Li and Weng (2005) for the Indianapolis, 
Indiana metropolitan study site.  The reason for thermal temperature and 
population density covariance is well reported.  Thermal temperature in-
creases with the increased proportion of inert material associated with in-
creased dwelling structure density.  The high negative correlation between 
population density and temperature indicates that CBGs with higher popu-
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lation densities also have less temperature variability because the impervi-
ous material is ubiquitous throughout the CBG. Areas of lower population 
density will have built-up zones of housing (warmer) interspersed with 
parks, grass, empty vegetated lots, pastures, and agricultural areas (cooler).   

Given that the relative amounts of vegetation and impervious material 
within a CBG were fundamentally responsible for the spectral reflectance

 population density relationship, we generated some ratios to better rep-
resent the inverse relationship between vegetation and impervious material 
within the study area.  These included: 

- Mean CBG red band reflectance / Mean CBG IR-2 reflectance (R3/5)
- Mean CBG red band reflectance / Mean CBG Mid-IR reflectance 

(R3/7)

Multiple Regression Models. Table 3 contains the best regression models 
as judged by the criteria discussed previously.  In all the models, the natu-
ral logarithm of the CBG population density (Pln) was the dependent vari-
able.  All of the regression equations, constants and variables are signifi-
cant at a 0.05 level minimum. 

From the perspective of parsimony, it appears that the three-variable model 
would be preferred for practical application.  This model produced a mul-
tiple R of 0.80 and an adjusted R2 of 0.64.  Models with more predictor 
variables produced models with R2 values exceeding 0.70, but were diffi-
cult to interpret.  As the three variable model shows, the best predictive 
combination includes temperature range, the first TM infrared band, and 
the ratio of the red band to IR-2 reflectance.  

Table 3. Best regression equations to model Pln.
Number of 
predictors 

Equation R2

(adjusted) 
1 4.390 – 0.176 Tr 0.60 
2 2.389 – 0.173 Tr + 6.65 I1 0.62
3* -0.164 Tr + 8.685 I1  + 3.107 R3/5 0.64
4* -0.161 Tr + 9.362 I1  + 3.528 R3/5 -3.003  I3 0.64

* = the constant of the regression equation was not significant and is not 
included in the equation shown. 

Residual Analysis.  Figure 7 is a map of standardized residuals from the 
regression.  Generally speaking, the best prediction was obtained in CBGs 
with moderate to small area in the central corridor of the study area.  The 
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relationship between CBG area and total population error21 is linear and 
strong (r = +0.853, n = 812).  These results are different from Lo (1996) 
but correspond to the results of Harvey (2002a).  In the Wasatch Front, the 
large CBGs have boundaries which cross mountain slopes perpendicularly 
and capture areas of rural desert, agriculture, woodland and forest that 
form the hinterland of the core city area.  Obviously the mean spectral val-
ues of these CBGs do not fairly represent the spectral character of the ur-
banized proportion of the CBG.  

Any error in the population density produced by the regression equation 
also resulted in enormous estimation errors when multiplied by the area of 
large CBGs.  For example, the largest CBG in the study exceeded 520,000 
hectares, and had a true population of only 192. With very sparse vegeta-
tion, it has an average spectral signature similar to high density residential 
zones.  Using that spectral signature information, the regression equation 
estimated a population density of 0.83 people per hectare and a total CBG 
population of over 431,000 inhabitants.  It is an understatement to con-
clude that some manual adjustment of CBG boundaries to better fit the ac-
tual urban / suburban area within a CBG is warranted.   

                                                     
21 Total population error was calculated as the absolute value of (true CBG 

population - modeled CBG population).   
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Figure 7. Map of residuals showing areas of over and underestimation by the re-
gression equations 
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4.4 Concluding Comments 

Research into population estimation using overhead imagery naturally 
leads to the question of whether the Decennial Census of the United States 
could be built upon remotely sensed data.  In the early 1980’s, there was a 
flurry of discussion regarding that question. The dialog was formally 
started by Brugioni (1983) who sided with the Secretary of the Commerce 
in his belief that the accuracy of the 1980 census could have been in-
creased while concurrently decreasing the cost.  At the time of Brugioni’s 
writing, politicians in many large U.S. cities were unwilling to accept the 
enumeration as accurate, generally claiming the undercounting of urban 
subgroups.  The primary issue was not apportioned representation in con-
gress but rather the disbursement of federal funds based on population.  
City mayors observed that minorities and illegal immigrants used federally 
funded services and an accurate count of them was essential.   Brugioni 
proposed, “It is time to stop and assess the prospects for better perform-
ance of the 1990 census.  By using overhead reconnaissance systems 
which carry sophisticated cameras and remote sensing equipment, and by 
employing modern interpretation methods backed up by the latest com-
puter technology,  I am convinced that the census can be done more accu-
rately, cheaper, faster, and better than by previous methods” (p. 1337).  
Given that the article was a commentary designed to elicit comments from 
the journal readership, Brugioni can be forgiven for such enthusiasm.  The 
stated reasons for his certainty are hazy. Brugioni discusses the wealth of 
technology available for the task and recites a paragraph of remote sensing 
success stories such as weather prediction, forest inventory, and strategic 
intelligence.  He then wonders why the Bureau of the Census has “not at-
tempted to use these same technologies to determine the number of people 
living in a given area of a U.S. city” (p. 1338).   Brugioni also cites the on-
going military use of overhead imagery to estimate urban populations 
abroad. Brugioni fails to mention that such foreign estimations seldom 
have an accuracy check.  In conclusion, Brugioni appeals to his own au-
thority, “From my nearly 40 years of experience in all phases of reconnais-
sance and analysis activity, I am thoroughly convince [sic] that a census 
using space-age technology is not only feasible but can be performed bet-
ter and cheaper, and be more responsive to the needs of modern-day Amer-
ica.” 

Academics were quick to highlight the logical flaws of Brugioni’s argu-
ments as well as other problems with conducting a census with space-age 
technology.  Morrow-Jones and Watkins (1984), both human / population 
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geographers, believed that overhead imagery could never become the pri-
mary data source for the census.  Several problems were articulated.  They 
cited the practical hurdle of imaging the whole nation in a timely manner 
that could provide the same April 1st national snapshot as the census.  Op-
erational definitions (e.g., the distinction between de jure and de facto
counting) long used by the census bureau and long valued by social scien-
tists because of their constancy through several decades would change, 
“interrupting an exceptionally valuable source of evenly spaced historical 
data” (p. 230).  While some census variables (e.g. house size) might be 
amenable to collection on overhead imagery, “their meanings would be 
changed to the detriment of long term comparative research” (p. 230).  
Morrow-Jones and Watkins also claimed that too little was known about 
using image characteristics as surrogates for social characteristics meas-
ured in the census.  “Can these methods tell us the change in age structure, 
household composition, family income, race, sex ratio, or other character-
istics of the people?  This is a crucial part of the census and the largest 
drawback to the suggested method for improving it” (p. 231).   Ethical 
considerations of privacy and image data use also troubled Morrow-Jones 
and Watkins.  Sinclair (1984) was similarly troubled and wrote, “In Amer-
ica, is there not a right to ignore the Census and the Census taker?  Or is it 
so important that we be counted that our own spy networks must be trained 
on us?” (p. 80).  In conclusion, Morrow-Jones and Watkins admitted that a 
decennial census might be possible using remotely sensed data, but “the 
tradeoff would mean a great deal less information” (p. 232). 

We suspect that Paul (1984) probably states the present convergence of 
opinion on this matter.  First is the opinion that the use of remotely sensed 
data for human disciplines such as social science and public health has 
been historically undervalued and inadequately studied.  The studies col-
lected by Liverman et al. (1988) demonstrated the kind of progress that 
might be possible.  However, as regarding population geography, while 
“remote sensing technology can be useful in conjunction with traditional 
demographic enumeration techniques [it] cannot be used as a replacement” 
(Paul 1984, p.1611).   Expanding Paul’s thought, we likewise do not con-
sider remote sensing a replacement for traditional Census enumeration, but 
as an important source of urban data nonetheless.  As reviewed by Lo 
(2006), many researchers have found that remotely sensed data is the only 
source of population information available in many developing countries.  
The intelligent use of imagery to augment traditional approaches may 
likewise be an efficient and accurate way of completing intercensal popu-
lation estimates in areas of rapid urban growth.  Furthermore, as scientists 
seek ways to improve the human condition, it may be profitable to con-
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sider gathering new kinds of urban data via remote sensing rather than de-
veloping new high-tech ways to capture traditional measures.  See Jensen 
and Cowan (1999) for a review.  For example, Weber and Hirsch (1992) 
demonstrated the calculation of spatial urban quality of life indices from 
imagery that are not amenable to a ground survey.   Lo and Faber (1997) 
likewise demonstrated the generation of quality of life variables from 
overhead imagery.  Unfortunately, the works of Weber and Hirsch as well 
as Lo and Faber have not been widely studied and have certainly not pene-
trated mainstream urban social science.  Thus, although remote sensing 
will not likely supplant the typical Census enumeration, it nonetheless may 
provide critical measures of import to social scientists and policy makers 
in the pursuit of both knowledge and social justice. 
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5 Using Satellite Data to Estimate Urban Leaf 
Area Index1

Ryan R. Jensen, Department of Geography, Geology, and Anthropology, 
Indiana State University, Terre Haute, Indiana State University 

Perry J. Hardin, Department of Geography, Brigham Young University, 
Provo, Utah

5.1 Introduction 

The social value of the urban forest to local urban populations has long 
been recognized. In contrast, the impact of the urban forest on global and 
local environments is not clearly understood, and the impact of urban trees 
on carbon sequestration, mitigation of urban heat, and removal of pollution 
remain topics of contemporary scientific study.  Land cover conversion in 
urban areas is typically faster than in wildland areas, thus there is a need 
for rapid measurement methods of urban biophysical variables that are re-
peatable and economically efficient. 

Leaf area index (LAI) has been identified as one of the core biophysical 
variables for landscape monitoring at all scales (Pierce and Running 1988; 
Lymburner et al. 2000). LAI has three definitions in the literature but is 
usually standardized to represent the green area (m2) of flat horizontal 
leaves per unit of ground area (m2) (Chen and Black 1992; Chen et al. 
1997; Barclay 1998). Many scenarios of season and landscape allow LAI 
measurement by earth resource satellites, and LAI is a derivative data 
product of many remote sensing initiatives. However, few studies have ex-

                                                     
1 Originally published in the Journal Arboriculture, Volume 31, Issue 1, Pages 

21-27 under the title, “Estimating urban leaf area using field measurements and 
satellite remote sensing data.”  Copyright 2005 International Society of Arboricul-
ture.  Used with permission.  
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amined methods of combining satellite LAI estimates with those made us-
ing ceptometers in the urban forest to estimate LAI over large urban areas. 

This research extends the work of Peper and McPherson (2003) that com-
pared the accuracy of various nondestructive field measurement devices to 
accurately measure urban tree LAI. In the context of that previous work, 
algorithmically manipulated satellite data used in this study become an ad-
ditional nondestructive method of measuring urban LAI. 

The objective of this research is to develop transfer equations that can be 
used to convert satellite LAI measurements to their gap-fraction equiva-
lents. Our hypothesis proposes that satellite and ground LAI measurements 
are related and that statistical and neural network approaches can be used 
to interconvert between the two methods of measurement. 

5.1.1 Urban Remote Sensing 

Instruments aboard remote sensing satellites measure the electromagnetic 
energy emitted or reflected from Earth or its atmosphere, allowing terres-
trial objects to be distinguished and characterized. For example, when il-
luminated by the noonday sun, grass on an irrigated golf course is not only 
visibly green but also reflects intercepted infrared solar energy in propor-
tion to the amount of its spongy mesophyll. Grass receiving insufficient 
moisture to maintain mesophyll turgidity may appear equally as green as 
adjacent well watered grass but would decrease significantly in infrared re-
flectance. If spatially extensive, this stress would be detectable from 
spaceborne instrumentation and would allow researchers to accurately map 
the affected area. Using similar logic, land cover types are mapped, and 
vegetation biophysical variables are measured from spaceborne instru-
ments. 

Historically, remote sensing in urban areas has been constrained by the 
spatial complexity of urban scenes. The problem is related to the spatial 
resolution of the satellite sensor. A single image resolution element (pixel) 
may be measuring the spectral response of a land cover mixture rather than 
a single land cover type. For example, a suburban pixel may represent a 
mixture of grass, asphalt, concrete, and roof shingles. This kind of spectral 
mixing makes urban remote sensing less amenable to statistical methods 
that assume normal distributions and no measurement error. Newer space-
borne instruments, having finer spatial resolutions, reduce the constraint 
and provide better data for urban remote sensing (Jensen et al. 2003). The 
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improvement in resolution is fortunate, because governments (e.g., state, 
county, city) and private companies annually invest hundreds of millions 
of dollars acquiring remotely sensed data that detail the urban landscape 
more effectively than through traditional “windshield surveys” (Jensen 
1996). 

5.2 Data and Methods 

5.2.1 Study Area 

The city of Terre Haute is located in Vigo County along the banks of the 
Wabash River in west central Indiana, U.S. (39° 25 N, 87° 25  W). Terre 
Haute government officials have made a conscious effort to maintain the 
urban tree canopy through a comprehensive tree ordinance that governs 
both tree removal and planting. The ordinance is administered by a tree 
advisory board consisting of city residents appointed by the city officials to 
make suggestions and recommendations to the mayor, city forester, city 
engineer, and city council. 

5.2.2 LAI Field Measurements 

Traditional field measurement of LAI has taken two approaches. The first 
approach requires the destructive harvesting of leaves within a vertical 
column passing upward through the entire tree canopy. The second in-
volves collection of leaf litterfall. These direct methods are similar — they 
are time intensive and require many replicates to account for spatial vari-
ability in the canopy (Green et al. 1997). However, these direct LAI meas-
urements are accurate for a very specific geographic location, are relatively 
easy to perform by untrained personnel, and are well understood by ecolo-
gists. Gap-fraction analysis is a nondestructive field method that has been 
developed to estimate LAI.  

Gap-fraction analysis is predicated on the theory that the decrease in light 
intensity (light attenuation) with increasing depth in vegetative canopies 
can be described by the relationship: 

)(/ LkLAIeIOIL , (5.1)
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where IL/IO is the fraction of incident light at the top of the canopy (IO)
reaching depth L in the canopy, LAI(L) is the cumulative LAI from the top 
of the canopy to point L, k is a stand or species specific constant, and e is 
the natural logarithm base (Larcher 1975; Aber and Melillo 1991). Differ-
ent types of vegetation have different k values, causing different rates of 
light attenuation for the same leaf area. The principal factor causing this is 
“twig angles and the angles that the foliage subtends with the twig” (Bar-
clay 1998; see also Larcher 1975). Field-measured LAI using gap-fraction 
analysis assumes that leaf area can be calculated from the fraction of direct 
solar energy that penetrates the canopy (canopy transmittance). By apply-
ing gap-fraction techniques to study LAI in many different forest settings, 
standard operating procedures have been developed (Pierce and Running 
1988; Chason et al. 1991; Ellsworth and Reich 1993; Nel and Wessman 
1993; Green et al. 1997). 

In this study, LAI was measured using the gap-fraction approach in 145 
random locations (sampling sites) throughout the study area during July 
and August 2001. Like most urban areas, land cover in Terre Haute con-
sists of a wide variety of vegetated and nonvegetated patches. Vegetated 
areas sampled included trees, shrubs, grasses, and agricultural fields grow-
ing different varieties of corn and soybeans. Unvegetated areas included 
buildings, streets, parking lots, ponds, lakes, and the Wabash River. The 
randomly selected sampling sites represented all major land cover types in 
Terre Haute. 

Each of the 145 sampling sites was defined as a 20 × 20 m (65.6 × 65.6 ft) 
quadrat identified by the global positioning system coordinates of its cen-
ter. At each sampling point, 16 below-canopy, photosynthetically active 
radiation (PAR) measurements were collected, one in each cardinal direc-
tion at each corner of the 20 m quadrat. The PAR measurements were col-
lected using a Decagon AccuPar Ceptometer™ held approximately 1 m 
(3.3 ft) above the ground beneath the tree cover. The AccuPar Ceptometer 
consists of a linear array of 80 adjacent, 1 cm2 (0.16 in2) PAR sensors 
mounted rigidly along a bar and oriented so that when the operator holds 
the ceptometer horizontally, the PAR passing downward through the can-
opy can be measured. The ceptometer stored the 16 PAR samples taken at 
each sampling site and calculated the LAI average automatically. This 
sitewide LAI average was then recorded along with general operator notes 
regarding the sampling site character. 
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5.2.3 Satellite Sensor Data 

Data from the Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) sensor were used for comparison to the field LAI 
measurements. ASTER data are collected in several wavelengths, often re-
ferred to as bands. This study employed ASTER bands 1, 2, and 3 measur-
ing the green, red, and near-infrared segments of the electromagnetic spec-
trum (520–600 nm, 630–690 nm, and 790–860 nm), respectively. These 
wavelengths are used in vegetation studies because of their correlation to 
the quantity and health of green vegetation (Jensen 2000). Remote sensing 
data are commonly used to calculate vegetation indices — dimensionless, 
radiometric measures of the relative abundance of green vegetation, in-
cluding LAI (Jensen 2000). One of the most common vegetation indices is 
the Normalized Difference Vegetation Index (NDVI). The NDVI is calcu-
lated using the equation (Rouse et al. 1974): 

REDNIR
REDNIRNDVI

,
(5.2) 

where NIR is the near-infrared reflected radiant flux, and RED is the red 
reflected radiant flux.  

An ASTER image of the study area acquired in July 2001 was used for this 
investigation. The image had a spatial resolution of 15 m (49.5 ft). Using a 
United States Geological Survey digital raster graphic image, the ASTER 
scene was geometrically adjusted to the same coordinate system used for 
the field data collection. This adjustment ensured that the 145 sample sites 
could be accurately registered to the ASTER data. 

5.2.4 Estimating LAI Using Regression 

As mentioned above, the principal objective of this research was to create 
transfer equations that could be used to convert satellite LAI measure-
ments to their gap-fraction equivalents. Because correlation and regression 
are common methods used to model forest biophysical characteristics with 
remotely sensed data (e.g., Jensen et al. 2000), their use was suggested. In 
this instance, multiple regression analysis was performed using brightness 
values from the three ASTER bands as the independent variables (Table 
1). Because previous remote sensing research has shown that ratios and 
vegetation indexes derived from brightness values (e.g., NDVI) frequently 
measure vegetation differences better than the direct brightness values 
alone (Fassnacht et al. 1997; Jensen 2000), five derived independent vari-
ables were also explored in the regression process. 
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Table 1. ASTER bands and derived variables used in the study  

Variable Meaning Variable Meaning 

GREEN 520 – 600 nm Band 
(Green band) 

RDIR_RAT Red / Infrared ratio 

RED 630 – 690 nm band 
(Red band) 

NDVI  (See Formula 5.2) 

IR 790 – 860 nm band 
(Infrared band) 

GRRD_DIF Green – Red band  
difference 

GRRD_RAT Green / Red ratio RDIR_DIF Red – Infrared band  
difference 

These variables are described in Table 1. In all regressions, the average 
field site LAI value (LAIobs) was the dependent variable.  

The goodness of the regression models were measured in two ways. The 
first is the standard error of the estimate (SEE).  The standard of the esti-
mate is synonymous for root mean square error; the former term is pre-
ferred in regression, whereas the latter term is preferred in neural network 
studies.  The standard error of the estimate is defined as: 

n

LAILAI
SEE

n

i
obspred

1

2)(
,

(5.3)

where LAIpred is the LAI for a given fieldsite predicted by the regression. 
The summation is iterated over all the observations in the dataset (i = 1 to 
n). Smaller values of SEE indicate better fit between model and observed 
data and can be interpreted as the best estimate of the standard deviation of 
the observations around the regression line. The second method was the 
common multiple correlation coefficient (R) as described in Marascuilo 
and Levin (1983). The minimum acceptable level of significance in all the 
statistical analyses was 0.05. 

5.2.5 Estimating LAI Using a Back-Propagation Feed-Forward 
Network 

Artificial neural networks (ANNs) grew out of research in artificial intelli-
gence, specifically attempts to mimic the fault tolerance and learning ca-
pacity of biological neural systems by modeling the low-level structure of 
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the brain. Research on ANNs has been motivated from their inception by 
the recognition that the brain computes in a very different way than digital 
computers (Haykin 1994).  

A neuron is the fundamental processing unit of an ANN. Artificial neurons 
are analogous to biological neurons in the human brain. ANN behavior re-
sembles that of the brain in two respects. First, knowledge is acquired by 
the network through a learning process. Secondly, interneuron connection 
strengths known as synaptic weights are used to store knowledge (Haykin 
1994). ANNs do not rely on statistical relationships for function fitting but 
adaptively estimate continuous functions from data without mathemati-
cally describing how outputs depend on inputs (e.g., adaptive model-free 
function estimation using a nonalgorithmic strategy) (Gopal and Wood-
cock 1996). 

ANNs have been used in remote sensing applications to classify images 
(Bischof et al. 1992; Hardin 2000) and incorporate multisource data 
(Benediktsson et al. 1990). ANN classifiers have been successfully used 
with remote sensing data because they take advantage of the ability to in-
corporate non-normally distributed numerical and categorical GIS data and 
image spatial information (Jensen et al. 2000). 

Several forest studies have demonstrated the utility of coupling ANN ap-
proaches with satellite data. For example, Jensen et al. (2000) used an 
ANN to discriminate conifer stand age in southern Brazil using remotely 
sensed imagery. That study demonstrated that ANNs were; (1) competent 
to model the complex nonlinearity of biophysical forest processes, (2) bet-
ter at estimating conifer stand age than traditional image processing tech-
niques, (3) ideal for modeling the latent complexity of plant biophysical 
characteristics during the plant life cycle, and (4) able to explain more 
variance in forest biophysical parameters than their traditional statistical 
counterparts. In another study, Jensen and Binford (2004) found that 
ANNs were more accurate than traditional statistical techniques to estimate 
LAI in forested ecosystems throughout north central Florida. 

For this research, a back-propagation feed-forward ANN was created and 
trained using the variables shown in Table 1 as inputs, and the field site 
LAI (i.e., LAIobs) as the output. This procedure is directly analogous to the 
multiple regression approach described previously in this article, in which 
ASTER variables and LAIobs were the independent and dependent vari-
ables, respectively. 
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The procedure used to build the ANN models generally followed Hardin 
(2000). The calibration of several candidate networks required trial and er-
ror. The networks were trained with different variable combinations, dif-
ferent numbers of hidden neurons, different learning rates, and different 
momentum rates until an acceptable error rate was obtained or further im-
provement was unlikely. Parsimony was also sought in the neural network 
solutions. Given equal predictive value from alternative network configu-
rations, the network with the fewest hidden neurons was considered supe-
rior to more complex networks. 

Like the regression approach described above, the SEE was also used to 
measure the accuracy of the network predictions by comparing LAIobs val-
ues against LAIpred values across all 145 fieldsites. R was also calculated 
for neural networks by regressing predicted LAI values against their ob-
served counterparts.  Use of the same accuracy metrics allowed the regres-
sion results to be compared to the ANN outcome. 

5.3 Results and Discussion 

The field LAI measurements were made at 145 Terre Haute area locations 
(n = 145). The maximum and minimum LAI recorded were 7.7 and 0.0, re-
spectively. The mean LAI measured was 1.2 (s = 1.9). 

5.3.1 Regression Results 

All possible single variable regression models were tested.  Several pro-
vided statistically significant predictive ability. The regression model pro-
viding the highest correlation coefficient (R = 0.60) and lowest error (SEE
= 1.54) was created from the ratio of the ASTER green and ASTER red 
bands (GRRD_RAT). In unstandardized form, the predictive model was 

LAIpred = 4.79 × GRRD_RAT – 5.81.                         (5.4)

The best two-variable model included the same ratio as Equation 4 but 
added the infrared ASTER band. The predictive equation using these two 
variables was 

LAIpred = 3.99 × GRRD_RAT  + 0.02 × IR  – 7.10.               (5.5) 

This model lowered the standard error of the single variable model by only 
3% (SEE = 1.51) and improved the simple correlation by only 5% (R = 
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0.62). The addition of further variables did not improve the predictive abil-
ity of the model. 

For all the regression equations previously cited, their coefficients, and 
constants were significant at the 0.05 level. Use of the single variable 
model (Equation 4) is suggested because of its simplicity. The direction of 
the coefficient signs for the regression variables is logical. As the amount 
of green reflectance increases and red reflectance decreases, the ratio 
GRRD_RD increases mathematically and LAIpred also increases. In addi-
tion, as infrared reflectance increases, so does LAIpred. These results sug-
gest that both the ratio and the infrared band are measuring the same physi-
cal phenomena; they are measuring the increase in green reflectance as leaf 
area increases with the co-occurring loss of ground reflectance. 

5.3.2 Artificial Neural Network Results 

All the variables in Table 1 were submitted separately to ANN analysis to 
create a single variable model explaining LAI. Three single-variable net-
works produced nearly equivalent LAI predictive accuracy (R 0.69, SEE 

1.40). These three models employed, respectively, the ASTER green 
band, NDVI, and the ratio between the ASTER red and infrared variables 
(RDIR_RAT). In all three cases, networks with two neurons in a single 
hidden layer were sufficient for fitting the network. The best two variable 
models tested included the ASTER green band (GREEN) and the ratio be-
tween the ASTER red and infrared bands (RDIR_RAT) trained on single 
hidden layer of three neurons. This network produced a moderately high R
value (R = 0.71) with an SEE of 1.35. A Visual Basic function that repro-
duces the network output is shown in Figure 1. This function returns 
LAIpred when passed GREEN, RED, and INFRARED brightness values. The 
variable RDIR_RAT is calculated inside the function from RED and 
INFRARED and then used with GREEN in the network calculations. No 
three-variable network models significantly exceeded the predictability of 
this two-variable network model. 

The interpretation of the neural network results follows the same logic 
used in discussing the regression results. LAIpred increases with increased 
reflectance in the ASTER green band. The ratio of the red to infrared re-
flectance (RDIR_RAT) assumes the role that GRRD_RAT played in the re-
gression analysis; it is a measure of the ratio of background to photosyn-
thetically active vegetation or healthy, spongy leaf mesophyll. With an 
increase in vegetation at the expense of impervious material, infrared re-
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flectance in the ratio increases while red reflectance decreases. This causes 
a corresponding increase in LAIpred.

5.4 Conclusion 

As shown in Table 2, the ANN technique was superior to the multiple re-
gression approach. In all cases, the ANN produced higher values of R and
lower values of SEE than did regression. These results provide another 
case study demonstrating that a biophysical variable critical to urban study 
(i.e., LAI) can be predicted from remotely sensed satellite data and be 
more accurately predicted using a feed-forward back-propagation neural 
network than multiple linear regression. 

Using ANNs to estimate LAI could enhance the accuracy of some studies 
that have relied on traditional regression techniques in the past. To im-
prove such studies, ANNs could be created and trained using representa-
tive ecosystem in situ LAI samples and then used to estimate LAI in other 
image areas. For example, after measuring in situ urban LAI using one of 
the methods described by Peper and McPherson (2003), an ANN could be 
created and trained that is unique to that specific urban area. A program 
such as that shown in Figure 1 could then be used to estimate LAI in the 
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Fig. 1. Visual Basic function of neural network to predict LAI from 
ASTER band data values 

'Input ASTER green, red and infrared brightness values  
'Function will produce a predicted LAI 
Function PredictLAI(ByVal GREEN As Double, _ 
                    ByVal RED As Double, _ 
                    ByVal INFRARED As Double) As Double 
    Dim NetSum As Double 
    Dim LAI As Double 
    Static HiddenNeuron(3) As Double 

    'Handle water and outside image 
    If INFRARED = 0.0 then Return 0.0 

    'Calculate ratio of red and infrared  
    Dim RDIR_RAT As Double = RED / INFRARED 

    'Prescale 
    If (GREEN < 48.9) Then GREEN = 48.9  'Brightness 
    If (GREEN > 206) Then GREEN = 206 
    GREEN = (GREEN - 48.9) / 157.1 
    If (RDIR_RAT < 0.18) Then RDIR_RAT = 0.18 'Ratio 
    If (RDIR_RAT > 1.7) Then RDIR_RAT = 1.7 
    RDIR_RAT = (RDIR_RAT - 0.18) / 1.52 

    'Function for the hidden neurons 
    NetSum = 0.03620234   
    NetSum = NetSum + GREEN * 22.74368 
    NetSum = NetSum + RDIR_RAT * 6.679393 
    HiddenNeuron(1) = 1.0 / (1.0 + Math.Exp(-NetSum)) 
    NetSum = 0.7550668 
    NetSum = NetSum + GREEN * -3.907263 
    NetSum = NetSum + RDIR_RAT * 10.81035 
    HiddenNeuron(2) = 1.0 / (1.0 + Math.Exp(-NetSum)) 
    NetSum = -1.42035 
    NetSum = NetSum + GREEN * -2.62758 
    NetSum = NetSum + RDIR_RAT * 5.134643 
    HiddenNeuron(3) = 1.0 / (1.0 + Math.Exp(-NetSum)) 

    'Accumulate results across all hidden neurons. 
    NetSum = 5.523126 
    NetSum = NetSum + HiddenNeuron(1) * -5.202937 
    NetSum = NetSum + HiddenNeuron(2) * -1.52756 
    NetSum = NetSum + HiddenNeuron(3) * -1.493804 
    LAI = 1.0 / (1.0 + Math.Exp(-NetSum)) 

    'Final scaling of result and return 
    LAI = 7.71 * (LAI - 0.1) / 0.8 
    If (LAI < 0) Then LAI = 0 
    If (LAI > 7.71) Then LAI = 7.71 
    Return LAI 

End Function
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Table 2. Comparison of regression and neural network models.  In all 
cases, the neural network models were superior to the regression-based 
models for predicting LAI. 

Model 
Reference 

Building 
Method Variables R SEE

Equation 3 Regression GRRD_RAT 0.60 1.54 
Equation 4 Regression GRRD_RAT, IR 0.62 1.51 
* ANN GREEN 0.69 1.39 
* ANN NDVI 0.68 1.39
* ANN RDIR_RAT 0.69 1.39 
Fig. 1 ANN GREEN, RDIR_RAT 0.71 1.35 

unsampled remainder of the urban area. This is demonstrated in Figure 2. 
In this example, LAI has been estimated for the Terre Haute region using 
the ANN represented in Figure 1. This kind of map may be useful when 
urban planners and others examine the distribution of LAI in urban and 
suburban areas. 

While the ANN method proved most accurate in Terre Haute, this may not 
be the case in other urban areas under different environmental conditions. 
Future research could focus on these issues and determine whether ANNs 
provide the most accurate method to estimate LAI elsewhere. Also, care 
should be taken to ensure that the network algorithms and regression equa-
tions developed in this research are only applied in areas having similar so-
lar zenith angles and vegetation types. While this study was completed at 
the landscape level, it suggests that artificial neural networks may be cre-
ated and trained in other areas throughout the world to provide an accurate 
method to remotely estimate LAI. Further, these models can be used to an-
swer important geographic questions by describing temporal and spatial 
LAI dynamics at landscape to regional scales (e.g., Jensen 2002). Of equal 
importance, this methodology can help land managers, conservationists, 
and urban foresters formulate urban environmental policy that is empiri-
cally supported by inexpensive remotely sensed biophysical data. 
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Fig. 2.  Estimated LAI map of the Terre Haute area computed using the artificial 
neural network and three ASTER bands. Lighter areas represent higher LAI val-
ues. Note the city center in the middle left of the image and Terre Haute Interna-
tional Airport in the middle right of the image. 
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6 Public Participation Geographic Information 
Systems as Surveillance Tools in Urban Health 

Daniel P. Johnson, Wright State University, Department of Urban Affairs 
and Geography 

6.1 Introduction 

Urban environments offer unique opportunities for researchers in the spa-
tial sciences.  Urban systems create their own microclimate, are the reali-
zation of intensive human activity and are strongly associated with high 
levels of human population (Steemers et al 1997).  These aspects among 
others afford the opportunity for geospatial technologies to monitor and 
enhance humankind’s relationship with the environment.  However, far too 
often is this monitoring done by researchers or interested groups which are 
empowered to do so (Elwood 2006).  Marginalized groups within urban 
settings rarely are offered the opportunity to participate in the development 
of a monitoring system, which could include geospatial technologies.  Of-
ten these marginalized groups are not just lacking in the sense of policy 
decisions but their quality of health is often times inferior to more promi-
nent groups within the city.  This level of poor health is not defined and in 
order for it to be understood sufficiently, the level of spatial differentiation 
in health needs to be measured (Galea et al. 2005). 

Public Participation Geographic Information Systems (PPGIS) have suc-
cessfully been used to enhance the participation or “voice” of marginalized 
members of society (Elwood 2006).  However, their use as a tool to en-
hance the quality of health and or health care has not fully been explored.  
PPGIS in this setting could be used effectively as a surveillance tool and as 
a public awareness program geared toward the health status of a commu-
nity.  Participation in such a program would need to be voluntary as many 
are reluctant to admit certain health conditions.  However, the proposed 
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program could be used to provide health insight into the community with-
out privacy infringement. 

This chapter will propose a PPGIS intended to be useful in the manage-
ment and surveillance of heat related illnesses in major urban centers 
across the United States.  Heat related death is the number one cause of 
death due to extreme weather conditions; outnumbering lightening, hurri-
canes and tornados combined (NOAA, 2005).  More often than not the 
deaths associated with such an event are manifested in marginalized 
groups within the city (Klinenberg, 2002; Browning et al., 2006).  Enhanc-
ing the surveillance of these populations is of primary importance in un-
derstanding urban heat events and the death they cause (Bernard & 
McGeehin, 2004). 

6.1.1 Urban Development & Medical Geography 
Medical geography has historically been involved in the analysis of dis-
ease as it is associated with humankind.  Central to this investigation is an 
understanding of the human-environment interaction, which includes heat 
related illness.  Humans, as we know, have certain power over their envi-
ronment as they alter the complex web of ecological interactions through 
urbanization and other activities.  Additionally the environment has im-
pacts on humankind such as Hurricane destruction of urban centers.  This 
interplay has had significant impact on one developmental trend in medical 
geography which could include disease ecology, landscape epidemiology, 
and environmental health.  This is more collectively associated with the 
geography of disease. Recently, Howard Frumkin published a text, Urban 
Sprawl and Public Health, whosemain premise was that one of human-
kind’s greatest impacts on the environment, our cities and the sprawl asso-
ciated with them, are a major culprit in current health problems in the 
United States.  This underscores the relationship between human-
environment interaction and medical geography. 

It is known that specific infectious diseases can be associated with certain 
environmental stressors that humans may come into contact with.  If these 
areas are known and are understood to be detrimental to health, then the 
disease association itself could be either eradicated or a least minimized.  
The Culex pipiens mosquito is a domesticated species which spreads WNV 
and EEE (Fonseca et al. 2004).  The breeding sites of this mosquito are ar-
guably increasing due to anthropogenically induced landscape alteration. 
Many other infectious diseases fit into this description.  Additionally, John 
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Snow’s cholera map and his subsequent spatial analysis leading to the 
Broad Street pump as the culprit of a cholera epidemic in the late 1800’s 
could fit into this category.  Both of these examples are related to the built-
environment and its negative effect on health.   

Not just infectious disease but chronic (non-infectious) maladies can also 
be traced to human environmental interactions.  Current research suggests 
that chronic diseases such as cirrhosis or certain cancers have an environ-
mental component.  This can be understood with tracheo-esophageal can-
cer and its known relationship with proximity to coal burning electrical 
power generators in the UK (Openshaw et al. 1987). 

Behavioral aspects of human activities are now beginning to be traced to 
the human-environment component as well.  Recent studies are suggesting 
that drug addiction behavior may be influenced by components of the built 
environment or the loss of social capital as a result of suburbanization 
(Hembree et al. 2005).  Depression also seems to be linked to poor-quality 
built environment.  Depression can lead to a number of behaviors which 
can be detrimental to health. 

This discussion would not be complete without recent developments on the 
nature of human health with regard to healthful environments.  Health is 
not defined as just the absence of disease but is the entire quality of the 
healthy individual.  It has been known for some time that some environ-
ments are more healthful than others.  This plays into the human-
environment interaction paradigm in medical geography.  These healthy 
places are clearly just as important to delineate as the areas of poor health. 

As mentioned, the main component of the human-environmental interac-
tion paradigm on medical geography has been to define areas which equate 
to bad health.  The emphasis on this component is also being viewed in the 
context of human induced global environmental change (Khasnis & Net-
tleman 2005).  One component to this, understood in landscape simplifica-
tion, one aspect of which is the decrease in biodiversity, can have a signifi-
cant detrimental impact on human health.  This in some examples is from 
bacterial or viral amplification due to a loss of natural predators or a sim-
plified transmission cycle.  Additionally, as global environmental change 
continues we can expect to see a change in the extent of certain disease 
amplification, biological, and mechanical vectors as well as possibly new 
disease components which have evolved in response to the change.  We 
could clearly see tropical diseases extend further northward. 
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Geospatial technologies themselves have been studied as they relate to the 
surveillance of disease and global environmental change (Linthicum et al., 
1987; Manguin & Boussinesq, 1999; Thomas & Lindsay, 2000; Ruiz et al., 
2004).  The efficacy of remote sensing with particular regard to the deter-
mination of habitats associated with insect-borne illness has been substan-
tiated in numerous studies (Pope et al., 1994; Kitron et al., 1996; Hay et 
al., 1997).  It is well known that the specific insect, or arthropod, which is 
most closely associated with enzootic disease, is the mosquito.  The spe-
cific illnesses associated with this class of insect are numerous and in 
many cases are endemic to tropical areas.  Clearly, an environmental 
change event could alter these extents. 

Epidemiological characteristics have been studied using geospatial tech-
nologies for malaria (Thomas et al., 1997, 2000; Beck et al., 1997; Hay et 
al., 1996), rift valley fever (Linthicum et al., 1987, 1990, 1991), trypono-
somiasis (Rogers et al., 1996; Kitron et al., 1996), schistosomiasis (Zhou et 
al., 2002; Seto et al., 2002; Xu et al., 2004), and West Nile Virus encepha-
litis (WNVE) (Theophilides et al., 2003; Ruiz et al., 2004).  The primary 
vector for such encephalatides in the United States are the mosquitoes 
based in the Culex complex containing, among others, the species Culex 
pipiens pipiens and Culex pipiens quinquefaciatus (Fonseca et al., 2004). 
Culex mosquitoes demonstrate propensity for breeding in water that is 
highly polluted with organic content.  Areas containing such contaminated 
water are typically in proximity to human areas of settlement, thus allow-
ing Culex mosquitoes to share space with humans. This characteristic sub-
stantially increases the risk of human infection if viremic mosquitoes are 
existent. As suburbanization increases and urban decay continues the habi-
tat of these particular mosquitoes will undoubtedly increase. 

Clearly geospatial technologies have a place in the epidemiological inves-
tigation of certain disease complexes.  However, the human component is 
much more difficult to investigate. Local knowledge is often necessary in 
such investigations and remote sensing and GIS have limitations in such 
endeavors.  Public Participation Geographic Information Systems (PPGIS) 
have the potential to add the human component to such health surveillance 
in the form of narratives and high local spatial knowledge. 
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6.2 Health and the Built Environment 

Recent published work in relationship to GIS and Remote Sensing in pub-
lic health has concentrated on the location of disease vectors or areas of the 
environment which have a negative impact on human health.  Some re-
searchers are asserting that there are beneficial aspects to the environment 
which contribute to the enhancement of human health (Frumkin 2001).  
Many of these components are tied to us through the biological evolution 
of the human species. 

Frumkin’s main premise is that there are healthful environments that can 
just as easily be examined and delineated as unhealthful environments.  
Some of these healthful environments we can see recreated in our subur-
banization settings and the planning associated with them.  The location of 
nature close to human habitation and the development of parks with trees 
that spatially mimic the savannah of sub-Saharan Africa are two of the ex-
amples provided.  The location of open water sources close to human habi-
tation also reveals a sense of the return to nature.  The development of 
walking paths to enhance exercise and mimic the hunter-gatherer rendi-
tions of the human psyche seems to play as well.  These all seem to con-
tribute to the betterment of human health.  As noted older asylums under-
stood the importance of nature as a location for the enhancement of health.  
Many of these asylums were developed for tuberculosis patients as it was 
thought movement to a healthy location would speed the recovery.  As 
cited by Frumkin numerous studies suggest post-operative patients recover 
more quickly in natural surroundings than they do in closed hospital 
rooms. 

Another component he mentions as a basis to good health is pet owner-
ship; specifically canine as felines do not seem to hold the same associa-
tion.  Owners of dogs seemed to live longer and suffer from less depres-
sion than their non-pet owning or feline owing counterparts.  This once 
again may be the formation in the human psyche that a dog offers protec-
tion as well as companionship.  Pets may also allow the companionship 
bond to remain intact for elderly persons who have lost much of their so-
cial network. 

These examples link well into the Biophyllia hypothesis.  One component 
is that humans are drawn to nature especially that which is linked to our 
evolutionary development.  We can see this by the location of our urbani-
zation patterns as well as our mimicking of the environment in parks and 
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suburban settings.  In this example humankind loves life (Bio Phyllia) and 
their exposure to it enhances health. 

Geography and GIScience in particular could prove to be very fruitful in 
the examination of these types of settings.  Clearly one could delineate ar-
eas of enhanced health and create an atlas of healthy environments.  How-
ever, the true strength of this may be in exacting the specific spatial ar-
rangement of nature and how that arrangement enhances health.  This may 
lead to greater exemplars in sustainable development and urban planning, 
leading to healthier communities. 

6.3 Public Participation Geographic Information Systems 
(PPGIS) 

PPGIS systems have typically been promoted as a means of addressing is-
sues for marginalized populations within a particular society.  However, 
the use of such a system to monitor the health of a particular population is 
starting to emerge from its limited discussion in the PPGIS literature.  A 
majority of these studies have dealt with planning mitigation or acquiring a 
more complete picture of the environment (Hassan, 2005; Cinderby and 
Forrester, 2005).  Its use specifically as an epidemiological surveillance in-
strument is absent from the literature. 

Of health related note in the PPGIS research is an article by Hassan in 
2005 dealing with the effects of arsenic poisoning in Bangladesh.  Arsenic 
is present in the groundwater drinking system of the country where there 
are over 300,000 reported cases of arsenic-induced cancer in the neighbor-
ing province of India.  The method outlined by Hassan used local data as a 
method of identifying arsenic well locations.  Persons intimately familiar 
with the surroundings are more knowledgeable than those from different 
areas.  Based on this premise the identification of arsenic contaminated 
wells was fairly easy to establish.  Hassan’s development of the PPGIS 
system involved his own interaction with the local population and his 
guidance in focus groups.  Thus leading to a conclusion that PPGIS can 
“bridge the information gap” between the community and the decision 
maker (Hassan, 2005). 

Cinderby and Forrester describe a GIS for participation (GIS-P); differing 
from PPGIS is its level of community involvement.  GIS-P differs from 
PPGIS in that the GIS is used to “facilitate participation” and whereby the 
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users are not responsible for the creation or maintenance of the GIS.  Addi-
tionally, gathered from their research, there is a continuum of PPGIS-GIS-
P implementation.  They demonstrate that there exists a level of use and 
implementation ranging from users creating the data and not analyzing it to 
users analyzing the data but not creating it.  Therefore GIS-P is more inter-
ested in the collection of local data rather than analysis where PPGIS is 
concerned with the inverse.  For purposes of health relationships the prin-
ciple concern should be with local data collection.  Many studies have 
shown the added value of such local information and knowledge genera-
tion and it is not a significant stretch to suggest this is true with local 
health knowledge as well. 

6.4 Heat Related Deaths 

Heat related illness is the number one cause of human death in relation to 
extreme weather events in the United States, resulting in an average of 400 
deaths per year over the past few decades (NOAA, 2005).  Predominately 
these deaths have occurred in primary residencies in highly urbanized ar-
eas (NOAA, 2005; Naughton et al., 2002).  Response and surveillance of 
this epidemic is highly lacking and most municipalities lack any response 
or planned intervention program.  One of the main sources of information 
necessary to conduct a response plan is to identify the population which is 
at risk (Rothman & Greenland, 1998).  The population at risk consists of 
elderly and very young persons; chronically ill and isolated individuals 
also are at increased risk of environmental hyperthermia (Klinenberg 
2002).  Apparently having a strong exacerbating effect on the heat wave 
within an urbanized center is the phenomena known as the Urban Heat Is-
land (UHI).  Spatial delineation of these phenomena should assist in the 
assessment of those areas within a city which are at increased risk of heat 
related morbidity. 

The summer of 2006 saw a major increase in the publicity of heat related 
illness in the United States with heat warnings for St. Louis, Oklahoma 
City, Chicago, Dayton, Cincinnati, and Philadelphia.  This is a growing 
problem with the prospect of global environmental change, increases in 
urbanization and an aging population.  However, since the heat wave in 
Chicago of 1995, in which over 700 people died from hyperthermia, there 
has been action taken by local policy makers to relieve some of the situa-
tion.  Chicago, for example, has built cooling centers in locations where 
they are believed to be needed.  However, delineation of the at-risk groups 
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within the city needs to be achieved.  A major component of such a re-
search endeavor should include the incorporation of a PPGIS which will 
add to the local knowledge about particular locations within the city which 
are affected by the heat.  Incorporating this local knowledge into a policy 
plan and surveillance tool could reasonably assist in intervention. 

6.5 PPGIS for Heat Wave Surveillance 

PPGIS is promoted as a means to increase public participation in the deci-
sion making process especially as it relates to spatial awareness.  This as-
pect of PPGIS has the potential to decrease marginalization in groups in 
large scale social situations (Elwood 2005).  Another research thread in 
PPGIS is the view that such tools could increase the marginalization and 
add to the isolation of certain groups.  Central to PPGIS is the level of par-
ticipation the public is involved in.  Clearly, without significant participa-
tion the voices of those marginalized groups are not heard.  PPGIS systems 
can be developed in a number of ways and system development depends 
on the goal of the system (Leitner et al., 1999).  The system outlined here 
is a web-based PPGIS which is targeted at groups within a city which are 
at risk during urban heat events.  The level of participation and the logisti-
cal development of participation parameters are central to discussions of 
PPGIS.  This description will discuss the technology necessary and the 
public outreach model to make the system effective. 

As discussed, the spectrum of PPGIS as a tool encompasses several differ-
ent levels of community involvement.  Ideally, the local community should 
create their own data for the PPGIS and then proceed to analyze it.  Public 
health officials, especially in urban settings, do not have a solid grasp on 
the location of marginalized groups or at-risk groups or individuals in rela-
tionship to extreme weather events.  Many times there is an understanding 
of these populations as related to infectious disease but not for chronic or 
environmental stresses.  PPGIS could assist public health and other offi-
cials in determining locations of these at-risk individuals and indeed moni-
tor the development of an urban heat event.  Undoubtedly, such a system 
would be highly dependent on how it was developed and the level of com-
munity participation. 

Developing such a system would be a very time consuming task and would 
in itself require community participation.  Initially such development 
would require outreach to groups within the setting.  This could follow 
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with focus groups using analog spatial information which would, at a later 
date, be digitally replicated, giving the community a voice in the develop-
ment process and providing them with initial empowerment.  GIS base 
layers already exist for a majority of the major cities within the United 
States.  These layers could be used as the analog maps during the focus 
groups, thereby allowing for easier digitization.  These focus groups how-
ever would focus on the usability of the system, before its development, 
and would give the community an indication about the reasons for the 
PPGIS.

Such focus groups would require usability specialists that would concen-
trate on making the system user friendly for each community involved.  
The interface could be different for each community or group that is par-
ticipating.  The component of the system which is used for monitoring, by 
the health officials, would be centrally located and each monitoring node 
would be connected for immediate update. 

Before development it would be necessary to identify groups or individu-
als that will be using the system.  Identification of areas where there is a 
high concentration of elderly individuals or areas of low socio-economic 
status, two of the most studied at-risk groups during an urban heat wave 
,would be the initial phase.  However, in such a monitoring system it 
would not be absolutely necessary to have a member of the at-risk group 
putting information into the system.  An individual who lives in the setting 
with the at-risk population, but is not part of it, could be just as effective at 
monitoring those individuals of concern.  Such an individual could provide 
relative point locations to the PPGIS of at-risk cases and give qualitative 
indicators of the stress to the community in an urban heat event.  In the 
case of monitoring such events the analysis of qualitative, perhaps narra-
tive information, during the event can provide significant insight into the 
dynamics of the group. 

Such a PPGIS could be implemented in a number of ways.  It is important 
that such a system be developed so that it may be tested for its efficacy in 
relation to a significant health event.  Garnering information from the local 
population, which perhaps is the most effected, is central to such an under-
taking.  Additionally, such collaboration with the community could lead to 
increased resistance when intervening. 
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6.6 Summary 

GIS and remote sensing is increasingly being used in public health circles 
as a means to track and monitor disease.  The ability of GIS to visualize 
and display spatial information is unchallenged in public health.  However, 
PPGIS is not thoroughly being examined in such a context.  These systems 
have the ability to efficiently collect local data and allow an analyst to ex-
amine spatial interactions at that local level.  Clearly such undertakings 
would assist in the monitoring of disease in many settings.  

Urban areas offer high levels of complexity in many different dimensions.  
Spatial and cultural dimensions are just two that add problems to disease 
diffusion studies.  Identification of many of these factors at the local level 
is very important in order to gain a solid understanding of disease in urban 
settings.  PPGIS allows for such data collection and a solid push in this di-
rection should address many of the current concerns in PPGIS research. 
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7.1 Introduction 

Emerging research suggests that the built environment has potential to in-
fluence physical activity which, in turn, can have a protective effect 
against obesity and a positive impact on public health (Berrigan and 
Troiano, 2002; Atkinson et al., 2005).  As a result, research on the associa-
tion between the built environment and health is receiving increased atten-
tion in a variety of disciplines. Most research on the associations between 
the built environment and physical activity to date has focused on adults, 
but the potential links in children are largely unexplored. The present study 
examines how GIS and remote sensing can be used to enhance understand-
ing of the relationships between physical activity and the built environ-
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ment for a cohort of children from low-income urban neighborhoods in In-
dianapolis, Indiana. 

Obesity has increased substantially in the United States over the last 30 
years (Tremblay and Willms, 2000; Strauss and Pollack, 2001).  The per-
centage of overweight children age 6 – 11 in the U.S. has grown from 4% 
in 1965 to 13% in 1999.  The rate of overweight adolescents age 12 – 19 
rose from 5% in 1970 to 14% in 1999 (Ogden et al., 2002).  Obesity is 
costly in terms of decreased physical and psychological health (Hill and 
Peters, 1998; Cummins and Jackson, 2001; Liu and Hannon, 2005) -- in 
1998 aggregate adult medical expenditures attributable to overweight and 
obesity is estimated to be $51.5 billion using Medical Expenditure Panel 
Survey data and $78.5 billion using 1998 National Health Accounts data. 
Research further suggests that increased obesity may eventually lower life 
expectancy in the U.S. (Olshansky et al., 2005).   

Growing concerns over the obesity epidemic have prompted research into 
the potential effects of the built environment on physical activity and hu-
man behavior (e.g., King et al., 2000; Brownson et al., 2001; Pikora et al., 
2003; Burdette and Whitaker, 2004; Hoehner et al., 2005).   Promoting 
physical activity through environmental interventions adopts a population-
based approach to behavior modification with the idea that altering the en-
vironment encountered by many people will have a greater cumulative im-
pact on public health than individual intervention. Increasing physical ac-
tivity through environmental modification that promotes routine physical 
activities, such as walking and cycling, may also be more effective because 
sedentary people are more likely to adopt moderate vs. vigorous forms of 
exercise and still accrue significant health benefits (Epstein et al., 1997; 
Frank and Engelke, 2001).   

Using methods drawn mostly from transportation studies, researchers have 
correlated features of the built environment with both self-reported (dia-
ries) and objective data on people’s physical activity (Frank et al., 2005). 
Certain types of urban patterns, such as sprawl, correlate negatively with 
physical activity (Ewing et al. 2003). At the neighborhood level, research 
has identified a correlation between physical activity and street pattern, 
land use, and pedestrian infrastructure (Cervero and Duncan, 2003; Sael-
ens et al., 2003a). An increased presence of supermarkets has been associ-
ated with increased fruit and vegetable intake in both Black and White 
adults (Morland et al., 2002). Studies focusing on the built environment’s 
roles as a determinant of childhood overweight remain inconclusive. 



7 Examining Urban Health      123 

Geospatial technologies (including GIS, GPS, and remote sensing) are in-
creasingly employed to facilitate the collection of objective environmental 
measurements in support of physical activity research.  These data can be 
both spatially and categorically comprehensive, providing information that 
may supplement or replace more costly field data collection.  In addition, 
geospatial data may provide more objective observations than those ob-
tained through the use of trained observers or self-reported by subjects.  In 
the current study, variations in children’s physical activity levels and per-
ceptions of neighborhood walking environments were examined in relation 
to GIS and remote sensing measures of the built environment.  Environ-
mental variables were summarized at multiple radii around children’s resi-
dences to assess how distance influences the associations between envi-
ronment, physical-activity, and walkability perception. 

7.2 Data and Methods 

Data on 463 children’s perceptions of neighborhood walkability, physical 
activity levels, family incomes, and body mass indices were obtained from 
the 2004 Summer Health Assessment Program Education (SHAPE) con-
ducted by the Marion County Health and Hospital Corporation (Primary 
Investigator: Wanda S. Roddy, Marion County Department of Health).  
SHAPE is an annual program designed to medically evaluate and improve 
health care access for low-income children and their families in Indianapo-
lis, Indiana.  The program includes physical examinations conducted by 
physicians or nurse practitioners wherein children’s height, weight, and 
body mass index (BMI) are determined.  Children were classified by age- 
and gender-adjusted BMI percentiles, with a BMI greater than the 85th per-
centile being considered ‘at risk for overweight’ and greater than the 95th

percentile being ‘overweight’.  The total number of children included in 
the 2004 program was 559.  

As part of the SHAPE evaluation, children were asked to complete surveys 
on physical activity levels and perceptions of neighborhood walkability.  
Children’s parents were asked to describe the child’s medical history and 
family demographics. Demographic information collected as part of the 
survey included age, race, gender, annual family income, and overweight 
status.  Five questions taken from the National Safety Council (2002) re-
lated to neighborhood walkability were included as part of the survey (Ta-
ble 1).  Subjects in SHAPE tend to be from poor minority families when 
compared to census indicators for the city as a whole.  While the 2000 
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Census indicated that 14.7% of Indianapolis families have an annual in-
come less than $15,000, 82.1% of SHAPE families fall below that thresh-
old.  The SHAPE survey included seven options for race. In the current 
study, race responses were condensed into 5 categories including one for 
no response.  Similarly, income data were summarized in five categories 
including one for no response.  Responses to the question, “How many 
days each week do you exercise, dance, or play sports?” are summarized in 
Figure 1.   

Table 1. Subject characteristics and responses to SHAPE survey 
items.

Age   Younger than 5y  26   (  6%) 
5 – 8y   192   (42%) 

 9-12y 190 (41%) 
13y and older  53   (11%) 

Sex Female   225   (49%) 

Race/ethnicity Black   330  (71%)  
Hispanic   42   (  9%)  
White   45   (10%)  
Other     

Income No Response  20   (  4%) 
Less than $9,000  205   (44%) 
$9,001 - $12,000  138   (30%) 
$12,001 - $15,000  35   (  8%) 
Greater than $15,001  65   (16%) 

Weight Status Normal Weight  216   (47%) 
At Risk of Overweight 130   (28%) 
Overweight   95   (21%) 

Do you have room to walk?
 Yes 429  (93%) No 28  (6%) Unsure 4  (1%)   

Is it easy to cross the street?
 Yes 388  (84%) No 66  (14%) Unsure 6  (1%) 

Did drivers behave well?
 Yes 277  (60%) No 123  (27%) Unsure 57  (12%) 

Were you able to follow safety rules?  
 Yes 428  (92%) No 14  (3%) Unsure 17  (4%) 

Was your walk pleasant? 
 Yes 401  (87%) No 21  (5%) Unsure 28  (6%) 
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Fig. 1. SHAPE Subject Responses to the Question “How many days each week do 
you exercise, dance, or play sports?”.  

Address data collected as part of the survey were used to develop a GIS 
point layer representing the location of children’s primary residences.  
Geocoding was accomplished using street center line and address range 
data provided by the Indianapolis Mapping and Geographic Information 
Service (IMAGIS) and standard GIS address matching routines. There 
were 559 individual children living at 390 unique addresses indicating that 
some locations included more than one child.  Three hundred seventy of 
the 390 address were successfully geocoded (94.9% match rate) yielding 
point locations for 535 children (95.7%).   Points located within a distance 
of 1km from the border of the Indianapolis city limits (n = 22) were ex-
cluded because of the lack of some geospatial data outside of the city 
boundary, leaving 513 (91.8%) child residential locations for analysis 
(Figure 2).  Circular buffers were generated around the point locations rep-
resenting children’s residences at distances of 200m, 400m, 600m, 800m, 
and 1km in order to evaluate the influence of environmental characteristics 
at multiple radii.  Environmental characteristics evaluated as independent 
variables included: crime density, street intersection density, residential 
population density, neighborhood median family income, speed limit and 
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traffic counts, sidewalk density, building offset, land use diversity, and the 
Normalized Difference Vegetation Index (NDVI).   
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Fig. 2. Generalized SHAPE subject residential locations and median family in-
come (2000) in Indianapolis / Marion County  

Data on neighborhood median family income were obtained from the 2000 
U.S. Census for all block groups in Marion County, Indiana.  Median in-
come data were converted to a 30m resolution raster and the mean value 
within each child’s corresponding buffers was calculated.  One limitation 
of this method is that the final calculation for a given buffer distance pro-
vides a mean of median family income and thus assumes uniform distribu-
tion of income across the region. 

Building footprints and right-of-way were combined to determine average 
building offset.  Indianapolis’s public right-of-way GIS layer represents 
areas reserved for public use such as roads, sidewalks and bike lanes.  The 
building footprint layer includes almost 500,000 polygons representing 
structures in Marion County.  Buildings less than 600 square feet were ex-
cluded from the analysis to prevent small buildings, such as sheds, from 
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influencing the final results.  Building offset was calculated by measuring 
the shortest distance from the edge of each building polygon to the right-
of-way.  The measurement was then applied to the points representing 
building centroids and the average of building offsets for all building cen-
troids falling within a given buffer was calculated.   

Intersection density has been used as a proxy for street connectivity, with 
more intersections indicating better connectivity (Frank et al., 2005).  
Street intersection density was calculated in the current study from a street 
centerline layer by determining the number of street network nodes within 
a given distance of children’s residences.  Nodes representing dead-end 
streets or cul-de-sacs were excluded.  The number of intersections per unit 
area was summarized at each buffer distance around children’s residences.   

Traffic counts and speed limits of street segments falling within the resi-
dential buffers were averaged at each buffer distance.  Traffic counts were 
available for arterial roads only, creating situations where some smaller 
buffers do not intersect with any arterial street segments generating a null 
value.  Records that contain null values were excluded in subsequent 
analysis.  The percentage of public streets serviced by sidewalks was esti-
mated using Indianapolis’s sidewalk and street centerline GIS layers.  
Street centerlines were divided into 30m sections and any section within 
15m of a sidewalk was attributed as being serviced by a sidewalk.  The to-
tal length of roads serviced by sidewalks was divided by the total length of 
all roads within a given buffer distance, yielding percent roads serviced by 
sidewalks around a child’s residence.    

Geocoded crime data for Marion County were obtained from the Indian-
apolis Police Department (IPD).  The available data include all incident 
reports, regardless of whether or not a conviction was obtained.  Incident 
reports for the 1998 calendar year were used in the current study as they 
were the most recent data available with complete coverage of the city.  
Incident report locations were aggregated by census block groups and 
normalized by the area of each block group yielding a value of annual 
crime density.  This crime density variable was then rasterized to facilitate 
calculation of average crime density within each buffer distance around 
children’s homes.  

Current planning techniques, such as Smart Growth, are intended to reduce 
reliance on automobiles, increase walking for transportation, and reduce 
pollution from vehicle emissions (Saelens et al., 2003b).  Mixed use 
neighborhoods that include amenities, such as sidewalks and crosswalks, 
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enhance walkability by placing people within practical walking distance of 
destinations (e.g. retail stores, post offices, and leisure facilities).   Indian-
apolis zoning data were used to develop a land use dissimilarity index in 
the current study to capture land use heterogeneity around children’s resi-
dences.  These data delineate 70 unique types of zoning in the study area 
including 9 levels of residential density, commercial and industrial uses, 
and special use zones including schools, parks, cemeteries and churches.  
Land use data surrounding a hypothetical residential location are depicted 
in Figure 3 along with selected features of the built environment. 

Selected Features
of the Built
Envrionment

Hypothetical 
Residential
Location

Major Roads

Minor Roads

Building
Footprints

Residential

Commercial

Special Use

Vacant

Industrial

Park

Parking

!P

Land Use
200m

400m

600m

800m

1km

Fig. 3. Land Use and selected features of the built environment surrounding a hy-
pothetical residential location. 

The present study employed a version of the land use dissimilarity index 
developed by Frank et al. (2005) modified to adjust for the focus on chil-
dren rather than adults.  Frank’s system divides land use into three catego-
ries (residential, commercial, and office) with the premise that commercial 
and office districts provide destinations for those living in residential areas.  
Recreational zones (including parks, playgrounds, and school yards) were 
substituted in place of office space in the current study, assuming these 
land use types would be more likely destinations for children than offices. 
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Data from the 2000 U.S. Census were used to develop residential popula-
tion density estimates within children’s residential buffers following the 
protocol of Forsyth et al. (2005).  Average population density was calcu-
lated by weighting the census block group population density by the area 
of the block group falling within a child’s residential buffer.  The esti-
mated population inside the buffer was divided by the total area of residen-
tial zoning, yielding a density measure that accounts for variation in land 
use.

A walkability index was calculated using the equation of Frank et al. 
(2005) that combines population density, intersection density and land use 
dissimilarity:  
Walkability index = (6 x Z-score of land-use mix) 
+ (z-score of net residential density) 
+ (z-score of intersection density) 
The results will vary based on the z-score inputs, which ranged from -
15.67 to 18.47 in the current study. 

The normalized differential vegetation index (NDVI) is a remotely sensed 
measure of the presence and condition of vegetation (Lillesand et al., 
2005).  NDVI values range from -1 (bare ground) to +1 (dense, healthy 
vegetation).  NDVI data were calculated from Landsat Enhanced Thematic 
Mapper Plus (ETM+) imagery acquired May 8, 2001 using the equation 
(Near Infrared Band - Red Band) / (Near Infrared Band + Red Band) 
(Tucker, 1979) (Figure 4).  Average NDVI values were calculated at each 
of the five buffer distances around children’s residences. 
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Fig. 4. Enhanced Thematic Mapper Plus (ETM+) Normalized Difference Vegeta-
tion Index (NDVI) Image of Indianapolis / Marion County, Indiana (May 8, 
2001).  Brighter tones indicate higher NDVI values.  

Methods

Analysis was conducted in three phases designed to examine: 1) the rela-
tionship between children’s perceptions of neighborhood walkability and 
environmental variables, 2) the relationship between children’s self-
reported physical activity and the built environment, and 3) the perform-
ance of regression models for predicting physical activity level of children 
using their perceptions of walkability, built environment variables sur-
rounding their residences, and individual-level sociodemographics.  
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To examine relationship between children’s perceptions of neighborhood 
walkability and environmental variables, T-tests were conducted to deter-
mine whether environmental variables had significantly different mean 
values between the groups of children responding in the affirmative or 
negative to the National Safety Council (NSC, 2002) neighborhood walk-
ability survey questions. The question “Do you have room to walk?” was 
compared to building offset and percentage of roads serviced by sidewalks.  
Responses to the question “Was your walk pleasant?” were compared to 
NDVI and the land use dissimilarity index.  Street intersection density was 
compared to two questions: “Were you able to follow safety rules?” and 
“Was it easy to cross the road?”  The question related to drivers’ behavior 
was analyzed against speed limits and traffic counts. 

To examine relationship between the built environment and children’s self-
reported physical activity levels, T-tests compared mean values of each in-
dependent variable at multiple radii for children in high versus low physi-
cal activity categories. High physical activity was assigned to children re-
porting six or more days per week with physical activity.  Our choice of 
this dichotomous outcome was informed by the U.S. Department of Health 
and Human Services recommendation that children and adolescents en-
gage in 60 minutes of moderate exercise most days, preferably daily (Pate 
et al., 1995). We chose a cut-point of six days per week because the varia-
tion of responses was skewed and this threshold represented a natural 
break in the distribution (Figure 1).   

Both logistic and linear regression models were developed to predict 
physical activity levels of children using their perceptions of walkability, 
built environment variables, and individual-level sociodemographics.  
Built environmental variables were included in the multivariate models if 
the associated T-test in phase 1 of the analysis was significant at the 0.05 
level.  Black was used as the reference category for race during regression 
analysis.  Family income level of $9,000 - $12,000 was used as the refer-
ence category for income. 

7.3 Results 

Two environmental variables, NDVI and speed limit, were found to have 
significant relationships to children’s neighborhood walking perceptions.  
NDVI was positively associated with the question “Was your walk pleas-
ant?” at three buffer distances: 600m, 800m and 1km.  Children who re-
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ported experiencing a pleasant walk in their neighborhood had higher 
mean NDVI values compared to children who did not rate their neighbor-
hood as providing a pleasant place for walking (mean NDVI at 600m 
buffer = 0.095, SD ± 0.087 for children with pleasant walks versus 0.054 ± 
0.079 for those without, p-value 0.03).  The relationship became stronger 
as the buffer distance increased (mean NDVI for 1km buffer = 0.093 ± 
0.085 for children with pleasant walks versus 0.045 ± 0.08 for those with-
out, p value 0.02).  Speed limit had significant relationships with percep-
tions of driver behavior at all buffer distances.  In response to the question 
“Did drivers behave well?” children who affirmed drivers in their 
neighborhoods as “well-behaved” had significantly lower mean speed limit 
values within their residential buffers (e.g. mean speed limit at 1km buffers 
29.4 ± 2.4 mph for those children reporting well-behaved drivers versus 
30.2 ± 1.9 mph, p-value 0.001). 

Children living in poorer neighborhoods, with more traffic, higher speed 
limits, more intersections, higher crime rates, and lower NDVI tended to 
report higher physical activity levels.  Mean intersection density (156.3 ± 
71.7 intersections in high activity children versus 144.0 ± 55.4 intersec-
tions in low activity children, p-value 0.04) and average speed limit (29.9 
± 2.2mph in high activity children versus 29.4 ± 2.5 mph in low activity 
children, p-value 0.02) differed significantly for the physical activity sub-
groups only at the 1km buffer distance. Mean traffic counts differed sig-
nificantly for the physical activity subgroups at 400m and 800m with the 
strongest relationship observed at 800m (916 ± 305 vehicles per day for 
high activity children at 800m versus 851 ± 326 vehicles per day for low 
activity children, p-value 0.03).  Density of crimes showed a significant 
and positive relationship only at the 200m buffer distance (3164 ± 2543 
annual crimes for high activity children versus 2711 ± 2287 annual crimes 
for low activity youth, p-value 0.04).  NDVI and physical activity were 
negatively related at every buffer distance except 200m, with 1km showing 
the strongest relationship (mean NDVI at 1km buffer for high activity 
children 0.079 ± 0.09 versus 0.074 ± 0.01 for low activity youth, p-value 
0.009).  Neighborhood median family income had a negative relationship 
with physical activity at every buffer distance except 1km, with 200m 
showing the strongest relationship ($38,312 ± $14,943 for high activity 
children versus $42,225 ± $15,476 for low activity children, p-value 
0.006). 

These results led to the transfer of the following variables to the regression 
models in part three of the analysis: intersection density at 1km, average 
speed limit at 1km, traffic counts at 800m, crime density at 200m, NDVI at 
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1km and neighborhood median family income at 200m.  The dependent 
variable for the linear regression model was the number of days per week 
children reported being physically active.  The dependent variable in the 
logistic regression setting was a binary indication of high or low physical 
activity level as previously defined.  Seven significant relationships 
emerged in the linear model and five in the logistic model.  The significant 
relationships in the linear model were: Hispanics were less active; older 
children were less active; children overweight or at risk of being over-
weight were less active; children in the lowest family income (demo-
graphic variable) category were more active; children near roads with 
higher traffic counts were more active; children perceiving well-behaved 
drivers were more active; and children reporting pleasant walks were more 
active.  The models estimated that children reporting presence of pleasant 
walks in their neighborhood would be expected to report an additional day 
per week of activity. Children who perceived drivers as well behaved in 
their neighborhoods would be expected to report an additional one half-
day per week of activity than children reporting that neighborhood drivers 
were not well behaved.  The logistic model resulted in significant relation-
ships for age, overweight status, reported family income, traffic counts and 
pleasant walks, all in the same direction as the linear model.  Complete re-
gression model results are shown in Table 2. 
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Table 2. Regression model using demographic, neighborhood walkability, and 
geospatial environmental variables to predict self-reported physical activity levels 
(Significant at .05 in bold).  

Linear Regression    
r2 = .105 

Logistic Regression  
r2 = .197 

Outcome:  
Number of Days Active 

Outcome:  
Physical Activity High or Low 

Variable 
Standardized 

Beta Sig. 
Standardized

Beta 
Standard 

Error Sig. 
Age -0.131 0.016 -0.102 0.042 0.015 
Hispanic -0.124 0.020 -0.836 0.513 0.103 
White -0.073 0.233 -0.559 0.414 0.177 
Other Race 0.010 0.850 0.325 0.495 0.512 
Female -0.014 0.786 -0.201 0.238 0.398 
BMI > 85th percentile -0.148 0.004 -0.711 0.241 0.003 
Income under $9K 0.255 0.000 0.825 0.301 0.006 
Income $12-$15K 0.045 0.423 -0.239 0.472 0.612 
Income > $15K -0.007 0.901 -0.425 0.366 0.246 
Intersection Density 1km -0.045 0.620 0.001 0.003 0.821 
Speed Limit 1km 0.035 0.525 0.053 0.056 0.347 
Traffic Count 800m 0.140 0.014 0.001 0.000 0.008 
NDVI 1km -0.092 0.233 -1.741 2.059 0.398 
Median Family Income -0.120 0.080 0.000 0.000 0.217 
Crime 200m -0.054 0.541 0.000 0.000 0.584 
Room to Walk 0.010 0.860 0.695 0.577 0.228 
Easy to Cross Road 0.023 0.687 0.487 0.413 0.238 
Well Behaved Drivers 0.162 0.007 0.489 0.302 0.105 
Follow Safety Rules 0.007 0.891 -0.453 0.808 0.575 
Pleasant Walks 0.156 0.004 1.429 0.630 0.023 

7.4 Discussion 

This study explored the use of geospatial data to enhance analyses on the 
associations between physical activity levels in children and the built envi-
ronment in which they live.  Estimates of environmental variables quanti-
fied using GIS and remote sensing were compared to children’s percep-
tions of their walking environments and reported levels of physical 
activity. Variables representing walking perceptions, demographics, and 
the environment were used in regression models predicting physical activ-
ity. Self reported variables representing perceptions of the built environ-
ment were significantly related to GIS variables meant to function as ob-
jective measures of the built environment.  Different sizing of analytic 
buffers influenced associations between environmental variables and 
physical activity. We found that after controlling for individual demo-
graphic factors, individual weight status, and neighborhood socioeconomic 
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status, the following factors related to the built environment were signifi-
cant predictors of physical activity in children: presence of heavier traffic, 
perceiving drivers to be well-behaved, and perceiving walks to be pleasant. 

The findings of significant associations between child self-perceptions of 
driver behavior and neighborhood infrastructure comprising pleasant walk-
ing paths are, to our knowledge, novel. These findings compliment studies 
that heretofore have included only adult subjects. The presence of heavy 
traffic has been associated with higher levels of physical activity in adults 
and adults who perceive enjoyable scenery along walking routes have been 
shown to be more likely to walk (Brownson et al., 2001).    In contrast to 
the present study, the work by Brownson et al. obtained quantification of 
traffic levels and pleasing scenery from subjects’ survey responses, while 
the current study employed both survey methods as well as direct observa-
tions recorded as GIS variables.  

Of particular relevance to this study are urban design initiatives such as 
New Urbanism (Katz 1994) and the Ahwahnee Principles (Corbet and 
Valesquez 1994) for resource-sufficient communities.  These initiatives 
call for the development of integrated communities containing mixed resi-
dential, commercial, and open recreational land uses in easy walking dis-
tance of one another and transit stops; the design of streets and paths that 
slow traffic and result in a fully connected system of intersecting routes to 
all destinations; and the design of neighborhoods to support diversity in 
age and socioeconomic status levels of residents, encouraging the presence 
of people in public space. Although this study cannot elucidate how heav-
ier traffic, driver behavior, and pleasant walks promote youth physical ac-
tivity, it can be argued that each of these phenomena could be related to 
the availability of destinations and pedestrian safety, both of which are 
logically supportive of walking.    

Many of the environmental factors that were examined did not emerge as 
significant predictors of child physical activity, in contrast to several pre-
viously published studies. Norman et al. (2006), for example, found that 
girls in areas of lower intersection density were more likely to exhibit 
lower levels of physical activity.  Independent environmental variables 
common to both Norman’s and the present study include residential den-
sity, intersection density, land use mix, and a walkability index.  Gordon-
Larsen et al. (2000) found serious crime was associated with a lower like-
lihood of moderate to vigorous physical activity in adults.  The current 
study indicated no relationship between crime and physical activity level 
in children, but made no distinction between serious and non-serious crime 
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as in the Gordon-Larsen study.  Further research is needed to assess how 
crime levels in neighborhoods may differentially influence persons of 
various ages. Consistent with the results of Hoehner et al. (2005), who 
found sidewalk density was not a significant predictor of walking for 
pleasure or transportation among adults, no significant relationship be-
tween physical activity and the presence of sidewalks was observed for 
children in the current study.  The distinction between recreational and 
utilitarian walking may be especially relevant for the younger subjects in 
our study, as children may be more apt to engage in active play along 
streets in contrast to adult utilitarian purposes (e.g. walking to work or to 
retail areas).  

Limitations of this study include the narrow demographic scope (predomi-
nance of racial minorities and families with lower incomes) of the subjects, 
survey questions that were not designed specifically to facilitate GIS 
analysis, and potentially unreliable survey answers due to the young age of 
the respondents.  The selection of specific buffer sizes may not have re-
sulted in the most informative variable – possibly analytic areas smaller or 
larger would have resulted in more explanatory variables.  Another prob-
lem may have been with the process of summarizing data in the buffers – 
in using the mean values for the analytic buffers, we may have missed im-
portant specific information. It is possible that much of the physical activ-
ity reported occurred at a location away from the children’s home, such as 
at school or church, to which the children took vehicular transportation.   

The associations between age, gender, and differences in physical activity 
in our study are consistent with national surveillance of youth health be-
haviors (Troiano and Flegal 1998). Interpretation of the relationship be-
tween family income and physical activity must take into account that the 
study population was drawn mainly from children of poor families attend-
ing free or reduced-cost summer camp programs.  One interpretation could 
be that the poorest of the poor are more physically active than those with a 
higher economic standing.  A possible explanation for this finding is that 
children in the lowest socioeconomic class would have less access to sed-
entary forms of entertainment such as TV and video games.  The associa-
tion may substantially change if more representation of families with high 
income were included.  The relationship between income and physical ac-
tivity may be curvilinear as more affluent children may have better access 
to more expensive forms of physical activity that require costly equip-
ment. 
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7.5 Conclusions 

Our study adds to an accumulating body of literature suggesting that as-
pects of the built environment are determinants of child weight status, os-
tensibly influencing health behaviors such as physical activity.  Geo-
graphic information systems and remote sensing have potential to 
complement other means of collecting exposure data for a wide range of 
environmental and public health analyses.  The current study contributes to 
previous research in two ways: the focus on children as opposed to adults, 
and the use of GIS-based variables alongside related survey data to quan-
tify the urban environment in terms of walkability.  Examining urban envi-
ronment correlates of childhood physical activity and walkability percep-
tion through GIS and remote sensing should inform future public policy 
aimed at the prevention and management of obesity in the United States.   
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Immediately after World War II, developers in the United States took ad-
vantage of market demand and government incentives to build new hous-
ing subdivisions for returning soldiers anxious to marry, begin families, 
and resume civilian life.  New developments such as Levittown (New 
York), Park Forest (Illinois) and Lakewood (California)1 sprang up and 
were quickly filled with affordable cookie-cutter homes for veterans seek-
ing the American Dream of suburban home ownership (Hayden 2003). The 
baby boom followed. As a result of the boom and international immigra-
tion, the U.S. population grew from 151 million to 300 million between 
1950 and 2007. To accommodate this expanding population growth, cities 
and towns in the U.S. rapidly spread into their rural hinterlands. 

An extensive system of highway access is the primary stimulus for subur-
ban sprawl in the United States today. The 1956 Interstate Highway Act 
created a system of highway construction heavily subsidized by the federal 
government; and multilane freeways soon radiated from every major U.S. 
city (Burchell et al. 2005). In suburban “bedroom communities” with easy 
highway access, suburban American families could build spacious homes 
on cheap land in new communities, and could also commute quickly to the 
central city for work, shopping and services (Hayden 2003, p. 165-166).  

                                                     
1 Levittown, Park Forest and Lakewood are located respectively near New York 
City, Chicago, and Los Angeles. 
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Unmanaged urban growth has come with both an economic and social 
price tag.   The bill includes items such as traffic congestion, social isola-
tion, pollution, higher infrastructure costs, and economic / ethnic segrega-
tion (Burchell et al. 2005; Morris 2005; Deal and Schunk 2004; Carruthers 
and Ulfarsson 2003; Lindstrom and Bartling 2003).  However, the price of 
farmland displacement and ecological damage has not yet been paid-in-
full. Urban growth in the United States is predicted to consume seven mil-
lion acres of farmland, seven million acres of environmentally sensitive 
land, and five million acres of other lands during the period 2000 to 2025 
(Burchell et al. 2005, 38-39).   

The problem of unmanaged urbanization is acute in newly industrialized 
countries. According to United Nations estimates, (UNCHS 2001), nearly 
half of the Earth’s 6.5 billion humans are urbanites.  In newly industrial-
ized countries; high birthrates, land tenure practices, political policy, envi-
ronmental degradation, epidemics, and economics are largely responsible 
for the continued movement of humanity from farm and pasture to city.  
The migrant influx can overwhelm local government’s ability to provide 
critical sanitation, transportation, and housing infrastructure to satisfy hu-
man need. Many of the fastest growing cities in newly industrialized coun-
tries have overcrowded population cores and zones of dense squatter ghet-
tos on their periphery.  Living conditions in the countryside may be bad, 
but the city is a squalid cardboard and concrete kingdom of human degra-
dation, debilitating disease, and rank injustice. Misery is king.  Much will 
be required to force a regime change, but geographic technology for moni-
toring urban sprawl is one weapon to deploy.      

This chapter is about mapping, measuring, and modeling cities with geo-
spatial technologies. Evaluating the extent and structure of urban growth 
and land conversion over time is crucial for informed and responsive re-
gional planning. If landcover and landuse change can be periodically 
mapped, future development can be forecast. Assessment of policy effec-
tiveness is also made possible. Novel techniques for directing urban ex-
pansion can be invented, evaluated and applied to improve the lives of ur-
ban humanity. 

8.1 Urban growth and planning policy 

This section is an overview of planning methods used to manage city 
growth within the United States.  As urban geographers, we do not suggest 
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they are globally applicable, but we do think they represent useful points 
for discussion.2  Although their effectiveness is mixed, their objective is to 
maintain urban vitality and limit rural land loss.  

In the past two or three decades, pushback against unmanaged growth in 
the US has been felt as cities have expanded rapidly into rural zones. This 
reaction has come from farmers, environmentalists, CBD business owners, 
social scientists, and others who noticed the unintended consequences of 
unbridled urban expansion. Growth management policies and laws have 
been subsequently developed by local, state, and federal authorities. Pri-
vate companies have also taken an active voluntary interest in promoting 
development that follows sound planning practices.  

Bengston et al. (2004) divided urban growth control policies into three 
categories: public acquisition, regulation, and incentives. Public acquisi-
tion involves the purchase and ownership of lands by a public entity that 
subsequently prohibits development of the land. Areas targeted for pur-
chase are often environmentally sensitive or have historical or recreational 
importance.  Regulation includes the enforcement of local zoning laws, 
state management acts, and planning ordinances.  On a small scale, regula-
tion can mean specification of minimum building lot sizes.  On a large 
scale, it can include designating growth rate controls and placing moratoria 
on future development.  Incentives and disincentives are also used for 
regulating urban growth.  Developers might obtain benefits from creating 
projects that meet government planning goals. Conversely, developers 
might pay heavily for developments that have greater negative impacts on 
the community. Incentives could include housing density bonuses for pro-
viding open space or tax credits for rehabilitating historic buildings. Disin-
centives could include development impact fees that are charged to build-
ers in addition to normal permit fees (Bengston et al. 2004, 275-276).  

Growth management acts at the state level are found in at least eleven of 
the United States. Their general aim is to direct rapid population growth 
and development in a manner harmonious with state goals (Carruthers 
2002). One common component of state management acts is the mandate 
for communities to develop policy instruments like urban growth boundary 

                                                     
2 For international comparisons of urban growth patterns and policies, see Davis 

and Schaub (2005);  Frenkel (2004);  Tomalty (2002);  Alexander and Tomalty 
(2002); Dawkins and Nelson (2002); Raad and Kenworthy (1998); and Sum-
mers et al.  (1999).
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limits, open space ordinances, and transportation plans.  In part, the suc-
cess of these devices relates to implementation consistency across the 
state, implementation concurrency, and the state’s enforcement ability 
(Carruthers 2002; Ben-Zadok 2005).  The effectiveness of growth man-
agement acts in reducing urban sprawl has been mixed (Anthony 2004; 
Kline 2000; Nelson 2000).  Some researchers have observed that growth 
management plans might increase potential environmental damage in at-
tempts to limit urban expansion (Audirac et al. 1990; Burby et al. 2001).  

The concept of “smart growth” encompasses a popular set of ideas and 
policies to promote compact community development. Although the goals 
of smart growth supporters sometimes diverge, the movement has been in-
creasing its calls for a new planning paradigm (Downs 2001; Lindstrom 
and Bartling 2003, 65-67). Typical elements of smart growth include more 
mixed land-use areas, more compact building footprints, multiple housing 
types, walkable urban designs, and multiple modes of public and private 
transportation. Smart growth frequently focuses on redevelopment of exist-
ing neighborhoods (Smart Growth Network 2003; Burchell et al. 2005).  
Unfortunately, smart growth principles are sometimes difficult to imple-
ment because they conflict with the tradition of low-density urban devel-
opment in the United States (Downs 2001). Additionally, some smart 
growth policies have been shown to encourage sprawl (Irwin and Bock-
stael 2004). 

Other investigations have focused on different aspects of growth policy.  
These include: 

- Studies of policy to increase open space, protect wildlife habitat, and limit 
environmental impact (Kline 2006; Radeloff et al. 2005; Dwyer and Childs 
2004; Howell-Moroney 2004; Robbins and Birkenholtz 2003; Johnson 2001; 
Bernstein 1994; Lewis 1990).   

- Studies of how rural areas are confronting urban sprawl (Mattson 2002; 
Theobald 2005; Weiler and Theobald 2003).   

- Investigations of agricultural land preservation efforts (Kashian and 
Skidmore 2002; Nelson 1992; Nelson 1990).  

- Research to document the effects of growth on transportation.  This includes 
modifying transportation plans to focus or channel growth (Buliung and 
Kanaroglou 2006; Kuby et al. 2004; Cervero  2001; Willson 1995).  

The growth management studies and policies cited above have a strong 
geographic component – landscape space is at the heart of urban growth 
problems. Most of the studies also illustrate the need for accurate geospa-
tial data mated with geocomputational techniques to monitor expansion 
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over time.  With a proper set of geographic data and tools and data, in-
formed policy can be made.  In addition, the success of growth manage-
ment schemes can be accurately assessed and quickly modified to meet 
management objectives. 

8.2 Mapping urban growth 

8.2.1 Change detection 

The goal of any urban change detection method is to identify the changes 
with problem relevance while ignoring the inconsequential. Some kind of 
remote sensing is almost always used.  Several of the most popular change 
detection methods using overhead imagery are described below. 

Image overlay is a simple method to visually identify the location and ex-
tent of change (Jensen 2005).  It is most commonly done by inserting sin-
gle bands of imagery from different dates into the red, green, or blue 
(RGB) image planes of a graphics card for display on a monitor (Banner 
and Lynham 1981).  When examining change between two dates of im-
agery, a single band (from one date) can be inserted into both the blue and 
green image planes whilst the same band (for the second date) is placed in 
the red image plane. Landtype changes that modulate reflectance in the se-
lected bands will appear bright red while areas with little change will ap-
pear gray.  For change assessment between three dates, it is possible to in-
sert corresponding bands into all three RGB image planes. Resulting 
shades of cyan, yellow and magenta would then show areas of change 
while gray would indicate unchanged zones. 

This simple approach can be powerful in urban change detection, particu-
larly when monitoring urban fringe areas where vegetation conversion to 
impervious surface produces a large reflectance change.  Although image 
overlay does not quantify change, it allows the analyst to see its extent and 
location.  She can then focus subsequent quantitative procedures on the ar-
eas and change classes revealed.  By noting the bands in which change is 
obvious, image overlay is also a rapid way to select bands for inclusion in 
automated change detection techniques.  Finally, this method does not re-
quire specialized image processing software and is easily understood by 
those unfamiliar with image processing. 
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Post-classification comparison is currently the most popular method of 
urban change detection (see Table 8.1).  In post-classification comparison, 
each date of rectified imagery is independently classified to fit a common 
landtype schema.  Following classification, the resulting landcover maps 
are overlaid and compared on a pixel-by-pixel basis.  The result is a map 
of landtype change.  This per-pixel comparison is also summarized in a 
“from-to” change matrix (Jensen 2005).  The change matrix displays every 
landtype change class possible under the original classification schema and 
shows the acreage of each change class.   

The utility of the change matrix helps explain the popularity of post-
classification comparison.  Its conceptual simplicity is also appealing.  
Furthermore, when each image is independently classified, atmospheric 
corrections are not necessary (Kawata et al. 1990; Song et al. 2001).  This 
method is also appropriate when dates of imagery are not phenologically 
compatible, have substantially different sun or look angles, or come from 
different sensors (Yang and Lo 2002).  

Despite its prevalence, post-classification comparison is error prone. A 
major source of error is the method’s high dependence upon the accuracy 
of the independently classified landtype maps (Aspinall and Hill 1997; 
Serra et al. 2003) For example, if two landtype maps each have a pro-
ducer’s accuracy of 90%, the accuracy of the post-classification change 
map accuracy will be about 81% (Stow et al. 1980). 

Another method used extensively for change detection is spectral-
temporal classification. This method uses a composite image created by 
adding (i.e., “stacking”) the bands from multiple dates of imagery together 
to form a single image composite. If two six-band images are stacked, the 
result is a 12 band composite.  The composite image is then classified into 
change classes using traditional image processing techniques. 

Simple image differencing (i.e., image subtraction) is also a widely used 
urban change detection algorithm. The technique requires the selection of 
corresponding bands from two dates of imagery. The difference image 
D(x) is created by subtracting the brightness values (x) of one image from 
the other on a per-pixel basis. While all bands can be differenced in this 
way, bands can also be deliberately chosen to maximize detection of im-
portant change classes. 

The numerical values in the output difference image are the signed (i.e., -
to + ) changes in reflectance between the two image dates. Complexities 
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aside, unchanged areas will have values near zero while areas with signifi-
cant change will be progressively positive or negative depending on the 
change direction and magnitude. The difference image can then be used to 
create a binary mask of change vs. no change. This mask M(x) is created 
by defining a threshold value (T) such that: 

1, ( )
( )

0,
if D x

M x
otherwise

The threshold choice is crucial.  It is selected to separate relevant and real 
changes from those irrelevant or created by noise. If the threshold value is 
too small, the difference mask will overestimate the area of change. Con-
versely, an overly large threshold would exclude many bonafide areas of 
change from the mask.   

Table 8.1 A summary of urban change detection methods 

Method Reported usage 
Change vector analysis Chen and Gong et al. 2003 
Decision trees Im and Jensen 2005;  Chan et al. 2001 
Econometric panel  Kaufmann and Seto 2001 
IHS transform Chen and Chen et al. 2003 
Image differencing Todd 1977; Quarmby and Cushnie 1989; Fung 1990; 

Ridd and Liu 1998; Sunar 1998; Bruzzone and Prieto 
2000; Masek et al. 2000; Maktav and Erbek 2005; Liu et 
al. 2004 

Image ratioing Maktav and Erbek 2005; Liu et al. 2004 
Image regression Ridd and Liu 1998; Liu et al. 2004 
Kauth-Thomas image 
differencing* 

Fung 1990; Ridd and Liu 1998; Kaufmann and Seto 
2001; Seto and Fragkias 2005 

Learning vector  
quantization 

Chan et al. 2001 

Artificial Neural  
networks 

Dai and Khorram 1999; Chan et al. 2001; Liu and 
Lathrop 2002; Pijanowski et al. 2005; Bruzzone 1999 

PCA Fung and LeDrew 1987; Fung 1990; Fung 1992; Yeh 
and Li 1997; Li and Yeh 1998; Sunar 1998; Liu et al. 
2004 

Post-classification  
comparison 

Fung 1992; Jensen et al. 1995; Li and Yeh 1998; Sunar 
1998; Ward et al. 2000; Chan et al. 2001; Madhavan et 
al. 2001; Yang 2002; Yang and Lo 2002; Chen and 
Gong et al. 2003; Chen and Chen et al. 2003; Weber and 
Puissant 2003; Alberti et al. 2004; Liu et al. 2005; Mun-
dia and Aniya 2005; Xiao et al. 2006; Yu and Ng 2006 

Spectral-temporal  
classification 

Schneider et al. 2005 
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Vegetation index  
comparison 

Maktav and Erbek 2005 

* Also known as tasseled-cap image differencing 

The analyst usually determines the threshold value empirically (Jensen 
2005; Singh 1989). To set thresholds that make the change map meaning-
ful, the analyst needs to understand both the target and the project goals. 
(Schowengerdt 1997). Researchers have also proposed statistical methods 
of selecting the threshold. These include Fung and LeDrew (1988), Ingram 
et al. (1981), Morisette and Khoram (2000), Smits and Annoni, (2000), 
Rosin (2002), Rosin and Ioannidis (2003), Coppin et al. (2004), Singh 
(1989), and Yuan et al. (1999).   

Despite these statistical aids, problems interpreting change magnitude of-
ten make impossible the definition of a global threshold value.  For exam-
ple, a reflectance difference of 30% in the urban periphery may indicate 
conversion from agriculture to urban residential land, while the same re-
flectance change in the CBD may result from street repaving.  

Input values with vastly different magnitudes can also create the same dif-
ference value in the subtraction process. Although reflectance magnitude
on the two images would indicate different change class involvement, 
change classes generating the same reflectance difference would not be 
differentiated in the change product.  Coppin and Bauer (1994) suggest di-
viding the difference by the sum of the input values to mitigate this prob-
lem.  It is also possible to produce separate change masks for different 
types of change through the use of density slicing (Singh 1989).  

In addition to the problems cited above, the technique sensitivity to noise 
and bi-temporal illumination differences make it a questionable choice for 
urban change detection. It is a particularly poor choice when using high 
resolution imagery wherein shadows and slight illumination changes cause 
large changes in radiance recorded by the sensor.   

Image ratioing is also commonly used for change detection.  It proceeds 
like image differencing with simple division being used in place of sub-
traction.  The resulting per-pixel quotients constitute a ratio image with 
image pixels unchanged between image dates taking a value of 1.0 and ar-
eas of change producing higher or lower values depending on the change 
classes involved. Because the output quotient distribution is non-Gaussian 
and bi-modal, it is impossible to set a numeric threshold of meaningful 
change (Coppin and Bauer 1994).  
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Image ratioing was first used in vegetation studies with Landsat Multispec-
tral Scanner data (Rouse et al. 1974). It was successfully used in an urban 
environment by Todd (1977) who reported 91.4% correct change classifi-
cation of Atlanta, Georgia. Howarth and Boasson (1983) found that a bi-
temporal ratio of TM53 provided information on urban change while a 
similar ratio of TM7 failed to provide information on urban change in 
Hamilton, Ontario. 
Image differencing and ratioing are commonly performed on images pre-
viously transformed to enhance important change classes. These trans-
forms include the following: 

- The Kauth-Thomas or tasseled-cap transform (Ridd and Liu 1998; Rogan et 
al. 2002) 

- The Normalized Differenced Vegetation Index (NDVI) (Cakir et al. 2006; 
Du et al. 2002; Masek et al. 2000; Song et al. 2001)  

- The Principal Component Analysis transform (Du et al. 2002; Millward et 
al. 2006)  

- Miscellaneous ratios and transformations. For example, Schott et al. (1988) 
found that an infrared to red ratio was effective in separating urban pixels 
from water and vegetation.   

Obviously a number of transformations can be concocted.  The transforma-
tion selected is often dependent upon the scene properties and project de-
sign.  The right method is the one that works to solve the problem. Deter-
mining what works usually requires trial and error. 

                                                     
3 See Table 8.2 for satellite and band specifications and nomenclature.   
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The operating assumption of change detection through image regression
is that image reflectance values recorded for the same location on two 
dates are linearly related.  To detect change using this logic, a linear least-
squares regression is performed using the pixel values of image at time t1
as the independent variable and the corresponding pixel values at t2 as the 
dependent variable.  The change map is a map of regression residuals.  It is 
created by subtracting the regression-predicted t2 reflectance values from 
the actual t2 pixel reflectance values.  Pixels with large residuals (based on 
a threshold) are used to generate a change/no-change mask (Singh 1989). 

Image regression has some theoretical advantages. The regression accounts 
for differences in reflectance mean and variance between dates. It also re-
duces the effects of different sun angles and atmospheric transparency 
(Coppin et al. 2004). Despite these advantages, Ridd and Liu (1998) found 
that image regression techniques performed only slightly better than sim-
ple image differencing in a Salt Lake City study.  Because of the linearity 
assumption, this technique is not recommended if a large proportion of the 
target area has changed between the two image dates. 

Principal components analysis (PCA) is a multivariate statistical method 
for data summarization and reduction.  The fundamental assumption of 

Table 8.2 Satellites and sensors discussed in the chapter. 

TM / ETM+ SPOT HRV & 
HRVIR

IKONOS 

Satellites Landsat 4, 5, 7 SPOT 1, 2, 3, 4 IKONOS-2 
Pixel size 30 m 20 m 4 m 
Blue band TM1

0.45-0.52 m
 XS1 

0.45-0.52 m
Green band TM2

0.52-0.60 m
SPOT1 

0.50-0.59 m
XS2 

0.51-0.60 m
Red band TM3

0.63-0.69 m
SPOT2 

0.61-0.68 m
XS3 

0.63-0.70 m
IR band TM4

0.76-0.90 m
SPOT3 

0.79-0.89 m
SWIR band TM5

1.55-1.75 m
VGT

1.58 – 1.75 m
(SPOT 4 HRVIR) 

MIR band TM7
2.08-2.35 m

Pan band EPAN 
(Landsat 7 ETM)

SPAN IPAN 
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PCA is the existence of some underlying structure between a set of physi-
cal variables that can be described by a smaller set of synthetic variables.  
PCA is used to reduce image dimensionality by defining new, uncorrelated 
bands composed of the principal components (PCs) of the input bands.  
PCs are computed by examining the correlation between input image 
bands, grouping highly correlated bands, and then calculating new bands 
that summarize the information contained in the original band set. See 
Duda et al. (2001) for computational details.  

The creation of new components can be envisioned as the translation and 
rotation of the original image axes in feature space to match patterns in the 
input variables.  The first principal component (PC1) is calculated to cap-
ture the maximum variation resident in the original data.  Each subsequent 
component is calculated such that it accounts for the maximum possible 
variance remaining, and it is orthogonal to the antecedent PC axes.  In the 
process of PCA, new PC bands are created by projecting the original data 
values in terms of the new axes (Jensen 2005).  The interpretation of PC 
bands is coaxed from a table of factor loadings that summarize the correla-
tion between input bands and PC bands.   

Principal components can be calculated two ways. Standardized PCA uses 
the input bands’ correlation matrix whereas unstandardized PCA uses the 
covariance matrix (Singh and Harrison 1985; Eastman and Fulk 1993). 
Various studies have examined the utility of both variants in change detec-
tion with general agreement that standardized PCA is superior; it produces 
increased signal to noise ratio (SNR) and effective image enhancement 
(Eklundh and Singh 1993; Fung and LeDrew 1987; Singh and Harrison 
1985). 

Application of PCA in urban change detection is based on the assumption 
that pixel brightness values will remain constant through time if landtype 
remains unchanged.  If this condition holds, a high per-pixel correlation 
will be found between different image dates.  The most common method 
of utilizing PCA in change detection is to combine two images with n
bands into a single image with 2n bands and subject it to PCA. The com-
putation will produce 2n components.  For targets where change is limited 
in spatial area, PC1 will portray the unchanged portion of the landscape, 
while successive components will represent areas of change.  If a scene is 
dominated by change then PC1 will highlight the changed areas.  Various 
landtype changes may also be sufficiently dissimilar that each will be cap-
tured in different components (Byrne et al. 1980, Fung and LeDrew 1987).   
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Sources of change detection error 

Practitioners of urban change detection should remember that changes in 
apparent reflectance can be caused by factors other than landtype conver-
sion.  According to Du et al. (2002) and Paolini et al. (2006), these error 
factors include: 

Atmospheric attenuation 
Misregistration between multiple image dates 
Topographic attenuation 
Different phenological stage and/or seasonal variability 
Sensor spatial, spectral and radiometric resolution differences 
Changes in sensor response for same sensor due to drift or age 
Changes in viewing and/or sun angle. 

Of these error sources, atmospheric differences and image misregistration 
are the most detrimental to change detection (Coppin and Bauer, 1994).  
Apparent differences due to changes in sun angle and phenostage can often 
be eliminated or reduced to ignorable levels by using imagery collected by 
the same sensor on anniversary dates (Jensen, 2005).  Unfortunately, the 
paucity of cloud free imagery for many world regions prevents the satellite 
collection of anniversary images.  In a sample of 32 urban change detec-
tion projects we surveyed, only 14 used near-anniversary dates. 

8.2.2 Comparative studies 

It is important to remember that no single change detection approach can 
be globally recommended. Since urban change detection is a machine 
learning problem, two theorems of Duda et al. (2001, 454-461) come into 
play as alternative methods are compared. The first is the No Free Lunch 
Theorem.4  In consequence of the theorem, any apparent accuracy advan-
tage of a classifier is strictly a function of the fit between algorithm and 
problem dataset, not an inherent advantage of the classifier itself.  Con-
sider two competing classifiers used to detect change.  For every problem 
where the first classifier produces higher accuracy, another dataset could 
be devised where the converse was true.  Over an infinite number of prob-
lems, the average accuracy difference between the two algorithms would 
be zero. Following Duda et al., we recommend that change detection prac-
titioners be leery of any novel machine learning method purporting to be 

                                                     
4 Duda et al. (2001, p. 456) attribute the theorem name to David Haussler. 
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universally superior. In addition to classifier selection, careful considera-
tion of training sample size, noise minimization, etc. is required for urban 
change detection success.   

The Ugly Duckling Theorem is the corresponding statement for feature 
representation.  “In the absence of assumptions there is no privileged or 
‘best’ feature representation, and … even the notion of similarity between 
patterns depends implicitly on assumptions that may or may not be cor-
rect” (Duda et al. 2001, 458).  This suggests we limit expectations built 
upon past experience.  Even when guidelines seem reasonable based on 
previous success; the Ugly Duckling Theorem invites us to explore alter-
native features, feature representations, feature sets, and similarity meas-
ures. We should not expect one combination to be superior to another un-
der all conditions; the results will be dependent on the data.  The same 
applies to spectral band selection. Different band combinations will be op-
timal for detecting change in different contexts.   

Given the trial and error required for successful urban change detection, a 
detailed review of comparative studies is instructive.  These projects illus-
trate the experimentation necessary before adopting a single methodologi-
cal solution for a particular project.   

The goal of Ridd and Liu (1998) was to map urban change in Salt Lake 
City, UT between 1896 and 1990 by comparative analysis of two TM im-
ages.   Results from four change detection algorithms were compared, 
three of which share general popularity: 1) image differencing, 2) image 
regression, and 3) tasseled-cap image differencing. Using 585 field valida-
tion sites, Ridd and Liu found that no combination of algorithm or TM 
band was "absolutely superior to the others" (p. 100).  For simple binary 
change (i.e., changed vs. unchanged) mapping, image differencing and im-
age regression using TM2 and TM3 produced the highest accuracy values.  
Detection via image differencing of TM4 produced the lowest accuracy. 

A more complex picture of algorithm competency emerged when specific 
change categories were examined.  For example, image differencing of 
TM2 was effective in detecting conversion from construction site to new 
residential land, new residential sites to vegetated residential land, and 
conversion from farmland to construction sites.  In contrast, the green tas-
seled-cap difference image was superior for detecting the transformation 
from green to dry farm.  Generally speaking, temporal alterations that 
modulated relative percentages of bare ground and vegetation were most 
easily detected by all three algorithms (Ridd and Liu, 1998). 
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Fung (1990) provides another comparative example. The objective was to 
determine whether Landsat TM would be a useful data source for monitor-
ing landscape change in the Kitchener-Waterloo area, Ontario.  After vis-
ual study, ten change classes were described.  Eight of the ten were related 
to change between agricultural landtypes (e.g., pasture to grain conver-
sion), whereas the remaining two focused on urbanization: 1) change from 
construction to residential land and, 2) construction site replacement of ag-
ricultural land.   

The change detection methods compared by Fung included image differ-
encing, PCA, and tasseled-cap image differencing.  Image differencing of 
all TM bands between the two summer image dates (1985 and 1986), 
yielded six difference images from which change could be assessed.  A 
standardized PCA was also performed on the two stacked images.  Al-
though the process created 12 PCs, only PC3, PC5, and PC6 were related 
to change.  PC3 was interpreted as a brightness change image, PC5 dis-
played near-infrared reflectance change, and PC6 was related to wetness 
differences.  Because the Kitchener-Waterloo region was predominantly 
agricultural, tasseled-cap image differencing was also tried.  Like the re-
tained PCs, the three tasseled-cap image layers were labeled brightness, 
greenness, and wetness change respectively.   

The accuracy of the change as depicted on the 12 change images was as-
sessed by field investigation and comparison with air photography.  Accu-
racy was measured on both a per-change class basis and a reduced binary 
change scale. As expected, no image depicted all change classes with 
equivalent accuracy.  For example, difference images produced from TM1, 
TM2, and TM3 were very competent to detect rural to urban conversion 
and construction to residential transformations, but were ineffective in de-
tecting change between agricultural land types.  In contrast, the TM4 dif-
ference image detected change between some agricultural classes but not 
others.   

Fung observed that temporal changes in the area primarily involved varia-
tion in target brightness and greenness.   In evaluating brightness change, 
Fung concluded that the tasseled-cap brightness difference image was su-
perior to PC3.  The tasseled-cap greenness difference image was also supe-
rior to greenness principal component PC5.  The tasseled-cap greenness 
difference image provided the overall best information for monitoring 
change in the agricultural categories.   
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In an effort to map the change in Instanbul, Turkey, Sunar (1998) com-
pared Landsat images dated August 1984 and September 1992 using four 
common methods.  These included the visual image overlay of TM3, im-
age differencing, PCA of stacked images, and spectral-temporal classifica-
tion. Visual analysis of the results demonstrated different strengths of the 
different approaches but no specific conclusions were offered.  Sunar sug-
gests that production ease, product information content, and product inter-
pretability are the primary criteria by which change detection procedures 
should be judged.  We recommend two additional criteria.  The first crite-
rion is the ability to accurately map change on a binary scale.  This implies 
a method that equally minimizes errors of both change underestimation 
and overestimation.  The second criteria is tougher – to detect change uni-
formly and accurately across all the change classes of importance.  This 
uniform accuracy requirement follows from Anderson et al. (1976, 5). 

8.2.3 Innovative approaches 

As shown in Table 8.1, innovative approaches to urban change detection 
have been introduced in recent years.  All are more complicated than popu-
lar traditional methods. One of the research challenges faced by urban 
change detection practitioners is making these innovative approaches 
available to the broader user community; only then can the domain of their 
effectiveness be delimited. 

Change vector analysis represents one innovative strategy for landtype 
change mapping. Following Chen and Gong et al. (2003), the concept of a 
change vector is best described by example.  Spectral information in a sin-
gle pixel is represented in its reflectance vector.  In a study utilizing TM, 
the vector can be expressed as R = (r1, r2, r3, r4, r5, r7)T where r1 is the re-
flectance for the pixel in TM1, r2 the reflectance in TM2, etc.  Given two 
dates of imagery, reflectance vectors for the same pixel location on the two 
dates can be expressed as R1 and R2.  The change vector is then defined as 

R = R1 - R2.  Calculation of the vector’s magnitude and direction follow 
simple vector formulae, resulting in a two band difference image where 
one band records the magnitude of the change vectors and the second re-
cords the direction (Johnson and Kasischke, 1998).  As with simple image 
differencing, a threshold value defining relevant change in magnitude and 
direction must be chosen. The research question of Chen and Gong et al. 
(2003) was how to best specify this limit.  Chen and Gong et al. present the 
threshold determination method and apply it to a CVA case study in 
Haidian District, Beijing, PRC.  Using TM imagery from 1991 and 1997, 



156     Hardin et al. 

the authors calculated the change vectors using TM1-TM5 and TM7.  The 
threshold of change was specified and the changed areas mapped. Using 
the 1991 TM imagery, a hybrid classification generated a 1991 landtype 
map of nine classes.  The classes included urban fabric, barren land, water, 
paddy fields, wheatland, vegetables, forest, shrub / grassland, and other 
land types.  Based on this classification and the change vector analysis 
previously performed, the specific change classes were enumerated.  Two 
types of change dominated the scene.  The first was the conversion of agri-
cultural land to fishponds whereas the second was archetypical urban in-
trusion into fringing agricultural zones.  Both change types were a result of 
economic development in the Haidian District.   

The research of Chen and Gong et al. (2003) is notable for the rigorous ac-
curacy assessment. The validation sample included 425 sites of docu-
mented change and 1975 sample areas that remained unchanged between 
the two dates.  Only 13% of the areas of known change were missed by the 
CVA.  Only 2% of the unmodified sites were mistakenly classified as 
changed.  Overall, the classification produced a kappa of 0.87.  A post-
classification comparison using the same images produced a kappa of only 
0.69 and severe overestimation of change acreage.  Classwise accuracy for 
the CVA was dependent on the change class considered.  Conversion of 
water to other landtypes was correctly mapped 93% of the time whereas 
conversion of paddy fields was correctly mapped only 81% of the time.  
Conversion of other seven landtype classes ranged between those two val-
ues.  

Spectral mixture analysis (SMA) is a method of quantifying urban land-
cover components within a pixel.  It is based on the principle that the sig-
nature of a single pixel is a combination of the signatures of the pixel inte-
grants weighted by the area of each component.  For example, consider an 
urban pixel covered by 30% grass and 70% concrete.  The signature of the 
pixel would be a composite – the sum of the signatures of the grass and 
concrete components, each multiplied by 0.30 and 0.70 respectively to ac-
count for the relative amounts of both materials.  In SMA parlance, pure 
grass and pure concrete in this example are spectral endmembers.  

Alberti et al. (2004) is an excellent example of SMA use in urban change 
detection.  Their first objective was to differentiate between categories of 
urban land change within the Puget Sound area using Landsat TM and 
ETM+ imagery acquired in 1991 and 198.  The study was focused on low-
land basins in the area experiencing landtype alteration due to urbaniza-
tion. This second goal was to conduct a detailed analysis of landcover 
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change between the two dates.   The methodology was complex, detailed, 
and used both supervised classification and SMA.  The supervised classifi-
cation was designed to differentiate between broad landtype categories 
such as paved urban, mixed urban, vegetation, and bare soil.  Using shade, 
pavement, and green vegetation spectral endmembers, the urban class was 
then subdivided according to impervious material (i.e., pavement).  Simi-
larly, grass and forest classes within the vegetation class were sorted out 
using bare soil, shade and green vegetation endmembers. Significant spec-
tral confusion plagued the discrimination of bare agricultural soils, pave-
ment, and clearcuts; a sequence of heuristic filters and rules were applied 
to limit the impact of the confusion.  The landtype classes were then iden-
tified according to their spectral mixture components.  For example, the 
paved urban class was constituted from the urban and mixed urban classes 
containing more than 75% impervious material.    

The landtype classifications for 1991 and 1999 reported in Alberti et al. 
produced kappa coefficients of 0.92 and 0.88 respectively.   A per-pixel 
overlay of the two maps was done to determine landtype change between 
the two dates. The largest source of error in the resulting map was season-
ality differences between the two years.  Although the second image 
(1999) was acquired on the anniversary date of the first (1991), record pre-
cipitation totals created significantly greener 1999 vegetation. Problems 
with this seasonality coupled with registration errors and spatial heteroge-
neity required a resampling to 90m resolution for the final change map 
product.  Comparison with orthophotography revealed that the accuracy of 
the change detection map was 85%. Areas of no change were mapped very 
accurately. Otherwise, accuracy differed by change class: 

- Forest to mixed urban; accuracy = 90%  
- Forest to bare soil; accuracy =  88%  
- Grass / bare soil to mixed urban; accuracy =  65%  
- Mixed urban to paved urban; accuracy = 80%  
- Bare soil to paved urban; accuracy =  83%.   

Like SMA and change vector analysis, artificial neural networks (ANNs) 
are another innovation with apparent promise for urban change detection. 
As the name implies, ANNs attempt to model the low-level structure of the 
brain.  As such, they are the product of research into artificial intelligence.  
Although the brain’s computational method is very different from a com-
puter (Haykin 1994), ANNs tend to mimic the biologic brain’s fault toler-
ance and learning capacity. The neuron is the basic unit of an ANN.  A 
neuron stores knowledge by the application of a learning process algo-
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rithm.  Interneuron connection strengths (i.e., synaptic weights) store the 
knowledge that is learned.  ANNs are frequently used as alternatives to sta-
tistical procedures such as regression and discriminant analysis because 
they estimate functions adaptively rather than through some constrained 
mathematical algorithm like ordinary least squares.  As summarized by 
Jensen and Hardin (2005), “ANNs have been used in remote sensing ap-
plications to classify images (Bischof et al. 1992; Hardin 2000), and incor-
porate multisource data (Benediktsson et al. 1990). ANN classifiers have 
been successfully used with remote sensing data because they take advan-
tage of the ability to incorporate non-normally distributed numerical and 
categorical GIS data and image spatial information (Jensen et al. 2000)” 
(p. 23).  

In supervised classification, feed-forward back-propagation ANNs can re-
place the typical maximum-likelihood classifier used to assign image pix-
els to a training class.  Other ANNs genres can serve as unsupervised clas-
sifiers or hybrid combinations of both strategies.  For example, the 
Learning Vector Quantizer is a Kohonen self-organizing neural network 
map that can be adapted to either supervised or unsupervised learning 
strategies (Kohonen 1995). 

As mentioned by Liu and Lathrop (2002), ANNs have promise for detect-
ing change between satellite images, but the high cost of network training 
hinders their widespread adoption.  Because of this problem, the authors 
developed a method for training such ANNs that is quicker than traditional 
approaches while also facilitating efficient feature extraction.  Although 
the article focuses on the training algorithm, the success of the neural net-
work is also noteworthy.  The data source for their training experiment was 
two anniversary TM images of Barnegat Bay, New Jersey acquired 11 
years apart.  Thirteen of the possible 49 landtype change combinations 
among seven broad landtype classes required discrimination.  

Two feed-forward back-propagation ANNs were tested.  Although the two 
networks differed in the number of hidden neurons, the primary difference 
was the pattern vectors presented to each.    The first network was trained 
with a stacked 12-band image created from the visible and infrared bands 
of the two TM images.  The second network was trained with a six band 
PC set from the 12-band image.   When compared to the accuracy of the 
mapping produced by post-classification overlay, the results of the artifi-
cial neural networks were superior.  In addition, the network trained with 
the PCA vectors produced better results than the stacked 12-band image. 
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In similar work, Dai and Khorram (1999) used a four-layer feed-forward 
back-propagation neural network to detect and classify change in Wil-
mington, NC between 1988 and 1994.  The basic change detection meth-
odology was spectral spatial image classification with a four layer network 
(i.e., two hidden layers) serving in lieu of a maximum likelihood classifier.  
The reported accuracy of the change detection (96%, 16 change classes) 
was higher than the accuracy produced by simple post-classification com-
parison (87%) of the same two images.  However, the high accuracy fig-
ures may be due in part to the use of training data as validation data and 
the small image size (15 km x 15 km). Nonetheless, Dai and Khorram 
(1999) is an excellent example of how a simple neural network can effec-
tively substitute for a parametric classifier.   Finally, see Bruzzone et al. 
(1999) for a more advanced approach to change detection using feed-
forward networks. 

Decision trees are another promising method for urban change detection. 
Whereas ANNs were spawned by research into artificial intelligence, deci-
sion trees are used to represent rules in expert systems – systems nomi-
nally designed to model human expert knowledge and decision making 
strategies.  Like ANNs, decision trees are useful for classification.  In their 
general incarnation, decision trees have nodes that represent distinguishing 
attributes.  These tree nodes are decision points.  Nodes in different levels 
of the tree are connected by arcs. Arcs exiting nodes represent different 
decisions made by examining the nodes’ attribute state.  To classify a pat-
tern, a path is followed through the tree from root to leaf examining nodal 
attributes and making decisions along the way.  A decision at a given node 
selects an arc and moves the decision to a leaf (representing a final class 
label) or to another node (requiring another conditional examination).  

The objective of Chan et al. (2001) was to test the relative effectiveness of 
decision trees with three other machine learning algorithms (i.e., multi-
layer ANN, maximum likelihood, learning vector quantizer) to map urban 
change on Tsing-yi Island, Hong Kong.  Data for the comparison included 
two triband SPOT images acquired on January 14, 1987 and Feb 5, 1995.  
Twelve change classes and four no-change classes were constructed from 
the following landtype categories: 1) built-up land, 2) construction sites, 3) 
vegetation, and 4) water.  Supervised training was used on the stacked 
multitemporal image for all four learning algorithms.   

Accuracy assessment used a validation sample of 1200 sites.  For the bi-
nary change mapping, accuracy was 88%, 77%, 83%, and 91% for the de-
cision tree, maximum likelihood, ANN, and learning vector approaches re-
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spectively.  Validation of a traditional post-classification comparison with 
the same 1200 points produced an accuracy of 69%.   When specific 
change classes were examined, accuracy was much lower. The same four 
classifiers produced a classification accuracy of 85%, 71%, 73%, and 88%.  
Accuracy from the post-classification comparison was 81%.  Classifier 
performance differed by change class.  The best classifiers for each change 
class follow: 

- Construction site to vegetation:  All were equivalent;  accuracy = 100% 
- Vegetation to construction site:  ANN; accuracy = 88% 
- Vegetation to built-up land:  Maximum likelihood classifier; accuracy = 82% 
- Construction site to built-up land:  Decision tree classifier; accuracy = 78%  
- Built-up land to water: Learning vector quantizer; accuracy = 95% 
- Water to built-up land:  Maximum likelihood classifier; accuracy = 90% 
- Water to construction site:  ANN; accuracy = 100% 
- Built-up land to vegetation:  Learning vector quantizer; accuracy = 58% 
- Built-up land to construction site:  Decision tree classifier; accuracy = 59% 

The Intensity-Hue-Saturation (IHS) transform has long been used for 
image fusion, and yet represents another innovative method of detecting 
urban change between two satellite images.5  As described by Chen and 
Chen et al. (2003), IHS change detection is based on an observation from 
image fusion i.e., when a forward and inverse IHS transform are per-
formed for fusion purposes, a noticeable color distortion will result if one 
of the images exhibits any spectral or textural differences related to tempo-
ral change.  

    
In order to test the utility of an IHS change detection methodology, Chen 
and Chen et al. (2003) conducted case studies in Guangzhou and Nanyang 
cities, PRC.  The study required that two disparate image types be com-
pared (i.e., 1996 TM and 1998 SPAN).  The processing was straightfor-
ward.  After initial rectification, the SPAN image was contrast stretched 
exponentially to enhance urban-vegetation differences and high-pass fil-
tered for edge enhancement. The TM bands were histogram equalized.  
Successive combinations of three TM bands were then transformed into 
IHS components.  For each IHS TM product, the intensity component was 
replaced by the SPAN image and transformed inversely from IHS to RGB 
space.   

                                                     
5 For more information on the IHS transform, see Harris and Murray (1990).  

For an introduction to image fusion in remote sensing, see Pohl and Van Genderen 
(1998). 
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Cluster analysis was performed on each RGB image, change classes were 
identified, and the best TM band subset retained for further analysis.  For 
Guangzhou, the three best RGB bands used in the IHS fusion were TM7, 
TM4 and TM3.  Using the classification from this fused image, error as-
sessment was performed on two change classes; arable land which con-
verted to urban land, and all other landtypes.  The overall classification ac-
curacy was 93% (kappa = 0.88) for 1000 validation sample sites.  
Transforms using band sets {TM4, TM3, TM2} and {TM5, TM4, TM3} 
for the R, G, and B color space components also produced excellent re-
sults.   Post-classification comparison using SPOT HRV multiband im-
agery acquired on similar dates produced an accuracy of only 86% (kappa 
= 0.72) on the same 1000 Guangzhou sites.  Results for Nanyang city were 
comparable. 

As an additional innovation, the objective of Kaufmann and Seto (2001) 
was not just to detect urban change between dates, but to estimate the date 
the changes occurred using econometric panel techniques.  The objective 
was driven by the need to match yearly socioeconomic data with its con-
current annual landcover change.  Although the obvious approach would 
be to acquire satellite imagery yearly, the researchers feared that repetitive 
pairwise comparison of images would beget unacceptable error rates 
across the experiment.  Thus, to prevent the compounding of errors associ-
ated with post-classification comparison, it was important to use a longitu-
dinal comparison scheme that avoided repetitive pairwise image proce-
dures.

The Pearl River Delta, PRC was chosen as a study area.  Nine images 
dated 1988 to 1996 were utilized.  The landtype classification scheme had 
seven categories.   In order to assign change dates to image pixels display-
ing change between 1988 and 1996 (and avoid the pairwise comparisons), 
Kaufmann and Seto used econometric panel techniques.  The process re-
quired three steps: “In the first step, regression equations [were] estimated 
for each of the six DN bands for each of the seven stable land-cover 
classes. In the second step, the estimated regression equations for each 
class [were] used to calculate DN values for change land-cover classes for 
each of the eight possible dates of chan. In the third step, the date of 
change [was] identified by comparing a pixel’s DN values against the eight 
possible dates of change using tests for predictive accuracy” (p. 97).  On 
an absolute scale of accuracy, the results were mixed, however the results 
of the econometric panel technique were superior to a bi-image assessment 
of change predicated on a multidate tasseled-cap approach. 
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8.3 Quantification and modeling of urban growth 

8.3.1 Urban growth measurement with landscape metrics 

Landscape ecology metrics are used to numerically describe landscape 
structure. Accurate quantification is a prerequisite to understanding how 
structures affect system interactions in a heterogeneous landscape. Meas-
urement permits landscapes to be compared.  It also facilitates the recogni-
tion and monitoring of landscape change (Turner 1989; O’Neill et al. 
1999). Finally, quantification of landscape structure enables the scientific 
transition from an inductive to deductive logic model wherein hypotheses 
can be formed and rigorously tested (Curran 1987; Dietzel et al. 2005).  
Hobbs (1999) noted that the shift in environmental ecology from a qualita-
tive to quantitative basis was fueled by metrics developed to quantify natu-
ral landscape structure and pattern. Many of the metrics and methods used 
in landscape ecology are borrowed from other sources such as information 
and complexity theory, fractal geometry, spatial statistics, and image 
analysis (Turner l989).  Most common metrics can be subdivided into two 
classes: 

1. Measurement of individual patch characteristics (e.g., size, shape, 
perimeter, perimeter-area ratio, fractal dimension). 

2. Measurement of whole landscape characteristics (e.g., richness, 
evenness, dispersion, contagion). Metrics of landscape characteristics 
are typically more computationally and analytically complex than 
individual patch metrics (Farina 1998). 

Natural landscape metrics have found an important application in quantify-
ing urban growth, sprawl, and fragmentation. Like natural ecology, urban 
change detection focus has shifted from detection to quantification of 
change, measurement of pattern, and casual analysis.  Herold et al. (2002) 
represents an early landmark in this shift by establishing that low density 
residential, high density residential, and commercial zones could be dis-
criminated by landscape metrics such as fractal dimension, landscape per-
centage, patch density, edge density, patch size standard deviation, conta-
gion index, and area weighted average patch fractal dimension. This 
discrimination ability led to the creation of landscape metric signatures for 
Santa Barbara, California landtypes.  The metrics were also capable of 
quantifying land conversion at two California test sites.    
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Schneider et al. (2005) also illustrate the recent shift in focus from urban 
change detection to change quantification. To begin this study of urban 
land conversion in Chengdu, Western PRC, the researchers initially cre-
ated landtype change maps using satellite imagery. Using the digital 
change maps, fragmentation statistics such as mean patch size and land-
scape shape index were calculated.  The statistics were not calculated for 
the entire image, but rather along seven transportation corridors radiating 
from the Chengdu CBD. Five periods of time, corresponding to five of the 
image dates, were examined (i.e., 1988, 1991, 1995, and 2000).  The statis-
tics highlighted the effect of economical, social, and government policy 
forcing mechanisms on urban structure.   

As illustrated by Schneider et al. (2005) and articulated by Seto and Frag-
kias (2005), the quantification of urban growth with landscape metrics 
represents a significant enhancement to the calculation of yearly landtype 
acreage changes.  Although area figures enable change rate calculations, 
landscape metrics make possible the evaluation of changing urban spatial 
pattern; an important additional piece of information for planners seeking 
to control urban growth.  

Seto and Fragkias (2005) used landscape metrics to quantify change in 
four cities of southern PRC over an 11 year period (1988 to 1999).  Using 
satellite imagery, maps of change for several years were constructed.  Ur-
ban growth rates for the four cities were then annualized.  Using the annu-
alized change images, six spatial landscape pattern metrics were calculated 
for three concentric buffer zones centered on each of the four cities. The 
metrics selected were intended to describe urban form complexity and size 
and included total urban area, edge density, urban patch count, mean patch 
fractal dimension, average patch size, and patch size coefficient of varia-
tion.   Calculation of urban change rates during the ten year period was 
also done.  As detailed by Seto and Fragkias, key aspects of urban devel-
opment in the two cities were illuminated by the metrics.  Envelopment 
and multiple nuclei growth were revealed as the primary urban expansion 
processes. Changing administrative practices to control (or not) land use 
development were likewise reflected in the metrics.   These results illus-
trate that investigating temporal urban change via landscape metrics is a 
valuable procedure both to quantify change and link its spatial pattern to 
cultural practices and processes.  See Yu and Ng (2006) for a similar 
study.  

Herold et al. (2005) coined the term “spatial metric growth signatures” to 
describe this use of landscape metrics in a Santa Barbara urban growth 
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project.  Metrics were not only used to describe historical structure and 
predicted future urban form, but were also competent to measure goodness 
of fit between an urban growth model and historical data.  The authors also 
illustrated the use of spatial metrics as a means of visualizing urban model-
ing results.    

8.3.2 Urban growth modeling with cellular automata 

The measurement of urban change is an obvious extension of urban change 
detection. Contemporary research also includes the use of cellular auto-
mata (CA) to model urban growth and predict future urban expansion.  
Remotely sensed maps of urban change are data sources that (usually) 
calibrate and (rarely) validate the model.  

As described by Torrens (2000), cellular automata are an outgrowth of ef-
forts by John von Neumann and Stanislaw Ulam to mathematically model 
the self-reproduction that characterizes living things.  John Conway’s CA 
Game of Life is familiar to most introductory computer science students as 
a laboratory programming assignment to understand two-dimensional ar-
rays.  Although the game is simple, fascinating repetitive patterns and 
regularities appear.  The Game of Life illustrates one of the characteristics 
of many CA models – large scale self-organization and patterning as a re-
sult of actions by a multitude of individual actors. Because they are adap-
tive, reflect emergence, and can model complexity, CA form an excellent 
basis for modeling urban growth.   

Perhaps the most popular North American CA urban growth model was 
developed by Keith Clarke at UCSB (Clarke et al. 1997).  Named 
SLEUTH, Clarke’s modeling system is freely available to other research-
ers.  This is important because model sharing is essential to model im-
provement.  While SLEUTH can be used to model historical growth 
(Clarke and Gaydos, 1998) SLEUTH flexibility enables prediction of fu-
ture urban extent and pattern predicated on “what if” management scenar-
ios (Clarke et al. 1997).  Candau and Goldstein (2002) exercised this po-
tential by investigating five growth options for Santa Barbara, California 
designed to model change over three decades.  These included scenarios of 
1) historical growth extended to the future, 2) historical patterns supple-
mented by an expanded road network, 3) moderate environmental protec-
tion of sensitive lands, 4) strong environmental protection, and 5) con-
strained urban expansion.  Spatial metrics were effectively used by Candau 
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and Goldstein to quantify and describe the patterns produced under the 
various management plots.  

When viewed together, Yang (2002) and Yang and Lo (2002, 2003) form 
an important show-and-tell of a complete project from historical urban 
change mapping through modeling of future urban growth.  In Yang and 
Lo (2003), the researchers detail their use of SLEUTH to model the urban 
growth of Atlanta, Georgia. Three future visions of urban growth were en-
tertained. The first was a status quo growth scenario; the unconstrained 
progression of current patterns into the future.  The second scenario modi-
fied the first to allow environmental protection of sensitive areas.  The 
third scenario defined active management to constrain Atlanta’s urban 
form and slow its sprawling growth.  Results of the SLEUTH modeling 
were mixed but encouraging.  Yang and Lo thought that the model needed 
improvement, particularly to account for externally imposed constraints on 
growth such as zoning and regional development policies.  An inability to 
effectively model human behavior and race were other cited limitations. 

Other examples of SLEUTH CA urban modeling under different presumed 
management conditions can be found.   

Syphard et al. (2005) modeled urban expansion in the Santa Monica 
Mountains National Recreation Area under fictitious slope development 
constraints of 25%, 30% and 60%.    
Jantz et al. (2003) modeled the impact of management policies on 
Chesapeake Bay water quality. The model was based on Washington 
D.C. regional growth regulated by three possible scenarios: 1) cloistered 
resource growth, 2) spatially focused protected resource growth, and 3) 
status quo growth.   
Xian and Crane (2005) adapted SLEUTH to predict suburban expansion 
in the Tampa Bay, FL watershed for the year 2025.  Using impervious 
surface as a surrogate for urban land, Xian and Crane detected and 
mapped urban growth through satellite image analysis, calibrated the 
CA model with the image analysis results, and then predicted future 
growth with the calibrated model.  

8.4 Future research directions 

From the foregoing review, future research directions are suggested.  Cer-
tainly efforts to enhance urban modeling via cellular automata should con-
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tinue unabated.  We also believe that the study of landscape metrics should 
continue with discussions regarding their correct urban application and in-
terpretation.  The five research needs we suggest below require investiga-
tion at a more fundamental level. We admit that some of them require re-
investigation of old problems with new eyes and rekindled enthusiasm to 
make significant contributions.  

The bulk of this review was devoted to urban change mapping. This was 
intentional because the quality of urban change mensuration and modeling 
depends on accurate data. Therefore a significant and thorny research chal-
lenge is to improve the accuracy of landtype maps produced through satel-
lite image analysis.  Although other agendas are sexier, this is a critical and 
persistent need for advancing urban change studies. The problem of inac-
curate landtype maps is particularly acute for practitioners mapping change 
via post-classification comparison wherein errors in each landtype map are 
compounded in the overlay process (Stow et al. 1980).  In their landmark 
work, Anderson et al. (1976) state that “the minimum level of interpreta-
tion accuracy in the identification of land use and land cover categories 
from remote sensor data should be at least 85 percent.  The accuracy of in-
terpretation for the several categories should [also] be about equal” (p. 5).   
This standard is insufficient for maps used in post-classification compari-
son.  Application of these guidelines for a bi-temporal landtype change 
map requires the original landtype maps to have a producer’s accuracy of 
at least 93%, with errors equally distributed between all classes.   

The second research need is related to the first.  There is a need for rigor-
ous accuracy assessment of landtype change products. In a large minority 
of projects we reviewed, no such assessment was reported. In others, accu-
racy assessment was done using the same data that fed the classification 
training phase.  In addition, we suggest that sensitivity analysis be per-
formed and reported. Accuracy claims can then be accompanied by an as-
sessment of data uncertainty’s effect.  This is an old idea (Fisher, 1999) 
that should be considered standard procedure in urban change detection, 
quantification, and modeling.  Such sensitivity analysis may provide sober-
ing insights into the limits of our mapping.  

Accuracy assessment, error estimation, and sensitivity analyses can be 
computationally intensive, particularly in CA modeling.  The third re-
search need is for the development of numerical methods, computing data 
structures, and computer algorithms to reduce computational burdens im-
posed by urban modeling and analysis.   
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The fourth research need is to continue development of novel change de-
tection methodologies that mitigate the accuracy problem inherent in post-
classification comparison.  Since a single “best method” does not exist, 
more exploration is warranted.  We believe that continued efforts to ex-
plain urban change phenomena in context of physical models (e.g., VIS) 
and urban fabric reflectance (e.g., SMA) will be important components of 
these novel methods.  The use of econometric panel methods (Kaufmann 
and Seto, 2001) should also be evaluated more completely by applying 
them to a variety of urban settings.  The role and use of high-resolution 
hyperspectral imagery for urban change detection should also be evalu-
ated.  As mentioned previously, making novel methods accessible to more 
practitioners is also necessary for the sake of replication and general as-
sessment.  

We conclude with the fifth research need — the need to focus on urban 
humanity’s condition. As the metropolis grows into the megalopolis and 
becomes part of a worldwide gigalopolis, monitoring urban growth using 
geographic technologies can preserve and improve the quality of life for 
the family Hominidae.  This means a reinvigorated focus on the needs of 
developing countries.  Consider the newly industrializing nation where a 
burgeoning urban population outpaces the government’s ability to provide 
essential health and service infrastructure essential to forestalling social 
meltdown. Maps provided by satellite remote sensing can provide funda-
mental ecological, population, housing, and life quality data (albeit imper-
fect) necessary for rational and equitable urban management.  Further 
modeling of the urban growth can empower decision makers to create in-
formed policy that directs growth in a sustainable direction.  These would 
be policies that anticipate critical need before crises arise. Although the 
tasks of urban growth detection, measurement, and modeling are satisfying 
academic exercises, the exercises must lead to judicious management of 
our urban world.  

References 

Alberti, M., Weeks, R. and Coe, S. (2004) Urban land-cover change analysis in 
central Puget Sound, Photogrammetric Engineering and Remote Sensing
70:1043-52. 

Alexander, D. and Tomalty, R. (2002) Smart growth and sustainable development: 
Challenges, solutions and policy directions, Local Environment 7:397-409. 



168     Hardin et al. 

Anderson, J. R., Hardy, E. E., Roach, J. T. and Witmer, R. E. (1976) A Land Use 
and Land Cover Classification System for Use with Remote Sensor Data, 
USGS Geological Survey Professional Paper 964. Washington, DC: USGS  

Anthony, J. (2004) Do state growth management regulations reduce sprawl? , Ur-
ban Affairs Review 39:367-97. 

Aspinall, R.J. and Hill, M.J. (1997) Land cover change: a method for assessing the 
reliability of land cover changes measured from remotely sensed data, Pro-
ceedings of the 1997 International Geoscience and Remote Sensing Sympo-
sium, Singapore, August 4-8, 1997. 

Audirac, I., Shermyen, A. H. and Smith, M. T. (1990) Ideal urban form and vi-
sions of the good life: Florida’s growth management dilemma, Journal of the 
American Planning Association 56:470-82. 

Banner, A. V. and Lynham, T. (1981) Multitemporal analysis of Landsat data for 
forest cut over mapping – a trial of two procedures., Proceedings of the 7th 
Canadian Symposium on Remote Sensing , Winnipeg, Manitoba, Canada:233-
40.

Benediktsson, J. A., Swain, P. H. and Ersoy, O. K. (1990) Neural network ap-
proaches versus statistical methods in classification of multisource remote 
sensing data IEEE Transactions on Geoscience and Remote Sensing 28:540-
51.

Bengston, D. N., Fletcher, J. O. and Nelson, K. C. (2004) Public policies for man-
aging urban growth and protecting open space: policy instruments and lessons 
learned in the United States, Landscape and Urban Planning 69:271-86. 

Ben-Zadok, E. (2005) Consistency, concurrency and compact development: three 
faces of growth management implementation in Florida, Urban Studies
42:2167-90. 

Bernstein, J. D. (1994) Land Use Considerations in Urban Environmental Man-
agement. Washington, D.C.: Urban Development Division, World Bank. 

Bischof, H., Shneider, W. and Pinz, A. J. (1992) Multispectral classification of 
Landsat-images using neural networks, IEEE Transactions on Geoscience and 
Remote Sensing 30:482-90. 

Bruzzone, L. and Prieto, D. F. (2000) Automatic analysis of the difference image 
for unsupervised change detection, IEEE Transactions on Geoscience and 
Remote Sensing 38:1171-82. 

Bruzzone, L., Prieto, D. F. and Serpico, S. B. (1999) A neural-statistical approach 
to multitemporal and multisource remote-sensing image classification, IEEE
Transactions on Geoscience and Remote Sensing 37:1350-9. 

Buliung, R. N. and Kanaroglou, P. S. (2006) Urban form and household activity 
travel behavior, Growth and Change 37:172-8. 

Burby, R. J., Nelson, A. C., Parker, D. and Handmer, J. (2001) Urban containment 
policy and exposure to natural hazards: is there a connection? Journal of En-
vironmental Planning and Management 44:475-90. 

Burchell, R. W., Downs, A., McCann, B. and Mukherji, S. (2005) Sprawl Costs: 
Economic Impacts of Unchecked Development. Washington, DC: Island Press. 



8 Mapping, Measuring, and Modeling Urban Growth      169 

Byrne, G. F., Crapper, P. F. and Mayo, K. K. (1980) Monitoring land-cover by 
principal components analysis of multitemporal Landsat data, Remote Sensing 
of Environment 10:175-84. 

Cakir, H. I., Khorram, S. and Nelson, S. A. C. (2006) Correspondence analysis for 
detecting land cover change, Remote Sensing of Environment 102:306-17. 

Candau, J. C. and Goldstein, N. (2002) Multiple scenario urban forecasting for the 
California south coast region, Proceedings from the 40th Annual Conference 
of the Urban and Regional Information Systems Association, Chicago, IL, Oc-
tober 26-30. 

Carruthers, J. I. (2002) The impacts of state growth management programmes: A 
comparative analysis, Urban Studies 39:1959-82. 

Carruthers, J. I. and Ulfarsson, G. F. (2003) Urban sprawl and the cost of public 
services, Environment and Planning B:  Planning and Design 30:503-22. 

Cervero, R. (2001) Efficient urbanization: economic performance and the shape of 
the metropolis, Urban Studies 28:1651-71. 

Chan, J. C. W., Chan, K. P. and Yeh, A. G. O. (2001) Detecting the nature of 
change in an urban environment:  a comparison of machine learning algo-
rithms, Photogrammetric Engineering and Remote Sensing 67:213-25. 

Chen, J., Gong, P., He, C., Pu, R. and Shi, P. (2003) Land-use / land-cover change 
detection using improved change vector analysis, Photogrammetric Engineer-
ing and Remote Sensing 69:369-79. 

Chen, Z., Chen, J., Shi, P. and Tamura, M. (2003) An IHS-based change detection 
approach for assessment of urban expansion impact on arable land loss in 
China, International Journal of Remote Sensing 24:1353-60. 

Clarke, K. C. and Gaydos, L. J. (1998) Loose-coupling a cellular automaton model 
and GIS: long-term urban growth prediction for San Francisco and Washing-
ton / Baltimore, International Journal of Geographical Information Science
12:699-714. 

Clarke, K. C., Hoppen, S. and Gaydos, J. (1997) A self-modifying cellular 
automaton model of historical urbanization in the San Francisco Bay area, 
Environment and Planning B:  Planning and Design 24:247-61. 

Coppin, P., Jonckheere, I., Nackaerts, K., Muys, B. and Lambin, E. (2004) Digital 
change detection methods in ecosystem monitoring: a review, International 
Journal of Remote Sensing 25:1565-96. 

Coppin, P. R. and Bauer, M. E. (1994) Processing of multitemporal Landsat TM 
imagery to optimise extraction of forest cover change features, IEEE Transac-
tions on Geoscience and Remote Sensing 32:918-27. 

Coppin, P. R. and Bauer, M. E. (1994) Processing of multitemporal Landsat TM 
imagery to optimize extraction of forest cover change features, IEEE Transac-
tions on Geoscience and Remote Sensing 32:918-27. 

Curran, P. J. (1987) Remote sensing methodologies and geography, International 
Journal of Remote Sensing 8:1255-75. 

Dai, X. and Khorram, S. (1999) Remotely sensed change detection based on artifi-
cial neural networks, Photogrammetric Engineering and Remote Sensing
65:1187-94. 



170     Hardin et al. 

Davis, C. and Schaub, T. (2005) A transboundary study of urban sprawl in the Pa-
cific Coast region of North America: the benefits of multiple measurement 
methods, International Journal of Applied Earth Observation and Geoinfor-
mation 7:268-83. 

Dawkins, C. J. and Nelson, A. C. (2002) Urban containment policies and housing 
prices: an international comparison with implications for future research, 
Land Use Policy 19:1-12. 

Deal, B. and Schunk, D. (2004) Spatial dynamic modeling and urban land use 
transformation: A simulation approach to assessing the costs of urban sprawl, 
Ecological Economics 51:79-95. 

Dietzel, C., Herold, M., Hemphill, J. J. and Clarke, K. C. (2005) Spatio-temporal 
dynamics in California's Central Valley: Empirical links to urban theory, In-
ternational Journal of Geographic Information Science 19:175-95. 

Downs, A. (2001) What does ‘smart growth’ really mean? Planning 67:20-5. 
Du, Y., Guindon, B. and Cihlar, J. (2002) Haze detection and removal in high 

resolution satellite images with wavelet analysis, IEEE Transactions on Geo-
science and Remote Sensing 40:210-7. 

Duda, R. O., Hart, P. E. and Stork, D. G. (2001) Pattern Classification. New 
York: Wiley. 

Dwyer, J. F. and Childs, G. M. (2004) Movement of people across the landscape: 
A blurring of distinctions between areas, interests and issue affecting natural 
resource management, Landscape and Urban Planning 69:153-64. 

Eastman, J. R. and Fulk, M. (1993) Long sequence time series evaluation using 
standardized principal components, Photogrammetric Engineering and Re-
mote Sensing 59:991-6. 

Eklundh, L. and Singh, A. (1993) A comparative analysis of standardised and un-
standardised principle components analysis in remote sensing, International 
Journal of Remote Sensing 14:1358-70. 

Farina, A. (1998) Principles and Methods in Landscape Ecology. London: Chap-
man & Hall. 

Fisher, P. (1999) Models of uncertainty in spatial data, in Longley, P. A., Good-
child, M. F., Maguire, D. J. and Rhind, D. W. (eds.) Geographical Informa-
tion Systems:  Principles, Techniques, Management, and Applications. New 
York, NY: John Wiley, pp. 191-205. 

Frenkel, A. (2004) The potential effect of national growth-management policy on 
urban sprawl and the depletion of open spaces and farmland, Land Use Policy
21:357-69. 

Fung, T. (1990) An assessment of TM imagery for land-cover change detection, 
IEEE Transactions on Geoscience and Remote Sensing 28:681-4. 

Fung, T. (1992) Land use and land cover change detection with Landsat MSS and 
SPOT HRV data in Hong Kong, Geocarto International 3:33-40. 

Fung, T. and LeDrew, E. (1987) Application of principal components analysis to 
change detection, Photogrammetric Engineering and Remote Sensing
53:1649-58. 



8 Mapping, Measuring, and Modeling Urban Growth      171 

Fung, T. and LeDrew, E. (1988) The determination of optimal threshold levels for 
change detection using various accuracy indices, Photogrammetric Engineer-
ing and Remote Sensing 54:1449-54. 

Hardin, P. J. (2000) Neural networks versus nonparametric neighbor-based classi-
fiers for semisupervised classification of Landsat Thematic Mapper imagery, 
Optical Engineering 39:1898-908. 

Harris, J. R. and Murray, R. (1990) IHS transform for the integration of radar im-
agery with other remotely sensed data, Photogrammetric Engineering and 
Remote Sensing 56:1631-41. 

Hayden, D. (2003) Building Suburbia: Greenfields and Urban Growth 1820-2000.
New York: Pantheon Books. 

Haykin, S. (1994) Neural Networks:  a Comprehensive Foundation. Upper Saddle 
River, NJ: Prentice-Hall. 

Herold, M., Couclelis, H. and Clarke, K. C. (2005) The role of spatial metrics in 
the analysis and modeling of urban change, Computers, Environment, and 
Urban Systems 29:339-69. 

Herold, M., Scepan, L. and Clarke, K. C. (2002) The use of remote sensing and 
landscape metrics to describe structures and change in urban land uses, Envi-
ronment and Planning A 34:1443-58. 

Hobbs, R. J. (1999) Clark Kent or Superman:  Where is the phone booth for land-
scape ecology? in Klopatek, J. M. and Gardner, R. H. (eds.) Landscape Eco-
logical Analysis:  Issues and Applications. New York, NY: Springer. 

Howarth, P. J. and Boasson, E. (1983) Landsat digital enhancements for change 
detection in urban environments, Remote Sensing of Environment 13:149-60. 

Howell-Moroney, M. (2004) Community characteristics, open space preservation 
and regionalism: Is there a connection? Journal of Urban Affairs 26:109-18. 

Im, J. and Jensen, J.R. (2005) A change detection model based on neighborhood 
correlation image analysis and decision tree classification, Remote Sensing of 
Environment, 99:326-340. 

Ingram, K., Knapp, E. and Robinson, J. (1981) Change detection technique devel-
opment for improved urbanized area delineation, Technical memorandum 
CSC/TM-81/6087 - Computer Sciences Corporation, Silver Springs, Mary-
land.

Irwin, E. G. and Bockstael, N. E. (2004) Land use externalities, open space pres-
ervation, and urban sprawl, Regional Science and Urban Economics 34:705-
25. 

Jantz, C. A., Goetz, S. J. and Shelley, M. K. (2003) Using the SLEUTH urban 
growth model to simulate the impacts of future policy scenarios on urban land 
use in the Baltimore-Washington metropolitan area, Environment and Plan-
ning B:  Planning and Design 30:251-71. 

Jensen, J. R. (2005) Introductory Digital Image Processing: A Remote Sensing 
Perspective. Upper Saddle River, NJ: Prentice-Hall. 

Jensen, J. R., Qui, F. and Ji, M. (2000) Predictive modeling of coniferous forest 
age using statistical and artificial neural network approaches applied to remote 
sensor data, International Journal of Remote Sensing 20:2805-22. 



172     Hardin et al. 

Jensen, J. R., Rutchey, K., Koch, M. S. and Narumalani, S. (1995) Inland wetland 
change detection in the Everglades water conservation area 2A using a time 
series of normalized remotely sensed data, Photogrammetric Engineering and 
Remote Sensing 61:199-209. 

Jensen, R. R. and Hardin, P. J. (2005) Estimating urban leaf area using field meas-
urements and satellite remote sensing data, GIScience and Remote Sensing
42:229-52. 

Johnson, P. E. (2001) Environmental impacts of urban sprawl: a survey of the lit-
erature and proposed research agenda, Environment and Planning A 33:717-
35.

Johnson, R. D. and Kasischke, E. S. (1998) Change vector analysis:  a technique 
for the multispectral monitoring of land cover and condition, International 
Journal of Remote Sensing 19:411-26. 

Kashian, R. and Skidmore, M. (2002) Preserving agricultural land via property as-
sessment policy and the willingness to pay for land preservation, Economic 
Development Quarterly 16:75-87. 

Kaufmann, R. K. and Seto, K. C. (2001) Change detection, accuracy, and bias in a 
sequential analysis of Landsat imagery in the Pearl River Delta, China:  
econometric techniques, Agriculture, ecosystems, and environment 85:95-105. 

Kawata, Y., Ohtani, A., Kusaka, T. and Ueno, S. (1990) Classification accuracy 
for the MOS-1 MESSR data before and after the atmospheric correction, 
IEEE Transactions on Geoscience and Remote Sensing 28:755-60. 

Kline, J. D. (2000) Comparing states with and without growth management analy-
sis based on indicators with policy implications comment, Land Use Policy
17:349-55. 

Kline, J. D. (2006) Public demand for preserving local open space, Society and 
Natural Resources 19:645-59. 

Kohonen, T. (1995) Self-Organizing Maps. Berlin: Springer. 
Kuby, M., Barranda, A. and Upchurch, C. (2004) Factors influencing light-rail sta-

tion boardings in the United States, Transportation Research Part A: Policy 
and Practice 38:223-47. 

Lewis, S. (1990) The town that said no to sprawl, Planning (APA) 56:14-9. 
Lindstrom, M. J. and Bartling, H. (2003) Suburban Sprawl: Culture, Theory, and 

Politics. Lanham, MD: Rowman and Littlefield. 
Li, X. and Yeh, A. G. O. (1998) Principal component analysis of stacked multi-

temporal images for the monitoring of rapid urban expansion in the Pearl 
River delta, International Journal of Remote Sensing 19:1501-18. 

Liu, X. and Lathrop, R. G., Jr. (2002) Urban change detection based on an artifi-
cial neural network, International Journal of Remote Sensing 23:2513-8. 

Liu, Y., Nishiyama, S. and Yano, T. (2004) Analysis of four change detection al-
gorithms in bi-temporal space with a case study, International Journal of Re-
mote Sensing 25:2121-39. 

Madhavan, B. B., Kubo, S., Kurisaki, N. and Sivakumar, T. V. L. N. (2001) Ap-
praising the anatomy and spatial growth of the Bangkok Metropolitan area us-
ing a vegetation-impervious-soil model through remote sensing, International 
Journal of Remote Sensing 22:789-806. 



8 Mapping, Measuring, and Modeling Urban Growth      173 

Maktav, D. and Erbek, F. S. (2005) Analysis of urban growth using multitemporal 
satellite data in Istanbul, Turkey, International Journal of Remote Sensing
26:797-810. 

Masek, J. G., Lindsay, F. E. and Goward, S. N. (2000) Dynamics of urban growth 
in the Washington DC metropolitan area, 1973-1996, from Landsat observa-
tions, International Journal of Remote Sensing 21:3473-86. 

Mattson, G. A. (2002) Small Towns, Sprawl and the Politics of Policy Choices: 
The Florida Experience. Lanham, MD: University Press of America. 

Millward, A. A., Piwowar, J. M. and Howarth, P. J. (2006) Time-series analysis of 
medium-resolution, multisensor satellite data for identifying landscape 
change, Photogrammetric Engineering and Remote Sensing 72:653-63. 

Morisette, J. F. and Khorram, S. (2000) Accuracy assessment curves for satellite 
based change detection, Photogrammetric Engineering and Remote Sensing
66:875-80. 

Morris, D. E. (2005) It’s a Sprawl World After All. Gabriola Island, Canada: New 
Society Publishers. 

Mundia, C. N. and Aniya, M. (2005) Analysis of land use/cover changes and ur-
ban expansion in Nairobi city using remote sensing and GIS, International 
Journal of Remote Sensing 26:2831-49. 

Nelson, A. C. (1990) Economic critique of US prime farmland preservation poli-
cies. Towards state policies that influence productive, consumptive and specu-
lative value components of the farmland market to prevent urban sprawl and 
foster agricultural production in the United States, Journal of Rural Studies
6:119-42. 

Nelson, A. C. (1992) Preserving prime farmland in the face of urbanization: les-
sons from Oregon, Journal of the American Planning Association 58:467-88. 

Nelson, A. C. (2000) Comparing states with and without growth management 
analysis based on indicators with policy implications, Land Use Policy
16:121-7. 

O'Neill, R. V., Ritters, K. H., Wichham, J. D. and Jones, K. B. (1999) Landscape 
pattern metrics and regional assessment, Ecosystem Health 5:225-33. 

Paolini, L., Grings, F., Sobrino, J., Jiménez Muñoz, J. and Karszenbaum, H. 
(2006) Radiometric correction effects in Landsat multi-date/multi-sensor 
change detection studies, International Journal of Remote Sensing 27:685-
704. 

Pijanowski, B. C., Pithadia, S., Shellito, B. A. and Alexandridis, K. (2005) Cali-
brating a neural network-based urban change model for two metropolitan ar-
eas of the Upper Midwest of the United States, International Journal of Geo-
graphical Information Science 19:197-215. 

Pohl, C. and Van Genderen, J. L. (1998) Multisensor image fusion in remote sens-
ing:  concepts, methods, and applications, International Journal of Remote 
Sensing 19:823-54. 

Quarmby, N. A. and Cushnie, J. L. (1989) Monitoring urban land cover changes at 
the urban fringe from SPOT HRV imagery in south-east England, Interna-
tional Journal of Remote Sensing 10:953-63. 



174     Hardin et al. 

Raad, T. and Kenworthy, J. (1998) The US and us: Canadian cities are going the 
way of their US counterparts into car-dependent sprawl, Alternatives 24:14-
22.

Radeloff, V. C., Holcomb, S. S., McKeefry, J. F., Hammer, R. B. and Stewart, S. 
I. (2005) The wildland-urban interface in the United States, Ecological Appli-
cations 15:799-805. 

Ridd, M. K. and Liu, J. (1998) A comparison of four algorithms for change detec-
tion in an urban environment, Remote Sensing of Environment 63:95-100. 

Robbins, P. and Birkenholtz, T. (2003) Turfgrass revolution:  Measuring the ex-
pansion of the American Lawn, Land Use Policy 20:181-94. 

Rogan, J., Franklin, J. and Roberts, D. A. (2002) A comparison of methods for 
monitoring multitemporal vegetation change using Thematic Mapper imagery, 
Remote Sensing of Environment 80:143-56. 

Rosin, P. L. (2002) Thresholding for change detection, Computer Vision and Im-
age Understanding 86:79-95. 

Rosin, P. L. and Ioannidis, E. (2003) Evaluation of global image thresholding for 
change detection, Pattern Recognition Letters 24:2345-56. 

Rouse J.W., R.H. Haas, J.A. Schell, D.W. Deering, and Harlan, J.C. (1974) Moni-
toring the Vernal Advancement and Retrogradation (Greenwave Effect) of 
Natural Vegetation. College Station (TX): Texas A&M University, Remote 
Sensing Center. Report RSC 1978-4. 

Schneider, A., Seto, K. C. and Webster, D. R. (2005) Urban growth in Chengdu, 
Western China: applications of remote sensing to assess planning and policy 
outcomes, Environment and Planning B:  Planning and Design 32:323-45. 

Schott, J. R., Salvaggio, C. and Volchock, W. J. (1988) Radiometric scene nor-
malization using pseudoinvariant features, Remote Sensing of Environment
26:1-16. 

Schowengerdt, R. A. (1997) Remote Sensing; Models and Methods for Image 
Processing. New York: Academic Press. 

Serra, P., Pons, X. and Sauri, D. (2003) Post-classification change detection with 
data from different sensors: some accuracy considerations, International 
Journal of Remote Sensing 24:3311-40. 

Seto, K. C. and Fragkias, M. (2005) Quantifying spatiotemporal patterns of urban 
land-use change in four cities of China with timer series landscape metrics, 
Landscape Ecology 20:871-88. 

Singh, A. (1989) Digital change detection techniques using remotely-sensed data, 
International Journal of Remote Sensing 10:989-1003. 

Singh, A. and Harrison, A. (1985) Standardized principal components, Interna-
tional Journal of Remote Sensing 6:883-96. 

Smart Growth Network (2003) Getting to Smart Growth: 100 Policies for Imple-
mentation: International City/County Management Organization (ICMA). 

Smits, P. C. and Annoni, A. (2000) Toward specification-driven change detection, 
IEEE Transactions on Geoscience and Remote Sensing 38:1484-8. 

Song, C., Woodcock, C. E., Seto, K. C., Pax-Lenney, M. and Macomber, S. A. 
(2001) Classification and change detection using Landsat TM data:  when and 



8 Mapping, Measuring, and Modeling Urban Growth      175 

how to correct for atmospheric effects? Remote Sensing of Environment
75:230-44. 

Stow, D. A., Tinney, L. R. and Estes, J. E. (1980) Deriving land use/land cover 
change statistics from Landsat:  a study of prime agricultural land,  Proceed-
ings of the 14th International Symposium on Remote Sensing of the Environ-
ment. Ann Arbor, MI: Environmental Research Institute of Michigan, pp. 
1227-37. 

Summers, A. A., Cheshire, P. C. and Senn, L. (1999) Urban Change in the United 
States and Western Europe: Comparative Analysis and Policy. Washington 
DC: Urban Institute Press. 

Sunar, F. (1998) Analysis of changes in a multidate set:  a case study in Ikitelli 
Area, Istanbul, Turkey, International Journal of Remote Sensing 19:225-35. 

Syphard, A. D., Clarke, K. C. and Franklin, J. (2005) Using a cellular automaton 
model to forecast the effects of urban growth on habitat pattern in southern 
California, Ecological Complexity 2:185-203. 

Theobald, D. M. (2005) Landscape patterns of exurban growth in the USA from 
1980 to 2020, Ecology and Society 10:34. 

Todd, W. J. (1977) Urban and regional land use change detected by using Landsat 
data, Journal of Research by the U.S. Geological Survey 5:529-34. 

Tomalty, R. (2002) Growth management in the Vancouver Region, Local Envi-
ronment 7:431-45. 

Torrens, P. M. (2000) How cellular models of urban systems work (1. Theory). 
Centre for Advanced Spatial Analysis Working Paper Series 28. 

Turner, M. G. (1989) Landscape Ecology:  The Effects of Pattern on Process, An-
nual Review of Ecological Systems 20:171-97. 

UNCHS (2001) The State of the World's Cities. Nairobi, Kenya: United Nations 
Centre for Human Settlements. 

Ward, D., Phinn, S. R. and Murray, A. T. (2000) Monitoring growth in rapidly ur-
banizing areas using remotely sensed data, Professional Geographer 52:371-
86. 

Weber, C. and Puissant, A. (2003) Urbanization pressure and modeling of urban 
growth:  example of the Tunis Metropolitan Area, Remote Sensing of Envi-
ronment 86:341-52. 

Weiler, S. and Theobald, D. (2003) Pioneers of rural sprawl in the Rocky Moun-
tain West, Review of Regional Studies 33:264-83. 

Willson, R. W. (1995) Suburban parking requirements: a tacit policy for automo-
bile use and sprawl, Journal of the American Planning Association 61:29-42. 

Xian, G. and Crane, M. (2005) Assessments of urban growth in the Tampa Bay 
watershed using remote sensing data, Remote Sensing of Environment 97:203-
15. 

Xiao, J., Shen, Y., Ge, J., Tateishi, R., Tang, C., Liang, Y. and Huang, Z. (2006) 
Evaluating urban expansion and land use change in Shijiazhuang, China, by 
using GIS and remote sensing, Landscape and Urban Planning 75:69-80. 

Yang, X. (2002) Satellite monitoring of urban spatial growth in the Atlanta metro-
politan area, Photogrammetric Engineering and Remote Sensing 68:725-34. 



176     Hardin et al. 

Yang, X. and Lo, C. P. (2002) Using a time series of satellite imagery to detect 
land use and land cover changes in the Atlanta, Georgia metropolitan area, In-
ternational Journal of Remote Sensing 23. 

Yang, X. and Lo, C. P. (2003) Modelling urban growth and landscape changes in 
the Atlanta metropolitan area, International Journal of Geographical Infor-
mation Science 17:463-88. 

Yeh, A. G. O. and Li, X. (1997) An integrated remote sensing and GIS approach 
in the monitoring and evaluation of rapid urban growth for sustainable devel-
opment in the Pearl River Delta, China, International Planning Studies 2:193-
210. 

Yu, X. and Ng, C. (2006) An integrated evaluation of landscape change using re-
mote sensing and landscape metrics:  a case study of Panyu, Guangzhou, In-
ternational Journal of Remote Sensing 27:1075-92. 

Yuan, D., Elvidge, C. D. and Lunetta, R. S. (eds.) (1999) Survey of multispectral 
methods for land cover change analysis. London: Taylor and Francis. 



9 Deer-Vehicle Collisions Along the Suburban-
Urban Fringe 

Rusty A. Gonser, Department of Life Sciences, Indiana State University, 
Terre Haute, Indiana. 

J. Scott Horn, Utah Geological Survey, Salt Lake City, Utah 

9.1 Introduction 

Deer-Vehicle Collisions (DVCs) are a significant problem in many areas 
of the United States (Conover et al. 1995).  In 2002 alone, there were over 
1.5 million DVCs resulting in over 1 billion dollars in damages, 150 hu-
man fatalities, and approximately 1.5 million white-tailed deer deaths 
(Curtis and Hedlund 2005).  In sum, there are roughly 4,100 accidents/day 
resulting in over 2.7 million dollars of damage/day.  DVCs are an increas-
ing hazard to motorists as human development spreads into rural areas 
where residents commute daily to urban locations. Furthermore, through 
urban sprawl cities further encroach into environments where wildlife have 
no choice but to interact with humans.  In many cases these interactions 
can have negative impacts for both humans and wildlife.  

The main factors predicting DVCs (e.g. number of deer, number of vehi-
cles, and miles traveled) are increasing (Insurance Institute for Highway 
Safety 1993). In order to reduce the number of DVCs, many countermea-
sures have been developed, most of which have focused on the prevention 
of DVCs through mitigation and driver awareness.  However, few coun-
termeasures have been empirically validated and, as a result, the effective-
ness of these efforts remains unknown (Deercrash 2006). An emerging 
trend in DVC mitigation is to use spatial (e.g. location of DVC) and tem-
poral (e.g. time and date of DVC) data to determine where and when to use 
countermeasures (DeerCrash 2006; Hubbard et al. 2000; Roseberry and 
Woolf 1998). Historically, DVC research has focused on factors such as 
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traffic volume and traffic speed which are thought to have major impacts 
on DVCs (Bashore et al. 1985; Allen and McCullough 1976; Pojar et al. 
1975), however, they may not be as good of predictors of DVCs as once 
thought.  Data now suggest that landscape structure, rather than traffic vol-
ume, might be a better indicator of DVC incidence  (Horn 2005; Hubbard 
et al. 2000).   

This chapter focuses on human-environment interactions, especially those 
between motorists and white-tailed deer (i.e. human-wildlife interactions), 
and the use of Geographic Information Systems technology to predict the 
locations of DVCs to better facilitate the use of mitigation strategies. Addi-
tionally, since white-tailed deer are social organisms, it would be logical to 
use GIS to analyze the autocorrelation between incidences of DVC, as well 
as their relationship to the types of habitat that they occur in. 

9.1.1 Background 

In this country when we discuss wildlife, the usual mindset is one based on 
the conservation of species and/or habitats.  Conservation is a relatively 
easy thing to manage if there are vast tracts of uninhabited land that we 
can set aside for that purpose.  However, in today’s world we are faced 
with the reality that those uninhabited areas are vanishing.  In fact, the 
three principles of conservation biology, 1) that evolution is the thread that 
unites all disciplines of biology, 2) that the ecological world is dynamic, 
and 3) that the presence of humans must be a part of all conservation ef-
forts (Groom et al. 2006), remind us that humans are an integral part of to-
day’s ecological landscape.  In modern times, principle 3 has become ex-
tremely important as human intervention can change spatial and temporal 
dynamics by altering landscapes, species interactions, and the energy flow 
in environments (principles 1 and 2; Meffe et al. 2006).  Many anthropo-
genic changes occur so quickly that organisms are incapable of adapting to 
these changes before facing local or global extinction.  Given that the pres-
ence of humans can vastly change the health of an ecosystem and the very 
course of evolution itself, it is essential that we evaluate the strength of 
such anthropogenic effects. 

The natural world is a far different place now than it was 1,000 years ago – 
this is primarily due to anthropogenic effects as humans have altered al-
most every natural ecosystem on the planet (Meffe et al. 2006).  As human 
populations grew, there was an increased demand for natural resources that 
generated a conflict between the exploitation and the preservation of habi-
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tats (Rothely 2001).  European colonists exploited North American forests 
for their lumber (used for ship masts, charcoal, gum, and turpentine) and 
furs (from beaver, white-tailed deer, and mink.; Meffe et al. 2006; Harlow 
and Guynn 1994).  Early settlers viewed the North American forest as vast 
and endless, a resource that could never be exhausted, and as a result, ex-
ploitation became the norm.  Many species of wildlife were adversely af-
fected by the cultural environment of the times.  Some species became ex-
tinct while others, such as the white-tailed deer (Odocoileus virginianus),
reached critically low numbers.  Given the number of DVCs we experi-
ence today, this is hard to imagine.  

White-tailed deer (Odocoileus virginianus) were nearly extirpated from 
much of their North American ranges by 1900 (Woolf and Roseberry 
1998).  Two episodes of over-harvesting contributed to this severe decline 
in numbers.  The first episode occurred during the early years of colonial 
times, and was primarily due to over-harvesting for the fur trade.  It is es-
timated that during this time, Native Americans and colonial settlers killed 
between 4.6 and 6.4 million deer annually to support the demand for furs 
(Harlow and Guynn 1994).  The second episode of over-harvesting oc-
curred during the last half of the 19th century and was fueled by subsis-
tence hunting and the demands of ever-increasing markets.  During this pe-
riod, which had the highest recorded hunting pressure in North American 
history (Harlow and Guynn 1994), white-tailed deer numbers decreased 
from an estimated 18 million to roughly 500,000 individuals nationwide 
(Curtis and Hedlund 2005; Hubbard et. al. 2000).   

The recovery of many deer populations across the United States is a result 
of a combination of management policies and several key characteristics of 
their species, including adaptability, mobility, reproductive vigor, and a 
lack of natural predators.  Improved conservation efforts and planned man-
agement (e.g. hunting seasons and limits, habitat protection, law enforce-
ment, etc.) helped deer populations recover (Hubbard et al. 2000).  In addi-
tion, two other anthropogenic factors affected deer population recovery.  
The first was the migration of rural human populations to the cities, 
thereby leading to the abandonment of approximately 65% of agricultural 
lands (Harlow and Guynn 1994).  This resulted in a reduction in hunting 
(humans were the only predation threat to deer after the eradication of 
natural predators) and a change in landscape structure, both of which made 
more land available for deer.   

The story of white-tailed deer population recovery is the opposite of what 
one might think regarding human’s disturbance of habitat.  Because white-
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tailed deer require open grassland with nearby woodlands for protection, 
they thrive on human disturbance of forested habitat.  When forest is the 
dominant habitat type it supports fewer deer because the canopy prevents 
the growth of understory browse, which is preferred by deer (Rothley 
2001).  Moderate amounts of human disturbance leave fragmented sections 
of forest and actually enhance deer abundance by increasing the amount of 
forage and reducing the amount of land available to hunters (Roseberry 
and Woolf 1998).  As forests, which had been cleared for timber and agri-
culture, began to regenerate they became ideal deer habitat (Hubbard et al. 
2000) because these habitats became dominated by favored browse plants 
including shrubs, vines, woody seedlings, legumes, and grasses (Masters 
et. al. 1996; Jacobson, 1994).  Together, all of these factors contributed to 
one of the most successful population recoveries ever documented.  By the 
end of the twentieth century the deer numbers had risen from 500,000 in 
1900 to an estimated 30 million deer nationwide (Curtis and Hedlund 
2005; Woolf and Roseberry 1998). 

It is difficult to determine actual deer herd sizes because estimates typi-
cally come from annual harvest numbers (Strickland et. al. 1996), which 
are a function of several factors not associated with increasing population 
size (e.g. increased number of hunters).  However, despite these uncertain-
ties, it is clear that the last three decades of the 20th century have produced 
a large rate of increase in US deer populations (Curtis and Hedlund 2005).  
The white-tailed deer success story has put wildlife management agencies 
at odds with other competing stakeholders (Sullivan and Messmer 2003).  
As deer populations increase, so has the number of deer-human interac-
tions resulting in an increase in crop damage, disease (i.e. Lyme Disease), 
and DVCs (Kilpatrick et. al. 2002).  In addition, over the last 100 years, 
Departments of Transportation (DOTs) have developed and improved 
transportation corridors throughout North America (Sullivan and Messmer 
2003).  The construction of roads may be the single biggest threat to wild-
life health and diversity as they negatively affect wildlife by:  

Increasing mortality and injury  
Compacting soils  
Affecting bodies of water due to oil and grime run-off 
Disrupting the physical and chemical environments of soil and wa-
ter
Acting as a corridor for the spread of exotic species and disease 
Fragmenting habitat and increasing edge effects 
Disrupting social structure 
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Disruption of dispersal and migtration process that maintain ge-
netic flow with species populations 
Increasing human access (Adams et al. 2006; Donaldson and 
Bennett 2004; Trombulak and Frissell 2000; Forman and Alexan-
der 1998) 

White-tailed deer thrive on edge habitat (Harlow and Guynn 1994).  
Therefore anthropogenic activities that fragment the landscape ultimately 
create ideal edge habitat for deer. Roads often create edge habitat; there-
fore roads bring humans and deer together in the form of Deer-Vehicle 
Collisions (Conover et al. 1995). During the 1980’s and 1990’s several 
states observed a 51-69% increase in DVCs (Curtis and Hedlund 2005). 
There are several reviews of Mitigation and DVC prevention. Some vari-
ables involved in predicting DVCs include: habitat, traffic volume and 
speed, visibility, deer population size, number of bridges, number of build-
ings (Nielsen et al. 2003; Hubbard et al. 2000; Bashore et al. 1985; Case 
1978; Pojar et al. 1975).    Most DVC studies focus on reduction and not 
an in depth look at landscape structure and how it might influence DVCs. 

The state of Indiana is an excellent venue for investigating this relation-
ship.  The number of DVCs in 1981 for Indiana was approximately 2,000.  
However, by 2004 that number had grown to almost 15,000 (McNew 
2005a). Currently Indiana is in the top 10 of number of DVCs in the nation 
(HuntingNet 2006).  Indiana has many characteristics (e.g. a mixture of ag-
ricultural land, forested patches, riparian corridors, and growing subdivi-
sions) that have allowed the deer population to grow and remain high.   
Indiana DVC numbers have steadily increased since 1997 with the number 
of DVCs increasing at a greater rate than traffic volume (McNew 2005a).  
Indiana has 92 counties and in 2004 eleven counties reported more than 
300 DVCs compared to 10 in 2003.  Forty-five counties showed an in-
crease in DVCs over 2003 (24 counties > 15% increase) while forty-four 
showed a decrease (12 counties > 15% decrease; McNew 2005a). Fur-
thermore, the number of collisions per billion miles was greater in 2003 
than in 1995 when the deer population was at a peak (see Figure 1; 
McNew 2005a, b). One potential explanation for the increase in DVCs is 
change in the landscape structure of each county.   
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Fig. 1. Deer harvest and Deer-Vehicle collision demographics for the past 22 
years in the state of Indiana (from McNew 2005a).   

9.1.2 Mitigation: Reducing the number of DVCs 

Several mitigation strategies have been tested with varied results (for full 
review see DeerCrash 2006).  Mitigation strategies are typically placed 
into two categories:  reducing the number of deer on highways, and in-
creasing driver awareness or perception.  The first category includes 
strategies such as fencing and wildlife passages (Bruinderink and Haze-
broek 1996). While the second category ranges from the passive (e.g. per-
manent deer crossing signs) to the relatively more active (e.g. seasonal 
temporary flashing warning signs) and often are not analyzed for their ef-
fectiveness in preventing DVCs (Putnam 1997). Despite the best efforts of 
mitigation strategies, predicting where DVCs may occur is still an enigma.  
However, geospatial technologies could aid in predicting the location of 
DVCs thus indicating where mitigation strategies should be implemented.

9.1.3 Spatial autocorrelation and Likelihood maps  

One strategy that might help the implementation of mitigation efforts in 
preventing DVCs would be to determine areas where DVCs might occur 
more frequently. Deer live and thrive in very specific habitat types and 
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landscape structures and humans often create this kind of habitat.  There-
fore landscape structure is important and influences the activity patterns of 
white-tailed deer.  White-tailed deer require two types of habitat:  forest 
for cover, and open areas for food. Therefore deer frequently associated 
with edge habitat.  Human disturbances such as roads, agriculture, and de-
velopment fragment habitats creating edge effects where white-tailed deer 
tend to aggregate.  

One method to mitigate DVCs would be to examine the relationship be-
tween individual DVCs and the habitat type they occur.  DVCs are unique 
because they only occur in spatially finite areas.  As a rule of thumb vehi-
cles typically only travel on roads and therefore DVCs only occur on 
roads.  This provides the opportunity to examine the spatial relationship 
between DVC and habitat along a finite space.  Therefore, one prediction 
about DVCs might be that they are spatially autocorrelated. 

Spatial autocorrelation is an extension of autocorrelation into a two dimen-
sional field (Ebdon 1987). Spatial autocorrelation can be loosely defined as 
random variables taking values that are more or less similar than would be 
expected for randomly distributed observations (Legendre1993), or the 
value of the spatial data is non-randomly related or interdependent over 
space (McGrew and Monroe 2000). There are three potential outcomes of 
spatial autocorrelation analysis:  the points are similar and are positively 
correlated, the points are dissimilar and are negatively correlated, or the 
points are randomly distributed and show no correlation (Mcgrew and 
Monroe 2000; Ebdon 1987).  Other analyses that are similar include spatial 
interpolation and spatial interaction (Miller 2004).

Analyzing the spatial relationship between DVCs would provide an index 
of “hotspots” that would identify where DVCs might occur more fre-
quently. The first step in this anlaysis was to obtain records and locations 
of DVCs and geo-code the location of each DVC.  By mapping location of 
DVCs, a deer-vehicle collision likelihood map generated in a GIS was cre-
ated.  The map has multiple layers that include DVC data, habitat maps, 
and landscape metrics to determine the probability of DVC in several areas 
throughout a defined area.  The map was used to create an interpolated 
map DVC risk in any given area and is useful to land managers, conserva-
tionists, road planners, etc. as a practical tool that can aid in development, 
road placement, and even insurance rates. Additionally, buffer zones were 
created around DVCs to determine relationships between DVCs and habi-
tat type.  
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The following steps were taken to investigate spatial autocorrelation of 
DVCs:

Obtain DVC information and geo-code DVC locations for analysis 
of spatial autocorrelation. 
Examine spatial autocorrelation of DVCs 
Use land-cover maps and DVC data to create interpolated surface 
maps that identify “hotspots” of DVC and to correlate with habitat 
type. 

9.2 Methods 

9.2.1 Location 

West central Indiana was chosen as a reference area to conduct this analy-
sis because it is in the center of the white-tailed deer geographic range. 
Prior to western expansion in the United States Indiana was heavily for-
ested with a small percentage of prairies and wetlands.  Today the land-
scape is very different with 60% of the land being used for crops,  15% as 
managed forests, and the remaining land cover is urbanized (Jackson 
1997).  Within Indiana, Vigo County (39.467 N 37.414 W) was chosen as 
a representative location to examine spatial autocorrelation of DVCs (Fig-
ure 2).  The largest city in Vigo County is Terre Haute, with a 2004 popu-
lation estimate of 57,224. The population in the area has slowly been 
shrinking in recent years but there has been a shift in population from the 
central city area of Terre Haute to the South and to the East. Overall Vigo 
County is 1044km and had a human population of 104,77 in 2001 (US. 
Census, 2004).  Vigo County consistently has over 200 DVCs annually.   
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Fig. 2. The location of Vigo County, Indiana in the United States (from Horn, 
2005).
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9.2.2 Data 

Deer-vehicle collision locations for the year 2000 were obtained from the 
Indiana Department of Transportation (IDOT).  Location data were ob-
tained from reports from law enforcement officers.  All Indiana law en-
forcement officers are required to submit an “Officer’s report” following a 
DVC investigation that involved either property damage over $750 or per-
sonal injury. Officer reports contain the location of the accident, road con-
dition, light and weather conditions, and time of day. 

The political boundary maps of Vigo County, Indiana and the tiger line 
road files were obtained from the United States Census GIS data website. 
The habitat and LULC data set were gathered from a 30m Landsat The-
matic Mapper image obtained from the USGS at Indiana University’s GIS 
data website. 

9.2.3 Data Analysis 

By combining deer habitat and road location data, a DVC likelihood map 
was produced using the inverse distance weighted (IDW) method in Ar-
cGIS’s geostatistical analysis package to interpolate the data. There are 
many equations and variations of equations used to determine the magni-
tude of spatial autocorrelation between data points. The most common 
equations are: Geary’s c,  Join-Count, G statistic, and Moran’s I.  We 
chose Moran’s I as the most robust and commonly used spatial autocorre-
lation statistic.  Moran’s I is applied to zones or points with continuous 
values associated with them. It then compares the value at that point with 
the values at all other locations. The returned I value is between -1 and +1 
with values of 1 indicating positive spatial autocorrelation and values of –1 
indicating negative spatial autocorrelation. Values near zero have little or 
no spatial autocorrelation. 

Inverse Distance Weighting (IDW) interpolation explicitly implements the 
principle of spatial autocorrelation to predict a value for an unmeasured lo-
cation. IDW uses the measured values surrounding the predicted location 
to create values. Those measured values closest to the predicted location 
will have more influence on the predicted value than those farther away. 
Thus, IDW assumes that each measured point has a local influence that 
diminishes with distance. It weights the points closer to the prediction lo-
cation greater than those farther away, hence the name inverse distance 
weighting.  
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The software used to accomplish this analysis was ArcGIS for Geo-coding. 
ArcGIS also contains a geo-statistical analysis extension that was used to 
complete Moran’s I statistic and IDW interpolation. Crystal Reports was 
used to gather database information when selecting habitat criteria. 

Several preparatory steps were needed to determine if DVCs are spatially 
autocorrelated. The first step was to geo-code all DVCs. Geo-coding uses 
the physical address of an accident and then assigns it a location on the 
map based on the physical address’ location. Of the 230 DVCs in Vigo 
County during 2000, only 179 of them had sufficient address data to be 
geo-coded (Figure 3).  



188      Gonser and Horn 

Fig. 3. Geo-coded locations of DVCs in 2000 for Vigo County, IN (from Horn 
2005).  

For this study we used a random sample of 30 DVCs selected out of the 
179 DVCs that were Geo-coded. To determine the type of land cover near 
the accidents, a buffer was created around each DVC in order to overlay 
land cover data layers. Six buffer distances were used for the radius of the 



Deer Vehicle Collisions      189 

accident buffers: 250m, 500m, 750m, 1000m, 1250m, and 1500m.  These 
distances were chosen to represent the immediate area of a DVC and an 
approximate home range of white-tailed deer at the 1500m radius buffer. 
Once these distances were chosen, a buffer was placed around the sample 
of accidents and overlaid on a land use land cover map of the county (Fig-
ure 4).  Each of the buffers was used to extract the land cover type through 
the LULC layer and analyzed using Crystal Reports.  Crystal Reports 
analysis used the area of each specific land cover and divided it by the to-
tal area that it was selected from. 
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Fig. 4. Buffer zones for the randomly selected 30 DVCs used to analyze land 
cover and habitat type (from Horn 2005 ).
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9.3 Results 

There was no clear indication of spatial autocorrelation between DVCs for 
the year 2000 in Vigo County, Indiana.   Four different pixel sizes were 
used and none showed a significant relationship between data points (Ta-
ble 1).   Habitat analyses indicated that nearly all the accidents in the study 
took place in or near the edge of forest and agricultural land. Approxi-
mately 60% of the land cover regardless of buffer size was agricultural 
land with 20% being forested (Table 2).  Finally, an interpolated risk map 
was created that did show zones of higher frequency of accidents relative 
to other areas (Figure 5). 

Table 1. Moran’s I Results for each of the 4 pixel sizes used to determine the de-
gree of spatial autocorrelation between DVCs.

Pixel Size Moran's I
15m 0.0001 

100m 0.0023 
250m 0.053 
500m 0.0685 

Table 2. Land cover relationships to DVCs at different buffer zone widths. 

Cover
Type/Total area 250m 500m 750m 1000m 1250m 1500m 

Agriculture 66.50% 71.30% 66.10% 63.50% 64.10% 64.00%
Forest 23.50% 21.20% 26.60% 28.40% 27.80% 27.70%
Residential/Urban 

Grass 10.00% 7.40% 5.10% 5.40% 5.30% 5.50%
Commercial 0.00% 0.00% 2.20% 0.00% 0.00% 0.00%
Woody Wetlands 0.00% 0.00% 0.00% 2.70% 2.80% 2.80%
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Fig. 5. Map of Vigo County, IN showing the interpolation of DVC incidences 
(from Horn 2005).  

9.4 Discussion 

The location of DVCs throughout Vigo County, IN was not significantly 
autocorrelated.  Instead, DVCs seemed to be more evenly distributed 
across the area.  A lack of autocorrelation could be attributed to the type of 
habitat primarily associated with DVC.  In our study, most DVC occurred 
near agricultural fields, which serve as prime foraging habitats for white-
tailed deer.  Large agricultural fields may allow deer to forage in many 
places and as a result deer may cross roads in multiple points along the 
field rather than one central corridor.   The highly distributed  nature of a 
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their food source may explain the lack of spatial autocorrelation in DVCs 
for Vigo County. 

Although in this study we did not demonstrate spatial autocorrelation be-
tween DVCs, our analyses did set the stage for future investigations of this 
type.  Even though we only used 30 points, other analyses using this data 
set provided similar results.   Therefore the major problem with this type 
of analysis is the limitations of the data including: 

Not all DVCs are reported due to a cost minimum for mandatory re-
ports (cost minimums vary from state to state). 

Not all information is recorded (e.g. missing dates, and times).  
Much of the missing information is crucial to understanding DVC 
patterns.  DVCs are influenced temporally.  White-tailed deer vary 
their movement based not only on the time of year but the time of 
day as well. 

There is a time lag for reports.  Databases are not readily accessible 
to query for DVCs, or accident reports are not filed electronically 
by the officer and are transcribed at a later date.   

Actual locations of DVCs are estimated or just provide the name of 
the road.  Accurate and precise data on the location of DVCs are 
crucial for spatial autocorrelation analysis.   

May need several years worth of data from the same temporal seg-
ments (i.e. just the month of November) to use for analysis.  This 
will effectively increase the data size but would also allow for a 
more robust analysis. White-tailed deer have seasonal movement 
patterns and DVCs increase during these seasonal activity periods.  
By focusing on DVCs that occur during certain temporal segments 
(e.g. November) we could generate more accurate interpolated risk 
maps. 

These are just a few of the weaknesses of current DVC data.  However, the 
biggest impediment to analyzing DVC data is lack of accurate and precise 
locations of DVCs. If spatially precise data could be obtained then our 
analyses would produce new insights that could help reduce the number of 
DVCs.  One solution that would allow for the collection of spatially accu-
rate data would be to better utilize global positioning system (GPS) tech-
nology. GPS technology has become relatively inexpensive and could be 
an easily added feature to police vehicles and/or Department of Transpor-
tation vehicles (carcass clean-up) that would be responding to DVCs.  Ad-
ditionally, the creation of a DVC reporting system where motorists could 
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submit DVC information without risk of penalty would greatly enhance 
data analysis   It is believed that only about half of all the DVCs are actu-
ally reported (Conover et al. 1995; also see Deercrash 2006). A combina-
tion of many of the suggestions we have made may help provide the in-
formation needed to create an accurate risk map in order to reduce the 
number and severity of DVCs.

9.5 Conclusions and Broader Impacts  

The spatial analysis made possible by GIS/RS data from this study was 
used to create an interpolated risk map, which can indicate areas that are 
more likely to produce DVCs.  This information could then be used with 
further GIS analysis to indicate what landscape features (e.g. characteris-
tics of the roadway or ecological habitat) are important in determining 
DVCs.  This information will be valuable to urban planners and transporta-
tion officials when designing subdivisions, roads, and other forms of de-
velopment and implementing mitigation strategies such as warning signs, 
speed limits, and public awareness.   
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10.1 Introduction 

One of the challenges for urban and regional planners and other users of 
remotely sensed imagery is how to select the appropriate data for a particu-
lar monitoring or mapping problem.  In the past, the dearth of available 
imagery meant that the problem itself usually had to be adapted to fit the 
data, which was typically limited to either high spatial resolution film-
based aerial imagery, or coarse-spatial resolution digital satellite imagery.  
Today, a vast range of aerial and satellite imagery is available (Kramer, 
2002), opening a new range of potential scales of problems that can be in-
vestigated.  However, these new options also place additional burdens on 
the remote sensing user, who, in selecting data, has to consider differences 
in spectral, temporal, radiometric, and spatial characteristics of the im-
agery.  Spatial properties are particularly important, and the pixel size of 
current sensors varies over more than three orders of magnitude (from 0.6 
m to 1 km and larger) (Kramer, 2002).   

When imagery is manually interpreted, there is a general expectation that 
finer spatial resolution makes interpretation easier and more accurate.  
However, it is obvious that too much detail, in addition to increasing the 
cost of data acquisition, will result in an overwhelming amount of data.  
Furthermore, when it comes to digital image analysis, it has been found 
that greater spatial resolution may lead to lower classification accuracy.  
Perhaps most importantly, it is important to match the scale of the data 
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used to the scale of the spatial patterns of the physical phenomenon of in-
terest, in order to avoid the problem of ecological fallacy (Marceau, 1999).  
Thus the ability to measure and quantify spatial pattern is crucial for any 
mapping activity. 

One of the most important measures of spatial structure of a variable is 
spatial autocorrelation.  A non-random spatial pattern may show either 
positive or negative spatial autocorrelation.  In the case of positive spatial 
autocorrelation, the value of a variable at a given location tends to be simi-
lar to the values of that variable in nearby locations.  In other words, if the 
value of some variable is low in a given location, the presence of positive 
spatial autocorrelation indicates that nearby values are also likely to be 
relatively low.  Conversely, negative spatial autocorrelation is character-
ized by a tendency for dissimilar values to cluster in proximate locations.  
For example, areas exhibiting low values for a particular variable may be 
surrounded by high values when negative spatial autocorrelation exists.  
The absence of spatial autocorrelation indicates that the spatial arrange-
ment of the variate values is random. 

In a remote sensing context, the variate values of interest in a spatial auto-
correlation analysis are commonly the digital number (DN) values of the 
pixels in an image.  In general, adjacent pixels are more likely to display 
similar values than pixels that are more spatially separated (Woodcock et 
al., 1988).  Spatial autocorrelation in an image can be affected by object 
size, spacing, and shape (Jupp et al., 1988).  In addition, the sensor’s spa-
tial resolution will have an effect on the overall spatial autocorrelation pre-
sent in a remotely sensed image (Jupp et al., 1988).  The term “regulariza-
tion” is used to describe the imposition of a discrete sampling template, 
such as a pixel, on the underlying phenomenon (Jupp et al., 1989). 

To the remote sensing practitioner, spatial autocorrelation is of interest for 
two important reasons.  Firstly, the presence spatial autocorrelation indi-
cates that the assumption that the data are independently distributed, a re-
quirement for many statistical procedures, is violated.  As a result, many 
traditional statistical procedures may be inappropriate for analyzing these 
data.  Instead, methods of analysis that account for the inherent spatial na-
ture of the data should be applied.   

Secondly, the spatial information itself may prove useful in image analy-
sis.  Examples of the use of autocorrelation statistics include the reduction 
of noise in imagery (Switzer and Ingebritsen, 1986), planning ground data 
collection (Curran, 1988), analysis of tree canopy (Cohen et al., 1990) and 
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forest structure (St-Onge and Cavayas, 1996), estimation of optimal image 
spatial resolution (Hyppänen, 1996), feature selection (Warner & Shank, 
1997), image compression (Warner, 1999), coral reef health analysis (Le-
Drew et al., 2004), sensor calibration (Bannari et al., 2005), mapping vine-
yards and orchards (Warner and Steinmaus, 2005), and classification of 
urban land-use (Wu, et al., 2006) .   

This chapter provides an overview of the different methods of quantifying 
spatial autocorrelation in remotely sensed images, using as a case study an 
image of a small urban community.  We start with a discussion of global 
measures of spatial autocorrelation, which summarize the spatial pattern 
across an entire image.  We will show how the scale of the phenomena im-
aged can be observed in autocorrelation data, and how that scale varies as 
the pixel size changes.  Global measures of spatial autocorrelation may 
mask the complexity and non-uniformity of the underlying spatial struc-
ture.  Therefore, following the discussion of global measures of autocorre-
lation, we will describe local measures of spatial autocorrelation, and show 
how the local statistics complement the analysis of the global statistics. 

10.2 Measuring Spatial Autocorrelation 

10.2.1 Global measures of spatial Autocorrelation 

Three commonly used global methods for measuring spatial autocorrela-
tion have been defined:  semivariance (Matheron, 1971), Geary’s c (Geary, 
1954), and Moran’s I (Moran, 1948).  For each of these measures, the dis-
tance over which spatial association is investigated is called the lag.  When 
semivariance is plotted against lag, a variogram is produced.  For Geary’s 
c and Moran’s I the equivalent graph is termed a correlogram.  Because 
each of the spatial autocorrelation metrics utilizes different operational ap-
proaches to quantify the degree of spatial autocorrelation present, each of 
these three approaches is discussed in more detail below.   

Semivariance is a measure of the average variance of the differences be-
tween all pairs of measurements that are separated by the lagged distance 
(Curran 1998).   
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 Where:  h is the spatial lag 
  Z(xi) is the DN value at location xi

 and    N is the number of DN pairs at lag h. 

The semivariogram is the relationship between semivariance and lag.  Two 
key characteristics of a typical simple semivariogram are the range and 
sill.  The sill is the plateau, the range of lags where semivariance does not 
vary with lag.  The range is the lag at which the sill is reached.  Multiple 
sills may indicate a repetitive pattern in the data, such as a gridded street 
network or rows of crops in an agricultural field.  A key advantage with 
the semivariogram is that it has been studied extensively, and a strong 
theoretical understanding exists about its behavior (e.g. Jupp et al., 1988). 

The Geary’s c statistic is based on the squared difference between spatially 
lagged pairs of pixels, normalized by the overall scene variance.  In a re-
mote sensing context, Geary’s c statistic can be defined as: 
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Where: n is the number of observations 
Wij is the weighted spatial lag between pixels i and j  

and xi and xj are the DN values of pixels i and j. 

Values for Geary’s c range from 0 to 2, with 0 indicating maximum posi-
tive spatial autocorrelation and 2 maximum negative spatial autocorrela-
tion.  The expected value of 1 signifies a lack of spatial autocorrelation. 

A third measure of spatial autocorrelation is Moran’s I.  In this approach, 
spatial autocorrelation is calculated as a function of the covariation be-
tween pixels i and j.  This statistic is calculated as follows: 
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Where:  Wij is the weighted spatial lag between pixels i and j
and  xi and xj are the DN values of pixels i and j. 

Moran’s I values can range from a maximum of +1, which indicates strong 
positive spatial autocorrelation, to a minimum of -1, which indicates strong 
negative spatial autocorrelation.  The expected value of 0 denotes a ran-
dom spatial arrangement (the precise expectation is -1/(n-1) (Goodchild, 
1986), which tends to 0, as n gets large). 

Although Moran’s I and Geary’s c are attempts to measure a conceptually 
similar property, using respectively covariation and squared differences, 
the two statistics are noted from empirical evidence to exhibit a strong, but 
not perfectly linear, inverse relationship (Sawada, 2004). 

As with semivariance, both Moran’s I and Geary’s c can be plotted as a 
function of lag.  These correlograms give valuable information about spa-
tial structure, in a fashion analogous to semivariance.  One advantage of 
the correlograms over the semivariograms, is that the former can be used 
to differentiate positive and negative autocorrelation. 

10.2.2. Local measures of spatial autocorrelation 

One criticism of semivariance, as well as Moran’s I and Geary’s c statis-
tics, is that these global measures of spatial autocorrelation potentially ig-
nore important local variation in the data.  In response to this shortcoming, 
Getis and Ord (1992) introduced a local autocorrelation measure, the Gi
statistic.  Anselin (1995) subsequently proposed local indicators of spatial 
autocorrelation (LISA) as a general means for decomposing global auto-
correlation measurements so that the individual contribution of each ob-
servation can be assessed, and local “hot spots,” or areas of spatial nonsta-
tionarity, identified (Anselin, 1995).   

The Getis and Ord (1992) G statistic compares pixel values at a given loca-
tion with those pixels at a lag, d, from the original pixel at location i.  Getis 
has devised two methods of calculating the local G statistic, Gi and Gi

*.
The difference between these two approaches is that the Gi measure does 
not include the ith observation as part of the calculation, while the Gi

*

measure does include that value. The calculation of the statistic in the con-
text of remotely sensed data is as follows (Ord and Getis, 1995, Wulder 
and Boots, 1998):
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Where:  Wi = j wij(d) 
wij(d) is the weighted spatial lag distance “d” between 
pixels i and j

and  xi and xj are the DN values of pixels i and j. 

In the case of both Gi and Gi
*, high positive values indicate a clustering of 

high values, while highly negative values reveal clusters of low values.  
Under the null hypothesis, the expected value of 0 indicates that no cluster-
ing is occurring at the specified spatial lag d.  Wulder and Boots (1998) 
have noted that the Getis-Ord Gi statistic gives information about both the 
degree of clustering and the average values of the cluster.  As a conse-
quence, the Gi cannot differentiate between a lack of autocorrelation, and a 
cluster of average values.  

Since Moran’s I and Geary’s c have been already been defined above, we 
will not give the specific formula for the LISA versions of these statistics.  
However, it is important to note that the Anselin (1995) LISA statistics 
have as a defining property that the sum of all the local values is propor-
tional to the global measure.  Thus, the Anselin LISA measures provide an 
excellent overview of the spatial distribution of the constituents of the 
global measure.  The Anselin local Geary’s c tends to highlight boundaries 
in images, whereas the Anselin local Moran’s I, has been described as a 
way to identify “hot spots” (Anselin 1995) that represent clusters of high 
or low values (which are not differentiated).  Unlike with the Getis-Ord Gi,
the local Moran’s I and Geary’s c can be used to identify negative autocor-
relation, although this property is rather rare in images. 

10.3 Data and Processing 

We will illustrate the use of autocorrelation measures with a case study fo-
cusing on Morgantown, West Virginia, USA (Figure 1).  This area is char-
acterized by predominantly low-density residential land-use, with an area 
of relatively high-density urban land-use in downtown Morgantown adja-
cent to a portion of the Monongahela River.  A few forested areas and ag-
ricultural fields are found in the outskirts of the region.  The data used for 
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this case study (Figure 1) is derived from QuickBird panchromatic satellite 
imagery with a nominal 0.7 meter spatial resolution, and spectral sensitiv-
ity from 445 to 900 nm (i.e. blue-green to near-infrared).  
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Fig 1.  Study Area - Morgantown WV at three different pixel sizes.  Top:  0.7m.  
Middle:  15 m.  Bottom:  60 m. 
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The image processing was undertaken using the remote sensing software packages 
Leica’s Erdas Imagine and ITT Visual Information Solutions’ ENVI.  Imagine 
was used to subset the imagery, and generate images at four coarser scales through 
pixel aggregation (Table 1).  This results in images at a total of five scales, each 
representative of a typical group of sensors (Table 1).   

Table 1. Spatial resolutions used in this study, and representative sensors that have a 
similar spatial resolution. 

Pixel Size Representative sensors with similar resolution 
0.7 m QuickBird Panchromatic, IKONOS Panchromatic 
5 m IRS RESOURCESAT LISS IV, SPOT-5 
15 m Landsat ETM+ Panchromatic, ASTER VNIR bands 
30 m Landsat Multispectral bands, ASTER SWIR bands 
60 m IRS RESOURCESAT AWiFs, LANDSAT MSS 

ENVI was used to calculate the global and local statistics.  For all the statistics, 
the Queen’s neighborhood criterion was used.  The Queen’s criterion defines the 
neighborhood as comprising all eight adjacent pixels, in other words, adjacent 
pixels in the directions of the rows, columns, and diagonals.  The advantage with 
this definition of neighborhood is that it gives a measure of the pattern averaged 
over all directions. 

10.4 Discussion 

Spatial resolution clearly has a major influence on the scale of objects that 
can be resolved in an image.  Figure 1 shows that, for example, even with 
the intermediate-sized 15 meter pixels, a major 4 lane bridge across the 
Monongahela River is only just discriminated, and with 60 meter pixels, 
the bridge is not visible.  What is perhaps less obvious is that as the pixel 
size becomes coarser, the overall variance in the image is decreased.  This 
is shown by the variograms (Figure 2), where the larger pixels are associ-
ated with a reduced sill height, an observation that corresponds to theoreti-
cal and experimental observations (Woodcock et al. 1988).  Note that the 
variogram starts flattening out at approximately 30 meters, but only 
reaches the sill at a lag of approximately 200 meters.  (The 0.7 m data 
could only be calculated out to a lag of 200 pixels, due to an apparent limi-
tation in the ENVI software.)  If we compare the semivariance of the im-
ages at the lag of one pixel (Table 2), it is noticeable that the 0.7 m data 
does not follow the trend of the remaining scales, where coarser pixel sizes 
are associated with a gradual reduction in semivariance.  This suggests that 
there is a qualitative difference in the scale of the objects resolved between 
the 0.7 m data and the coarser resolution images. 
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Some interesting differences are evident in comparing the Moran’s I and 
Geary’s c correlograms (Figure 2).  The Geary’s c graph shows the values 
reaching a plateau very close to 1 (i.e. a random spatial structure) at ap-
proximately 200 m.  The 0.7 m data are more random (higher values) than 
the coarser pixel data.  On the other hand, the Moran’s I graph does not 
show the data quite reach a plateau, even at the maximum lag of 300 m.  
This is especially noticeable for the coarsest spatial resolution 60 m pixels.  
Conversely, there is a relatively consistent trend for both Geary’s c and 
Moran’s I that autocorrelation at the scale of one pixel is generally reduced 
as the pixel size increases from 0.7 to 15 m, and with almost no change 
from 15 to 60 m (Table 2).  This again emphasizes that the very finest 
scales of data are qualitatively different from coarser scales. 
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Fig. 3. Anselin’s local Moran’s I images, at a lag of 1 pixel.  Top:  0.7 m pix-
els.  Middle:  15m.  Bottom:  60m.
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Fig. 4. Anselin’s local Geary’s c images at a lag of 1 pixel.  Top:  0.7 m pixel 
sizes.  Middle:  15m.  Bottom:  60m.. .   
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Fig.5. Getis-Ord Gi images at a lag of 1 pixel.  Top:  0.7 m pixel 
sizes.  Middle:  15m.  Bottom:  60m.
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Table 2. Global spatial autocorrelation at a lag of one pixel.
Measure  0.7 m 5 m 15 m 30 m 60 m 

Semivariance 1494 4081 3293 2452 1533 
Geary’s c 0.09 0.34 0.45 0.47 0.45 
Moran’s I 0.91 0.66 0.55 0.52 0.54 

The images of the local autocorrelation measures help explain the patterns 
observed with the global measures.  With 0.7 m pixels, the local Moran’s I 
is dominated by intermediate values (i.e. close to 0), with scattered small 
clusters of high values associated with individual buildings and other ur-
ban features (Figure 3).  As the pixel is coarsened to 15 m and 60, the 
river, and to a lesser extent the contrast between urban and rural land use, 
becomes the major contributor to the overall variation (note from the leg-
end that the 60 m data are associated with greater overall variability than 
the 0.7 m data).  Thus, the global Moran’s I is quantifying the broad land-
scape pattern with 60 m pixels, whereas with 0.7 m pixels, elements of the 
urban infrastructure are important. 

The local Geary’s c images (Figure 4) show a somewhat similar pattern of 
the changing resolution of objects imaged, with an even more distinctive 
changing role of the river.  At 0.7 m, the river has the lowest values (i.e. 
highest autocorrelation), whereas at 60 m it has the highest (i.e. lowest 
autocorrelation).  However, a few distinctive urban features still have an 
influence at the coarsest scale, and the contrast between urban and rural ar-
eas seen in the local Moran’s I is not observed. 

The Getis-Ord Gi images show a superficial resemblance to the original 
satellite images.  This is partly because the Gi statistic is dependent in part 
on the average brightness of the local group of pixels over which it is cal-
culated.  Thus, the river remains a low value region at all scales.  The dis-
tinctive bright donut shape in the 60 m local Gi image is a product of the 
fact that for the Gi statistic, the central pixel of the neighborhood is not in-
cluded in the calculation.  To avoid this artifact, the Gi* may be a better 
choice for remote sensing analysis (Wulder and Boots, 1998). 

10.5 Concluding Remarks 

The issue of matching the scale of image acquisition to the scale of the 
phenomenon to be mapped is important.  Autocorrelation measures pro-
vide a way to quantify the scale and spatial structure of images at different 
scales.  Global measures are useful, but local measures are necessary to 
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understand the dominant contributors to the global metrics.  Local autocor-
relation statistics help to overcome some of this masking effect by reveal-
ing areas of spatial non-stationarity.   

The empirical examples presented here provide insight as to how scale can 
be evaluated.  The 0.7 m imagery of this case study provided a fundamen-
tally different spatial scale of information than coarser scale imagery that 
had pixel sizes 5 m and greater.  This may have implications not just for 
the scale of phenomenon that can be observed, but also for the nature of 
the automated analysis that can be applied.  Future research exploring 
these relationships in more detail will help to shed light on the interaction 
between scale and autocorrelation.  
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The nexus between environmental justice and geo-technologies is an 
evolving one.  That is to say, geographic information systems, remote 
sensing, and other technologies have the capacity to locate and situate the 
politics and place-based dangers of environmental risk within a broader 
conceptual and policy framework.  Conceptually, GIScience has the capac-
ity to chart new geographies of environmental risk across the urban and ru-
ral landscape.  Empirically, GIScience has the capacity to map heretofore 
disparate datasets in an attempt to unlock the socio-economic determinants 
of “who’s at risk and where?”  In this paper, we build on the earlier work 
of Buzzelli to explore the socio-spatial dynamics of environmental risk in 
Terre Haute, Vigo County, Indiana.  Using GIS, remote sensing, census, 
and environmental data, the paper presents a framework for unlocking the 
spatial dynamics of socioeconomic status and environmental risk across 
urban and rural neighborhoods in Vigo County. 

11.1 Study Area 

The study area is located in the state of Indiana located within the United 
States.  Situated on the banks of the Wabash River, Terre Haute, Indiana is 
the county seat of Vigo County (Fig. 1).  Terre Haute had a 2000 popula-
tion of 69,614 with an observed county wide median income of $33,184 
and a median housing value of $72,500 (U.S. Census, 2002).  There is 
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considerable variety in the land use encountered in Terre Haute and Vigo 
County with dense and mixed urban, parks, suburban, and ru-
ral/agricultural regions present.  In this respect, Terre Haute and Vigo 
County are typical of moderate Midwestern metropolitan areas. 

Fig. 1.  Vigo County, Indiana 
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11.2 Placing & Scaling Environmental Justice 

Environmental justice has been defined many ways over the last 30 years.  
The dominant narrative suggests that specific populations, particularly 
marginalized groups, are being subjected to a disproportionate amount of 
risk from environmental disamenities.  Disamenities, as used here, refer to 
commonly used indicators of environmental quality, such as the location of 
certain types of facilities and spills or releases to the environment.  Most 
often in such research the differentiation among the population occurs by 
means of socioeconomic/demographic characteristics.  The United States 
Environmental Protection Agency (U.S. EPA) defines environmental jus-
tice as “the fair treatment and meaningful involvement of all people re-
gardless of race, color, national origin, or income with respect to the de-
velopment, implementation, and enforcement of environmental laws, 
regulations, and policies.”  (U.S. EPA Office of Environmental Justice 
2006).   

The wide variability in the strength of correlation between socioeconomic 
status and environmental disamenities further fuels the controversy as to 
whether certain populations do indeed bear a disproportionate amount of 
environmental risk (Cutter, et al. 2001).  Such variability is exemplified in 
research that has indicated people of color were disproportionately ex-
posed, especially working-class Latinos (Pulido 2000), while other re-
search demonstrated a strong relationship between environmental risk and 
dwelling value, as well as lone-parent families (Buzzelli, et al. 2003).  
Such mixed results have been revealed over the years, with significant 
shifts in the relative role of demographic and socioeconomic conditions in 
determining disproportionate environmental risk (Cutter, et al. 2001).  
Some research has not revealed any direct relationship between minority 
populations and disproportionate environmental risk (Anderton et al. 
1994).  In addition to the changing place of demographics within research, 
another contributor toward the varying results was the wide array of study 
areas used in environmental justice research.  In the following paragraphs 
we will discuss the issue of an appropriate scale of analysis. 

The area of analysis has varied widely within environmental justice re-
search, with much of the research focusing on a city-wide analysis (Mohai 
and Bryant 1992, Buzzelli, et al. 2003, Pulido 2000).  Some research in the 
environmental justice field has been designed to model environmental risk 
at the county, state, and even national level (Margai 2001, Pastor et al. 
2001).  As can be expected, the findings within environmental justice re-
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search have therefore not only been highly variable, but contradictory as 
well.  Early research regarding environmental justice often focused on a 
larger area such as the zip code, in order to examine distribution of risk 
(United Church of Christ 1987).  Later investigations revealed the phe-
nomenon of ecological fallacy, in which the heterogeneity of a particular 
area of study is often missed due to the area being too large (Anderton et 
al. 1994).  In Anderton, et al. (1994), researchers utilized the census tract 
as the area of analysis in an attempt to capture the heterogeneity present 
within the study area.  In an attempt to reduce the risk of ecological fallacy 
for this project we used a smaller area of analysis, the U.S. Census block 
group, which was the smallest area at which we could still obtain critical 
Census data.  The challenge with selection of area of analysis for this pro-
ject as with all environmental justice research is the development of a 
model which efficiently and effectively characterizes any disproportionate 
amount of environmental risk endured by any particular segment(s) of the 
population.  

11.3 GIScience: GIS, RS & GWR 

GIS has established itself as a tool well-suited for spatial analysis of envi-
ronmental quality investigations, such as assessing questions of environ-
mental justice.  As environmental justice examines the geographical distri-
bution of both status and risk, the benefits of using GIS are apparent.  With 
state and federal government agencies realizing the importance of geo-
graphical data, a wealth of information has become available, including the 
locations of various facilities or sites which have been subjects of govern-
ment enforcement.  Such location data has proven useful when assessing 
questions of residential proximity to environmental risk or the siting of 
various facilities known or perceived to create environmental risk.  Remote 
sensing technologies have also proven their effectiveness at revealing rela-
tionships perhaps otherwise not seen, such as that of quality of life and 
vegetation (Gatrell and Jensen 2002).  In general, data gathered using re-
mote sensing software can be combined with GIS data for effective model-
ing of environmental issues (Longley 2002).  The combination of these 
technologies is what has been used here in order to compare data gathered 
by both GIS and remote sensing technologies.    

In addition to the combination of GIS and remote sensing, another aspect 
of this research, which is discussed in greater detail later in this chapter, is 
the challenge of effectively representing the statistical interactions of risk 
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and status across the study area.  To address this issue we used, in part, the 
statistical technique known as geographically weighted regression (GWR).  
Whereas standard regression provides global statistics implying uniformity 
across space, GWR effectively calculates local statistics at regression 
points across a study area, which aids in visualization of phenomena 
(Fotheringham, et al. 2002).  Given the variability in environmental justice 
research results, with all sizes of study areas considered, GWR is an im-
portant tool in examining the variation of environmental risk across and 
throughout the U.S. Census Block Groups.  Indeed, GWR may unlock 
heretofore unseen relationships and/or problematize existing assumptions.  
The following pages will provide further insight into the uses of GIS, re-
mote sensing, and GWR to investigate issues which lay at the intersection 
of humans and their environment.    

11.4 Data and Methods 

The primary objective of the investigation discussed here was to assess the 
relative efficacy of both environmental quality data and a normalized dif-
ference vegetation index (NDVI) as metrics of socioeconomic conditions.  
To follow is a discussion of the methods used, including the environmental 
quality data, socioeconomic variables, and statistical techniques, as well as 
a discussion of the creation of the NDVI for the study area, Vigo County, 
Indiana. 

11.4.1 Environmental Data Sets 

The United States Environmental Protection Agency (U.S. EPA) has re-
quired reporting of certain information under the guidance of environ-
mental regulations for several decades.  This information has provided ex-
tensive data sets for research relating to environmental quality.  The first 
data set used for this investigation was the EPA’s Toxics Release Inven-
tory Program (TRI), which includes information regarding reported re-
leases from regulated facilities throughout the United States.  In particular, 
releases to air, soil, and surface water were used by first asking whether 
there has been a release, answered with a yes or no, and then adding the 
amounts released (air, soil, and water) to make one reported number or 
quantity.  In this way, there was no differentiation between routes of re-
lease.  Rather, the total amount of released contaminants from each facility 
or site is used.  By not parceling out the release information by medium, 
we avoided an investigative slippery slope regarding the route of release, 
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which leads to a consideration of the medium, meteorological, and hydro-
logical factors.      

Treatment, storage, and disposal facilities (TSDFs) databases were the sec-
ond environmental quality data source used.  TSDFs are regulated under 
the EPA’s Resource Conservation and Recovery Act (RCRA), which in 
part, was designed to monitor the flow of hazardous waste from generation 
through to the time of disposal, a process commonly referred to as “cradle 
to grave”.   

The third environmental quality data set included the locations of Super-
fund sites within Vigo County, Indiana.  This data consists of sites that are 
currently on the U.S. EPA’s National Priorities List (NPL).  Sites are 
placed on the NPL after regulatory officials investigate each site by fol-
lowing the Superfund cleanup process, beginning with notification to EPA 
of possible releases of hazardous substances.  After each site is investi-
gated it is either designated as needed no further remedial action or it is 
proposed for placement on the NPL. 

TRI, TSDF, and Superfund data are location-based in their application to 
environmental justice research.  The proximity of such facilities to particu-
lar communities or segments thereof is interpreted by many researchers as 
an indication of environmental risk, usually disproportionately distributed 
among the study area population.  The TRI data was acquired from the 
U.S. EPA via its online data download library.  The information is pro-
vided in the form of ESRI shapefiles and associated files, which was im-
ported into ESRI’s ArcMap software for display and analysis.  TSDF data 
and Superfund site data were acquired from the Indiana Department of En-
vironmental Management via the Indiana Geological Survey’s online GIS 
data download library.    

The fourth data set used provides levels of the metal lead (Pb) found in the 
blood of children within Vigo County, provided in the form of number of 
children within each zip code whose blood-lead levels were above a previ-
ously set criteria level.  This data set could not only be a potential indicator 
of environmental quality, but it also represents actual human exposure to 
environmental contamination, as opposed to the other environmental qual-
ity data sets used here, which reflect a potential for environmental risk.  
Blood-lead level data were acquired from the Vigo County Health De-
partment in the form of a hard-copy spreadsheet, with the data then being 
entered into a computer-based database and imported into ESRI’s ArcMap 
software.  The data set provides each zip code, as opposed to census block 
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group, where an elevated level was revealed.  In order to use this data at 
the block group level, the mean blood-lead level of results for those zip 
codes affected was assigned for each block group within that zip code. 

11.4.2 NDVI 

A NDVI map was created with the use of the remote sensing software 
ERDAS Imagine 8.7 (ERDAS) and a satellite-produced image of Vigo 
County.  The satellite image was produced by Advanced Spaceborne 
Thermal Emission and Reflection Radiometer (ASTER) using the Terra 
satellite, yielding a spatial resolution of 15-meters in the near-infrared and 
visible portions of the electromagnetic spectrum.  Within ERDAS a NDVI 
was calculated by incorporating the near-infrared and red channels into the 
following formula:      

    
Near-infrared – red

   Near-infrared + red               

NDVI is based upon the principle that the red (visible) portion of the elec-
tromagnetic spectrum is highly absorbed by chlorophyll present within 
plants or vegetation, while the near-infrared energy is reflected at high lev-
els by a plant’s mesophyll leaf structure (Tucker 1979).  The calculated 
vegetation index then indicates the relative strength or reflectance of vege-
tation throughout the satellite image of the study area.  A higher NDVI 
value indicates a more robust presence of vegetation.  NDVI is unique in 
that it normalizes the various reflectance values by converting them to a 
value between –1 and 1 for each pixel in the image, with –1 representing 
no vegetation and 1 indicating robust vegetation.  This investigation exam-
ines a NDVI of Vigo County, Indiana to determine its efficacy as a metric 
for socioeconomic status, and then compares the resulting capacity to that 
of the environmental quality data.  Specifically, NDVI variables used in 
this analysis were the following: 

Standard deviation of NDVI values within a block group; 
Minimum NDVI value observed within a block group; 
Maximum NDVI value observed within a block group;  
Range of NDVI values observed within a block group; 
Interaction of NDVI with population density; and, 
Mean NDVI value 
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These values were assigned to each of the census block group polygons 
within the spatial database.     

11.4.3 Socioeconomic/Demographic Characteristics 

Specific socioeconomic and demographic variables selected for use in this 
investigation have been applied in much of the earlier research regarding 
environmental justice.  Such variables are often used as indicators of so-
cioeconomic status.  The following socioeconomic and demographic vari-
ables were acquired from the U.S. Census Bureau’s online data library for 
the year 2000 and integrated into this analysis as indicators of socioeco-
nomic status:  (1) Median Household Income; and (2) Median Household 
Value. 

11.5 Methods 

This investigation uses three approaches: correlation, weighted least 
squares regression, and geographically weighted regression.  Correlation—
Pearson’s R—was used to explore the relationships between variables and 
the significance of these variables.  Using the Pearson’s R results as a 
guide, weighted least squares regression models were tested using both en-
ter and step-wise approaches.  The weighted least squares regression was 
performed using population density as the weighting variable.      

Geographically weighted regression was used as standard regression statis-
tical techniques often treat phenomena as occurring equally across a study 
area.  As Fotheringham, et al. (2002) discussed, spatial data often exhibit 
what has been termed spatial nonstationarity, or the nonuniform distribu-
tion of spatial information.  The benefit of GWR in geographical research 
is that it accounts for unique characteristics of spatial data by calculating 
the necessary statistical measures at each point in the study area, which 
provides individual level or point-unique statistical information, allowing a 
researcher to identify disparities in the spatial distribution of various phe-
nomena.  GWR served this research well given that previous research has 
demonstrated the spatial nonstationarity of disproportionate environmental 
risk (Mennis and Jordan 2005). 

The model for this investigation included the following variables analyzed 
through OLS regression and GWR, as well as analysis using Pearson’s 
Correlation between the Socioeconomic and environmental metrics.   

The variables used were:    
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Median Household Income  
Median Household Value 
U.S. EPA Toxics Release Inventory 
RCRA TSDFs 
Superfund Sites 
Child blood-Lead levels (BLL) by Zip code 
NDVI Minimum 
NDVI Maximum 
NDVI Mean 
NDVI Range 
NDVI Standard Deviation 
Population Density 

11.5.1 Interaction terms 

In addition to the variables listed above, an interaction term was created 
using the expansion method (Casetti 1972, Gatrell and Bierly 2002, Jen-
sen, et al. 2005).  The expansion method developed by Emilio Casetti was 
an early challenge to the existing statistical paradigm that assumed spatial 
relationships are constant across a study area (Gatrell, J., Chapter 5 of Jen-
sen, et al. 2005).  Casetti (1972) also attributed the nonstationarity of spa-
tial phenomena to the interaction of terms across space.  We relied upon 
this interaction of terms as we created a model containing a multiplied in-
teraction of NDVI data with observed population density for each block 
group within the study area.  Population density was used as it has been 
shown to be effective when modeling environmental parameters in an ur-
ban environment.

11.6 The Models 

Below the models are presented.  The models presented were subjected 
to OLS, stepwise, and GWR.  The study models are: 

Y = 0 + TR(u,v) + TF(u,v) + B(u,v) + S(u,v) + Sd (u,v) 
       + Min(u,v) + Mx(u,v) + A(u,v) + R(u,v)  
       + I(u,v) + (u,v) 

where: 
Y is the dependent variable (socioeconomic status), in this 
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case, either median household income or median household 
value; 

0 is the constant; 
TR is the U.S. EPA’s Toxics Release Inventory data for 
Vigo County; 
TF is IDEM Treatment, Storage, and Disposal Facilities; 
B is the blood-lead level in children for Vigo County 
during 2000-2005; 
S is the Superfund facility data; 
Sd is the standard deviation of the NDVI values; 
Min represents the minimum NDVI value; 
Mx is the maximum NDVI value; 
A is the mean NDVI value ; 
R is the range of NDVI values; 
I refers to interaction terms using population density and 
A; and, 
 refers to the statistical noise assumed to be present in the 

calculation;     

The formula for GWR is the following: 
 yi = 0(ui,vi) + k k(ui,vi)xik + i

where: 
           yi is the dependent variable at location I; 
           0 is an independent variable; 
           (ui,vi) is the coordinate location for the ith point; 
           k(ui,vi) is the function continuously measuring parameter 

values at each point I; and, 
           i is the noise associated with each point i  

(Fotheringham, et al. 2002). 

11.7 Results 

A challenge to effective statistical analysis of geographical relationships is 
spatial nonstationarity, or the discontinuity of relationships among and be-
tween geographical cases or phenomena throughout a study area (Fother-
ingham et al. (2002).  While the process of WLS does capture variability 
across space as driven by varying population densities, “global” WLS does 
so based on discrete points rather than across a continuous surface (Fother-
ingham, et al. 2002).  For this reason, GWR calculates local statistics, spe-
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cifically local r-square values, to determine the model performance in 
“place” and across “space”.   In this paper, we use local r-square values de-
rived from GWR to visualize, or map, the spatial dynamics and model per-
formance across the study area.  WLS and GWR 3.0 yielded both global 
and local coefficients of determination.  WLS regression was performed on 
the data, using population density as the weighting variable, in order to 
evaluate the Pearson’s correlation values.  We first examined the distribu-
tion of the relationships between socioeconomic conditions and environ-
mental quality data using WLS regression.  WLS indicated a very weak re-
lationship between both median household income and median household 
value and environmental disamenities.  WLS was able to discern variabil-
ity in that relationship across space within Vigo County, but the overall re-
lationships were quite weak.  Local r-square values generated within the 
GWR software were mapped to provide a visual reflection of the data (Fig. 
2 and 3). GWR was used to determine whether there was spatial nonsta-
tionarity among the relationship(s) between socioeconomic conditions and 
environmental disamenities.     

When examining median household income using WLS, all four of the en-
vironmental quality variables received correlation values of .05 or lower, 
with two of the four having negative values.  The most closely correlated 
variables to median household income were the NDVI maximum value 
(.412) and the NDVI mean value (.440).  When regressing the median 
household value data against the independent variables, the standard devia-
tion of the NDVI as well as the NDVI mean value displayed the strongest 
correlation to household value at .320 and .283, respectively (See Tables 1 
and 2).  With such a drastic disparity between the roles of environmental 
quality variables and NDVI variables, it is apparent that within Vigo 
County, the geographical distribution of traditional environmental quality 
indicators do not statistically account for the observed variation in and/or 
spatial arrangement of median household income and property values.
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Table 1.  Diagnostics (Enter Method) 

 Household In-
come 

Household 
Value 

Constant -38900.584 -40424.255 
 (-2.166)** (-.870) 
TR -.002 -.003 
 (.718) (-.418) 
TF -12504.292 -105772.454 
 (-.366) (-1.198) 
B 475.390 1225.025 
 (1.424) (1.419) 
S 324.068 66288.976 
 (.023) (1.802)*
Min 33476.614 ---
 (1.346) ---
Mx 115678.429 30372.046 
 (1.130) (.105) 
Sd 28544.582 818233.782 
 (.163) (1.805)*
A 133434.982 372417.923 
 (1.495) (1.613) 
I 1.001 -30.097 
 (.035) (-.410) 
R --- -93881.855 
 --- (-1.460) 
R-Square .234 .195 
F-Statistic 3.662 2.911 
* Indicates the variable is significant at the .10 level. 
** Indicates the variable is significant at the .05 level. 

The step-wise approach provided insight as to which model may be con-
sidered more “elegant”.  In this case, it was the mean NDVI value which 
created a more elegant model when regressed against median household 
income.  Regarding median household value, the standard deviation NDVI 
value contributed most to the performance of the model. 
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Table 2.  Diagnostics (Stepwise Method) 
 Household In-

come 
Household 

Value
Constant -10715.333 21478.996 
 (-1.154) (1.249)
Sd --- 783105.761 
 --- (3.633)*** 
A 230062.271 ---
 (5.274)*** ---
R-Square .193 .102 
F-Statistic 27.811 13.201 

*** Indicates the variable is significant at the .01 level. 

As illustrated in Table 1, median household income was revealed as hav-
ing the stronger model, with an r-square value of .234, as compared to that 
of median household value (.195).  In this sense, income is more strongly 
related to the independent variables.  Among the independent variables 
used here, NDVI variables possessed a stronger relationship to both in-
come and household values, with a significantly weaker showing for the 
environmental quality variables.  These figures provide for a discussion of 
the driving forces behind the phenomenon known as environmental justice.  
The environmental quality variables (TRI, TSDF, Superfund, and BLL) do 
not appear to be significantly related to the distribution of such indicators 
of socioeconomic status as income and household value.    However, what 
this may indicate is less a case of environmental risk seeking out poor 
populations than wealthier populations seeking amenities, such as vegeta-
tion or “greenness”.        

When the local r-square values for median household income, generated 
by GWR 3.0, were mapped (Fig. 2), there was a clear relationship within 
block groups of the urban core of Terre Haute between median household 
income and the independent variables used.  This was not surprising as the 
urban center of Terre Haute contains block groups with some of the lowest 
income population.  In addition, the model performed strongly in the 
northwest and southeast block groups, which are predominantly rural ar-
eas.
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Fig. 2.  Household income local r-square values by quantile. 

A somewhat similar pattern emerged within the central (urban) and north 
central/northwest block groups when examining the r-square values for 
median household value.  A strong relationship was observed in the central 
and northwest areas, but the difference between the mapped results of the 
two variables was the lack of any significant local r-square values for 
household value in the southeast corner of the study area (Fig. 3).           
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Fig. 3.  Household value local r-square values by quantile. 

11.8 Discussion 

The results—while consistent with the earlier greenness research of Gatrell 
and Jensen and Jensen et al (2004, 2005)—suggest the environmental jus-
tice literature’s focus on environmental disamenities may capture only part 
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of the complex interactions that occur within and between social and natu-
ral systems in urban environments.  That is to say, the basic assertion that 
the co-location of marginalized groups and environmental disamenities, 
represents only part of the complete picture.  Rather, as this study suggests, 
the geography of environmental disamenities and socio-economic vari-
ables does little to explain the implied relationships between negative ex-
ternalities and class and race.  Instead, the urban environmental geography 
of class—and perhaps race, too—may be better understood within the con-
text of access to environmental amenities as determined by key proxy vari-
ables, such as NDVI.  Moreover, the unique geography of Vigo County 
suggests the distribution of negative externalities are only co-incident—
and not necessarily correlated—as “risky sites” occur in a wide range of 
socio-economic contexts.  To that end, the study suggests further research 
is needed to understand the observed spatial disconnect between the urban 
geography of amenities and disamenities.  
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12.1 Technologies & Methods 

The collection of papers in this volume includes standard urban applica-
tions of GIS and multi-spectral remote sensing—as well as applications 
that demonstrate the utility of emerging (and increasingly accessible) tech-
nologies, such as LIDAR (J. Jensen et al.).  The inclusion of LIDAR ex-
amples reflects the growing use of LIDAR technologies in urban planning 
and civil engineering.  The precision of this technology makes it ideal for 
use in complex urban systems.  Similarly, hyper-spectral sensors offer high 
resolution options to assess a variety of urban surfaces.  With respect to 
both technologies, falling costs associated with both LIDAR and hyper-
spectral data are making these increasingly viable methods for urban data 
collection. 

In addition to new technologies, this collection also introduced alternate 
methodological frameworks.  Like the first collection, several papers used 
the expansion method and in the case of Fuller et al. included it within a 
robust Geographically Weighted Regression (GWR) analysis.  The use of 
GWR in complex urban systems may enable students to understand not 
only the interaction between human and physical systems—but also how 
these interactions explicitly vary across space.  More over, the use of 



234      Gatrell et al. 

GWR in a policy space has the potential to be especially useful insofar as 
it demonstrates that public policy can be (or perhaps should be) tailored to 
various local conditions.  Similarly, Spiker and Warner examine one of the 
ways in which geography complicates data acquisition and analysis.  Their 
paper on spatial autocorrelation underscores one of the continuing meth-
odological issues that confront urban analysis and thereby frustrates the 
ability of research to more fully inform the decisions of policy makers. 

Finally, several papers including R. Jensen and Hardin demonstrate the ef-
ficacy of using artificial neural networks in conjunction with geo-technical 
applications.  In the case of assessing the urban canopy, regression analysis 
demonstrates the utility of the methods.  More importantly, the paper un-
derscores the potential for geo-technologies to be used as effective—more 
importantly cost effective—assessment tools.   

12.2 Risk 

In the previous collection, the relationship between environmental ameni-
ties and socio-demographics was explored using a variety of case studies.  
In this book, we have included a basic exploratory paper on intra-urban 
population (Hardin, Jackson and Shumway)—as well as contributions that 
explore more targeted questions associated with specific public policy.  In 
Fuller et al., the authors examined the socio-spatial implications of poverty 
and race relative to the environmental quality of communities.  Liu et al. 
use GIS and remote sensing technologies to unlock the geography of child 
physical activity within Indianapolis.  In concert, these two papers begin to 
chart the important role geo-technologies can play in improving the every-
day lives (and health) of urban citizens.  Similarly, Hipple’s real world 
analysis of urban risk and his unique perspective as a practitioner within a 
policy agency demonstrates the potential impact geo-technologies can and 
do have on shaping public policy.  Similarly, Johnson explores the poten-
tial us-e of geo-technologies to develop strategies to mitigate urban medi-
cal risks. Finally, Gonser and Horn examine the risk of deer collisions on 
the urban fringe. 

12.3 Planning 

Several papers investigate the role of GIS and Remote Sensing as planning 
tools in the public sector or industry.  These applications demonstrate that 
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GIS has become an important tool in both the public and private sectors.  
In particular, GIS and Remote Sensing have become essential tools relative 
to the mapping, assessment and management of urban change (Hardin, 
Jackson, and Otterstrom). Likewise, the exploratory analysis of census 
data illustrates the potential uses of GIS in the public sector (Hardin, Jack-
son and Shumway).  Finally, Johnson’s paper on investigating urban health 
considers the efficacy of developing participatory planning frameworks 
that utilize GIS.  As these examples suggest, GIS/RS technologies will 
continue to evolve and impact decision making in urban settings. 

In conclusion, the objective of this collection was to expand the catalog of 
real world applications, introduce new or novel methodological ap-
proaches, and to explore the full range of urban applications that exist.  In-
sofar as this is a second collection in a series on this topic, the two com-
bined collections represent only a small fraction of the many exciting 
possibilities that exist for the geo-technologies. 
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Cellular automata (CA), 164 
Census, 47–92 

Decennial  Census of the US, 87 
Central place theory, 51 
Change detection, 145, 147 

Artificial neural networks and, 
157

Change vector analysis, 155 
Comparative studies of methods, 

152
Decision trees and, 159 
Econometric panel techniques 

and, 161 
IHS transform and, 160 
Image overlay and, 145 
Image ratioing and, 148 
Image regression and, 150 
Post-classification and, 146 
Principal components analysis 

and, 150 
Simple image differencing and, 

146
Sources of error in, 152 
Spectral mixture analysis, 156 
Spectral-temporal classification 

and, 146 
charge couple device 

ccd, 9 
color infrared (CIR) photography, 

53
Component-method II procedures,

50
Culex pipiens, 110, 112 
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D

Decennial Census of the United 
States, 87 

Deer-Vehicle Collisions, 177, 181 
digital frame cameras, 9 
DVC, 177, 178, 181, 183, 184, 186, 

188, 192, 193, See Deer-Vehicle 
Collisions 

E

environmental justice, 215, 217, 
218, 219, 220, 222, 227, 229, 
230, 231 

Environmental justice, 217 
Enhanced Thematic Mapper + 

ETM+, 35, 41 

F

FireLine, 38, 44 
flood 

flooding, 34 
floodplain, 34, 40, 41, 42, 43, 44 

G

Game of Life, 164 
Geary’s c, 186, 199, 200, 201, 202, 

206, 211 
geocoding, 125 
Geographically weighted regression 

gwr, 218, 219, 222, 223, 224, 227 
Getis-Ord Gi, 202 
GIScience, 215, 218 
Global Positioning System, 35 

H

hazards 
hazard, 33 

health, 109, 110, 111, 112, 113, 114, 
115, 116, 117, 118 

Heat related illness, 115 
Housing 

Aerial photography, 56, 60, 61, 
63, 64, 66 

Dwelling count estimates, 56 
Dwelling identification, 52 
Photographic keys, 52, 55, 56 

housing types, 54 
housing-unit method, 50 
Hurricane Katrina, 35 
hyperthermia, 115 

I

IDW. See Inverse Distance 
Weighting,  

IKONOS, 34 
Indian Resourcesat AwIFS, 35 
Indiana, 215, 216, 219, 220, 221 
Indianapolis Mapping and 

Geographic Information Service 
(IMAGIS), 125 

Intensity-Hue-Saturation transform 
Applied to change detection, 160 

interaction term, 223 
Intraurban population estimation, 

57, 68 
Inverse Distance Weighting, 186 

K

Kansas City, MO, 41 
Kauth-Thomas, 147, 149 

L

Landsat TM, 35, 38, 41 
Landscape metrics, 162 
Landtype 

and population estimation, 64, 65, 
66

Leaf area index 
Urban remote sensing and, 94 

Leaf area index (LAI), 93, 106 
Ceptometers and, 94 
Estimating with neural networks, 

98
Field measurement and, 95 
Gap-fraction analysis and, 95 
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LIDAR, 8, 10, 11, 22, 23, 24, 25, 
26, 27, 30, 31, 35 

local indicators of spatial 
autocorrelation, 201 

M

Medical geography, 110 
MODIS, 35, 36, 37, 45 
Moran’s I, 186, 187, 191, 199, 200, 

201, 202, 206, 211 
Morgantown, West Virginia, 202 

N

NCI See neighborhood correlation  
NDVI, 219, 221, 223, 224, 225, 226, 

227, 230,  
neighborhood correlation image 

analysis 
nci, 11 

Neural Networks (artificial) 
Estimating LAI with, 98 

No Free Lunch Theorem, 152 
Normalized Difference Vegetation 

Index (NDVI) 
Formula for, 97 

Normalized Differenced Vegetation 
Index (NDVI), 149 

normalized differential vegetation 
index (NDVI), 129 

O

obesity, 122 
OrbView, 34 

P

physical activity, 121, 122, 123, 
130, 131, 132, 133, 134, 135, 
136, 137, 138, 139 

planimetric base 
planimetric base map, 34 

population density estimating, 51, 
52, 60, 61, 62, 63, 64, 66, 68, 69, 
70, 71, 72, 73, 74, 75, 76, 78, 79, 
81, 82, 83, 84, 85 

population estimation, 48 
dwelling identification and 

counting, 52 
landtype surrogates, 60, 64, 66 
Landtype surrogates, 60 
regression modeling of, 62, 65, 

68, 70, 84 
thermal temperature and, 73, 74, 

75, 81, 82, 83, 84 
Population Estimation 

Pixel-based approaches, 66 
PPGIS, 109, 110, 114, 116, 117, 118 
Principal Component Analysis, 149 

Q

quality of life, 89 
QuickBird, 34, 203, 205, 212 

R

Ratio-correlation procedures, 49 
risk, 33 

S

Salt Lake City 
population estimation study, 57, 

58, 76, 77, 78 
semivariance, 199, 200, 201, 205 
semivariogram, 200 
SLEUTH, 164 
spatial autocorrelation, 198, 199, 

200, 201, 211, 213 
spectral-temporal classification, 146, 

155 
St. Louis, MO, 41 
suburban sprawl, 141 
Summer Health Assessment 

Program Education (SHAPE), 
123 

supervised classification, 157, 158 

T

Terre Haute, Indiana, 215 
LAI study and, 95 
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U.S. Census, 41 
Ugly Duckling Theorem, 153 
Upper Mississippi and Missouri 

River, 39, 40, 44 
Urban forest, 93 
Urban growth, 141 

Modeling with cellular automata, 
164 

Planning policy and, 144,  
Spatial metric growth signatures 

and, 163 

Urban growth measurement 
Landscape metrics and, 162 

urbanization, 47 

V

Vigo County, IN, 188, 192, 196 
VIS model of urban surfaces, 77, 78 

W

White-tailed deer, 179, 181, 183, 
193, 195 

wildfire mapping, 37 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /DetectCurves 0.100000
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /PreserveDICMYKValues true
  /PreserveFlatness true
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /ColorImageMinDownsampleDepth 1
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /GrayImageMinDownsampleDepth 2
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /CheckCompliance [
    /None
  ]
  /PDFXOutputConditionIdentifier ()
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




