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Abstract. Complex Automata (CxA) have been recently proposed as a
paradigm for the simulation of multiscale systems. A CxA model is con-
structed decomposing a multiscale process into single scale sub-models,
each simulated using a Cellular Automata algorithm, interacting across
the scales via appropriate coupling templates. Focusing on a reaction-
diffusion system, we introduce a mathematical framework for CxA mod-
eling. We aim at the identification of error sources in the modeling stages,
investigating in particular how the errors depend upon scale separation.
Theoretical error estimates will be presented and numerically validated
on a simple benchmark, based on a periodic reaction-diffusion problem
solved via multistep lattice Boltzmann method.

Keywords: ComplexAutomata,multiscalealgorithms, reaction-diffusion,
lattice Boltzmann method.

1 Introduction

Complex Automata (CxA) have been recently proposed [1,5,6] as a paradigm
for the simulation of multiscale systems. The idea of a CxA is to model a com-
plex multiscale process using a collection of single scale algorithm, in the form
of Cellular Automata (CA), lattice Boltzmann methods, Agent Based Models,
interacting across the scales via proper coupling templates [6].

To construct a CxA we identify the relevant sub-processes, defining their
typical time and space scale. The concept of the Scale Separation Map (SSM)
[6] helps in this modeling stage. It is defined as a two dimensional map with
the Cartesian axes coding the temporal and spatial scales. Each single scale
model defines a box on the SSM, whose leftmost and bottom edges indicate the
resolution of the single scale Automaton, while the rightmost and top edges
are defined by the characteristics of the single scale process (e.g. the extreme
of spatial and temporal domains). The key idea of a CxA is to transform a
single big box spanning several time and space scales on the SSM in a set of
interconnected smaller boxes (see Fig. 1).
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Fig. 1. Example of a scale separation map for a CxA model. The solid box represents
a complex process spanning several space and time scales. The CxA model splits the
box in N smaller boxes (dashed lines, centered in the typical scales (τi, ξi) of the
sub-processes i) interacting across the scales.

Formally, we replace the original multiscale process, identified by state variable
+ update rule, with a collection of N single scale models, defined by

(state variables + update rule)i, i = 1, . . . , N

plus a set of coupling templates, describing how the single scale models interact
together.

Aim of this paper is to propose a formalism and a procedure to analyze CxA
models. Focusing on an algorithm designed for reaction-diffusion problems, we
investigate the scale-splitting error, i.e. the difference between the numerical
solution obtained using a single multiscale algorithm based on single time and
space discretization (equal to the ones needed to resolve the small scales) and
the numerical solution obtained using the corresponding CxA model.

In section 2 we introduce shortly a lattice Boltzmann scheme for a reaction-
diffusion problem, describing how a CxA model for that system can be con-
structed. In section 3 we investigate the error introduced in the CxA model,
deriving explicit estimates for the considered benchmark, which are validated on
simple numerical simulations. Finally, we draw the conclusion in section 4.

2 From a Multiscale Algorithm to Single Scale Models

2.1 Lattice Boltzmann Method for a Reaction-Diffusion Problem

We want to construct a CxA model for a reaction-diffusion process (RD) de-
scribed by the equation

∂tρ = D∂xxρ + R(ρ), t ∈ (0, Tend], x ∈ (0, L] (1)

(plus additional initial and boundary conditions).
To solve numerically (1) one can use an algorithm based on the lattice Boltz-

mann method (LBM) (overviews of the LBM can be found for example in [4,8],
or in [2] for application to RD problems). For a chosen small parameter h, we
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discretize the space interval with a regular grid Gh = {0, . . . , Nx −1} of step size
Δxh = h, and employ a D1Q2 model based on two velocities ci ∈ {−1, 1} and
an update rule of the form

f tn+1
i (j + ci) = f tn

i (j) +
1
τ

(feq
i (ρtn(j)) − f tn

i (j)) + h2 1
2
R(ρtn(j)) . (2)

Here j ∈ Gh is the spatial index of the node1, while n ∈ N0 is the index which
counts the time steps of length such that

Δth
Δx2

h

= const. (3)

For the D1Q2 model we have

feq
i (ρ) =

ρ

2
, i = 1, −1 . (4)

Algorithm (2) leads to a second order approximation of the solution of (1) [7] if
the parameter τ in (2) is chosen according to the diffusion constant in (1) as

τ =
1
2

+ D
Δth
Δx2

h

. (5)

Observe that τ is independent from h in virtue of (3).
In a more compact form, we can rewrite (2) as

f̂
tn+1
h = Ph(Ih + ΩDh

(τ) + ΩRh
)f̂ tn

h , (6)

where f̂h (omitting the subscript i) represents a h-grid function , i.e. a real valued
function defined on a grid of step h:

f̂h : Gh → IR2, f̂h : j �→ f̂n
h (j) .

Introducing the set Fh =
{
φ : Gh → IR2} we have f̂h ∈ Fh. With this notation

the subscript h denotes operators acting from Fh to itself: Ih is simply the
identity on Fh, Ph acts on a grid function shifting the value on the grid according
to ci (

Phf̂h

)

i
(j) = f̂i,h(j − ci),

while ΩDh
and ΩRh

are the operations defined in the right hand side of (2):
(
ΩDh

f̂h

)

i
(j) =

1
τ

(feq
i (ρ(f̂h(j)) − f̂n

h,i(j)),
(
ΩRh

f̂h

)
(j) = h2 1

2
R(ρ(f̂h(j)) .

Since ΩDh
depends on the non-equilibrium part of f̂h and ΩRh

is a function
of the moment of the distribution, i.e. of the equilibrium part, it can be shown
[3] that

∀f̂h : ΩDh
ΩRh

f̂h = 0 . (7)
1 For simplicity we assume periodic boundary conditions, considering the addition

j + ci modulo Nx.
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and similarly, since the operator ΩDh
maps any element of Fh in grid function

with zero moment:

∀f̂h : ΩRh
(Ih + ΩDh

)f̂h = ΩRh
f̂h . (8)

Relation (7) allows to split the LB algorithm (6) (see also [2]) as

f̂
tn+1
h = Ph(Ih + ΩDh

(τ))(Ih + ΩRh
)f̂n

h = DhRhf̂ tn

h , (9)

separating reaction Rh = Ih + ΩRh
and diffusion Dh = Ph(Ih + ΩDh

(τ)).

Scale Separation Map. The next step towards the CxA model is the scale
separation map. We start with the discrete process described by equation (6),
which represents in our case the multiscale algorithm. On the SSM (in this
simplified case restricted to the time scale axis) it spans a range of time scales
between Δth = h2 and Tend (fig. 2a). Equation (9) shows that we can split
the problem in two processes. Assuming that the diffusion is characterized by a
typical time scale larger than the reaction time scale (for example if D is small
compared to κ), we introduce a coarser time step

ΔtD = MΔth, M ∈ N .

In practice, it corresponds to execute M steps of the reaction R, up to a time
TR = ΔtD, followed by a single diffusion step.

(a) (b) (c)

Δth

(RD)

Tend
Δth Tend

(R) (D)

ΔtD=TR Δth Tend

(R) (D)

ΔtDTR

Fig. 2. The SSM for the reaction-diffusion problem. In (a) reaction (dashed line) and
diffusion (solid line) are considered as a single multiscale algorithm. In (b) we assume
to use different schemes, where the diffusion time step ΔtD is larger than the original
Δth. (c) represents the situation where the two processes are time separated, with a
very fast reaction yielding an equilibrium state in a time TR � ΔtD.

Back to the SSM, we have shifted to the right the lower edge of the diffusion
box (figure 2b) and to the left the upper extreme of the reaction box. We have
TR = ΔtD, since the reaction is run in the whole time interval [0, ΔtD] with
time step Δth and reinitialized after each diffusion step.

Observe that this is not the only possibility. In some systems, the reaction
leads very quickly to an equilibrium state in a typical time smaller than the
discrete time step of the diffusion. The scale map for this situation is depicted in
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Fig. 2c. However, this is a rather special case and will not be discussed here. We
restrict the analysis to a single species reaction-diffusion with linear reaction,
focusing on the SSM in Fig. 2b, where the time scales are not completely sepa-
rated. A more complete treatment of the different cases (including more general
multiscale processes) shall be topic of an upcoming work.

CxA Model for Reaction-Diffusion. After coarsening the time scale of dif-
fusion algorithm with ΔtD = MΔth, we can define a coarser space discretization
selecting a new parameter h2

Δxh2 = h2 = MXh, MX ∈ N . (10)

Note that equation (2) must be modified according to (5). We restrict to two pos-
sibilities: MX = 1 (time coarsened CxA) or MX =

√
M (time-space coarsened

CxA, in order to preserve relation (3)).
Introducing the vector of small parameter H = (h, h2), the CxA can be for-

mally described with the state variable f̂H =
(
f̂1,h, f̂2,h2

)
, whose components

denote the state after reaction f̂1,h and after diffusion f̂2,h2 and evolve according
to

(CAR) (CAD)
f̂

t1,0=t2,n2
1,h1

= f init
1

(
f̂

t2,n2
2,h2

)
,

f̂
t1,n1+1

1,h1
= R1,h1 f̂

1,tn1
1,h1

, n1=0,...,M−1

f̂0
2,h2

= f̂ init
2,h2

(ρ0),
f̂

t2,n2+1

2,h2
= D2,h2Πh2,hf̂

t2,n2+MΔtR

1,h1
.

(11)

f̂ init
2,h2

being the initial condition.
Using different discretizations, we define also a projection Πh2,h from the grid

Gh to Gh2 and a new operator Dh2 . In fact, it depends on the relaxation time τ ,
which must be modified according to (5).

With the terminology introduced in [6] (11) is a CxA composed of two Au-
tomata coupled through the following templates. (i) CAR is coupled to CAD

through the initial conditions, since the output value of a single CAD iteration
is used to define CAR initial conditions. (ii) CAD is coupled to CAR through
the collision operator, since the output value of the reaction (after M iterations
of CAR) is used to compute CAD collision operator.

This example is a special case where the two processes act on the same vari-
able, and it is possible to write the algorithm only depending on f̂2,h2 :

f̂
t2,n2+1

2,h = D2,h(τ(M))RM
2,hf̂

t2,n2
2,h ,

f̂0
2,h = f̂ init

2,h (ρ0) .
(12)

General Formalism. From a more general point of view, we can formalize the
Complex Automata modeling technique starting with an algorithm in the form

f
tn+1
h = Φhf tn

h (13)
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defined on fine space and time scales, identified by a discretization parameter
h. Equation (13) describes the evolution of a single multiscale algorithm for
a complex process where the numerical solution f tn

h denotes the state of the
system at the n-th iteration and Φh is the update rule. As before, we introduce
the spatial grid Gh so that

f tn

h ∈ Fh = {φ : G(h) → R2}, Φh : Fh → Fh . (14)

Constructing a CxA we replace algorithm (13) with several simpler single
scale Cellular Automata, described by the state variable f̂H =

(
f̂1,h1 , . . . , f̂R,hR

)

(where H = (h1, . . . , hR)) and an update rules for each component of f̂H :

ΦH = (Φ1,h1 , . . . , ΦR,hR) . (15)

The numerical solution of the CxA model f̂H belongs to a space FCxA
H ⊂

F1 × . . . FR (since the state spaces can be shared by different Automata), and
ΦH : FH → FH . We can also introduce a general projection operator Π which
defines the way we coarsen our process and lift operator Λ which describes an
approximate reconstruction of the fine grid solution starting from the CxA one:

ΠHh, Πhr,h : Fh → Fhr , r = 1, . . . , R, ΛhH : FH → Fh .

The relevant spaces and operators introduced in the formalism in the partic-
ular case of reaction-diffusion can be represented with the diagram

fh ∈ Fh fH =
(
f̂1,h1 , f̂2,h2

)
∈ FH

fh ∈ Fh fH ∈ FH

�ΠHh=(Πh1,h,Πh2,h)

�
ΦM

h =(DhRh)M

�
ΦH=(RM

1,h,D2,h2)

� ΛhH

where a single step of the update rule ΦH corresponds to M steps of the Φh,
since ΔtD = MΔtR. In this example example, if h1 = h2 = h, the components
of the projection ΠHh are equal to the identity on Fh. If h1 �= h2, Πh2,h can be a
sampling of the numerical solution on a coarser grid, and Λh,h2 an interpolation
routine.

3 The Scale-Splitting Error

The idea of the CxA model is to replace

(Ah): the original (complex) multiscale algorithm depending on a discretiza-
tion parameter h,

with

(CxA): a collection of coupled single scales algorithms.
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This yields an improvement of the performance which is paid by a possible loss
of precision. In analyzing the CxA modeling procedure, we are interested in
quantifying EAh,CxA, expressing the difference between the numerical solutions
of (Ah) and (CxA), which we call scale-splitting error or CxA-splitting error.

This quantity can be related to the loss of accuracy. Calling ECxA,EX the error
of the CxA model with respect to the exact solution and EAh,EX the absolute
error of the model (Ah), we can write

∥
∥ECxA,EX

∥
∥ ≤

∥
∥EAh,EX

∥
∥ +

∥
∥EAh,CxA

∥
∥ . (16)

3.1 Error Estimates for the Reaction-Diffusion Model

For the CxA model of (RD), since the algorithm is designed to approximate the
variable ρ, we can define the scale-splitting error at time iteration tN as

EA,CxA(ρ; M, MX , tN ) =
∥
∥ρ

(
Πh2,hf̂ tN

h

)
− ρ

(
f̂ tN

2,h2

) ∥
∥ =

∥
∥ρ

(
ΠHhf̂ tN

h − f̂ tN

2,h2

) ∥
∥

(17)
representing the difference between ρ(f̂h), i.e. the numerical solution of the fine-
grid algorithm (9) and ρ(f̂2,h2), i.e. the output of the CxA model (11) after both
reaction and diffusion operators have been applied.

Observing that f̂h is the solution of (2) and f̂2,h2 is obtained from (11) we
can rewrite (17) as

=
∥∥
∥ρ

(
Πh2,h (DhRh)M

f̂ tN−MΔth

h − D2,h2Πh2,hRM
h Λh,h2 f̂

tN−MΔth

2,h2

)∥∥
∥ (18)

For simplicity, let us assume that the two solutions coincide at the previous
time and that we can write2

f̂ tN−MΔth

h = Λh,h2 f̂
tN−MΔth

2,h2

(for example if tN − MΔth corresponds to the initial time). Since the reaction
is local, we have

∀M > 0 : RM
h Λh,h2 = Λh,h2RM

2,h2
.

Additionally, note that
Πh2,hΛh2,hf̂2,h2 = f̂2,h2

(projecting after reconstructing gives the same function). Hence, we conclude
that the distance between the numerical solutions can be estimated by measuring
the distance between the algorithms
2 In general, it holds

f̂
tN −MΔth)
h = ΛhH f̂ tN −Δt2

H + ε(MX , M, tN − Δt2) + εΛ,Π(H,h)

where ε(MX , M, t) is bounded by E(MX , M, t) and εΛ,Π(H,h) depend on the accu-
racy of projection and lift operations. The derivation of the estimate for this case is
not reported in this short communication [3].
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EA,CxA(MX , M) :=
∥
∥ρ

(
Πh2,h (DhRh)M

Λh,h2 − D2,h2RM
2,h2

) ∥
∥ ≤

∥
∥
∥ρ

(
Πh2,h

[
(DhRh)M − DM

h RM
h

]
Λh,h2

)∥
∥
∥+

∥
∥ρ

((
ΠHhDM

h − D2,h2Πh2,h

)
RM

h Λh,h2

)∥∥ = E(1) + E(2) .

(19)

The contribution E(1) depends on the difference (DhRh)M − DM
h RM

h , which
can be estimated as a function of [Dh, Rh] = DhRh −RhDh, i.e. the commutator
of the operators Rh and Dh. For example, if M = 2 we have

(DhRh)2 = DhRhDhRh = D2
hR2

h − Dh[Dh, Rh]Rh .

An argument based on asymptotic analysis [3,7], assuming that the numerical
solution (which is a h-grid function) can be approximated by a smooth function
evaluated on the grid points, i.e.

f̂h(n, j) ≈ f(tn, xj), (20)

can be used to show (also in virtue of the properties (7)-(8)) that

[Dh, Rh] ∈ O
(
h3∂xρκ

)
. (21)

By counting the number of times the commutator appears in the difference
(DhRh)M − DM

h RM
h , we have

(DhRh)M − DM
h RM

h ∈ O
(
M2h3∂xρκ

)
. (22)

The part E
(2)
H derives from the coarsening of the original lattice Boltzmann

algorithm. Assuming (20) for both the coarse- and the fine-grid solutions we
obtain

ρ
(
Πh2,hDM

h − D2,h2Πh2h

)
= O(M2

Xh2 + M2D3h2) . (23)

We are interested in how the error depends on the coarsening in time and space,
fixed a fine discretization parameter h and for particular values of κ and D which
regulate the typical time scales of the system. In conclusion, (22)-(23) yield

if MX = 1: EA,CxA(M) = O
(
M2h3∂xρκ

)
+ O(M2D3h2),

if MX = 1, M = M2
X : EA,CxA(M) = O

(
Mh2) .

(24)

3.2 Numerical Results

We consider the benchmark problem (1) with D = 0.1, κ = 3 and initial value
ρ(0, x) = sin (2πx), for which we have the analytical solution

ρEX(t, x) = sin (2πx) exp
((

R − D4π2) t
)
. (25)
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From the simulation results f̂h of algorithm (2) and f̂2,h2 of model (11), we
evaluate (17) as

E(MX , M ; tN ) =
∥
∥
∥Πh2,hρ(f̂h) − ρ(f̂2,h2)

∥
∥
∥ =

= max
tN

1
Nx(h2)

⎧
⎨

⎩

∑

j∈Gh2

∥
∥
∥Πh2,hρ(f̂ tN

h )(j) − ρ(f̂ tN

2,h2
(j))

∥
∥
∥

⎫
⎬

⎭
,

(26)

Using (25), we compare also the scale-splitting error with the quantity

EAh,EX = ‖ρ(f̂h) − ρEX‖h = max
n

1
Nx(h)

⎧
⎨

⎩

∑

j∈Gh

∥
∥ρ(f̂ tn

h (j)) − ρEX(tn, xj))
∥
∥

⎫
⎬

⎭
,

(27)
i.e. the error of the original fully fine-discretized algorithm (6) (evaluated with
an opportune norm on the fine-grid space, according to the norm chosen in (26)).
Fig. 3 shows the results of scale-splitting error investigation, choosing different
values of M and comparing the cases MX = 1 and M = M2

X .
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Fig. 3. (a): CxA-splitting error versus time for M = 4, 9, 16, fixing MX = 1. (b):
Maximum values of the CxA-splitting error for MX = 1 (◦) and MX =

√
M (×) over

a complete simulation, as a function of M . The dashed line shows the error ‖E
Ah,EX
h ‖

of the fully fine-discretized algorithm (Δxh = h, Δth = h2) with respect to the ex-
act solution (25). (c): Order plot (fig. (b) in double logarithmic scale) of maximum
CxA-splitting error versus M . The approximate slopes confirm the behavior predicted
by (24).

In particular, in fig. 3b we compare the maximum scale-splitting error in time
for different values of M also with the error EAh,EX defined in (27). It shows
that for small M the splitting error is of the same order of the discretization error
of the original lattice Boltzmann algorithm (6). In this cases, the simplification
obtained with the CxA model does not affect the quality of the results.

The order plot in fig. 3c confirms estimates (24). In fact, the splitting error
increases linearly in M , while for MX = 1 the increment is quadratic. As a
consequence, for a moderate range of M , MX = 1 can produce quantitatively
better results.
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4 Conclusions and Outlook

We introduced a formalism to describe Complex Automata modeling. In partic-
ular we investigated the scale-splitting error, i.e. the modeling error introduced
by replacing a fully fine-discretized problem with multiple Cellular Automata on
different scales. Restricting to a lattice Boltzmann scheme for reaction-diffusion
problems, we have derived explicit estimates for the splitting error verifying the
expectation on simple numerical simulations.

The investigation of the scale-splitting error represents the basis of a theo-
retical foundation of the Complex Automata simulation technique. In a future
work we will discuss generalizations of the concepts presented here and of the
estimates derived in this particular example to more complicate systems and
more general CxA models.
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