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Abstract. Kernel Canonical Correlation Analysis (KCCA) is a technique that 
can extract common features from a pair of multivariate data, which may assist 
in mining the ground truth hidden in the data. In this paper, a novel partitioning 
clustering method called KCK-means is proposed based on KCCA. We also 
show that KCK-means can not only be run on two-view data sets, but also it 
performs excellently on single-view data sets. KCK-means can deal with both 
binary-class and multi-class clustering tasks very well. Experiments with three 
evaluation metrics are also presented, the results of which reflect the promising 
performance of KCK-means. 
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Similarity Measure, Clustering Algorithm. 

1   Introduction 

Clustering is one of the most commonly techniques which is widely applied to extract 
knowledge, especially when lacking any a priori information (e.g., statistical models) 
about the data. Generally, the problem of clustering deals with partitioning a data set 
consisting of n points embedded in m-dimensional space into k distinct set of clusters, 
such that the data points within the same cluster are more similar to each other than to 
data points in other clusters [3]. There are two main approaches of clustering 
algorithms, hierarchical (e.g., agglomerative methods) and partitional approaches 
(e.g., k-means, k-medoids, and EM). Most of these clustering algorithms are based on 
elementary distance properties of the instance space [4].  

In some interesting application domains, instances are represented by attributes 
that can naturally be split into two subsets, either of which suffices for learning [5], 
such as web pages which can be classified based on their content as well as based on 
the anchor texts of inbound hyperlinks. Intuitively, there may be some projections in 
these two views which should have strong correlation with the ground truth. Kernel 
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Canonical Correlation Analysis (KCCA) is such a technique that can extract common 
features from a pair of multivariate data, which can be used as a statistical tool to 
identify the correlated projections between two views. Therefore, KCCA is expected 
to be used to measure the similarity between data points excellently. In this paper, we 
propose two algorithms based on KCCA which can improve the performances of 
traditional clustering algorithms—K-means, namely KCK-means for two-view data 
sets and single-view data sets that could not be split naturally. The results of 
experiments show that their performances are much better than those of the original 
algorithms. Our empirical study shows that these two algorithms can not only perform 
excellently on both two-view and single-view data, but also be able to extract better 
quality clusters than traditional algorithms. 

The remainder of this paper is organized as follows. We demonstrate KCCA and 
propose the algorithms in Sect. 2. Performance measures, experiment results and their 
analysis are presented in Sect. 3. Finally, Sect. 4 presents the main conclusions. 

2   KCK-Means Method 

2.1   Canonical Correlation Analysis 

Firstly, we briefly review Canonical Correlation Analysis (CCA), then its kernel 
extension—Kernel Canonical Correlation Analysis (KCCA). 

CCA is computationally an eigenvector problem. It attempts to find two sets of 
basis vectors, one for each view, such that the correlation between the projections of 
these two views into the basis vectors are maximized. Let X = {x1, x2, … , xl} and Y = 
{y1, y2, … , yl} denote two views, i.e. two attribute sets describing the data. CCA finds 
projection vectors wx and wy such that the correlation coefficient between T

xw X  and 
T
yw Y  is maximized. That is [12], 
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where Cxy is the between-sets covariance matrix of X and Y, Cxx and Cyy are 
respectively the within-sets covariance matrices of X and Y. The maximum canonical 
correlation is the maximum of ρ with respect to wx and wy. 

Assume that yyC is invertible, then 

11
y yy yx xw C C w

λ
−=  , (2) 

and 

1 2
xy yy yx x xx xC C C w C wλ− =  . (3) 
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By first solving for the generalized eigenvectors of Eq. 3, we can therefore obtain 
the sequence of xw ’s and then find the corresponding yw ’s using Eq. 2. 

However, in complex situations, CCA may not extract useful descriptors of the data 
because of its linearity. In order to identify nonlinearly correlated projections between 
the two views, kernel extensions of CCA (KCCA) can be used [12]. Kernel CCA offers 
an alternative solution by first projecting the data into a higher dimensional feature 
space, i.e. mapping xi and yi to ( )ixφ and ( )iyφ respectively (i = 1, 2, … , l). And then 

( )ixφ and ( )iyφ are treated as instances to run CCA routine. Let Sx = 

{ 1 2( ( ), ( ),..., ( ))lx x xφ φ φ }and Sy = { 1 2( ( ), ( ),..., ( ))ly y yφ φ φ }. Then the directions xw  

and yw  can be rewritten as the projection of the data onto the direction α and 

β ( , lα β ∈ℜ ): x xw S α= and y yw S β= . Let Kx = T
x xS S and Ky=

T
y yS S be the kernel 

matrices corresponding to the two views. Substituting into Eq. 1 we can obtain the 
new objective function 

2 2,
max

T
x y

T T
x y

K K

K Kα β

α β
ρ

α α β β
=

⋅
 . (4) 

α can be solved from 

1 1 2( ) ( )x y y xK I K K I Kκ κ α λ α− −+ + =  , (5) 

where κ is used for regularization. Then β can be obtained from 

11
( )y xK I Kβ κ α

λ
−= +  . (6) 

Let Κx(xi, xj) = ( ) ( )T
x i x jx xφ φ and Κy(yi, yj) = ( ) ( )T

y i y jy yφ φ are the kernel functions 

of the two views. Then for any for any x* and y*, their projections can be obtained 
from P(x*)= Κx(xi, X) α and P(y*)= Κy(yi, Y) β respectively. 

A number of α and β  (and corresponding λ) can be solved from Eq. 5 and Eq. 6. 

If the two views are conditionally independent given the class label, the most strongly 
correlated pair of projections should be in accordance with the ground-truth [9]. 
However, in real-world applications the conditional independence rarely holds, and 
therefore, information conveyed by the other pairs of correlated projections should 
not be omitted [9]. 

So far we have considered the kernel matrices as invertible, although in practice 
this may not be the case [20]. We use Partial Gram-Schmidt Orthogonolisation 
(PGSO) to approximate the kernel matrices such that we are able to re-represent the 
correlation with reduced dimensionality [12]. In PGSO algorithm, there is a precision 
parameter—η, which is used as a stopping criterion. For low-rank approximations, we 
need keep eigenvalues greater than η and the number of eigenvalues we need to 
consider is bounded by a constant that depends solely on the input distribution [20]. 
Since the dimensions of the projections rely on the N×M lower triangular matrix 
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output by PGSO which relies on this stopping criterion, we discuss the influence of η 
to our algorithm in Sect. 3. More detail about PGSO is described in [20]. 

2.2   Two KCK-Means Algorithms 

In our method, the similarity between data points is measured partly by the 
projections obtained by KCCA and extends the K-means algorithm.  

In [7], Balcan et al. showed that given appropriately strong PAC-learners on each 
view, an assumption of expansion on the underlying data distribution is sufficient for 
co-training to succeed, which implies that the stronger assumption of independence 
between the two views is not necessary, and the existence of sufficient views is 
sufficient. Similarly, the distance function fsim described below is also calculated 
based on the assumption that X and Y are sufficient to describe the data respectively, 
which is the same as the assumption of expansion about the co-training method. 
Actually, our method is intuitively derived from co-training [10]. Since the two views 
are sufficient to describe the data, both of them may be consist of some projections 
correlate with the ground truth. So we intend to measure the similarity between 
instances using information from two views of data. KCCA is an excellent tool that 
can carry out this task. Therefore, measuring by the use of KCCA may be a promising 
way of solving the problem of traditional distance measures. 

Let m denote the number of pairs of correlated projections that have been 
identified, then x* and y* can be projected into Pj(x*) and Pj(y*) (j = 1, 2, … ,m). Let 

fsim denote distance functions, which is L2-norm
2• in this paper. Of course, other 

similarity distance functions also could be. Based on the projections obtained by 
KCCA, a new similarity measure can be defined as follows,  

2 2

1

( , ) ( ) ( )
m

sim i j i j k i k j
k

f x x x x P x P xμ
=

= − + −∑  , (7) 

where μ is a parameter which regulates the proportion of the distance between the 

original instances and the distance of their projections. Based on this similarity 
measure, we propose the first algorithm as follows. 

Input:          X and Y, two views of a data set with n instances 
                     k, the number of clusters desired
Output:     C1 and C2, two vectors containing the cluster indices of each point of X

and Y.
Process:       
1. Identify all pairs of correlated projections, obtaining ,i iα β by solving Eqs. 5 

and 6 on X and Y.
2. for i = 1, 2, …, l do
               Project xi and yi into m pairs projections and obtain P(xi) and P(yi).
3. Get the new data sets by unite X and P(X), Y and P(Y), i.e. Mx = X P(X), My = 

Y P(Y).
 

Fig. 1. KCK-means Algorithm for two-view data sets 
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Cluster Mx and My respectively as follows: 
4. Randomly assign each instance of Mx (My) to one cluster of the k clusters. 
5. Calculate the cluster means, i.e., calculate the mean value (both the original 

value and the projections’ value) of the instance of each cluster. 
6. repeat
7. (re)assign each instances to the cluster to which the instance is the 

most     similar by calculating Eq. 7. 
8. update the cluster means. 
9. until no change.  

Fig. 1. (continued) 

However, two-view data sets are rare in real world, which is the cause that though 
co-training is a powerful paradigm, it is not widely applicable. In [6], it points out that 
if there is sufficient redundancy among the features, we are able to identify a fairly 
reasonable division of them, and then co-training algorithms may show similar 
advantages to those when they perform on the two-view data sets. Similarly, in this 
paper, we try to randomly split the single-view data set into two parts and treat them 
as the two views of the original data set to perform KCCA and then KCK-means. 

Input:          X ,  a single-view data set with n instances 
                     k, the number of clusters desired
Output:       C, a vector containing the cluster indices of each point of X.
Process:       
1. Randomly spilt X into two views with the same attributes, X1 and X2.
2. Identify all pairs of correlated projections, obtaining ,i i by solving Eqs. 5 and 

6 on X1 and X2.
3. for i = 1, 2, …, l do
               Project x1, i and x2, i into m pairs projections and obtain P(x1, i) and P(x2, i).
4. Unite P(X1) and P(X2) into P(X), i.e. P(X) = P(X1) P(X2). 
5. Get the new data sets by unite X and P(X), i.e. Mx = X P(X).
Cluster Mx:
6. Randomly assign each instance of Mx to one cluster of the k clusters. 
7. Calculate the cluster means, i.e., calculate the mean value (both the original 

value and the projections’ value) of the instance of each cluster. 
8. repeat
9. (re)assign each instances to the cluster to which the instance is the most   

similar by calculating Eq. 7. 
10. update the cluster means. 
11. until no change.  

Fig. 2. The KCK-means Algorithm for single-view data sets 

3   Experiments and Analysis 

Two standard multi-view data sets are applied to evaluate the effectiveness of the first 
version of KCK-means. They are 
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Course: The course data set has two views and contains 1,051 examples, each 
corresponding to a web page, which is described in [10]. 200 examples are used in 
this paper and there are 44 positive examples.  

Ads: The url and origurl data sets are derived from the ads data set which is described 
in [16] and has two categories. 300 examples are used in this paper, among which 42 
examples are positive. In this paper, we construct a two-view dataset by using the url 
view and origurl view. 

In order to find out how well the second version of KCK-means performs on 
single-view data sets, we use three single-view data setsF

1. 

A3a: The a3a is a single-view data set derived from Adult Data Set of UCI, which is 
described in [11]. It has two categories and 122 features. 3,185 examples are used and 
there are 773 positive examples. 

W1a: The w1a is a single-view data set derived from web page dataset which is 
described in [9]. It has two categories and 300 sparse binary keyword attributes. 2,477 
examples are used, among which 72 examples are positive. 

DNA: The DNA is a single-view data set which is described in [8]. It has three 
categories and 180 attributes. 2,000 examples are used, among which 464 examples 
are 1st class, 485 examples are 2nd class, and 1,051 examples are 3rd class. 

We use three performance measures, Pair-Precision, Intuitive-Precision and Mutual 
Information, to measure the quality of the clusters obtained by the KCK-means. 

Pair-Precision: The evaluation metric in [2] is used in our experiments. We evaluate 
a partition i.e. the correct partition using 

 
( )

( 1) / 2

num correct decisions
accuracy

n n
=

−
 . 

Mutual Information: Though entropy and purity are suitable for measuring a single 
cluster’s quality, they are both biased to favor smaller clusters. Instead, we use a 
symmetric measure called Mutual Information to evaluate the overall performance. 
The Mutual Information is a measure of the additional information known about one 
when given another [1], that is 

( , ) ( ) ( ) ( , )MI A B H A H B H A B= + −  , 

where H(A) is the entropy of A and can be calculated by using 

2
1

( ) ( ) log ( ( ))
n

i i
i

H A p x p x
=

= −∑  . 

Intuitive-Precision: We choose the class label that share with most samples in a 
cluster as the class label. Then, the precision for each cluster A is defined as: 

1
( ) max({ | ( ) } )i i jP A x label x C

A
= =  . 

                                                           
1 On Hhttp://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets H, all these single-view data sets can 

be downloaded. 
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In order to avoid the possible bias from small clusters which have very high 
precision, the final precision is defined by the weighted sum of the precision for all 
clusters, as shown in the following equation 

 
1

( )
G

k
k

k

A
P P A

N=

=∑  , 

where G is the number of categories (classes) and N is the total number of instances. 

 

Fig. 3. Clustering results on two two-view data sets (course and ads, on the left column) and 
three single-view data sets (a3a, w1a and DNA, on the right column) using KCK-means 
comparing with two traditional clustering algorithms, K-means and Agglom (agglomerative 
hierarchical clustering) with three performance measures, P-Precision (Pair-Precision), I-
Precision (Intuitive-Precision), and MI (Mutual Information) 

The comparison among between KCK-means and K-means, agglomerative 
hierarchical clustering, are performed. In order to better reflect the performance of the 
three algorithms, for all experiments demonstrated below with the two partitioning 
algorithms, K-means and KCK-means, the diagrams are based on averaging over ten  
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Fig. 4. The influence of η on the performance of KCK-means on the two-view data set course 
and the single-view data set DNA, where η changes from 0.1 to 1.0, all of the three evaluation 
metrics, Pair-Precision, Intutitive-Precision and Mutual Information, are used 

clustering runs to compensate for their randomized initialization.  And that is also 
beneficial for measuring the performance of the second version of KCK-means on the 
single-view data sets for its randomly splitting these data sets. The performances of 
the three algorithms are showed in Fig. 3. 

In Fig. 3, the performances of KCK-means are much better than those of other two 
traditional clustering algorithms. On some data sets such as a3a, the Pair-Precision 
and Intuitive-Precision of the results of KCK-means are both almost 100%, but Pair-
Precision and Intuitive-Precision of the results of K-means and agglomerative 
hierarchical clustering are 59.74%, 75.73% and 58.87%, 75.73% respectively. KCK-
means also performs excellently on the multi-class data set—DNA and gets 85.03% 
Pair-Precision, for K-means and agglomerative hierarchical clustering 72.39% and 
67.13% respectively. For other two evaluation metrics, KCK-means is also much 
better than those of the others’.  
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In our experiments, we also note that when the proportion parameter μ is set to be 

very small or even zero, the performance of KCK-means is the best, which means 
using the projections obtained from KCCA the similarity between instances already 
can be measured good enough. The μ  in the experiments described in this paper is all 

set to be 10-6. 
In Sect. 2.1 we have stated that there is a precision parameter (or stopping 

criterion)—η in the PGSO algorithm, on which the dimensions of the projections rely. 
Now we demonstrate its influence on the performance of KCK-means. In order to 
better measure such influence, we use two data sets, course and DNA, in the 
experiments described below. Because course is a two-view data set with two classes, 
and DNA is a single-view data set with three classes, then we can combine the 
measure of the KCK-means on two-view data set and single-view data set simul-
taneously. The results are derived on more than ten clustering showed in Fig. 4. 

In Fig. 4 we can find that follow the change of η, the performance of KCK-means 
changes a little. Furthermore, even considering the influence, the performances of 
KCK-means on both data sets are also much better than the other two clustering 
algorithms.  

However, in the experiments we find when η is larger than some threshold which 
depends on given data set the performance of KCK-means descends very much even 
worse than those of K-means and agglomerative hierarchical clustering. After 
carefully observation, we find in such situations the number of dimensions of 
projections is always very small, sometimes even only one dimension. Just as what 
we have described in Sect. 2.1, in real-world applications the conditional 
independence rarely holds, and therefore, information conveyed by the other pairs of 
correlated projections should not be omitted [9]. Therefore, this performance 
descending may be caused by lacking information conveyed by the other projections. 

4   Conclusion 

In this paper, we propose a novel partitioning method, i.e. KCK-means, based on 
KCCA and inspiration from co-training. By using KCCA which mines the ground truth 
hidden in the data, KCK-means measures the similarity between instances. On two 
two-view data sets, course and ads, and three single-view data sets, a3a, w1a and 
DNA, the experiments are performed using three performance measures, Pair-
Precision, Intuitive-Precision and Mutual Information. The results reflect that by 
using KCK-means, much better quality of clusters could be obtained than those 
obtained from K-means and agglomerative hierarchical clustering algorithms. 

However, we also observe that when the number of dimensions of the projections 
obtained from KCCA is very small, the performance of KCK-means descends very 
much even worse than those of the two traditional clustering algorithms. This reflects 
that in real-world applications, we need to consider the information conveyed by the 
other pairs of correlated projections obtained from KCCA, instead of only considering 
the strongest projection or very few stronger projections. That is, the number of 
dimensions of projections obtained from KCCA and then used in KCK-means must be 
enough. 
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