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Abstract. We present a nonlinear structural stock market model which is a 
nonlinear deterministic process buffeted by dynamic noise. The market is 
composed of two typical trader types, the rational fundamentalists believing that 
the price of an asset is determined solely by its fundamental value and the 
boundedly rational noise traders governed by greed and fear. The interaction 
among heterogeneous investors determines the dynamics and the statistical 
properties of the system. We find the model is able to generate time series that 
exhibit dynamical and statistical properties closely resembling those of the 
S&P500 index, such as volatility clustering, fat tails (leptokurtosis), 
autocorrelation in square and absolute return, larger amplitude, crashes and 
bubbles. We also investigate the nonlinear dependence structure in our data. 
The results indicate that the GARCH-type model cannot completely account for 
all nonlinearity in our simulated market, which is thus consistent with the 
results from real markets. It seems that the nonlinear structural model is more 
powerful to give a satisfied explanation to market behavior than the traditional 
stochastic approach.  

Keywords: Computational finance; Nonlinearity; Heterogeneous agents; Endoge-
nous fluctuations. 

1   Introduction 

Modern finance is based on the standard paradigm of efficient market and rational 
expectations. The efficient market hypothesis postulates that the current price contains 
all available information and past prices cannot help in predicting future prices. 
Sources of risk and market fluctuations are exogenous. Therefore, in the absence of 
external shocks, prices would converge to a steady-state path which is completely 
determined by fundamentals and there are no opportunities for consistent speculative 
profits. In real markets, however, traders have different information on traded assets 
and process information differently, therefore the assumption of homogeneous ra-
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tional traders may not be appropriate. The efficient market hypothesis motivates the 
use of random walk increments in financial time series modeling: if news about fun-
damentals is normally distributed, the returns on an asset will be normal as well. 
However, the random walk assumption does not allow the replication of some stylized 
facts of real financial markets, such as volatility clustering, fat tails (leptokurtosis), 
autocorrelation in square and absolute return, larger amplitude, crashes and bubbles. 

Recently, finance literature has been searching for structural models that can ex-
plain such observed patterns in financial data. A number of models were developed 
which build on boundedly rational, non-identical agents [1-4]. Financial markets are 
considered as systems of interacting agents which continually adapt to new informa-
tion. Heterogeneity in expectations can lead to market instability and complicated 
dynamics. As a result, prices and returns in such markets may deviate significantly 
from fundamentals. 

In these heterogeneous agent models, different groups of traders coexist, having 
different beliefs or expectations about future prices of risky assets. Two typical trader 
types can be distinguished. The first type is the rational fundamentalists, believing 
that the price of an asset is determined solely by its fundamental value. The second 
typical trader type is the noise traders, chartists, or even technical analysts, believing 
that asset prices are not completely determined by fundamentals but that they may be 
predicted by simple technical trading rules. The literature on behavioral finance (for 
surveys see [5]) emphasizes the role of quasi-rational, overreacting, and other psy-
chology factors including investor’s emotions. 

This paper builds on the model of [6], which is a deterministic behavioral stock 
market model with agents influenced by their emotions. In [6], the trading activity of 
the agents is characterized by greed and fear. They optimistically believe in booming 
markets, but panic if prices change too abruptly. Although the model is deterministic, 
it replicates several aspects of actual stock market fluctuations quite well. This paper 
is to extend this model in two ways. We introduce fundamentalists into the model to 
analyze how the interaction of different types of investors determines the dynamics 
and the statistical properties of the system. Further, an exogenous noise is added to 
the law of motion in order to mimic real market because noise and uncertainty play an 
important role in real financial markets. 

This paper is divided into five sections. Section 2 presents our model with hetero-
geneous traders. The third section brings forward the simulation results and discusses 
the behavior of nonlinear dynamics. The final section provides a brief summary and 
some conclusions. 

2   The Model 

Let us consider a security with price 1−tP (closed price) on the last trading period. 

Assume that this security is in fixed supply, so that the price is only driven by excess 
demand. Let us assume that the excess demand

tD is a function of the last price 1−tP  

and the present fundamental value tfP , .A market maker takes a long position when-

ever the excess demand is negative and a short position whenever the excess demand  
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is positive so as to clear the market. The market maker adjusts the price in the direc-

tion of the excess demand with speed equal to Mλ . Accordingly, the log of the price at 
the end of period t  is given as  

),( ,11 tftt
M

tt ppDpp −− += λ                                          (1) 

where fp denotes the log of the fundamental value. In order to introduce an exogenous 

news arrival process as a benchmark for the analysis of the resulting price dynamics, we 

make the assumption that fp follows a Wiener process, and hence, 

    ttftf pp ε+= −1,,                                                        (2) 

with ),0(~ 2
εσε Nt

. 

This specification makes sure that neither fat tails, volatility clustering, nor any 
kind of nonlinear dependence are brought about by the exogenous news arrival proc-
ess. Hence, emergence of these characteristics in market prices would not be driven 
by similar characteristics of the news but would rather have to be attributed to the 
trading process itself. Agents’ interactions magnify and transform exogenous noise 
into fat-tailed returns with clustered volatility. 

The market is composed of two typical trader types. One type is the rational fun-
damentalists, believing that the price of an asset is determined solely by its fundamen-
tal value, and the other type is the boundedly rational traders whose behavior is influ-
enced by their greed and fear. Let us assume that a fraction α of investors follows a 
fundamentalist strategy and a fraction )1( α− for boundedly rational traders. Let 

F
tD and N

tD be, respectively, the demands of fundamentalists and boundedly rational 

traders. The excess demand for the security is thus given by 

    N
t

F
tt DDD )1( αα −+=     10 ≤≤ α                                  (3) 

Fundamentalists react to difference between price and fundamental value. The de-
mand of fundamentalists in period t is 

    )( 1, −−= ttf
F
t

F
t ppD λ        0>F

tλ                                     (4) 

where F
tλ  is a parameter that measures the speed of reaction of fundamentalist trad-

ers; we will assume that FF
t λλ =  throughout the paper. This demand function implies 

that the fundamentalists believe that the price tends to the fundamental value in the 
long run and reacts to the percentage mispricing of the asset in a symmetric way with 
respect to underpricing and overpricing. 

Following [6], the actions of the boundedly rational traders in our model are gov-
erned by greed and fear. The agents greedily take long positions because they know 
that the stock market increases in the long run. However, they also know the fact that 
stock prices always fluctuate, and such behavior is risky. The larger the risk, the more 
the agents reduce their investments. If prices change too strongly, they even panic and 
go short. For simplicity, it is assume that greed and fear-based behavior only occurs 
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for two activity levels. As long as the market evolves stably, the agents are rather 
calm. However, in turbulent times both greed and fear increase. The emotional regime 
switching process may be formalized as follows: 

2
21 )(

2
−− −−= ttN

t

N
t

N
t ppD

λ
λ                                           (5) 

where N
tλ  is a parameter that measures the activity level of emotional reaction to market 

volatility. If ∑
=

−−− ≤−
5

1
1 045.0

5

1

i
itit pp and 05.011 ≤− −− tt pp , then 05.0=N

tλ ; oth-

erwise, 10.0=N
tλ . In other words, the agents are rather calm if the average volatility in 

the last 5 trading periods is below 4.5 percent and if the most recent absolute log price 
change is below 5 percent. Otherwise the activity level increases from 0.05 to 0.10. Simi-
lar to the explanation in Ref. [20], the first term of (5) reflects the greedy autonomous 
buying behavior of the agents whereas the second term of (5) captures the fear of the 
agents. Note that in the turbulent regime, extreme log price changes can be as large as 

10±  percent. In the calm regime, extreme returns are restricted to 5±  percent. 

3   Simulation Results and Statistical Properties 

In this section, we analyze the statistical properties of the simulated time series, which 
have been generated with 2000 observations in each stochastic simulation in order to 
allow the system to get sufficiently close to the asymptotic dynamics and to have time 
series as long as the daily time series of the S&P 500 index between 6 October 1999 and 
14 September 2007. Fig.1 reports the time series plot of the S&P500 and the simulation 
series generated by our model with parameters 1=Mλ , 1=Fλ , 5.0=α , 03.0=εσ , and 

initial value 12.60,0 == fpp , [ ] [ ]20.6,18.6,14.6,08.6,07.6,,,, 54321 =ppppp . 

Table 1 reports the statistics of the daily returns on the S&P500 and the model–generated 
time series. The Ljung-Box Q statistics for up to 30 lags for returns (Q(30)) and squared 
returns (QS(30)) are also presented. The Q(30) statistic for testing the hypothesis that all 
autocorrelations up to lag 30 are jointly equal to zero in the stock markets is greater than 
the value of 2χ  distribution with 30 degrees of freedom at the 5% level, suggesting that 

the null hypothesis of the independence of returns should be rejected. Thus, linear serial 
dependencies seem to play a significant role in the dynamics of stock returns. The next 
and the most important question for the study of the behavior of nonlinear dependencies in 
stock returns, is: do these returns also exhibit nonlinear serial dependencies? The easiest 
way to answer this question is by examining the autocorrelation behavior of squared daily 
returns. The values of QS(30) (see Table 1) provide strong evidence of nonlinear depend-
ence, indicating that the conditional distributions of the daily returns are changing through 
time. This is a symptom of ARCH effects. The results from Fig.1 and Table 1 indicate that 
the model displays statistical properties similar to those of the S&P500 index and can 
replicate the stylized facts of real financial markets, such as volatility clustering,  
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Fig. 1. Time series of the S&P500 index (a), daily returns series of the S&P500 (b), simulated 
price series (c) and simulated returns series (d) 
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Table 1. Summary statistics of daily returns on the S&P500 index and the simulated time series  

Sample Mean Variance Skewness Kurtusis Jar.Bra Q(30) QS(30) 

S&P500 0.0001 0.0111 0.05 5.62 573 51 1434 
Model 0.0001 0.0203 -0.20 3.51 36 392 181 

excess kurtosis, autocorrelation in square return, crashes and bubbles. Furthermore, 
all these interesting features in our model arise endogenously from the trading process 
and interactions of our agents. With the assumptions of IID Normal innovations of the 
fundamental value, none of these characteristics can be attributed to exogenous  
influences. 

The significant deviations from normality (larger Jar.Bra) and the significant QS(30) 
statistic in Table 1 suggest that there is very strong evidence of nonlinear structure in 
simulated return series. In order to detect the nonlinear dynamics deeply, we use the corre-
lation dimension method and the BDS test. 

The method of the correlation dimension introduced by Grassberger and Procaccia 
[7] provides an important diagnostic procedure for distinguishing between determinis-
tic chaos and stochasticity in a time series. If the correlation integral ( , )C mε  meas-

ures the fraction of total number of pairs 1 1( , , , )i i i mx x x+ + −⋅⋅ ⋅ , 1 1( , , , )j j j mx x x+ + −⋅ ⋅⋅ , 

such that the distance between them is no more than ε , then the correlation dimen-
sion is defined as: 

0

ln ( , )
lim

lnc

C m
d

ε

ε
ε→

=                                               (6) 

where 

)(
)1(

1
)(, ∑ −−

−
= jinm XXH

nn
C εε , i j≠                       (7) 

( )Hu  is Heaviside step function, ( )H u =1 if 0u ≥ , 0 otherwise; n=the number of 

observations, ε = distance, ( , )C mε = correlation integral for dimension m, X= the 

time series. 
It is necessary to notice that when the embedding dimension m increases, the di-

mension md  is reached, such that *
cd  is the estimate of the true correlation: 

               * lim ( )c c
m

d d m
→∞

=                                                  (8) 

If md  tends to a constant as m increases, then md yields an estimate of the correla-

tion dimension of the attractor, namely *
cd . 

In this case, the data are consistent with deterministic behaviour. If md increases 

without bound as m increases, this suggests that the data are either stochastic or noisy 
chaotic. 



422 H. Li, W. Shang, and S. Wang 

The limitation of correlation dimension procedure is that no formal hypothesis test-
ing is possible. To deal with the problems of using the correlation dimension test, 
Brock et al. [8] devised a new statistical test which is known as the BDS test. The 
BDS tests the null hypothesis of whiteness (independent and identically distributed 
observations) against an unspecified alternative using a nonparametric technique. The 
BDS test is a powerful test for distinguishing random system from deterministic chaos 
or from nonlinear stochastic systems. However, it does not distinguish between a 
nonlinear deterministic system and a nonlinear stochastic system. Essentially, the 
BDS test provides a direct (formal) statistical test for whiteness against general de-
pendence, which includes nonwhite linear and nonwhite nonlinear dependence. 
Therefore, the null hypothesis of i.i.d. may be rejected because of non-stationarity, 
linear or nonlinear dependence or chaotic structure. The BDS statistic measures the 
statistical significance of the correlation dimension calculations. Brock et al. demon-
strated that 

, 1,[ ( ) ( ) ]m
m n nC C nε ε− ×                                             (9) 

is normally distributed with a mean of zero. The BDS statistic, W, that follows is 

normally distributed and is given by 

)(/])()([ ,,1, εσεε nm
m

mnm CCnW −=                           (10) 

where 
, ( )m nC ε  and 

1, ( )nC ε  are given in (7) and 
, ( )m nσ ε  is an estimate of the stan-

dard deviation. W converges in distribution to N (0, 1).  
The BDS statistic can be used to test the residuals of GARCH type models for inde-

pendence. If the null model is indeed GARCH then the standardized residuals of the fitted 
GARCH model should be independent. However, it was demonstrated by Hsieh [9] that 
the distribution of the W statistic changes when applied on the residuals of ARCH and 
GARCH-type filtered. Therefore, we have to use the simulated distribution of the 
BDS statistic by bootstrap method (which can be easily handled with Eviews5.0) in 
such cases. 

Before proceeding any further, we should firstly test the stationarity of our model-
generated data. The augmented Dickey-Fuller unit-root test (ADF) shows that one unit 

root exists in the simulated price series ( tp ). The ADF value is -1.02, which is greater 

than the critical value at 5%. However, the ADF value for returns series (the difference 

of tp ) is -22.44, which is less than the critical value at 5%. The unit root test strongly 

rejects a unit root for simulated returns series and we can conclude that the returns series is 
stationary. Given stationarity in returns, none of non-IID behaviour of stock returns can 
be attributed to non-stationarity. 

The correlation dimension estimates for the simulated returns series as well as the 
S&P500 index returns series are presented in Table 2. Clearly, our model has correla-
tion dimension estimates similar to that of the S&P500. For the two series, the corre-
lation dimension estimates are lower than the embedding dimensions; however, they 
do not converge to a stable value. The results indicate the underlying process is nether 
purely random or completely chaotic.  
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Table 2. Estimates of the correlation dimension for the embedding dimension m  

m 2 3 4 5 6 7 8 9 10 
S&P500 1.80 2.63 3.26 3.98 4.35 5.03 5.44 5.68 6.09 
Model 1.68 2.38 3.19 3.96 4.33 5.04 5.60 6.04 6.48 

We now apply the BDS test to the simulated returns series. In order to eliminate linear 
structure in our model, the returns data were firstly filtered by an Auto-regressive Moving 
Average method whose lag length was determined by the Akaike information criterion. 

Table 3 gives the results of BDS tests. They strongly reject the hypothesis that simu-
lated stock returns are IID. The rejection of IID is consistent with the view that stock re-
turns are generated by nonlinear stochastic systems, e.g. ARCH and GARCH-type mod-
els, or nonlinear deterministic process such as chaos or noisy chaotic model. ARCH-type 
models have been widely used to describe conditional heteroskedasticity and are deemed 
to closely resemble the typical behavior of stock market volatility. Our interesting question 
is: Does the conditional heteroskedasticity captured by ARCH-type models account for all 
the nonlinearity in our model which is a nonlinear deterministic process disturbed by dy-
namic noise? 

To answer this question, we ran the BDS procedures on the standardized residuals of 
the fitted GARCH model to test if GARCH captures all nonlinear dependence in stock 
returns. 

The best GARCH model is determined by AIC criterion. The model is: 

Mean equation tttt rr εε ++= −− 12 3397.02279.0                            (11) 

                                                              (10.73)               (13.31) 

Variance equation 2
1

2
1

2 4126.02565.00001.0 −− ++= ttt σεσ                     (12) 

                                                           (6.58)         (6.72)                (6.43) 

                                    Q(10)=4.61       QS(10)=13.55 

The parentheses contain the z-statistics of the estimated coefficients. The Q(10) and 
QS(10) statistics of the standardized residuals are significantly smaller than the critical 
value 18.31 at 5%, indicating the absent of linear autocorrelation and heteroskedasticity. 
The standardized residuals from GARCH model serve as the filtered data. 

Table 4 shows that the BDS statistics on the standardized residuals are much smaller 
than those of the ARMA filtered data. However, most BDS statistics are still outside the 
5% critical range. There is sufficient evidence to indicate that the GARCH model cannot 
completely account for all nonlinearity in the simulated returns. This evidence is thus 
consistent with the results reported by Hsieh [9] in which Hsieh found that the popular 
GARCH-type models couldn’t capture all nonlinear dependence in 10 stock returns in-
cluding the weekly S&P500 index and the daily S&P500 index. This suggests that the 
nonlinear deterministic model disturbed by dynamic noise may be more powerful to 
mimic and explain the observed fluctuations in real economic and financial time series 
than the traditional nonlinear stochastic models. 

Finally, it should be noted that we only display one simulation run here for differ-
ent parameter values. Because of random element added to our model, one simulated 
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Table 3. BDS statistics for ARMA filtered dataa  

Epsilons/sigma 0.5 1 1.5 2 
m=2 12.2 11.6 10.4 8.36 
m=3 16.9 15.4 13.8 11.5 
m=4 18.4 15.8 13.7 11.3 
m=5 18.5 15.7 13.5 11.2 

aall significant at 5 % (two-tailed) level. 

Table 4. BDS statistics for GARCH standardized residuals  

Epsilons/sigma 0.5 1 1.5 2 
m=2 3.70* 3.00* 1.83 0.21 
m=3 6.25* 4.99* 3.48* 1.53 
m=4 6.42* 4.63* 2.91* 0.66 
m=5 6.73* 4.32* 2.60* 0.51 

*significant at 5 % (two-tailed) level. 

data may differ from each other. However, the nonlinear dynamical behavior and 
statistical properties for the fixed parameter can be relatively stable. As revealed in 
further simulations, our conclusions are quite robust (which may easily be checked). 

4   Conclusion 

In this paper we have outlined a nonlinear deterministic model disturbed by dynamic 
noise. The dynamical system is able to generate some stylized facts present in real 
markets: excess kurtosis, volatility clustering, and autocorrelation in square and abso-
lute return, crashes and bubbles. The market is composed of two typical trader types, 
the rational fundamentalists believing that the price of an asset is determined solely by 
its fundamental value and the boundedly rational traders governed by greed and fear. 
The interaction of different types of investors determines the dynamics and the statis-
tical properties of the system. 

It is worth emphasizing that, in our model, all these interesting qualitative features 
arise endogenously from the trading process and the interactions of heterogeneous 
agents. With the assumption of IID normal innovations of the fundamental value, 
none of these characteristics can be attributed to exogenous impacts. Taking together 
the complex behavior in real stock markets and the academic achievements (see [1-2], 
[10]), it seems more robust than the traditional stochastic approach to model the ob-
served data by a nonlinear structural model buffeted by dynamic noise. 
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