
Towards a System-Level Science Support

Tomasz Guba�la2,3, Marek Kasztelnik3, Maciej Malawski1, and Marian Bubak1,3

1 Institute of Computer Science AGH, al. Mickiewicza 30, 30-059 Kraków, Poland
2 Informatics Institute, University of Amsterdam,

Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
3 ACC CYFRONET AGH, Kraków, ul. Nawojki 11, 30-950 Kraków, Poland

gubala@science.uva.nl, m.kasztelnik@cyfronet.pl,
{malawski,bubak}@agh.edu.pl

Abstract. Recently, there is a growing need for an information tech-
nology solution to support a new methodology of scientific investigation,
called system-level science. This paper presents a new approach to devel-
opment and execution of collaborative applications. These applications
are built as experiment plans with a notation based on the Ruby lan-
guage. The virtual laboratory, which is an integrated system of dedicated
tools and servers, provides a common space for planning, building, im-
proving and performing in-silico experiments by a group of developers.
The application is built with elements called gems which are available on
the distributed Web- and Grid-based infrastructure. The process of ap-
plication developments and the functionality of the virtual laboratory are
demonstrated with a real-life example of the drug susceptibility ranking
application from the HIV treatment domain.

Keywords: System-level science, e-Science, collaborative applications,
virtual laboratory, ViroLab.

1 Introduction

Nowadays we observe a new approach to scientific investigations which, besides of
analyses of individual phenomena, integrates different, interdisciplinary sources
of knowledge about a complex system, to acquire understanding of the sys-
tem as a whole. This innovative way of conducting research has recently been
called system-level science [1]. Biomedicine is an important example of such a
field, requiring this new approach, which, in turn, must be accompanied by ad-
equate information technology solutions. The complexity of challenges in the
biomedical research and the growing number of groups and institutions involved
creates more demand from that part of science for new, collaborative environ-
ments. Since biomedicine experts and research groups do not work in separation,
more and more attention and effort is devoted to collaborative, inter-laboratory
projects involving data and computational resources. The computer science as-
pects of this research, which include virtual groups, virtual organizations built
around complex in-silico experiments and electronic data stores are also repre-
sentative for other fields.

M. Bubak et al. (Eds.): ICCS 2008, Part I, LNCS 5101, pp. 56–65, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Towards a System-Level Science Support 57

An example of such a collaborative application in the virology domain, being
built and used in complex simulations by many cooperating users, is drug resis-
tance evaluation for HIV treatment [2] [3]. As the final results of this simulation
is important for everyday practice of clinical virologists, there are efforts to pro-
vide it as a service via the web [4]. The ViroLab project dedicates substantial
resources to deliver a decision support system to help medical doctors issue HIV
drug prescriptions [5], as it develops the Drug Ranking System (DRS) [6].

Treatment decision support systems, like DRS, are used and developed by
many people. There are many groups involved in HIV research and users rep-
resenting various expertise levels inside these groups work to deliver a valid,
reasonably complete and efficiently working solution. In turn, this objective can
be achieved only if the entire endeavor is backed by a solid, innovative and well-
integrated technology that is both generic enough to support users with distinct
assignments, yet sufficiently focused.

In this paper we present the ViroLab Virtual Laboratory [7]: a collaborative,
modern platform for system-level science. The laboratory is a set of dedicated
tools and servers that form a common space for planning, building, improving
and performing in-silico experiments in the virology domain.

In subsequent sections we show how such a complex application as DRS for
HIV treatment may be designed, prepared and deployed for use in a collabora-
tive fashion by people of different expertise levels, working towards a common
objective. The next section presents an overview of related initiatives, and it is
followed by a detailed explanation of operation of the proposed solution. Next,
we discuss the novelty and innovation of this solution. We conclude with a sum-
mary and plans for future research.

2 Background

The need for information technology solutions supporting system-level science
is indicated in the Cover Features by I. Foster and C. Kesselman [1].

Problem-solving environments and virtual laboratories have been the subject
of research and development for many years [8]. Most of them are built on top of
workflow systems. The LEAD [9] project is an example of a virtual laboratory
for weather prediction applications; its main modules include a portal with user
interfaces, a set of dedicated, distributed Grid resources and a workflow system
which allows for combining the present resources together, to define task-specific
processing. An example of an experimentation space is the Kepler [10] system
which provides a tool for composing application workflows (which could, in par-
ticular, be experiments). In the MyGrid [11] environment, the Taverna system is
used to compose complex experiment processes out of smaller, atomic building
blocks. A rich library of those basic elements allows for great flexibility and nu-
merous different solutions can be developed. Collaborative extensions have been
provided by the MyExperiment project [12]. A recent overview of dedicated en-
vironments supporting development and execution of complex applications in
biomedicine is presented in [13].



58 T. Guba�la et al.

Most of problem solving environments and virtual laboratories are built on
top of scientific workflow systems. The work on extension of the expressiveness of
their programming models, interoperability, and on enabling access to different
computing resources is still a subject of research [14]. In this paper, basing on
the experience from workflow systems, we present an alternative approach to
building systems supporting system-level science.

3 Drug Ranking Experiment in Virtual Laboratory

3.1 Experiment Pipeline

The process of experiment preparation in the collaborative ViroLab virtual lab-
oratory is composed of well-defined steps (Fig. 1). At the beginning, the medical
expert defines requirements for the experiment: what are its objectives, what
kind of data and computation is required. Subsequently, the experiment de-
veloper, by analyzing these requirements, identifies the functional blocks that
constitute the application. These computational elements of the ViroLab virtual
laboratory are called gems and, in most cases, are available in the distributed
Web- and Grid-based infrastructure. Otherwise, they have to be created, pub-
lished and registered in the virtual laboratory, thus becoming available for other
developers who may reuse them in their own experiments.

Fig. 1. Experiment pipeline: consecutive steps of an experiment in the virtual
laboratory

Once all required computational activities are available, an experiment plan
may be created. This purposed virtual laboratory provides an expressive, easy
way to use a notation based on a high-level scripting language called Ruby [15].
The experiment plan is a Ruby script. The Ruby language provides a clear
syntax, a full set of control structures and, as a result, it enables expressing
experiments of arbitrary complexity levels in the form of scripts.

After the script is created and it fulfills (according to the developer) all the
experiment requirements, it is stored in a dedicated repository and becomes
available to other members of a given virtual organization. As a result, the sci-
entist does not need to become familiar with scripting details, and may access the



Towards a System-Level Science Support 59

virtual laboratory through a portal as well as browse and execute the available
experiments using dedicated tools [16]. During application execution, provenance
data is created and stored in dedicated provenance storage. This information is
used by the scientist to search for interesting data and its origins [17].

The experiment script, as released by a developer, may not be optimal or
may lack some functionalities. The virtual laboratory enables the scientist to
easily communicate with the developer using a dedicated tool to submit user
feedback, which is then used by the developer to produce a better version of the
application.

Fig. 2. “From Genotype to Drug Resis-
tance” experiment

The Drug Ranking System was cre-
ated as a result of the experiment
pipeline described above. Interpreta-
tion of the susceptibility of the HIV
virus to particular drugs involves sev-
eral steps. Some of these steps have to
be performed manually (a blood sam-
ple has to be taken from the patient,
the genetic material from the virus has
to be isolated and sequenced). Once
these steps are complete, a set of valid
information is placed into a database.
This material provides the required in-
put for the DRS system. Knowing the
nature of the experiment, a medical
expert defines its structure (Fig. 2). A
set of nucleotide sequences of the HIV virus has to be obtained. These sequences
are then the subject of subtype detection algorithms and alignment processes,
which create a list of mutations. This list is passed to the drug resistance expert
system which returns virus-to-drug susceptibility values. When the experiment
plan is defined, the developer can start searching for required gems or create
them if they are not available, and implement the experiment plan.

3.2 Development and Publication of Gems

As already hinted in Section 3.1, the basic computational building blocks of
experiments are called experiment gems, which follows the name introduced for
Ruby libraries (Ruby gems [15]). Although in the experiment script all such gems
are represented with a uniform API based on the Grid Object abstraction [18],
the gems themselves may be implemented using various technologies. Such an
approach to integration of multiple technologies was motivated by the very vivid
diversity of existing Grid- and Web-based middleware systems which may be
used to provide access to computation. There are standard Web services, WS-
RF, distributed component frameworks such as MOCCA [19] or ProActive [20],
as well as large-scale job-processing systems such as EGEE LCG/gLite [21]. The
goal of the Virtual Laboratory is to support gems using all these technologies.



60 T. Guba�la et al.

Before a gem can be used in Virtual laboratory experiments, it has to be
prepared by a gem developer. Fig. 3 shows schematically the required steps. Af-
ter the interface of the gem is defined, it must be implemented using a selected
technology. For simple, stateless interaction a standard Web service is the pre-
ferred solution. If a gem requires stateful (conversational) interaction and may
benefit from dynamic deployment on remote resources, then implementing it as
MOCCA component may be a good choice. Otherwise, if running a gem is a
CPU-intensive and time-consuming task, it may be reasonable to implement it
as a standalone program, which may be submitted as a job to such Grid infras-
tructures as EGEE or DEISA.

Fig. 3. Gem development: follow-
ing interface definition, a gem has
to be implemented, deployed in a
specific technology and registered in
GRR

Once the gem is developed, it has to be reg-
istered in the Grid Resource Registry (GRR),
which is a central service of the Virtual Lab-
oratory. GRR stores a technical description
(techinfo) of each gem, including all infor-
mation about the interface, implementation
and details required to deploy or invoke the
gem. It is possible to register gems which
are published by third parties on the Web
in the form of Web services: in that case it
is enough to provide the WSDL file, describ-
ing the given service. Before actual registra-
tion takes place, the gem developer may write
testing and debugging scripts which operate
directly on the gem techinfo. Following reg-
istration in the GRR, the gem becomes vis-
ible to all experiment developers and can be
shared throughout the Virtual Laboratory.

In the Drug Ranking experiment described
in this paper, the gems include the Drug Re-
sistance Service [5] and the RegaDB HIV se-
quence alignment and subtyping tools [22].

3.3 Experiment Planning, Scripting and Publishing

After the requirements of the experiment are defined and the missing gems de-
veloped, installed and registered in the GRR, the developer can start creat-
ing the experiment plan. The plan links data and computation into a working
application. As presented in Section 3.2, the gems can be implemented using
different technologies and, consequently, the creation of an experiment that con-
nects these technologies, becomes complicated. To hide the complexity of the
underlying middleware, a high-level object-oriented API called the Grid Oper-
ation Invoker – GOI [18] has been introduced. Uniform access to computations
is enabled by providing three level of resource description (Fig. 4) – Grid Ob-
ject, Grid Object Implementation and Grid Object Instance. During creation of
the experiment plan only the highest level is used, although, if necessary, the



Towards a System-Level Science Support 61

developer can define all the resource’s technical details using one of the lower lay-
ers. The next problem that occurs while creating the experiment plan is access
to the medical data. The virtual laboratory provides a high-level, secure API
that enables querying different data sources with the Data Access Client – DAC
(a client of the ViroLab Data Access Service [23]).

Fig. 4. Grid Object abstraction

The Experiment Planning Environment
(EPE [16]) supports creation of experiment
plans. EPE is an RPC application based on
the Eclipse platform which offers an inte-
grated set of tools and a dedicated editor
for writing experiment plans. The Domain
Ontology Store (DOS) plug-in is a graphical
browser that enables discovery of semantic
information about the data and compu-
tational services. The Grid Resource Reg-
istry browser (GRR-browser) plug-in allows
browsing registered services, their operations,
input, output parameters and the attached
documentation. These two plug-ins are integrated with the EPE experiment
plan editor and between them provide a powerful mechanism for data and
service discovery.

The DRS experiment plan (see Fig. 5) was created using this set of tools. The
developer knows that three computational services (responsible for subtyping,
aligning and drug ranking) are required. Using the DOS plug-in all computa-
tional parts that return subtyped, aligned and drug-ranking results are found.
Afterwards, by switching from DOS to the GRR-browser plug-in, the developer
is able to see the details of the gems operations. The statements which result
in the creation of selected resources, are added to the experiment plan directly
from the browser plug-in. EPE is also integrated with the Experiment Reposi-
tory version control system (based on Subversion), which facilitates collaboration
between developers. As a result, many developers can work on single experiment
plan, sharing it with other members of a virtual organization.

The last step in experiment plan development is to make it available to the
medical expert who is the application end user. The release plug-in, integrated
with EPE, simplifies the experiment plan release process. During this process a
new branch in the SVN repository is created and the experiment plan is copied
with a unique version number and licence file.

3.4 Execution of Experiment

Both GOI and DAC are elements of the GridSpace engine (GSEngine [24]) which
provides runtime support. It allows executing experiment plans locally on the
developer’s machine, or remotely, on the server (Fig. 6). EPE is integrated with
the runtime, thus making experiment plan creation and testing easy. For the
medical expert who is the end user of the created experiments, a dedicated Web
based application (Experiment Management Environment – EMI [16]) is created,



62 T. Guba�la et al.

patientID = DataRequester.new.getData("Provide patient\’s ID")
region = DataRequester.new.getData("Region (\"rt\" or \"pro\")")

nucleoDB = DACConnector.new("das",
"angelina.hlrs.de:8080/wsrf/services/DataAccessService","","","")

sequences = nucleoDB.executeDistributedQuery(
"select nucleotides from nt_sequence where
patient_ii=#{patientID.to_s};")

subtypesTool = GObj.create("RegaDBSubtypesTyool")
subtypes = subtypesTool.subtype(sequences)
puts "Subtypes: #{subtypes}"

mutationsTool = GObj.create("RegaDBMutationsTool")
mutationsTool.align(sequences, region)
mutations = regaDBMutationsTool.getResult

drs = GObj.create("DrugResistanceService")
puts drs.drs("retrogram", region, 100, mutatations)

Fig. 5. Listing of the decision support system experiment plan

hiding the complexity of the technology layer. It allows browsing information
about the released experiment plans’ versions (their names, descriptions, li-
cences) and executes them. Thanks to close integration with the GSEngine,
interaction between users and experiment plans is realized. This mechanism al-
lows receiving additional information from the user during script execution. For
example, the DRS experiment (Fig. 5) requires two pieces of input data from
the user: patientId – necessary to receive patient sequences from the medical
database, and the region – required by the Drug Resistance Service.

4 Innovation

The ViroLab virtual laboratory provides an environment to collaboratively plan,
develop and use biomedical applications. The main innovation of the presented
platform is dedication to multi-expertise task-oriented groups. Tools are pro-
vided for technical personnel, developers and administrators whose task is to
maintain and enrich the experiment space. Additionally, there are tools that
help virologists and healthcare providers perform their treatment-related tasks.
The respective objectives and actions of these user groups are combined to-
gether with a set of remote services, information stores and other integration
techniques. In this way the laboratory helps entire research teams (both tra-
ditional and virtual, Internet-wide ones) reach their scientific and professional
goals more effectively.



Towards a System-Level Science Support 63

Fig. 6. GSEngine - collaborative environment for experiment plan execution

Another innovative feature of the presented solution is stress on the generality
of provided solutions in the middleware layer. The GridSpace runtime compo-
nents are designed to support various remote computation technologies, pro-
gramming models and paradigms. Together with this generic and multi-purpose
solution, the environment provides a set of user-oriented tools that allow cus-
tomizing, arranging and populating the virtual laboratory space with content
and solutions specific to certain application domains. It is a method of har-
vesting the end users’ high creativity to help them co-create their environment
rather than tailoring ready-to-use solutions. Since the e-Science domain is evolv-
ing very quickly, we argue that this model of a generic platform with specific
content is best suited for technically knowledgeable teams of scientists. The de-
scribed concept of independent analysis gems and data sources as well as the
scripting glue used to combine them in desired experiments, ensures easy recon-
figurability, extensibility and enables ad-hoc recomposition of laboratory content
and applications.

The presented platform facilitates fast, close cooperation of developers and
users on experiments. Since an in-silico experiment is subject to frequent changes,
modifications and enhancements, the traditional software model of releases,
downloads, deployments and bug reports is not effective enough. Instead, the
ViroLab experiment planning and publishing model encourages quick, agile soft-
ware releasing and a corresponding versioning scheme. In this model, enhance-
ment reports can be provided right away in the experiment execution tool and
they are immediately visible to all interested programmers, who may publish new
experiment versions which are also immediately ready to use by all interested
scientists in the group. The additional licensing and terms-of-use information,
always attached to experiments, saves the end users time that would otherwise
be spent on finding out whether and how the results of experiments may be used
and published.



64 T. Guba�la et al.

5 Summary

The applicability and suitability of the virtual laboratory was demonstrated
with the real-life example of the drug susceptibility ranking application from the
HIV treatment domain. The main innovation of this work is the novel design of
the virtual laboratory that allows for truly collaborative planning, development,
preparation and execution of complex data acquisition and analysis applications,
so crucial for the biomedicine field.

In the proposed environment people of different occupations, both advanced
script developers and scientists can effectively and collaboratively conduct their
respective tasks, contributing to a common goal. The current version of the pre-
sented platform, rich documentation and tutorials are available from the ViroLab
virtual laboratory site [7].

The laboratory is under continuous development. One of the most impor-
tant features to be added is a module for management of results produced by
experiments. Effort is being invested in semantic descriptions of data and com-
putations. Consequently, finding interesting information will become easier and
the corresponding middleware will be able to track the provenance of results in
an application-specific way. This, in turn, will lead to future experiment repeata-
bility. The listed functionality aspects are of great importance for system-level
science.

Acknowledgements. This work was partially funded by the European Com-
mission under the ViroLab IST-027446, the IST-2002-004265 Network of Excel-
lence CoreGRID projects, the related Polish SPUB-M grant and the Foundation
for Polish Science. The Authors are grateful to Piotr Nowakowski for his com-
ments and suggestions.

References

1. Foster, I., Kesselman, C.: Scaling system-level science: Scientific exploration and it
implications. Computer 39(11), 31–39 (2006)

2. Vandamme, A.M., et al.: Updated european recommendations for the clinical use
of hiv drug resistance testing. Antiviral Therapy 9(6), 829–848 (2004)

3. Rhee, S., et al.: Genotypic predictors of human immunodeficiency virus type 1 drug
resistance. In: Proceedings of National Academy of Sciences of the United States
of America. National Academy of Sciences, vol. 103 (2006)

4. Rhee, S., et al.: Human immunodeficiency virus reverse transcriptase and protease
sequence database. Nucleic Acids Research 31(1), 298–303 (2003)

5. Sloot, P.M.A., Tirado-Ramos, A., Altintas, I., Bubak, M., Boucher, C.: From
molecule to man: Decision support in individualized e-health. Computer 39(11),
40–46 (2006)

6. Sloot, P.M.A., Tirado-Ramos, A., Bubak, M.: Multi-science decision support for hiv
drug resistance treatment. In: Cunningham, P., Cunningham, M. (eds.) Expanding
the Knowledge Economy: Issues, Applications, Case Studies, eChallenges 2007, pp.
597–606. IOS Press, Amsterdam (2007)

7. ViroLab Virtual Laboratory, http://virolab.cyfronet.pl

http://virolab.cyfronet.pl


Towards a System-Level Science Support 65

8. Rycerz, K., Bubak, M., Sloot, P., Getov, V.: Problem solving environment for
distributed interactive simulations. In: Gorlatch, S., Bubak, M., Priol, T. (eds.)
Achievements in European Reseach on Grid Systems. CoreGRID Integration Work-
shop 2006 (Selected Papers), pp. 55–66. Springer, Heidelberg (2008)

9. Droegemeier, K., et al.: Service-oriented environments in research and education
for dynamically interacting with mesoscale weather. IEEE Computing in Science
and Engineering (November-December 2005)

10. Altintas, I., Jaeger, E., Lin, K., Ludaescher, B., Memon, A.: A web service compo-
sition and deployment framework for scientific workflows. ICWS 0, 814–815 (2004)

11. Stevens, R.D., et al.: Exploring williams-beuren syndrome using mygrid. Bioinfor-
matics 1(20), 303–310 (2004)

12. MyExperiment: myexperiment website (2007), http://myexperiment.org
13. Aloisio, G., Breton, V., Mirto, M., Murli, A., Solomonides, T.: Special section:

Life science grids for biomedicine and bioinformatics. Future Generation Computer
Systems 23(3), 367–370 (2007)

14. Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., Fox, G., Gannon, D., Goble, C.,
Livny, M., Moreau, L., Myers, J.: Examining the Challenges of Scientific Workflows.
IEEE Computer 40(12), 24–32 (2007)

15. Thomas, D., Fowler, C., Hunt, A.: Programming Ruby – The Pragmatic Program-
mer’s Guide, Second Edition. The Pragmatic Programmers (2004)

16. Funika, W., Harȩżlak, D., Król, D., Pȩgiel, P., Bubak, M.: User interfaces of the
virolab virtual laboratory. In: Proceedings of Cracow Grid Workshop 2007, ACC
CYFRONET AGH, pp. 47–52 (2008)

17. Balís, B., Bubak, M., Pelczar, M., Wach, J.: Provenance tracking and querying in
virolab. In: Proceedings of Cracow Grid Workshop 2007, ACC CYFRONET AGH,
pp. 71–76 (2008)

18. Bartynski, T., Malawski, M., Gubala, T., Bubak, M.: Universal grid client: Grid
operation invoker. In: Proceedings of the 7th Int. Conf. on Parallel Processing and
Applied Mathematics PPAM 2007. LNCS. Springer, Heidelberg (to appear, 2008)

19. Malawski, M., Bubak, M., Placek, M., Kurzyniec, D., Sunderam, V.: Experiments
with distributed component computing across grid boundaries. In: Proceedings of
the HPC-GECO/CompFrame workshop in conjunction with HPDC 2006, Paris,
France (2006)

20. Baduel, L., Baude, F., Caromel, D., Contes, A., Huet, F., Morel, M., Quilici, R.:
Programming, Deploying, Composing, for the Grid. In: Grid Computing: Software
Environments and Tools. Springer, Heidelberg (2006)

21. EGEE Project: Lightweight middleware for grid computing (2007),
http://glite.web.cern.ch/glite

22. de Oliveira, T., et al.: An automated genotyping system for analysis of HIV-1 and
other microbial sequences. Bioinformatics (2005)

23. Assel, M., Krammer, B., Loehden, A.: Management and access of biomedical data
in a grid environment. In: Proceedings of Cracow Grid Workshop 2006, pp. 263–270
(2007)

24. Ciepiela, E., Kocot, J., Guba�la, T., Malawski, M., Kasztelnik, M., Bubak, M.:
Gridspace engine of the virolab virtual laboratory. In: Proceedings of Cracow Grid
Workshop 2007, ACC CYFRONET AGH, pp. 53–58 (2008)

http://myexperiment.org
http://glite.web.cern.ch/glite

	Towards a System-Level Science Support
	Introduction
	Background
	Drug Ranking Experiment in Virtual Laboratory
	Experiment Pipeline
	Development and Publication of Gems
	Experiment Planning, Scripting and Publishing
	Execution of Experiment

	Innovation
	Summary


