
Extending the Four Russian Algorithm to
Compute the Edit Script in Linear Space

Vamsi Kundeti and Sanguthevar Rajasekaran

Department of Computer Science and Engineering
University of Connecticut
Storrs, CT 06269, USA

{vamsik,rajasek}@engr.uconn.edu

Abstract. Computing the edit distance between two strings is one of the
most fundamental problems in computer science. The standard dynamic
programming based algorithm computes the edit distance and edit script
in O(n2) time and space. Often the edit script is of more importance than
the value of the edit distance. The Four Russian Algorithm [1] computes
the edit distance in O(n2/ log n) time but does not address how to com-
pute edit script within that runtime. Hirschberg [2] gave an algorithm to
compute edit script in linear space but the runtime remained O(n2). In
this paper we present algorithms that compute both the edit script and
edit distance in O(n2

log n
) time using O(n) space.

Keywords: edit distance, edit script, linear space, four russian algo-
rithm, hirschberg’s algorithm.

1 Introduction

The edit distance between strings S1 = [a1, a2, a3 . . . an] and S2 = [b1, b2, b3 . . . bn]
is defined as the minimal cost of transforming S1 into S2 using the three oper-
ations Insert, Delete, and Change(C) (see e.g., [3]). The first application(global
alignment) of the edit distance algorithm for protein sequences was studied by
Needleman [4]. Later algorithms for several variations (such as local alignment,
affine gap costs, etc.) of the problem were developed (for example) in [5], [6],
and [7]. The first major improvement in the asymptotic runtime for comput-
ing the value of the edit distance was achieved in [1]. This algorithm is widely
known as the Four Russian Algorithm and it improves the running time by a
factor of O(log n) (with a run time of O(n2/ logn)) to compute just the value
of the edit distance. It does not address the problem of computing the actual
edit script, which is of wider interest rather than just the value. Hirschberg [2]
has given an algorithm that computes the actual script in O(n2) time and O(n)
space. The space saving idea from [2] was applied to biological problems in [8]
and [9]. However the asymptotic complexity of the core algorithm in each of
these remained O(n2). Also, parallel algorithms for the edit distance problem
and its application to sequence alignment of biological sequences were studied

M. Bubak et al. (Eds.): ICCS 2008, Part I, LNCS 5101, pp. 893–902, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

894 V. Kundeti and S. Rajasekaran

extensively (for example) in [10] and [11]. In paper [12] linear space parallel al-
gorithms for the sequence alignment problem were given, however they assume
that O(n2) is the optimal asymptotic complexity of the sequential algorithm.
Please refer to [13] for an excellent survey on all these algorithms. A special case
is one where each of these operations is of unit cost. Edit Script is the actual
sequence of operations that converts S1 into S2. In particular, the edit script
is a sequence Escript = {X1, X2, X3 . . . Xn}, Xi ∈ I, D, C. Standard dynamic
programming based algorithms solve both the distance version and the script
version in O(n2) time and O(n2) space. The main result of this paper is an al-
gorithm for computing the edit distance and edit script in O

(
n2

log n

)
time and

O(n) space.
The rest of the paper is organized as follows. In Sec. 2 we provide a summary

of the four Russian algorithm [1]. In Sec. 3 we discuss the O(n2) time algorithm
that consumes O(n) space and finally in Sec. 4 we show how to compute the edit
distance and script using O(n2

log n) time and O(n) space.

2 Four Russian Algorithm

In this section we summarize the Four Russian Algorithm. Let D be the dynamic
programming table that is filled during the edit distance algorithm. The standard
edit distance algorithm fills this table D row by row after initialization of the
first row and the first column. Without loss of generality, throughout this paper
we assume that all the edit operations cost unit time each.

The basic idea behind the Four Russian Algorithm is to partition the dynamic
programming table D into small blocks each of width and height equal to t where
t is a parameter to be fixed in the analysis. Each such block is called a t-block. The
dynamic programming table is divided into t-blocks such that any two adjacent
t-blocks overlap by either a row or column of width (or height) equal to t. See
Fig. 1 for more details on how the dynamic programming table D is partitioned.
After this partitioning is done The Four Russian algorithm fills up the table D
block by block. Algorithm 1 has more details.

A quick qualitative analysis of the algorithm is as follows. After the partition-
ing of the dynamic programming table D into t-blocks we have n2

t2 blocks and if
processing of each of the block takes O(t) time then the running time is O(n2

t).
In the case of standard dynamic programming, entries are filled one at a time
(rather than one block at a time). Each entry can be filled in O(1) time and
hence the total run time is O(n2). In the Four Russian algorithm, there are n2

t2

blocks. In order to be able to fill each block in O(t) time, some preprocessing is
done. Theorem 1 is the basis of the preprocessing.

Theorem 1. If D is the edit distance table then |D[i, j] − D[i + 1, j]| ≤ 1, and
|D[i, j] − D[i, j + 1]| ≤ 1∀(0 ≤ i, j ≤ n).

Proof. Note that D[i, j] is defined as the minimum cost of converting S1[1 : i]
into S2[1 : j]. Every element of the table D[i, j] is filled based on the values from

Computing edit script in O(n2/ log n) Time and O(n) Space 895

D[i − 1, j − 1],D[i − 1, j] or D[i, j − 1]. D[i, j] ≥ D[i − 1, j − 1](characters at
S1[i] and S2[j] may be same or different), D[i, j] ≤ D[i, j − 1] + 1 (cost of insert
is unity),D[i, j − 1] ≤ D[i − 1, j − 1] + 1(same inequality as the previous one
rewritten for element D[i, j −1]). The following inequalities can be derived from
the previous inequalities.

−D[i, j] ≤ −D[i − 1, j − 1]
D[i, j − 1] ≤ D[i − 1, j − 1] + 1

−D[i, j] + D[i, j − 1] ≤ 1
D[i, j − 1] − D[i, j] ≤ 1

D[i, j] ≤ D[i, j − 1] + 1 {Started with this}
−1 ≥ D[i, j − 1] − D[i, j]

|D[i, j − 1] − D[i, j]| ≤ 1

Along the same lines we can also prove that |D[i − 1, j] − D[i, j]| ≤ 1 and
D[i − 1, j − 1] ≤ D[i, j].

Theorem 1 essentially states that the value of the edit distance in the dynamic
programming table D will either increase by 1 or decrease by 1 or remain the
same compared to the previous element in any row or a column of D. Theorem 1
helps us in encoding any row or column of D with a vector of 0, 1, −. For example
a row in the edit distance table D[i, ∗] = [k, k + 1, k, k, k − 1, k − 2, k − 1] can
be encoded with a vector vi = [0, 1, −1, 0, −1, −1, 1]. To characterize any row or
column we just need the vector vi and k corresponding to that particular row or
column. For example, if D[i, ∗] = [1, 2, 3, 4, . . . , n], then k = 1 for this row and
vi = [0, 1, 1, 1, 1, 1, 1, . . . , 1]. For the computation of the edit distance table D
the leftmost column and the topmost row must be filled (or initialized) before
the start of the algorithm. Similarly in this algorithm we need the topmost row
(A) and leftmost column (B) to compute the edit distance within the t-block see
Fig. 1. Also see Algorithm 2. It is essential that we compute the edit distance
within any t-block in constant time.

In the Four Russian algorithm the computation of each t-block depends on the
variables A, B, K, C, E (see Fig. 1). The variable A represents the top row of the
t-block and B represents the the left column of the t-block. C and E represent the
corresponding substrings in the strings S1 and S2. K is the intersection of A and
B. If the value of the variable K is k then from Theorem 1 we can represent A and
B as vectors of {0,1,-1} rather than with exact values along the row and column.

As an example, consider the first t-block which is the intersection of the first t
rows and the first t columns of D. For this t-block the variables {A, B, K, C, E}
have the following values: K = D[0, 0], A = D[0, ∗] = [0, 1, 1, 1, . . . , 1], B =
D[∗, 0] = [0, 1, 1, 1, . . . , 1], C = S2[0, 1, . . . , t], and E = S1[0, 1, . . . , t]. For any
t-block we have to compute {A′, B′, K ′} as a function of {A, K, B, C, E} in
O(1) time. In this example plugging in {A, B, K, C, E} for the first t-block gives
K ′ = D[t, t], A′ = [D[0, t], . . . , D[t, t]],B′ = [D[t, 0], . . . , D[t, t]]. To accomplish
the task of computing the edit distance in a t-block in O(1) time, we precompute

896 V. Kundeti and S. Rajasekaran

overlapping rowt−block

S1

S2

C

E

B’

A’

K’

{A’,B’,K’} = F(A,B,C,K,E)

overlapping column

filled pattern indicates initialized values of the dynamic
programming table

A

B
K

Fig. 1. Using preprocessed lookup table {A′, B′, K′} = F (A, B, C, K, E)

all the possible inputs in terms of variables {A, B, 0, C, E}. We don’t have to
consider all possible values of K since if K ′

1 is the value of K ′ we get with
input variables {A, B, 0, C, E} then the value of K ′ for inputs {A, B, K, C, E}
would be K ′

1 + K. Thus this encoding(and some preprocessing) helps us in the
computation of the edit distance of the t-block in O(1) time. The algorithm is
divided into two parts pre-processing step and actual computation.

Algorithm 1. Four Russian Algorithm, t is a parameter to be fixed.
INPUT : Strings S1 and S2, Σ, t
OUTPUT: Optimal Edit distance
/*Pre-processing step*/
F = PreProcess(Σ, t) ;
for i = 0;i < n;i+ = t do

for j = 0;j < n;j+ = t do
{A′, B′, D′} = LookUpF (i, j, t) ;
[D[i + t, j] . . . D[i + t, j + t] = A′ ;
[D[i, j + t] . . . D[i + t, j + t] = B′ ;

end
end

2.1 Pre Processing Step

As we can see from the previous description, at any stage of the Algorithm 1
we need to do a lookup for the edit distance of any t-block and as a result
get the row and column for the adjacent t-blocks. From Theorem 1 its evident

Computing edit script in O(n2/ log n) Time and O(n) Space 897

Algorithm 2. LookUp routine used by Algorithm 1.
INPUT : i,j,t
OUTPUT: A′, B′, D′

A = [D[i, j] . . . D[i, j + t]];
B = [D[i, j] . . . D[i + t, j]];
C = [S2[j] . . . S2[j + t]];
E = [S1[j] . . . S1[j + t]];
K = D[i, j];
/*Encode A,B*/
for k = 1;k < t;k + + do

A[k] = A[k] − A[k − 1];
B[k] = B[k] − B[k − 1];

end
/*Although K is not used in building lookup table F we maintain the
consistency with Fig. 1 */
return {A′, B′, D′} = F (A,B, C, K, E) ;

that any input {A, B, K, C, E} (see Fig. 1) to the t-block can be transformed
into vectors of {−1, 0, 1}. In the preprocessing stage we try out all possible
inputs to the t-block and compute the corresponding output row and column
({A′, B′, K ′} (see Fig. 1). More formally, the row (A′) and column(B′) that
need to be for any t-block can be repesented as a function F (lookup table) with
inputs {A, B, K, C, E}, such that {A′, B′, K ′} = F (A, B, K, C, E). This function
can be precomputed since we have only limited possibilities. For any given t, we
can have 3t vectors corresponding to A and B.

For a given alphabet of size Σ we have Σt possible inputs corresponding to C
and E. K will not have any effect since we just have to add K to A′[t] or B′[t]
at the end to compute K ′. The time to preprocess is thus O((3Σ)2tt2) and the
space for the lookup table F would be O((3Σ)2tt). Since t2 ≤ (3Σ)t, if we pick
t = log n

3 log(3Σ) , the preprocessing time as well as the space for the lookup table
will be O(n). Here we make use of the fact that the word length of the computer
is Θ(log n). This in particular means that a vector of length t can be thought of
as one word.

2.2 Computation Step

Once the preprocessing is completed in O(n) time, the main computation step
proceedes scanning the t-blocks row by row and filling up the dynamic pro-
gramming table(D). Algorithm 1 calls Algorithm 2 in the inner most for loop.
Algorithm 2 takes O(t) time to endcode the actual values in D and calls the
function F which takes O(1) time and returns the row (A′) and column (B′)
which are used as input for other t-blocks. The runtime of the entire algorithm is
O(n

t
n
t t) = O(n2

t). Since t = Θ(log n) the run time of the Four Russian Algorithm
is O(n2

log n).

898 V. Kundeti and S. Rajasekaran

3 Hirschberg’s Algorithm to Compute the Edit Script

In this section we briefly describe Hirschberg’s [2] algorithm that computes the
edit script in O(n2) time using O(n) space. The key idea behind this algorithm
is an appropriate formulation of the dynamic programming paradigm. We make
some definitions before giving details on the algorithm.

– Let S1 and S2 be strings with |S1| = m and |S2| = n. A substring from index
i to j in a string S is denoted as S[i . . . j].

– If S is a string then Sr denotes the reverse of the string.
– Let D(i, j) stand for the optimal edit distance between S1[1 . . . i] and

S2[1 . . . j].
– Let Dr(i, j) be the optimal edit distance between Sr

1 [1 . . . i] and Sr
2 [1 . . . j].

Lemma 1. D(m, n) = min0≤k≤m{D[n
2 , k] + Dr[n

2 , m − k]}.

The Lemma 1 essentially says that finding the optimal value of the edit distance
between strings S1 and S2 can be done as follows: Split S1 into two parts (p11
and p12) and S2 into two parts (p21 and p22); Find the edit distance (e1) between
p11 and p21; Find the edit distance (e2) between p12 and p22; Finally add both
the distances to get the final edit distance (e1 + e2); Since we are looking for the
minimum edit distance we have to find a breaking point (k) that minimizes the
value of (e1 + e2).

We would not miss this minimum even if we break one of the strings deter-
ministically and find the corresponding breaking point in the other string. As a
result of this we keep the place where we break in one of the strings fixed. (Say
we always break one of the strings in the middle). Then we find a breaking point
in the other string that will give us minimum value of (e1 + e2).

The k in Lemma 1 can be found in O(mn) time and O(m) space for the follow-
ing reasons. To find the k at any stage we need two rows(D[n

2 , ∗] and Dr[n
2 , ∗])

from forward and reverse dynamic programming tables. Since the values in any
row of the dynamic programming table just depend on the previous row, we just
have to keep track of the previous row while computing the table D and Dr.
Once we find k we can also determine the path from the previous row (n

2 − 1) to
row (n

2) in both the dynamic programming tables D and Dr (see Fig. 2). Once
we find these subpaths we can continue to do the same for the two subprob-
lems (see Fig. 2) and continue recursively. The run time of the algorithm can be
computed by the following reccurence relation.

T (n, m) = T (n
2 , k) + T (n

2 , m − k) + mn
T (n

2 , k) + T (n
2 , m − k) = mn

2 + mn
4 + . . . = O(mn)

In each stage we use only O(m) space and hence the space complexity is linear.

Computing edit script in O(n2/ log n) Time and O(n) Space 899

S1

S2

Sr
1

Sr
2

n/2 −1

n/2

D

Dr

m−k

k
(k at which D[n/2,k]+
 D [n/2,m−k] is min)r

subpaths
n/2 −1

sub−problem

sub−problem

Fig. 2. Illustration of Hirschberg’s recursive algorithm

4 Our Algorithm

Our algorithm combines the frameworks of the Four Russian algorithm and
that of Hirschberg’s Algorithm. Our algorithms finds the edit script in O

(
n2

log n

)

time using linear space. We extend the Four Russian algorithm to accommodate
Lemma 1 and to compute the edit script in O(n) space.

At the top-level of our algorithm we use a dynamic programming formulation
similar to that of Hirschberg. Our algorithm is recursive and in each stage of the
algorithm we compute k and also find the sub-path as follows.

D(m, n) = min0≤k≤m{D(
n

2
, k) + Dr(

n

2
, m − k)}

The key question here is how to use the Four Russian framework in the com-
putation of D(n

2 , k) and Dr(n
2 , m − k) for any k in time better than O(n2)? .

Hirschberg’s algorithm needs the rows D(n
2 , ∗) and Dr(n

2 , ∗) at any stage of the
recursion. In Hirschberg’s algorithm at recursive stage (R(m, n)), D(n

2 , k) and
Dr(n

2 , m − k) are computed in O(mn) time. We cannot use the same approach
since the run time will be Ω(n2). We have to find a way to compute the rows
D(n

n , ∗) and Dr(n
2 , ∗) with a run time of O(n2

log n).
The top-level outline of our algorithm is illustrated by the pseudo-code in

TopLevel (see Algorithm 3). The algorithm starts with input strings S1 and S2
of length m and n, respectively. At this level the algorithm applies Lemma 1 and
finds k. Since the algorithm requires D(n

2 , ∗) and Dr(n
2 , ∗) at this level it calls the

algorithm FourCompute to compute the rows D(n
2 , ∗), D(n

2 − 1, ∗), Dr(n
2 , ∗) and

900 V. Kundeti and S. Rajasekaran

Dr(n
2 − 1, ∗). Note the fact that although for finding k we require rows D(n

2 , ∗)
and Dr(n

2 , ∗), to compute the actual edit script we require rows D(n
2 − 1, ∗)

and Dr(n
2 − 1, ∗). Also note that these are passed to algorithm FindEditScript to

report the edit script around index k.
Once the algorithm finds the appropriate k for which the edit distance would

be minimum at this stage, it divides the problem into two sub problems (see
Fig. 2) (S1[1 . . . k1 − 1], S2[1 . . . n

2 − 1]) and (S1[m − k2 + 1 . . .m], S2[n
2 + 1 . . . n].

Observe that k1 and k2 are returned by FindEditScript. FindEditScript is trying
to find if the sub-path passes through the row n

2 (at the corresponding level
of recursion) and updates k so that we can create sub-problems (please see
arcs (sub-paths) in Fig. 2). Once the sub-problems are properly updated the
algorithm solves each of these problems recursively.

We now describe algorithm FourCompute which finds the rows D(n
2 , ∗) and

Dr(n
2 , ∗) (that are required at each recursive stage of TopLevel (Algorithm 3))

in time O(nm
t) where t is the size of blocks used in the Four Russian Algorithm.

We do exactly the same pre-processing done by the Four Russian Algorithm and
create the lookup table F . FourCompute is called for both forward (S1,S2) and
reverse strings (Sr

1 ,Sr
2). The lookup table F (A, B, K, C, E) has been created for

all the strings from Σ of length t. We can use the same lookup table F for all
the calls to FourCompute. A very important fact to remember is that in the Four
Russian algorithm whenever a lookup call is made to F the outputs {A′, B′}
are always aligned at the rows which are multiples of t, i.e., at any stage of the
Four Russian algorithm we only require the values of the rows D(i, ∗) such that
i mod t = 0. In our case we cannot directly use the Four Russian Algorithm in
algorithm FourCompute because the lengths of the strings which are passed to
FourCompute from each recursive level of TopLevel is not necessarily a multiple
of t. Suppose that in some stage of the FourCompute algorithm a row i is not
a multiple of t. We apply the Four Russian Algorithm and compute till row
D(� i

t�, ∗), find the values in the row D(� i
t� − t, ∗) and apply lookups for rows

� i
t� − t, � i

t� − t + 1, . . ., and � i
t� − t + i mod t. Basically we need to slide the

t-block from the row � i
t� − t to � i

t� − t + i mod t.
Thus we can compute any row that is not a multiple of t in an extra i mod t∗ m

t
time (where m is the length of the string represented across the columns). We
can also use the standard edit distance computation in rows � i

t�, �
i
t� + 1, . . .

� i
t�+ i mod t which also takes the same amount of extra time. Also consider the

space used while we compute the required rows in the FourCompute algorithm.
We used only O(m + n) space to store arrays D′ [0, ∗] and D′ [∗, 0] and reused
them. So the space complexity of algorithm FourCompute is linear. The run time
is O((n

t)(m
t)(t)) to compute a row D(n, ∗) or Dr(n, ∗). We arrive at the following

Lemma.

Lemma 2. Algorithm FourCompute Computes rows Dr(n
2 , ∗), D(n

2 , ∗) required
by Algorithm TopLevel at any stage in O(mn

t) time and O(m + n) space.

Computing edit script in O(n2/ log n) Time and O(n) Space 901

The run time of the complete algorithm is as follows. Here c is a constant.

T (n, m) = T (n
2 , k) + T (n

2 , m − k) + cmn
2t .

T (n, m) = c(mn
2t + mn

4t + · · ·) = O(mn
t).

Since t = Θ(log n) the run time is O(n2/ log n).

Algorithm 3. TopLevel which calls FourCompute at each recursive level.
Input: Strings S1,S2,|S1| = m,|S2| = n
Output: Edit Distance and Edit Script
D(n

2 , ∗) = FourCompute(n
2 , m, S1, S2, D(∗, 0), D(0, ∗));

Dr(n
2 , ∗) = FourCompute(n

2 , m, Sr
1 , Sr

2 , Dr(∗, 0), Dr(0, ∗));
/*Find the k which gives min Edit Distance at this level*/
Minimum = (m + n) ;
for i = 0 to n do

if (D(n
2 , i) + Dr(n

2 , m − i)) < Minimum then
k = i ;
Minimum = D(n

2 , i) + Dr(n
2 , m − i) ;

end
end
/*Compute The EditScripts at this level */
k1 = FindEditScript(D(n

2 , ∗), D(n
2 − 1, ∗), k, Forward) ;

k2 = FindEditScript(Dr(n
2 , ∗), Dr(n

2 − 1, ∗), k, Backward) ;
/*Make a recursive call If necessary*/ ;
TopLevel(S1[1 . . . k1 − 1],S2[1 . . . n

2 − 1]) ;
TopLevel(S1[m − k2 + 1 . . .m],S2[n

2 + 1 . . . n]) ;

4.1 Space Complexity

The space complexity is the maximum space required at any stage of the algo-
rithm. We have two major stages where we need to analyze the space complexity
as follows. The first during the execution of the entire algorithm and the second
during preprocessing and storing the lookup table.

4.2 Space during the Execution

The space for algorithm TopLevel is clearly linear since we need to store just
4 rows at any stage: Rows D(n

2 , ∗), D(n
2 − 1, ∗), Dr(n

2 , ∗) and Dr(n
2 − 1, ∗).

From Lemma 2 the space required for FourCompute is also linear. So the space
complexity of the algorithm during execution is linear.

4.3 Space for Storing Lookup Table F

We also need to consider the space for storing the lookup table F . The space
required to store the lookup table F is also linear for an appropriate value of t

(as has been shown in Sec. 2.1). The runtime of the algorithm is O
(

n2

log n

)
.

902 V. Kundeti and S. Rajasekaran

5 Conclusion

In this paper we have shown that we can compute both the edit distance and
edit script in time O(n2

log n) using O(n) space.

Acknowledgments. This research has been supported in part by the NSF
Grant ITR-0326155 and a UTC endowment.

References

1. Arlazarov, V.L., Dinic, E.A., Kronrod, M.A., Faradzev, I.A.: On economic con-
struction of the transitive closure of a directed graph. Dokl. Akad. Nauk SSSR 194,
487–488 (1970)

2. Hirschberg, D.S.: Linear space algorithm for computing maximal common subse-
quences. Communications of the ACM 18(6), 341–343 (1975)

3. Horowitz, E., Sahni, S., Rajasekaran, S.: Computer Algorithms. Silicon Press
(2008)

4. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular Biol-
ogy 48(3), 443–453 (1970)

5. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
Journal of Molecular Biology 147(1), 195–197 (1981)

6. Gotoh, O.: Alignment of three biological sequences with an efficient traceback
procedure. Journal of Theoretical Biology 121(3), 327–337 (1986)

7. Huang, X., Hardison, R.C., Miller, W.: A space-efficient algorithm for local simi-
larities. Computer Applications in the Biosciences 6(4), 373–381 (1990)

8. Gotoh, O.: Pattern matching of biological sequences with limited storage. Com-
puter Applications in the Biosciences 3(1), 17–20 (1987)

9. Myers, E.W., Miller, W.: Optimal alignments in linear space. Computer Applica-
tions in the Biosciences 4(1), 11–17 (1988)

10. Edmiston, E., Wagner, R.A.: Parallelization of the dynamic programming algo-
rithm for comparison of sequences, pp. 78–80 (1987)

11. Ranka, S., Sahni, S.: String editing on an simd hypercube multicomputer. Journal
of Parallel and Distributed Computing 9(4), 411–418 (1990)

12. Rajko, S., Aluru, S.: Space and time optimal parallel sequence alignments. IEEE
Transactions on Parallel and Distributed Systems 15(12), 1070–1081 (2004)

13. Gusfield, D.: Algorithms of Strings Trees and Sequences. Cambridge (1997)

	Extending the Four Russian Algorithm to Compute the Edit Script in Linear Space
	Introduction
	Four Russian Algorithm
	Pre Processing Step
	Computation Step

	Hirschberg's Algorithm to Compute the Edit Script
	Our Algorithm
	Space Complexity
	Space during the Execution
	Space for Storing Lookup Table F

	Conclusion

