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Abstract. We present a first attempt to create an in-silico model of a
uterine leiomyoma, a typical exponent of a common benign tumor. We
employ a finite element model to investigate the interaction between a
chemically driven growth of the pathology and the mechanical response
of the surrounding healthy tissue. The model includes neoplastic tissue
growth, oxygen and growth factor transport as well as angiogenic sprout-
ing. Neovascularisation is addressed implicitly by modeling proliferation
of endothelial cells and their migration up the gradient of the angiogenic
growth factor, produced in hypoxic regions of the tumor. The response
of the surrounding healthy tissue in our model is that of a viscoelas-
tic material, whereby a stress exerted by expanding neoplasm is slowly
dissipated. By incorporating the interplay of four underlying processes
we are able to explain experimental findings on the pathology’s pheno-
type. The model has a potential to become a computer simulation tool to
study various growing conditions and treatment strategies and to predict
post-treatment conditions of a benign tumor.

1 Introduction

Tumor growth is one of the leading diseases in humans. Whereas aggressively
growing malignant tumors lead to anarchic morphological patterns also breaking
into the surroundings, there are usually regularly developed structures respect-
ing borders with a well developed network of vessels in slowly growing benign
tumors. These structure-bearing characteristics predestine benign tumors to be
analyzed by creating in silico models of the growth process. Better understand-
ing of tumor development might help to optimize the existing therapeutic pro-
cedures, design new ones, or even provide post-treatment predictions. Uterine
leiomyomas (fibroids, a typical exponent of a benign tumor) are the most com-
mon uterine neoplasm affecting more than 30% of women older than 30 years
of age. Especially submucous leiomyoma are of primary clinical interest because
they often distort the uterine cavity causing serious gynecological disturbances
including pelvic pain, bleeding disorders and sterility. Fibroids are the dominat-
ing benign pathology of the uterus. They are predominantly composed of smooth
muscle and a variable amount of fibrous tissue. Despite the amount of research
in this area, the exact etiology and pathogenesis of a myoma is not known. It
is assumed that the genesis is initiated by regular muscle cells with increased
growth potential and that the growth of myomas is driven by estrogen and local
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growth factors. In general, a myoma grows slowly but continuously until the
beginning of menopause. The increase of volume by a factor of two usually takes
several months or years. A myoma has a much stronger tendency to keep its
shape than any of the tissues surrounding it, as it is composed of very dense fi-
brotic tissue. There is no real capsule around a myoma which is only surrounded
by a clustered myometrium. Most often myomas are classified depending on
their position relative to the uterine wall: intramural, subserosal (visible from
the abdominal cavity) or submucosal (visible from the uterine cavity). Latter are
discerned in pedunculated myomas (type 0), predominantly intracavitary my-
omas (type I, forming an acute angle with the uterine wall, intracavitary portion
> 50%) and predominantly intramural myomas (type II, forming an obtuse angle
with the uterine wall, intracavitary portion <= 50%). These different degrees of
intracavitary protrusion may result from myoma migration trough the healthy
surrounding muscular mesh during the growth process whereas the exact mecha-
nism remains unclear. The endometrium is a reactive tissue carrying viscoelastic
characteristics covering the entire uterine cavity including protruding myomas
of any degree. It may be stretched and thinned out until its blood supply may be
affected and punctual necrosis of the endometrium may occur. Blood supply to
the fibroids is provided by one or two large vessels ([1]), whereas [2] found that
small fibroids (1-3 mm) were avascular, in larger ones (< 1cm) a few small vessels
invaded the lesion from the periphery, and the largest fibroids (> 1cm) contained
irregular networks of blood vessels with density similar to or lower than in normal
myometrium, being surrounded by an extremely dense vascular layer. Walocha
concluded that, during development of leiomyoma, the pre-existing blood vessels
undergo regression and new vessels invade the tumor from the periphery, where
intense angiogenesis, probably promoted by growth factors secreted by the tu-
mor, leads to the formation of a vascular capsule, responsible for supply of blood
to the growing tumor. We aim at a physically correct simulation, while relying
on realistic physiological parameters when describing the underlying processes.
Only such a low-level modeling paradigm will have sufficient predictive power
required to study e.g. effects of drug administration or the influence of various
interventional strategies on the surgical outcome. In this paper we present a first
attempt to create a coupled mechano-chemical model of a growing leiomyoma.
Followed by a literature overview of the morphological and physiological tumor
development and previously proposed methods for simulation of tumor growth,
we present our multiphysics model. Results generated by its implementation
demonstrate the feasibility of our approach.

2 Literature Overview

Tumor development has been extensively studied for the last 3 decades. An
overview of the available literature relevant to our approach is given in previous
works ([3], [4], [5]). We only briefly comment on the presented approaches, that
we arbitrarily group into the following categories: 1) mathematical models, 2)
cellular automata, 3) finite element methods. In general, mathematical models
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are very interesting to study cellular metabolism and the temporal and spa-
tial dynamics of tumor development, they are, however, often limited in scope
(e.g. do not cover tissue mechanics) while being already significantly complex
in the mathematical formulation used. Moreover, their mathematical sophistica-
tion is not always readily implementable for real-life clinical problems defined by
patient-specific finite element discretizations of e.g. volumetric radiological data.
Cellular automaton approaches are demonstrated to be particularly well suited
to model dynamics of developing pathologies while being relatively accessible
in formulation. Such models, however, typically do not address the important
mechanical interactions between the tumor and healthy tissue. We identify our
approach largely with the third group, adopting the modeling techniques from
solid and fluid mechanics as well as chemical engineering. This is particularly
true for the strain-induced cellular response, gaining acceptance as an influen-
tial player in tissue development as shown in [6]. With finite element models we
can account for mechanical tissue deformations induced by developing patholo-
gies and capture its interplay with the chemical environment. In this context
multiphysics models, i.e. models combining a few independent physical phenom-
ena into one computationally coherent simulation, become of particular interest.
Feasibility of such an approach has recently been demonstrated by [4] on the
example of micro-vessel growth and remodeling. We propose to apply the same
modeling paradigm to simulate the development of a leiomyoma.

3 The Multiphysics Model

We initialize the pathology growth inside a hosting tissue (myometrium) and re-
alize its development as a response to activating factors secreted by the growing
tumor. The dividing cells acquire their oxygen and nutrients by intra-cellular
diffusion-dominated supply (corresponding to small fibroids 1-3 mm ([2])). Such
development will stop when a certain critical mass has been reached, as diffusion-
based transport is no longer efficient for proliferation-dominated growth. In such
cases the tumor will attract external blood supply from the adjacent parent ves-
sels to acquire necessary oxygen and nutrients (corresponding to larger fibroids
([2])). The formation of blood vessels during angiogenesis in general - healthy or
cancerous - is a process where capillary sprouts depart from pre-existing parent
vessels in response to externally supplied chemical stimuli. By means of endothe-
lial cell proliferation and migration the sprouts then organize themselves into a
branched, connected network structure, created in order to feed the developing
tumor. A detailed description of this process in context of computer modeling
is given by [3]. The novelty of our model compared to the one described therein
is not only to use the delivered nutrients to explicitly control the growth, but
couple the growth back to the vessel network behavior via secretion of tumor
angiogenesis growth factors (AGF). The components of this linked bio-chemo-
mechanical model are described in the following sections.
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3.1 Tumor Neovascularization

We start our modeling from the widely accepted assumption that the initial re-
sponse of the endothelial cells to the angiogenic growth factors is due to chemo-
taxis, enforcing cell migration towards the tumor or ischemic cell. Once secreted,
the growth factors diffuse from the tumor (domain Ω2) into the surrounding
tissue (domain Ω1) establishing a certain concentration gradient between the
chemical source and the parent vessels. As the endothelial cells migrate through
the extracellular matrix in response to this gradient there is some uptake and
binding of the growth factors by the cells ([7]). Therefore, this process can be
modeled by a diffusion equation with a natural decay term:

∂c1

∂t
= D1∇2c1 − R1c1 (1)

c1 = α1H
−|∂Ω12 (2)

H− =
∫

c3≤cth
3

dΩ2 (3)

with c1 being the chemical concentration of the growth agent, D1 its diffusion
constant and R1 decay rate. The amount of the growth factor released depends
(here, linearly) on the amount of tumor cells suffering from hypoxia H−, with
a minimum required oxygenation threshold cth

3 . Once the distribution of the
growth agent has been initiated, endothelial cells start to respond to the stimu-
lus. The endothelial density evolution is governed by a conventional convection-
diffusion equation that we write as:

∂c2

∂t
= D2∇2c2 + ∇ · (c2u) (4)

u =
(

k0 k1

k1 + c1
∇c1

)
(5)

with c2 being the endothelial cell density and D2, R2 positive constants. Note
the dependence of the convective velocity u on the growth factor concentration
c1. Now that a vascular system has changed according to the growth agent, a
new distribution of oxygen results, governed by:

∂c3

∂t
= D3∇2c3 − R3c3 (6)

c3 = α3c2|∂Ω12 (7)

with D3 being the diffusion constant and R3 the reaction rate. Here, the amount
of oxygen delivered to the tumor depends linearly on the density of endothelial
cells, assumed to form predominantly capillaries close to the tumor.

3.2 Tissue Mechanics

We base our modeling on experimental observations of mechanic tissue responses
to chemical growth factors, see e.g. [6]. Production of such growth factors in our
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model is a result of ischemia, as described in the preceding section. As the growth
itself results largely from increased proliferation rate, we can model it as initial
strain condition:

ε0(t) =

∫ t+Δt

t
∂N
∂t dt

N
∼=

N(t + Δt, x, θ) − N(t, x, θ)
N(t, x, θ)

(8)

where N(t, x, θ) is the number of cells in a finite element at time t and position
x. For a constant growth rate the strain is Δt

T2
, where T2 is the cell population

doubling time. The proliferation rate and, therefore, the number of cells depends
on certain environmental factors θ such as oxygen availability. Based on descrip-
tions in the literature ([8]) we have defined this dependency with a piece-wise
linear function (ε0 = Δt

T2
f(c3(t))), which relates the deviation from normal oxy-

gen concentration to the amount of growth. A step function around a hypoxia
threshold c3 has been assumed, thus

ε0 = α4H
+ (9)

H+ =
∫

c3>cth
3

dΩ2 (10)

which aims to approximate the fact that cells receiving enough oxygen will pro-
liferate resulting in stress both in the tumor and the surrounding tissue. To
quantify this stress one needs a model for the tissue response to strain. Linear
elastic material is long known to be inadequate to describe soft tissue responses
to mechanical loads. To describe the tissue behavior under some strain ε(t) we
take the standard viscoelastic model after [9]:

d

dt
σ (t) +

Eσ (t)
μ

=
EE0 ε

μ
+ (E + E0 )

d

dt
ε (t) (11)

Solving symbolically for σ(t) leads to an expression for stress relaxation:

σ(t) = ε0(E0 + Ee−Et/μ) (12)

with ε0(E0 +E) the linear contribution to total stress and μ the relaxation time.
Under the assumption of tissue incompressibility and approximate spherical

symmetry, the thickness of the thin tissue rim surrounding the myoma from
the cavity side has to change with the increase of the pathology radius in order
to compensate for the volume change. Perfectly elastic wall (hoop) stress in a
thin-walled sphere is given as:

σ(r) = 1/2
p r

−r +
√

r2 + 2 w0 r0 + w0
2

(13)

with r0 and w0 rest-state radius of the sphere and the thickness of its wall,
respectively. Even if the strain-stress relation is linear, as seen in Fig. 1 (solid
line), the wall stress is not, because of the variable wall thickness. Solution
for a general (including viscous) stress will be of a similar form, multiplied by a
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relaxation factor (dashed line). What this means for our model is that we are able
now to simulate a spectrum of tissue behaviors: from perfectly elastic (μ → 0)
to perfectly plastic (μ → ∞), regulating the relaxation contribution with μ. Of
course, in general, these model parameters will be different for the tumor and
the surrounding tissue. The resulting overall model depends on 5 unknowns: 3
concentrations (scalars) and 2 stresses (tensors). The model parameters that we
have used in the actual implementation are discussed below.

3.3 Estimation of the Model Parameters

Based on measurements of the average thickness dv of the viable rim of in vitro
tumor spheroids in [10,11], and estimates of oxygen consumption rates in [12,13]
and diffusion coefficient in [12,13], we can estimate the critical drop in the oxy-
gen concentration which leads to hypoxia-induced growth factor production. By
solving analytically a radially symmetric constant boundary reaction-diffusion
problem in an idealized spherical geometry and using a linear oxygen reaction
rate as before, we get an estimate for cthr

3 of 1.2 × 10−3(ml O2)(ml tissue)−1,
which corresponds to approximately 31mmHg. This seems reasonable, since the
median partial pressure in breast cancers was 30mmHg as measured by [14]. We
were unable to find any measurements of the AGF uptake rate R1 in the litera-
ture. We assume the value R1 = 10−6s−1. Estimates for the diffusion coefficient
for different AGFs are in the range of one to two orders of magnitude smaller
than for oxygen, we use the value D1 = 10−10m2s−1 after [15]. In order to set
the coupling factor α1, we measure the hypoxic area H of the tumor in the initial
configuration where we define c1 = c0 = 10−7mole/m3 ([16]), i.e. α1 = H/c0
which is approximately 1/3.

The parameters D2, k2 and k0 are taken from [16]. [17] measured the chemo-
tactic coefficient k0 and diffusion coefficient D2 of migrating endothelial cells in
gradients of aFGF. The measurements were however made with unconstrained
endothelial cells. As pointed out by [16] these experimental conditions overes-
timate the random motility, therefore they chose a smaller value for D2. The
chemotactic function k(c1) = k0k1

k1+c1
is nearly constant for low AGF concentra-

tion c1, but decreases for high concentrations in the range of k1. The parameter
k1 is therefore chosen close to c0 = 10−7mole/m3 which is supposed to be a rel-
atively high concentration, again measured for the chemoattractant aFGF. This
receptor kinetic form reflects the more realistic assumption that chemotactic
sensitivity decreases with higher AGF concentrations.

It has been shown in [10] that the oxygen consumption is reduced at lower
oxygen concentrations. Therefore, we take a linear reaction rate in our model
R3. In order to estimate the oxygen delivered to the tissue by the vasculature in
terms of the endothelial cell density, we make some simplifications. The oxygen
flux through a segment of a vessel is approximately

QO2 = dS KO2(P
blood
O2

− P tissue
O2

)
1
w

, (14)
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where P tissue
O2

is the oxygen partial pressure on the interface between the vessel
and the tissue, dS is the vessel surface, w wall thickness, and QO2 is the oxygen
transported through the vessel wall ([13]). The partial pressure of the blood is
given by P blood

O2
. The coefficient KO2 is also known as Krogh’s oxygen diffusion

coefficient ([18]). Assuming the known mean radius R of a capillary, and its
thickness w, we can estimate oxygen source at the capillaries as

SO2 =
QO2

V
= c2 · 2 R

(R2 − (R − w)2) w
KO2(P

blood
O2

− P tissue
O2

) = c2 · C0 (15)

In order to obtain an estimate for α3 in eq. 7 we multiply C0 by the approximate
diffusion length. For the mean tissue oxygen partial pressure we used the value
measured in the breast by [14] to be 65mmHg. The blood oxygen pressure was
assumed to be that of arterial blood.

4 Results

A development of a virtual myoma is shown in Fig. 2, intensity-coded with stress,
using identical scale to facilitate magnitude comparisons. The neoplasm started
growing as a small oval pathology in myometrium and continues to grow into
the surrounding tissue that is largely dissipating the generated strain energy.
As shown, the tissue after being exposed to the critical stress of around 1MPa
(Fig. 2e, value out of scale), gradually relaxes its stress allowing the pathology to
continue expanding and therefore only weakly constraining its progression. The
formation of an experimentally observed type I myoma is inevitable. Should the
behavior of the surrounding tissue be dominated by elasticity (i.e., the expansion
induced stress in the thin tissue slab would be mostly preserved), the stretched
layer of the myometrium would very strongly constrain the growth. This is be-
cause the reaction force would be equal to - or greater than - the accumulated
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Fig. 1. Wall stress in the thin tissue layer accumulating the strain energy (solid line)
and dissipating it (dashed line)
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Fig. 2. Simulation results of a myoma (type I) developing at the border of the my-
ometrium. Due to stress dissipation there is no significant resistance from the tissue
layer on the cavity side (upwards on the image). As a result the pathology envelope
forms an acute angle with the basement layer.

stress, comparable in magnitude to the elastic modulus of the pathology (c.f.
Fig. 1). We have tested this scenario as well and found a myoma of type II with
appearance identical to that in Fig. 2e only with much higher (accumulated)
stress, constraining further growth. The myoma surfaces, surfaces only partially
(if at all) or even protrudes back into the myometrium, depending on the initial
starting position of the growth. All these scenarios are observed during myoma
resection surgeries and can well be explained by our model (cf. [1]).

5 Discussion and Outlook

The findings resulting from our first computational experiments are in good
agreement with observations on real cases. We are now in position to study e.g.
how modifications of the vascular system by means of anti-angiogenic therapy
could influence the dynamics and appearance of a myoma. We can also inves-
tigate how the different tissue properties determine if the myoma surfaces into
the cavity or protrudes back into the myometrium. This and other in-silico ex-
periments are under way and will be reported separately.
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A point of discussion is the viscoelasticity of the surrounding tissue. This could
correspond to e.g. increased proliferation or loss of elasticity due to structural
fiber damage under prolonged exposure to stress. From histological stains we
know that the healthy myometrium mesh and the membranaceous endometrium
may be stretched by a stiff growing myoma to the many fold of their original
dimensions, coped by hypertrophy and/or hyperplasia. At a certain moment,
thinning of healthy structures is not compatible with sufficient blood supply
anymore, leading to necrosis in the top stressed area first, e.g. causing pain and
bleeding disorders.

Obviously, our model cannot be free from simplifications. We currently only
consider oxygen as the nutrient while tumor cells often do not require much
oxygen for growth, but glucose, fat, and amino acids. Even when addressing only
oxygen in our current model, we work under the assumption that the oxygen
is delivered only to the tumor surface. We do not currently model the vascular
penetration. Modeling the blood vessels explicitly as in [5] would allow making
studies and predictions of the actual structure and function of the feeding vessels.
Distinguishing between myometrium and endometrium is another extension that
we consider in the next version.

The quantitative validation of the findings presented is currently prepared by
comparisons to histologic stains and vascular corrosion castings of uteri contain-
ing myomas (c.f. [2]).

Acknowledgments. This work is part of the Swiss National Center of Compe-
tence in Research on Computer Aided and Image Guided Medical Interventions
(NCCR Co-Me), supported by the Swiss National Science Foundation. We are
indebt to prof. dr. med. Haymo Kurz from the Institute of Anatomy and Cell
Biology, University of Freiburg, for numerous discussions and explanations.

References

1. Mencaglia, L., Hamou, J.E.: Manual of Gynecological Hysteroscopy. Endo-Press
(2001)

2. Walocha, J.A., Litwin, J.A., Miodonski, A.J.: Vascular system of intramural leiomy-
omata revealed by corrosion casting and scanning electron microscopy. Hum. Re-
prod. 18(5), 1088–1093 (2003)

3. Szczerba, D., Szekely, G.: Simulating vascular systems in arbitrary anatomies.
In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 641–648.
Springer, Heidelberg (2005)

4. Szczerba, D., Szekely, G., Kurz, H.: A multiphysics model of capillary growth and
remodeling. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J.
(eds.) ICCS 2006. LNCS, vol. 3992, pp. 86–93. Springer, Heidelberg (2006)
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