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J. Ramı́rez1, J.M. Górriz1, M. Gómez-Rı́o2, A. Romero1, R. Chaves1,
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Abstract. Medical image reconstruction from projections is computa-
tionally intensive task that demands solutions for reducing the processing
delay in clinical diagnosis applications. This paper analyzes reconstruc-
tion methods combined with pre- and post-filtering for Single Photon
Emission Computed Tomography (SPECT) in terms of convergence
speed and image quality. The evaluation is performed by means of an
image database taken from a concurrent study investigating the use of
SPECT as a diagnostic tool for the early onset of Alzheimer-type demen-
tia. Filtered backprojection (FBP) methods combined with frequency
sampling 2D pre- and post-filtering provides a good trade-off between
image quality and delay. Maximum likelihood expectation maximization
(ML-EM) improves the quality of the reconstructed image but with a
considerable increase in processing delay. To overcome this problem the
ordered subsets expectation maximization (OS-EM) method is found to
be an effective algorithm for reducing the computational cost with an
image quality similar to ML-EM.

1 Introduction

Emission-computed tomography (ECT) has been widely employed in biomedical
research and clinical medicine during the last three decades. ECT differs fun-
damentally from many other medical imaging modalities in that it produces a
mapping of physiological functions as opposed to imaging anatomical structure.

Tomographic radiopharmaceutical imaging, or ECT, provides in vivo three-
dimensional maps of a pharmaceutical labeled with a gamma ray emitting ra-
dionuclide. The distribution of radionuclide concentrations are estimated from a
set of projectional images acquired at many different angles around the patient.
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Single Photon Emission Computed Tomography (SPECT) imaging techniques
employ radioisotopes which decay emitting predominantly a single gamma pho-
ton. This represents the fundamental difference between PET (Positron Emission
Tomography) and SPECT. PET systems employ isotopes in which a couple of
photons are produced in each individual annihilation. There is a rich variety
of isotopes that decay, emitting a single-photon and which consequently can be
utilized in SPECT. When the nucleus of a radioisotope disintegrates, a gamma
photon is emitted with a random direction which is uniformly distributed in the
sphere surrounding the nucleus. If the photon is unimpeded by a collision with
electrons or other particles within the body, its trajectory will be a straight line
or “ray”. In order for a photon detector external to the patient to discriminate
the direction that a ray is incident from, a physical collimation is required. Typ-
ically, lead collimator plates are placed prior to the the detector’s crystal in such
a manner that the photons incident from all but a single direction are blocked by
the plates. This guarantees that only photons incident from the desired direction
will strike the photon detector.

Brain SPECT has become an important diagnostic and research tool in nu-
clear medicine. The ultimate value of this procedure depends on good technique
in acquisition setup and proper data reconstruction [1,2]. This paper analyzes
reconstruction methods combined with pre- and post-filtering for Single Photon
Emission Computed Tomography (SPECT) in terms of convergence speed and
image quality.

2 Filtered Backprojection Reconstruction

An image of the cross section of an object can be recovered or reconstructed
from the projection data. In ideal conditions, projections are a set of measure-
ments of the integrated values of some parameter of the object. If the object is
represented by a two dimensional function f(x, y) and each line integral by the
(θ, t) parameters, the line integral Pθ(t) is defined as:

Pθ(t) =
∫ +∞

−∞

∫ +∞

−∞
f(x, y)δ(x cos θ + y sin θ − t)dxdy (1)

The function Pθ(t) is known as the Radon transform of the function f(x, y). A
projection is formed by combining a set of line integrals. The simplest projection
is a collection of parallel ray integrals and is given by Pθ(t) for a constant θ.
Another type of projection is possible if a single source is placed in a fixed
position relative to a line of detectors. This projection is known as fan beam
projection because the line integrals are measured along fans.

The key to tomographic imaging is the Fourier Slice Theorem which relates
the measured projection data to the two-dimensional Fourier transform of the
object cross section. The Fourier Slice Theorem is stated as follows: “The Fourier
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transform Sθ(w) of a parallel projection Pθ(t) of an image f(x, y) taken at angle
θ and defined to be:

Sθ(w) =
∫ +∞

−∞
Pθ(t) exp(−j2πwt)dt (2)

gives a slice of the two-dimensional Fourier transform:

F (u, v) =
∫ +∞

−∞

∫ +∞

−∞
f(x, y) exp(−j2π(ux + vy))dxdy (3)

subtending an angle θ with the u-axis”, that is,

Sθ(w) = F (u = w cos θ, v = w sin θ) (4)

The above result is the essence of straight ray tomography and indicates that
by having projections of an object function at angles θ1, θ2, ..., θk and taking
the Fourier transform of them, the values of F (u, u) can be determined on radial
lines.

In practice only a finite number of projections of an object can be taken. In
that case it is clear that the function F (u, v) is only known along a finite number
of radial lines so that one must then interpolate from these radial points to the
points on a square grid.

The filtered backprojection (FBP) algorithm can be easily derived from the
Fourier Slice Theorem. An image of the cross section f(x, y) of an object can be
recovered by:

f(x, y) =
∫ π

0
Qθ(x cos θ + y sin θ)dθ (5)

where

Qθ(t) =
∫ +∞

−∞
Sθ(w)|w| exp(j2πwt)dw (6)

The FBP algorithm then consists of two steps: the filtering part, which can be
visualized as a simple weighting of each projection in the frequency domain, and
the backprojection part.

3 Maximum Likelihood Expectation Maximization
(ML-EM)

In emission tomography, a compound containing a radioactive isotope is intro-
duced into the body and forms an unknown emitter density λ(x, y) under the
body’s functional activity. Emissions then occur according to a Poisson process.
The acquisition system usually consists of D detectors so that the measured
data n∗(1), ..., n∗(D) represents the counts of photons emitted by the body and
measured by each one of the detectors.

The maximum likelihood expectation maximization algorithm (ML-EM)
[3,4,5,6] determine an estimate λ̂ of λ which maximizes the probability
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p(n∗(1),...,n∗(D)|λ) of observing the actual detector count data over all pos-
sible densities. Let n(b) represent the number of unobserved emissions in each of
B boxes (pixels) partitioning an object containing an emitter and let p(b, d) be
the probability of an emission in box b is detected in detector unit d. ML-EM
is an iterative reconstruction algorithm which starts with an initial estimate λ0
and gives the new estimate λ̂ from an old estimate λ̂′:

λ̂(b) = λ̂′(b)
D∑

d=1

n∗(d)p(b, d)∑B
b′=1 λ′(b′)p(b′, d)

(7)

4 Ordered Subset Expectation Maximization (OSEM)

The application of Expectation Maximization (EM) algorithms in emission to-
mography has led to the introduction of many related techniques. While quality
of reconstruction is good, the application of EM is computer intensive and its
convergence slow. Ordered subset expectation maximization (OS-EM) [7] algo-
rithm for computed tomography groups projection data in ordered subsets. The
standard EM algorithm (i.e., projection followed by backprojection) is then ap-
plied to each of the subsets in turn. The resulting reconstruction becomes the
starting value for use with the next subset. An iteration of the OS-EM algorithm
is defined as a single pass through all the specified subsets. Further iterations
may be performed by passing through the same ordered subsets, using as a
starting point the reconstruction provided by the previous iteration. By select-
ing mutually exclusive subsets, each OS-EM iteration has a similar computation
to a single EM iteration.

In SPECT, the sequential processing of ordered subsets is very natural, as
projection data is collected separately for each projection angle (as a camera
rotates around the patient in SPECT); counts on single projections can form
successive subsets.

5 Prefiltering and Postfiltering

A major drawback of FBP algorithms for tomographic image reconstruction is
the undesired amplification of the high frequency noise and its impact on image
quality. These effects are caused by the filtering operation or multiplication of
Sθ(w) by |w| in equation 6. In order to attenuate the high frequency noise ampli-
fied during FBP reconstruction, a number of window function has been proposed.
In this way, the reconstruction method described by equations 5 and 6 is nor-
mally redefined by applying a frequency window which returns to zero as the
frequency tends to π. Among the most common window functions used for FBP
reconstruction are: i) sinc (Shepp-Logan filter), ii) cosine, iii) Hamming and, iv)
Hanning window functions. However, even when the reconstruction noise is kept
low using a noise controlled FBP approach, the noise captured by the acquisition
system needs to be filtered out to improve the quality of reconstructed images.
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(a) (b)

(c)

Fig. 1. a) SPECT sinogram acquired by a three head gammacamera, b) Filtered
SPECT data, c) Frequency response of noise filter

Moreover, the preprocessing stage of most automatic SPECT image processing
systems often incorporates prefiltering, reconstruction and postfiltering to min-
imize the noise acquired by the gammacamera as well as the noise amplified
during FBP reconstruction.

6 Image Quality and Performance Evaluation

Image files were taken from a concurrent study investigating the use of SPECT
as a diagnostic tool for the early onset of Alzheimer-type dementia. SPECT data
were acquired by a three head gammacamera Picker Prism 3000. The patient
is injected with a 99mTc-ECD radiopharmeceutical which emits gamma rays
that are detected by the detector. A total of 180 projections were taken with a
2-degree angular resolution.

Fig. 1 shows the effects of noise and filtering on projection data acquired by
the gammacamera. The acquired sinogram shows a visible high frequency noise
that is effectively filtered by a 2D frequency sampling FIR filter. Fig. 2 shows
the effect of noise on FBP image reconstruction and the effectiveness of pre- and
post-filtering. Note that, when a simple ramp filter is used, the noise completely



746 J. Ramı́rez et al.

(a) (b) (c)

Fig. 2. FBP reconstruction of a SPECT image with a) RAM-LAK filter, b) with FIR
prefiltering, c) with pre- and post-filtering

corrupts the reconstructed image. Pre- and post-filtering improves the quality
of FBP reconstruction by removing the huge high frequency noise present in
SPECT data and the residual noise after reconstruction. Thus, FBP yields good
image quality for analysis and display of SPECT data although residual noise is
observed in the images as shown in Fig. 2a.

ML-EM algorithm is an iterative algorithm for image reconstruction that
better models the photons emitted by a radioactive source and yields better
image quality when compared to FBP. Fig. 3 shows the slow convergence of
ML-EM to a final reconstructed image. It is shown that the iterative algorithm
described by equation 7 requires from 15 to 20 iterations to converge and yields
a final image with improved quality when compared to FBP as shown in Fig. 4.

OS-EM image reconstruction, that groups projection data in ordered subsets
and performs projection followed by backprojection to each of the subsets in turn,
yields an acceleration on the convergence of the image reconstruction process.
Thus, with a number of subset equal to the number of iterations required by

Fig. 3. Convergence of ML-EM SPECT image reconstruction
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(a) (b)

Fig. 4. Comparison of FBP and ML-EM methods for SPECT image reconstruction.
a) FBP, b) ML-EM.

(a) (b) (c)

Fig. 5. Result after one OSEM iteration. Image reconstruction partitioning the set of
detectors into a) 10, b) 15 and c) 20 subsets.

ML-EM to converge, OS-EM converges in a single iteration performed over all
the subsets. Thus, for the example shown in Fig. 3, OS-EM should converge by
partitioning the whole set of detector elements into about 15-20 subsets. Fig. 5
shows the results of a single iteration performed by the OS-EM algorithm with
a different number of subsets. It is clearly shown that with 15 and 20 subsets
the image appear to be of similar quality to ML-EM with the advantage of a
speedup of the order of the number of subsets.

7 Conclusions

Classical filtered backprojection and statistical maximum likelihood expecta-
tion maximization image reconstruction algorithms were evaluated in terms of
image quality and processing delay. Image files were taken from a concurrent
study investigating the use of SPECT as a diagnostic tool for the early onset of
Alzheimer-type dementia. FBP image reconstruction needs a careful control and
the noise since it tends to amplify high frequency noise. Pre- and post-filtering
improves the quality of FBP reconstruction by removing the huge high frequency
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noise present in SPECT data and the residual noise after reconstruction. ML-
EM yields better image quality when compared to FBP since a precise statistical
model of the emission is used. However, the processing delay is considerable due
to its slow convergence. OS-EM was found to be a good trade-off between image
quality and processing delay since it converges in a single iteration by partition-
ing the set off detection elements into about 15-20 subsets.
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