Procedural Graphics Model and Behavior
Generation

J.L. Hidalgo, E. Camahort, F. Abad, and M.J. Vicent

Dpto. de Sistemas Informéticos y Computacién
Universidad Politécnica de Valencia, 46021 Valencia, Spain

Abstract. Today’s virtual worlds challenge the capacity of human cre-
ation. Trying to reproduce natural scenes, with large and complex mod-
els, involves reproducing their inherent complexity and detail. Procedural
generation helps by allowing artists to create and generalize objects for
highly detailed scenes. But existing procedural algorithms can not al-
ways be applied to existing applications without major changes. We
introduce a new system that helps include procedural generation into
existing modeling and rendering applications. Due to its design, extensi-
bility and comprehensive interface, our system can handle user’s objects
to create and improve applications with procedural generation of con-
tent. We demonstrate this and show how our system can generate both
models and behaviours for a typical graphics application.

1 Introduction

Many application areas of Computer Graphics require generating automatic con-
tent at runtime. TV and movies, console and computer games, simulation and
training applications, and massive on-line games also require large numbers of
object models and complex simulations. Automatic content generation systems
are also useful to create a large number of members of the same class of an object
with unique attributes, thus producing more realistic scenes. With the advent
of high-definition displays, simulation and game applications also require highly
detailed models.

In many situations, it is not enough to procedurally generate the geometric
models of the actors in the scene. And it is not practical to create their anima-
tions by hand, so automatic modeling behavior is another problem to solve.

Our goal in this paper is to provide a unified approach to the generation of
models for simulation and computer games. To achieve this goal we implement
a system that combines procedural modeling with scripting and object-oriented
programming. Procedural models may be of many different kinds: fractals, par-
ticle systems, grammar-based systems, etc. Ours are based on L-systems, but it
can be used to implement all the other models. Our system supports features
like parameterized, stochastic, context-sensitive and open L-systems.

Moreover, we want our system to be as flexible as possible, and to allow the
user to embed it in her own applications. Thus, we provide a method to use
our procedural engines in many application domains. Also, our system is able

M. Bubak et al. (Eds.): ICCS 2008, Part II, LNCS 5102, pp. 106-{115] 2008.
© Springer-Verlag Berlin Heidelberg 2008



Procedural Graphics Model and Behavior Generation 107

to combine different types of objects (both system- and user-provided) within a
single framework.

Geometry generators based on L-systems are usually targeted at specific appli-
cations with fixed symbols and tools based on LOGO’s turtle metaphor. They are
highly dependable on the rewriting engine, thus preventing grammar improve-
ment, language extensions, and code reuse. These generators can not generate
different models for the same application. They require multiple L-systems that
are difficult to integrate within the same application framework.

To overcome these problems we introduce a procedural model generator that is
easily extensible and supports different types of representations and application
areas. It stems from a generator based on modular L-systems, L-systems that
generate models using a rewriting engine witten in C/C++ and using Lua [I] as
scripting language for grammar programming.

We show how we can implement procedural, growth, image-based and other
types of models using our system. This paper is structured as follows. The next
section reviews previous work in modeling and automatic model generation.
The following sections present our system implementation and several results
obtained with it. We implement three different improvements on L-system: sto-
chastic, context-sensible and open L-systems. Finally, we finish our paper with
some conclusions and directions for future work.

2 Background

Procedural generators are typically based on techniques like fractals [2], particle
systems [3], and grammar-based systems [4]. One may also find generators of
simple primitives, subdivision surfaces, complex geometries [5] and Constructive
Solid Geometry. All these generators allow the creation of texture images [6],
terrain models, water and rain, hair, and plants and trees, among others.

Historically, the most expressive procedural models have been the grammar-
based technique called L-systems. It was introduced by Lindenmayer to model
cellular interaction [7]. L-systems use a set of symbols, an axiom and a set of
rewriting rules. The axiom is rewritten using the rules. Then, an output symbol
string is generated and interpreted. The result of the interpretation is a freshly
generated model of a tree, a building or any other object.

Initially L-systems were used to create plant ecosystems [4]. Subsequently,
they have been used for shell texturing [8], virtual urban landscaping [9],[10],[IT],
and geometry mesh generation [5]. L-systems have also been used for behavior
modeling.

Early L-systems were later modified to improve their expressiveness. First,
they were parameterized, allowing arithmetic and boolean expressions on the
parameters during the rewriting process. Later, stochastic L-systems introduced
random variables into parameter expressions to support modeling the random-
ness of natural species [4]. Finally, context-sensitive rules and external feedback
were added to L-systems to support interaction among generated objects and



108 J.L. Hidalgo et al.

between objects and their environment [I2]. These systems are all based on the
turtle metaphor [6].

Recent improvements on L-systems include FL-systems and the L+C lan-
guage. In the L4C language the symbols are C data structures and the right-
hand sides of the rules are C functions from user developed libraries [I3]. This
improves on earlier systems by adding computation and data management to the
rewriting process. Alternatively, FL-systems are L-systems that do not use the
turtle metaphor [I4]. Instead, they interpret the symbols of the derived string as
function calls that can generate any geometry type. FL-systems have been used
to generate VRML buildings.

3 Procedural Modeling and L-Systems

A general modeling system must support building many objects of many different
types like, for example, crowd models made of people and city models made of
streets and buildings. People may be represented using the same geometry, but
each actual person should have slightly different properties, appearances and
behaviors. Modeling such objects and behaviors by hand is impractical due to
their complexity and large number of instances. We need systems to generate
models automatically. Procedural modeling has been successfuly used to generate
multiple instances of a same class of models.

Our system can generate procedural models and behaviors of many kinds. It
was originally developed to generate geometry using L-systems [I5]. We have
now extended it to generate image-based, grammar-based, and growth-based
models as well as behaviors. In this paper we will show how to implement in our
system stochastic and context-sensitive L-systems, as well as systems that can
interact with their environment.

The system’s interface and programming are based on Lua [I], a scripting
language. Lua is used to handle all the higher-level elements of the modeling
like: rule definition, user code, plugins, . ... Additionally, lower-level objects are
implemented in C/C++ and bound to Lua elements. These objects are loaded
during the initialization of the system. Our system includes the classes used for
basic graphics modeling, and the framework to allow the user to provide his own
classes.

This was designed with reusability in mind: objects, rules and bindings are
organized in plugins that may be selectively loaded depending on the applica-
tion. Object modeling is decoupled from string rewriting and offers a flexibility
unavailable in other systems.

To generate a procedural model and/or behavior, the user must provide an
axiom and a set of rules written in the scripting language. These rules can
use both the modeling objects provided by the system as well as custom, user-
provided modeling objects. Currently our system provides objects like extruders,
metaball generators, 3D line drawers and geometry generators based on Euler
operators.



Procedural Graphics Model and Behavior Generation 109

Rewriting and interpretation rules are applied to the axiom and the subse-
quently derived strings. Internally the process may load dynamic objects, run
code to create object instances, call object methods, and access and possibly
modify the objects’ and the environment’s states. During the derivation process,
any object in the system can use any other object, both system-provided or
user-provided. This is why our L-systems are more flexible and more expressive
than previous ones.

For example, our system supports the same features as FL-systems and the
L+C language: we generate geometry without the turtle metaphor, we include a
complete and extensible rewriting engine, and we allow rules that include arith-
metic and boolean expressions, flow control statements and other imperative
language structures. Using a scripting language allows us to perform fast pro-
totyping and avoids the inconvenience derived of the compiling/linking process.
Since we use plugins and C/C++ bindings to handle objects that are instances
of Object Oriented Programming classes, we offer more expressiveness than the
L+C system.

4 Derivation Engine and Programming

We illustrate the features of our approach by describing its basic execution and
a few application examples. To create a model or behavior we need to select
the supporting classes. These classes can be already available in the system or
they have to be written by the user. Then we use plugins to load them into the
system, we instantiate the required objects and we create the system’s global
state. Finally, the user has to provide the axiom and the rules (in Lua) that will
control the derivation of the model.

Currently, our system only implements a generic L-system deriving engine.
Other engines are planned to be implemented, like genetic algorithms, recursive
systems, etc. Our engine takes an L-system made of a set of symbols, a symbol
called axiom, and the two sets of rewriting and interpretation rules. Then it
alternatively and repeatedly applies rewriting and interpretation rules to the
axiom and its derived strings, thus obtaining new derived strings like any other
L-system. The difference is what happens during rewriting and interpretation.

Our system is different because each time a rule is applied, a set of C/C++
code may be executed. Rewriting rules modify the derivation string without
changing the C/C++ objects’ state and the system’s global state. Interpretation
rules change the objects’ state without modifying the derivation string.

Both types of rules have a left-hand side (LHS) and a right-hand side (RHS).
The LHS has the form AB < S > DE where S is the symbol being rewritten
and AB and DFE are the left and right contexts, respectively. These contexts
are optional. To match a rule we compare the rewriting string with the LHS’s
symbol and its contexts. If the rule matches we run its RHS’s associated code,
a Lua function that computes the result of the rewriting process or does the
interpretation.



110 J.L. Hidalgo et al.

5 Generating Models and Behaviors

To illustrate the power of our approach we show how to generate models and
behaviors based on three types of improved L-systems. First, we implement sto-
chastic L-systems, a kind of parametric L-system whose parameters may include
random variables [4]. Then, we show how our system supports context-sensitive
L-Systems, an improvement that allows modeling interaction of an object with
itself. Finally, we implement open L-systems, an extension of context-sensitive
L-systems that allows modeling objects and their interactions with each other
and the environment [12].

5.1 Stochastic L-Systems

We implement stochastic L-systems by allowing parameters containing random
variables. Fig. [l shows code to generate the set of three buildings in the back
of Fig. Bl Symbol City is rewritten as itself with one building less, followed by a
translation and a Building symbol. Building is rewritten as a set of symbols that
represent the floor, the columns and the roof of a building. The interpretation
rules for those symbols generate geometry using a 3D extruder implemented in
C/C++. The extruder can create 3D objects by extruding a given 2D shape and
a path.

obj:RRule("City", function(c)
if c[1] > O then
return {
City{c[1]-1},
T{building_column_separation*building_width_columns+10,0},
Building{},

end
end)

Fig. 1. A rule for creating a city made of copies of the same building

The code of Fig. [l is deterministic and always generates the same set of
buildings. To generate different types of buildings we parameterize the Building
symbol with random variables representing building size, number of columns,
number of steps, etc. Depending on the values taken by the random variables,
different number of symbols will be created during rewriting. For example, build-
ing and column dimensions will determine how many columns are generated for
each instance of a building. This is illustrated in the front row of buildings of
Fig.

In practice, adding this stochastic behavior requires adding random number
generator calls to the rules’ code (see Fig.[2)). Fig. Bl shows an scene generated by
this code. Note that we do not have to change our rewriting engine to support
the improved L-System.



Procedural Graphics Model and Behavior Generation 111

obj:RRule("RandCity", function(c)
if c[1] > O then
return {
RandCity{c[1]-1},
T{building_column_separation*building_width_columns+10,0},
Building{
width = rand_int(5)+3,
length = rand_int(8)+4,
column_height = rand_range(5,12),
column_separation = rand_range(5,12),
roof_height = rand_range(2,4),
steps = rand_int(4) + 1
1,
}

end
end)

Fig. 2. A rule for creating a city made of different, randomly-defined buildings

5.2 Context-Sensitive L-Systems

The modeling of fireworks is another example that illustrates both model and
behavior generation. We use it to describe the context-sensitive L-system feature
of our system. We start with a C++ line generator object that creates a line
given a color and two 3D points. Then, we define a L-system with five symbols:
A, B, E, F, and L.

Fig. @ shows how the symbols are used to generate the fireworks. Symbol A is
responsible for creating the raising tail. Symbol B defines the beginning of the
raising tail and symbol L defines one of its segments. The end of the tail and
its explosion are represented by symbol E, which is rewritten with a number of
arms (symbol F) in random directions.

Fig. @ bottom shows an example derivation. When L is dim it becomes a B.
When two Bs are together, the first one is deleted using a context-sensitive rule,
thus eliminating unnecessary symbols and speeding up derivation.

Symbols contain parameters representing position, direction, timestamp, etc.
(parameters have been removed for clarity). They are used to compute the
parabolas of the fireworks. They can also be used to add wind and gravity
effects and to change the speed of the simulation. Fig. [l shows three frames
of an animation showing the output of the L-System. A video of the animated
fireworks can be found in [T6]. Note that the particle model and its behavior are
both generated using a simple 3D line generator together with an L-system of a
few rules. This illustrates the expressiveness of our system.

5.3 Open L-Systems

Open L-systems allow modeling of objects that interact with other objects
and/or the environment. We are primarily interested in spatial interactions, even



112 J.L. Hidalgo et al.

Fig. 3. In the back three copies of the same building are shown, generated with the
rule of Fig. [[l The buildings in the front are generated with the rule of Fig. Bl Note
how a single parameterized rule can be used to generate different building instances.

A
Ne
.’.x H
4 Pt
o'r F F
. :
oB
L—B B<B—B °B
BLLLA—BBLLE—BLLFF...F
~_ A

A—E E —FFFFFF

Fig. 4. Top: the raising tail of the palm grows from B to A, in segments defined by
L. Middle: At the top of the palm, symbol F fires the F arms in random directions.
Bottom: derivation example.



Procedural Graphics Model and Behavior Generation 113

Fig. 5. Three frames of the firework animation generated using our context-sensitive
L-system

if they are due to non-spatial issues, like plants growing for light or bacteria fight-
ing for food.

In this section we present an example of an open L-system. The environment
in represented by a texture, in which the user has marked several target regions
with a special color. The axiom generates a number of autonomous explorers in
random positions of the environment. The goal of these explorers is to find a
target region and grow a plant. There are two restrictions: (i) only one explorer
or one plant can be at any given cell at any given time, and (ii) no explorer can
go beyond the limits of the environment.

The explorer is parameterized by a two properties: position and orientation.
With a single rewriting rule, the explorer checks the color of its position in the
environment map. If that color is the target color then, it is rewritten as a plant,
else it updates its position. In each step, the explorer decides randomly if it
advances using its current orientation, or it changes it. The explorer can not

Fig. 6. Two frames of the animation showing the explorer’s behavior



114 J.L. Hidalgo et al.

advance if the next position is outside of the map or there is another explorer
or plant in that position.

Fig. [0l shows two frames of an animation created using this rules. In this
example, two modeling objects are used: the image manipulator, and the line
generator used in the fireworks example. The image manipulator is an object
that is able to load images, and read and write pixels from that image. Both
objects are used simultaneously, and they communicate (the explorers’ traces are
drawn onto the environment map, and the explorer check that map to decide
whether they can move in certain direction).

6 Conclusions and Future Work

We present in this paper a new approach to procedural model and behavior
generation. We propose a highly flexible and expressive tool to build L-systems
using a scripting language and specifying rule semantics with an imperative
object-oriented language. Our system combines the power of C/C++ objects
with the simplicity and immediacy of Lua scripting.

We show how our tool can be used to implement stochastic, context-sensitive
and open L-systems. We show how different types of objects can be combined
to generate geometry (buildings), images, and behaviors (explorers, fireworks).
Our system can be applied to virtually any Computer Graphics related area:
landscape modeling, image-based modeling, and modeling of population behavior
and other phenomena.

We expect to increase the functionality of our system by adding tools to
generate models and behaviors based on: fractals and other iterative and recur-
sive functions, genetic algorithms, growth models, particle systems and certain
physics-based processes. We then want to apply it to the generation of virtual
worlds for different types of games and for simulation and training applications.

Acknowledgments. This work was partially supported by grant TIN2005-
08863-C03-01 of the Spanish Ministry of Education and Science and by a doctoral
Fellowship of the Valencian State Government.

References

1. Terusalimschy, R.: Programming in Lua, 2nd edn. Lua.org (2006)

2. Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman, New York
(1982)

3. Reeves, W.T., Blau, R.: Approximate and probabilistic algorithms for shading and
rendering structured particle systems. In: SIGGRAPH 1985: Proceedings of the
12th annual conference on Computer graphics and interactive techniques, pp. 313—
322. ACM Press, New York (1985)

4. Prusinkiewicz, P., Lindenmayer, A.: The algorithmic beauty of plants. Springer,
New York (1990)



10.

11.

12.

13.

14.

15.

16.

Procedural Graphics Model and Behavior Generation 115

. Tobler, R.F., Maierhofer, S., Wilkie, A.: Mesh-based parametrized L-systems and

generalized subdivision for generating complex geometry. International Journal of
Shape Modeling 8(2) (2002)

. Ebert, D., Musgrave, F.K., Peachey, D., Perlin, K., Worley, S.: Texturing & Mod-

eling: A Procedural Approach, 3rd edn. Morgan Kaufmann, San Francisco (2002)

. Lindenmayer, A.: Mathematical models for cellular interaction in development,

parts T and II. Journal of Theoretical Biology (18), 280-315 (1968)

. Fowler, D.R., Meinhardt, H., Prusinkiewicz, P.: Modeling seashells. Computer

Graphics 26(2), 379-387 (1992)

. Parish, Y.I.H., Miiller, P.: Procedural modeling of cities. In: SIGGRAPH 2001:

Proceedings of the 28th annual conference on Computer graphics and interactive
techniques, pp. 301-308. ACM Press, New York (2001)

Hahn, E., Bose, P., Whitehead, A.: Persistent realtime building interior genera-
tion. In: sandbox 2006: Proceedings of the 2006 ACM SIGGRAPH symposium on
Videogames, pp. 179-186. ACM, New York (2006)

Miiller, P., Wonka, P., Haegler, S., Ulmer, A., Gool, L.V.: Procedural modeling of
buildings 25(3), 614-623 (2006)

Meéch, R., Prusinkiewicz, P.: Visual models of plants interacting with their environ-
ment. In: SIGGRAPH 1996: Proceedings of the 23rd annual conference on Com-
puter graphics and interactive techniques, pp. 397-410. ACM, New York (1996)
Karwowski, R., Prusinkiewicz, P.: Design and implementation of the L+C mod-
eling language. Electronic Notes in Theoretical Computer Science 86(2), 141-159
(2003)

Marvie, J.E., Perret, J., Bouatouch, K.: The FL-system: a functional L-system for
procedural geometric modeling. The Visual Computer 21(5), 329-339 (2005)
Hidalgo, J., Camahort, E., Abad, F., Vivo, R.: Modular l-systems: Generating
procedural models using an integrated approach. In: ESM 2007: Proceedings of
the 2007 European Simulation and Modeling Conference, EUROSIS-ETI, pp. 514~
518 (2007)

http://www.sig.upv.es/papers/cggm08


http://www.sig.upv.es/papers/cggm08

	Procedural Graphics Model and Behavior Generation
	Introduction
	Background
	Procedural Modeling and L-Systems
	Derivation Engine and Programming
	Generating Models and Behaviors
	Stochastic L-Systems
	Context-Sensitive L-Systems
	Open L-Systems

	Conclusions and Future Work


