Particle Swarm Optimization for Bézier Surface
Reconstruction

Akemi Galvez, Angel Cobo, Jaime Puig-Pey, and Andrés Iglesias

Department of Applied Mathematics and Computational Sciences,
University of Cantabria, Avda. de los Castros, s/n, E-39005, Santander, Spain
{galveza,acobo,puigpeyj,iglesias}@unican.es

Abstract. This work concerns the issue of surface reconstruction, that
is, the generation of a surface from a given cloud of data points. Our
approach is based on a metaheuristic algorithm, the so-called Particle
Swarm Optimization. The paper describes its application to the case of
Bézier surface reconstruction, for which the problem of obtaining a suit-
able parameterization of the data points has to be properly addressed.
A simple but illustrative example is used to discuss the performance of
the proposed method. An empirical discussion about the choice of the
social and cognitive parameters for the PSO algorithm is also given.

1 Introduction

A major challenge in Computer Graphics nowadays is that of surface reconstruc-
tion. This problem can be formulated in many different ways, depending on the
given input, the kind of surface involved and other additional constraints. The
most common version in the literature consists of obtaining a smooth surface
that approximates a given cloud of 3D data points accurately. This issue plays
an important role in real problems such as construction of car bodies, ship hulls,
airplane fuselages and other free-form objects. A typical example comes from Re-
verse Engineering where free-form curves and surfaces are extracted from clouds
of points obtained through 3D laser scanning [BITTIT2IT7ITS].

The usual models for surface reconstruction in Computer Aided Geometric
Design (CAGD) are free-form parametric curves and surfaces, such as Bézier,
Bspline and NURBS. This is also the approach followed in this paper. In partic-
ular, we consider the case of Bézier surfaces. In this case, the goal is to obtain the
control points of the surface. This problem is far from being trivial: because the
surface is parametric, we are confronted with the problem of obtaining a suitable
parameterization of the data points. As remarked in [I] the selection of an ap-
propriate parameterization is essential for topology reconstruction and surface
fitness. Many current methods have topological problems leading to undesired
surface fitting results, such as noisy self-intersecting surfaces. In general, algo-
rithms for automated surface fitting [2/10] require knowledge of the connectivity
between sampled points prior to parametric surface fitting. This task becomes
increasingly difficult if the capture of the coordinate data is unorganized or scat-
tered. Most of the techniques used to compute connectivity require a dense data

M. Bubak et al. (Eds.): ICCS 2008, Part II, LNCS 5102, pp. 116-{125] 2008.
© Springer-Verlag Berlin Heidelberg 2008

Particle Swarm Optimization for Bézier Surface Reconstruction 117

set to prevent gaps and holes, which can significantly change the topology of the
generated surface.

Some recent papers have shown that the application of Artificial Intelligence
(AI) techniques can achieve remarkable results regarding this parameterization
problem [BISIGITTIT2IT6]. Most of these methods rely on some kind of neural
networks, either standard neural networks [8], Kohonen’s SOM (Self-Organizing
Maps) nets [1I9], or the Bernstein Basis Function (BBF) network [16]. In some
cases, the network is used exclusively to order the data and create a grid of
control vertices with quadrilateral topology [9]. After this preprocessing step,
any standard surface reconstruction method (such as those referenced above)
has to be applied. In other cases, the neural network approach is combined
with partial differential equations [I] or other approaches. The generalization
to functional networks is also analyzed in [BUTTIT2]. A previous paper in [7]
describes the application of genetic algorithms and functional networks yielding
pretty good results for both curves and surfaces.

Our strategy for tackling the problem also belongs to this group of Al tech-
niques. In this paper we address the application of the Particle Swarm Opti-
mization method for Bézier surface reconstruction. Particle Swarm Optimization
(PSO) is a popular metaheuristic technique with biological inspiration, used in
CAM (Computer-Aided Manufacturing) for dealing with optimization of milling
processes [6]. The original PSO algorithm was first reported in 1995 by James
Kennedy and Russell C. Eberhart in [BI13]. In [4] some developments are pre-
sented. These authors integrate their contributions in [I5]. See also [19].

The structure of this paper is as follows: the problem of surface reconstruction
is briefly described in Section 2l Then, Section Bl describes the PSO procedure in
detail. A simple yet illustrative example of its application is reported in Section
[This section also discuss the problem of the adequate choice of the social and
cognitive parameters of the PSO method by following an empirical approach.
The main conclusions and further remarks in Section [l close the paper.

2 Surface Reconstruction Problem

The problem of surface reconstruction can be stated as follows: given a set of
sample points X assumed to lie on an unknown surface U, construct a surface
model S that approzimates U. This problem is generally addressed by means
of the least-squares approximation scheme, a classical optimization technique
that (given a series of measured data) attempts to find a function (the fitness
function) which closely approximates the data. The typical approach is to assume
that f has a particular functional structure which depends on some parameters
that need to be calculated. In this work, we consider the case of f being a Bézier
parametric surface S(u,v) of degree (M, N) whose representation is given by:

M N
S(u,v) =) PiyBM(u)B] (v) (1)

i=0 j=0

118 A. Gélvez et al.

where BM(u) and B} (v) are the classical Bernstein polynomials and the co-
efficients P; ; are the surface control points. Given a set of 3D data points
{Dk}k=1,... n,, Wwe can compute, for each of the cartesian components, (zx, Y, 2)
of Dy, the minimization of the sum of squared errors referred to the data points:

2

Nk
ET’I"M - Z M — ZZP”BM Uk BN('Uk:) ; H=2,Y,z (2)
k=1 =0 j=0

Coefficients P;; = (P{j,Pf},Pz) 1 =0,...,M,j=0,...,N, are to be deter-
mined from the information given by the data points (zk,yk, zx), k=1,...,n
Note that performing the component-wise minimization of these errors is equiv-
alent to minimizing the sum, over the set of data, of the Euclidean distances
between data points and corresponding points given by the model in 3D space.
Note that, in addition to the coefficients of the basis functions, P;;, the parame-
ter values, (ug,vk), k = 1,...,nx, associated with the data points also appear
as unknowns in our formulation. Due to the fact that the blending functions
BM(u) and B (v) are nonlinear in u and v respectively, the least-squares min-
imization of the errors becomes a strongly nonlinear problem [20], with a high
number of unknowns for large sets of data points, a case that happens very often
in practice.

3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a stochastic algorithm based on the evo-
lution of populations for problem solving. PSO is a kind of swarm intelligence,
a field in which systems are comprised by a collection of individuals exhibiting
decentralized or collective behavior such that simple agents interact locally with
one another and with their environment. Instead of a central behavior determin-
ing the evolution of the population, are these local interactions between agents
which lead to the emergence of a global behavior for the swarm. A typical exam-
ple of PSO is the behavior of a flock of birds when moving all together following
a common tendency in their displacements. Other examples from nature include
ant colonies, animal herding, and fish schooling.

In PSO the particle swarm simulates the social optimization commonly found
in communities with a high degree of organization. For a given problem, some
fitness function such as (2) is needed to evaluate the proposed solution. In order
to get a good one, PSO methods incorporate both a global tendency for the
movement of the set of individuals and local influences from neighbors [BIT3].
PSO procedures start by choosing a population (swarm) of random candidate
solutions in a multidimensional space, called particles. Then they are displaced
throughout their domain looking for an optimum taking into account global and
local influences, the latest coming form the neighborhood of each particle. To
this purpose, all particles have a position and a velocity. These particles evolve
all through the hyperspace according to two essential reasoning capabilities: a

Particle Swarm Optimization for Bézier Surface Reconstruction 119

Table 1. General structure of the particle swarm optimization algorithm

begin
k=0
random initialization of individual positions P; and velocities V; in Pop(k)
fitness evaluation of Pop(k)
while (not termination condition) do
Calculate best fitness particle Pgb
for each particle ¢ in Pop(k) do
Calculate particle position P with best fitness
Calculate velocity V; for particle i according to (B])
while not feasible P; + V; do
Apply scale factor to V;

end
Update position P; according to (@)
end
k=k+1
end
end

memory of their own best position and knowledge of the global or their neigh-
borhood’s best. The meaning of the ”best” must be understood in the context
of the problem to be solved. In a minimization problem (like in this paper) that
means the position with the smallest value for the target function.

The dynamics of the particle swarm is considered along successive iterations,
like time instances. Each particle modifies its position P; along the iterations,
keeping track of its best position in the variables domain implied in the problem.
This is made by storing for each particle the coordinates P associated with the
best solution (fitness) it has achieved so far along with the corresponding fitness
value, f?. These values account for the memory of the best particle position. In
addition, members of a swarm can communicate good positions to each other,
so they can adjust their own position and velocity according to this information.
To this purpose, we also collect the best fitness value among all the particles in
the population, f;’ , and its position Pgb from the initial iteration. This is a global
information for modifying the position of each particle. Finally, the evolution for
each particle ¢ is given by:

Vi(k +1) = wV;(k) + aRu[Fy (k) — P;(k)] + BR2[P) (k) — Fi(k)] 3)
Pi(k+1) = Pi(k) + Vi(k) (4)

where P;(k) and V;(k) are the position and the velocity of particle i at time k
respectively, w is called inertia weight and decide how much the old velocity will
affect the new one and coeflicients « and § are constant values called learning
factors, which decide the degree of affection of P; and PP. In particular, «
is a weight that accounts for the “social” component, while § represents the
“cognitive” component, accounting for the memory of an individual particle

120 A. Gélvez et al.

Yy X

Fig. 1. Example of surface reconstruction through particle swarm optimization: recon-
structed bicubic Bézier surface and data points

along the time. Two random numbers, R; and Rs, with uniform distribution
on [0,1] are included to enrich the searching space. Finally, a fitness function
must be given to evaluate the quality of a position. This procedure is repeated
several times (thus yielding successive generations) until a termination condition
is reached. Common terminating criteria are that a solution is found that satisfies
a lower threshold value, or that a fixed number of generations has been reached,
or that successive iterations no longer produce better results. The final PSO
procedure is briefly sketched in Table [l

4 An Illustrative Example

In this section we analyze a simple yet illustrative example aimed at showing
the performance of the presented method. To this purpose, we consider an input
of 256 data points generated from a Bézier surface as follows: for the u’s and v’s
of data points, we choose two groups of 8 equidistant parameter values in the
intervals [0, 0.2] and [0.8, 1]. This gives a set of 256 3D data points. Our goal is
to reconstruct the surface which such points come from. To do so, we consider
a bicubic Bézier surface, so the unknowns are 3 x 16 = 48 scalar coefficients (3
coordinates for each of 16 control points) and two parameter vectors for u and
v (each of size 16) associated with the 256 data points. That makes a total of
80 scalar unknowns. An exact solution (i.e. with zero value error) exists for this
problem.

Particle Swarm Optimization for Bézier Surface Reconstruction 121

cees
ceos
1213
cens
111k}
H
o
s383

0 i i i i i i i
0 50 100 150 200 250 300 350 400 450
0.2 0.4 0.6 0.8 1

lterations ’ u

Fig. 2. Example of surface reconstruction through particle swarm optimization: (left)
evolution of the mean (solid line) and the best (dotted line) Euclidean errors along the
generations; (right): optimum parameter values for v and v on the parametric domain

The input parameter values for the PSO algorithm are: population size: 200
individuals or particles, where each particle is represented by two vectors, U
and V, each with 16 components initialized with random uniform values on [0,1]
sorted in increasing order; inertia coefficient w = 1. The termination criteria is
that of not improving the solution after 30 consecutive iterations.

An example of reconstructed surface along with the data points is shown
in Figure [[l This example does not correspond to the best solution (note that
some points do not actually lie on the surface); it is just an average solution
instead. It has been attained from eqs. (@)-) with a = 8 = 0.5 at generation
432 with the following resultd]: best error in the fit: 1.6935426; mean error:
1.6935856; computation time: 56.73 seconds. All computations in this paper
have been performed on a 2.4 GHz. Intel Core 2 Duo processor with 2 GB. of
RAM. The source code has been implemented in the popular scientific program
Matlab, version 7.0.

Fig. 2left) displays the evolution of mean error (solid line) and best (dot-
ted line) distance error for each generation along the iterations. The optimum
parameter values for (u,v) are depicted in Fig. Rlright) where one can see how
the fitting process grasps the distribution of parameter values assigned to the
data points. It is worthwhile to mention the tendency of the obtained parameter
values, initially uniformly distributed on the unit square, to concentrate at the
corners of such unit square parameter domain, thus adjusting well the input
information. However, neither the couples (u, v) are uniformly distributed at the
corners nor they fall within the intervals [0, 0.2] and [0.8, 1] for u and v, meaning
that current results might actually be improved.

A critical issue in this method is the choice of the coefficients « and account-
ing for the global (or social) and the local (or cognitive) influences, respectively.
In order to determine their role in our approach and how their choice affects
method’s performance, we considered values for a and g ranging from 0.1 to 0.9

! For the sake of easier comparison, this case has been boldfaced in Table

122 A. Gélvez et al.

Table 2. Executions of PSO algorithm for our Bézier surface reconstruction problem.
Cases (left-right, top-bottom): « from 0.9 to 0.4 with step 0.1, 8 =1 — « in all cases.

a=0973=0.1 a=0.8,=0.2
Best error Mean error # iter. CPU time Best error Mean error # iter. CPU time
1.1586464 1.1586805 338 48.49 21516721 2.1727290 820 151.74
1.6367439 1.6368298 624 85.03 2.5577003 2.5578876 308 46.45
2.3784306 2.3784327 736 93.27 2.0212768 2.0212868 431 69.06
1.8768595 1.8778174 350 46.26 1.8898777 1.8899836 455 69.23
2.1174907 2.1174907 917 131.72 2.0019422 2.003234 456 57.26
1.1742370 1.1785017 145 20.97 1.6520482 1.6520508 815 106.01
2.0640768 2.0640795 503 60.19 2.1574432 2.1574436 1540 205.35
2.2379692 2.2380810 302 46.43 2.4201197 2.4202493 822 100.09
2.1448603 2.1450512 443 56.22 2.0328183 2.0328913 587 72.24
2.0545017 2.0547538 408 5248 2.2947584 2.2949567 3144 402.61

a=0.7,8=03 a=0.6,3=04
Best error Mean error # iter. CPU time Best error Mean error # iter. CPU time
1.8639684 1.8653115 162 21.19 1.9953687 1.9959765 379 44.73
1.5992922 1.5993440 192 24.27 2.1917047 2.1921891 289 39.14
2.2059607 2.2059608 1340 149.33 1.2152328 1.2152527 382 49.42
2.3826529 2.3836276 185 22.42 1.9617652 1.9623143 303 43.27
2.0860826 2.0862052 400 49.38 1.2548267 1.2548387 1222 143.48
1.5692097 1.5692186 967 174.42 1.8748061 1.8752081 407 52.23
1.6049119 1.6049300 470 58.12 1.9507635 1.9509406 363 40.67
1.3689993 1.3690215 292 39.17 2.0454719 2.0464246 692 82.73
1.6388899 1.6395055 458 50.81 1.3580824 1.3583463 212 25.62
1.7290016 1.7291297 389 41.83 1.9017035 1.9017552 791 92.15

a=05,08=0.5 a=04,3=0.6
Best error Mean error # iter. CPU time Best error Mean error # iter. CPU time
1.0799138 1.0805757 408 52.47 0.9491048 0.9492409 382 45.20
1.7608284 1.7608294 808 102.93 1.7165179 1.7165739 1573 178.12
1.8697185 1.8697928 809 104.86 1.3993802 1.3993921 466 58.42
1.6935426 1.6935856 432 56.73 1.1001050 1.1001427 720 104.10
1.2815625 1.2815865 495 61.72 1.2968360 1.2968360 1236 157.12
2.1078771 2.1079752 401 61.96 0.9909381 0.9909412 575 73.24
1.7415515 1.7415516 574 78.96 1.4642326 1.4642397 781 89.32
1.6556435 1.6556464 1083 143.02 1.6312540 1.6312592 619 74.42
2.0329562 2.0329594 1286 172.42 1.4394767 1.4394768 665 83.01
1.0632575 1.0632593 413 54.67 1.4422279 1.4422380 784 91.03

with step 0.1 in the way of a convex combination, i.e., « + § = 1. This choice
allows us to associate the values of the couple («, 3) with a probability, so that
their interplay can be better analyzed and understood. Note that the limit values
0 and 1 for any parameter « or (3 automatically discards the other one so they are
not considered in our study. Furthermore, in [T4] some experiments for the two
extreme cases, social-only model and cognitive-only model, were accomplished

Particle Swarm Optimization for Bézier Surface Reconstruction 123

Table 3. Executions of PSO algorithm for our Bézier surface reconstruction problem.
Cases: a = 0.3 (top-left), a = 0.2 (top-right), @ = 0.1 (bottom) 8 =1 — « in all cases.

a=03,8=07 a=023=08
Best error Mean error # iter. CPU time Best error Mean error # iter. CPU time
2.1435684 2.1435684 974 109.00 1.866938 1.867126 461 61.99
1.8060138 1.8060836 531 57.48 0.9551159 0.9557403 290 37.26
2.2339992 2.2339993 1159 129.07 2.0777061 2.0777782 940 113.08
2.0832623 2.0832632 3781 387.39 2.0558802 2.0559779 807 96.07
1.6257242 1.6257283 748 83.71 1.6975429 1.6975450 1330 163.06
1.6742073 1.6742091 831 104.53 1.9514682 1.9514725 1405 177.13
2.2355623 2.2356626 1262 134.60 1.8397214 1.8397337 898 107.12
2.0420308 2.0420326 510 64.98 1.8298951 1.8298951 1297 165.25
2.2102381 2.2102381 741 82.48 2.0990000 2.0990008 905 100.92
2.2140913 2.2141552 2168 243.69 1.5363575 1.5363722 766 92.41

a=0.1,8=09
Best error Mean error # iter. CPU time Best error Mean error # iter. CPU time
1.6872942 1.6873196 1885 197.43 1.6657973 1.6658058 1377 156.11
1.8395049 1.8395169 1793 194.67 1.8360591 1.8360592 3918 412.28
1.3436841 1.3436841 1887 214.16 1.4325258 1.4325283 751 99.35
1.7886651 1.7889720 561 67.38 0.9387540 0.9387899 814 89.28
1.0500875 1.0501339 1442 154.02 0.9643215 0.9642876 798 84.32

and the author found out that both parts are essential to the success of PSO. On
the other hand, to overcome the randomness inherent in our method, we carried
out 25 executions for each choice of these parameters. The 15 worst results were
then removed to prevent the appearance of spurious solutions leading to local
minima. The remaining 10 executions are collected in Tables 2 and Bl

Columns of these tables show the best and mean errors, the number of itera-
tions and the computation time (in seconds) respectively. Note that the best and
mean errors take extremely close (although slightly different) values, with differ-
ences of order 107° in most cases. Note also that the number of iterations (and
hence the computation time) varies a lot among different executions. However,
larger number of iterations do not imply, in general, lower errors.

5 Conclusions and Future Work

In this paper we consider the problem of the reconstruction of a Bézier surface
from a set of 3D data points. The major problem here is to obtain a suitable
parameterization of the data points. To this aim, we propose the use of the PSO
algorithm that is briefly described in this paper. The performance of this method
is discussed by means of a simple example.

In general, the PSO performs well for the given problem. Errors typically
fall within the interval [0.9,2.6] in our executions, although upper (and possibly
lower) values can also be obtained. This means that the present method compares

124 A. Gélvez et al.

well with the genetic algorithms approach reported in [7], although the PSO
seems to yield more scattered output throughout the output domain. Other
remarkable feature is that the best and mean errors are very close each other
for all cases, as opposed to the genetic algorithms case, where the differences are
generally larger. On the other hand, there is not correlation between the number
of iterations and the quality of the results. This might mean that our way of
exploring the space domain of the problem is not optimal yet, and consequently
there is room for further improvement. This can be achieved by a smart choice of
the PSO parameters. As a first step, we performed an empirical analysis about
the choice of the (a, 3) parameters of the PSO (although other parameters such
as the initial population and the number of neighbors for each particle are also
relevant). The results show that there is no significant differences when changing
the (a, 8) values in the way of a convex combination, although the condition
B > « seems to achieve slightly better results. However, further research is still
needed in order to determine the role of the parameter values at full extent.

Our future work include further analysis about the influence of the PSO pa-
rameters on the quality of the results. Some modifications of the original PSO
scheme might lead to better results. Other future work is the consideration of
piecewise polynomials models like B-spline or NURBS, which introduce some
changes in the computational process for dealing with the knot vectors (that are
other parameters to be taken into account in these models). Some ideas on how
to improve globally the search process are also part of our future work.

Acknowledgments. The authors thank the financial support from the SistIng-
Alfa project, Ref: ALFA 11-0321-FA of the European Union and the Spanish
Ministry of Education and Science, National Program of Computer Science,
Project Ref. TIN2006-13615 and National Program of Mathematics, Project
Ref. MTM2005-00287.

References

1. Barhak, J., Fischer, A.: Parameterization and reconstruction from 3D scattered
points based on neural network and PDE techniques. IEEE Trans. on Visualization
and Computer Graphics 7(1), 1-16 (2001)

2. Bradley, C., Vickers, G.W.: Free-form surface reconstruction for machine vision
rapid prototyping. Optical Engineering 32(9), 2191-2200 (1993)

3. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In:
Proceedings of the Sixth International Symposium on Micro Machine and Human
Science, Nagoya, Japan, pp. 39-43 (1995)

4. Eberhart, R.C., Shi, Y.: Particle swarm optimization: developments, applications
and resources. In: Proceedings of the 2001 Congress on Evolutionary Computation,
pp. 81-86 (2001)

5. Echevarria, G., Iglesias, A., Gélvez, A.: Extending neural networks for B-spline
surface reconstruction. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G.
(eds.) ICCS-ComputSci 2002. LNCS, vol. 2330, pp. 305-314. Springer, Heidelberg
(2002)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Particle Swarm Optimization for Bézier Surface Reconstruction 125

. El-Mounayri, H., Kishawy, H., Tandon, V.: Optimized CNC end-milling: a practical

approach. International Journal of Computer Integrated Manufacturing 15(5), 453~
470 (2002)

. Gélvez, A., Iglesias, A., Cobo, A., Puig-Pey, J., Espinola, J.: Bézier curve and

surface fitting of 3D point clouds through genetic algorithms, functional networks
and least-squares approximation. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA
2007, Part II. LNCS, vol. 4706, pp. 680-693. Springer, Heidelberg (2007)

. Gu, P., Yan, X.: Neural network approach to the reconstruction of free-form sur-

faces for reverse engineering. Computer Aided Design 27(1), 59-64 (1995)

. Hoffmann, M., Varady, L.: Free-form surfaces for scattered data by neural networks.

J. Geometry and Graphics 2, 1-6 (1998)

Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface recon-
struction from unorganized points. In: Proc. of SIGGRAPH 1992, vol. 26(2), pp.
71-78 (1992)

Iglesias, A., Galvez, A.: A new artificial intelligence paradigm for computer aided
geometric design. In: Campbell, J.A., Roanes-Lozano, E. (eds.) AISC 2000. LNCS
(LNATI), vol. 1930, pp. 200-213. Springer, Heidelberg (2001)

Iglesias, A., Echevarria, G., Gélvez, A.: Functional networks for B-spline surface
reconstruction. Future Generation Computer Systems 20(8), 13371353 (2004)
Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International
Conference on Neural Networks, Perth, Australia, pp. 1942-1948 (1995)
Kennedy, J.: The particle swarm: social adaptation of knowledge. In: IEEE Inter-
national Conference on Evolutionary Computation, Indianapolis, Indiana, USA,
pp. 303-308 (1997)

Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufmann Pub-
lishers, San Francisco (2001)

Knopf, G.K., Kofman, J.: Free-form surface reconstruction using Bernstein basis
function networks. In: Dagli, C.H., et al. (eds.) Intelligent Engineering Systems
Through Artificial Neural Networks, vol. 9, pp. 797-802. ASME Press (1999)
Pottmann, H., Leopoldseder, S., Hofer, M., Steiner, T., Wang, W.: Industrial geom-
etry: recent advances and applications in CAD. Computer-Aided Design 37, 751—
766 (2005)

Varady, T., Martin, R.: Reverse Engineering. In: Farin, G., Hoschek, J., Kim,
M. (eds.) Handbook of Computer Aided Geometric Design. Elsevier, Amsterdam
(2002)

Vaz, L.LF., Vicente, L.N.: A particle swarm pattern search method for bound con-
strained global optimization. Journal of Global Optimization 39, 197-219 (2007)
Weiss, V., Andor, L., Renner, G., Varady, T.: Advanced surface fitting techniques.
Computer Aided Geometric Design 19, 19-42 (2002)

	Particle Swarm Optimization for B\'{e}zier Surface Reconstruction
	Introduction
	Surface Reconstruction Problem
	Particle Swarm Optimization
	An Illustrative Example
	Conclusions and Future Work

