Integrating and Accessing Medical Data
Resources within the ViroLab Virtual
Laboratory

Matthias Assel!, Piotr Nowakowski?, and Marian Bubak??

! High Performance Computing Center, University of Stuttgart, D-70550, Germany
2 Academic Computer Centre CYFRONET AGH, ul. Nawojki 11, 30-950 Krakéw,
Poland
3 Institute of Computer Science, AGH, al. Mickiewicza 30, 30-059, Krakéw, Poland
assel@hlrs.de, p.nowakowski@cyfronet.pl, bubak@agh.edu.pl

Abstract. This paper presents the data access solutions which have
been developed in the ViroLab Virtual Laboratory infrastructure to en-
able medical researchers and practitioners to conduct experiments in the
area of HIV treatment. Such experiments require access to a number of
geographically distributed data sets (residing at various hospitals) with
heavy focus on integration and security issues. Scientists conducting vir-
tual experiments need to be able to manipulate such distributed data
in a consistent and secure manner. We describe the main components
of the Virtual Laboratory framework being devoted to data access and
explain how data is processed in the presented environment.

Keywords: The Grid, Data access, Virtual laboratories, Data integra-
tion, OGSA-DAI, Medical research

1 Introduction and Motivation

The ViroLab Virtual Laboratory is an integrated system of tools for accessing
and integrating resources, whose main purpose is to facilitate medical research
and treatment in the HIV virology domain as well as other types of research in
the general field of medical sciences. The research is carried out in a collabo-
rative working environment using state-of-the-art Grid computing technologies
and standards [I9] and consisting of distributed computing and data resources
deployed at various networked sites. As the complexity of interfacing such re-
sources often presents a steep learning curve for application developers, the main
goal of the Virtual Laboratory (VL) is to present a powerful and flexible devel-
opment environment for virtual experiment developers while preserving ease of
use and reusability of the proposed solution, thus allowing transparent and se-
cure access to corresponding underlying infrastructures. A detailed description
of the ViroLab Virtual Laboratory design is outside the scope of this paper, but
can be found in [21] and [22]. In this paper, we focus on aspects related to data
retrieval, integration,, and manipulation in the VL environment.

M. Bubak et al. (Eds.): ICCS 2008, Part III, LNCS 5103, pp. 90 2008.
© Springer-Verlag Berlin Heidelberg 2008

Integrating and Accessing Medical Data Resources 91

As one can expect from a virtual laboratory for research and treatment in
the area of medical sciences, the system must provide access to a range of medi-
cal data including genetic, treatment, and drug information. This data, used to
conduct experiments in viral drug resistance interpretation and selecting opti-
mal treatment strategies, comes from various hospitals and medical centers being
partners in the ViroLab project and is secured against unauthorized access. From
the point of view of experiment developers and users, all data records describing
HIV subtypes and mutations are equally valuable and should be treated in an
analogous manner. However, a problem emerges with achieving a uniform repre-
sentation of such data (see next section for details). It is therefore the task of the
data access component(s) of the ViroLab Virtual Laboratory to integrate data
derived from various sources and to enable experiment developers to manipulate
this data in a consistent, efficient and straightforward way.

Due to the sensitivity and confidentiality of data shared within the virtual
laboratory, a very critical issue for developing services that allow access to dis-
tributed medical databases concerns the overall security including access control
to certain resources (who is able to access which information set) as well as
data encryption and integrity of relevant data sets processed by the data access
infrastructure. ViroLab meets this important issue by introducing a highly dy-
namic and flexible environment that guarantees security on several levels using
established security principles and technologies as described in [2], to protect the
confidential information and to keep the patients privacy.

The remainder of this paper is structured as follows: Section 2 contains a
description of related work and parallel projects where data access issues are
covered. Sections 3 and 4 cover the integration and aggregation of sensitive med-
ical data in the ViroLab project, while section 5 explains how such data can be
manipulated by developers of experiments in the presented Virtual Laboratory.
Section 6 presents areas of application of the presented technologies and section 7
contains conclusions and closing remarks.

2 Related Work

Data access in the Grid environments has been a subject of study and research
for quite some time. Early solutions, such as those employed in batch Grid sys-
tems (for instance [16]) relied on replicating data contained in custom-tailored
data repositories which were managed by Grid middleware. Prior to performing
any calculations, data had to be fetched and staged by a specialized middleware
component. Furthermore, when submitting a Grid job, the developer had to spec-
ify in advance which data elements (represented by files) were required for the
computational task to proceed. Naturally, this was a limiting solution in that
it took no notice of structured data storage technologies (such as databases)
and did not provide for altering the available input data pool once the job
was submitted for processing. Moreover, results had to be collected following
the execution of the job and could not typically be stored on the fly as the
job progressed. These constraints gave rise to a number of projects aiming at

92 M. Assel, P. Nowakowski, and M. Bubak

standardization and increased flexibility of data access in Grids, the most im-
portant of them being OGSA-DAI [I]. The aim of this project is to develop a
middleware system to assist with access and integration of data from separate
sources via the Grid. The OGSA-DAI Toolkit supports the smooth exposure of
various types of data sources such as relational or XML databases on to grids, and
provides easy access to them through common Web Service interfaces. OGSA-
DALI is successfully adopted in several research projects such as SIMDAT [20]
and BeINGrid [I7], and more.

We intend to follow up on the achievements of the aforementioned technologies
and further adapt them to the needs of medical researchers in the ViroLab
environment. It should be noted that a number of other Grid research initiatives
exist, which deal with similar data management issues. Of note is the EUResist
project [15], which aims at developing a European integrated system for clinical
management of antiretroviral drug resistance. Peer-to-peer data storage solutions
are being investigated in specific contexts, such as the the SIGMCC framework
[8] or GREDIA [6]. Further discussion on data access and integration solutions
applied in medical Grids can be found in both [I4] and [7] while similar cluster
solutions are discussed in [I0]. However, while such technologies are aimed at a
narrow group of applications, the solution developed in ViroLab is more generic
in nature and allows experiment developers to securely access integrated medical
data sets as well as ad-hoc databases used for the purposes of specific experiments
instead of being focused on a single type of application or use case.

3 Integration of Heterogeneous (Bio)Medical Data
Resources into the Laboratory Infrastructure

Accessing a local database is one of the most common and well-known proce-
dures today but dealing with multiple and distributed systems simultaneously
still implies lots of integrational work and results quite often in a real challenge
for both administrators and developers. Since descriptions of medical symptoms
and their diagnosis vary greatly over different countries, as well as that they may
vary in their actual details such as additional circumstances to be considered,
e.g. for a pregnant woman vs. for a child etc., elegant and efficient workflows need
to be defined in order to integrate those heterogeneous data resources. These in-
consistencies together with the sensibility and confidentiality of the information
[4] shared make this task not only important but in fact a difficult endeavour.
The approach chosen within ViroLab based on the development of a middleware
system containing a set of virtualization services that hides the distributed and
heterogeneous data resources and their internals from the users and guarantees
data access in a transparent, consistent and resource-independent way.

To facilitate information exchange among participants and to ease the storage
of (bio)medical data sets, particularly in the field of HIV analysis and treatment,
the ViroLab team members decided to use and set up a specifically developed
HIV database management system the RegaDB HIV Data and Analysis Man-
agement Environment [12] developed by the Rega Institute of the Katholieke

Integrating and Accessing Medical Data Resources 93

Universiteit Leuven either at each data provider site or at different dedicated
locations the so-called collaborative (proxy) databases. RegaDB provides a kind
of data storage system including some software tools, which may be installed and
managed locally, to store clinical data related to HIV treatment. It aims to sup-
port clinicians and researchers in their daily work by delivering a free and open
source software solution. For researchers the objective is to offer several tools
for HIV sequence analysis and to enable and disburden collaborations between
researchers of different hospitals and institutions. Clinicians benefit from this
system through the visualization of genetic data, relevant drugs, and algorithms
in a well arranged form and the automatic generation of drug resistance interpre-
tation reports. Following the described approaches (having a unified data access
point) may alleviate integrational difficulties and ensure beneficial properties for
both data providers and medical experts.

T ms)

Private Original |
RegaDB Database I

Virtual Laboratory Np(\c:‘!a\»
0 5si0™ Firewall
00

tral
E Cen ;a. (\0(\,\))]
ntry Point on, & L Hospital Site, Scenario A |
DAS e‘;&«‘“ - - - - - - -"—-—-—-=
Encryption 3 —_————————
| Permanent [|
p— 9 4‘%‘ Central Proxy
Applications ‘&a:;_o Database | Q |
D . " Original
) Private
%% Collaborative EncryP | private patabase |
> RegaDB casi . egal
4 oct | Firewall
(L Hospital Site, Scenario i‘
« 5 —_—_—— - —_—— — —
~=NCryption I_ 1
Occasiona/ I - Q I
| Firewall 9 I
Original

| Database |

| Hospital Site, Scenario B I

Fig. 1. ViroLab data integration architecture

As depicted in Fig. [every data provider can either host a collaborative
RegaDB installation within their trusted region, the so-called Demilitarized Zone
(DMZ), outside their institutional firewall(s) or upload data onto one of the
centrally managed collaborative RegaDB proxies installed at some trusted third
parties. Direct external access into the hospitals security regions is not required
anymore and the existing database system can still be used independently from
sharing any data within the virtual laboratory. Additionally, a hospital can also
set up a private RegaDB for its daily purposes and internal data management.
To actually contribute data to the virtual environment, the established database
schemes need to be converted into the RegaDB schema before data can be stored
within any of the RegaDB installations. The migration is done by exporting

94 M. Assel, P. Nowakowski, and M. Bubak

data from the original database and converting that data extract through a
custom script into the latest schema. This procedure can be conducted repeatedly
over time at the discretion of the corresponding database administrator(s) and
occurs within each hospital. Data anonymization can also occur during that data
conversion or alternatively before transferring data from a private RegaDB onto
a collaborative one.

4 Exposing the Aggregated Data Sets

Once the integration of heterogeneous data resources has been realized, the
queried data sets need to be somehow aggregated and securely published for
making them accessible within different applications and/or systems. As men-
tioned earlier, a particular set of services is required for dealing with multiple
resources simultaneously and for ensuring transparent access to corresponding
data storages. This set of services, the so-called Data Access Services (DAS), has
been designed and implemented according to the specific needs and requirements
for biomedical data and confidential information [4] shared among the laboratory
users. Basically, for supporting a wide range of end-user applications and allow-
ing a smooth interaction with several virtual laboratory runtime components,
the services capabilities implement standard Web Service interfaces that can be
independently used of the underlying infrastructure/technologies and that can
be easily extended and modified due to the application developers needs. To
provide a certain level of flexibility and reliability, DAS has been separated into
stand-alone containers, each serving a specific purpose in the overall services
functionality. For exposing and querying single or federated databases, the data
handling subsystem is responsible for coordinating all data activities including
resource identification, database queries, data consultation and transformation,
and finally result message preparation and delivery [3]. Observing data confiden-
tiality and ownership but also guaranteeing a secure message transfer, the secu-
rity handling module takes existing security standards provided amongst others
by the Globus Toolkit [I3] or Shibboleth [2], and extends those mechanisms
with own highly sophisticated features to meet the requirements for sharing sin-
gle data sets containing confidential patients information. Principally, additional
and stronger authorization mechanisms shall be exploited in order to limit, deny
or permit access to different resources in a dynamic and flexible way. Attributes
of users including their organization, department, role, etc. are used to admin-
ister access rights to resources and services. To explain the complex interplay of
the major DAS subsystems (data and security handling) we briefly demonstrate
a common use case how one can submit a distributed data query to all avail-
able data resources concurrently and how individual results are processed before
users finally receive the consolidated output. Typically, doctors want to use the
virtual environment for requesting patient information including genetic data
such as nucleotide sequences or mutations in order to predict any possible drug
resistance for their according case. They simply want to retrieve all relevant infor-
mation without requiring any specific expertise in computer science. Therefore,

Integrating and Accessing Medical Data Resources 95

the way to get to the data must be kept simple and transparent for them but
should be as self-explaining as possible. The capability provided by DAS for
submitting such queries requires a standard SQL query as input and then auto-
matically performs the following actions: checks which resources are available;
requests data resource information such as database type, keywords, etc. of each
available resource and compares the resources keywords (pre-defined by resource
owner like patients, mutations, sequences, etc.) to the table names stated in the
query. If corresponding matches are found, each resource is sequentially queried
using the given statement. Finally, the results are merged and the resource ID
is added to each new data row as an additional primary key to uniquely identify
the origin of each single data set.

Requestor Authentication Discovery | Authorization Data Access Transformation ‘ DB |
7 T T 7
1 1 1 i
Identify User H H H |
| 1 1 i
i i i i
i i i i
Analyze Request 1 1 H i
| 1 1 i
i i i i
| | | i
Check | | | i
Availability ! ! ! !
i | | i
i 1 i i
Identify | 1 | i
Resources | | 1 i
i i 1 i
Access Control | i i i
i i i
i i i
Process Queries H H |
i i i
! Access Database(s) i
| | i
i i
1 Send Results
1 e EE LR e e e
i i H i
| i i i
i i > Aggregate | :
! E Data i i
1 Transform Data | i
1 i i
i 1 i
i i i
Output Result | ' i
P - i e | i
1 1 1 i
i | i i
i i i i
i | i i
i i 1 i
i i i i
i i i

Fig. 2. A typical data access use case within the ViroLab scenario

In Fig. 2 the above-mentioned use case together with the corresponding ac-
tions is highlighted again. Each single step - starting with the users request up
to the response sent back by the DAS - is depicted within this chain by one
specific block. The resource identification, the pure data access, and finally the
application-dependent transformation are handled by the data handling module
whereas all security operations are carried out by the security handling module
in cooperation with the entire security framework deployed within the virtual
laboratory. How a doctor can really get to the data and how the DAS is inter-
faced from other laboratory components in order to interact and in particularly
send such queries, is explained in the next section. [I1]

96 M. Assel, P. Nowakowski, and M. Bubak

5 Interfacing and Manipulating Medical Data in the
Virtual Laboratory

The Data Access Services are an integral part of the ViroLab Virtual Laboratory
[9], but it cannot be directly interfaced by the ViroLab user layer. In fact, the
intricacies associated with the invocation of complex services, manipulating se-
curity credentials, submitting queries and processing the received replies would
add undue complexity to the VL scripting language, which is designed to be as
simple as possible and contain little to no syntax involved with the actual inter-
operation with the underlying services. Hence, a separate module of the ViroLab
runtime system, called the Data Access Client (DAC), is implemented. The DAC
has several important functions: carrying out all communications with the Data
Access Services, including user authorization, submission of queries and import-
ing results into the context of the ViroLab experiment scripts; presenting data
to experiment developers in a way which can be easily manipulated in the exper-
iment host language [I8]; interfacing with external “ad hoc” data sources, which
are not aggregated under the Data Access Services (for instance, scratchbook
databases and P2P storage frameworks), and finally providing a data manipu-
lation layer tool for the submission and storage of ViroLab experiment results.

The Data Access Client is implemented as a JRuby library, which is automat-
ically imported into each experiment script and then, in turn, interfaces with the
underlying services such as the Data Access Services. In addition, the interface
of the Data Access Client is also exposed directly by the GridSpace Engine (the
runtime component of the ViroLab Virtual Library), where it can be utilized by
other, external tools which are part of the ViroLab Virtual Laboratory (such as
the provenance tracking service).

The basic tenet of the Data Access Client is simplicity of use. Therefore, the
API offered by the client to scripting developers is as simple as possible. In order
to initiate communication with a data source, all the developer has to do is to
instantiate an object of the class DACConnector with the proper arguments. It
is only necessary to specify the type of data source and the address (URL) at
which the source is located. If there are multiple sources deployed at a given
address, it is necessary to select one by providing its schema name.

Fig. [presents interaction between the experiment developer and the data
access client. Once a data source object is instantiated, the user can use it to
import data from the data source, manipulate this data and write data back to
the source, if the source supports this functionality. Queries can be formulated in
SQL, for standalone data sources and databases aggregated under DAS. Work
on integrating XQuery for XML-based data sources is ongoing. The API of
the DAC, along with the GSEngine itself, is described in [9]. Thus, the Data
Access Client is fully integrated with the JRuby API presented to experiment
developers.

As data coming from hospital sources is typically secured against unautho-
rized access, the Data Access Client must support the authentication methods
in use by the Data Access Services (conforming to the overall ViroLab policy
on data handling). Since authentication and authorization security in ViroLab

Integrating and Accessing Medical Data Resources 97

Requestor

‘ DACConnector

‘ Data Source Object ‘ | DAS or single DB

Connect

“ CreateSourceHandle

7
i
i
i
i
i
i
i
i
i
i
!
OpenConnection i

Source Handle

Source Handle

Subnl1it Query

Execute Query

Result Set

Formatted Result Set

Fig. 3. Interfacing external data resources via DAC

is provided by the Shibboleth attribute-based framework, DAC must authorize
itself with DAS prior to retrieval of actual data. In this respect, the DAC relies
on the GridSpace Engine (the runtime component of the Virtual Laboratory) to
acquire the security handle of the current user, then presents this handle to the
Data Access Services so that proper authorization can take place. This process
is entirely transparent from the point of view of the experiment user and it does
not require the experiment developer to insert additional security-related code
in the experiment script.

6 Results

At present, the ViroLab Virtual Laboratory is being applied to a number of
applications involving research on the HIV virus. A list of experiments being
conducted with the use of the presented solutions can be found at [22]. A repre-
sentative application in this scope is the “From Genotype to Drug Resistance”
framework. This application starts with aggregated data representing viral geno-
type, then matches this genotype to a given set of rules regarding the suscep-
tibility of the virus to various drugs. In the end, this application is able to
determine the most effective course of treatment for a given virus mutation and
recommend drugs to be administered to a given patient. In order to ascertain
viral susceptibility to various drugs, this application relies on the presented data
access subsystem to interface with participating hospitals, securely collect vi-
ral genotype data and present it to experiment developers in a uniform manner,

98 M. Assel, P. Nowakowski, and M. Bubak

using a common schema. This process is further described in [I2] and is now
being successfully applied in the ViroLab project [21].

7 Summary and Future Work

The presented data access solutions form an integral part of the ViroLab Virtual
Laboratory and enable medical researchers to conduct studies in the field of viral
diseases treatment as well as other associated areas of medical science.

Current work on the Data Access Client focuses on extending its functionality
to provide a backend for the submission, storage and retrieval of VL experiment
results. This requires interfacing with WebDAV data storage repositories, as
well as with the ProToS Provenance Tracking System [5] which will be used
to store metadata describing such results as susceptibility of the HIV virus to
various forms of treatment. Once complete, this extension will provide a layer of
persistence to all data generated with the use of the ViroLab Virtual Laboratory.
We are also conducting research into a potential uniform data schema for all
types of data sources used in the ViroLab Virtual Laboratory.

Future developments planned for the Data Access Services will mainly en-
hance reliability and scalability of the individual services capabilities as well as
increase the data submission performance through processing queries in parallel
instead of submitting requests one after another. Finally, facilitating the man-
agement of access control policies, the corresponding capabilities of the security
handling unit will be integrated with a nice and user-friendly graphical user in-
terface allowing the fast and dynamic generation, change, and upload of access
control policies for certain data resources in order to provide more flexibility in
administering distributed resources within a collaborative working environment.

Acknowledgements: This work is supported by the EU project ViroLab IST-
027446 and the related Polish SPUB-M grant, as well as by the EU IST CoreGrid
project.

References

1. Antonioletti, M., Atkinson, M.P., Baxter, R., Borley, A., Chue Hong, N.P., Collins,
B., Hardman, N., Hume, A., Knox, A., Jackson, M., Krause, A., Laws, S., Magowan,
J., Paton, N.W., Pearson, D., Sugden, T., Watson, P., Westhead, M.: The Design
and Implementation of Grid Database Services in OGSA-DAI. Concurrency and
Computation: Practice and Experience 17(2-4), 357-376 (2005)

2. Assel, M., Kipp, A.: A Secure Infrastructure for Dynamic Collaborative Work-
ing Environments. In: Proceedings of the 2007 International Conference on Grid
Computing and Applications (GCA 2007), Las Vegas, USA (June 2007)

3. Assel, M., Krammer, B., Loehden, A.: Data Access and Virtualization within Vi-
roLab. In: Proceedings of the 7th Cracow Grid Workshop 2007, Cracow, Poland
(October 2007)

4. Assel, M., Krammer, B., Loehden, A.: Management and Access of Biomedical Data
in a Grid Environment. In: Proceedings of the 6th Cracow Grid Workshop 2006,
Cracow, Poland, October 2006, pp. 263-270 (2006)

10.

11.

12.

13.

14.

15.

16.
17.
18.

19.
20.
21.
22.

Integrating and Accessing Medical Data Resources 99

. Balis, B., Bubak, M., Pelczar, M., Wach, J.: Provenance Tracking and Querying

in ViroLab. In: Proceedings of Cracow Grid Workshop 2007, Krakow, Poland (De-
cember 2007)

. Bubak, M., Harezlak, D., Nowakowski, P., Gubala, T., Malawski, M.: Appea:

A Platform for Development and Execution of Grid Applications e-Challenges -
Expanding the Knowledge Economy. IOS Press, Amsterdam (2007) ISBN 978-1-
58603-801-4

. Cannataro, M., Guzzi, P.H., Mazza, T., Tradigo, G., Veltri, P.: Using ontologies for

preprocessing and mining spectra data on the Grid. Future Generation Computer
Systems 23(1), 55-60 (2007)

. Cannataro, M., Talia, D., Tradigo, G., Trunfio, P., Veltri, P.: SIGMCC: A system

for sharing meta patient records in a Peer-to-Peer environment. Future Generation
Computer Systems 24(3), 222-234 (2008)

. Ciepiela, E., Kocot, J., Gubala, T., Malawski, M., Kasztelnik, M., Bubak, M.:

GridSpace Engine of the Virolab Virtual Laboratory. In: Proceedings of Cracow
Grid Workshop 2007, Krakow, Poland (December 2007)

Frattolillo, F.: Supporting Data Management on Cluster Grids. Future Generation
Computer Systems 24(2), 166-176 (2008)

Gubala, T., Balis, B., Malawski, M., Kasztelnik, M., Nowakowski, P., Assel, M.,
Harezlak, D., Bartynski, T., Kocot, J., Ciepiela, E., Krol, D., Wach, J., Pelczar, M.,
Funika, W., Bubak, M.: ViroLab Virtual Laboratory. In: Proceedings of Cracow
Grid Workshop 2007, Krakow, Poland (December 2007)

Libin, P., Deforche, K., Van Laethem, K., Camacho, R., Vandamme, A.-M.: Re-
gaDB: An Open Source. In: Community-Driven HIV Data and Analysis Man-
agement Environment Fifth European HIV Drug Resistance Workshop, Cascais,
Portugal, March 2007, vol. 2007-2, published in Reviews in Antiretroviral Therapy
(2007)

Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Systems Integration. Globus Project
(2002), http://www.globus.org/research/papers/ogsa.pdf

Marovic, B., Jovanovic, Z.: Web-based grid-enabled interaction with 3D medical
data. Future Generation Computer Systems 22(4), 385-392 (2006)

Zazzi, M., et al.: EuResist: exploration of multiple modeling techniques for pre-
diction of response to treatment. In: Proceedings of the 5th European HIV Drug
Resistance Workshop, European AIDS Clinical Society (2007)

Enabling Grids for E-sciencE, http://public.eu-egee.org/

Gridipedia: The European Grid Marketplace, http://www.gridipedia.eu/
JRuby: A reimplementation of the Ruby language in pure Java,
http://jruby.codehaus.org/

The Open Grid Forum, http://wuw.gridforum.org/

The SIMDAT project, http://www.scai.fraunhofer.de/

The ViroLab Project Website, http://www.virolab.org/

The ViroLab Virtual Laboratory Web Portal, http://virolab.cyfronet.pl/

http://www.globus.org/research/papers/ogsa.pdf
http://public.eu-egee.org/
http://www.gridipedia.eu/
http://jruby.codehaus.org/
http://www.gridforum.org/
http://www.scai.fraunhofer.de/
http://www.virolab.org/
http://virolab.cyfronet.pl/

	Integrating and Accessing Medical DataResources within the ViroLab Virtual Laboratory
	Introduction and Motivation
	Related Work
	Integration of Heterogeneous (Bio)Medical Data Resources into the Laboratory Infrastructure
	Exposing the Aggregated Data Sets
	Interfacing and Manipulating Medical Data in the Virtual Laboratory
	Results
	Summary and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

