
Linearized Initialization of the Newton Krylov
Algorithm for Nonlinear Elliptic Problems

Sanjay Kumar Khattri

Stord/Haugesund University College,
Bjørnsonsgt. 45 Haugesund 5528, Norway

sanjay.khattri@hsh.no

Abstract. It is known that the Newton Krylov algorithm may not al-
ways converge if the initial assumption or initialization is far from the
exact solution. We present a technique for initializing Newton Krylov
solver for nonlinear elliptic problems. In this technique, initial guess is
generated by solving linearised equation corresponding to the nonlinear
equation. Here, nonlinear part is replaced by the equivalent linear part.
Effectiveness of the technique is presented through numerical examples.

1 Introduction

The past fifty to sixty years have seen generous improvement in solving linear
systems. Krylov subspace methods are the result of the tremendous effort by
the researchers during the last century. It is one among the ten best algorithms
of the 20th century. There exists optimal linear solvers [16]. But, still there is
no optimal nonlinear solver, or the one that we know of. Our research is in the
field of optimal solution of nonlinear equations generated by the discretization of
the nonlinear elliptic equations [15], [14], [13], [12]. Let us consider the following
nonlinear elliptic partial differential equation [15]

div(−K gradp) + f(p) = s(x, y) in Ω (1)

p(x, y) = pD on ∂ΩD (2)
g(x, y) = (−K ∇p) · n̂ on ∂ΩN (3)

Here, Ω is a polyhedral domain in R
d, the source function s(x, y) is assumed to be

in L2(Ω), and the medium property K is uniformly positive. In the equations (2)
and (3), ∂ΩD and ∂ΩN represent Dirichlet and Neumann part of the boundary,
respectively. f(p) represents nonlinear part of the equation. p is the unknown
function. The equations (1), (2) and (3) models a wide variety of processes
with practical applications. For example, pattern formation in biology, viscous
fluid flow phenomena, chemical reactions, biomolecule electrostatics and crystal
growth [9], [5], [6], [7], [8], [10].

There are various methods for discretizing the equations (1), (2) and (3).
To mention a few: Finite Volume, Finite Element and Finite Difference methods
[12]. These methods convert nonlinear partial differential equations into a system
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of algebraic equations. We are using the Newton Krylov algorithm for solving
the discrete nonlinear system of equations formed by the Finite Volume method
[15]. Since, initial guess or initialization is very important for the convergence of
the Newton’s algorithm. Thus, for starting the Newton Krylov algorithm, we are
solving the corresponding linearised equation, and use this solution as the initial
guess for the Newton Krylov algorithm. The corresponding linearized equations
to the nonlinear equaion (1) is div(−K gradp)+f(p) = s. Here, f(p) is the linear
representation of the nonlinear part f(p).

2 Newton Krylov Algorithm

For formulating Newton algorithm, equation (1) is discretized in the residual
form [15]

div(−K gradp) + f(p) − s = 0.

Let the discretization of the nonlinear partial differential equations result in a
system of nonlinear algebraic equations A(p) = 0. Each cell in the mesh produces
a nonlinear algebraic equation [15], [12]. Thus, discretization of the equations (1),
(2) and (3) on a mesh with n cells result in n nonlinear equations, and let these
equations are given as

A(p) =

⎛
⎜⎜⎜⎝

A1(p)
A2(p)

...
An(p)

⎞
⎟⎟⎟⎠ . (4)

We are interested in finding the vector p which makes the operator A vanish.
The Taylors expansion of nonlinear operator A(p) around some initial guess
p0 is

A(p) = A(p0) + J(p0)Δp + hot, (5)

where hot stands for higher order terms. That is, terms involving higher than
the first power of Δp. Here, difference vector Δp = p − p0. The Jacobian J is
a n × n linear system evaluated at the p0. The Jacobian J in the equation (5)
is given as follows

J =
[
∂Ai

∂pj

]
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂A1

∂p1

∂A1

∂p2
· · · ∂A1

∂pn
∂A2

∂p1

∂A2

∂p2
· · · ∂A2

∂pn
...

...
. . .

...
∂An

∂p1

∂An

∂p2
· · · ∂An

∂pn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Since, we are interested in the zeroth of the non-linear vector function A(p).
Thus, setting the equation (5) equals to zero and neglecting higher order terms
will result in the following well known Newton Iteration Method
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J(pk)Δpk = −A(pk),
pk+1 = pk + Δpk+1, k = 0, . . . , n.

(6)

The linear system (6) is solved by the Conjugate Gradient algorithm [16]. The
pseudo code is presented in the Algorithm 1. The presented algorithm have been
implemented in the C++ language. Three stopping criteria are used in the Algo-
rithm 1. The first criterion is the number of iterations. Second and third criteria
are based on the residual vector, A(p) and difference vector Δpk. If the method
is convergent, L2 norm of the difference vector, Δp, and the residual vector,
A(p), converge to zero [see 11]. We are reporting convergence of both of these
vectors. For better understanding the error reducing property of the method,
we report variation of ‖A(pk)‖L2/‖A(p0)‖L2 and ‖Δ(pk)‖L2/‖Δ(p0)‖L2 with
iterations (k).

Algorithm 1. Newton Krylov algorithm.

Mesh the domain;1

Form the non-linear system, A(p);2

Find initial guess p0;3

Set the counter k = 0 ;4

while k ≤ maxiter or ‖Δpk‖L2 ≤ tol or ‖A(pk)‖L2 ≤ tol do5

Solve the discrete system J(pk)Δpk = −A(pk);6

pk+1 = pk + Δpk;7

k++;8

end9

Our research work is focus on the initialization step of the above algorithm.
Initialization (step three of the Algorithm 1) is a very important part of the
Newton Krylov algorithm.

3 Numerical Work

3.1 Example 1

Without loss of generality let us assume that K is unity, and the boundary is of
Dirichlet type. Let f(p) be γ exp(p). Thus, the equations (1), (2) and (3) are
written as

−∇2p + γ exp(p) = f in Ω, (7)

p(x, y) = pD on ∂ΩD. (8)

Here, γ is a scalar. Let γ be 100. For computing the true error and convergence
behavior of the methods, let us further assume that the exact solution of the
equations (7) and (8) is the following bubble function
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Fig. 1. Surface plot of the exact solution of example 3.1

p = x (x − 1) y (y − 1).

Let our domain be a unit square. Thus, Ω = [0, 1] × [0, 1].
Figure 1 displays the surface plot of the exact solution. We are discretizing

equations (7) and (8) on a 40 × 40 mesh by the method of Finite Volumes [11],
[12], [13], [15]. Discretization results in a nonlinear algebraic vector (4) with 1600
nonlinear equations.

For making initial guess, we are using two approaches. In the first tradtional
approach, we make a random initialization. The second approach is based on the
linearization of the nonlinear part. Let us now form a linear approximation to
the nonlinear part through Taylor series expansion. The Taylor series expansion
of the nonlinear part (exponential funciton) is given as

ep =
∞∑

i=0

pi

i
,

= 1 + p +
p2

2
+

p3

3
+ · · · .

From the above expansion, the linear approximation of ep is (1+p). For forming
a corresponding linearized equation to the nonlinear equation (7), we replace, ep

by (1 + p). Thus, for finding an initial guess for the Newton algorithm, we are
solving the following corresponding linearised equation

−∇2p + γ (1 + p) = f.

The Newton iteration for both of these initial guesses are reported in the
Fig. 2(a). Figure 2(a) presents the convergence of the residual vector, while
Fig. 2(b) presents the convergence of the difference vector for first eight
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Fig. 2. Example 3.1

iterations. We are solving the Jacobian system by the ILU preconditioned Con-
jugate Gradient with a tolerance of 1 × 10−10.

It is clear from the Figs. 2(a) and 2(b) that solving the corresponding lin-
earized equation for the initial guess can make a big difference. With random
initialization, the residual after five iterations is about 1/100 of the initial resid-
ual. While with linearized initialization, the residual after five iteration is about
1/1012 of the initial residual. It is interesting to note in the Fig. 2(b), with random
initialization the Newton Krylov algortithm is not converging in the L2 norm
of the difference vector. On the other hand, with a linearized initialization the
Newton Krylov algorithm is still reducing the error in difference vector by 1/1012

of the initial error.
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3.2 Example 2

Let us solve the following equations

−∇2p + ξ sinh(exp(p)) = f in Ω, (9)

p(x, y) = pD on ∂ΩD. (10)

Here, ξ is a scalar. We choose ξ to be 10. Let the exact solution be given as

p = cosx + y cos3 x − y + cosx − y sinhx + 3 y

+ 5 e−(x2+y2)/8

Let our domain be a unit square. Thus, Ω = [0, 1] × [0, 1].
Figure 3 portrays the surface plot of the exact solution. For forming a corre-

sponding linearized equation. The Taylor series expansion of sinh(exp(p)) around
p = 0 is given as

sinhep =
1
2

e − 1
2 e

+
(

1
2

e +
1
2 e

)
p

+
1
2

e p2 +
(

− 1
12e

+
5 e

12

)
p3 + . . . .

The above series expansion is found through the Maple by using the com-
mand “taylor(sinh(exp(p)), p = 0, 5)”. From the above expansion, the linear
approximation of sinhep is

(
1
2

e − 1
2 e

)
+

(
1
2

e +
1
2 e

)
p.
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Fig. 3. Surface plot of the exact solution of example 3.2
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For forming a corresponding linearized equation to the nonlinear equation (9),
we replace, sinhep by (1/2 e − 1/2 e) + (1/2 e + 1/2 e) p. Thus, for finding an initial
guess for the Newton algorithm, we are solving the following linearised equation

−∇2p + ξ

[
1
2

e − 1
2 e

+
(

1
2

e +
1
2 e

)
p

]
= f.

4 Conclusions

Robust initialization of the Newton Krylov algorithm is very crucial for the
convergence. Initialization plays very important role in the convergence of the
Newton Krylov algorithm. We presented a technique for forming the initial guess.
Numerical work shows that initializing the Newton Krylov algorithm through the
solution of the corresponding linearized equation is computationally efficient.
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