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Abstract. As a result of the increased availability of higher precision
spatiotemporal datasets, coupled with the realization that most real-
world human systems are complex, a new field of computational modeling
is emerging in which the goal is to develop minimal models of collective
human behavior which are consistent with the observed real-world dy-
namics in a wide range of systems. For example, in the field of finance,
the fluctuations across a wide range of markets are known to exhibit cer-
tain generic stylized facts such as a non-Gaussian ‘fat-tailed’ distribution
of price returns. In this paper, we illustrate how such minimal models
can be constructed by bridging the gap between two existing, but incom-
plete, market models: a model in which a population of virtual traders
make decisions based on common global information but lack local in-
formation from their social network, and a model in which the traders
form a dynamically evolving social network but lack any decision-making
based on global information. We show that a combination of these two
models – in other words, a population of virtual traders with access to
both global and local information – produces results for the price return
distribution which are closer to the reported stylized facts. Going fur-
ther, we believe that this type of model can be applied across a wide
range of systems in which collective human activity is observed.

Keywords: complex systems, socio-economic systems, virtual traders,
collective behavior.

1 Introduction

Socio-economic systems were traditionally treated from the points of view of
game theory or traditional economic theory. These approaches – while undoubt-
edly successful in terms of gaining insight into core features – are unable to
address the issue of how and why such systems produce the fluctuating external
signals that they do [1,2,3,4,5]. Human systems as diverse as traffic, Internet
downloads, and financial markets, are all known to produce large-scale fluctua-
tions – for example, in the number of cars taking a certain road, or the number of
people accessing a certain website, or the number of people trying to sell a stock
at certain times [1,2,3,4,5]. In previous decades, there was typically an insuffi-
cient amount of reliable data available for researchers to address such problems
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of dynamics. Nowadays, with the increase in online logging of data – from social,
governmental and commercial sectors – this area of modeling now becomes very
attractive. However few advances are likely to be made analytically, since any
meaningful explanation of the dynamics must be related back to what the col-
lection of individual objects are doing. In other words, it is what physicists call
a many-body problem – one in which the objects are subjected to endogenous
and exogenous feedback and nonlinear interactions – and it is known that such
many-body problems are in general intractable. Given the additional feature
that the objects themselves may be semi-autonomous (i.e. they each have some
form of independent decision-making ability such that a given external input
may yield various possible outputs depending on some internal state of the ob-
ject itself) the only realistic route toward advancing our understanding of such
systems must surely be driven by computational modeling and simulation. In
short, such socio-economic systems are complex – and the key to understanding
the dynamics of such complex systems is provided by computer simulation.

Among the wide range of socio-economic fields that have attracted the inter-
est of complexity scientists, is the goal of trying to understand financial market
dynamics [1,2,3,4,5]. This is partly because financial markets produce such high
frequency data, and partly because the possible actions of an individual trader
are quite simple: buy, sell or do nothing at any timestep. A wide range of inter-
esting stylized facts have emerged based on analysis of the real market data over
a wide range of timescales – from seconds through to days, weeks and months. In
particular, it has been found that the distribution of price returns (i.e. changes
in price between a given time t and a time t+Δt later) do not follow the simple
distribution expected from a random walk. The standard model of a financial
market – based on the efficient market hypothesis – is that price-changes are
like the toss of a coin. They are supposedly independent – hence if we assume
that each trader trades according to the toss of a coin, then the probability of
buying and selling would a priori be 1

2 if we ignore the ‘do nothing’ option.
Counting a head as +1 in terms of price change, and a tail as −1, the proba-
bility distribution for having a given price-change ΔP = Nbuy − Nsell is simply
the probability of obtaining Nbuy heads and Nsell tails from N coin-tosses, such
that N = Nbuy + Nsell. This is a binomial expression, which then approaches a
Gaussian in the large-N limit. We note in passing that it is more common in
the finance literature to consider the logarithm of price-changes rather than the
price-change itself, hence the distribution of returns in the ideal, random-walk
market is log-normal. However the two distributions are essentially indistinguish-
able in most financial markets, since the returns are typically much smaller than
the prices themselves.

2 Collective Non-randomness in the Human World

As a rough first approximation, financial market behavior is not far from the
Gaussian model. However, many independent detailed empirical studies of fi-
nancial market returns have confirmed that major deviations begin to arise
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in the tails of the distribution [1,2,3,5]. Specifically, the distribution of price-
changes ΔP deviates from Gaussian behavior even at moderate values of ΔP .
In particular, the probability of intermediate-to-large price-changes is larger than
the random coin-toss model would suggest. This leads to the so-called ‘fat tail’
terminology which is often used to describe real financial markets when they
‘misbehave’. In fact, such fat-tailed behavior is common across a wide range
of socio-economic domains [1]. In many scientific settings such as physics, such
deviations from Gaussian behavior in the tail of the distribution might be con-
sidered a mere detail, since the average behavior of the system is typically what
counts. However real-world finance is all about risk – in particular, the risk of
large unexpected price-changes – and so these deviations are actually the most
important features of the distribution, contributing to abnormally high estimates
of the moments of the distribution such as the variance.

The fact that large price-changes are more likely than expected – and in more
general socio-economic settings, that large traffic jams or heavy Internet down-
loads are more likely than expected – suggests that the population is unintention-
ally behaving in a coordinated way. It is as though the supposedly independent
coin-tosses of the N traders are not in fact independent: when one comes up
heads, they are all more likely to come up heads, and vice versa with tails. It is
as though the population of traders was inter-connected in some way. The fact
that getting the best price in a financial market is a competitive activity – in the
same way that managing to grab space on a busy road, or a download on a busy
website, are also competitive – means that such coordination is very unlikely to
have arisen through some intentional population-level decision making. There is
no central controller – and even if there were, the fact that individual objects are
competing to win means that no central controller would necessarily be listened
to or followed by individual members of the population.

This coordination observed in many scenarios where populations of humans
are competing for some limited resource, thereby leading to larger than random
probability for large events, is characteristic of many human systems [1,4]. But if
so, what causes it and how can we provide a quantitative model of it? Because of
the generic nature of the fat-tail statistics, any useful model should not depend
on the details of the particular market or type of trader, or road or type of car,
or website or type of computer. Instead it must be some fairly general feature of
collective human activity.

The fundamental question as to what underlying model might best represent
such collective coordination, has inspired a new breed of computer-based scien-
tific investigation involving physical, biological and social scientists. At its root, a
system such as a financial market, traffic system, or the Internet, involves agents
(i.e. people) deciding between a few options (e.g. buy, sell, do nothing) based
on some limited information – which may be global or locally generated – and
then competing with the remaining agents for the available resource or reward.
Any collective coordination will require some form of trader inter-connectedness.
One way in which this could have arisen, is if subsets of the traders form so-
cial groups such that they and their immediate friends or associates, coordinate
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their actions (i.e. bias their decisions and hence effectively connect their coins
during the coin-toss). In fast-moving financial markets, such groups are likely
to change fairly rapidly, and should at least be accounted for using dynamical
models of such group formation. This idea has led to a particular class of models
based on dynamical cluster formation. Notable examples include the dynamical
clustering model of Egúıluz and Zimmermann [7] and of others in biology [6],
[8]. A second way in which coordination could have arisen, concerns how agents
react to a particular piece of common information. Models of this form, of which
a notable example is the so-called Grand Canonical Minority Game [9], feature
agents whose actions are dictated by a strategy (or set of strategies). In the first
case of real clusters, the grouping is intentional, while in the second case agents
form unintentional groups (i.e. crowds) as a result of using the same strategy at
the same time and hence acting identically over a short period of time. These
two classes of model are complementary. Each of these models is ‘minimal’ in
the sense that they are the simplest known examples which seem to capture
the essential ingredients of clustering and decision-making respectively. To date,
the two classes of model have been studied separately – however, they should
clearly both be combined in order to understand the interplay of local and global
information on collective group formation and hence the collective dynamics.

In this paper, we take the first steps in this direction of analyzing a collective
human system in which there are local interactions as observed in the Egúıluz
and Zimmermann [7] model (i.e. E-Z model) and global interactions as observed
in the Grand Canonical Minority Game [9] (i.e. GCMG). The focus of this paper
is to show how adding global interactions to the E-Z model, does indeed improve
the fit with the known empirical distributions of financial market returns. Our
construction is a modified E-Z model in which the agents are randomly assigned
the trading strategies and apply their strategy based on the last two price move-
ments. Unlike the full GCMG, the model does not include an explicit strategy
score. Instead, the system behaves as a relative majority voting system.

3 Relative Majority Vote

The relative majority vote system is specified by two parameters, the total num-
ber of agents N and the consensus parameter x. To set up a timescale, we need to
prescribe some form of timescale constant. At each time-step, an agent is chosen
at random and the group to which the agent belongs is identified. The size of
this group is denoted as s. Once a particular group has been identified, it makes
a decision in the following way: Each agent votes either to sell, buy or wait (see
Fig. 1) with approximate probability 1/3 for each of the listed options. If the
number of votes for the most popular decision exceeds the threshold, which is
defined as

T ≡ x · s (1)

the consensus is reached and the decision is performed. Otherwise there is no
consensus and the group fragments into single individuals. The group that de-
cides to wait does not trade, but instead merges with another group by choosing
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consensus?

yes no

global outcome 

is 0
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wait > buy & wait > sell

global outcome 

is 0

cluster merges

sell > buy & sell > wait

global outcome 

is 0

buy > sell & buy > wait

global outcome 

is +1

in case of a tie 

one of the tied actions 

is picked at random 

Global information 10

+1
+1

-1

0

m(10) = 2

3           -1

2            0

1           -1

0          +1

Fig. 1. Schematic diagram of the decision process in our multi-agent model

randomly any other agent from the entire population and then joining with the
group to which this agent belongs. For a particular group of size s, let us denote
the number of agents who vote to sell, buy or wait (and merge with another
group) as S, B, W respectively. The conditions for the group decision are as
follows:

Fragments: (W < T ) ∧ (S < T ) ∧ (B < T )
Buys: (B ≥ T ) ∧ (B > S) ∧ (B > W)
Sells: (S ≥ T ) ∧ (S > B) ∧ (S > W)
Merges: (W ≥ T ) ∧ (W > B) ∧ (W > S)

(2)

We also need to account for the fact we may have a tied number of votes. This
is resolved by randomly picking one of the two tied decisions, e.g. if

(S ≥ T ) ∧ (S = B) ∧ (S > W)

then the group either sells or buys with equal probability. The decisions presented
in Eq. (2) are exclusive, therefore the corresponding conditional probabilities (on
the condition that the particular group is chosen) satisfy the equation

p̂ frg + p̂ sell + p̂ buy + p̂merge = 1 , (3)

where p̂ frg is the probability that the group fragments. Note that the above
conditional probabilities depend on the group size s. From the symmetry of Eqs.
(2) and (3) we see that it is sufficient to know p̂ frg since
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Fig. 2. Cumulative distribution of price returns ΔP in arbitrary units, for
the consensus parameter x = 37% (thicker solid line), x = 41% (dashed line) and
x = 47% (dashed-dotted line). The number of agents is 10000. The thin solid lines
indicate the scaling behavior observed for the cumulative probability distribution
for returns ΔP in the pure E-Z model and for typical empirical market data [2].
The underlying probability distribution for price-changes p(ΔP ), follows a power-law
p(ΔP ) ∼ (ΔP )−α over a range of ΔP values in both the E-Z and real market data,
with α = 1.5 for the pure E-Z model and α ∼ 4 for empirical market data.

p̂ sell = p̂ buy = p̂merge =
1 − p̂ frg

3
. (4)

We calculate the combinatorial expression as

p̂ frg(s) =
s!
3s

s−1∑

W=0

min(T −1,s−W)∑

B=s−T −W

1
W !B!(s − B − W)!

(5)

The system may be described by mean field theory (disregarding the fluctu-
ations and finite size effects). We denote by ns the average number of groups of
size s. For the steady state, the set of master equations is semi-recursive1 and is
written as

− s

N
p̂ frg(s)(1 − δs1)ns −

[
1
N

p̂merge(s) +
1

N2

N∑

s′=1

s′p̂merge(s′)

]
s ns

+
s−1∑

s′=1

s′ ns′ (s − s′)ns′ p̂merges
′ + δs,1

N∑

s′=s+1

p̂ frg(s′)s′2ns′ = 0 . (6)

1 The equation for nl depends on ni for all i = 1 . . . l − 1.
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The above set may be solved numerically2. In order to include corrections from
the fluctuations and the finite size effect, we need to perform direct simulations
of the system described by Eq. (6).

We are interested in the situation when the consensus parameter is within
the range of x = (33 1/3 %, 50 %). If x < 33 1/3 % there is no fragmentation.
If x > 50 % we have the absolute majority vote condition. When x → 33 1/3 %
from above, we expect the return distribution to approach the one for the original
Egúıluz-Zimmermann system, which shows a power law with exponent 1.5 over a
large scale of return sizes. As we increase x slightly above 33 1/3 %, the dominant
behavior of the buy/sell probabilty p̂ buy = p̂ sell for the large groups (i.e. of order
s � 100) yields an exponential cut-off, while for smaller s we have the finite size
effect. This modifies the model in two ways, by changing the group distribution
(since the conditional probabilities enter Eq. (6)) and the trade mechanism.
Unlike the E-Z system [7] where mostly the large groups trade, we expect to
have the trades coming from the actions of the small groups with the exponential
cut-off due to the behavior of Eq. (5).

4 Simulation Results

The simulations were performed for a system with N = 104 agents, m = 2,
and 106 time steps, with three different values of the consensus parameter. The
initial state of information was (1, 1). After 105 timesteps, in order to allow the
system to reach equilibrium, the returns where computed as follows: if a cluster
of size s decides to buy, the return is +s. If a cluster of size s decides to sell, the
return is −s. After the simulation was complete, the time was rescaled by adding
the returns of two consecutive timesteps since on average a transaction occurred
once every two timesteps. Thus the results in Fig. 2 are effectively for 9 × 105/2
timesteps. It is observed that indeed most of the trades come from the action of
the small groups. As the consensus parameter is increased, the distribution of
returns can be seen to fall more sharply due to the increasing dominance of the
exponential cut-off. Our results demonstrate that the feature of allowing agents
access to global information and subsequent decision-making, when built into
a model focused on local group formation (i.e. E-Z), leads to a hybrid model
which can better capture features of the known empirical distributions. In short,
both local group formation and global information are important when building
a minimal computational model of financial markets. By extension, the same
statement should hold for collective human activity in any domain in which
competition exists between a collection of interconnected agents.

5 Discussion

We have proposed a simple model system that represents a first step in the
quest to develop minimal, individual-based computational models of real
2 The numerical procedure for solving Eq. 6 is effective for modest values of N , since

at least 1/2 N2 iteration steps are required.
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socio-economic systems in which both local and global interactions are featured.
Such minimal models aim to incorporate the minimum number of rules, and
hence parameters, such that individuals’ behavior and interactions still appear
credible; yet at the same time, the emergent dynamics should remain consistent
with the maximum possible number of empirical stylized facts based on real-
world data. In our particular case, we have incorporated global interactions via
the heterogeneity of strategies held by the agents, as well as agent memory in
the locally interacting system via the grouping mechanism.

Our specific results are as follows. The scenario in which the agents are allowed
to vote introduces an exponential cut-off starting on the scale for which effects
connected to the discrete nature of the system may be neglected. Our results
show that those who usually trade are the small groups, and that there are no
trades coming from the large groups. By contrast in the original E-Z model, the
conditional probabilities were constant and any particular large group trades
more often than a particular small group. The most realistic minimal model
(which is as yet undiscovered) should lie somewhere in between. Any voting
scenario is a Poisson process which introduces an exponential cut-off into the
system. This exponential cut-off appears on a scale where the number of indi-
viduals involved is sufficiently large that we may disregard the discrete nature
of the system. The modeling and the computational challenge is therefore as
follows: How can the present model be further enhanced such that it reflects the
more complex behavior of the individuals through the possession of memory, be-
havior based on past experience, and the passing of information between groups
concerning whether to trade or not?

In terms of more general issues of computational modeling, we have tried to
highlight the need to develop minimal computational models of real
socio-economic systems through individual-based behavior. Future theoretical
developments in such fields lie beyond simply integrating some form of phe-
nomenological equation. Moreover, this sort of socio-economic modeling is an
application of computation that is set to boom in the future given the growing
availability of high-frequency data from socio-economic systems – and the fun-
damental philosophical need for theories which treat dynamical fluctuations in
addition to mean behavior. One particular example in which this philosophy is
now being developed, is in improving our understanding of human conflict – by
looking at the stylized facts of conflict dynamics in exactly the same way as has
been done for financial markets. Indeed, we have recently shown that remarkably
similar minimal computational models can be built, exhibiting equally satisfying
agreement with empirical data, simply by combining together global and local
interactions among agents. This work on human conflict will be discussed in
more detail elsewhere.
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