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Abstract. This paper presents a generative approach to direction-of-change 
time series forecasting. Kernel methods are used to estimate densities for the 
distribution of positive and negative returns, and these distributions are then 
combined to produce probability estimates for return forecasts. An advantage of 
the technique is that it involves very few parameters compared to regression-
based approaches, the only free parameters being those that control the shape of 
the windowing kernel. A special form is proposed for the kernel covariance ma-
trix. This allows recent data more influence than less recent data in determining 
the densities, and is important in preventing overfitting. The technique is ap-
plied to predicting the direction of change on the Australian All Ordinaries In-
dex over a 15 year out-of-sample period. 
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1   Introduction 

Financial time series forecasting has almost invariably been approached as an auto-
regression problem in which future values of a time series are predicted on the basis 
of past values. The parameters of the prediction model are first optimized using in-
sample data; the model is then used to make forecasts on a set of out-of-sample data, 
and the accuracy of the forecasts is measured by comparing the forecast values with 
the realized (i.e., actual) values.  

In evaluating forecast accuracy, the mainstream literature has tended to focus al-
most exclusively on measuring error magnitudes. For example, in their review of time 
series forecasting covering a 25 year period, De Gooijer and Hyndman (2006) include 
a section on forecast evaluation and accuracy measures in which they list 17 com-
monly used forecast accuracy measures, all of which are based on the magnitude of 
the error between the predicted and realized values [1]. This is interesting because in 
many cases the magnitude of the error is not as important as whether the direction of 
the prediction (i.e., up or down) is correct. For example, if one is going to make stock 
trading decisions based on forecast values, it is more important to be able to correctly 
predict the direction of change than it is to achieve, say, a small mean squared error. 
We call this direction-of-change forecasting. The importance of correctly predicting 
the direction of change has been acknowledged in several recent papers [2-5].  
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One approach to direction-of-change forecasting is simply to use a regression 
model to forecast the next value of the time series, and to then convert this to a direc-
tion prediction by comparing the forecast value with the current value: if the forecast 
value is greater than the current value of the series, predict up; otherwise predict 
down. That is, direction-of-change forecasting can be seen as simply a regression 
problem involving this extra step.  

Many regression models have been proposed and tested over the years. Many of 
these models are linear, but in recent years non-linear models have also become popu-
lar. For example, there are many reports in the literature of the application of neural 
networks to financial time series forecasting [2][6-8]. There is, however, considerable 
debate about whether non-linear models are able to provide better forecasts than lin-
ear or random walk models when applied to financial time-series data [9-11]. One of 
the main problems with non-linear models such as neural networks is that they in-
volve a large number of  parameters. A typical neural network architecture will have 
in the order of 100s of weights which must be optimized, usually using some gradi-
ent-descent based technique. This can lead to severe over-fitting problems, especially 
on noisy data such as financial commodity prices. Preventing over-fitting requires 
careful selection of number of hidden units, regularization coefficients, and early 
stopping point, and these usually require an expensive cross-validation procedure. 
Furthermore, there is no guarantee that training from a different set of initial weights 
will results in the same predictions. 

In this paper we take a conceptually different approach to direction-of-change fore-
casting. Rather than treating the problem as a regression problem, we conceptualize 
the problem as a binary classification problem, and predict the direction of change 
directly. There are several reasons as to why such an approach might be advanta-
geous. Firstly, traders base their trading decisions primarily on their opinion of 
whether the price of a commodity will rise or fall, and to a lesser extent on their opin-
ion of the degree with which it will rise or fall. This may create in financial systems 
an underlying dynamic that allows the direction of change to be predicted more relia-
bly than the actual value of the series. Secondly, conceptualizing the problem as a 
classification problem allows us to apply a different family of algorithms. In this 
paper, we are specifically interested in applying generative classification models. That 
is, rather than discovering a function which maps directly from a set of inputs onto a 
prediction of the direction of change (as would be the case with a neural network 
approach, for example), the approach we present in this paper is based on estimating 
probability densities and combining these under Bayes' Theorem to arrive at a poste-
riori estimates of the probabilities of upward and downward movements. The main 
advantage of this approach over discriminative approaches is that it leads to more 
parsimonious models that involve few parameters. 

The remainder of the paper is structured as follows. Section 2 reviews the basic 
framework for density estimation-based classification and outlines how this may be 
applied to direction-of-change time series forecasting. Section 3 describes the kernel 
covariance matrix parameterization, together with a cross-validation procedure for 
optimizing the covariance matrix parameters. Section 4 presents and discusses em-
pirical results of applying the techniques to the Australian All Ordinaries (AORD) 
Index. Section 5 concludes the paper. 
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2   Generative Models for Classification 

Generative classification models are based on estimating the probability distributions 
from which the data was generated. Typically, the probability density functions are 
estimated; these densities are then combined using Bayes' Theorem to produce poste-
rior probabilities; and these probabilities are then used to perform classification. In 
this section we describe how density estimation-based methods can be applied to 
direction-of-change time series forecasting. 

2.1   Preliminaries 

Because financial commodity price series are usually highly non-stationary it is com-
mon to apply some type of transformation to the raw price data, thus obtaining trans-
formed variables. Transformed variables are typically based either on absolute or 
relative changes in price, and in this paper we use returns. The return on day t is de-
fined as ( )1 1/t t t tr p p p− −= − , where pt and pt−1 are the prices respectively on days t 

and t−1. Our objective is to predict the direction of the change in price on day t; that 
is, we wish to predict the sign of rt. More specifically, we wish to predict the sign of rt 
on the basis of the returns observed on the D days preceding day t.  That is, we wish 
to predict sign(rt) on the basis of the vector (rt-1, rt-2, … , rt-D), which we refer to as the 
delayed-return vector for day t. For notational convenience, we will represent the 
delayed-return vector as a column vector xt = (rt-1, rt-2, … , rt-D)T, which we refer to as 
a data point. If there are N data points, then we represent the collection of these using 
the set X = {x1, x2, …, xN}, where |X| = N.  

2.2   Density Estimation 

There are three general approaches to explicitly estimating probability densities: the 
parametric, non-parametric, and semi-parametric (or mixture-model) approaches. The 
parametric approach assumes the form of the distribution (e.g., Gaussian), and the 
task is to estimate the values of the parameters for that distribution (e.g., the mean and 
covariance in the Gaussian case). A problem with this approach is that many datasets 
do not follow a standard distribution, and attempts to model them in this way may 
lead to very poor estimates of the distribution.  

A second approach—the kernel, or Parzen, method—is a non-parametric approach 
that involves modelling the distribution using a series of probability windows (usually 
Gaussian) centred at each sample [12][13]. The overall probability density function is 
the average of all of the individual distributions centred at each point: i.e.,  
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where x is the point at which the density is estimated, X = {x1, x2, …, xN} is the set of 
points from which the density is estimated, the factor ( ) 1/2/2

1 2
Dπ ∑ is a constant 

which ensures that the area under each Gaussian sums to one, and Σ is the covariance 
matrix for the Gaussian kernel. The main decision to be made in using this approach 
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is the selection of Σ, which defines the shape of the windowing kernel function, and 
acts as the smoothing parameter. If the kernel is too narrow then the distribution will 
be peaked around each of the sample points; if the kernel is too wide then the distribu-
tion will be overly smoothed.  

A third approach is the semi-parametric, or mixture model, approach, which can be 
seen as a compromise between the parametric and non-parametric approaches. In this 
case K distributions are used to model the data, where K is much smaller than the 
number of sample points. Only the non-parametric approach is used in this paper. 

2.3   Classification 

Bayes' Theorem states that the posterior probability than an observation x belongs to 
class Ck is given by  
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where ( | )x kp C  is the class-conditional probability density function for examples 

belonging to class Ck, ( )kP C  is the prior probability than an example belongs to class 

Ck, and can be estimated from the training data, and p(x) is the unconditional prob-
ability density function for x. Note that p(x) can be determined using  
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and can thus be seen as a normalizing factor that ensures that the sum of probabilities 
over all classes is unity. An example x is classified into the class Ck for which 

( | )xkP C  is a maximum. 

Direction-of-change forecasting is a binary classification problem in which an ex-
ample belongs either to the class C+ (upward movement), or C− (downward move-
ment). Assuming that the data points X are partitioned into two sets, X+  and X, con-
taining respectively data points corresponding to upward and downward movements, 
then the Parzen estimate for ( | )p C+x  is  
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with a corresponding expression for ( | , )xP C− Σ . The posterior probabilities 

( | , )xnP C+ Σ  and ( | , )xnP C− Σ  are estimated using Bayes' Theorem. 

3   Covariance Matrix Optimization 

In this paper we estimate densities using the non-parametric method described above. 
Therefore the only parameter to be determined is the covariance matrix defining the  
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Gaussian kernel used in the density estimation process. We first discuss how the co-
variance matrix may itself be parameterized, and we then discuss how these parame-
ters may be optimized. 

3.1   Covariance Matrix Parameterization 

There are three general forms that the covariance matrix Σ may take: spherical, in 
which the variance along each dimension is identical; diagonal, in which case the 
variances along different dimensions differ, but principal directions are aligned with 
the coordinate axes; and full, in which case the principal direction of the variances can 
be aligned in arbitrary directions. Because Σ is a symmetric matrix, in the most gen-
eral case it has D(D+1) /2 independent components, where D is the dimensionality 
of the input space (i.e., the number of delayed returns). In the diagonal case all of the 
non-diagonal elements of the covariance matrix are zero, and thus the number of 
independent components of the covariance matrix reduces to D. In the spherical case 
the diagonal components of the covariance matrix are all equal, and hence there is 
only one non-zero component [14].  

Data points in a time series are temporally ordered, and intuitively we would ex-
pect recent values of the time series to be more important than less recent values in 
predicting future values; that is, we expect the prediction to be more sensitive to re-
cent values. This suggests that the kernel used to estimate a density should not be 
symmetrical (i.e., spherical), but of a form such that its width along dimensions corre-
sponding to recent returns is smaller than its width along dimensions corresponding to 
less recent returns. To capture the requirement that the width of the kernel increases 
with the delay of the return, we use the scaling 

 ( 1)ek n
t n a −
−Σ = , (5) 

where t n−Σ  ( { }1, 2, ...,n D∈ ) is the variance of the kernel in the direction parallel to 

the axis corresponding to delay t nr − , k is an exponential scaling factor, and a is the 

variance parallel to the first delay1. Thus the kernel covariance matrix Σ has the form:  
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Note that this form of covariance reduces sensitivity to the value of D, as additional 
returns will have increasingly less influence on the estimate of the density. 

                                                           
1 In our experiments we have defined a slightly differently as ( 1)ek n

t n a v −
−Σ = ⋅ ⋅ , where v is the 

variance of the returns in the training period. This rescaling makes a less variable across dif-
ferent datasets, and makes parameter optimization easier. 
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3.2   MAP Optimization of Covariance Matrix Parameters 

We assume that our examples have been partitioned into two sets: a training set X, 
and a holdout set Xh. Under the assumption that the observations on our holdout set 
are independent and identically distributed (i.i.d.), then the optimal Σ is that for which 
the probability of correctly predicting the direction of change on all holdout examples 
is a maximum. We refer to this value as MAPΣ (max a posteriori), and calculate it as 
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where ( | , )xnP C+ Σ  and ( | , )xnP C− Σ  are the probabilities respectively of an upward 

and downward movement on day n, and yn is the realized direction of change on day n; 
i.e., yn  = 1 if rn > rn−1 , and 0 otherwise. The problem is to find the optimal values of a and 
k which parameterize Σ , and in our experiments we have used a grid search optimization. 

4   Empirical Results 

Assuming that a return series is stationary, then a coin-flip decision procedure for 
predicting the direction of change would be expected to result in 50% of the predic-
tions being correct. We would like to know whether our model can produce predic-
tions which are statistically better than 50%. However, a problem is that many finan-
cial return series are not stationary, as evidenced by the tendency for commodity 
prices to rise over the long term. Thus it may be possible to achieve an accuracy sig-
nificantly better than 50% by simply biasing the model to always predict up.  

A better approach is to compensate for this non-stationarity, and this can be done 
as follows. Let xa represent the fraction of days in an out-of-sample test period for 
which the actual movement is up, and let xp represent the fraction of days in the test 
period for which the predicted movement is up. Therefore under a coin-flip model the 
expected fraction of days corresponding to a correct upward prediction is (xa × xp), 
and the expected fraction of days corresponding to a correct downward prediction is 
(1−xa) × (1−xp). Thus the expected fraction of correct predictions is  

 aexp  = (xa × xp) + ((1−xa) × (1−xp)) . (7) 

We wish to test whether amod (the accuracy of the predictions of our model) is signifi-
cantly greater than aexp (the compensated coin-flip accuracy). Thus, our null hypothe-
sis may be expressed as follows: 

Null Hypothesis: H0 :   amod ≤ aexp H1 :   amod > aexp 

We test this hypothesis by performing a paired one-tailed t-test of accuracies ob-
tained using a collection of out-of-sample test sets from the Australian All Ordinaries 
(AORD) Index. Specifically, we take the period from 1 January 1992 to 31 December 
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2006, and divide this into 202 20-day test periods. Predictions for each of the 20-day 
test periods are based on a model constructed using the 250 trading days immediately 
preceding this test period. The number of delayed returns used for each data point was 
10. For each 20-day prediction period we calculate amod and aexp. We then use a paired 
t-test to determine whether the means of these values differ statistically.  

We are particularly interested in observing how the significance of the results de-
pends on the parameters a and k from Eq. 5. Table 1 shows the t-test p-values corre-
sponding to various values for these parameters, and Table 2 shows additional infor-
mation corresponding to a selection of cases from Table 1. 

Table 1.  p-values for one-sided paired t-test comparing amod and aexp. Numbers in bold are 
significant at the 0.01 level. Asterisked values are the minimums for each row. 

       k  
   a        

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000 5.000 

0.10 0.8197 0.8462 0.8783 0.5735 0.3471 0.4935 0.2260 *0.0989 0.2169 0.3987 

0.50 0.4952 0.2041 0.0212 0.0074 *0.0050 0.0065 0.0110 0.0016 0.0141 0.0399 

1.00 0.2430 0.1192 0.0196 0.0309 0.0089 *0.0038 0.0062 0.0203 0.0087 0.0160 

1.50 0.3488 0.0282 0.0313 0.0061 *0.0019 0.0016 0.0052 0.0055 0.0110 0.0106 

2.00 0.1036 0.0281 0.0219 0.0006 *0.0005 0.0019 0.0109 0.0091 0.0199 0.0127 

2.50 0.1009 0.1095 0.0166 0.0087 *0.0009 0.0092 0.0186 0.0115 0.0403 0.0205 

3.00 0.1012 0.0511 0.0053 0.0029 *0.0026 0.0071 0.0189 0.0164 0.0672 0.0083 

3.50 0.0913 0.0591 *0.0039 0.0040 0.0090 0.0292 0.0486 0.0296 0.0676 0.0094 

4.00 0.0901 0.0306 0.0084 *0.0056 0.0126 0.0293 0.0841 0.0337 0.0610 0.0059 

4.50 0.1087 0.0659 0.0081 *0.0037 0.0114 0.0244 0.0479 0.0423 0.0401 0.0073 

5.00 0.1624 0.0366 *0.0041 0.0058 0.0151 0.0306 0.0502 0.0484 0.0297 0.0060 

Table 2.  Mean training accuracy, mean test accuracy, and confusion matrices corresponding to 
a selection of cases from Table 1. Upper/lower row of confusion matrix corresponds to up-
ward/downward predictions; left/right column corresponds to realized upward/downward 
movements. Figures in parentheses are totals for rows of the confusion matrix. 

 Mean Train Acc. Mean Test Acc. Confusion Matrix 

a = 2.0  
k = 0.0 

0.7830 0.5141 
1143 946

1025 941

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (2089) 
(1966) 

a = 2.0 
k = 5.0 

0.5369 0.5263 
1005 757

1163 1130

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (1762) 
(2293) 

a = 0.5 
k = 0.4 

0.7465 0.5245 
1191 951

977 936

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (2142) 
(1913) 

a = 2.0 
k = 0.4 

0.5958 0.5343 
1127 847

1041 1040

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (1974) 
(2081) 

a = 5.0 
k = 0.4 

0.5628 0.5224 
1009 777

1159 1110

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (1786) 
(2269) 

 

Of the values listed in Table 1, the smallest p-value value is 0.0005, and corresponds 
to parameter values a = 2.00 and k = 0.40. This means that the probability that the 
observed difference between amod and aexp being due to chance is 0.05%, and is well 
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below the 0.01 level commonly used to measure statistical significance. From Table 2 
it can be seen that the mean test accuracy (i.e., the mean accuracy over the 202 test-
periods) for this case is 0.5343, and that the mean training accuracy (i.e., the mean of 
the accuracy on the 202 250-day training sets) is 0.5958.  

To see the effect of the use of a non-spherical covariance matrix, consider the first 
column of values in Table 1 (k = 0.0), and note that these values are much higher than 
the lowest p-value in the corresponding row, and yield results which are far from 
statistically significant (i.e., all p-values are well over 0.01). To shed further light on 
the role of k, consider the case a = 2.0, k = 0.0, and note that the mean training accu-
racy for this case is 0.7830, which is much higher than the value 0.5958 observed for 
a = 2.0, k = 0.4, and suggests that the model has been overfitted to the training data. 
Now consider right-most column of Table 1, which corresponds to k = 5.0. This is a 
large value for the scaling factor, and results in very similar p-values to what would 
be obtained if only a 1-dimensional delayed-return vector were used. Specifically, 
consider the case a = 2.0, k = 5.0. The mean training accuracy for this case is 0.5369, 
which is lower than that observed for case a = 2.0, k = 0.4, and suggests that underfit-
ting is occurring. We can conclude from this that the proposed form for the kernel 
covariance matrix is successful in allowing recent data more influence than less recent 
data in the construction of the model. 

To observe the effect of the parameter a, consider the last three rows of Table 2, all 
of which correspond to k = 0.4. Note that as the value of a increases, the mean accu-
racy on training data decreases. This can be explained by the fact that small values of 
a correspond to narrow kernels, which produce spiky density estimates, resulting in 
overfitting. Conversely, large a values result in overly smoothed densities, and thus an 
inability accurately model the training data.  

Finally, note from Table 2 that for the cases in which a low training accuracy was 
achieved (e.g., a = 2.0, k = 5.0 and a = 5.0, k = 0.4), the total number of downward pre-
dicted movements is noticeably larger than the number of upward predicted movements. 
This can be explained by the fact that we have assumed that the priors for upward and 
downwards movements are equal, when in reality the priors for upward movements are 
higher than those for downward movements (i.e., the return series is non-stationary). 
When the densities are overly smoothed, the resulting posterior probability estimates are 
very close to the priors. If the priors for upward/downward movements were in-
creased/decreased to reflect the fact that prices tend to rise, then the total number of  
upward predicted movements would increase. In fact, by pre-specifying priors it may 
indeed be possible to achieve out-of-sample accuracies significantly better than the value 
of approximately 53.4% that we have been able to achieve here. For example, if we be-
lieve that the market is displaying strong bull or bear behaviour, then we may wish to 
reflect this through setting the priors correspondingly. 

5   Conclusions 

The paper has presented a density estimation-based technique which can be used to 
make direction-of-change forecasts on financial time series data. A distinct advantage 
of the technique is that it involves very few parameters compared to discriminative 
models such as neural networks, and these parameters can easily be optimized using 
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cross-validation. Also, the use of a non-spherical kernels allows recent data to have 
more influence than less recent data in the construction of the model, reducing the 
degree to which the model is sensitive to the dimensionality of the input space, 
thereby reducing the risk of overfitting. Results on the AORD Index show that tech-
nique is capable of yielding out-of-sample prediction accuracies which are statisti-
cally higher than those of a coin-flip procedure.  
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