
Titanium Performance and Potential:
An NPB Experimental Study

Kaushik Datta1, Dan Bonachea1, and Katherine Yelick1,2

1 Computer Science Division, University of California at Berkeley
2 Lawrence Berkeley National Laboratory

{kdatta,bonachea,yelick}@cs.berkeley.edu

Abstract. Titanium is an explicitly parallel dialect of JavaTM designed
for high-performance scientific programming. We present an overview
of the language features and demonstrate their use in the context of the
NAS Parallel Benchmarks, a standard suite of common scientific kernels.
We argue that parallel languages like Titanium provide greater expres-
sive power than conventional approaches, enabling much more concise
and expressive code that minimizes time to solution. Moreover, we have
found that the Titanium implementations of three of the NAS Parallel
Benchmarks can match or even exceed the performance of the standard
Fortran/MPI implementations at realistic problem sizes and processor
scales, while still using far cleaner, shorter and more maintainable code.

1 Introduction

The tension between programmability and performance in software development
is nowhere as acute as in the domain of high end parallel computing. The entire
motivation for parallelism is high performance, so programmers are reluctant to
use languages that give control to compilers or runtime systems. Yet the diffi-
culty of programming large-scale parallel machines is notorious– it limits their
marketability, hinders exploration of advanced algorithms, and restricts the set
of available programmers. The Titanium language was designed to address these
issues, providing programmers with high level program structuring techniques,
yet giving them control over key features of parallel performance: data layout,
load balancing, identification of parallelism, and synchronization.

Modern parallel architectures can be roughly divided into two categories based
on the programming interface exposed by the hardware: shared memory systems
where parallel threads of control all share a single logical memory space (and
communication is achieved through simple loads and stores), and distributed
memory systems where some (but not necessarily all) threads of control have
disjoint memory spaces and communicate through explicit communication op-
erations (e.g. message passing). Experience has shown that the shared memory
model is often easier to program, but it presents serious scalability challenges to
hardware designers. Thus, with a few notable exceptions, distributed memory
machines currently dominate the high-end supercomputing market.
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The Partitioned Global Address Space (PGAS) model seeks to combine the
advantages of both shared and distributed memory. It offers the programma-
bility advantages of a globally shared address space, but is carefully designed
to allow efficient implementation on distributed-memory architectures. Tita-
nium [1], UPC [2] and Co-array Fortran [3] are examples of modern programming
languages that provide a global address space memory model, along with an
explicitly parallel SPMD control model. PGAS languages typically make the
distinction between local and remote memory references explicitly visible to en-
courage programmers to consider the locality properties of their program, which
can have a noticeable performance impact on distributed memory hardware.

A major focus of this paper is to showcase the performance and produc-
tivity benefits of the Titanium programming language in the context of the
NAS Parallel Benchmarks [4], a set of benchmarks representative of common
scientific kernels. We demonstrate by example that scientific programming in
PGAS languages like Titanium can provide major productivity improvements
over programming with serial languages augmented with a message-passing li-
brary. Furthermore, we show evidence that programming models with one-sided
communication (such as that used in PGAS languages) can achieve application
performance comparable to or better than similar codes written using two-sided
message passing, even on distributed memory platforms.

2 Titanium Overview

Titanium [1] is an explicitly parallel, SPMD dialect of JavaTM that provides a
Partitioned Global Address Space (PGAS) memory model. Titanium supports
the creation of complicated data structures and abstractions using the object-
oriented class mechanism of Java, augmented with a global address space to
allow for the creation of large, distributed shared structures. As Titanium is
essentially a superset of Java [5], it inherits all the expressiveness, usability and
safety properties of that language.

Titanium notably adds a number of features to standard Java that are de-
signed to support high-performance computing. They include: flexible and ef-
ficient multi-dimensional arrays, built-in support for multi-dimensional domain
calculus, locality and sharing reference qualifiers, explicitly unordered loop iter-
ation, user-defined immutable classes, operator-overloading, and cross-language
support. These features are described in detail later in this paper, as well as in
the Titanium language reference [6]. Titanium also adds several other features
to Java, including: C++-style templates, user-controlled memory management
with explicit memory zones, compile-time checking of barrier synchronization,
and library support for synchronization and collective communication.

The current Titanium compiler implementation [7] uses a static compilation
strategy - programs are translated to intermediate C code and then compiled to
machine code using a vendor-provided C compiler. They are then linked to na-
tive runtime libraries which implement communication, garbage collection, and
other system-level activities. There is no JVM, no JIT, and no dynamic class
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loading. Thus, Titanium is extremely portable, and Titanium programs can
basically be run unmodified on uniprocessors, shared memory machines and dis-
tributed memory machines. The current implementation runs on a large range of
platforms, including uniprocessors, shared memory multiprocessors, distributed-
memory clusters of uniprocessors or SMPs, and a number of specific supercom-
puter architectures (Cray X1/T3E, IBM SP, SGI Altix/Origin).

3 The NAS Parallel Benchmarks

The NAS Parallel Benchmarks consist of a set of kernel computations and larger
pseudo-applications taken primarily from computational fluid dynamics [4]. They
reflect several different types of communication and computation patterns: near-
est neighbor computation on a 3-D mesh (MG), FFTs with an all-to-all transpose
on a 3-D mesh (FT), and 2-D sparse matrices with indirect array accesses (CG).
However, they do not reflect features of some full applications, such as adaptivity,
multiple physical models, or dynamic load balancing. Titanium has been demon-
strated on these more complete and more general application problems [8, 9].

The original reference implementation of the NAS Parallel Benchmarks is
written in serial Fortran with MPI [10]. We use this implementation as the base-
line for comparison in this study. MPI represents both the predominant paradigm
for large-scale parallel programming and the target of much concern over pro-
ductivity, since it often requires tedious packing of user level data structures into
aggregated messages to achieve acceptable performance.

4 Titanium Features in the Multigrid (MG) Benchmark

4.1 Titanium Arrays

The NAS benchmarks, like many scientific codes, rely heavily on arrays for the
main data structures. Titanium extends Java with a powerful multidimensional
array abstraction that provides the same kinds of subarray operations available
in Fortran 90. Titanium arrays are indexed by points and built on sets of points,
called domains. Points and domains are first-class entities in Titanium – they can
be stored in data structures, specified as literals, passed as values to methods and
manipulated using their own set of operations. For example, the class A version
of the MG benchmark requires a 2563 grid with a one-deep layer of surrounding
ghost cells, resulting in a 2583 grid. Such a grid can be constructed with the
following declaration:

double [3d] gridA = new double [[-1,-1,-1]:[256,256,256]];

The 3-D Titanium array gridA has a rectangular index set that consists of all
points [i, j, k] with integer coordinates such that −1 ≤ i, j, k ≤ 256. Titanium
calls such an index set a rectangular domain with Titanium type RectDomain,
since all the points lie within a rectangular box. Titanium arrays can only be
built over RectDomains (i.e. rectangular sets of points), but they may start at
an arbitrary base point, as the example with a [−1, −1, −1] base shows. In this
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example the grid was designed to have space for ghost regions, which are all the
points that have either -1 or 256 as a coordinate.

The language also includes powerful array operators that can be used to create
alternative views of the data in a given array, without an implied copy of the
data. For example, the statement:

double [3d] gridAIn = gridA.shrink(1);

creates a new array variable gridAIn which shares all of its elements with gridA
that are not ghost cells. This domain is computed by shrinking the index set of
gridA by one element on all sides. gridAIn can subsequently be used to reference
the non-ghost elements of gridA. The same operation can also be accomplished
using the restrict method, which provides more generality by allowing the in-
dex set of the new array view to include only the elements referenced by a given
RectDomain expression, e.g.: gridA.restrict(gridA.domain().shrink(1)), or
a using RectDomain literal: gridA.restrict([[0,0,0]:[255,255,255]]).

Titanium also adds a looping construct, foreach, specifically designed for
iterating over the points of a domain. More will be said about foreach in sec-
tion 5.1, but here we demonstrate the use of foreach in a simple example, where
the point p plays the role of a loop index variable:

foreach (p in gridAIn.domain()) {
gridB[p] = applyStencil(gridA, p);

}

The applyStencil method may safely refer to elements that are one point away
from p, since the loop is over the interior of a larger array. Note that this one loop
concisely expresses iteration over multiple dimensions, corresponding to a multi-
level loop nest in other languages. A common class of loop bounds and indexing
errors is avoided by having the compiler and runtime system keep track of the
iteration boundaries for the multidimensional traversal.

4.2 Stencil Computations Using Point Literals

The stencil operation itself can be written easily using constant offsets. At this
point the code becomes dimension-specific, and we show the 2-D case with the
stencil application code shown in the loop body (rather than a separate method)
for illustration. Because points are first-class entities, we can use named con-
stants that are declared once and re-used throughout the stencil operations in
MG. Titanium supports both C-style preprocessor definitions and Java’s final
variable style constants. The following code applies a 5-point 2-D stencil to each
point p in gridAIn’s domain:

final Point<2> NORTH = [0,1], SOUTH = [0,-1],
EAST = [1,0], WEST = [-1,0];

foreach (p in gridAIn.domain()) {
gridB[p] = S0 * gridAIn[p] +

S1 * ( gridAIn[p + NORTH] + gridAIn[p + SOUTH] +
gridAIn[p + EAST ] + gridAIn[p + WEST ] );

}



204 K. Datta, D. Bonachea, and K. Yelick

P0 P1 P2

myBlock myBlock myBlock

blocks blocks blocks 

Fig. 1. Distributed data structure built using the exchange operation in MG

The full MG code used for benchmarking in section 7 includes a 27-point sten-
cil applied to 3-D arrays, and the Titanium code, like the Fortran code, uses a
manually-applied stencil optimization that eliminates redundant common subex-
pressions, a key optimization for the MG benchmark [11].

4.3 Distributed Arrays

Titanium supports the construction of distributed array data structures using
the global address space. Since distributed data structures are built from local
pieces rather than declared as a distributed type, Titanium is referred to as a “lo-
cal view” language [11]. The generality of Titanium’s distributed data structures
are not fully utilized in the NAS benchmarks, because the data structures are
simple distributed arrays, rather than trees, graphs or adaptive structures [8].
Nevertheless, the general pointer-based distribution mechanism combined with
the use of arbitrary base indices for arrays provides an elegant and powerful
mechanism for shared data.

The following code is a portion of the parallel Titanium code for the MG
benchmark. It is run on every processor and creates the blocks distributed
array that can access any processor’s portion of the grid.

Point<3> startCell = myBlockPos * numCellsPerBlockSide;
Point<3> endCell = startCell + (numCellsPerBlockSide - [1,1,1]);
double [3d] myBlock = new double[startCell:endCell];

// create distributed array "blocks"
double [1d] single [3d] blocks = new double
[0:(Ti.numProcs()-1)] single [3d];

blocks.exchange(myBlock);

First, each processor computes its start and end indices by performing point
arithmetic operations. These indices are used to create the local 3-D array
myBlock. Then, the pointer-based distributed data structure blocks is created
using the exchange collective. Figure 1 illustrates the resulting data structure
for a 3-processor execution.

4.4 Domain Calculus

A common operation in any grid-based code is updating ghost cells according
to values stored on other processors or boundary conditions in the problem
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statement. Ghost cells are a set of array elements surrounding the local grid
that cache elements of neighboring grids. Simple array operations can be used
to fill in these ghost regions, thereby migrating the tedious business of index
calculations and array offsets out of the application code and into the compiler
and runtime system. The entire Titanium code for updating one plane of ghost
cells is as follows:

// use interior as in stencil code
double [3d] myBlockIn = myBlock.shrink(1);
// update overlapping ghost cells of neighboring block
blocks[neighborPos].copy(myBlockIn);

The array method A.copy(B) copies only those elements in the intersection of
the index domains of the two array views in question. Using an aliased array for
the interior of the locally owned block (which is also used in the local stencil
computation), this code performs copy operations only on ghost values. Com-
munication will be required on some machines, but there is no coordination for
two-sided communication, and the copy from local to remote could easily be
replaced by a copy from remote to local by swapping the two arrays in the copy
expression. The use of the global indexing space in the grids of the distributed
data structure (made possible by the arbitrary index bounds feature of Titanium
arrays) makes it easy to select and copy the cells in the ghost region, and is also
used in the more general case of adaptive meshes.

Similar Titanium code is used for updating the other five planes of ghost cells,
except in the case of the boundaries at the end of the problem domain. The MG
benchmark requires periodic boundary conditions, and an additional array view
operation is needed before the copy to logically translate the array elements to
their corresponding elements across the domain:

// update neighbor’s overlapping ghost cells across periodic boundary
// by logically shifting the local grid to across the domain
blocks[neighborPos].copy(myBlockIn.translate([-256,0,0]));

The translate method translates the indices of the array view, creating a new
view where the relevant points overlap their corresponding non-ghost cells in the
subsequent copy.

4.5 Distinguishing Local Data

The blocks distributed array contains all the data necessary for the compu-
tation, but one of the pointers in that array references the local block which
will be used for the local stencil computations and ghost cell surface updates.
Titanium’s global address space model allows for fine-grained implicit access to
remote data, but well-tuned Titanium applications perform most of their crit-
ical path computation on data which is either local or has been copied into
local memory. This avoids fine-grained communication costs which can limit
scaling on distributed-memory systems with high interconnect latencies. To
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ensure the compiler statically recognizes the local block of data as residing lo-
cally, we declare a reference to this thread’s data block using Titanium’s local
type qualifier.The original declaration of myBlock should have contained this
local qualifier. Below we show an example of a second declaration of such a
variable along with a type cast:

double [3d] local myBlock2 = (double [3d] local) blocks[Ti.thisProc()];

By casting the appropriate grid reference as local, the programmer is ask-
ing the compiler to use more efficient native pointers to reference this array,
potentially eliminating some unnecessary overheads in array access (for exam-
ple, dynamic checks of whether a given global array access references data that
actually resides locally and thus requires no communication). As with all type
conversion in Titanium and Java, the cast is dynamically checked to maintain
type safety and memory safety. However, the compiler provides a compilation
mode which statically disables all the type and bounds checks required by Java
semantics to save some computational overhead in production runs of debugged
code.

The Titanium optimizer also includes a Local Qualification Inference (LQI)
optimization that automatically propagates locality information gleaned from
allocation statements and programmer annotations in the application code using
a constraint-based inference [12]. LQI can effectively remove serial overheads
associated with global pointers, as evidenced by the 81% reduction in the running
time of MG on 8 processors of the G5/InfiniBand machine.

4.6 The MG Benchmark Implementation
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Fig. 2. Timed region line count comparison

Figure 2 presents a line count
comparison for the Titanium
and Fortran/MPI implementa-
tions of the benchmarks, break-
ing down the code in the timed
region into categories of com-
munication, computation and
declarations. Comments, timer
code, and initialization code
outside the timed region are
omitted.

The figure shows that MG
communication and computa-
tion line counts heavily favor
Titanium. This discrepancy is
mainly due to Titanium’s do-
main calculus and array copy operations, and to a lesser extent, Titanium array
features for local stencil computations.
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5 Titanium Features in the Conjugate Gradient (CG)
Benchmark

5.1 Foreach Loops

As described in section 4.2, Titanium has an unordered loop construct called
foreach that simplifies iteration over multidimensional arrays and provides per-
formance benefits. If the order of loop execution is irrelevant to a computation,
then using a foreach loop to traverse the points in a RectDomain explicitly allows
the compiler to reorder loop iterations to maximize performance– for example
by performing automatic cache blocking and tiling optimizations [13, 14]. It
also simplifies bounds-checking elimination and array access strength-reduction
optimizations.

Another example of the foreach loop can be found in the sparse matrix-vector
multiplies performed in every iteration of the CG benchmark. The sparse matrix
below is stored in CSR (Compressed Sparse Row) format, so the rowRectDomains
array contains a RectDomain for each row of the matrix. Each RectDomain then
contains its row’s first and last indices for arrays colIdx and a.

// the following represents a matrix in CSR format
// all three arrays were previously populated
RectDomain<1> [1d] rowRectDomains; // RectDomains of row indices
int [1d] colIdx; // column index of nonzeros
double [1d] a; // nonzero matrix values
...
public void multiply(double [1d] sourceVec, double [1d] destVec) {

foreach (i in rowRectDomains.domain()) {
double sum = 0;
foreach (j in rowRectDomains[i])

sum += a[j] * sourceVec[colIdx[j]];
destVec[i] = sum;

} }

This calculation uses nested foreach loops that highlight the semantics of
foreach; namely, that the loop executes the iterations serially in an unspecified
order. The outer loop is expressed as a foreach because each of the dot products
operates on disjoint data, so ordering does not affect the result. The inner loop
is also a foreach, which indicates that the sum can be done in any order. This
allows the compiler to apply associativity and commutativity transformations
on the summation. Although these may affect the exact result, it does not affect
algorithm correctness for reasonable matrices.

5.2 The CG Benchmark Implementation

Figure 2 illustrates the line count comparison for the timed region of the
Fortran+MPI and Titanium implementations of the CG benchmark. In con-
trast with MG, the amount of code required to implement the timed region of
CG in Fortran+MPI is relatively modest, primarily owing to the fact that no
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application-level packing is required or possible for this communication pattern.
Also, MPI’s message passing semantics implicitly provide pairwise synchroniza-
tion between message producers and consumers, so no additional code is required
to achieve that synchronization.

6 Titanium Features in the Fourier Transform (FT)
Benchmark

6.1 Immutables and Operator Overloading

The Titanium immutable class feature provides language support for defining
application-specific primitive types (often called “lightweight” or “value” classes)
- allowing the creation of user-defined unboxed objects, analogous to C structs.
These provide efficient support for extending the language with new types which
are manipulated and passed by value, avoiding pointer-chasing overheads which
would otherwise be associated with the use of tiny objects in Java.

One compelling example of the use of immutables is for defining a Complex
number class, which is used to represent the complex values in the FT bench-
mark. Figure 3 compares how one might define a Complex number class using
either standard Java Objects versus Titanium immutables.

Java Version

public class Complex {

private double real, imag;

public Complex(double r, double i)

{ real = r; imag = i; }

public Complex add(Complex c)

{ ... }

public Complex multiply(double d)

{ ... }

...

}

/* sample usage */

Complex c = new Complex(7.1, 4.3);

Complex c2 = c.add(c).multiply(14.7);

Titanium Version

public immutable class Complex {

public double real, imag;

public Complex(double r, double i)

{ real = r; imag = i; }

public Complex op+(Complex c)

{ ... }

public Complex op*(double d)

{ ... }

...

}

/* sample usage */

Complex c = new Complex(7.1, 4.3);

Complex c2 = (c + c) * 14.7;

Fig. 3. Complex numbers in Java and Titanium

In the Java version, each complex number is represented by an Object with
two fields corresponding to the real and imaginary components, and methods
provide access to the components and mathematical operations on Complex ob-
jects. If one were then to define an array of such Complex objects, the resulting
in-memory representation would be an array of pointers to tiny objects, each
containing the real and imaginary components for one complex number. This
representation is wasteful of storage space – imposing the overhead of storing a
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pointer and an Object header for each complex number, which can easily dou-
ble the required storage space for each such entity. More importantly for the
purposes of scientific computing, such a representation induces poor memory
locality and cache behavior for operations over large arrays of such objects. Fi-
nally, note the cumbersome method-call syntax which is required for performing
operations on the Complex Objects in standard Java.

Titanium allows easy resolution of these performance issues by adding the
immutable keyword to the class declaration, as shown in the figure. This one-
word change declares the Complex type to be a value class, which is passed
by value and stored as an unboxed type in the containing context (e.g. on the
stack, in an array, or as a field of a larger object). The figure illustrates the
framework for a Titanium-based implementation of Complex using immutables
and operator overloading, which mirrors the implementation provided in the
Titanium standard library (ti.lang.Complex) that is used in the FT benchmark.

Immutable types are not subclasses of java.lang.Object, and induce no over-
heads for pointers or Object headers. Also they are implicitly final, which means
they never pay execution-time overheads for dynamic method call dispatch. An
array of Complex immutables is represented in-memory as a single contiguous
piece of storage containing all the real and imaginary components, with no point-
ers or Object overheads. This representation is significantly more compact in
storage and efficient in runtime for computationally-intensive algorithms such as
FFT.

The figure also demonstrates the use of Titanium’s operator overloading,
which allows one to define methods corresponding to the syntactic arithmetic
operators applied to user classes (the feature is available for any class type, not
just immutables). This allows a more natural use of the + and ∗ operators to
perform arithmetic on the Complex instances, allowing the client of the Complex
class to handle the complex numbers as if they were built-in primitive types.

6.2 Cross-Language Calls

Titanium allows the programmer to make calls to kernels and libraries written
in other languages, enabling code reuse and mixed-language applications. This
feature allows programmers to take advantage of tested, highly-tuned libraries,
and encourages shorter, cleaner, and more modular code. Several of the major
Titanium applications make use of this feature to access computational kernels
such as vendor-tuned BLAS libraries.

Titanium is implemented as a source-to-source compiler to C, which means
that any library offering a C interface is potentially callable from Titanium. To
perform cross language integration, programmers simply declare methods using
the native keyword, and then supply implementations written in C.

The Titanium NAS FT implementation featured in this paper calls the FFTW
[15] library to perform the local 1-D FFT computations, thereby leveraging the
auto-tuning features and machine-specific optimizations made available in that
off-the-shelf FFT kernel implementation. Note that although the FFTW library
does offer a 3-D MPI-based parallel FFT solver, our benchmark only uses the
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serial 1-D FFT kernel – Titanium code is used to create and initialize all the
data structures, as well as to orchestrate and perform all the interprocessor
communication operations.

6.3 Nonblocking Arraycopy

Titanium’s explicitly nonblocking array copy library methods helped in imple-
menting a more efficient 3-D FFT.

The Fortran code performs a bulk-synchronous 3-D FFT, whereby each pro-
cessor performs two local 1-D FFTs, then all the processors collectively perform
an all-to-all communication, followed by another local 1-D FFT. This algorithm
has two major performance flaws. First, because each phase is distinct, there is
no resulting overlap of computation and communication - while the communica-
tion is proceeding, the floating point units on the host CPUs sit idle, and during
the computation the network hardware is idle. Secondly, since all the proces-
sors send messages to all the other processors during the global transpose, the
interconnect can easily get congested and saturate at the bisection bandwidth
of the network. This can result in a much slower communication phase than if
the same volume of communication were spread out over time during the other
phases of the algorithm.

Both these issues can be dealt with using a slight reorganization of the 3-D
FFT algorithm employing nonblocking array copy. The new algorithm, imple-
mented in Titanium, first performs a local strided 1-D FFT, followed by a local
non-strided 1-D FFT. Then, we begin sending each processor’s portion of the
grid (slab) as soon as the corresponding rows are computed. By staggering the
messages throughout the computation, the network is less likely to become con-
gested and is more effectively utilized.

Moreover, we send these slabs using nonblocking array copy, addressing the
other issue with the original algorithm. Nonblocking array copy allows us to
inject the message into the network and then continue with the local FFTs, thus
overlapping most of the communication costs incurred by the global transpose
with the computation of the second FFT pass. Reorganizing the communication
in FT to maximize overlap results in a large performance gain, as seen in figure 4.

6.4 The FT Benchmark Implementation

In terms of code size, figure 2 shows that the Titanium implementation of FT
is considerably more compact than the Fortran+MPI version. There are three
main reasons for this. First, over half the declarations in both versions are dedi-
cated to verifying the checksum, a Complex number that represents the correct
“answer” after each iteration. The Titanium code does this a bit more efficiently,
thus saving a few lines. Secondly, the Fortran code performs cache blocking for
the FFTs and transposes, meaning that it performs them in discrete chunks in
order to improve locality on cache-based systems. Moreover, in order to per-
form the 1-D FFTs, these blocks are copied to and from a separate workspace
where the FFT is performed. While this eliminates the need for extra arrays for
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Fig. 4. Performance comparisons for FT, MG, and CG respectively

each 1-D FFT, any performance benefit hinges on how quickly the copies to and
from the workspace are done. The Titanium code, on the other hand, allocates
several arrays for the 3D FFT, and therefore does not do extra copying. It is
consequently shorter code as well. Finally, Titanium’s domain calculus opera-
tions allow the transposes to be written much more concisely than for Fortran,
resulting in a 121 to 3 disparity in lines of communication.

7 Performance Results

7.1 Experimental Methodology

In order to compare performance between languages, we tested the Titanium
and Fortran with MPI implementations on an Opteron cluster and a G5 cluster,
both with InfiniBand interconnects. For details concerning the input sizes for
each problem class, please see the NAS benchmark specification [4].

During data collection, each data point was run consecutively three times,
with the minimum being reported. In addition, for a given number of processors,
the Fortran and Titanium codes were both run on the same nodes (to ensure
consistency). In all cases, performance variability was low, and the results are
reproducible.
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The actual performance results for all three benchmarks are shown in figure 4.
Note that all speedups are measured against the base case of the best time at
the lowest number of processors for that graph, and the absolute performance of
that case is shown on the y axis. Consequently, the language that has the higher
speedup for a given number of processors actually runs faster for that case.

7.2 FT Performance

Both implementations of the FT benchmark use the same version of the FFTW
library [15] for the local 1-D FFT computations, since it always outperformed
the local FFT implementation in the stock Fortran implementation. However, all
the communication and other supporting code is written in the language being
examined.

As seen at the top of figure 4, the Titanium FT benchmark thoroughly outper-
forms Fortran, primarily due to two optimizations. First, the Titanium code uses
padded arrays to avoid the cache-thrashing that results from having a power-of-
two number of elements in the contiguous array dimension. This helps to explain
the performance gap between Fortran and the blocking Titanium code.

Secondly, as explained in section 6 the best Titanium implementation also
performs nonblocking array copy. This permits us to overlap communication
during the global transpose with computation, giving us a second significant
improvement over the Fortran code. As a result, the Titanium code performs
36% faster than Fortran on 64 processors of the Opteron/InfiniBand system.

7.3 MG Performance

For the MG benchmark, the Titanium code again uses nonblocking array copy to
overlap some of the communication time spent in updating ghost cells. However,
the performance benefit is not as great as for FT, since each processor can only
overlap two messages at a time, and no computation is done during this time.
Nonetheless, the results in figure 4 demonstrate that Titanium performs nearly
identically to Fortran for both platforms and for both problem classes.

7.4 CG Performance

The Titanium CG code implements the scalar and vector reductions using point-
to-point synchronization. This mechanism scales well, but only provides an ad-
vantage at larger numbers of processors. At small processor counts (8 or 16 on
the G5), the barrier-based implementation is faster.

The CG performance comparison is shown at the bottom of figure 4. In some
cases the CG scaling for both Titanium and Fortran is super-linear due to cache
effects. For both platforms, however, Titanium’s performance is slightly worse
than that of Fortran, by a constant factor of about 10-20%. One reason for this
is that point-to-point synchronization is still a work in progress in Titanium.
Currently, if a processor needs to signal to a remote processor that it has com-
pleted a put operation, it sends two messages. The first is the actual data sent
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to the remote processor, and the second is an acknowledgment that the data has
been sent. This will eventually be implemented as one message in Titanium, and
should help bridge the remaining performance gap between the two languages.

8 Related Work

The prior work on parallel languages is too extensive to survey here, so we
focus on three current language efforts (ZPL, CAF, and UPC) for which similar
studies of the NAS Parallel Benchmarks have been published. All of these studies
consider performance as well as expressiveness of the languages, often based on
the far-from-perfect line count analysis that appears here.

ZPL is a data parallel language developed at the University of Washington.
A case study by Chamberlain, Deitz and Snyder [11] compared implementa-
tions of NAS MG across various machines and parallel languages (including
MPI/Fortran, ZPL, Co-Array Fortran [3], High Performance Fortran, and Single-
Assignment C). They compared the implementations in terms of running time,
code complexity and conciseness. Our work extends theirs by providing a similar
evaluation of Titanium for MG, but also includes two other NAS benchmarks.

Co-Array Fortran (CAF) is an explicitly parallel, SPMD, global address space
extension to Fortran 90 initially developed at Cray Inc [3]. CAF has a built-
in distributed data structure abstraction. However, layouts are more restrictive
than in a language like ZPL or HPF, since distribution is specified by identify-
ing a co-dimension that is spread over the processors. Titanium’s pointer-based
layouts can be used to express arbitrary distributions. Communication is more
visible in CAF than the other languages, because only statements involving the
co-dimension can result in communication. Because CAF is based on F90 ar-
rays, it has various array statements (which are not supported in Titanium) and
subarray operations (which are).

Unified Parallel C (UPC) [2] is a parallel extension of ISO C99 that provides
a global memory abstraction and communication paradigm similar to Titanium.
The Berkeley UPC [16] and Intrepid UPC compilers use the same GASNet com-
munication layer as Titanium, and Berkeley UPC uses a source-to-source com-
pilation strategy analogous to the Berkeley Titanium compiler and Rice CAF
compiler. Bell et al [17] reimplemented some of the NAS benchmarks in UPC’s
one-sided communication paradigm, producing performance improvements of up
to 2x over the MPI-Fortran versions.

9 Conclusions

We have shown that Titanium is well-suited to three common yet diverse scien-
tific kernels from both an expressiveness and performance standpoint. However,
Titanium applications are not merely limited to the NAS benchmarks, as it sup-
ports more general distributed data layouts and irregular parallelism patterns
than these problems require. In addition, the use of Java as a base language
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provides support for strong typing, user-defined classes, inheritance, and dy-
namic memory management. All of these features help raise the level of ab-
straction when compared to most serial languages commonly used in parallel
computing.
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