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Abstract. We propose a method for efficient calculation of proximity
queries for a moving object. The proposed method performs continu-
ous collision detection between two given configurations according to
the exact collision checking (ECC) approach which performs distance
calculation between two objects. This method obtains efficient results
as it employs the concept of clearance bounds and performs approxi-
mate distance calculations with a tight fit of bounding volumes. The
high efficiency of the method, when applied to robot path planning, is
demonstrated through some experiments.

1 Introduction

Interference calculation or collision detection [I] is one of the key technologies
employed in computational geometry and related areas such as robotics, com-
puter graphics, virtual environments, and computer-aided design. In geomet-
ric calculations, a collision or proximity query reports information about the
relative configuration or placement of two objects, and it checks whether two
objects overlap in space, or whether their boundaries intersect; furthermore, it
computes the minimum Euclidean separation distance between the boundaries
of the objects. These queries are necessary in different applications, including ro-
bot motion planning, dynamic simulation, haptic rendering, virtual prototyping,
interactive walkthroughs, and molecular modeling. Some of the most common
algorithms employed for collision detection and separation distance computation
use spatial partitioning or bounding volume hierarchies (BVHs). Spatial subdi-
vision is the recursive partitioning of the embedding space, whereas BVHs are
based on the recursive partitioning of the primitives of an object.

The cost of performing a proximity query, including collision detection and/or
distance computation, is often greater than 90% of the planning time involved in
robot motion planning [2]. Due to performance related issues, most of the existing
planners use discrete proximity query algorithms and perform queries in several
fixed sampled configurations in a given interval. This does not assure that they do
not miss any thin objects between sampled configurations. Therefore, a method
[3] that employs ezact collision checking (ECC) and assures no collision has
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been proposed recently. Redon et al. [4], [5] have proposed a different approach;
this method checks the collisions between the swept volume of a robot and its
obstacles, and achieves a runtime performance roughly comparable to that of
the ECC method.

In this paper, we propose a method that employs the concept of ECC but still
obtains efficient results, by adopting the following principles.

1. We do not calculate the exact minimum distance between an object and its
obstacles. However, we obtain the approximate minimum distance between
an object and its obstacles by using BVHs.

2. We avoid calculations if the distance between BVHs is larger than a clearance
bound that assures no collision by the object movement.

3. We calculate BVHs of obstacles by dividing the bounding volumes accord-
ing to approzimate convex decomposition (ACD) algorithm to enhance the
tightness of fit and perform the collision tests with a less number of BVHs.

The rest of the paper is organized as follows. Section 2 introduces the clear-
ance bound calculation after the explaining for the ECC. Section 3 proposes a
method for obtaining tighter fit of BVHs. Section 4 describes the results of the
experiments along with the discussion. Section 5 summarizes the research.

2 Exact Collision Checking and Clearance Bound
Calculation

2.1 Exact Collision Checking

Schwarzer et al. [3] introduced an algorithm that executes ECC by using the
distances between an object and its obstacles. The object does not collide with
obstacles if ([Il) holds for two configurations ¢ and ¢'.

p-dlg,q") <nlq)+n(d) . (1)

Here, d(q,q’) denotes a path length in the configuration space C. p is a space
conversion factor for conversion from the configuration space to the work space;
it is calculated by using the present configuration. Hence, p- d(q, ¢’) denotes the
maximum trajectory length of the object in the work space, for the movement
from ¢ to ¢’ in the configuration space. n(q) denotes the Euclidean distance
between the object and its obstacles in configuration ¢, as shown in Fig. [l
Equation () indicates that an object can move freely if the sum of distances
from the object to the obstacles is larger than its moving distance. When () is
not satisfied, we insert a mid point g,,;q and calculate the distances recursively
for ginid € Ciree; We return ‘collision’ for ¢;niq € Cobstacle-

2.2 Distance Calculation by a Clearance Bound
The cost of performing the proximity query is given in [6]:

T = Npy X Cpy + Np x Cp, (2)
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Fig. 1. Exact collision check using dis- Fig.2. Collision check by clearance
tances bound

where T' denotes the total cost function for proximity queries; Ny,,, the number of
bounding volume pair operations; and Cy,, the total cost of a BV pair operation,
including the cost of transforming each BV for use in a given configuration of
the models and other per BV-operation overhead. N, denotes the number of
primitive pairs tested for proximity, and C, denotes the cost of testing a pair of
primitives for proximity (e.g., overlaps or distance computation).

The computation cost increases significantly if the objects consist of so many
points (triangles). In particular, for the distance calculation, the latter part,
N, x C,, is relatively large, and we must calculate the distance between all
the objects searching for pairs of vertices, edges, or planes on them. We do not
require a precise distance value, but we must determine whether the object can
move from the start configuration to the goal one without colliding with objects.

Therefore, Schwarzer et al. introduced greedy distance calculation to compute
lower distance bounds in [3]. In addition, we introduce a clearance bound. A
clearance bound is a distance which is sufficient for an object to clear obstacles.
We verify whether the distance between the object and its obstacles is greater
than the clearance bound, instead of obtaining the minimum distance. The cal-
culation is executed by using bounding volumes of the objects. If the distance is
larger than the clearance bound in the calculations involved in the trees of the
bounding volumes, we can stop the calculation at a higher level of the tree. We
need not trace the tree to leaves, but we can discontinue the calculation at the
corresponding level.

We apply the clearance bound to calculations in ECC. By setting the clearance
bound to half the distance in the two configurations: o = 1/2 - p - d(q,q’), we
verify whether n(g) > o at both the ends of the interval and cull the distance
calculations for cases in which the object sufficiently clears the obstacles. When
the object is near an obstacle, the above condition is not satisfied; hence, mid
points are inserted until the distance decreases below a given resolution or the
robot is in Copgtacle- I Fig. [ a clearance bound is applied. When 7(¢') < o at
¢’, a mid point is inserted and 1(q¢’) > ¢/2 and n(gy;q) > 0/2 are verified. In
this example, the check is completed at the second level of dividing the interval.

We can also apply the clearance bounds to distance calculations for determining
an adaptive step size of the grid-based approach such as BLS [7]. When a global
planner wants to select a step size according to the space in a configuration, it
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sets the given step size as a clearance bound. The robot is collision free if it ad-
vances within the clearance bound. Thus, both the step-size determination and
ECC calculation are executed simultaneously.

We employ a collision checker called proximity query package (PQP) [8], which
pre-computes a bounding hierarchical representation of each object by using two
types of bounding volumes: oriented-bounding boxes (OBBs) [9] and rectangle
swept spheres (RSSs). OBBs are efficient for detecting collisions of objects, and
RSSs are effective for the distance calculations. We execute clearance bound
calculation by using the approximate separation-distance-computation, which is
provided by the PQP as a function.

3 Tighter Fit of Bounding Volume Hierarchies

3.1 Approximate Convex Decomposition of OBBs

To create a BVH for OBBs or RSSs in PQP, an intermediate OBB is divided
into two parts according to the principal directions of covariance matrix (PDC)
of the distribution of the input data. However, for obtaining a tighter fit of
OBBs, we should divide an intermediate OBB according to the position where it
changes direction sharply or at the deepest point of a concavity. Hence, we utilize
the approximate convex decomposition (ACD) algorithm [I0] for generating an
OBB hierarchy. First, we generate a convex hull for the input point data; then,
we search the notch point which is not located on the hull and is furthest away
from the hull. Finally, we divide the volume into two boxes by the plane passing
through the point. The direction of the plane is determined, for example, to
equally divide the included angle at the notch vertex. This is repeated until the
distance from the point to the hull is below the specified tolerance.

We provide an example of collision checking for two types of solids: C-type
and S-type. Figure Bl shows the manner in which each type of solid is divided
into an OBB hierarchy. The lefthand-side and righthand-side images show the
decompositions by PDC and ACD, respectively. The tightness of fitting to OBBs
is measured by the volumes of bounding boxes at each level (see Table 1). A
lower hierarchy level indicates a larger volume difference. At the second level,
decomposition by ACD is tighter by 13% as compared to that by PDC.

For comparing the computation time required for the two types of decomposed
BVHs, collision check is executed for the movement of the left (green) object, as
shown in Fig. @l The result is shown in Table 2, which also includes the number
of collision calculations. The computation time is reduced by approximately 40%
because a tighter fit separates objects earlier (at a higher level).

3.2 Decomposition for Open Shells

Obstacles are not necessarily composed of complete solids that have no bound-
aries, but they are sometimes represented by open shells. For example, a car
body consists of sheet metal parts; hence it might be composed of open shells.
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Table 1. Comparison of volume of
BVHs at each hierarchy

Object Hierarchy Volume
level PDC ACD
0 35.9 35.9

C-type 1 47.5 47.0
2 37.8 32.7
0 40.0 40.0
S-type 1 35.2 35.0
2 32.2 28.3

Table 2. Comparison of computation
time for different BVHs

Object PDC ACD

S-type number 30 28
time (ms) 0.58 0.37

C-type number 52 46
time (ms) 1.24 0.74

Fig. 4. Movement of objects for collision check

For an open shell, we require a different algorithm of decomposition as compared
to that required for a solid object. Since an open shell has boundaries, a point
on the boundary might be the most concave part, although it is located on the
convex hull. Hence, in addition to the convex hull calculation, we must verify the
distance between the concave vertex on the boundary and the convex boundary.
We create a data structure of a shell model from the input data, which include
point data with indices and coordinate values and face data with a sequence of
vertices expressed by point indices such as mesh data [IT]. The input data are
stored in two tables, as shown in Fig.[[ in the form of a data structure. From
these tables, we form a table of vertex-cycle, which is a sequence of counter-
clockwise faces around a centered vertex. The list can be generated according to
the following procedure.
Algorithm 1: Generation of point-based data structure (Vertex cycle)

For each vertex (v;),
1) Collect faces from Faces Table, which include v;. Select one face, for example
fp, and its edge (v;,v;).
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INPUT

[Vertices Table] [Faces Table]
Number of pts Number of faces
1:x1,p1, 21 1: (1,7,8)
2:x2,)2, 22 2:(8,7,6)

3 3 X3, 3, 23 3:(9,6,5)

Generated Data Structure

[Vertex cycle] [Boundary /
1: (1, /9,-) Branch edge]
2: (19,18, (1,7,6,5.4,3,2,1)
8: (1. /2./3./7.18.19)

Fig. 5. Point-base data structure

6

(3,8)isa

branch edge. o: concave

4 _____ vertex

Fig. 6. Shell model with branch Fig. 7. Convex boundary and bridges
boundary

2) Search face f,, which has edge (v;,v;), and store f; in the vertex-cycle list.
If there is no face that includes (v;,v;), insert “-”; this means no face and
implies that it is a boundary. Then, search the vertex cycle in reverse.

3) Get edge (vg,v;) in f, and set it as the next edge for step 2); repeat steps 2)
and 3) until the selected face returns to the first face or the boundary again.

Instep 2, if the number of edges is greater than one, it is a branch edge, where more
than two faces meet. We consider a branch edge as a semi-boundary that separates
ashell as a boundary edge. We insert “#” and search faces in the reverse direction,
similarly to the boundary edge. As a result, we can obtain multiple vertex cycles.

From the table of vertex cycles, we deduce the boundaries and branch bound-
aries of a shell model, according to the following steps.

Algorithm 2: Extraction of boundaries

1) Collect vertices from the vertex-cycle table, which include a boundary edge,
for example, (f;, fj,-). Set vertex v; in the boundary list and set f; which is
next to the boundary, that is “-”, as a boundary face.

2) Search vertex vj, which has a sequence of (f;,-) in the vertex cycle, and add
it to extend the boundary list.
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3) Select face fi next to “-” in the vertex cycle of v;. Replace f; with fi and
repeat step 2) until we reach the first vertex.

4) Repeat this until there remain no vertices in Step 1. If there are holes, we
have multiple boundaries.

We can obtain the branch boundaries by using the same algorithm provided
above except for the following conditions: in a vertex cycle, there are multiple
pairs of same edges and there may exist pairs of a branch edge and boundary
edge. Figure [0 shows an example of a boundary edge. Here, an open shell is
added to the shape in Fig. Bl Edge (3, 8) is a branch edge. The vertex cycles
for vertex 8 are (f1, f2, f3, f7,%#, 8, f9) and (#, 10, f11, -). Thus we simply
express a non-manifold surface model instead of exact representation [12].

Now, we describe a method to divide an OBB to generate a tight fit of BV
hierarchy. First, we divide an object into independent shells according to the
obtained boundaries and compose a binary tree for the open shells according
to the positions of the shell boundaries. Then, we divide each OBB as a shell,
as follows. Here, we define a concave vertex locally for every three points along
a three dimensional boundary and compose a concave part of pairs of a bridge
and concave vertices. A bridge [I0] is an edge inserted to connect a concave
part and generate a convex boundary. Figure [ shows an example of a convex
boundary and bridges for an open shell. The small circles show concave vertices.
The concave vertex that is furthest from the corresponding bridge is the point
for division of the shell if the distance is larger than a given tolerance.

The shell is divided along the edges that connect the division point and the
nearest vertex on the opposite boundary or the inner boundaries of holes. This
division is repeated until there are no concave vertices whose distances to the
bridge are greater than the tolerance. In Fig. [ p,, is a division point and (p,,,
qr) is a dividing edge. When there are no concave parts and there exists a hole,
we divide its boundary at the extremum vertices along the principal direction of
the hole boundary.

4 Experiments

We implemented our local planner for application to rapidly-exploring random
trees (RRT) [I3] and bi-directional local search (BLS) [7] algorithms. We used
the Motion Strategy Library (MSL) [14] to implement and modify RRT as well as
GUI for BLS. We show the effectiveness of our planner, applied to RRT and BLS,
by conducting some experiments for an object movement in a 2D maze and 3D
environments along with an articulated robot in 3D environments. The planner
was implemented in C4++ and the experiments were executed on a Windows PC
(2.4 GHz Pentium 4 processor with 1.0 GB memory).

First, we report the analysis of the effectiveness of our algorithms. Figure
shows the start and goal configurations (small red circles) for a moving object
in a 2D maze, and Fig. [0 shows those for a 3D cage. We ran RRT 10 times for
the 2D maze and 3D cage. Each case involves three types of calculation methods
— without ECC, with ECC, and with ECC along with clearance bounds (CB)
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v X
(b) Obtained tree (a) Start configura- (b) Goal configura-

(a) Start and goal
configurations and path tion tion

Fig. 8. Start and goal configurations for ~Fig. 9. Start and goal configurations for
2D maze cage data

Table 3. Experiment results for Table 4. Experiment result for articulated robot
moving object
Case A Case B

Maze Cage RRT BLS RRT BLS

CPU Without ECC 28.94 3.71 CPU Without ECC 369.74 42.34 55.87 9.66

Time ECC 35.90 22.05 Time ECC 523.59 145.32 238.25 21.44
ECC with CB 27.32 11.85 ECC with CB 422.60 115.22 69.84 2.87

No. Collision check 7023 26383  No. Collision check 16878 90817 7548 1750
of Nodes of tree 2022 470 of Nodes of tree 5869 4546 2267 467
Nodes in path 247 30 Nodes in path 478 2345 110 366

— in the distance calculations. Table [B] shows the results of the calculation. The
averages of running CPU time are shown for these methods. The number of
points for collision check in the configuration space, number of nodes in the tree,
and number of nodes used for the path are shown for ECC with CB. The running
time for ECC with CB as compared to that for ECC without CB is reduced
by 25%, from 35.9 to 27.3, for the 2D maze. For the cage, the running time
is significantly reduced, from 22.1 to 11.9 (approximately half). The difference
between the running time in the two cases is due to the following reasons. First,
the number of generated nodes in the maze is considerably larger than that in
the cage; hence, a large amount of time is required for the tree generation, which
is shown in Fig. § (b). Second, the time required for 2D distance calculation in
ECC is considerably smaller than that required for 3D distance calculation.
Next, we executed experiments on articulated robots that have many degrees
of freedom and require a large number of interference calculations. Figure
shows the start and goal configurations of the robot along with the given obsta-
cles. The robot is a 6-axes articulated robot and has a fixed base. The surfaces
of the robot are represented by 989 triangles and those of a car are represented
by 2,069 triangles. In Case A: figures (a) and (b), the robot goes into a car from
the outside. However, the robot turns between two cars in Case B: figures (c)
and (d). We ran RRT and BLS 20 times for Case B and 5 times for Case A.
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(a) Start-A I-A
(b) Goal (a) Output boundaries (b) Extracted shells

ERER

(c) Start-B (d) Goal-B

(c) Door panel (d) Shell decomposition

Fig. 10. Start and goal configurations for =~ Fig. 11. Boundaries and extracted shells
articulated robot

Each case involves three types of calculation methods, similar to the previous
experiments. Table @] shows the results of the calculations. The running time
of ECC with CB compared to ECC without CB is reduced by 20% for Case
A; however, for Case B, the running time is reduced drastically from 238.25 to
69.84 (1/3) for RRT and from 21.44 to 2.87 (1/7) for BLS. This is because the
robot cannot be separated easily from the BVH due to its position inside the
car. In Case B, the time required for ECC with CB is nearly the same as that
required “without ECC” for RRT. Hence, the introduction of CB is proven to
be effective. For BLS, the time required by the method without ECC is larger
than that required for ECC with CB. This is because in the calculation without
ECC, we require distance calculations for determining a step size adaptively;
however, in the calculation by ECC with CB, we apply the clearance bound
to the adaptive step size along with the calculations for ECC. RRT requires a
larger time as compared to BLS, because it generates a tree uniformly for free
configurations and requires time to search the nearest node to add it to the tree.
On the other hand, BLS attacks a target more directly with less nodes and uses
discrete adaptive step sizes. Furthermore, BLS applies a lazy evaluation of ECC.

Next, we conducted the decomposition of OBBs by ACD and path calculation
for Case A. The reduction of execution time was only 10%, because the object
consists of open shells. Hence, we generated a data structure of a shell model and
obtained boundaries and shells, as shown in Fig. [[Il An example of open-shell
decomposition is also shown for a door panel. By using extracted shells, the CPU
time decreased to less than one third of the initial value.

5 Summary

We have introduced a method for efficient calculation of proximity queries for a
moving object. Our method can be employed for continuous collision detection
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between two given configurations according to the ECC approach. It obtains
results efficiently by using the concept of a clearance bound and approximate
distance calculation with close bounding volumes. To obtain close BVHs, we
employed algorithms for the decomposition of OBBs. For a solid object, we
decomposed OBBs by using ACD; we generated a data structure for a shell object
and detected a dividing point furthest from a bridge in the convex boundary. The
high efficiency of the method, when applied to RRT and BLS, is demonstrated
by experiments for moving objects and practical articulated robots.
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