
M. Bubak et al. (Eds.): ICCS 2008, Part I, LNCS 5101, pp. 883–892, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Automatic Identification of Fuzzy Models with Modified 
Gustafson-Kessel Clustering and Least Squares 

Optimization Methods 

Grzegorz Glowaty 

AGH University of Science and Technology, Department of Computer Science,  
Al. Mickiewicza 30, 30-059 Krakow, Poland 

glowaty@agh.edu.pl 

Abstract. An automated method to generate fuzzy rules and membership func-
tions from a set of sample data is presented. Our method is based on clustering 
and uses a modified version of Gustafson-Kessel algorithm. The aim is to di-
vide a product space into set of clusters for which the systems exhibits behavior 
close to linear. For each of the clusters we produce a fuzzy rule and generate a 
set of membership functions for the rule antecedent with use of an approach 
based on curve fitting. Weighted linear least-squares regression is used to ob-
tain consequent functions for TSK-models. 
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1   Introduction 

Fuzzy models have proven to be effective function approximators. They are also easy 
interpretable because they are composed of human readable rules. Those rules can be 
used to understand a nature of a modeled system. This huge advantage of fuzzy mod-
eling above many other modeling techniques motivates researchers to work on auto-
matic methods of fuzzy modeling as they eventually allow for easy generation of  
human readable interpretation of the system.  

In this paper we focus on a fuzzy model generation with use of fuzzy data cluster-
ing. First, we provide a general idea of application of clustering in fuzzy model identi-
fication. We propose modifications to Gustafson-Kessel fuzzy clustering algorithm 
with a purpose of producing clusters more suitable for usage in fuzzy model. Then we 
show how to convert those clusters to TSK fuzzy models. At the end of this work 
models produced with the described method are compared with models produced by 
other classical fuzzy modeling approaches.  

2   Clustering in Fuzzy Model Identification 

Fuzzy rules introduce a natural partition of the system space. Antecedents of the rules 
introduce a partition of the input space. This partition defines a set of regions in which 
particular rules apply. General idea behind the use of clustering techniques in the 
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fuzzy model identification [6, 8, 10] is that if we are able to find groups of sample 
data that exhibit similar behavior in a given area of a system space then we should be 
able to divide the problem of modeling into several smaller subspaces. In each of 
these subspaces we create a fuzzy rule that mimics approximated system’s behavior in 
this area. Fuzzy clustering methods not only find cluster centers, but also assign 
membership degree of each of the samples to each of the clusters. We use this infor-
mation in generation of fuzzy rules. We modify Gustafson-Kessel fuzzy clustering al-
gorithm [9] and use it as the basis for our approach. 

3   Finding Clusters 

3.1   Desired Cluster Properties 

The objective of our method is to create fuzzy rules for which antecedents are decom-
posed into set of predicates for each of the variables of the input domain. This kind of 
model provides the best interpretability of produced rules. There are approaches [6] 
that use n-1 dimensional fuzzy sets as membership functions in rule antecedents 
(where n is the number of dimensions of the product space). However, those models 
are harder to interpret. In the best performing of the methods presented in [8], Gath 
and Geva clustering algorithm is used and a transformation of input variables is ap-
plied. The goal of the transformation is to leverage clusters as if they were parallel to 
the axes of the space. That also reduces readability of the rules. 

In order to derive fuzzy model from a set of fuzzy clusters in the product (input-

output) space nn XXX ××× −11 ...  (where nX is the output domain) a projection of 

each of the clusters onto each of the input space axes is obtained. Fuzzy clusters being 
results of the most of the fuzzy clustering algorithms are of the shape of sphere or hy-
per-ellipsoid. In case of spheres it is easy to obtain a “projection” of a cluster on an 
axis without a loose of information, however in case of hyper-ellipsoids the more axes 
of the ellipsoid are parallel to the axes of the space, the more information is preserved. 
Some of the approaches are based on this observation and look for the clusters that 
have all of their axes parallel to the axes of the space [10]. 

For the TSK fuzzy models the consequent of the fuzzy rule may be a linear func-
tion of input variables. In this case there is no need of projecting the cluster onto the 
output axis. With this in mind we propose a modified version of Gustafson-Kessel al-
gorithm that finds clusters that are easily projected onto the input space, and not nec-
essarily parallel to the output axis. 

3.2   Gustafson-Kessel Algorithm 

Let us assume a set of N samples in the n dimensional space. The target is to find K 
fuzzy clusters, such that: 

∑
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K

k
ikNi

1
, 1},...,1{ μ ,  (1) 

where ik ,μ is a membership degree of sample i to cluster k. Gustafson-Kessel algo-

rithm finds clusters by minimizing the following function: 
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where U is a set of membership degrees μ , V is a set of cluster centers v, m is fuzzi-

ness factor (usually a value close to 2), X is a set of N samples x, and 2

kAD is a norm 

induced by matrix kA . Every cluster has its own norm inducing matrix  
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where F is a fuzzy covariance matrix defined as follows: 
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Parameter kσ  in (3) was introduced as a cluster capacity so the objective function 

minimization is not trivial process of minimizing all values of matrix A. Usually for 
Gustafson-Kessel algorithm destination capacity of 1 for each of the clusters is as-

sumed. Norm 2

kAD induced by matrix kA is calculated in the following way: 
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Given the membership degrees centers of the clusters are calculated as the 
weighted mean value of all membership degrees: 
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On the other hand, given the cluster center and the norm inducing matrix it is pos-
sible to induce desired membership degrees of the samples in the following way: 
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Gustafson-Kessel algorithm minimizes function given by (2) by iterative execution 
of the following steps: 

1. Initialize U with random membership degrees 
2. Calculate centers of clusters with (6) 
3. Calculate new membership degrees with (7) 
4. Calculate fuzzy covariance matrices using (4) 
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5. Calculate norms induced by those matrices using (3) and (5). 
6. If membership degrees have changed more in this iteration than assumed 

termination value proceed to step 2. 

In [10] a modification of this algorithm was proposed to restrict it to find clusters 
that are parallel to all the axes of the input-output space. In this method, we propose 
modification that results in finding clusters parallel to input space axes, and not nec-
essarily parallel to the output axis. Gustafson-Kessel algorithm needs the number of 
clusters as the input parameter. We identify several models with different numbers of 
clusters and chose the best one according to the testing set error. 

3.3   Modification of Gustafson-Kessel Algorithm to Obtain Desired Clusters  

Clusters that are parallel to one of the axes tend to have significant non-zero variance 
along this axis and values of all covariances of this axis variable close to zero. As it 
was noticed in [10] a desired covariance matrix for clusters parallel to the axes is a di-
agonal matrix. In this work, however, we are looking for a wider class of clusters, 
namely clusters that are parallel only to the input-space axes.  

To achieve this, we lessen a restriction on the covariance of the output variable, but 
still do not want to introduce any covariance between input variables. This leads to 
clusters induced by covariance matrix of a form (8)  
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If F is a fuzzy covariance matrix, 0F  is a matrix that was created from F by putting 0 

everywhere except for diagonal, and a single place not on a diagonal in last row and 
last column. Question to be answered is whether such a matrix is a valid covariance 
matrix. This is important because the covariance matrix needs to be positive semi-
definite so it has positive determinant and the norm inducing matrix A obtained by (3) 

exists in nn×ℜ .  It is easy to show that in general (if more original elements were pre-
served) such matrix may not be a covariance matrix. However, restricting values in a 
way shown in (8) leads to covariance matrix in all cases. 

Theorem 1. Let F be a covariance matrix. Matrix 0F as in (8) created from F has 

properties of a covariance matrix. 

Proof 
Let us consider only two variables: i-th and n-th and their covariance matrix 
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From properties of covariance matrices we have: 

00)det( 2 ≥−⇒≥ iniin yccF . (10) 

For 0F to be a covariance matrix it is sufficient to be a symmetric positive semi-

definite. A sufficient condition for a matrix to be positive semi-definite is that all de-

terminants of the leading minors of the matrix are non-negative. Let jF0  be a j-th 

leading minor of 0F . From definition (8) and form a fact that diagonal contains only 

non-negative numbers (variances) for all n-1 leading minors: 

0...)det(:1...1 110 ≥⋅⋅=−=∀ −n
j ccFnj . (11) 

The value of last minor’s determinant (of whole matrix): 

yccyccccF niiin 111110 .........)det( −+− ⋅⋅⋅⋅−⋅⋅= , 

)(......)det( 2
11110 ininii yccccccF −⋅⋅⋅⋅= −+− . 

(12) 

From (10) and (12) we conclude 0)det( 0 ≥F , so the matrix (8) is positive semi-

definite symmetric matrix.  
It is worth noting that condition stated by the above theorem does not hold in a 

general case when we leave more than one non-diagonal non-zero value in the last 
row and column. We modify the Gustafson-Kessel algorithm so it finds clusters that 
have covariance matrices of a form (8) meaning that their axis are not necessarily par-
allel to the output axis. We do this by introduction of a step 4a to the algorithm: 

4a. Convert covariance matrix to a form (8) by preserving only the largest co-
variance value in the last row/column. 

The intuition for this approach is that we would like to preserve the most signifi-
cant relation in the shape of the obtained cluster. Because of the conclusions of Theo-
rem 1 all calculations performed in next steps of the algorithm may succeed. 

4   Converting Clusters to Fuzzy Rules 

Having obtained a set of fuzzy clusters canters and a set of norms induced for those 
clusters the task is to create membership functions of rules’ antecedents. In this ex-
ample we use asymmetric Gaussian type of membership functions but it must be 
noted that any classical type of membership functions would fit our method. The 
membership function is based on 4 parameters determining peak point and shape of 
left and right sides of the curve 

.

^,1
,

,
)(

21

2
2

)(
1

2

)(

,,, 2
2

2
2

2
1

2
1

2211

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≤≥
>

<
= −−

−−

cxcx
cxe

cxe
xf cx

cx

cc
σ

σ

σσ

 
(13) 



888 G. Glowaty 

Some authors suggest projecting clusters onto each of the axes using fuzzy projec-
tion techniques [1, 10]. Curve fitting technique is applied to adjust membership  
function parameters so the membership degree of fulfillment of premise of the rule 
corresponding to a given cluster reflects the membership degree of the measured 
samples to that cluster. In TSK model we assume prod-type AND operator for rule 
premise. It should be noted that our technique applies also to different types of opera-
tors (e.g. min). The degree of fulfillment of a rule j is calculated as follows: 
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where )( )()( ii xf is a value of i-th function in a form of (13) for i-th coordinate of 

vector x. 

We employ non-linear least squares optimization to obtain parameters of )(if . Ob-

jective function under minimization for rule i is given by (15): 
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where )()( , ii CΣ are sets of parameters of membership functions used in rule i and 

ji ,μ  is a membership degree of sample j to cluster i. If Jacobian of the destination 

function is analytically available we may use it in the calculations (this applies for 
standard Gaussian membership functions). In all other cases we may calculate Jaco-
bian approximation using finite differences. In this work we used a subspace trust re-
gion approach [3] available in Matlab Optimization Toolbox, but also other least 
squares curve fitting methods could be applied. Numerical gradient based methods 
have a risk of converging to local minimum. In this case, however, we have a good 
starting point for the minimization. We can use cluster centers coordinates as initial 
values for the C parameters. Having cluster center defined as a very close to optimal 
we have less chance of converging to some local minima. Also we can calculate good 
initial guess value for Σ parameters, such that neighboring membership functions 
overlap. However, experiments have shown that this calculation is not necessary, as 
function converges without it. 

5   Determination of Rule Consequents 

Clusters detect grouping of sample data, which due to the construction of the covari-
ance matrix may be approximated with a linear function. We use weighted least 
squares linear regression to identify parameters of the output function for a rule. Phi-
losophy for use of weighted method is that samples with little membership degrees in 
a given rule are likely be evaluated by other rules so their output should not influence 
the output function to a big extent. And contrary, samples with high membership  
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degrees to a rule is evaluated primarily by this rule so they should have a big impact 
on the output function. Given the output function for a rule i we can formulate an er-
ror function for linear regression as shown below: 
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6   Experimental Results 

6.1   Box-Jenkins Gas Furnace 

The input data [11] is a series of pairs <u(t),y(t)> where u(t) is a rate of flow of  
gas into furnace, and y(t) is a CO2 concentration at the time t. With use of the method 
described in [1] we conclude that the output y(t) can be predicted with use of 3  
variables: y(t-1), u(t-4) and u(t-3).  Variable u(t-3) does not significantly improve the 
performance of the model, while adding computation complexity. As in [6] we use 
only y(t-1), u(t-4) variables. As the learning data set we chose the first half of the 
samples, second half is used to calculate an approximation error. 
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Fig. 1. Membership functions of input variables obtained for gas furnace problem 

Membership functions that were obtained with our approach are depicted on Fig. 1. 
Resulting TSK rule base: 

.23.86 1)-0.54y(t 4)--1.39u(ty THEN mf IS 1)-y(t AND mf IS 4)-u(t IF

25.78 1)-0.51y(t4)--1.38u(ty THEN mf IS 1)-y(t AND mf IS 4)-u(t IF

2,22,1

1,21,1

++=
++=  (17) 

Root mean square error (RMSE) for testing set approximation with rule base (17) 
is 0.391. Table 1 compares our result with results obtained with different methods 
summarized in [6]. 
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Table 1. Comparison of RMSE for gas furnace problem 

Method Num. of inputs Num. of rules RMSE 
Pedrycz (84)  2 81 0.565 
Xu (87) 2 25 0.572 
Sugeno (91) 6 2 0.261 
Sugeno (93) 3 6 0.435 
Wang (96) 2 5 0.397 
Delgado(99) 2 2 0.396 
Rantala(02) 4 5 0.358 
This method 2 2 0.391 

 
As it can be seen our method provides good approximation accuracy with simple 

model. Delgado [6] model provides similar accuracy, but they use input membership 
functions in product space, hence not achieving that interpretability as our model. 
Wang [12] provides also similar accuracy model with significantly bigger number of 
rules. Sugeno [13] model providing the best accuracy uses significantly bigger input 
information so these two methods can not be directly compared with this example. 

6.2   Non-linear Function Identification 

As another benchmark we use a non-linear function with two input variables: 

5,1,)1( 25.12 ≤≤++= −− yxyxz . (18) 

We use 50 random samples for learning and 200 other random samples for the 
system performance evaluation once it is learned. We determined a number of clus-
ters to be 4. Figure 2 presents actual function vs. our modeling result. As we can 
see, our approximation does not perform well on the boundaries of the system 
space. This is due to the fact that very little random samples for learning were se-
lected on the boundary. 
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Fig. 2. Original function and its fuzzy model 



 Automatic Identification of Fuzzy Models 891 

Table 2. Comparison of RMSE for non linear function (18) 

Method Num. of rules RMSE 
Wang (96) 6 0.281 
Delgado(99) 2 0.266 
This method 2 0.233 

Table 2 presents RMSE of our approach compared with other results from the  
literature. 

6.3   Miles Per Gallon (MPG) Prediction 

We run the test against standard miles per gallon prediction data set [14]. We divided 
the data set into two equal subsets and performed learning on one of them and meas-
ured the RMSE on the other half of the data. We selected 5 inputs for our model  
(displacement, horsepower, weight, acceleration and year) and 4 rules. Table below 
shows comparison of our result with other approaches found in the literature. It must 
be noted, that difference in MPG prediction are so small that can be due to the selec-
tion of random learning and testing sets. Our model is more complicated than  
Babuska [8] model but provides more interpretability as the other method uses trans-
formation of input variables for the rules. Optimized ANFIS provides similar results 
to our method but with more complex underlying model. 

Table 3. Comparison of RMSE for MPG approximation 

Method Inputs Rules Training RMSE Testing RMSE 
Jang (96) (linear reg.) 6 - 3.45 3.44 
Babuska (02) 5 2 2.72 2.85 
ANFIS 5 6 2.48 2.85 
This method 5 4 2.76 2.84 

7   Conclusions 

We have shown that existing clustering based approaches to fuzzy modeling may still 
be improved. By modification of clustering algorithm in use we are able to obtain ac-
curate fuzzy models and still preserve the interpretability. Additionally, it has been 
proven that curve fitting techniques combined with linear regression methods are a 
valid approach to convert clusters into fuzzy rules. 

As numerical results show, our method provides satisfactory results very often de-
livering a simpler model than other approaches. Moreover, the method is extensible 
enough and can be easily adopted to find membership functions of other types than 
Gaussian. It also can be subject to later optimization, giving a very good basis for op-
timization starting point. Optimization of the model obtained with this method is in 
scope for our future work in this area.  
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