

Lecture Notes in Computer Science 4339
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Eduard Ayguadé Gerald Baumgartner
J. Ramanujam P. Sadayappan (Eds.)

Languages and
Compilers for
Parallel Computing

18th International Workshop, LCPC 2005
Hawthorne, NY, USA, October 20-22, 2005
Revised Selected Papers

13

Volume Editors

Eduard Ayguadé
Computer Architecture Department
Universitat Politécnica de Catalunya
08034 Barcelona, Catalunya, Spain
E-mail: eduard@cepba.upc.es

Gerald Baumgartner
Department of Computer Science
Louisiana State University
Baton Rouge, LA 70803, USA
E-mail: gb@csc.lsu.edu

J. Ramanujam
Department of Electrical and Computer Engineering
Louisiana State University
Baton Rouge, LA 70803, USA
E-mail: jxr@ece.lsu.edu

P. Sadayappan
Department of Computer Science and Engineering
The Ohio State University
Columbus, OH 43210, USA
E-mail: saday@cis.ohio-state.edu

Library of Congress Control Number: 2006939009

CR Subject Classification (1998): D.3, D.1.3, F.1.2, B.2.1, C.2.4, C.2, E.1, D.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-69329-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-69329-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11967729 06/3142 5 4 3 2 1 0

Preface

The 18th International Workshop on Languages and Compilers for High-
Performance Computing was scheduled to be held in New Orleans, Louisiana,
in October 2005. Unfortunately, because of the devastation caused by Hurricane
Katrina the meeting needed to be moved. It was held in Hawthorne, New York,
thanks to help from IBM. The workshop is an annual forum for leading research
groups to present their current research activities and the latest results, cover-
ing languages, compiler techniques, runtime environments, and compiler-related
performance evaluation for parallel and high-performance computing. Sixty-five
researchers from Canada, France, Japan, Korea, P.R. China, Spain, Switzerland,
Taiwan, UK, and the USA attended the workshop.

Thirty-four research papers (26 regular papers and eight short papers) were
presented at the workshop. These papers were reviewed by the Program Com-
mittee; external reviewers were used as needed. The authors then received ad-
ditional comments during the workshop. The revisions after the workshop are
now assembled into these final proceedings.

We thank Siddhartha Chatterjee from the IBM T.J. Watson Research Center
for his keynote talk titled “The Changing Landscape of Parallel Computing.”
The workshop included a special session titled “High-Productivity Languages
for HPC: Compiler Challenges” consisting of invited talks on the three lan-
guages being developed by the DARPA High-Productivity Computing Systems
(HPCS) vendors. The talks were given by Steve Dietz (from Cray on the language
Chapel), Vivek Sarkar (from IBM on the language X10), and David Chase (from
Sun on the language Fortress). Frederica Darema gave a presentation during the
workshop banquet about the proposed Dynamic Data-Driven Applications Sys-
tems (DDDAS) program at the US National Science Foundation.

The workshop was sponsored by the US National Science Foundation and
by International Business Machines Corporation. Their generous contribution
is greatly appreciated. We appreciate the assistance offered by the staff in the
Department of Computer Science and Engineering at the Ohio State Univer-
sity and thank Alex Ramirez of Universitat Politécnica de Catalunya (Spain)
for generous help with the paper submission and review software. Our special
thanks go to the LCPC 2005 Program Committee and the external reviewers
for their efforts in reviewing the submissions. Advice and suggestions from both
the Steering Committee and the Program Committee are much appreciated. Fi-
nally, we wish to thank all the authors and participants for their contributions
and lively discussions, which made the workshop a success.

November 2006 Eduard Ayguadé, Gerald Baumgartner,
J. (Ram) Ramanujam, P. (Saday) Sadayappan

Organization

Committees

General/Program Co-chairs: Eduard Ayguadé
(Universitat Politècnica de Catalunya, Spain)

Gerald Baumgartner
(Louisiana State University, USA)

J. (Ram) Ramanujam
(Louisiana State University, USA)

P. (Saday) Sadayappan
(The Ohio State University, USA)

Program Committee: Nancy Amato
(Texas A&M University, USA)

Gheorghe Almási
(IBM Thomas J. Watson Research Center,
USA)

Eduard Ayguadé
(Universitat Politècnica de Catalunya, Spain)

Gerald Baumgartner
(Louisiana State University, USA)

Calin Cascaval
(IBM Thomas J. Watson Research Center,
USA)

Rudolf Eigenmann
(Purdue University, USA)

Zhiyuan Li
(Purdue University, USA)

Sam Midkiff
(Purdue University, USA)

J. (Ram) Ramanujam
(Louisiana State University, USA)

Lawrence Rauchwerger
(Texas A&M University, USA)

P. (Saday) Sadayappan
(The Ohio State University, USA)

Bjarne Stoustrup
(Texas A&M University, USA)

Peng Wu
(IBM Thomas J. Watson Research Center,
USA)

VIII Organization

Local Organizing Committee: Gheorghe Almási
(IBM Thomas J. Watson Research Center,
USA)

Calin Cascaval
(IBM Thomas J. Watson Research Center,
USA)

Peng Wu
(IBM Thomas J. Watson Research Center,
USA)

Steering Committee: Utpal Banerjee
(Intel Corporation, USA)

David Gelernter
(Yale University, USA)

Alex Nicolau
(University of California, Irvine, USA)

David Padua
(University of Illinois at Urbana-Champaign,
USA)

Sponsors

National Science Foundation, USA
International Business Machines Corporation

Table of Contents

Revisiting Graph Coloring Register Allocation: A Study of the
Chaitin-Briggs and Callahan-Koblenz Algorithms . 1

Keith D. Cooper, Anshuman Dasgupta, and Jason Eckhardt

Register Pressure in Software-Pipelined Loop Nests: Fast Computation
and Impact on Architecture Design . 17

Alban Douillet and Guang R. Gao

Manipulating MAXLIVE for Spill-Free Register Allocation 32
Shashi Deepa Arcot, Henry Gordon Dietz, and
Sarojini Priyadarshini Rajachidambaram

Optimizing Packet Accesses for a Domain Specific Language on
Network Processors . 47

Tao Liu, Xiao-Feng Li, Lixia Liu, Chengyong Wu, and Roy Ju

Array Replication to Increase Parallelism in Applications Mapped to
Configurable Architectures . 62

Heidi E. Ziegler, Priyadarshini L. Malusare, and Pedro C. Diniz

Generation of Control and Data Flow Graphs from Scheduled and
Pipelined Assembly Code . 76

David C. Zaretsky, Gaurav Mittal, Robert Dick, and Prith Banerjee

Applying Data Copy to Improve Memory Performance of General
Array Computations . 91

Qing Yi

A Cache-Conscious Profitability Model for Empirical Tuning of Loop
Fusion . 106

Apan Qasem and Ken Kennedy

Optimizing Matrix Multiplication with a Classifier Learning System 121
Xiaoming Li and Maŕıa Jesús Garzarán

A Language for the Compact Representation of Multiple Program
Versions . 136

Sebastien Donadio, James Brodman, Thomas Roeder, Kamen Yotov,
Denis Barthou, Albert Cohen, Maŕıa Jesús Garzarán,
David Padua, and Keshav Pingali

Efficient Computation of May-Happen-in-Parallel Information for
Concurrent Java Programs . 152

Rajkishore Barik

X Table of Contents

Evaluating the Impact of Thread Escape Analysis on a Memory
Consistency Model-Aware Compiler . 170

Chi-Leung Wong, Zehra Sura, Xing Fang, Kyungwoo Lee,
Samuel P. Midkiff, Jaejin Lee, and David Padua

Concurrency Analysis for Parallel Programs with Textually Aligned
Barriers . 185

Amir Kamil and Katherine Yelick

Titanium Performance and Potential: An NPB Experimental Study 200
Kaushik Datta, Dan Bonachea, and Katherine Yelick

Efficient Search-Space Pruning for Integrated Fusion and Tiling
Transformations . 215

Xiaoyang Gao, Sriram Krishnamoorthy, Swarup Kumar Sahoo,
Chi-Chung Lam, Gerald Baumgartner, J. Ramanujam, and
P. Sadayappan

Automatic Measurement of Instruction Cache Capacity 230
Kamen Yotov, Sandra Jackson, Tyler Steele, Keshav Pingali, and
Paul Stodghill

Combined ILP and Register Tiling: Analytical Model and Optimization
Framework . 244

Lakshminarayanan Renganarayana, U. Ramakrishna, and
Sanjay Rajopadhye

Analytic Models and Empirical Search: A Hybrid Approach to Code
Optimization . 259

Arkady Epshteyn, Maŕıa Jesús Garzarán, Gerald DeJong,
David Padua, Gang Ren, Xiaoming Li, Kamen Yotov, and
Keshav Pingali

Testing Speculative Work in a Lazy/Eager Parallel Functional
Language . 274

Alberto de la Encina, Ismael Rodŕıguez, and Fernando Rubio

Loop Selection for Thread-Level Speculation . 289
Shengyue Wang, Xiaoru Dai, Kiran S. Yellajyosula,
Antonia Zhai, and Pen-Chung Yew

Software Thread Level Speculation for the Java Language and Virtual
Machine Environment . 304

Christopher J.F. Pickett and Clark Verbrugge

Lightweight Monitoring of the Progress of Remotely Executing
Computations . 319

Shuo Yang, Ali R. Butt, Y. Charlie Hu, and Samuel P. Midkiff

Table of Contents XI

Using Platform-Specific Performance Counters for Dynamic
Compilation . 334

Florian Schneider and Thomas R. Gross

A Domain-Specific Interpreter for Parallelizing a Large Mixed-Language
Visualisation Application . 347

Karen Osmond, Olav Beckmann, Anthony J. Field, and
Paul H.J. Kelly

Compiler Control Power Saving Scheme for Multi Core Processors 362
Jun Shirako, Naoto Oshiyama, Yasutaka Wada, Hiroaki Shikano,
Keiji Kimura, and Hironori Kasahara

Code Transformations for One-Pass Analysis . 377
Xiaogang Li and Gagan Agrawal

Scalable Array SSA and Array Data Flow Analysis 397
Silvius Rus, Guobin He, and Lawrence Rauchwerger

Interprocedural Symbolic Range Propagation for Optimizing
Compilers . 413

Hansang Bae and Rudolf Eigenmann

Parallelization of Utility Programs Based on Behavior Phase
Analysis . 425

Xipeng Shen and Chen Ding

A Systematic Approach to Model-Guided Empirical Search for Memory
Hierarchy Optimization . 433

Chun Chen, Jacqueline Chame, Mary Hall, and Kristina Lerman

An Efficient Approach for Self-scheduling Parallel Loops on
Multiprogrammed Parallel Computers . 441

Arun Kejariwal, Alexandru Nicolau, and
Constantine D. Polychronopoulos

Dynamic Compilation for Reducing Energy Consumption of
I/O-Intensive Applications . 450

Seung Woo Son, Guangyu Chen, Mahmut Kandemir, and
Alok Choudhary

Supporting SELL for High-Performance Computing 458
Bjarne Stroustrup and Gabriel Dos Reis

Compiler Supports and Optimizations for PAC VLIW DSP
Processors . 466

Yung-Chia Lin, Chung-Lin Tang, Chung-Ju Wu, Ming-Yu Hung,
Yi-Ping You, Ya-Chiao Moo, Sheng-Yuan Chen, and Jenq-Kuen Lee

Author Index . 475

Revisiting Graph Coloring Register Allocation:
A Study of the Chaitin-Briggs and

Callahan-Koblenz Algorithms

Keith D. Cooper, Anshuman Dasgupta, and Jason Eckhardt

Department of Computer Science, Rice University
{keith, anshuman, jle}@cs.rice.edu

Abstract. Techniques for global register allocation via graph coloring
have been extensively studied and widely implemented in compiler frame-
works. This paper examines a particular variant – the Callahan Koblenz
allocator – and compares it to the Chaitin-Briggs graph coloring register
allocator. Both algorithms were published in the 1990’s, yet the academic
literature does not contain an assessment of the Callahan-Koblenz allo-
cator. This paper evaluates and contrasts the allocation decisions made
by both algorithms. In particular, we focus on two key differences be-
tween the allocators:

Spill code: The Callahan-Koblenz allocator attempts to minimize
the effect of spill code by using program structure to guide allocation
and spill code placement. We evaluate the impact of this strategy on
allocated code.

Copy elimination: Effective register-to-register copy removal is im-
portant for producing good code. The allocators use different techniques
to eliminate these copies. We compare the mechanisms and provide in-
sights into the relative performance of the contrasting techniques.

The Callahan-Koblenz allocator may potentially insert extra branches
as part of the allocation process. We also measure the performance over-
head due to these branches.

1 Introduction

While processor speed has increased dramatically in the last 20 years, main
memory speeds have struggled to keep up. To address this disparity, current
computer architectures contain several levels of smaller but faster storage in be-
tween main memory and the processor. Consequently, modern compilers must
ensure that frequently used values in a program are stored in the higher ech-
elons of this memory hierarchy. In particular, registers are the fastest storage
locations and compilers run a register allocation phase to map values in the pro-
gram to registers available on the target architecture. This phase is critical in
producing a speedy program. However, it is prohibitively expensive to optimally
conduct global register allocation since the problem is NP-complete [18]. As a

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 1–16, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 K.D. Cooper, A. Dasgupta, and J. Eckhardt

result, allocation is usually performed by a heuristic driven algorithm. Our pa-
per will focus on two such algorithms – the Chaitin-Briggs allocator [5] and the
Callahan-Koblenz hierarchical allocator [6] – that map the register allocation
problem to a graph coloring problem. Both algorithms construct and color an
interference graph that represents correctness constraints. As can be expected,
optimal coloring of the interference graph is also NP-complete and the allocators
resort to heuristics to color the graph.

The major difference in the two allocators lies in their consideration of pro-
gram structure. After constructing the interference graph, Chaitin-Briggs does
not consider the control flow of the program. In contrast, the Callahan-Koblenz
algorithm constructs a hierarchy of tiles to capture loops and conditional con-
trol flow in the program. This tile representation of the program is then used to
guide allocation and spill decisions. We shall analyze the impact of these locality-
based decisions on the quality of generated code. Another key difference in the
two allocators lies in their register-to-register copy removal techniques. The re-
moval of unnecessary register copies is an integral part of both algorithms. While
the Chaitin-Briggs algorithm conducts copy coalescing to eliminate redundant
copies, Callahan-Koblenz uses a preferencing technique which is a mechanism
that influences the way certain nodes are colored. We shall compare the effec-
tiveness of the two techniques on various benchmarks.

The Chaitin-Briggs allocator has been investigated extensively, and is imple-
mented in practically every industrial and research compiler. In contrast, while
the original Callahan-Koblenz article presents a fascinating approach and makes
compelling arguments about its functionality, the authors did not present an
experimental evaluation. In particular, they described a relatively high-level de-
scription of the algorithm and did not provide a comparison to a high-quality
baseline allocator. If the Citeseer literature database is any indication, there has
been wide interest in the Callahan-Koblenz article – it has been cited almost as
frequently as the well-known Briggs paper [5]. However, even after more than
a decade since its publication, there still has been no evaluation published in
the literature. This is unfortunate since industrial practitioners, in particular,
are necessarily conservative about implementing unproven or poorly-understood
algorithms in their compilers. This is especially true in the case of the Callahan-
Koblenz algorithm, which, as will be seen in the following sections, is signif-
icantly more complicated than the proven, easy to implement Chaitin-Briggs
allocator. This paper intends to address this gap in the literature and to pro-
vide researchers and practitioners with empirical data about the performance of
this intriguing algorithm. Because Callahan-Koblenz is considered an extension
to graph-coloring techniques, we used Chaitin-Briggs – a well-understood graph
coloring algorithm – as the baseline of comparison.

2 Graph Coloring Register Allocation

Register allocators typically take an intermediate representation of a program
as input. This representation does not impose any architectural limitations on

Revisiting Graph Coloring Register Allocation 3

the number of registers – values are contained in locations known as virtual
registers. It is the allocator’s responsibility to map the theoretically unlimited
virtual registers into a finite number of machine (or physical) registers. More-
over, while conducting this mapping, it needs to maintain the semantics of the
program. Graph coloring register allocators construct an interference graph that
represents these safety constraints. Program values are represented by nodes in
the interference graph and edges between nodes imply that those values cannot
share a physical register. Values that cannot share a physical register are said
to interfere with each other. Both the Chaitin-Briggs and Callahan-Koblenz al-
locators construct such an interference graph for each procedure in the program
and then attempt to color it. However, the two graph coloring algorithms use
significantly different techniques to construct and color their interference graphs
and to spill registers. To understand and highlight the impact of these differences
in allocation decisions, we present a summary of the algorithms in the next two
sections.

2.1 Chaitin-Briggs Allocator

As the name suggests, the Chaitin-Briggs allocator (“CB”) is based on Chaitin’s
classical graph coloring allocator. In describing their algorithm, Briggs et al.
identify several major phases in their allocator. Our implementation faithfully
follows the implementation described in the paper except we do not need to
discover and number live ranges (Briggs et. al call this the “Renumber” phase)
since this information is already available in the static single assignment form
(SSA) based representation we use. The major phases, as depicted in Figure 1
and described in [5] are:

calculate
spill costs

Spill code

coalescebuild simplify select

Fig. 1. Overview of the Chaitin-Briggs allocator

Build the Interference Graph: Identify interferences by constructing live ranges
and marking interferences between these ranges.
Coalesce: Remove register-to-register copies if the source and the destination
registers do not interfere. The build and coalesce phases are repeated until no
more coalescing can be conducted. We will provide a detailed analysis of the
effects of coalescing in Section 4.2.
Calculate Spill costs and Simplify: These phases calculate spill costs for every
node in the interference graph and then order the nodes by pushing them on
a stack after removing these nodes from the graph. The Simplify phase first
removes all trivially colorable nodes – i.e. nodes that have fewer neighbors than

4 K.D. Cooper, A. Dasgupta, and J. Eckhardt

the number of available physical registers. If it reaches the point where no such
node remains in the graph, then this phase consults the spill heuristic, chooses
the node with the lowest spill cost, and pushes that node onto the stack. The
process is repeated until the graph is empty and all nodes have been placed on
the stack.
Select: The allocator tries to color the graph by repeatedly popping a node from
the stack, inserting it into the graph, and attempting to assign it a color. If all
colors have already been exhausted by its neighbors, then the node is marked
for spilling and left uncolored.
Spill code insertion: If any nodes were marked for spilling by the previous phase,
then the graph was not successfully colored. As a result, spill code is inserted for
those nodes and the allocator is restarted on the modified program. The Briggs
allocator marks nodes to be spilled at a later stage than Chaitin’s algorithm.
The authors call this procedure optimistic coloring since the algorithm defers
the spilling of a node in the hope that the node will become colorable.

2.2 Callahan-Koblenz Allocator

The Callahan-Koblenz allocator (“CK”) extends Chaitin’s allocator by directly
incorporating program structure into the allocation process. By doing so, the al-
locator can decide which variables to spill, as well as determine where to place the
spill code. In contrast to the “spill everywhere” approach of Chaitin, Callahan-
Koblenz has the potential to place spills in less frequently executed portions of
the program.

(a)

T0

T0.1

T0.1.2

T0.3

A

B

C

D

STOP

START

STOP

A

B

C

D

START

(b) (c)

blocks(T0.1.2) = {B}
blocks(T0.1) = {A, C}
blocks(T0) = {START, STOP}

blocks(T0.3) = {D}

T0

T0.1

T0.1.2

T0.3

Fig. 2. Example tile tree: (a) CFG; (b) tiles overlaid on CFG; (c) the tile tree

Callahan-Koblenz represents the hierarchical program structure with a tile
tree. Roughly, each tile in the tree represents a region of code such as a loop or
conditional and each pair of tiles in the tree must either be disjoint or properly
nested, one within the other. Such a tree structure isolates the high- and low-
frequency code regions and provides a basis for the allocator’s overall operation
and spill placement decisions. Figure 2 shows an example control-flow graph and
its corresponding tile tree, where the set blocks(T) represents all basic blocks

Revisiting Graph Coloring Register Allocation 5

which belong to tile T , but not to any subtiles of T . Each tile boundary represents
an implicit split-point of all values live at that boundary. One of the strengths
of Callahan-Koblenz lies in the ability to allocate each portion of a live range
between the tile boundaries independently. These split-points also become the
locations where any necessary spill code for global values will be placed. Figure 3
depicts the overall structure of the Callahan-Koblenz allocator. Once a tile tree
has been constructed, two major passes are made over the tile tree.

color

(physical registers)

rebuild

(from summary)

summarize

(for subtile)conflicts and prefs
incorporate parent

spill code
tile−boundary

each tile t in preorder traversal of tile tree

Phase 2

prefs for blocks(t)

build for blocks(t)

each subtile s

(pseudo colors)

color

(for parent)

summarize

conflicts and prefs
incorporate subtile

each tile t in postorder traversal of tile tree

Phase 1

construct tile tree

Fig. 3. The Callahan-Koblenz Allocator

Phase 1 (bottom-up): Each tile T is visited in postorder and processed in-
dependently with the goal of producing a preliminary allocation. The overall
processing of each tile is similar to a Chaitin-Briggs allocator, but includes extra
bookkeeping between tiles, and does not perform coalescing.
Build and preferences: Build the interference graph much like Chaitin-Briggs,
but restricting attention to blocks(T). Moreover, unlike the standard builder,
interferences are not constructed for any variable which is live across, but not
referenced in the subtree rooted at T .1 Preferences (such as for the source and
destinations of copy instructions) are also setup at this time.
Incorporate subtile summaries: All subtiles of T will have already been pro-
cessed, and a compact summary of their allocations stored. This information is
incorporated into T ’s interference graph.
Color: Coloring operates similarly to the Chaitin-Briggs allocator except that
color choice may be influenced by preferences and that color may potentially
be propagated to other nodes. Except for nodes which must receive a particular
physical register, colors assigned in this phase are “pseudo colors” in the sense
that they will be re-colored with a physical register in the second phase.
Summarize: After T is processed, a compressed representation of its’ interference
graph and allocation is constructed and passed up to the parent tile. Included
in the summary are all tile-global variables allocated to registers, all tile-globals
allocated to memory, and tile summary variables. Each TSV corresponds to a
set of tile-local variables that were allocated the same color, so that the local
allocation is represented in a very compact form.

1 Such live ranges, which we abbreviate “LBNR”, are similar to the “delayed bindings”
of [15], or the “inactive” live ranges of [3].

6 K.D. Cooper, A. Dasgupta, and J. Eckhardt

Phase 2 (top-down): Each tile T is visited in preorder with the goal of pro-
viding the final assignment of physical registers. Spill code is introduced at tile
boundaries to reconcile differences in each tile’s allocation.
Rebuild: Reconstruct the interference graph for T from its summary information.
Incorporate parent summaries: Conflicts for LBNRs that were excluded in the
first phase are now added to the graph for consideration, if they received a
register in the parent.
Color: A final coloring is performed, binding pseudo-colors to physical registers.
As before, coloring decisions are influenced by any preferences.
Summarize: Save T ’s allocation and preference information to be passed down
to its subtiles.
Spill code: Spill code is introduced at the tile boundaries, which may not be the
same tile where a particular spill decision was made.

3 Experimental Setup

For our experimental setup, we used the LLVM compiler infrastructure [14]. We
ran the allocators on an Intel Pentium 4 machine with 1 GB of main memory
running Redhat Linux 9.0. The Pentium 4 processor has 7 allocatable integer
registers and 8 allocatable floating point registers. We selected benchmarks that
performed mostly integer computations, since the current LLVM x86 backend
has limited support for global floating-point register allocation. That is, LLVM
is generally unable to allocate floating-point values across basic blocks due to
complications in handling the stack-based FP register file of x86. As a result, the
allocators were evaluated on programs from the SPEC 2000 integer benchmarks
and one program from the Mediabench suite: epic.

4 Evaluating the Allocators

In evaluating the allocators, we posed and answered two major questions. Since
a critical goal of the CK algorithm is to minimize dynamic memory references
generated by spill code, the primary question that needs to be addressed is to
what extent it improves on the “spill everywhere” approach of Chaitin. Sec-
ond, the CK allocator might place extra operations on tile boundaries while
stitching subtiles back together. We wish to measure this overhead and deter-
mine whether it is tolerable. To this end, our evaluation process consisted of
running both allocators on a number of benchmarks and comparing two key
features of the register-allocated output: the spill instructions emitted and the
register-to-register copies eliminated. We measured both the number of static
spills and copies emitted as well as the number of these instructions executed on
test inputs. We also measured the execution time of the allocated code on these
inputs.

While evaluating the allocators, it is tempting to focus solely on the runtime
of the allocated program. However, this might prove to be misleading on certain
environments due to three issues. First, some architectures (the x86 included)

Revisiting Graph Coloring Register Allocation 7

use sophisticated techniques to minimize memory latency. Thus, even if the
allocation algorithm allocates more virtual registers to physical registers and
reduces the amount of spill code in the program, this improvement might not be
reflected in a decrease in execution time. Second, the effects of cache hits and
misses on spill code is unpredictable and might affect the runtime of the code. In
the degenerate case, code with more spill code might benefit from random cache
effects and execute faster than code with fewer spill instructions. The allocators
we evaluated do not optimize for cache effects while emitting spill code – as a
result, the impact of cache on allocated code is purely accidental and we would
like to factor these effects out. Lastly, the evaluated allocators might produce
starkly different allocations for rarely executed procedures of a benchmark. This
difference might not be reflected in the execution time of the entire program.
However, it is sometimes instructive to examine the contrasting allocations of
these procedures. Keeping these considerations in mind, we decided on spill code
and register copies eliminated as our two major evaluation metrics. An analysis of
the spills and copies in the code will give us a relatively architecture-independent
understanding of both allocators. In our comparisons, we used both the dynamic
as well as the static versions of these metrics.

4.1 Comparing the Spill Code Emitted by Both Allocators

A graph coloring allocator typically uses heuristics to color the interference graph
using the same number of colors as available physical registers, k. However, the
coloring will be unsuccessful if the graph is not k-colorable, or if the heuristics fail
to color a k-colorable graph. At this point, most allocators modify the program
and repeat the coloring process. After an unsuccessful coloring effort, Chaitin-
Briggs and Callahan-Koblenz relegate uncolorable nodes to memory and rebuild
the interference graph. This process of placing a live range in memory instead of
a register, known as spilling, reduces the length of the live range and, in general,
makes the modified graph more colorable. Since the spilled range must now be
fetched from memory, the allocator tries to reduce the number of these memory
accesses (spills) executed at runtime. Callahan-Koblenz and Chaitin-Briggs use
heuristic techniques to identify candidates for spilling . Though their heuristics
share a general goal – to make the graph more colorable and to minimize the
amount of spill code – they differ in their formulations.

Spill code insertion strategy in Chaitin-Briggs: In the Briggs allocator,
the spill heuristic is computed by counting the load and store instructions re-
quired if the live range were to be spilled. Specifically, if di is the loop depth of
instruction i, the spill cost for a node is estimated to be:

SpillCost = LoadsCost + StoresCost where LoadsCost = LoadWeight ∗ ∑
l∈SpillLoads 10dl

StoresCost is calculated in a similar manner. For our experiments, the weights
for load and store costs were set to 1. If a spill is required, the node with the
lowest ratio of spill cost to the number of interference edges is selected for spilling.

8 K.D. Cooper, A. Dasgupta, and J. Eckhardt

Once a live range is spilled in Chaitin-Briggs, it is loaded before a use and stored
after a definition throughout the function.

Spill code insertion strategy in Callahan-Koblenz: A more fine-grained
spill strategy is used by the CK allocator. We give a brief overview here, but
consult [6] for a more detailed discussion. Because live ranges can be split at tile-
boundaries, the allocator may choose to place a variable v in different locations
for each tile that it crosses. For example, v may be allocated to a register within
tile t, while being relegated to memory in the parent or a subtile. The following
set of equations forms the cornerstone of this strategy:

LocalWeightt(v) =
∑

b∈blocks(t)

P (b) · Refb(v)

where t is a tile, P (x) denotes the probability of executing a block or taking a
control flow edge and Refb(v) is the number of references to v within b. Assuming
that allocating a register to variable v in t is profitable (see below) during the
bottom-up phase, LocalWeightt(v) is analogous to Chaitin-Briggs’ SpillCost
heuristic and is used, along with the degree of the node corresponding to v, in a
similar fashion. However, this cost is computed based only on blocks that occur
strictly within tile t, as opposed to the whole function. Moreover, the reference
count of block b is weighted by the probability of b being executed. Note that
for the purposes of this work, we use a static estimate of P (b) rather than actual
profile data to ensure a fair comparison of the spill heuristics for both allocators.
If b is a block, we set P (b) = 10depth(b). If e is an edge emanating from a block
b, P (e) is computed as the reciprocal of the number of outgoing edges of b.

Weightt(v) =
∑

s∈subtiles(t)

(Regs(v) − Mems(v)) + LocalWeightt(v)

Overall decisions regarding whether or not a variable should be spilled are
based on Weightt(v). It is computed as a combination of LocalWeightt(v) and
various penalty costs that may arise from making certain allocation decisions
with respect to the parent or children of t. It may happen that the penalty
outweighs the benefit of allocating v to a register, indicating that the allocator
should force v into memory.

Transfert(v) =
∑

e∈E(t)

P (e) ·Livee(v), where E(t) = EntryEdges(t)∪ExitEdges(t).

Regt(v) =
{

0, if InRegt(v) = false
min(Transfert(v), Weightt(v)), if InRegt(v) = true

Memt(v) =
{

0, if InRegt(v) = true
Transfert(v), if InRegt(v) = false

where InRegt(v) is a boolean predicate which is true if v received a register in
tile t, and false otherwise. Livee(v) is a predicate that indicates if variable v is
live along edge e.

Revisiting Graph Coloring Register Allocation 9

Table 1. Dynamic spill operations for SPECInt2000 and epic (billions)

Benchmark CB CK % imp.
M MTB M + MTB CTB All (w/CTB)

gzip 96.82 51.01 6.09 57.10 0.99 58.09 41.02 40.00
vpr 10.77 8.96 1.12 10.08 0.00 10.08 6.41 6.41
crafty 71.21 55.10 5.07 60.17 0.44 60.61 15.50 14.89
parser 51.54 27.66 1.05 28.71 1.12 29.83 44.30 42.12
eon 36.10 36.30 0.28 36.58 0.00 36.58 -1.33 -1.33
gap 53.02 43.45 4.29 47.74 0.55 48.29 9.96 8.93
bzip2 103.00 72.14 17.80 89.94 2.14 92.08 12.68 10.60
twolf 53.70 31.81 11.96 43.77 1.32 45.09 18.49 16.03
epic 8.78 4.50 6.85 11.35 0.44 11.79 -29.27 -34.23
MEAN IMPROVEMENTS 20.52 19.07

Transfert(v), Regt(v), and Memt(v) represent the various penalty costs. The
first corresponds to the cost due to tile-boundary spills, while the remaining two
account for any penalties due to a tile and its parent choosing different locations
for the same live range. If v is allocated to a register in tile t, Regt(v) is the
penalty of allocating v to memory in the parent of t. Likewise, if v is allocated
to memory in tile t, then Memt(v) is the penalty of allocating v to a register in
the parent of t.

Analysis of Spill Code Inserted: Table 1 shows the dynamic spill behav-
ior of each benchmark for CB and CK. The column marked CB is the number
of dynamic memory operations executed by the CB-compiled version of each
benchmark. The CK results are broken down into the three types of spill opera-
tions that can occur. Column M is the number of dynamic memory operations
executed within tile boundaries (e.g., loops). Column MTB and CTB are the
number of dynamic memory and register-to-register copy operations executed
on tile boundaries, respectively. The two additional CK columns represent the
sum of all dynamic memory operations (M + MTB) and the sum of all dynamic
spill operations (memory operations or copies). It is useful to isolate the different
types of spills for CK in order to see the effects of tiling more directly. Finally,
the last two columns show the percent improvement of CK over CB. In the first
case, only memory operations are considered, whereas memory and copy opera-
tions are considered in the second case. This distinction was made to show how
prevalent any remaining tile-boundary register-register copies were (indicating
success or failure of inter-tile preferencing), and what overall impact they had on
the improvements. Overall, the benchmarks allocated with CK executed signifi-
cantly fewer dynamic spill operations than those allocated by CB— up to 44%
fewer on parser. On average, 20.52% fewer spill operations were executed for
CK than for CB. On the other hand, there were two losses for CK. One slight
loss in eon, and one significant 29.27% loss in epic (more on this later).

We examined some of the benchmarks in detail at the assembly language level
to understand choices made by each allocator, and why CK performed relatively
well compared to CB. Consider the code in Figure 4a, which is a typical scenario
present in many of the benchmarks. Here there are two live ranges x and t

10 K.D. Cooper, A. Dasgupta, and J. Eckhardt

...=t

...
<heavy use of x>

...

...
<heavy use of x>

...

...
<heavy use of x>

x=... x=...
store x

t=...

...=t

t=...

x=...

(a) (c)(b)

load x

...=t
...=t
...=t

t=...
store t
load t ...=t

...

Fig. 4. Example of CK advantage: (a)
original code; (b) CB spills t; (c) CK
splits x

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gzip vpr crafty parser eon gap bzip2 twolf epic

Mem Mem (TB) Copies (TB)

Fig. 5. Dynamic Spill Operation Types
by Percentage. TB indicates operations
on tile boundaries.

competing for one register, where x is referenced once early, and heavily in some
distant part of the program. There are a only few references to t in a small portion
of the program, but they occur in a loop, making them frequently executed. Let
us assume the total number of references to x exceeds those of t. In the standard
CB scheme, since the spill cost is calculated based on the references throughout
the program, then x would get a color and t would be spilled (as in Figure 4b).
But from the perspective of t, spilling t is a poor choice, since x is never even
referenced in the loop. On the other hand, the opposite choice (giving t the color)
is bad too as the many references to x will now be through memory. Because
CB must spill a live range entirely, one of two poor choices must be made. As
mentioned earlier, CK can consider each live range in fragments, over regions of
the program. Here CK splits x before and after the loop, so that the loop portion
and non-loop portions are allocated independently. This allows the result seen
in Figure 4c, where t gets the register and x gets the register (but x is allocated
to memory within the loop where it has no references). Notice also that there is
a tradeoff in making such a split. A store and a load operation must be placed
at loop entry and exit to make the split, which is clearly profitable here.

Returning to the loss in the epic benchmark, it is useful to examine the
breakdown of spill operation types for CK. The graph in Figure 5 shows the
percentage of total spill operations represented by each type. Looking at the
epic bar, it is evident that something went wrong with CK’s heuristics. That is,
more than half of all the dynamic spill operations are memory operations on the
tile boundaries. Without looking at the code, this would seem indicate that CK
did not calculate trade-offs between intra- and inter-tile spilling appropriately.

In fact, on examining the assembly code, we found just that behavior. One
routine dominating execution time contains a number of triply-nested loops. In
one such nest, there is heavy register pressure in the inner loop, little pressure
in the middle loop, and medium pressure in the outermost loop and non-loop
code. There are also a number of global values live across the entire loop nest,

Revisiting Graph Coloring Register Allocation 11

with references in some loops and not others. Unfortunately, for some of these
globals, the constituent fragments within each loop were alternately allocated
to registers and memory. That is, the outermost loop allocated g to a register,
the next deeper loop allocated g to memory, and the inner loop allocated it to a
register. Thus, at every tile boundary there are memory operations to transfer
g in and out of memory as appropriate. It turns out that these tile-transfers
dominate the spill operation count, as seen in the graph. It would have been
better to keep g in the same location across more than one tile boundary.

4.2 Inter-register Copy Elimination and Its Impact on Allocation

Prior research has demonstrated that the removal of register-to-register copies
improves code quality [10,11]. Therefore, the efficacy of the copy coalescing phase
is critical to the performance of the allocators. An effective copy removal strategy
becomes even more imperative for register allocation in a SSA-based intermedi-
ate representation such as LLVM. While converting from SSA form to executable
code, φ-functions are replaced by register-to-register copies [4]. In both imple-
mented allocators, we ran an initial pass that merged the live ranges created by
the φ-node elimination process. This transformation, specified by Briggs in [3],
ensures that the input to the two allocators remained consistent. The two-address
nature of x86 code and copies generated due to procedure-calling conventions
also present many opportunities for copy removal. Since the two allocators im-
plement different copy-removal mechanisms, we shall compare this feature in
more detail in the next two paragraphs.

Coalescing and Biased Coloring: The Chaitin-Briggs allocator uses two comple-
mentary mechanisms – coalescing and biased coloring – to remove register copies
in the code. After building the graph, if the allocator encounters a register copy,
it coalesces the source and destination live ranges if they do not interfere. This
algorithm is called aggressive coalescing because it combines nodes without ex-
amining the resulting node’s degree. After coalescing, the algorithm rebuilds the
interference graph and repeats the coalesce-rebuild process until no more copies
can be eliminated. In Chaitin-Briggs, coalescing is intentionally constrained – to
retain flexibility during coloring, it only examines copies between two virtual reg-
isters. To eliminate copies between physical and virtual registers, Chaitin-Briggs
adds the color associated with the physical register to a list of colors desired by
the virtual register and attempts to assign this color to the register during the
biased coloring phase. Biased coloring is, in spirit, very similar to preferencing
in the CK allocator. However, unlike in Callahan-Koblenz, biased coloring plays
only a secondary role in Chaitin-Briggs since coalescing is powerful enough to
eliminate most copies.

Preferencing: Preferencing refers to the notion that it may be attractive to assign
the same color to multiple variables By making the coloring algorithm sensitive
to such preferences, the likelihood of choosing the desired color for a node is
increased. Copy removal in the CK allocator is performed by preferencing the
source variable S and destination variable D of a copy together by adding each

12 K.D. Cooper, A. Dasgupta, and J. Eckhardt

to the others preference list. The preference-guided color assignment algorithm
then attempts to give the same color to S and D. If the attempt is successful (the
preference was satisfied), then the resulting copy is redundant and can be trivially
removed. Similarly, if either S or D is a physical register, such as a copy generated
to implement subroutine linkage conventions, we setup a local preference. This
is different than the previous case in that a variable is preferenced to a specific
physical register. During color assignment, when a node receives a color, the color
is propagated to all the nodes on its preference list as their local preference. If
a node has a local preference, then the coloring mechanism will first attempt to
assign that register before resorting to using another register. Furthermore, it
will try to avoid giving a node a color that is preferred by uncolored neighbors.

In addition to copy removal, preferencing is used to influence the colors that
different parts of a global live range receive. Recall that tile boundaries are im-
plicit split-points for variables live at that boundary. Because tiles are processed
independently, it is important to pass around information about these variables
(in the form of preferences) so that each tile attempts to place the same global
into the same register. These preferences, of course, are not generated in response
to copy instructions. However, if they are not satisfied, then copy operations will
be inserted at the boundary to resolve the differing allocations.

Register Copies in Code After Copy-Elimination: Coalescing/Preferencing

0

0.2

0.4

0.6

0.8

1

1.2

gzip vpr crafty parser eon gap bzip2 twolf epic MEAN

R
a
ti
o
 o

f
R

e
m

a
in

in
g
 C

o
p
ie

s
:
C

o
a
l.
 /
 P

re
f.

Static Copies

Dynamic Copies

Fig. 6. Aggressive Coalescing & Biased
Coloring vs. Preferencing

Normalized Execution Time of Allocated Code

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

gzip vpr crafty parser eon gap bzip2 twolf epic MEAN

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti
o
n
 T

im
e
 (

C
B
=

1
)

Chaitin-Briggs
Callahan-Koblenz

Fig. 7. Runtime of Allocated Code

Experimental Evaluation: In comparing the copy-removal mechanisms, we
wanted to ensure that our measurements would not be hampered by the in-
consistent namespaces created by both allocators. Therefore, we modified CB
and CK to operate on the same structure – we constructed a single tile for the
entire program and provided this tile as input to the allocators. The results of
our experiments are displayed in Figure 6 – it shows the number of copies re-
maining in the code after copy-removal was conducted. Our experiments show
that overall, coalescing used in conjunction with biased coloring performs better
and removes 3.6% more copies on average than preferencing. This translates into
a 4.5% decrease in copies executed at runtime. We were, however, surprised by
how closely the two algorithms performed. In stark contrast to coalescing which
is executed each time the interference graph is rebuilt, preferencing can remove
copies only while coloring the graph. We conclude that the careful mechanisms

Revisiting Graph Coloring Register Allocation 13

built into preferencing allow it to be competitive with a much more aggressive
technique.

4.3 Control-Flow Overhead of Tiling and Execution Time
Differences

To maintain the structural properties of the tile tree during construction, the
tile tree builder may have to insert extra blocks at tile boundaries. Typically
these blocks fall through to their successor and, therefore, do not result in any
additional branches in the final program. However, there are cases when inserting
blocks results in unavoidable branches. We measured the control-flow overhead
incurred due to these branches. On average, Callahan-Koblenz inserted 5.8%
more branch instructions in the code. However, the increase in executed branches
was comparatively lower: 1.4% over all benchmarks. This difference between
static and dynamic branches indicates that the branches placed at tile boundaries
are infrequently executed.

We built three versions of each benchmark and compared their execution
times – executables were created by running the Chaitin-Briggs allocator, the
Callahan-Koblenz allocator, and the default linear-scan allocator that shipped
with LLVM. Both CB and CK perform better than the linear-scan allocator,
recording improvements on average of 5.4% and 10.6% respectively. The compar-
ison between Callahan-Koblenz and Chaitin-Briggs is summarized in Figure 7.
As can be seen from the experimental results, CK outperforms CB on most of the
benchmarks – on average, it improved performance by 6.1% over CB. These gains
were mainly a result of the substantial reduction in spill instructions executed,
as described in Section 4.1. However, on epic, as a consequence of the extra
spills inserted by Callahan-Koblenz, it performed worse than Chaitin-Briggs,
increasing program runtime by 10.4%.

5 Conclusion

We have evaluated the Callahan-Koblenz allocator on three major criteria: the
amount of spill code inserted, the register-to-register copies eliminated, and the
overhead incurred due to tile construction. As seen in Section 4.1, CK was able to
significantly reduce the number of spill instructions when compared to Chaitin-
Briggs. This reduction can be attributed, in part, to being able to independently
allocate different parts of one live range. Secondly, tile local variables are given
precedence over LBNRs in that we prefer to spill a LBNR over a tile local.
This strategy is often beneficial, since unreferenced variables are typically long
lived and thus conflict with many variables in the same region. The CK results
emphasize that the spill-everywhere approach of Chaitin-Briggs can potentially
degrade performance. We were initially concerned that copy coalescing, a more
aggressive technique, might significantly outperform preferencing. However, our
results indicate that preferencing is reasonably competitive with coalescing. Our
experiments showed that, on average, Callahan-Koblenz emitted fewer spill in-
structions and produced faster running code than Chaitin-Briggs. However, we

14 K.D. Cooper, A. Dasgupta, and J. Eckhardt

reiterate that these experiments were not designed to determine which allocator
is better. Rather, our primary goal was to provide an understanding of the CK
allocator by using another graph coloring technique as a point of reference. To
that end, we did not consider adding improvements in the Chaitin-Briggs spilling
strategy as suggested in various research publications. Specifically, modifications
proposed by Bergner [1], Simpson [9] and Briggs [3] would reduce the number
of spills produced by the allocator. In future research, we intend to devise tech-
niques for improving the quality of spill code in both allocators.

6 Related Work

Though early computer science literature alludes to graph coloring approaches
to register allocation, Chaitin et al. presented the first paper comprehensively
describing a graph coloring register allocator [8,7]. Subsequently, a number of
improvements have been proposed for Chaitin’s Yorktown allocator: Bernstein
et. al. augmented the allocator’s coloring strategy by choosing the best of three
heuristics [2]. They also presented a technique that attempted to reduce the
amount spill code inserted by Chaitin’s allocator. Bergner and his colleagues
noted that spilling can be improved for live ranges that have a small region of
overlap [1]. They called their technique interference graph spilling. Our paper
focuses on the refinement of Chaitin’s allocator by Briggs et. al [5]. By adding
deferred spilling, Briggs and his colleagues were able to significantly improve
allocation, registering a reduction of spill costs up to 40% in their test suite.

To improve on the Yorktown allocator, some researchers incorporated program
structure into their allocation algorithms. Norris et. al. [17] designed an alloca-
tor that operates on the program dependence graph and attempted to carefully
place spill code. They compared their results to a Chaitin-style allocator and
reported up to a 3.7% decrease in spill code. Knobe and Zadeck [12] describe
a structure-based allocator using the notion of a control tree, which is vaguely
similar to a tile tree. This allocator is similar to Callahan-Koblenz in that it
can split live ranges around control tree nodes, it can spill inside of condition-
als, and its pruning of wedges is not unlike CK’s handling of LBNRs; however,
no empirical evaluation of the technique is presented. Lueh’s “Fusion” alloca-
tor also leverages program structure and appears to improve performance over
Chaitin-style allocation by an average of 8.4% on the SPEC92 benchmarks [16].
A recent article suggests that with a careful relaxation of the ordering of the
coloring stack, more preferences can be satisfied [13]. The hierarchical allocator
evaluated in this paper was designed by Callahan and Koblenz and published
in 1991 [6]. Since then, we know of one other attempt to implement the CK
allocator by Wu [19]. However, the implementation deviates significantly from
the published algorithm. The author reserves registers to accommodate machine
operands for spilling which significantly cripples the algorithm while the pub-
lished Callahan and Koblenz paper clearly states that the hierarchical allocator
does not reserve registers. There are several other major differences from the
published algorithm including ignoring the degree of a node while spilling and
not maintaining information during the bottom-up walk of the tree.

Revisiting Graph Coloring Register Allocation 15

Acknowledgements

This work would have proved much more difficult without the enthusiastic help
of Tim Harvey, Brian Koblenz, David Callahan, Michael Berg, and the LLVM
group at the University of Illinois. Our colleagues in the compiler groups at Rice
provided interesting discussions and helpful criticism. To these people go our
heartfelt thanks. This work has been supported by the Los Alamos Computer
Science Institute, by Texas Instruments, and by the National Science Foundation
through grant number 0331654.

References

1. Peter Bergner, Peter Dahl, David Engebretsen, and Matthew T. O’Keefe. Spill
Code Minimization via Interference Region Spilling. In SIGPLAN Conference on
Programming Language Design and Implementation, pages 287–295, 1997.

2. David Bernstein, Dina Q. Goldin, Martin C. Golumbic, Hugo Krawczyk, Yishay
Mansour, Itai Nahshon, and Ron Y. Pinter. Spill Code Minimization Techniques
for Optimizing Compilers. In SIGPLAN Conference on Programming Language
Design and Implementation, pages 258–263, 1989.

3. Preston Briggs. Register Allocation via Graph Coloring. Technical Report TR92-
183, Rice University, 24, 1992.

4. Preston Briggs, Keith D. Cooper, Timothy J. Harvey, and L. Taylor Simpson.
Practical Improvements to the Construction and Destruction of Static Single As-
signment Form. Software – Practice and Experience, 28(8):859–881, 1998.

5. Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to Graph
Coloring Register Allocation. ACM Transactions on Programming Languages and
Systems, 16(3):428–455, May 1994.

6. D. Callahan and B. Koblenz. Register Allocation via Hierarchical Graph Coloring.
SIGPLAN, 26(6):192–203, June 1991.

7. G.J. Chaitin. Register Allocation and Spilling via Graph Coloring. In SIGPLAN82,
1982.

8. G.J. Chaitin, M.A. Auslander, A.K. Chandra, J. Cocke, M.E. Hopkins, and P.W.
Markstein. Register Allocation via Coloring. Computer Languages, 6:45–57, Jan-
uary 1981.

9. K. D. Cooper and L.T. Simpson. Live range Splitting in a Graph Coloring Register
Allocator. In Proceedings of the International Compiler Construction Conference,
March 1998.

10. Lal George and Andrew W. Appel. Iterated register coalescing. ACM Trans.
Program. Lang. Syst., 18(3):300–324, 1996.

11. Suhyun Kim, Soo-Mook Moon, Jinpyo Park, and Kemal Ebciolu. Unroll-based
register coalescing. In ICS ’00: Proceedings of the 14th international conference on
Supercomputing, pages 296–305, New York, NY, USA, 2000. ACM Press.

12. Kathleen Knobe and Kenneth Zadeck. Register Allocation Using Control Trees.
Technical Report CS-92-13, Brown University, Department of Computer Science,
March 1992.

13. Akira Koseki, Hideaki Komatsu, and Toshio Nakatani. Preference-directed graph
coloring. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming
language design and implementation, pages 33–44. ACM Press, 2002.

16 K.D. Cooper, A. Dasgupta, and J. Eckhardt

14. Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong
Program Analysis and Transformation. In Proceedings of the 2004 International
Symposium on Code Generation and Optimization (CGO’04), Mar 2004.

15. P. Geoffrey Lowney, Stefan M. Freudenberger, Thomas J. Karzes, W. D. Lichten-
stein, Robert P. Nix, John S. O’Donnell, and John C. Ruttenberg. The Multiflow
Trace Scheduling Compiler. The Journal of Supercomputing, 7(1-2):51–142, 1993.

16. Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Fusion-based reg-
ister allocation. ACM Transactions on Programming Languages and Systems,
22(3):431–470, 2000.

17. Cindy Norris and Lori L. Pollock. Register Allocation over the Program Depen-
dence Graph. In SIGPLAN Conference on Programming Language Design and
Implementation, pages 266–277, 1994.

18. Ravi Sethi. Complete Register Allocation Problems. In Proceedings of the fifth
annual ACM symposium on Theory of computing, pages 182–195. ACM, Apr 1973.

19. Q. Wu. Register Allocation via Hierarchical Graph Coloring. Master’s thesis,
Michigan Technological University, 1996.

Register Pressure in Software-Pipelined Loop Nests:
Fast Computation and Impact on Architecture Design

Alban Douillet and Guang R. Gao

Department of Electrical and Computer Engineering
University of Delaware, Newark, DE 19716-3130

{douillet,ggao}@capsl.udel.edu

Abstract. Recently the Single-dimension Software Pipelining (SSP) technique
was proposed to software pipeline loop nests at an arbitrary loop level [18,19,20].
However, SSP schedules require a high number of rotating registers, and may
become infeasible if register needs exceed the number of available registers. It is
therefore desirable to design a method to compute the register pressure quickly
(without actually performing the register allocation) as an early measure of the
feasibility of an SSP schedule. Such a method can also be instrumental to provide
a valuable feedback to processor architects in their register files design decision,
as far as the needs of loop nests are concerned.

This paper presents a method that computes quickly the minimum number of
rotating registers required by an SSP schedule. The results have demonstrated
that the method is always accurate and is 3 to 4 orders of magnitude faster on
average than the register allocator. Also, experiments suggest that 64 floating-
point rotating registers are in general enough to accommodate the needs of the
loop nests used in scientific computations.

1 Introduction

Software pipelining [1,4,9,10,13] is an efficient and important method to schedule loops
by overlapping the execution of successive iterations. The most popular technique,
modulo-scheduling (MS) [3,8,10,12,16,21], only addresses single loops or the inner-
most loop of a loop nest. Traditional approaches to schedule loop nests mainly focus on
scheduling the innermost loop and extending the schedule toward the outer levels by hi-
erarchical reduction [10,14]. An alternative way is to perform MS after loop transforma-
tions [2]. A new resource-constrained scheduling technique named Single-dimensional
Software-Pipelining (SSP) [18,19,20] does not restrain itself to the innermost loop and
can software pipeline any given loop in a loop nest. If the innermost level is chosen,
SSP is proven to be equivalent to MS. Experimental results have shown that SSP of-
ten outperforms MS, and is fully compatible with the wide array of loop optimizations
and transformations used for MS. The technique can currently be applied to any source
imperfect loop nests with no conditional statements or function calls and with run-time
constant trip counts.

In the SSP compilation process, shown in Figure 1, registers are allocated after
the one-dimensional (1-D) schedule is computed. However, both phases are time-
consuming (the register allocation problem is NP-complete [18], even for single loops
[16]). Therefore, it is preferable to detect early if the register allocator is bound to fail

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 17–31, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

18 A. Douillet and G.R. Gao

Selection

Loop

Simplification

Dependence

Construction

Schedule Register Pressure

Evaluation

too high?
no yes

Allocation

Register

Generation

Code

choose different loop level OR increase initiation interval

loop
nest DDG

1−D kernel

register

kernel

allocated
final schedule

Fig. 1. SSP Compilation Flow

because of a too high register pressure. The scheduler can then compute a different, but
more favorable schedule. We propose in this paper a fast evaluation method to measure
the rotating register pressure, named MaxLive, of any kernel computed by the SSP
scheduler. It is defined as the maximum number of lifetimes at any time during the exe-
cution of the loop nest scheduled with SSP. It is a theoretical lower bound that may not
be achievable. Only loop variants, allocated to rotating registers, are considered. Loop
invariants are assumed to be allocated to static registers. When unspecified, ’register’
will always refer to ’rotating register’. Any register spilling technique is assumed to
have been applied earlier to the 1-D schedule and is not the subject of the paper.

Such an evaluation method is important and has many uses. (1) First, it allows the
compiler to avoid running the expensive register allocator when it is bound to fail. A
new 1-D schedule with lower requirements can then be computed by increasing the
initiation interval or choosing another loop level, for instance. (2) Second, because the
register pressure is a direct function of the 1-D schedule , the method can be used to
compare the register pressure of 1-D schedules computed by different SSP scheduling
methods. (3) Third, the computed register pressure can also be used to measure the
effectiveness of any register allocator. (4) Last, the method provides a valuable feedback
to processor architects in their register files design decision, as far as the needs of loop
nests are concerned. Other questions can then be answered. Is the register pressure the
same for both floating-point (FP) and integer (INT) registers? Are the register files of
the target architectures balanced enough to efficiently handle the register pressure? Can
we anticipate the final register pressure or the number of registers allocated by a specific
register allocator?

Several issues specific to SSP must be handled. First, the final schedule is composed
of more than one repeating pattern. Second, some lifetimes are stretched to honor re-
source constraints. Last, the initiation rate of the lifetimes is irregular. In this paper, we
propose a method to compute the rotating register pressure of any given 1-D schedule.
The method is fast: it approximates MaxLive by skipping the initialization and con-
clusion phases of the final schedule and considers a unique outermost loop iteration, or
outermost iteration for short. A second method, comprehensive, accurate, but very slow,
is used as reference. For clarity and space reasons, the second method is not presented
in the paper, but is accessible in [5] instead. We will refer to them as the fast method
and the comprehensive method, respectively.

Register Pressure in Software-Pipelined Loop Nests 19

It is the first time a method to compute the register pressure of an SSP schedule is
proposed. With single loops, where MS is used, the traditional technique is to count
the number of lifetimes in the kernel, also named MaxLive [17]. Our method can be
seen as its natural extension to handle the more complex issues specific to the multidi-
mensional case, presented in section 3.2. MaxLive was the chosen method to evaluate
the efficiency of register allocators in [6,11]. Other work [15] considered the theoret-
ical register pressure during the scheduling phase by counting the number of buffers
required for each functional units. However the number of buffers did not take into ac-
count that some buffers could be reused. The register pressure was also studied for non
software-pipelined schedules, such as the concept of FatCover in [7]. Llosa et al. [11]
used MaxLive to measure the register pressure of floating-point benchmarks. Their
results also show that a FP register file of 64 registers would accommodate most of the
register pressure and limit accesses to memory in the case of MS scheduled loops. The
results were later confirmed in [22].

The methods presented in this paper were implemented in the Open64/ORC 2.1
compiler on an Itanium workstation. The experiments were conducted on a set of 125
loop nests of various depths. The experiments lead to several conclusions. (1) The fast
method is at least 3 orders of magnitude faster than the register allocator and could
therefore be used in a compiler framework to quickly determine the feasibility of an
SSP schedule. (2) Most of the loop nests of depth 3 or less require less than 96 INT
registers and about half of the loop nests of depth 4 or higher cannot be scheduled be-
cause of a too high INT register pressure. (3) The FP register pressure never exceeds
47 registers and therefore more than half of the FP register file is never used, showing
an imbalance in the usage of the register files between INT and FP. (4) If half of the FP
register file is used for INT values instead, then 76% of the loop nests of depth 5 could
be software-pipelined with SSP.

The paper is organized as follows. Section 2 briefly introduces the SSP method.
Section 3 defines some notations and conventions used in the paper, formulates the
problem and explains in details the issues to tackle. Our solution is then described in
Section 4. Experiments and results are presented in Section 5 before concluding in
Section 6.

2 Single-Dimension Software Pipelining

2.1 Overview

Single-dimension Software Pipelining (SSP) [18,19,20] is a resource-constrained
scheduling method to software pipeline perfect and imperfect loop nests with con-
stant trip counts at run-time. Unlike traditional innermost-loop-centric approaches
[10,14,16], SSP does not necessarily software pipeline the innermost loop of a loop
nest, but directly software pipelines the loop level estimated to be the most profitable.
The enclosing loops of the selected loop, if any, are untouched. If the innermost loop
level is chosen, SSP is equivalent to MS applied to single loops. SSP retains the sim-
plicity of MS, and yet may achieve significantly higher performance [19].

Figure 2(a) shows an example of a double loop nest. In Figure 2(b), the innermost
loop is modulo scheduled, whereas, in Figure 2(c), the outermost loop is software

20 A. Douillet and G.R. Gao

FOR J=1,3

END FOR
c
b

FOR I=1,2
a

d
END FOR

(a) A double loop nest

a

b

c b

c b

c

d a

b

c b

c b

c

d

(b) MS schedule

a

b

c

b

c

b

c

b

c

b

c

b

cd

d

a

(c) SSP schedule

Fig. 2. Simple SSP software pipelining example

pipelined using SSP. Note that, although the two outermost iterations are running in
parallel, the innermost loop is running sequentially within each outermost iteration. In
our example the SSP schedule is shorter by 2 cycles.

SSP proceeds in several steps to produce the final schedule [18,19,20]. First, the
most profitable loop level is chosen for scheduling based on instruction-level paral-
lelism or other criterion. Second, multi-dimensional dependences are simplified into
a 1-dimensional problem from which a 1-D schedule is computed, represented by a
kernel. Registers are then allocated to the loop variants in the kernel. Last, the 1-D
schedule is mapped back to the multi-dimensional iteration space and the final schedule
is generated as an assembly code.

Because the enclosing loops to the selected loop are untouched, they are ignored
from our point of view and we will always see the chosen loop as the outermost loop of
the loop nest. The loops are then referred as L1, L2, . . ., Ln from the outermost level to
the innermost level where n is the depth of the loop nest.

2.2 From the Kernel to the Final Schedule

The final schedule is exclusively made of multiple copies of the kernel, with sometimes
variations or truncations. As such, one only needs to consider the kernel when counting
the lifetimes in the final schedule. A kernel is composed of S stages. Each stage takes T
cycles to execute. Zero or more operations are scheduled in each modulo-cycle of each
stage with the restriction that operations from different levels must be scheduled into
different stages.

Figure 3(b) shows the kernel of the triple loop nest from Figure 3(a). There are 5
stages a, b, c, d , and e. The outermost loop is made of all the S = S1 = 5 stages, the
middle loop of S2 = 3 stages (b, c, d), and the innermost loop of Sn = 2 stages (c,
d). Each stage is made of T = 2 modulo-cycles and some stages have empty schedule
slots.

A more generic kernel is shown in Figure 3(c). The indexes of the first and last stage
of loop level i are noted fi and li respectively. The number of stages at level i is noted
Si = li−fi +1. The total number of stages is noted S and is equal to S1. All the stages
have the same initiation interval T . In Figure 3(b), f1 = 0, f2 = 1, f3 = 2, l3 = 3,
l2 = 3, l1 = 4, and T = 2.

Register Pressure in Software-Pipelined Loop Nests 21

FOR I=1,N1
op1

END FOR
op6

FOR J=1,N2
op2

END FOR

FOR K=1,N3
op3
op4
op5

END FOR

(a) Triple loop nest

op4

abcde

op1

op5 op3 op2

op6

S = 5

S = 2n

T = 2

(b) Kernel

S

T

S

l1 li ln fn fi f1

Sn

i

1

0

1

T−1

T−2

...

cycles

(c) Generic Kernel

b a
c b a

a

d c
c d

d c
c d

bc

d
d
c

b

d c
c d

abcde
abcd

d c
c d

abcde
abcde

abcde
bcde

de
e

d

resource conflicts
Push to avoid

Prolog

DFP

Epilog

OLP

ce

ILP

stages of the OLP
not executed by

using predication

ILES

ILES
Folded

(d) Final Schedule (N1=8, N2=2, N3=3)

Fig. 3. A More Complex Example

Figure 3(d) shows the final schedule of our example. The stages are symbolized
by their letters for clarity purposes. We assume that the trip counts for each loop are
N1 = 8, N2 = 2, and N3 = 3 (stage b appears only twice in each column, and stages
c and d appear three times after each instance of stage b). A column represents the
execution of a single outermost iteration (8 total). Both inner loops are represented only
for the first two outermost iterations. Afterwards, they are symbolized by a dashed box.
Because of resource constraints, only a group of Sn = 2 outermost iterations can fully
be executed in parallel [20,19]. The other outermost iterations are delayed and pushed
later in the schedule, as illustrated by the thick vertical arrow.

Because of the delays and the repetitive nature of the schedule, the final schedule
can be decomposed into five different patterns: the prolog, the outermost loop pattern
(OLP), the innermost loop pattern (ILP), the draining and filling pattern1 (DFP), and
the epilog. The ILP and DFP form the Inner Loop Execution Segment (ILES). Each
pattern can be fully derived from the kernel. The ILP and DFP are obtained by cyclicly

1 Also called transition code in [20].

22 A. Douillet and G.R. Gao

considering Sn consecutive stages among the Si stages of the kernel for loop level
i [19]. Predication is used in the OLP to truncate unnecessary stages.

3 Problem Formulation and Lifetimes Classification

3.1 Lifetimes Notations and Conventions

The distance in terms of outermost iterations between the definition and the use of a
loop variant is called the omega value of the use. The maximum omega value of all the
uses of a loop variant represents the number of live-in values required for the variant.
Similarly, if live-out values are required from a loop variant, we note alpha the number
of values. Those notations are consistent with Rau’s conventions [17]. A loop variant is
statically defined only once per loop level.

The time period when an instance of a loop variant v is live is called the scalar
lifetime, or lifetime for simplicity, of that instance. In our examples, as shown in Fig-
ure 4(a), a circle represents the start of a lifetime, a cross the end, and a dash a non-
killing use of the variable. At any given cycle c of the final schedule, the number
of lifetimes is called the FatCover at cycle c. MaxLive is the maximum of all the
FatCovers.

In order for the operations to be interruptible and restartable in a VLIW machine
and to avoid dependencies between operations scheduled in the same cycle, a lifetime
is started at the beginning of the cycle of the defining operation and is killed at the
end of the cycle of the killing operation. This convention matches Rau’s convention
about scalar lifetimes in [17]. A register cannot be used and defined in the same cycle,
except if it is by the same operation, as shown in Figure 4(b) and 4(c). We assume
that the intermediate representation follows the same conventions. A loop variant can
be redefined by the same operation like in Figure 4(c). In the latter case, the operation
will be considered only as a use of the variant for the purpose of our algorithms.

3.2 Problem Formulation and Issues

The problem can be formulated as follows: given a loop nest and a SSP schedule for it,
evaluate the rotating register pressure MaxLive of the final schedule.

The problem presents several issues. First, the lifetimes do not exhibit regular pat-
terns like with modulo scheduling. Successive instances of the same lifetime do not
reappear every T cycles: because of the push operations, some delays are encountered.
For the same reason, some lifetimes appear to be stretched until the stalled outermost
iterations they belong to resume their execution. Examples can be seen in Figure 5.

Second, the number of lifetimes in the same stage and modulo-cycle may vary, de-
pending on the position of the stage in the final schedule. For instance, Figure 4(d)
shows a part of the final schedule presented in Figure 3(d). The loop variant is defined
in the first instance of stage d and used in stage c. The same loop variant is defined
again in the second instance of d but never used. However, the register required for the
definition must be accounted for during the only cycle where the second instance of
the loop variant is live. Symmetrically, a value may be defined each iteration and never
used until the last iteration, where the value is used in the enclosing loop (Figure 4(e)).

Register Pressure in Software-Pipelined Loop Nests 23

live−in

start

use

end

live−out

TN2

TN3

TN1

2

2

1

2

1

1

a

b

c

FatCover

(a) Lifetimes Examples

FatCover

3

1

2

x

y z

{y=x+1,z=x+2}

(b) Reuse by Different
Operations

FatCover
1

1

1

{x=x+1}

x

x

(c) Reuse by the Same
Operation

d

d

c

e

(d) Variant 1

d

d

c

e

(e) Variant 2

d

b

d

e

...

(f) Variant 3

FatCover

3

output

input

local3

3

3

3

3

global

(defined before the

cross−iteration

(used after the
end of the loop)

beginning of the loop)

(g) Lifetimes Classification

Fig. 4. Lifetimes Notations, Situations, and Classification

Similarly, whether the stage belongs to the last instance of the enclosing loop also
influences the number of local lifetimes. In Figure 4(f), the last instance of the loop
variant is used at the beginning of the enclosing loop. If it is the last iteration of the
enclosing loop, then the value is never used and the local lifetime is reduced to a single
cycle. We refer to those two situations as first and last.

Finally, the method must be fast in order to be used as a tool by the register allocator
and the scheduler to help detect infeasible solutions early.

3.3 Lifetimes Classification

For the purpose of the algorithms described in this paper, lifetimes are classified into
5 categories, illustrated in Figure 4(g). Global lifetimes covers the whole execution of
the loop nest. This is typical of loop invariants and those lifetimes are not considered
by our algorithm. Output lifetimes hold values computed within the loop nest that will
be used outside. The number of parallel live-out values of the same loop variant is
equal to the alpha value of the variant. Input lifetimes start before the beginning of
the loop and terminates before the end. The number of parallel live-in values of the
same loop variant is the maximum of all the omega values of the variant among all its
uses. Cross-iteration lifetimes cross outermost iterations. By construction, a sequence
of cross-iteration lifetimes start with input lifetimes. Every other lifetime is said to be
local to the current outermost iteration.

24 A. Douillet and G.R. Gao

abd c

abd ce

e

c

c

d

d

c

c

d

db

b

abd c

abd ce

e

5 64 7

1 2 3

321

1

2

3

: local lifetimes

: local lifetimes

: cross−iteration lifetimes

last

first

: instance of the stagesfirst

: instance of the stageslast

7

6

5

4

Legend

OLP:

ILES:

Within one outermost iteration:

: stretched cross−iteration

: stretched local lifetimes

: local lifetimes

: stretched local lifetimesfirst

last

lifetimes

Fig. 5. Register Pressure Computation Overview

4 Register Pressure Computation

This section presents the details of our solution. We make the assumption that the max-
imum register pressure will appear in the steady phase (OLP and ILES) of the final
schedule. Therefore, input and output lifetimes are ignored and only local and cross-
iteration lifetimes are considered. Experiments in Section 5.1 will show that this as-
sumption is always correct.

A snapshot of our final schedule during the steady phase is shown in Figure 5. The
lifetimes can be partitioned into 7 groups, shown in the legend. To compute the maxi-
mum register pressure of the final schedule, we count the number of lifetimes in each of
the seven groups. Cross-iteration lifetimes are counted by analyzing the definition and
uses of each cross-iteration loop variant. Local lifetimes are counted for each single
stage of the kernel for both situations: first or last in the current outermost iteration. The
exact algorithms are available in [5]. An overview is given in the next subsections.

4.1 Cross-Iteration Lifetimes

Because the outermost loop level is the only level actually software pipelined, only vari-
ants defined in the outermost level can have a cross-iteration lifetime. The first step con-
sists of identifying the cross-iteration variants. They are defined in the stages appearing
in the outermost loop only and show at least one use with an omega value greater than
0. Then, for each variant, the stage and modulo-cycle of the definition and of the last use
are computed and noted Sdef , cdef , Skill, and ckill, respectively. The definition of each
variant is unique and therefore easily found. Because cross-iteration lifetimes span sev-
eral outermost iterations, the last use of a such lifetimes must be searched among each
of the spanned iterations. The stage index of the last use is computed by adding the
omega value of the use to its stage index.

Afterward, the number of cross-iteration variants lifetimes at modulo-cycle c in the
OLP is then given by LTcross(c), shown in Figure 8. Skill(v)−Sdef (v) + 1 represents

Register Pressure in Software-Pipelined Loop Nests 25

COMPUTE CROSS ITERATION LT():
civs ← ∅ // cross-iteration variants set
ovs ← set of the variants defined in the outermost loop

// Identify the cross-iteration variants
for each operation op in the schedule

for each source operand src of op
if omega(op, src) > 0 and src ∈ ovs then

civs ← civs ∪ {src}
initialize Sdef , cdef , Skill, ckill for src to −1

// Collect the parameters for each cross-iteration variant
for each stage s from l1 to f1, backwards

for each cycle c from T − 1 to 0, backwards
for each operation op in s at cycle c

for each source operand src of op in civs
if Skill(src) = s + omega(op, src) then

Skill(src) unchanged
ckill(src)← max(ckill(src), c)

else if Skill(src) < s + omega(op, src) then
Skill(src)← s + omega(op, src)
ckill(src)← c

for each result operand res of op in civs
cdef(res) ← c
Sdef(res) ← s

COMPUTE LOCAL LT():
// Start recursive analysis from the outermost level
∀(s, c, p) ∈ [f1, l1]X[0, T]X{first, last}

LTlocal(s, c, p)← −1, Visit Level(1, ∅)

// Initialize first with last value if first uninitialized
for each stage s from f1 to l1

for each cycle c from 0 to T
if LTlocal(s, c, first) = −1 then

LTlocal(s, c, first)← LTlocal(s, c, last)

VISIT LEVEL(level level, live set live):
// Count the local lifetimes for loop level ’level’
for each stage s from llevel to flevel, backwards

for each cycle c from T to 0, backwards
live ← live ∪DEF (s, c) ∪ USE(s, c)
if LTlocal(s, c, last) = −1 then

LTlocal(s, c, last)← |live|
else

old ← LTlocal(s, c, first)
LTlocal(s, c, first)← max(old, |live|)

live ← (live−DEF (s, c)) ∪ USE(s, c)
// Recursive call for the inner levels
if level < n and s = flevel+1 then

Visit Level(level + 1, live)

Fig. 6. Fast Method Algorithms

the length in stages of the lifetime of v. The two other δ terms are adjustment factors
to take into account the exact modulo-cycle the variant is defined or killed in the stage.
Figure 7(a) shows an example of a cross-iteration lifetime. The lifetime starts at Sdef =
1, corresponding to stage b, and cdef = 2, and stops omega = 3 iterations later in
stage Skill = 0+ omega at modulo-cycle ckill = 0. Then the number of cross-iteration
lifetimes for that variant is equal to 2, 1, and 2 at modulo-cycle 0, 1, and 2 respectively.

4.2 Local Lifetimes

The computation of the local lifetimes is done by using traditional backwards data-flow
liveness analysis on the control-flow graph (CFG) of the loop nest where each loop
level is executed only once. A generic example for a loop nest of depth 3 is shown in
Figure 7(b). The final schedule is partitioned into 2 ∗ n − 1 blocks of stages. For each
level but the innermost, there are two blocks. The first is made of the stages exclusively
belonging to the loop level and executed before the ILP, and the second of the stages
exclusively belonging to the same level but executed after. The innermost level has
only one block made of the Sn innermost stages. The separations correspond to the
separations between stages of different levels in the kernel and the order in which the
stages are visited is the order of the stages in the kernel. The figure shows the stage
indexes for each block. Stages visited as first are represented in light gray whereas
stages visited as last are in dark gray.

4.3 Register Pressure

The OLP is composed of Sn kernels, each made of all the S stages. The register pres-
sure is the sum of the cross-iteration and local lifetimes for each stage. The distinction

26 A. Douillet and G.R. Gao

LTcross
2
1
2

b

c

d

a

a

a

b

bc

a

omega=3

c = 0kill

S = 0kill

c = 2def

S = 1def

(a) Cross-iteration Lifetimes Example

l

l +1

l +1

l

l

f

f −1

f

f −1

f
1

1

i

i

i

i

n

n

n

n

level 1 level 2 level 3

first

last

(b) Local Lifetime Computation Order

Fig. 7. Lifetimes Computation

between first and last instance of the local lifetimes must be made, leading to S − n
different cases. We then obtain the formula for LTolp shown in Figure 8. The first term
counts all the cross-iteration lifetimes. The second is the maximum number of local
lifetimes among the Sn possible instances of kernel in the OLP.

The formula for the ILP and DFP is LRiles. The first three terms correspond to the
three types of stretched lifetimes shown in Figure 5: 7, 4, and 6 in that order. Their num-
ber is fixed for the entire execution of the ILES and equal to the number of lifetimes
live at the exit of the OLP. The fourth term of the formula corresponds to the local life-
times of the ILES (5). MaxLive is then the maximum between between the maximum
register pressure of the OLP and the maximum register pressure of the ILES patterns.

Although it is possible to modify the algorithms and formulas to make the MaxLive
computation incremental, it is not believed that our method is fast enough to help guide
the instruction scheduler.

5 Experiments

The algorithms were implemented in the ORC 2.1 compiler and tested on an 1.4GHz
Itanium2 machine with 1GB RAM running Linux. The benchmarks are SSP-amenable
loop nests extracted from the Livermore Loops, the NPB 2.2 benchmarks and the
SPEC2000 FP benchmark suite. A total of 127 loop nests were considered. When all
the different depths are tested, 328 different test cases were available. There were 127,
102, 60, 30, and 9 loop nests of depth 1, 2, 3, 4, and 5, respectively.

The main results are summarized here and explained in details in the next subsec-
tions. (1) The fast method is 1 to 2 orders of magnitude faster than the comprehen-
sive method, and 3 to 4 orders of magnitude faster than the register allocator. (2) De-
spite the approximations made by the fast method, its computed MaxLive is identi-
cal to MaxLive computed by the comprehensive method. No rule of thumb could be

Register Pressure in Software-Pipelined Loop Nests 27

LTcross(c) =
∑

v∈civs

((Skill(v)− Sdef(v) + 1) + δdef (c, v) + δkill(c, v))

where

{
δdef (c, v) = −1 if c < cdef (v), 0 otherwise
δkill(c, v) = −1 if c > ckill(v), 0 otherwise

LTiles(c) = LTcross(T) +

l1∑
s=ln

LTlocal(s, T, last) +

fn−2∑
s=f1

LRlocal(s, T, first)

+ max
l∈[2,n]

(
max

i0∈[0,Sl−1]

(
Sn−1∑
i=0

LTlocal(fl + (i0 + i)%Sl, c, f irst)

))

LTolp(c) = LTcross(c) + max
i∈[1,Sn]

(
l1∑

s=ln−i

LTlocal(s, c, last) +
ln−1−i∑
s=f1

LTlocal(s, c, first)

)
FatCoverolp = max

∀c∈[0,T−1]
(LTolp(c))

FatCoveriles = max
∀c∈[0,T−1]

(LTiles(c))

MaxLive = max(FatCoveriles, FatCoverolp)

Fig. 8. Register Pressure Computation Formulas

deduced to predict MaxLive by only considering the 1-D schedule parameters such as
kernel length, number of loop variants, and others. Rotating Register pressure increases
quickly for integer values as the loop nest gets deeper and about half of the loop nests
of depth 4 or 5 show a MaxLive higher than the size of the INT register file. (3) The
floating-point rotating register pressure remains about constant as the depth of the loop
nests increases, and never exceeds 47 registers. Consequently, the floating-point rotat-
ing register file could be reduced from 96 to 64 registers. The extra 32 registers could
be added to the integer register file instead.

5.1 Compilation Time

The time measurements are presented in Figure 9(a) where the loop nests have been
sorted first by increasing depth, delimited by tics on the horizontal axis, then by increas-
ing kernel length. Note the logarithmic scale for the vertical axis. The comprehensive
and fast methods take up to 3.18 and 0.04 seconds respectively, with an average of 0.16
and 0.005 seconds. The running time of each method is directly related to the kernel
length. The shape of the graph confirms the quadratic running time of the fast method
and the influence of the depth of the loop nest. The fast method is 22.9 times faster than
the comprehensive method, with a maximum of 217.8. As the loop nest gets deeper, the
speedup becomes exponentially more significant.

The running time of the fast method and the register allocator from [18] are compared
in Figure 9(d). On average, the fast method is 3 orders of magnitude faster than the
register allocator with a maximum of 20000. As the loop nest gets deeper, i.e. as the
MaxLive increases and the need for a quick method to evaluate the register pressure a
priori becomes stronger, the speedup increases, making the fast method a valid tool to
detect infeasible schedules before the register allocator.

28 A. Douillet and G.R. Gao

 1e-04

 0.001

 0.01

 0.1

 1

 10
T

im
e

(s
ec

,lo
g

sc
al

e)

Benchmarks

depth 1

depth 2

depth 3

Comprehensive
Fast

(a) Running Time

 0

 32

 64

 96

 128

 160

 192

 224

M
ax

L
iv

e

Benchmarks

depth 1

depth 2

depth 3

Integer
Floating-Point

(b) MaxLive

 32

 64

 96

 128

 160

 192

 224

 256

 0

 0.5

 1

 1.5

 2

 2.5

T
ot

al
 R

eg
is

te
r

Pr
es

su
re

 (
FP

+
IN

T
)

FP
/I

N
T

 R
at

io

Benchmarks

Total Register Pressure
FP/INT Ratio

(c) Total Pressure & FP/INT Ratio

 1

 10

 100

 1000

 10000

 100000

Sp
ee

du
p

(l
og

 s
ca

le
)

Benchmarks

(d) Fast Method vs. the Reg. Allocator

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

A
m

en
ab

ili
ty

 R
at

io
Depth

(e) Ratio of Loop Nests Amenable to SSP

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

E
xt

ra
 F

P
R

eg
is

te
r

Pr
es

su
re

 p
er

 L
ev

el

Benchmarks

Level 3 or higher
Level 2
Level 1

(f) FP MaxLive Progression

Fig. 9. Experimental Results

Although the fast method does not take into account live-in and live-out lifetimes,
the computed MaxLive was identical for the two other methods in all the benchmarks
tested. MaxLive is indeed less likely to appear in the prolog and epilog.

5.2 MaxLive

The computed MaxLive is a optimistic lower bound on the actual register pressure.
It does not take into account that a value held in one register at cycle c must remain
in the same register at cycle c + 1 or that the use of rotating registers reserves a group
of consecutive registers at each cycle, even if some of them are not currently used.

Register Pressure in Software-Pipelined Loop Nests 29

The actual register allocation solution computed by an optimal register allocator may
allocate more registers than MaxLive. However, with the addition of register copy
instructions, MaxLive registers can always be reached

The computed MaxLive is shown in Figure 9(b) for INT and FP loop variants. The
benchmarks have been sorted by increasing depth, indicated by small tics on the hori-
zontal axis, and by increasing MaxLive. The average MaxLive for INT and FP are
47.2 and 15.0 respectively with a maximum of 213 and 47. If we only consider rotat-
ing registers, the 96 hard limit on the number of available FP registers in the Itanium
architecture is never reached. However the 96 limit for INT registers is reached more
often as the depth of the loop nests increases, up to 56% for the loop nests software
pipelined at level 4 as shown in Figure 9(e).

INT MaxLive increases faster than FP MaxLive. INT MaxLive indeed increases
as the nest gets deeper because more inner iterations are running in parallel. It is par-
ticularly true for INT values that are used as array indexes. If an array index is defined
in the outermost loop, then there is one instance of the index for each concurrent out-
ermost iteration in the final schedule. For FP values however, this is not the case. They
are typically defined in the innermost loop only and have very short lifetimes.

We also tried to approximate MaxLive by looking at the 1-D schedule parameters.
However no rule of thumb could be derived by looking at one parameter such as S,
Sn, the length of the kernel or the number of loop variants. The MaxLive was also
compared to the actual number of registers allocated by the register allocator. Unlike
in MS where the number of registers allocated rarely exceeds MaxLive+1 [17], the
difference with SSP varies between 0% and 77%. Such results are explained by the
higher complexity of SSP schedules compared to MS and because MaxLive is not a
tight lower bound.

5.3 Floating-Point Register File Size

Figure 9(c) shows the total register pressure, defined as the sum of MaxLive for INT
and FP registers, and the ratio between MaxLive for FP and INT registers. The bench-
marks are sorted by increasing ratio. The total register pressure rarely exceeds 192
registers, the size of the rotating register file in the Itanium architecture. Although FP
MaxLive can be twice higher than INT MaxLive, the FP/INT ratio remains lower
than 0.5 when the total register pressure is greater than 96.

Figure 9(f) shows FP MaxLive as the same loop nest is scheduled at deeper levels.
FP MaxLive does not or barely increases as a same loop nest is scheduled at a deeper
level. The maximum FP MaxLive never exceeds 47 registers.

Several conclusions, that may be useful for future designs of architectures with the
same number of functional units and superscalar degree than the Itanium architecture,
can be drawn from these remarks. First, the INT register file may benefit from a smaller
FP register file with a ratio of 2 for 1. The FP register size can either be decreased to save
important chip real estate, or the INT register file increased to allow more SSP loops
to be register allocated. Second, for the set of benchmarks used in our experiments, the
optimal size for the FP register file would be 64. It would not prevent any other loop
nests from being register allocated while giving extra registers to the INT register file.
If a size of 64 and a INT/FP ratio of 2 are chosen, the feasibility ratio for loop nests

30 A. Douillet and G.R. Gao

of depth 4 and 5 would jump from 43% and 56% to 77% and 67%, respectively. The
FP/INT ratio chosen for the Itanium architecture is not incorrect, but was chosen with
MS loops in mind, which exhibits a lower INT MaxLive.

6 Conclusion

Single-dimension Software Pipelining (SSP) software pipelines a loop nest at an arbi-
trary level. However the register pressure is too high for half of the loop nests of depth 4
or more. It is therefore necessary to know the register pressure early in the compilation
process to avoid calling the register allocator when it is bound to fail. The results of the
evaluation could also be used to evaluate the efficiency of any SSP register allocator.
We proposed in this paper a methodology that quickly computes the rotating register
pressure of an SSP schedule

Results showed that our method is accurate and at least 3 orders of magnitude faster
than the register allocator on average, making it a valid tool to detect infeasible sched-
ules early. From a hardware co-design point of view, experimental results suggest that
SSP schedules would benefit from a smaller floating-point rotating register file of 64
registers and a twice as large integer rotating register file.

Acknowledgments

We would like to acknowledge Dr. Hongbo Rong for his enthusiastic moral and technical
support during the course of this work, and Jean-Christophe Beyler and the anonymous
reviewers for their insightful comments. This work was supported in part by the Defense
Advanced Research Projects Agency (DARPA) under contract No.NBCH30904, by NSF
grants No.0103723 and No.0429781, and by DOE grant No.DE-FC02-OIER25503.

References

1. A. Aiken, A. Nicolau, and S. Novack. Resource-constrained software pipelining. IEEE
Transactions on Parallel and Distributed Systems, 6(12):1248–1270, Dec. 1995.

2. S. Carr, C. Ding, and P. Sweany. Improving software pipelining with unroll-and-jam. In
Proc. 29th Annual Hawaii Int’l Conf. on System Sciences, pages 183–192, 1996.

3. A. Dani, V. Ramanan, and R. Govindarajan. Register-sensitive software pipelining. In Proc.
of 12th Int’l Par. Processing Symp./9th Int’l Symp. on Par. and Dist. Systems, 1998.

4. A. Darte, R. Schreiber, B. R. Rau, and F. Vivien. Constructing and exploiting linear schedules
with prescribed parallelism. ACM Trans. on Design Automation of Electronic Systems, 2001.

5. A. Douillet and G. R. Gao. Register pressure in software-pipelined loop nests: Fast com-
putation and impact on architecture design. CAPSL TM 58, Univ. of Delaware, Newark,
Delaware, 2005. In ftp://ftp.capsl.udel.edu/pub/doc/memos.

6. A. Eichenberger, E. Davidson, and S. Abraham. Minimum register requirements for a mod-
ulo schedule. In Proc. of the 27th int’l symp. on Microarchitecture, pages 75–84, 1994.

7. L. J. Hendren, G. R. Gao, E. R. Altman, and C. Mukerji. A register allocation framework
based on hierarchical cyclic interval graphs. In Proc. of the 4th Int’l Conf. on Compiler
Construction, pages 176–191. Springer-Verlag, 1992.

Register Pressure in Software-Pipelined Loop Nests 31

8. R. Huff. Lifetime-sensitive modulo scheduling. In Proc. of the conf. on Programming lan-
guage design and implementation, pages 258–267. ACM Press, 1993.

9. S. Jain. Circular scheduling: A new technique to perform software pipelining. In Proc. of
the Conf, on Programming Language Design and Implementation, pages 219–228, 1991.

10. M. Lam. Software pipelining: An effective scheduling technique for VLIW machines. In
Proc. of the conf. on Programming language design and implementation, 1988.

11. J. Llosa, E. Ayguadé;, and M. Valero. Quantitative evaluation of register pressure on software
pipelined loops. International Journal of Parallel Programming, 26(2):121–142, 1998.

12. J. Llosa, A. González, E. Ayguadé, and M. Valero. Swing modulo scheduling: A lifetime
sensitive approach. In Proc. Conf. on Par. Arch. and Compil. Tech., pages 80–86, 1996.

13. S.-M. Moon and K. Ebcioğlu. Parallelizing nonnumerical code with selective scheduling and
software pipelining. ACM Trans. on Prog. Lang. and Systems, 19(6):853–898, 1997.

14. K. Muthukumar and G. Doshi. Software pipelining of nested loops. In Proc. of the Int’l
Conf. on Compiler Construction, volume 2027, pages 165–181. LNCS, 2001.

15. Q. Ning and G. R. Gao. A novel framework of register allocation for software pipelining. In
Proc. of the symp. on Principles of programming languages, pages 29–42, 1993.

16. B. R. Rau. Iterative modulo scheduling: an algorithm for software pipelining loops. In Proc.
of the int’l symp. on Microarchitecture, pages 63–74, 1994.

17. B. R. Rau, M. Lee, P. P. Tirumalai, and M. S. Schlansker. Register allocation for software
pipelined loops. In Proc. of the conf. on Prog. lang. design and impl., pages 283–299, 1992.

18. H. Rong, A. Douillet, and G. R. Gao. Register allocation for software pipelined multi-
dimensional loops. In Proc. of the conf. on Prog. lang. design and impl., 2005.

19. H. Rong, A. Douillet, R. Govindarajan, and G. R. Gao. Code generation for single-dimension
software pipelining of multi-dimensional loops. In Proc. of Int. Symp. on Code Generation
and Optimization, page 175, 2004.

20. H. Rong, Z. Tang, R. Govindarajan, A. Douillet, and G. R. Gao. Single-dimension software
pipelining for multi-dimensional loops. In Proc. of Int. Symp. on Code Generation and
Optimization, pages 163–174, 2004.

21. J. Ruttenberg, G. R. Gao, A. Stoutchinin, and W. Lichtenstein. Software pipelining show-
down: optimal vs. heuristic methods in a production compiler. In Proc. of the conf. on Prog.
lang. design and impl., pages 1–11, 1996.

22. J. Zalamea, J. Llosa, E. Ayguadé, and M. Valero. Two-level hierarchical register file organi-
zation for vliw processors. In Proc. of the symp. on Microarch., pages 137–146, 2000.

Manipulating MAXLIVE for
Spill-Free Register Allocation

Shashi Deepa Arcot, Henry Gordon Dietz,
and Sarojini Priyadarshini Rajachidambaram

Electrical and Computer Engineering Department, University of Kentucky
sarco0@engr.uky.edu, hankd@engr.uky.edu, rspriya@uky.edu

Abstract. This paper explores new compilation methods, including Genetic Al-
gorithms (GAs) and a new adaptation of Sethi-Ullman numbering, to aggressively
restructure basic block code and allocate registers so that the number of registers
used does not exceed the number available. Although the approach applies to a
wide range of target architectures, it is investigated primarily for nanocontrollers,
which have a combination of properties that make avoiding spills particularly dif-
ficult, but mandatory.

1 Introduction

The problem of efficiently allocating registers for temporary values is an old problem,
but also is a topic of ongoing research. In large part, the importance of register allocation
has been increasing because:

– Although both logic and memory speeds have been exponentially improving, the
exponents are different. Main memory was once faster than processor logic for
simple operations such as integer addition, but modern processors can perform
hundreds to thousands of integer additions in the time taken to make one random
address access to main memory.

– Registers play a key role in implementing instruction-level parallelism (ILP). Su-
perscalar (multiple issue) execution logic may require many operands each clock
cycle. As compared to multi-port caches and main memory interfaces, it is rela-
tively straightforward to construct multi-port register files. Registers also facilitate
pipelined execution.

– A variety of automatic coding mechanisms tend to generate much larger basic
blocks with more complex dependence patterns than are commonly found in hand-
written code. For example, many compilers now use loop unrolling or unraveling;
similar code sequences also are generated automatically by tools like ATLAS[14].

While all three of the above increase the importance of register allocation, the first two
primarily increase the benefit in using a good allocation, while the third essentially im-
plements a qualitative change in the register allocation problem itself. In the general
case, optimal allocation of registers is known to require more than polynomial time, but
it is only with the common use of huge basic blocks that the theoretical complexity has

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 32–46, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Manipulating MAXLIVE for Spill-Free Register Allocation 33

become a serious practical constraint on basic block algorithms. Thus, register alloca-
tion has become critical at the same time that the known optimal solutions have become
intractable.

Beyond the needs of conventional computing systems, we have recently become
focused on finding ways to bring programmable intelligence to nanofabricated and
MEMS devices; these very simple computing elements are called nanocontrollers[7].
For the specific problem of allocating registers for nanocontroller programs, the sec-
ond of the above issues does not apply, but first and third are exceptionally severe.
There literally is no main memory in a nanocontroller system; thus, using memory to
hold values that could not be allocated to registers is not an option. Further, because
nanocontrollers provide only a single type of instruction which operates on one bit at a
time, basic blocks often contain thousands of instructions. These basic blocks are not
the result of unrolling, but of bit-level logic optimization using the ternary 1-of-2 mul-
tiplexor operation. The dependence structure within a block is correspondingly more
complex than that generated by unrolling loops involving traditional binary operations.
In summary, nanocontroller register allocation is a much harder problem than conven-
tional register allocation, but a good solution also may be adapted to handle microcon-
trollers and future generations of conventional processors. The two solutions described
in this paper both are very general, and are effective for very large basic blocks using
any combination of unary, binary, and ternary operations.

Section 2 reviews some of the traditional approaches and issues involving register
allocation. Our first and more conservative approach, which uses a Genetic Algorithm
(GA) to reorder instructions, is detailed in Section 3. An extreme, but amazingly effec-
tive, approach combining aspects of Sethi-Ullman numbering with a Genetic Algorithm
is described in Section 4. Brief conclusions are given in Section 5.

2 Traditional Approaches to Register Allocation

The term “register allocation” commonly is applied to a wide range of slightly dif-
ferent problems involving making efficient use of registers. The maximum number of
values (or variables) that must temporally coexist in a program is called MAXLIVE.
If MAXLIVE exceeds the number of registers available, values must be swapped be-
tween temporary memory locations and registers. Methods aimed at reducing the cost
of spill/reload code include algorithms based on shortest path [9,4,10] and various meth-
ods for coloring a live-range interference graph [3,4,8]. However, spill/reload only are
eliminated if MAXLIVE does not exceed the number of available registers, in which case
optimal register assignment is straightforward.

Reordering and other alterations of the computation can change MAXLIVE. Sethi-
Ullman Numbering [13], henceforth referred to as SUN, efficiently determines how to
order evaluation of a binary operation expression tree so that MAXLIVE and the number
of instructions used for the computation both are provably minimal. The SUN algorithm
proceeds in two distinct phases with O(m) complexity for m instructions. First, each
node is labeled with a number, according to a set of rules, such that the label corresponds
to the minimum number of registers required to evaluate the subtree rooted at that point
without any stores (i.e., without register spill/reload). These labels are then used to

34 S.D. Arcot, H.G. Dietz, and S.P. Rajachidambaram

order node evaluation, allocate registers, and emit instructions. Common Subexpression
Elimination (CSE) greatly reduces the number of instructions that need to be executed
and is nearly universally used in modern compilers, but generates Directed Acyclic
Graphs (DAGs) that are incompatible with the original SUN algorithm; a multitude of
attempts to extend SUN to handle DAGs have failed to produce an algorithm that is
both fast and effective[1].

For nanocontrollers and some microcontrollers, even a single spill renders a pro-
gram unusable because there is no place to spill to. Thus, minimizing the number of
instructions only is relevant if the code is spill free. Put another way, even increasing
the number of instructions to be executed is highly desirable if it makes the difference
between being spill-free and being unusable. Although Genetic Algorithm (GA) [8] and
Genetic Programming (GP)[5] have been applied to register allocation problems before,
this paper uses GA technology directly to reduce MAXLIVE so that spill-free code can
be produced.

3 Genetic Algorithm for Reordering to Minimize MAXLIVE

Given that reordering the instruction sequence can significantly change MAXLIVE, it
seems appropriate to investigate methods that can reasonably efficiently find a good
instruction order. Even with good pruning, it is not practical to use exhaustive search
for reordering basic blocks containing thousands of instructions. However, simulated
evolutionary processes are very effective for many conceptually similar problems, so
we created a Genetic Algorithm (GA) for reordering.

3.1 Structure of the GA

The use of a GA to generate code is commonly referred to as Genetic Programming
(GP)[12], however, neither the data structures standardly used with GP nor with tradi-
tional GA systems is efficient in solving the instruction rescheduling problem. Despite
that, the overall structure of the GA used for rescheduling to minimize MAXLIVE, as
shown in Algorithm 1, is relatively conventional. An island model is used in order to
allow subdivisions of the population to converge to different solutions in relative iso-
lation, thus making the system somewhat more robust. A non-generational steady-state
formulation is used primarily to simplify the coding and reduce execution overhead.

Fundamentally, the problem in making the GA efficient is one of maintaining good
adjacency properties through mutation and crossover operations; a new schedule should
have many properties in common with its parent(s). In the particular case of instruction
scheduling, it also is important to consider only valid schedules, e.g., only schedules in
which no instruction is scheduled before an instruction that produces one of its inputs.
Even using simplifications such and earliest and latest slot markings for instructions,
checking validity of a schedule is relatively expensive. Discovering that a schedule
is not valid also wastes the effort of creating and checking that schedule. Thus, the
preferred solution is to generate only valid schedules.

This is done by using an unusual genome representation which we have recently
used for several types of scheduling GAs: rather than representing an instruction sched-
ule directly, a schedule is represented by giving each instruction an integer “scheduling

Manipulating MAXLIVE for Spill-Free Register Allocation 35

Algorithm 1. Steady-State Island GA For Scheduling
Repeat the following until the allotted time or number of trials has elapsed:

1. If the population is not yet full, create a new valid, but randomly-ordered, instruction sched-
ule; goto step 5

2. Pick a number of population members at random and identify the two selected members
with the worst and best metrics (a form of tournament selection); an island model may be
enforced at this stage by biasing selections to stay within the same static subdivision of the
population

3. If random choice selects mutation or if the two schedules selected are duplicates, perform
mutation by replacing the poorest-metric selected member with a new schedule created by
mutation of the other selected member; goto step 5

4. By default perform crossover by picking an additional population member at random, sorting
the three selected members by metric value, and replacing the poorest-metric one with the
crossover product of the other two

5. Evaluate the metric for the newly-created population member
6. Determine if the newly-created population member is a new best and mark it accordingly;

it is the new best if it is the only member of the population or if a symmetric "better than"
comparison function finds its metric to be better than that of the previous best schedule

priority.” The schedule is generated using these priorities to break ties in an otherwise
conventional list scheduling procedure. The schedule is created by starting with the first
instruction slot and working toward the last, at each slot updating the set of schedula-
ble instructions and then inserting the highest priority schedulable instruction in that
slot. Clearly, only valid schedules are produced in this way. Further, most adjacency
properties are inherited from parent(s) even though the actual schedules may differ in
what appear to be complex ways; changes in priorities may rearrange, spread, insert, or
delete subsequences of instructions, but before/after relationships between instructions
with priorities that were not changed by mutation or crossover are most often preserved.
It also is trivial to compute a MAXLIVE-based metric while generating the schedule.

The mutation and crossover operations are straightforward. Mutation replaces some
priorities with random values, whereas crossover mixes priorities from two parents. In-
terestingly, as a schedule is being assembled for evaluation, it is easy to tag each instruc-
tion with the number of live values at its position in the schedule, and hence to know
which instructions are involved in subsequences requiring MAXLIVE registers. Thus,
we can bias the mutation and crossover operations to change priorities for instructions
in those regions, significantly improving the speed of convergence.

3.2 Experimental Procedure

In order to determine just how well the reordering GA works, we constructed a test
framework which we have used for all the data presented in this paper.

A simple program is used to generate pseudo-random BitC programs containing
a single basic block each. BitC is a simple C dialect designed from programming
nanocontrollers[7]; it differs from C primarily in that it allows bit precisions to be
specified for each variable and incorporates some additional operators, such as binary

36 S.D. Arcot, H.G. Dietz, and S.P. Rajachidambaram

minimum and maximum (?< and ?>). The base BitC compiler which we earlier de-
veloped for our research in nanocontrollers, bitcc, converts each variable-precision
word-level operation into a multitude of single-bit operations implemented using the
only operation provided by nanocontrollers, the ITE (If-The-Else) 1-of-2 multiplexor
function. The operations are then optimized by a variant of BDD (Binary Decision Di-
agram) logic minimization methods[2,11], yielding better code than simple bit-slice
formulations would, but producing very complex DAG structures. In the bitcc out-
put used for the current study, storage of final values into registers is done by separate
explicit store operations.

An ITE+store to SITE (Store-If-Then-Else) converter was constructed specially for
this research. This program removes the explicit stores, combining them with ITEs in
an optimal way. Thus, sets of operations like temp=(i?t:e); s=temp; are converted
into s=(i?t:e);. The SITE-only DAG, which incorporates a reference sequential or-
der, is then coded as a set of C data structures and output to dag.h. This “pre-cooked”
set of data structures makes it much easier to perform register allocation experiments
by avoiding the need to integrate the algorithm under test with the rest of the compiler.
Using this approach, the GA reordering code is just over 300 lines of C code and the
SUN-based GA described in Section 4is just under 600 lines of C code.

A variety of shell scripts and filters were developed to run tests and collect data. Rel-
atively simple cases occur very often in randomly-generated code, for example, when
a later store into a variable overwrites the value stored by a more complex computation
very little code results. Thus, our methodology includes a filtering step that removes
all cases with MAXLIVE naturally less than 3. Additionally, filters are applied to re-
move statistically redundant cases. Our scripts allow large numbers of test cases to be
executed serially or in parallel on cluster supercomputers.

The results presented in scatter plots in this paper cover 32,912 representative test
cases obtained by filtering millions of random basic blocks as described above. They
were processed using KASY0 (Kentucky ASYmmetric Zero), a 128-node 2GHz Athlon
XP cluster supercomputer. All the GAs were given the same fast-running parameters:
population size of 50, subdivided among 4 islands, with crossover 3 times more likely
than mutation, and a limit of evaluating only 1,000 individuals.

3.3 Results

At the outset, in early 2004, we had hoped that reordering instructions would be suffi-
cient to dramatically reduce MAXLIVE, but experimental results are mixed.

For relatively modest basic block sizes, such as those commonly arising from hand-
written code in languages like C for targets like IA32, the GA reordering does well.
However, ternary instructions and larger basic blocks tend to yield not just larger, but
also more complex DAG structures. Our preliminary tests showed that, for the large
ternary instruction basic blocks common in nanocontroller code, GA reordering re-
duced MAXLIVE significantly in absolute terms, but not enough to make a qualitative
difference for our nanocontroller compilation problem. These (unpublished) early ob-
servations are echoed in the more extensive data presented here.

The GA reordering of instructions does not change the total number of instructions
which must be executed (assuming no register spill/reload operations are needed), nor

Manipulating MAXLIVE for Spill-Free Register Allocation 37

Fig. 1. GA-Reordered Vs. Original MAXLIVE

does it alter the underlying DAG structure. Thus, the only relevant issue is the reduc-
tion in MAXLIVE, which is shown in the scatter-plot of Figure 1. Note that both axes
in this graph are logarithmically scaled. As observed in preliminary experiments, al-
though MAXLIVE is reduced more in absolute terms for the larger cases, the relative
reduction for relatively small cases is significantly larger than for larger cases. The av-
erage reduction over all 32,912 cases is approximately 18%. Thus, while these results
clearly confirm that GA reordering is well worth applying, it alone is not sufficient for
nanocontroller targets – which are expected to provide only about 64 registers.

4 SUN with GA-Reenabling of CSEs

Given that even GA reordering of instructions is not sufficient to make big blocks spill
free, it is necessary to consider techniques that trade execution of more instructions for
a more dramatic reduction in MAXLIVE.

The approach is based on the SUN algorithm, but makes considerable extensions to
it. The first extension is the generalization of SUN to manage up to three operands per
instruction. This modification is required because the SUN algorithm as originally pre-
sented assumes each single-instruction operation takes precisely two source operands,
yet the only instruction supported by current nanocontroller designs takes three source
operands and different operand counts may be useful for other types of specialized pro-
cessors.

As suggested earlier, the lack of register-memory instructions requires only a minor
adjustment to the SUN algorithm, but three other issues are more difficult to resolve.
There have been many attempts to extend SUN to handle optimal register allocation
and instruction scheduling for DAGS. Although, under certain restricted conditions,
DAGs can be handled using a modified SUN algorithm, the optimality of the solution
is a casualty in every reasonably efficient scheme. The fact that DAGs for nanocon-
troller programs are exceptionally large and complex makes the algorithm’s execution

38 S.D. Arcot, H.G. Dietz, and S.P. Rajachidambaram

time significant and yields a very small fraction of the DAG for which special-case
extensions of SUN can be applied. Our solution is to convert the DAG to a tree by
logically replicating every common subexpression in every place from which it is refer-
enced. This solution may seem extreme, but the DAG generally has an inherently higher
MAXLIVE than a tree; given the extreme pressure to fit in a limited register file, it is nat-
ural to focus first on minimizing MAXLIVE and only secondarily to attempt to retrieve
some of the benefits of common subexpression elimination.

4.1 Generalization of SUN Labeling for Ternary Instructions

The labeling method used in the original SUN algorithm is focused on binary opera-
tions: instructions with two input operands. Unary operations are trivially labeled us-
ing the rule that any operation node n with only one input operand is labeled with
L(n) = 1. It is not trivial to extend SUN labeling to three or more input operands. How-
ever, digital nanocontrollers as currently proposed have an instruction set consisting
of only a single instruction which happens to take three input operands. Three-input
operations, generally involving multiplexor-like functionality used to simulate enable
masking, also have become common in multimedia instruction set extensions to many
modern processors[6].

The labeling of three-input operation trees is significantly more complex than that of
two-input operation trees because the number of possible relationships between subtree
labels grows exponentially as the number of inputs per operator increases. To each node
n, the label L(n) is assigned as:

1. If n is a leaf, L(n) = 0;
2. If n has descendants with labels l1, l2, and l3 sorted into order such that l1>= l2>=

l3 ,
(a) If l1> l2> l3 , L(n) = l1;
(b) If l1> l2== l3 == 0, L(n) = l1;
(c) If l1> l2== l3 != 0 and l1- l2== 1, L(n) = l1+ 1;
(d) If l1> l2== l3 != 0 and l1- l2> 1, L(n) = l1;
(e) If l1== l2> l3, L(n) = l1+ 1;
(f) If l1== l2== l3!= 0, L(n) = l1+ 2;
(g) If l1== l2== l3== 0, L(n) = 1;

Rule 1 reflects the now-common simplifying fact that modern processors avoid using
memory operands directly. For example, leaf nanocontroller operations always can be
labeled with L(n) = 0 because there literally is no way for an instruction to reference data
other than making a register reference. Constants are referenced from pre-allocated reg-
isters; given bit-wide data paths and operations, only the constants 0 and 1 are possible,
so hardwiring just two pre-allocated registers suffices. Nanocontrollers have only regis-
ters in which to store data, so in fact all user-defined variables become preallocated reg-
isters. Nanocontrollers even perform input/output (I/O) operations using pre-allocated
registers that are really I/O channels; for example, register 6 might be a “global OR”
output signal and register 7 might be an analog zero-crossing detector input. Data can
be directly used from a pre-allocated register identically to how it would be used from
any other register; no load instruction in needed (or even exists for nanocontrollers).

Manipulating MAXLIVE for Spill-Free Register Allocation 39

Fig. 2. Simple ITE DAG

Rule 2 reflects register needs for non-leaf nodes. As complex as this rule is, the
complexity is significantly reduced by the fact that it is expressed in terms of the labels
of the three input subtrees in an order that is sorted by label. Thus, l1, l2, and l3are the
descendant labels in decreasing label order, not subtree position order. The complexity
of this rule is still high primarily because equal labels and labels of 0 are both special
cases. However, in practice, the complexity of the rule has little impact on the feasibility
of the technique. It also is useful to note that the ternary node case also handles both
binary and unary node labellings by allowing the missing descendants to be treated as
if they had 0 labels.

4.2 Tree Generation

At the time the SUN algorithm was proposed, it was quite natural to use trees as the
intermediate form. However, coding styles have significantly changed, so that various
compiler optimizations yielding DAGs are now essentially mandatory. For nanocon-
troller programs, these DAGs are particularly large and complex thanks to treatment of
each bit position separately and target hardware support for only one type of instruction
(which corresponds to a 1-of-2 multiplexor).

As stated earlier, nanocontroller programs generate optimized DAGs which are large
and complex. Each SITE that is generated is a node in the DAG. The root node(s) of ev-
ery DAG corresponds to a SITE that is a final store into a variable. All the interior nodes
correspond to the temporary SITEs which represent the ITE operations. By convention,
our tools number these starting at 64, the default number of physical nanocontroller reg-
isters available. The leaf nodes are the ITEs 0 and 1 or the ITEs that correspond to the
initially defined user-variables – nodes numbered less than 64. Trees are generated by
conceptually converting all the DAGs to trees in such a way that each node is replicated
at every point that it is referenced.

To demonstrate the treatment of a DAG as a tree, consider the simple example DAG
shown in Figure 2. Ternary nodes tend to yield more complex DAGs than do binary
nodes.

Although the SUN algorithms cannot operate on a DAG, it is easy to treat the DAG
as a tree. Logically, the transformation is simply that, whenever a node has more than
one exit arc, the node is replicated to make one copy per exit arc. As a node is thus
replicated, any entry arcs must also be replicated to point at the copies. This in turn
makes the nodes behind those entry arcs have multiple exit arcs, thus requiring them to
be replicated in the same fashion. The result of this transformation is shown in Figure 3.

40 S.D. Arcot, H.G. Dietz, and S.P. Rajachidambaram

Fig. 3. Trees Derived From Simple ITE DAG

A subtle point in this transformation is the fact that a single DAG becomes multiple
trees. Even if the original DAG had unconnected components, the default sequential
order (as listed above) can yield a default execution order. For our purposes, the SUN
algorithm will provide the order within each tree, but ordering across trees must be
provided in another way. The solution used in this paper is to order the tree walks in the
same order as the nodes without exit arcs were originally ordered. Thus, in Figure 3,
the tree ending in 65 (right) would be evaluated before the one ending in 68 (left).

Of course, the transformation to create a tree does not merely enable SUN analysis,
but also provides a key relationship between nodes that are the roots of common subex-
pressions in the DAG. We can use the rules of our modified SUN to label tree nodes
for walking, thus implying a walk order, but then not actually duplicate the common
subexpression nodes. This is the core idea behind the SUN-based GA: to use a Genetic
Algorithm (GA) to selectively re-enable CSE (Common Subexpression Elimination);
where MAXLIVE will not be too adversely affected using the walk order determined
using the tree, do not replicate the common subexpression node.

4.3 GA Optimization of Subexpression Instantiation

It should not be surprising that the basic steady-state island GA structure of Algorithm 1
also serves well for the SUN-based GA. The details are surprisingly straightforward, as
outlined in Algorithm 2.

Whereas the GA-reordering algorithm described in Section 3 required a fairly com-
plex data structure, our SUN-based GA for selective reinstantiation of CSEs can effec-
tively use a very conventional bit-sequence genome. Each genome is a bit vector with
one bit for each potential CSE; a 1 means instantiate (i.e., the CSE is enabled), a 0
means duplicate to make a tree.

To evaluate the merit of a genome, the DAG is recursively walked as a sequence of
trees (as per Section 3). The walk uses the labels and ordering of operand evaluation
created by treating the DAG as a tree and applying the rules in Section 4.1. As each
node is visited, it is allocated a register if needed. Nodes representing enabled CSEs
are walked only the first time they are encountered. After the value of a non-CSE node
has been used, the register allocated to it is freed. The register allocated to an enabled
CSE node is freed only after no reference to that CSE remains, which is determined by
decrementing a reference count associated with that node. The value of MAXLIVE and
number of instructions that would be generated by the walk are both tracked during the
evaluation; as noted in Algorithm 2, the recursive walk can be aborted early if MAXLIVE

Manipulating MAXLIVE for Spill-Free Register Allocation 41

Algorithm 2. SUN-Based GA Procedure Overview
1. Use the tree interpretation (Section 4.2) of the DAG to label nodes as described in Section

4.1. Note that interpreting the DAG as a tree does not require literally duplicating nodes; no
node copies are made in our coding. The labeling can even take advantage of the fact that
CSEs need only be traversed once to be labeled, because additional traversals would yield
the same labels.

2. Apply the steady-state island GA (Algorithm 1),with the following adjustments:

(a) The initial population is loaded with both the tree (no CSEs instantiated) and original
DAG (all CSEs instantiated) as members in addition to random members.

(b) As the search progresses, the evaluation of any population member can be truncated
when its value of MAXLIVE reaches a “terrible” level that can be specified as input to
the GA and also can be dynamically updated as better MAXLIVE values are encountered
in the search.

becomes too large. The metric favors generating fewer instructions once the MAXLIVE

constraint has been met.
The mutation and crossover operations are very standard GA bit-genome operations.

The only notable difference is that random choices are made for each bit position in
crossover, rather than using the even more common subsequence interchange. The ran-
domly generated (initial) population members are created using a two-step process
that first selects a random target “loading” and then randomly turns on bit positions
to achieve that loading; this yields a better coverage of the full range of CSE enable
densities.

Overall, the SUN-based GA is a very standard GA that has an unusual merit evalua-
tion process.

4.4 Results

Testing the SUN-based GA for selectively enabling common subexpression elimination
immediately revealed that the concept of allowing some redundant evaluation was able
to dramatically reduce MAXLIVE. In fact, the reduction possible for large blocks is noth-
ing short of shocking, with nearly every nanocontroller test case collapsing to a form
using approximately a dozen temporary registers despite initially having a MAXLIVE of
hundreds or even thousands.

In order to expose the general relationship between enabling CSEs and increasing
MAXLIVE, a series of experiments were conducted using our SUN-based GA to op-
timize a moderately complex nanocontroller basic block for various target MAXLIVE

values. This basic block, with all possible common subexpressions eliminated, consists
of 3,041 ternary SITE instructions and yields a MAXLIVE of 561 in its default ordering.
In this particular case, our GA reordering the instructions is able to reduce MAXLIVE

only slightly, to 553. However, disabling all CSEs results in a pure tree which, using
our modified SUN algorithm requires only 12 registers. Unfortunately, the pure tree
contains 23,819 SITEs – nearly 8 times as many instructions.

Figure 4 shows how the number of enabled CSEs varies with the MAXLIVE target
using our SUN-based GA. All of the CSE counts plotted are for the coding yielding

42 S.D. Arcot, H.G. Dietz, and S.P. Rajachidambaram

Fig. 4. Enabled CSEs Vs. MAXLIVE For A Nanocontroller Basic Block

the lowest number of SITEs for the given MAXLIVE target. Surprisingly, the SUN-
based GA was able to achieve a MAXLIVE of 12 with 662 CSEs enabled. However,
the impact of enabling these 662 CSEs on reducing the number of SITEs is minimal;
because some CSEs are nested and the subtree sizes saved by enabling a CSE vary
widely, the relationship between the number of CSEs enabled and the total number of
SITEs remaining is not direct.

Figure 5 shows how the total number of SITEs varies with the MAXLIVE target for the
same test case used in Figure 4. Note that in both figures, MAXLIVE is plotted on the X
axis using a log scale. Clearly, although large reductions in MAXLIVE are possible, they
come at a high price in additional instructions to be executed. The decrease in MAXLIVE

is approximately linear with the increase in SITEs. However, the slope is favorable; as
the number of additional instructions increases by nearly an order of magnitude, close
to two orders of magnitude reduction in MAXLIVE is realized.

The search space is sufficiently large so that exhaustive evaluation of any but the
smallest examples is impractical; ignoring the ordering problem, any problem with k
potential CSEs has 2kdifferent code structures to evaluate. For basic blocks of nanocon-
troller code, k commonly exceeds 1,000 – as it does in this example. Thus, we do not
have known optimal solutions for typical problems and cannot make specific claims
about the absolute quality of the SUN-based GA results. For Figures 4 and 5, the search
was constrained to take approximately one minute to optimize for each target MAXLIVE

(running compiled C code on a 1.4GHz Athlon XP system under Linux), and this re-
striction has no doubt contributed to the noise level visible in the curves for this one test
case.

In addition to the detailed study of how a specific DAG’s processing changes with
different target values for MAXLIVE, it is useful to examine the statistical behavior of
the algorithm over a large set of cases. For this purpose, we used the exact same cases
that we employed to evaluate the GA for reordering instructions (Section 3.3). This

Manipulating MAXLIVE for Spill-Free Register Allocation 43

Fig. 5. Number Of SITEs Vs. MAXLIVE For A Nanocontroller Basic Block

Fig. 6. SUN-Based GA Vs. Original MAXLIVE

enables direct comparison of the two approaches, as well as statistical evaluation of
each independently.

Perhaps the most important statistic is how well MAXLIVE can be reduced by the
SUN-based GA. Figure 9 shows that the performance in this respect is nothing short of
amazing; none of the 32,912 test cases needed more than 18 registers – well within our
nominal nanocontroller goal of fitting within 64 registers. Note the logarithmic scale in
the X axis of this graph. Even a DAG having a default-order MAXLIVE of 3,409 still fit
in 18 registers – more precisely, that case fit in just 12 registers!

Of course, there has to be a catch, and there is. As Figure 9 clearly shows, making
MAXLIVE as small as possible often requires executing many more instructions than the

44 S.D. Arcot, H.G. Dietz, and S.P. Rajachidambaram

Fig. 7. SUN-Based GA Vs. Original Instruction Counts (SITEs)

Fig. 8. SUN-Based GA MAXLIVE Vs. CSEs Enabled

original DAG would have required. Note that both axes in this graph are logarithmic,
but the largest original block had 15,309 instructions (SITEs) while the largest produced
by SUN-based GA had 1,431,548. On average, there was a factor of 8X expansion in
code size to obtain the lowest possible MAXLIVE. As dramatic as this tradeoff is, such
a code size expansion can be acceptable if it is the difference between being able to use
the code and not being able to; even on desktop processors, the penalty for accessing
main memory may be high enough to occasionally warrant executing 8X more instruc-
tions. Further, recall from Figure 5 that the SUN-based GA is able to efficiently target
a specific MAXLIVE target, so it is not necessary to suffer code expansion beyond that
needed to reach the target MAXLIVE value.

Manipulating MAXLIVE for Spill-Free Register Allocation 45

Fig. 9. SUN-Based GA Vs. GA-Reordered MAXLIVE

Given that the SUN-based GA approach selectively enables CSEs, one might ex-
pect that the number of CSEs enabled is essentially zero in order to achieve the mini-
mum MAXLIVE value, but Figure 8 shows that is not the case. A modest reduction in
the number of instructions generated is generally possible, without adversely affecting
MAXLIVE, by carefully selecting to enable some CSEs.

5 Conclusion

This paper has presented two very aggressive methods for attempting to force an ex-
tremely complex block to meet a very small MAXLIVE constraint. One technique, GA
reordering, clearly works well and should be widely applied; there is no major penalty.
The other technique, SUN-based GA, offers amazing reductions in MAXLIVE, but at
the expense of significant code expansion. Figure 9 shows that the SUN-based GA is
able to handle extremely complex blocks exponentially better than GA reordering.

If the goal is simply to be spill free, the lowest-cost method that results in a viable
MAXLIVE should be used. Often, GA reordering will suffice. When it does not, the
SUN-based GA should be used with an explicit cut-off value equal to the number of
registers available. Adapting these methods to achieve goals more complex than just
freedom from spills, such as simultaneously optimizing pipeline performance or mini-
mizing power consumption, is future work.

References

1. A. V. Aho, S. C. Johnson, and J. D. Ullman. Code generation for expressions with common
subexpressions. J. ACM, 24(1):146–160, 1977.

2. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers, C35(8), 1986.

46 S.D. Arcot, H.G. Dietz, and S.P. Rajachidambaram

3. G. J. Chaitin. Register allocation & spilling via graph coloring. Proceedings of the 1982
SIGPLAN Symposium on Compiler Construction, 1982.

4. C-H. Chi and H. G. Dietz. Register allocation for gaas computer systems. IEEE Proceedings
of the 21st Hawaii International Conference on Systems Sciences, Architecture Track, 1,
January 1988.

5. Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. Optimizing for reduced code
space using genetic algorithms. In LCTES99: Proceedings of the ACM SIGPLAN 1999 work-
shop on Languages, compilers, and tools for embedded systems, pages 1–9, New York, NY,
USA, 1999. ACM Press.

6. H. G. Dietz and R. J. Fisher. Compiling for simd within a register. Languages and Compilers
for Parallel Computing, edited by S. Chatterjee, J,. F. Prins, L. Carter, J. Ferrante, Z. Li, D.
Sehr, and P-C Yew, Springer-Verlag, New York, New York, 1999.

7. Henry G. Dietz, Shashi D. Arcot, and Sujana Gorantla. Much ado about almost nothing:
Compilation for nanocontrollers. Languages and Compilers for Parallel Computing, Lecture
Notes in Computer Science, 2958:466–480, January 2004.

8. R. Filho and G. Lorena. A constructive genetic algorithm for graph coloring, 1997.
9. L. P. Horwitz, R. M. Karp, R. E. Miller, and S. Winograd. Index register allocation. Journal

of the ACM (JACM), http://portal.acm.org/citation.cfm?doid=321, 13, January 1966.
10. David Padua Jia Guo, Maria Jesus Garzaran. The power of belady’s algorithm in regis-

ter allocation for long basic blocks. Languages and Compilers for Parallel Computing,
http://parasol.tamu.edu/lcpc03/informal-proceedings/Papers/35.pdf, 2003.

11. K. Karplus. Representing boolean functions with if-then-else dags. Technical Report UCSC-
CRL-88-28, University of California at Santa Cruz, November 1988.

12. John R. Koza. Genetic Programming. MIT Press, Cambridge, MA, 1992.
13. R. Sethi and J. D. Ullman. The generation of optimal code for arithmetic expressions. Journal

of the ACM, http://doi.acm.org/10.1145/321607.321620, 17(4), 1970.
14. R. Whaley and J. Dongarra. Automatically tuned linear algebra software. Technical Report

UT CS-97-366, University of Tenessee, 1997.

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339 , pp. 47 – 61, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Optimizing Packet Accesses for a Domain Specific
Language on Network Processors

Tao Liu1,2, Xiao-Feng Li3, Lixia Liu3, Chengyong Wu1, and Roy Ju4

1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
{liutao, cwu}@ict.ac.cn

2 Graduate School of Chinese Academy of Sciences, Beijing, China
3 Intel China Research Center Ltd., Beijing, China
{xiao.feng.li, lixia.liu}@intel.com

4 Microprocessor Technology Labs, Intel Corporation, Santa Clara, CA, USA

Abstract. Programming network processors remains a challenging task since
their birth until recently when high-level programming environments for them
are emerging. By employing domain specific languages for packet processing,
the new environments try to hide hardware details from the programmers and
enhance both the programmability of the systems and the portability of the ap-
plications. A frequent issue for the new environments to be widely adopted is
their relatively low achievable performance compared to low-level, hand-tuned
programming. In this paper we present two techniques, Packet Access Combin-
ing (PAC) and Compiler-Generated Packet Caching (CGPC), to optimize
packet accesses, which are shown as the performance bottleneck in such new
environments for packet processing applications. PAC merges multiple packet
accesses into a single wider access; CGPC implements an automatic packet data
caching mechanism without a hardware cache. Both techniques focus on reduc-
ing long memory latency and expensive memory traffic, and they also reduce
instruction counts significantly. We have implemented the proposed techniques
in a high level programming environment for network processor named Shan-
gri-La. Our evaluation with standard NPF benchmarks shows that for the evalu-
ated applications the two techniques can reduce the memory traffic by 90% and
improve the packet throughput by 5.8 times, on average.

1 Introduction

Network processors (NPs) have been proposed as a key building block of modern
network processing systems. To meet the challenging performance and programma-
bility requirements of network applications, network processors typically incorporate
some unconventional, irregular architectural features, e.g. multiple heterogeneous
processing cores with hardware multithreading, exposed multi-level memory hierar-
chy, and banked register files, etc. [9, 11]. Effective utilization of these features is
critical to the performance of NP-based systems. However, the state-of-the-art of
programming with NPs is still at a low level, often assembly language, which requires
extensive knowledge of both the applications and the architectural details of the target
system. A low-level programming task is tedious, time-consuming, and error-prone. It
is difficult to port an application across different network processors even within the

48 T. Liu et al.

same family. A high-level programming environment is hence desirable to facilitate
the packet processing application development on NPs. The key to the success of such
a programming environment is not only its ease of programming, but also its ability to
deliver high performance.

Packet processing systems typically store packets in a packet buffer in DRAM,
which usually has a large capacity but a long access latency compared to other mem-
ory levels. Since there are a large number of packet accesses in network applications,
DRAM bandwidth needs to be high enough to sustain maximal packet processing
throughput. Although the DRAM access latency can be partially hidden using multi-
threading, the bandwidth problem remains critical. Actually, DRAM bandwidth has
been considered as the bottleneck of network application performance in some prior
studies [1, 8, 12]. Our approach is to optimize the packet accesses automatically in a
compiler, which reduces both the packet access count and the aggregate access size,
so that the total access time and bandwidth requirement are effectively reduced.

In this paper, we present two techniques used for packet access optimizations. The
first one is Packet Access Combining (PAC), which reduces the number of packet
accesses by merging several access requests into one; and the second technique is
Compiler-Generated Packet Caching (CGPC), which implements an automatic
packet data caching mechanism to minimize the number of accesses to the packet
buffer in DRAM as well as reduce the instruction count.

We implemented the proposed optimizations in Shangri-la [3], which is a pro-
gramming environment for network processors, and targets the Intel IXP family [11].
Shangri-La encompasses a domain-specific programming language designed for
packet processing named Baker [2], a compiler that automatically restructures and
optimizes the applications written in Baker, and a runtime system that performs re-
source management and dynamic adaptation at runtime. 8HThe compiler consists of
three components: a profiler, a pipeline compiler, and an aggregate compiler. The
profiler extracts runtime characteristics by simulating the application with test packet
traces. The pipeline compiler is responsible for pipeline construction (partition appli-
cation into a sequence of staged aggregates, where an aggregate includes the code
running on one processing element) and data structure mapping. The aggregate com-
piler takes aggregate definitions and memory mappings from the pipeline compiler
and generates optimized code for each of the target processing cores. It also performs
machine dependent and independent optimizations, as well as domain-specific trans-
formations to maximize the throughput of the aggregates. The work presented here is
implemented in the pipeline compiler and the aggregate compiler.

Our experiments are performed on Intel IXP2400, which contains eight Microen-
gines (MEs) for data plane processing and one XScale core for control plane process-
ing. IXP2400 has four types of memory levels: local memory, scratchpad, SRAM and
DRAM. Experimental results show that our approach can reduce the memory traffic
by 90% and improve the throughput by a factor of 5.8X, on average.

The rest of the paper is organized as follows. Section 2 introduces the related fea-
tures of the Baker language. Section 3 and Section 4 describe Packet Access Combin-
ing and Compiler-Generated Packet Caching, respectively. Section 5 presents the
experimental results. Section 6 reviews related work. Section 7 concludes the paper.

 Optimizing Packet Accesses for a Domain Specific Language on Network Processors 49

2 Baker Language and Packet Access Characteristics

Baker is a domain-specific programming language for packet processing on highly
concurrent hardware. It presents a data-flow programming model and hides the archi-
tecture details of the target processors. Baker provides domain-specific constructs,
such as Packet Processing Functions (PPFs) and Communication Channels (CCs), to
ease the design and implementation of packet processing applications, as well as en-
able effective and efficient compile-time parallelization and optimizations.

bridge

lpm_lookup

options_processor

icmp_processor

encap

l3
_
c

ls

l2
_
c
ls

l2_bridge_module

arp
l3_fwdr_module

eth_encap_module

l3_switch_module

Rx

Tx

Fig. 1. The packet flow graph of Layer 3 Switch Baker program (L3-Switch): bridges Ethernet
packets and switches IPv4 packets

Baker programs are organized as data flow graphs (referred to as packet flow
graphs) with the nodes representing Packet Processing Functions and the arcs repre-
senting Communication Channels, as shown in HFig. 1. A PPF can have its private
data, functions and channel endpoints, and performs the actual packet processing.
CCs are logically asynchronous and unidirectional queues, and can be created by
wiring the input and output endpoints of PPFs. Baker also provides module as a way
to encapsulate PPFs, shared data and configuration functions. Rx and Tx are native
modules provided by system vendors which can be used as a device driver to receive
and transmit packets with external interfaces, respectively.

protocol ipv4 {
ver : 4;
length : 4;
...
ttl: 8;
prot: 8;
checksum: 16;
...
demux{length << 2};

};

void A.process(ether_packet_t* pkt){
ipv4_packet_t* p;
mac_addr_t mac;
mac = pkt->dst;
...
if(fwd){
p = packet_decap(pkt);
channel_put(l3_fwdr_chnl,p);

}
}

protocol ether {
dst : 48;
src : 48;
type : 16;
demux{ 14 };

};

Fig. 2. Protocol construct and packet primitives in Baker

The format of the packet header of any protocol can be specified using the protocol
construct, as illustrated in Fig. 2. These definitions introduce new types called
ether_packet_t and ipv4_packet_t, which are processed as built-in types to support
operations on Ethernet and IPv4 packet headers, respectively. To access the packet

50 T. Liu et al.

fields of a particular protocol header, programmers must specify a pointer to packet
and the field name of corresponding protocol construct. The pointers to packets are
referred as packet handles. As illustrated in Fig. 2, pkt is a packet handle to
ether_packet_t, thus pkt->dst represents the dst field of Ethernet header. We called
the reference to a packet field as a packet access.

Baker provides an encapsulation mechanism to layer different packet protocols.
The packet_encap/packet_decap primitive is to add or remove a protocol header to or
from the current packet. As illustrated in 2HFig. 2, p = packet_decap(pkt) will remove
the Ethernet header from the pkt packet so as to convert it to an IPv4 packet.

Besides packet accesses and packet encapsulations, Baker also provides other
primitives to ease the manipulations of packets. For example, channel_get and chan-
nel_put are for receiving and transmitting packets through a channel, respectively.

These primitives constitute a packet abstraction model which provides a very con-
venient way for programmers to write network applications without concerning the
underlying implementations. To keep the portability, all packet primitives are imple-
mented as intrinsic functions in the runtime system. The Baker primitives imple-
mented in the runtime system are briefly described below.

The packet handle actually points to metadata in SRAM, which is data that is as-
sociated with a packet but does not come directly from an external source. The meta-
data is useful to store the packet-associated information generated by one PPF and
pass it to another PPF to be processed. For example, the output port is likely part of
metadata. The pointers (head pointer and tail pointer) in the metadata point to the
actual packet data in DRAM, as illustrated in Fig. 3.

ethernet
header

ipv4
header

packet_decap

head
ptr

user-defined
metadata

packet_handle

packet_encap

SRAM

(metadata)

DRAM

(packet data)

mpls
header

…
mpls

header

tail
ptr

Fig. 3. The layout of packet data and metadata

Packet encapsulations are implemented as intrinsic calls: packet_encap/packet_de-
cap(packet_handle, size). The size is the number of bytes to add to or remove from
the head. As the example in 4HFig. 2, p = packet_decap(pkt) will be converted to
packet_decap(pkt,14). The 14 is the length of Ethernet header, which can be deter-
mined by the demux field in the protocol construct. The implementation of this intrin-
sic simply increases the head pointer in the metadata by 14 bytes.

Packet accesses (packet reads and writes) are implemented as intrinsic calls: pa-
cket_read/packet_write(packet_handle,offset,size,data). For example, data=p->ttl and
p->ttl=data can be converted to packet_read(p,64,8,data) and packet_write
(p,64,8,data), respectively. The size of 8 means that this packet access will retrieve or
modify a bit field which is 8-bit wide, and the offset of 64 specifies that the distance
to the beginning of the current protocol header is 64 bits. The fourth parameter, data,

 Optimizing Packet Accesses for a Domain Specific Language on Network Processors 51

is the input or output data to be read from or written to as specified by programmers.
The two intrinsic calls, referred to as packet access intrinsics will access DRAM to
retrieve or modify packet data. They resolve the DRAM address by the value of head
pointer plus the offset parameter.

In the Intel IXP2xxx network processors, DRAM can only be accessed in multiples
of 8 bytes starting on any 8-byte boundary. Although packet_read and packet_write
intrinsics can specify arbitrary offset and size, the runtime system must take care of
address alignment and access granularity. For example, write accesses smaller than 8-
byte cause read-modify-write operations to merge data, and the runtime system will
generate a mask to select which bytes to be written into DRAM. In a read-modify-
write operation it will cause two DRAM accesses.

3 Packet Access Combining

In general, a packet_read intrinsic has one DRAM access (for packet data) and one
SRAM access (for packet metadata) and dozens of other instructions. A packet_write
doubles the cost. In a Baker program, each of the packet accesses may operate on only
a few bits of the packet header. However, since each DRAM access operates at an 8-
byte granularity, a naive code generation that translates a packet access into an intrin-
sic call can cause a significant waste of DRAM bandwidth and incur unnecessary
execution time due to the long DRAM access latency.

The idea of PAC optimization is based on the observation that many packet reads
(writes) access contiguous locations. It is possible for the compiler to automatically
merge several packet reads (writes) into one, so that only one packet_read
(packet_write) intrinsic is issued to load (store) all of the needed data at once. Thus
the DRAM access count can be reduced.

PAC optimization should not change the semantics of the original program, so the
application of PAC must comply with control and data dependence requirements.
When combining two packet reads, there are two requirements that must be satisfied:

1. Dominance: The first read must dominate the second read in flow graph;
2. There are no intervening packet writes along the path from the first read to the

second read altering the packet data that the second read will use.

Correspondingly, the requirements of combing two packet writes are:

1. Control Equivalence: The first packet write dominates the second and the second
post-dominates the first.

2. There are no intervening packet reads (writes) along the path from the first write to
the second write using (altering) the packet data of the second write.

The conditions for combining more than two packet reads (writes) can be derived
from the requirements above since the compiler can always merge the first two packet
reads (writes) into one and then merge this new one with the third read (write). The
compiler can follow this process iteratively till all of the reads (writes) that satisfy the
conditions are combined.

Fig. 4 gives an example of PAC optimization. 6HFig. 4.a is the flow graph before a
PAC optimization. The packet accesses are represented as packet access intrinsic

52 T. Liu et al.

calls. There are two packet reads and two packet writes accessing nearby but different
fields of IPv4 header. PAC wants to merge the two reads into a single read, and the
two writes into a single write. The flow graph after combining is shown in 7HFig. 4.b.
The benefit of PAC is clear: two packet access intrinsic calls were removed. To for-
malize the solution of the combining problem, we develop a bit-field dataflow analy-
sis on these packet accesses.

a) Before combining b) After combining

packet_read(p,64,8,s)

paket_write(p,64,8,x)

packet_read(p,80,16,t)

packet_write(p,80,16,y)

s = p->ttl

p->ttl = x

p->checksum = y

t = p->checksum

packet_read(p,64,32,u)
s=(u>>24)&0xff

v=(x & 0xff)<<24

t=u & 0xffff

v=(y & 0xffff)|v
v=(u & 0x00ff0000)|v

packet_write(p,64,32,v)

Fig. 4. An example of PAC

3.1 Algorithm

According to the requirements described above, only those packet accesses that sat-
isfy the following conditions can be combined: First, all accesses must be of the same
type (read or write), and operate on the same packet. Second, the offsets and sizes of
all accesses must be known at compile-time. Third, the size of the combined access
must be within the burst size of a single DRAM access. Last, there shouldn’t be any
violation of control and data dependence due to combining these accesses.

Packet access combining can be performed in the following four steps:

1. Collect the candidate packet access information
We first traverse a program function to collect the necessary information for each
packet access, including the packet handle, offset and size. This information will be
used in the succeeding steps.
2. Compute the dominance relations
As discussed above, these packet accesses to be combined must satisfy the dominance
relationship (control dependence). Because one basic block (BB) can only have one
branch or call instruction, these packet access calls must be in different BBs. Hence,
the dominance relationship of packet accesses can be represented as dominate tree of
BBs.
3. Perform a packet field live analysis
We perform a data-flow analysis on packet fields of packet accesses. In the analysis, a
packet read can be considered as a use to a bit-field of packet buffer, and a packet
write can be considered as a definition. To uniquely identify each packet access and
describe the bits information of them, a triplet {bb,ph,pf} was introduced to represent
packet access info during the iterative dataflow analysis. The bb depicts the basic
block that the packet access resides in. The ph (packet handle) indicates which packet
instance it will access. The pf (packet field) is a bit vector each bit of which represents
a bit in the packet buffer. The corresponding bits that the packet access will read or

 Optimizing Packet Accesses for a Domain Specific Language on Network Processors 53

modify are set to valid while other bits are set to invalid. If the packet access info is
propagated across a packet_encap or packet_decap call, its pf must shift correspond-
ing bits because the current head pointer has been changed. The dataflow analysis of
packet reads is a backward dataflow problem. Its corresponding flow equations are
specified as Fig. 5. PFrev_in(BBi) and PFrev_out(BBi) are the sets of reversed input
and output packet accesses information of BBi, respectively. After the bitwise data-
flow analysis, PFrev_in of each BB contains all possible packet accesses which can be
propagated to the exit of this BB. We said a packet access s is live at BBi if
s PFrev_in(BBi) and the valid bits in s.pf has not been changed with respect to its
original BB (s.bb). A packet access live at a given program point indicates that it
can be combined with another packet access resided at this point without violating
any data dependence.

)))()(,(,()(

)()(

__

)(
__

iiinreviiioutrev

BBSuccBB
joutreviinrev

BBGenBBPFBBKillBBCapBBPF

BBPFBBPF
ij

=

=
∈ () =

otherwise

saccesspackethasBBifpfsphsi
BBGen i

i φ
"")}.,.,{(

()
∈∀≠∈∀=

=
otherwiseset

swritepackethasBBif

setxphsphxxsetxphsphxpfxpfsphxbbx

setBBKill ii ""

},..|{},..|).&).(~,.,.{(

,

∈∀<<
∈∀>>

=
otherwiseset

bitsdecappackethasBBifsetxbitspfxphxbbx

bitsencappackethasBBifsetxbitspfxphxbbx

setBBCap i

i

i)(_}|).,.,.{(

)(_}|).,.,.{(

),(

Fig. 5. Data-flow equations of packet field live analysis for packet reads

4. Finalize the combining
For each packet access, the candidates can be selected by taking a bitwise OR opera-
tion on the current packet access’s pf field and those of all live packet accesses at this
point. If the bit width of combined result does not exceed the width limit of DRAM
instructions, the corresponding live packet access is a candidate. We use the combin-
ing density to describe data reuse characteristics as defined in Eq. (1). In this equation
field_len1 and field_len2 are the valid bit widths of the pf fields in the current packet
access and candidate packet access, respectively. combined_len is the valid bit width
after the combination. For example, if the two packet accesses are to the same packet
field, the value of combining density equals the width of the packet field. If the packet
fields are adjacent, the value is zero, and so on. We will first combine the packet ac-
cesses whose combining density is higher.

CombiningDensity=field_len1 + field_len2 - combined_len . (1)

After the combination, the offset and size of current packet access are adjusted to
retrieve all needed packet data and the redundant packet access is eliminated. The
cached packet data can be kept in registers.

The algorithm of PAC can be easily extended to handle more complex cases. For
example, it can combine two packet writes even if they are to non-adjacent fields of a
packet. By using a dominator packet read to cache the data of the gap between two
packet writes, we can combine the two packet writes with the cached gap into a wide

54 T. Liu et al.

write. Furthermore, it can combine packet writes located in basic blocks that are not
control equivalent. It may still be worth combining if we can reduce the number of
packet writes on the critical path. To maintain correctness, compensation packet
writes must be generated in the corresponding exits to cold paths.

4 Compiler-Generated Packet Caching

By default, for each packet access our compiler will generate a packet access intrinsic
call which is implemented in the runtime system. This approach, though allows the
flexibility of changing the implementation of the packet buffer without modifying the
compiler, will incur significant performance overhead. In fact, we may not need to
invoke the intrinsic call to load the packet data for every reference in the program. If
we preload all needed packet data into a cache, the subsequent packet accesses can be
replaced by cache accesses. Actually, packet data accesses exhibit good spatial local-
ity w.r.t. different fields in the same packet [15]. Based on this observation, we pro-
pose a new approach to implement packet accesses, named Compiler-Generated
Packet Caching (CGPC). CGPC tries to identify the critical path of the packet flow in
a network application based on profiling information and optimize all packet accesses
along the path. If there are multiple accesses to the same packet in the critical path,
the related packet data will be buffered in the fastest level of memory (e.g., the local
memory in IXP2400), and those accesses that can be resolved statically will be re-
placed by the accesses to the buffered data. For those accesses that can only be re-
solved at run time, efficient code sequence will be generated to calculate the offset
and alignment and perform the access. Actually, CGPC can be considered as an ex-
treme situation of PAC that it tries to combine all the packet accesses in a thread into
only one packet read at the thread entrance and one packet write at the thread exit.

4.1 Algorithm

CGPC is performed in two steps. First, an inter-procedure analysis, referred to as
Packet Flow Analysis, is to identify the critical path in the packet flow graph and
calculate associated information of each packet access and packet_encap/decap. Sec-
ond, a compiler generates the instructions for each packet access and packet_encap/
decap based on the packet flow analysis information.

4.1.1 Packet Flow Analysis
The information needed by the packet flow analysis is collected by a profiler. By
utilizing user-supplied packet traces, the profiler simulates the execution of network
applications at a high-level Intermediate Representation (IR) in the compiler. After the
simulation, the profiling information, such as execution frequency and access statistics,
is available. The pseudo code of the algorithm for the packet flow analysis is presented
in Fig. 6. Flow_Anaysis is a recursive function which starts the analysis from the
endpoint of the channel coming out of the Rx module. The cached packet data should
be preloaded at the entry of the packet flow, but the preload width can not be deter-
mined until the analysis is finished. During the analysis, the value of the current head
pointer is tracked and updated whenever encountering a packet_ encap/decap.

 Optimizing Packet Accesses for a Domain Specific Language on Network Processors 55

However, different intrinsic calls and control structures complicate this process. If a
packet_encap/decap sits inside a loop with an unknown loop count, inside an if-
branch, or inside a circle of the packet flow graph, we may not be able to track a con-
stant value of head pointer statically.

Flow_Analysis(currStmt){
switch(currStmt){
case Intrinsic_Call:
{Process_Intrinsic_Call(Intrinsic_Call);
break;}

case Call:
{callee=Get_Callee(Call);
if(callee has been analysed) break;
else{
Flow_Analysis(callee->first_Stmt);}

break;}
case Loop:
{set is_in_loop flag;
estimate loop count by profiler;
Flow_Analysis(Loop body);
if(not in outer loop) reset is_in_loop flag;
break;}

case If:
{Flow_Analysis(if condition);
Flow_Analysis(then branch);
then_ofst=currOfst;
Flow_Analysis(else branch);
else_ofst=currOfst;
if(then_ofst==else_ofst) break;
if(packet_is_over in then/else branch)
set currOfst to else_ofst/then_ofst;

else
set unresolved flag; break;}

…… // other cases
default:
{Flow_Analysis(kid nodes of currStmt);}

}}

Process_Instrinsic_Call(currCall){
if(currCall is packet_encap/decap){
if(is_in_loop){
set unresolved flag;
set currCall dynamic;}

else{
Increase/Decrease currOfst;
set currCall eliminable;}

}
if(currCall is packet_read/write){
if(access offset is variable||unresolved)
set currCall dynamic;

else{
set currCall static;
calculate absolute offset and size;}

update preload & writeback range;
}
if(currCall is channel_put){
if(send packet to Tx or Xcale){
set packet_is_over;
if(cache has been written) writeback cache;

}
if(send packet to ME){
if(cache has been written) writeback cache;
callee=Get_End_Func(currChannel);
Flow_Analysis(callee->first_Stmt);

}
}
if(currCall is packet_drop)
set packet_is_over;

…… // other cases
}

Fig. 6. The algorithm of packet flow analysis

For each packet access, if the head pointer is not resolved as a compile-time con-
stant or its offset parameter is a variable, it will be marked as dynamic. They need a
compiler to generate code to compute the offset and alignment at runtime so as to
access the cached data. Other packet accesses will be marked as static and will have
their offsets and alignments calculated at compile-time. Since the offsets of static
packet accesses are known at compile-time, we can use the absolute offset in the
cache to access packet data across different protocol layers. As a result, some
packet_encap/decaps become redundant if they are used only to provide the encapsu-
lation protection for static packet accesses. These packet_encap/decaps are marked as
eliminable, which means they can be removed safely. Other packet_encap/decaps are
marked as dynamic which will be used in generating code for dynamic packet ac-
cesses. When packets flow to the Tx module or heterogeneous cores (e.g., XScale),
the packet flow path is ended and the cached packet data should be written back to
DRAM if it has been modified. If we use a processor-local memory (e.g., local mem-
ory in ME) as a cache and packets flow across different cores (e.g., MEs), the cached
data should be written back to DRAM when it comes out of one processing core and
reloaded when it enters another core.

56 T. Liu et al.

Fig. 7 illustrates the critical packet flow path of L3-Switch. The head pointer can
always be determined statically along this path. All packet accesses are resolved ex-
cept one in the lpm_lookup PPF, which is used to verify the checksum of IPv4 header.
Its offset is a variable and this access is executed ten times for every processed
packet. We need to insert code to compute its offset at runtime.

encap

l3
_
c
ls

l2
_
c

ls

l3_fwdr_module

eth_encap
module

l3_switch_module

2 static

1 static

8 static/

1 dynamic

3 static

preload

writeback

Rx
Tx

lp
m

_
lo

o
k
u

p

ethernet
header

Cache

(local memory)
mpls

header
…

head
ptr

Packet
access +

offset

Adjust head ptr when meeting
dynamic packet_encap/decap

Fig. 7. The critical path of L3-Switch Fig. 8. Dynamic offset and alignment
resolution

4.1.2 Compiler-Generated Packet Accesses
After the packet flow analysis, the flags (as shown in Fig. 6) and necessary informa-
tion are annotated on each packet access and packet_encap/decap. In the code genera-
tor, the actual code is generated according to the flags and the information. If the
packet access is static, the cache can be accessed directly with a constant offset and
size provided by the packet flow analysis. An unaligned access can be effectively
optimized to a wide access followed by some shift instructions. As for a dynamic
access, the offset and alignment must be calculated at runtime. Our solution is illus-
trated in 27HFig. 8. We use a variable to track the value of head pointer and initialize it
when the compiler preloads the cache. When a packet flows across a dynamic
packet_encap/decap, additional instructions are executed to update its value at run-
time. We can then use the variable of head pointer to generate code for the dynamic
packet access. The absolute offset of a dynamic packet access in cache can be deter-
mined by adding the original offset to the current head pointer. A check is performed
on the absolute offset. If the offset within the cache, it can directly access the cached
data. Otherwise, it will fall through to invoke the original intrinsic call.

After the optimization, a DRAM access is performed only when preloading and
writing back the cache. An unaligned DRAM access will cause a much higher cost
than the aligned one. For example, an unaligned write would need a write-after-read
operation to keep the unwritten section intact, which needs to be implemented in two
DRAM accesses. Instead, our compiler implements all preload and write back opera-
tions at the aligned boundaries. All intermediate packet accesses’ offsets are adjusted
according to the alignment. As a result, our implementation properly aligns all
DRAM accesses. Although this approach may waste some cache space to hold unused
data, it avoids the write-after-read operations on DRAM and reduces the alignment
instructions.

 Optimizing Packet Accesses for a Domain Specific Language on Network Processors 57

5 Evaluations

We have evaluated the proposed optimizations with representative workloads on real
network processors. In this section, we will present the hardware evaluation environ-
ment, benchmarks, and experimental results.

5.1 Benchmark Applications

We use three typical network applications, L3-Switch, MPLS and Firewall, for our
evaluation. They are all written in Baker. L3-Switch and MPLS were evaluated using
the NPF standard configurations [16, 17]. Firewall was evaluated using a packet trace
internally developed.

Layer 3 Switch (L3-Switch) [16] implements Ethernet bridging and IPv4 routing.
For each packet received, it performs table lookups to determine the next hop, decre-
ments the Time-To-Live (TTL), and updates the checksum for the packet header.

Multi-Protocol Label Switch (MPLS) [17] attaches one or more labels in the head
of each packet and routes the packet based on the label rather than the destination
address. By using the label as an index into a forwarding table, the routing process
can be accomplished more quickly.

Firewall sits between a private network and its Internet connection, protecting the
internal network against attacks. The firewall takes actions, such as passing or drop-
ping a packet, based on an ordered list of user-defined rules. These rules specify the
actions to take when the fields of incoming packets (e.g. source and destination IPs,
source and destination ports, protocol etc.) match certain patterns.

5.2 Experimental Environment

Our evaluations were conducted on a RadiSys ENP-2611 evaluation board, which
contains an Intel IXP2400 network processor running MontaVista Linux on the
XScale core. IXP2400 consists of eight multi-threaded MicroEngines (MEs) for traf-
fic processing, an Intel XScale core for control plane processing, 8MB SRAM, and
64MB DRAM [10]. An IXIA packet generator with two 1Gbps optical ports was used
to generate packet traffics and collect statistics. When the ports are used in full duplex
mode, the peak input rate is 2Gbps.

The memory hierarchy of IXP2400 consists of four different memory levels: local
memory, Scratchpad, SRAM, and DRAM, with increasing capacities and access la-
tencies. Table 1 lists their access parameters. There is no hardware cache; any access

Table 1. The parameters of different levels of memories in IXP 2400 (Unit B stands for Bytes)

Memory Type Size
Access time

(Cycles)
Start Address

Alignment
Min

Length
Max

Length
Local Memory 2560B 3 4B boundary 4B 4B

Scratchpad 16KB 60 4B boundary 4B 64B

SRAM 256MB 90 4B boundary 4B 64B

DRAM 2GB 120 8B boundary 8B 128B

58 T. Liu et al.

to the memory units is carried out explicitly with specific instructions for respective
memory types.

For all configurations in our evaluation, six MEs with each ME having eight thread
contexts all ran the same code from the critical path of an application. The other two
MEs were dedicated to receive (Rx) and transmit (Tx) module, respectively. The cold
path and control plane code of the application were mapped to XScale.

5.3 Packet Access Count and Aggregate Access Size

We compared the number of packet-related DRAM accesses and the packet forward-
ing rates for the three applications, with and without the proposed optimizations. The
BASE configuration enables only typical scalar optimizations. We evaluated these two
optimizations on top of BASE separately. PAC enables the packet access combining.
Procedure inlining was performed to expose more opportunities for combining. CGPC
represents the compiler-generated packet caching. Since CGPC can be considered as
an aggressive version of PAC, we have not evaluated the combined effect.

Table 2. Memory access statistics (per packet) and instruction counts

 DRAM
Access
Count

Aggregate
Access Size

(Bytes)

Instruction
Count1

BASE 29 696 2033
PAC 13 200 1190

L3-
Switch

CGPC 2 72 770
BASE 16 384 1851
PAC 9 212 1428

MPLS

CGPC 2 48 1495
BASE 24.2 580 1742
PAC 4.4 140 572

Firewall

CGPC 1 32 375

Table 2 shows the DRAM access count and aggregate access size per packet and
the instruction count for each benchmark application. We can see that PAC can reduce
the DRAM access dramatically. CGPC has the lowest number of DRAM accesses and
reduces the aggregate access size by 90% on average (L3-Switch: 89.7%, MPLS:
87.5%, Firewall: 94.5%). Taking L3-Switch as an example, its packet accesses are
marked in Fig. 7. There are 9 static packet reads, 5 static unaligned packet writes, and
1 dynamic packet read on the critical path. The dynamic packet read is caused by a
checksum checking, which iterates through the packet header in a unit of 2-byte. PAC
merges the static packet accesses but cannot catch the dynamic one. CGPC can deal
with all of the packet accesses, thus only need DRAM accesses in the preload and

1 The instruction count is an approximate number of the instructions actually executed in Mi-

croEngines for one packet processing. It includes critical path code and packet accesses. A
packet read takes about 50 instructions and a packet write takes about 100 instructions.

 Optimizing Packet Accesses for a Domain Specific Language on Network Processors 59

write back operations. MPLS presents a challenge to our techniques initially. It
pushes, swaps, and pops MPLS labels dynamically, which may include an arbitrary
number of MPLS headers and our techniques can not determine the cache layout
statically. However, the results demonstrate that CGPC remain effective for this dy-
namic situation. Overall, PAC and CGPC not only reduce the memory traffic, but also
reduce the number of executed instructions.

5.4 Forwarding Rate

The forwarding rates of three applications on the minimum sized 64-byte packets are
presented in Fig. 9. The numbers of MEs to execute the applications are plotted on the
X-axis and the achieved forwarding rates are plotted on the Y-axis. To obtain the full
benefits of PAC, we unrolled the checksum checking loop in L3-Switch before apply-
ing PAC to convert the dynamic packet read to static. PAC reduces the packet proc-
essing time by removing considerable DRAM accesses and instructions. As a result, it
gets a higher forwarding rate. CGPC provides a higher performance impact than PAC
because it has no excessive DRAM accesses and the solution for resolving the offset
and alignment is effective. Compared to BASE, CGPC improves the throughput by 5.8
times on average (L3-Switch: 7.6; MPLS: 3.9; Firewall: 5.9).

BASE (L3-switch)

PAC (L3-switch)

CGPC (L3-switch)

BASE (MPLS)

PAC (MPLS)

CGPC (MPLS)

BASE (Firewall)

PAC (Firewall)

CGPC (Firewall)

Fig. 9. Performance of L3-Switch, MPLS and Firewall

In the BASE configuration, all three applications get their memory bus saturated
when the number of MEs increases. However, PAC provides good scalability by re-
lieving the contention of DRAM bandwidth. Compared to PAC, CGPC generates
fewer instructions and DRAM accesses so that it obtains nearly perfect scalability and
reaches the full line rate quickly. The result shows the system performance is largely
determined by both the instruction count and DRAM bandwidth. We also applied
these optimizations on SRAM accesses without as apparent benefits as DRAM ac-
cesses. It is because IXP2400 has only one DRAM controller but two independent
SRAM controllers.

6 Related Work

Several high-level programming languages, such as microC [11] and picocode [9],
have been introduced with their corresponding NPs. But they are all extended to

60 T. Liu et al.

expose hardware details and their performances heavily rely on the use of such fea-
tures. A number of domain-specific languages, such as Click [13], NesC [7], etc.,
have been developed to ease programming, and they are more hardware-independent
and include special constructs to express the tasks in packet processing applications.
But they do not focus on efficient compilation.

Mudigonda et al. [15] analysed the characteristics of packet data and application
data accesses. They exhibit the spatial locality of packet data accesses and temporal
locality of application data accesses. They use a cache to improve the hit rate of ap-
plication data structures. Iyer et al. [12] studied a cache-based memory hierarchy of
packet buffer. Hasan et al. [8] proposed several techniques to exploit row locality (i.e.
successive accesses falling within the same DRAM rows) of DRAM accesses. But
their techniques needed hardware support and focused on the input- and output-side
of packet processing, which can be implemented in our Rx and Tx modules. Sherwood
et al. [18] designed a pipelined memory subsystem to improving the throughput in
accessing application data structures.

Davidson and Jinturkar [6] described a memory coalescing algorithm for general
purpose processors similar to packet access combining. This algorithm replaced nar-
row array access with double-word accesses in unrolled loops. It performed a profit-
ability and safety analysis on programs, and generated alignment and alias checks at
runtime if necessary. But Packet Access Combining works on a whole procedure and
focuses on packet accesses. It utilizes some domain knowledge and does not need a
complex alias analysis. Thus, PAC is always profitable when it can be applied.

There are several techniques which can be used to improve packet accesses.
McKee et al. [14] designed a separate stream buffer to improve the performance of
stream accesses. Chen et al. [4] described a hardware-based prefetching mechanism to
hide memory latency.

7 Conclusion

Performance and flexibility are two major but sometime conflicting requirements to
packet-processing systems and the programming environments associated with them.
High level programming environments with domain specific languages can satisfy the
flexibility requirement. However, how to utilize hardware features effectively to
achieve high performance with automatic compiler supports in such programming
environments requires more explorations. In this paper, we address one major type of
memory accesses in network applications – accesses to packet data structures, which
constitute a significant portion of the total memory accesses. We propose two compi-
lation techniques to reduce the latencies of packet accesses and the contention of
DRAM bandwidth.

Packet access combining tries to reduce the number of packet accesses by utilizing
wide memory references and code motion. It does not incur extra memory space com-
pared with caching. Furthermore, it is hardware-independent and always beneficial
when applied. Compiler-generated packet caching can be viewed as compiler-
controlled caching. It buffers the packet data to be referenced and replace all of the
packet accesses on the critical path with accesses to a buffer in cache. Through a
profiling-based program analysis, it minimizes the required cache size and the number
of cache misses.

 Optimizing Packet Accesses for a Domain Specific Language on Network Processors 61

We performed experiments on a real packet processing platform with three repre-
sentative network applications, L3-Switch, MPLS and Firewall. The experimental
results demonstrate that the efficiency of packet accesses is critical to the system
performance, and our techniques can reduce the number of packet accesses and the
total memory bandwidth requirements significantly.

References

1. W. Bux, W. E. Denzel, T. Engbersen, A. Herkersdorf, and R. P. Luijten. “Technologies
and building blocks for fast packet forwarding.” IEEE Communications Magazine, pp. 70-
77, January 2001.

2. M. Chen, E. Johnson, R. Ju. “Compilation system for throughput-driven multi-core proc-
essors.” In Proc. of Micro-37, Portland, Oregon, December 2004.

3. M. Chen, X. Li, R. Lian, J. Lin, L. Liu, T. Liu, and R. Ju. “Shangri-la: Achieving high per-
formance from compiled network applications while enabling ease of programming.” In
Proc. of ACM SIGPLAN PLDI, Chicago, Illinois, USA, June 2005.

4. T. Chen and J. Baer. “Effective Hardware-based Data Prefetching for High-performance
Processors.” IEEE Transactions on Computers, 44(5), May 1995.

5. T. Chiueh and P. Pradhan. “High-performance IP routing table lookup using CPU cach-
ing.” In IEEE Infocom’99, New York, NY, March 1999.

6. J. W. Davidson and S. Jinturkar. “Memory Access Coalescing: A Technique for Eliminating
Redundant Memory Accesses.” In Proc. of ACM SIGPLAN PLDI, pp. 186-195, June 1994.

7. D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. “The nesC Lan-
guage: A Holistic Approach to Networked Embedded Systems.” In Proc. of ACM
SIGPLAN PLDI, June 2003.

8. J. Hasan, S. Chandra, and T. Vijaykumar. “Efficient Use of Memory Bandwidth to Im-
prove Network Processor Throughput.” In ISCA, 2003.

9. IBM PowerNP Network Processors,
http://www-3.ibm.com/chips/techlib/techlib.nsf/products/IBM_PowerNP_NP4GS3.

10. Intel Corporation. Intel IXP2400 Network Processor: Hardware Reference Manual. 2002.
11. Intel IXP family of Network processors,

http://www.intel.com/design/network/products/npfamily/index.htm.
12. S. Iyer, R. R. Kompella, and N. McKeown. “Analysis of a memory architecture for fast

packet buffers.” In Proc. IEEE Workshop High Performance Switching and Routing
(HPSR), 2001.

13. E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. “The Click Modular
Router.” Transactions on Computer Systems, 2000.

14. S. McKee, R. Klenke, K. Wright, W. Wulf, M. Salinas, J. Aylor, and A. Batson. “Smarter
Memory: Improving Bandwidth for Streamed References.” IEEE Computer, July 1998.

15. J. Mudigonda, H. Vin, and R. Yavatkar. “A Case for Data Caching in Network Proces-
sors.” Under Review. http://www.cs.utexas.edu/users/vin/pub/pdf/mudigonda04case.pdf

16. Network Processing Forum. “IP Forwarding Application Level Benchmark.”
4Hhttp://www.npforum.org/techinfo/ipforwarding_bm.pdf.

17. Network Processing Forum. “MPLS Forwarding Application Level Benchmark and An-
nex.” 5Hhttp://www.npforum.org/techinfo/MPLSBenchmark.pdf.

18. T. Sherwood, G. Varghese, and B. Calder. “A Pipelined Memory Architecture for High
Throughput Network Processors.” In 30th International Symposium on Computer Architec-
ture, June 2003.

Array Replication to Increase Parallelism in
Applications Mapped to Configurable

Architectures

Heidi E. Ziegler, Priyadarshini L. Malusare, and Pedro C. Diniz

University of Southern California / Information Sciences Institute
4676 Admiralty Way, Suite 1001
Marina del Rey, California, 90292
{ziegler,priya,pedro}@isi.edu

Abstract. Configurable architectures, with multiple independent on-
chip RAM modules, offer the unique opportunity to exploit inherent
parallel memory accesses in a sequential program by not only tailoring
the number and configuration of the modules in the resulting hardware
design but also the accesses to them. In this paper we explore the possi-
bility of array replication for loop computations that is beyond the reach
of traditional privatization and parallelization analyses. We present a
compiler analysis that identifies portions of array variables that can be
temporarily replicated within the execution of a given loop iteration,
enabling the concurrent execution of statements or even non-perfectly
nested loops. For configurable architectures where array replication is
essentially free in terms of execution time, this replication enables not
only parallel execution but also reduces or even eliminates memory con-
tention. We present preliminary experiments applying the proposed tech-
nique to hardware designs for commercially available FPGA devices.

1 Introduction

Emerging computing architectures now have multiple computing cores and mul-
tiple memory modules such as discrete and programmable register files as well
as RAM blocks. For example, field-programmable gate arrays (FPGAs) allow
designers to define an arbitrary set of registers and customize the topology of
internal RAM blocks [12] to suit the data and computational needs of the com-
putation. Other programmable architectures simply allow for the arrangement
of registers and fine-grain functional units to create tailored pipelined archi-
tectures [5]. Overall these flexible architectures provide ample opportunities to
exploit data parallelism as well as coarse and fine-grain parallelism.

Unfortunately, mapping sequential applications to these architectures is a dif-
ficult task. Programmers must explicitly manage the mapping and organization
of arrays among the rich set of storage resources, configurable register sets and
on and off-chip memories, if they are to fully exploit the architectural benefits
of configurable devices. The wide range of design choices faced by the program-
mer makes it desirable to develop automated analysis and mapping tools that

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 62–75, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Array Replication to Increase Parallelism 63

can navigate certain characteristics of the design space, in particular, the data
dependences found in common sequential imperative programs.

In this paper we focus on array privatization and array replication techniques
to enable compilers to uncover parallelism opportunities in sequential computa-
tions that are traditionally impeded by both anti and output-dependences. We
focus on array privatization not across loop iterations but within the same loop
iteration. It focuses on the analysis of non-perfectly nested loops by determining
anti-dependences between a sequence of nested loops in a control loop.

When two computations, that execute serially, access the same array location,
reading its previous value and then writing a new value into the location, this
gives rise to an anti-dependence between them. Similarly when two computation
use the same location to store consecutive values that are otherwise independent
creates an output-dependence. These dependences can be eliminated by creating
a copy of the array, that each computation freely accesses. Each computation
uses a distinct memory location to write and read a value, and in the absence of
true-dependences between these loops nest, they can execute concurrently within
the same iteration of the control loop.

This concurrent execution, however, raises the issue of memory contention
when two or more concurrently executing loop nests access the same array re-
gion, i.e., the loops exhibit input-dependences. To overcome this memory con-
tention, we take advantage of the flexibility of memory mapping in configurable
architectures by creating copies of shared array variables. By accessing the ar-
ray copies, the parallel loop nests can therefore execute concurrently due to the
absence of anti-dependences but also be contention-free. When the original com-
putation exhibits loop-carried true-dependences (i.e., values written in a given
iteration that are read in a later iteration of a loop), the transformed code must
update the array copies (not necessarily all of them) when the concurrent ex-
ecution terminates to ensure that subsequent computations proceed with the
correct values.

This transformation explores a space-time tradeoff. In order to eliminate anti-,
output- and input-dependences, the implementation requires additional memory
space. In addition, some execution time overhead is incurred in updating the
copies to enforce the original program data dependences. The analysis abstrac-
tions, in cooperation with estimates of memory space usage, allow for an effective
algorithm to manage this tradeoff and adjust, possibly dynamically, the perfor-
mance of the implementation in response to available resources.

In this paper we evaluate the replication and privatization transformations
when mapping a set of computations to a configurable computing device, a
Xilinx VirtexTM FPGA. We simulate the transformed code as a concurrently
executing hardware design, thereby revealing the effects on performance and the
corresponding cost of storage.

This paper makes the following specific contributions:

– Describes the application of array replication and array privatization trans-
formations to take advantage of the flexibility of configurable architectures.

64 H.E. Ziegler, P.L. Malusare, and P.C. Diniz

– Extends existing array data-flow analysis to identify opportunities for con-
current execution of entire loops when arrays are replicated and temporarily
privatized.

– Presents experimental results of our array replication algorithm when applied
to a sample set of image processing computations for specific mappings to
an FPGA device.

Preliminary results reveal that a modest increase of storage for private and
replicated data leads to hardware designs that exhibit respectable execution time
speedups, making this approach feasible when storage space is not a limiting
factor in the design.

With the increase in VLSI device capacity and the emergence of computing
architectures that have multiple computing units on the same die and a very
rich set of configurable storage structures, the placement and layout of data
will become increasingly important if applications are to fully exploit the true
potential of internal data bandwidth and computational units.

This paper is structured as follows. Section 2 illustrates a motivating exam-
ple for array replication. Section 3 describes the compiler analyses and a data
replication algorithm. In section 4 we present preliminary experimental results
of the application of the proposed analyses to a set of multimedia computations
targeting an FPGA configurable device. We discuss related work in section 5
and then conclude in section 6.

2 Example

We now present an example showing how array replication (or copying) elim-
inates anti- and output-dependences thereby enabling concurrent execution of
loops. This example also illustrates the elimination of input-dependences (i.e.,
when two loops access arrays that are stored in the same memory module) that
reduces memory contention introduced by concurrency. The computation is il-
lustrated in figure 1 and consists of an outer i loop with three loop nests, L1, L2
and L3 nested within. Each of these three loop nests access a two-dimensional
array variable A using affine subexpressions. The first two loop nests L1 and L2
read two consecutive rows of the array whereas the third loop nest L3 writes the
array row read by the first loop nest in the same iteration of i and in iteration
i+1 by the second loop nest.

Within loop i, one cannot execute loops L1 and L2 concurrently with loop
L3, since there is an anti-dependence between L3 and the other loops. Itera-
tions of the i loop also cannot be executed concurrently given the loop-carried
true-dependence between L3 and L2. As such, privatization of A is therefore not
possible either [11].

A way to enable concurrent execution of all loop nests during the execution
of each iteration of the i loop is to create a copy of array A named A 3, which
L3 can update locally while loops L1 and L2 read from the original array A.
We call this transformation where the array is being replicated with respect
to the loop nest that writes it, a partial replication. At the end of concurrent

Array Replication to Increase Parallelism 65

/* control loop */
for(i = 0; i < M; i++){

/* loop L1 */
for(j=0; j < N; j++){

for(k=0; k < N; k++){
. . . = A[i][k];
. . .

}
}

/* loop L2 */
for(j=0; j < N; j++){

for(k=0; k < N; k++){
. . . = A[i-1][k];
. . .

}
}

/* loop L3 */
for(j=0; j < N; j++){

for(k=0; k < N; k++){
A[i][k] = . . .
. . .

}
}

}

tim
e

ite
ra

tio
n

i
ite

ra
tio

n
i+

1

L1: reads A[i+1][*] L2: reads A[i][*] L3: writes A[i+1][*]

update A[i+1][*] = A_3[i+1][*]
barrier

L1: reads A[i][*] L2: reads A[i-1][*] L3: writes A_3[i][*]

update A[i][*] = A_3[i][*]
barrier

tim
e

ite
ra

tio
n

i
ite

ra
tio

n
i+

1

L1: reads A_1[i+1][*] L2: reads A_2[i][*] L3: writes A[i+1][*]

update A_2[i+1][*] = A_3[i+1][*]
barrier

L1: reads A_1[i][*] L2: reads A_2[i-1][*] L3: writes A_3[i][*]

update A_2[i][*] = A_3[i][*]
barrier

tim
e

L1: reads A[i][*]
L2: reads A[i-1][*]
L3: writes A[i][*]

L1: reads A[i+1][*]
L2: reads A[i][*]
L3: writes A[i+1][*]

ite
ra

tio
n

i
ite

ra
tio

n
i+

1

tr
ue

de
pe

nd
en

cy
an

ti
de

pe
nd

en
cy

(a) Sequential execution.

(b) Concurrent execution without array replication.

(c) Concurrent execution replicating array A.

Fig. 1. Example computation and illustrative sequential and concurrent execution

execution of loops L1 through L3 within one iteration of the i loop, we insert a
synchronization barrier and then update the original array A with the new values
generated by loop L3. This concurrent execution is illustrated in figure 1(b) and
the corresponding parallel code is depicted in figure 2(a).

Due to the concurrent execution of the three loop nests, there is now memory
contention on array A by the loops L1 and L2. In an architecture with memory
modules with a limited number of memory ports and in the absence of care-
ful scheduling of read operations the execution of each loop will possibly stall
for data. To alleviate the memory contention, we further replicate array A and
assign these new arrays A 1 and A 2 to two memories that can be accessed in
parallel by loops L1 and L2. In this extended replication transformation, called
full replication, we create copies that are local to the loops that both read and
write the arrays.1 We trade decreased execution time for increased array storage.

1 There are additional degrees of replication with respect to the loops that read a
given array. Furthermore, this need to replicate to reduce memory access contention
interacts with other transformations such as custom data-layout enabled by loop
unrolling as described in [9].

66 H.E. Ziegler, P.L. Malusare, and P.C. Diniz

for(i = 0; i < M; i++){ /* control loop */

begin par
{

for (j=0; j < N; j++){ /* loop L1 */
for (k=0; k < N; k++){

. . . = A[i][k];

. . .;
}

}
}

{
for (j=0; j < N; j++){ /* loop L2 */
for (k=0; k < N; k++){

. . . = A[i-1][k];

. . .;
}

}
}

{
for (j=0; j < N; j++){ /* loop L3 */
for (k=0; k < N; k++){

A 3[j][k] = . . .;
. . .;

}
}

}
end par
/* update original A */
for (k=0; k < N; k++){

A[i][k] = A 3[i][k];
}

}

for(i = 0; i < M; i++){ /* control loop */

begin par
{

for (j=0; j < N; j++){ /* loop L1 */
for (k=0; k < N; k++){

. . . = A 1[i][k];

. . .;
}

}
}

{
for (j=0; j < N; j++){ /* loop L2 */

for (k=0; k < N; k++){
. . . = A 2[i-1][k];
. . .;

}
}

}

{
for (j=0; j < N; j++){ /* loop L3 */

for (k=0; k < N; k++){
A 3[j][k] = . . .;
. . .;

}
}

}
end par
/* update A 2 */
for (k=0; k < N; k++){

A 2[i][k] = A 3[i][k];
}

}
(a) Transformed code with (b) Transformed code with

partial replication full replication

Fig. 2. Transformed example computation

In addition, the implementation must update the arrays to ensure data consis-
tency. While updating complete arrays is a safe and conservative approach, in
actuality, only array elements that correspond to loop-carried true-dependences
need to be updated. In our example and given that the array section written by
L3 is read only by L2 in the next iteration of the i loop, the implementation only
needs to update the array A 2 associated with L2 and not A 1 associated with
L1. In other words the definition of the array row written by L3 reaches L2 but
not L1. Figure 2(b) depicts the transformed code after the replication of these
arrays and the corresponding concurrent execution is illustrated in figure 1(c).

While the inclusion of a copy operation is likely to decrease performance
benefits of such transformations in a classical architecture, in the context of
configurable architectures, it has little if any impact on overall execution time.
When the implementation of the computation in L3 has to issue a write operation
to a specific memory module with a configurable number of read and write ports,
one can specify a multi-port write operation to occur synchronously to many
memory modules without any performance penalty.

Array Replication to Increase Parallelism 67

This example illustrates the kind of computation the array privatization and
replication analysis described in this paper is designed to handle. First, we focus
on non-perfectly nested loops with intra-iteration anti-dependences and true-
dependences to recognize computations that can execute concurrently by the
introduction of one copy to the loop nest that modifies sections of an array.
These values must then be copied back into the original array or other copies
at the end of the execution of the parallel code region. Second, we introduce
array copies to eliminate memory contention during the concurrent execution of
multiple loop nests, thereby eliminating memory contention by exploiting the
memory bandwidth available in architectures with configurable storage units.

3 Compiler Analysis

We now describe the compiler analysis and basic abstractions used to determine
the opportunities for array replication with the goal of executing loop nests con-
currently while reducing memory contention caused by accessing shared arrays.
In this section we focus on imperfectly nested loops that manipulate array refer-
ences. Whereas our analysis can be very precise for arrays that have affine array
access functions, it can also handle, with loss of precision, references that are
very irregular, i.e., array-based indirect accesses.

3.1 Basic Abstractions and Auxiliary Functions

This analysis focuses on imperfectly nested loops where the outermost loops i1
through ik in the nest are perfectly nested. The ik loop in the nest has a loop
body that consists of a sequence of loop nests, each of which is a perfectly nested
loop as well. We name the ik as the control loop and build a control-flow-graph
CFG corresponding to its body where each node corresponds to a loop nest. For
the example in section 2, the CFG is a linear sequence of loop nests L1 through
L3, with loop i as the control loop. The corresponding CFG and dependences
between the nodes are illustrated in figure 3.

For each loop nest, corresponding to a node nk in the CFG, we define the
upwards-exposed read and write regions for a given array A denoted by ER(A, nk)
and WR(A, nk) respectively. The accessed array region is described by a set of
linear inequalities. Given that each loop nest may be enclosed by a control loop,
the corresponding dimension in the linear inequality will consist of symbolic
information. A simple, yet effective implementation restriction is to limit the
analysis to loops with single-induction variable affine subexpressions making the
presence of index variables of the control loop simple. Figure 3 depicts the CFG
of the control loop for the example in section 2, along with the relevant exposed-
read and write region abstractions for the array A.

Using these abstractions, the compiler can compute data dependences be-
tween nodes of the CFG uncovering anti-, input-, output- and true-dependences
by determining if the intersection between ER(A, ni) and WR(A, nj) between nodes
ni and nj corresponding to the same array are non-empty. For instance, an
anti-dependence exists between loops ni and nj due to array variables A iff

68 H.E. Ziegler, P.L. Malusare, and P.C. Diniz

Loop 1

Loop 2

Loop 3

= { i-1 < d0 < i-1, 0 < d1 < N-1}

= { }

= { }

= { }

post dominates { , }

{

{

{
WRA

ER A

WRA

ER A

WRA

ER A

= { i < d0 < i , 0 < d1 < N-1}

= { i < d0 < i , 0 < d1 < N-1}

d (,) = <0>
anti

d (,) = <1>

d (,) = <1>

n1 n2

inp
n1 n2

true
n3 n2

n3 n1 n2

n3

n3

n2

n2

n1

n1

Fig. 3. Control flow graph and dependence information for the example code

{WR(A, ni) ∩ ER(A, nj) with i > j} 	= ∅. In some cases the intersection will
yield symbolic variables corresponding to the loops of the nest and the depen-
dence test must conservatively assume dependence. In addition, we also define
a dependence distance for each dependence type. For the example in section 2,
there is a loop-carried true-dependence on the control loop i with a distance of
1 between the nodes corresponding to the loops L2 and L3 since L3 writes the
ith row of the array A which is read by L2 on the subsequent iteration of i.

3.2 Algorithm for Detecting Replication

Using the abstractions for data accesses, ER and WR, as well as the δ data de-
pendence distance information, we now describe a compiler algorithm that de-
termines opportunities for parallel execution of the loop nests that make up the
body of the control loop. The algorithm also determines which arrays can be
replicated to mitigate memory contention resulting from concurrent execution.

The algorithm, shown in figure 4, is structured into 5 main steps. In the first
step the algorithm extracts the control loop i and the CFG corresponding to
the enclosed loops. In the second step, for each node nk, the algorithm computes
ER and WR for each array variable A. In step three, the algorithm computes the
dependence distances between every pair of nodes. In step four, the algorithm
determines the opportunities for concurrent execution of the nodes within the
same iteration of the i loop. The basic idea of this step is to identify a straight-
line sequence of nodes such that the last node of the sequence exhibits an anti-
dependence with the other nodes but there are no true- or output-dependences
for that same iteration.2 The set of nodes that meet this data dependence and
control dependence criteria are gathered in a parallel region corresponding to
the new node named parallel(nk). The compiler creates an array copy corre-
sponding to this parallel node in order to eliminate anti-dependences and inserts

2 Extending this simple algorithm to regions of the CFG with control-flow leads to
several code generation complications.

Array Replication to Increase Parallelism 69

Step 1. Extract control loops and coarse-grain control flow graph
extract control loops i0, . . . , ik and CFG;

Step 2. Determine exposed read and write information for each loop
for all nodes ni ∈ CFG

for all arrays A ni manipulates
compute ER(A, ni) and WR(A, ni);

Step 3. Compute dependence types and distances
for all pairs of nodes (ni,nj) ∈ CFG

compute δtype(ni, nj) <, =, > 〈x〉 where x is distance

Step 4. Identify parallel regions
for all nodes nk ∈ CFG s.t. WR(A, nk) �= ∅ do

if(numPreds(nk) > 1) then
parallel(nk) = ∅;
continue;

R = {nk};
n = preds(nk);
while (n �= entry OR numSuccs(n) = 1) do

if ((ni �∈ R) AND (ER(A, ni) �= ∅) AND (δtrue(ni, nk) = 〈0〉)) then
R = R + {ni}

end if;
end while;
parallel(nk) = R;
insert fork before firstNode(parallel(nk));
insert join barrier after lastNode(parallel(nk));
end for;

end for;

Step 5. Reduce contention by replicating arrays
for all parallel regions of CFG do

// Partial Replication case
insert update array variable A for WR(A, nk);
if (FullReplication) then

selectNumberCopies(parallel(nk));
for all nj ∈ parallel(nk) do

update copy of A that has δtrue(nj , nk) > 〈0〉;
for all arrays B replicate array for which δinput(ni, nj) = 〈0〉;

end for all;
end if;

end for;

Fig. 4. Parallelism detection and replication algorithm

synchronization code at the beginning and end of the parallel region so that
values in the original array are updated with the value generated by nk.

In step five, the algorithm identifies which array should be replicated for each
parallel region. In this step the algorithm must decide how many copies to in-
sert for each array variable and which copies need to be updated due to true-
dependences across iterations of the control loop. In its simplest form, partial repli-
cation, there is a single copy for each parallel region that corresponds to a single
node writing to an array variable. In the full replication variation, the algorithm
generates one copy per each node that reads the array variable as well. Rather
then updating all array copies, the algorithm only updates copies using the reach-
ing definitions across loop iterations which is captured by loop-carried dependence
information [13]. To this effect the algorithm determines which nodes, and for each
array variable, exhibit a loop-carried true dependence, at the control-loop level.
The particular value of the dependence distance of the control loop indicates the

70 H.E. Ziegler, P.L. Malusare, and P.C. Diniz

number of iterations across which the values need to be updated in the original ar-
ray location or copies. For the shortest distance of 1, the values must be updated
at the end of the current iteration to be used in the subsequent iteration. How-
ever, if the distance is longer, one can delay the update and overlap it with the
execution of another iteration thereby hiding its cost.

In this description we have statically determined which nodes of the CFG
and therefore which loop nests operate on copies of the array using an external
function, selectCopies(parallel(nk)). We foresee a more sophisticated algo-
rithm, possibly dynamic, in which the need to replicate is selected at run-time
depending on execution conditions.

3.3 Granularity of Replication

The algorithm described above can be augmented to allow the compiler to un-
cover opportunities for fine-grain replication by observing the order (in terms of
array dimensions) in which multiple loop nests access the same array variables.
In the example in figure 1 during parallel execution all loop nests access shared
arrays in the same order, therefore array replication can occur at the finest gran-
ularity of an element.3 Then concurrently executing loop nests only require 1
element of replicated data in the array copy. As soon as a loop nest has finished
processing a given element, another element of the array can be copied. In ad-
dition the updates for copies can also proceed at a finer granularity as long as
the iterations of the various concurrent loops execute synchronously. A similar
analysis approach has been developed in the context of choosing the granularity
of multiple communicating computations executing in a pipelined fashion [13].

In addition to requiring less storage space, at an increase in synchronization
cost, this strategy also allows for the updates of copies to be executed concur-
rently with the parallel execution of the loop nests with the proper synchroniza-
tion. This strategy reduces the execution time overhead of copy updating and
substantially reduces the storage overhead.

The presence of irregular data access patterns, i.e., non-affine does not pose
a fundamental problem for the analysis outlined here. Rather then being able
to determine exactly the array sections that need to be replicated in the case
of a finer-grain synchronization, the analysis settles for replication at the next
computational level at which the irregular data access pattern has been absorbed
in a specific array dimension.

4 Experimental Results

We now describe the experimental methodology and results for the manual ap-
plication of the analysis and program transformations to a set of kernels.

3 The finest granularity may not be the best choice as additional execution time over-
head might not be amortized over the small data size.

Array Replication to Increase Parallelism 71

4.1 Methodology

We applied the analysis algorithm described in section 3 and evaluated the ben-
efits and drawbacks using 3 synthetic kernels hist, bic and lcd.

The hist kernel is composed of 3 nested loops inside a single control loop with
a total of 15 lines of C code. Each of the inner loop nests in hist manipulates
3 distinct array variables exhibiting anti-dependences among the last loop nest
and the first two nests. There is a true dependence between the first and second
loop nests preventing them from being executed concurrently even when anti-
dependences are removed by replication. Nevertheless, the second and third loop
nests can be executed concurrently.

The bic kernel is composed of 4 loop nests inside a single control loop with
a total of 50 lines of C code. Each of the inner loop nests manipulates 4 array
variables. This kernel exhibits intra-iteration anti-dependences among the four
loop nests and an output dependence between the last two nests. Replicating a
single array variable, however, will enable the concurrent execution of the first
three loop nests.

The lcd kernel is composed of 3 loop nests inside a single control loop with
a total of 20 lines of C code. Each of the inner loop nests manipulates 2 array
variables. This kernel exhibits only intra-iteration anti-dependences among the
last loop nest and the first two loop nests allowing the three loop nests to be
executed concurrently via replication of a single array variable.

After we apply the analysis outline in section 3, we manually translate each
of these kernels into behavioral VHDL and simulate the execution of the control
loop using the MonetTM [7] behavioral synthesis tool. From this simulation, we
obtain the execution time of each loop nest, in clock cycles at a given frequency,
assuming each loop nest executes sequentially. Using the number of clock cycles
obtained via the Monet simulation, we then use a simple discrete event simulator
to determine the parallel execution time when one or more of the arrays have
been replicated, thereby allowing for concurrent execution as well as reduced
memory contention. This simulator allows us to determine the waiting time of
each loop nest in the control loop as well as the overall percentage of time
the execution spends stalled for memory operations. In our experiments we did
not consider software pipelining execution techniques as they further increase
the memory contention thereby skewing the replication results to be even more
favorable to the application of the technique presented here. In these results we
assume that every RAM is dual ported, with a one read and one write port
that can be accessed in parallel and assigned the latency of every read and write
operation to be 3 clock cycles.

4.2 Results

We now describe the results in terms of execution time reduction due to par-
allelism and the impact on memory space usage for each kernel. The original
version is simply the kernel executing in a sequential fashion without any repli-
cation or parallel execution. The partial replication version corresponds to the
introduction of array copies for eliminating anti-dependences. In this version

72 H.E. Ziegler, P.L. Malusare, and P.C. Diniz

parallel loops may still access shared data. Finally, the full replication version
includes copies of the array variables to decrease memory contention.

Table 1 summarizes the results in terms of execution time for each kernel
and each analysis variation. For the partial and full replication versions, we
have included the cost of performing the update operations after the parallel
regions execute. The table indicates the amount of time each transformed kernel
spends doing computation (comp. columns), updating the copies if any (update
columns), stalling for memory (stall columns) and the overall percentage reduc-
tion (red. columns) of the total execution time taking into account the copy
operations which execute sequentially after the parallel region executes.

Table 1. Execution time results (cycles in thousands)

Kernel Original Code Partial Replication Full Replication
comp. update total stall red. comp. update total stall red. comp. update total stall red.

% % %

hist 1.86 0 1.86 0 – 1.29 0.07 1.36 0 26.9 1.29 0.07 1.36 0 26.9

bic 131.1 0 131.1 0 – 77.8 4.11 81.9 36.9 37.5 65.55 4.11 69.66 0 46.8

lcd 61.44 0 61.44 0 – 49.15 4.10 53.25 24.58 13.3 24.57 4.10 28.68 0 53.3

As can be seen, there is a sharp decrease in the execution time in the partial
replication code versions due to parallel execution ranging from 13% to 37%.
This reduction simply reflects the concurrent execution of loop nests as revealed
by comparing the values in the comp. columns for the original and partial repli-
cation versions. The results for the partial replication versions also reveal the
opportunity to reduce execution time since the stall time values are substantial
in the case of bic and lcd. For hist there is no stall time in the partial repli-
cation version given that only two loop nests execute concurrently and one of
them updates a local copy. By aggressively replicating data in the full replication
versions, the execution time is subsequently reduced leading to overall speedups
between 1.37 and 2.1 over the original code version.

Table 2 depicts the space requirements for each code version. For each ker-
nel and respective code version, we describe the number and size (in terms of
number of array elements) the code uses along with the total space in bytes and
percentage increase over the original code version.

Reflecting the opportunity for replication, the space requirements increase
monotonically between the partial and full replication code versions. In the case
of the lcd and hist kernels there is a substantial increase in memory usage close
to 100%. While this increase may seem extreme, we note that these figures are
biased by the fact that we do not take into account other kernel data structures.
This effect is apparent in the bic kernel where due to the fact that this kernel
manipulates a larger number of arrays that are not replicated, the percentage
increase of space requirements is much smaller.

Array Replication to Increase Parallelism 73

Table 2. Space requirements results

Kernel Original Code Partial Replication Full Replication
Array Total Size Incr. Array Total Size Incr. Array Total Size Incr.
Info (KBytes) (%) Info (KBytes) (%) Info (KBytes) (%)

hist 1 × (64 by 64) 17.15 — 2 × (64 by 64) 33.56 95.5 2 × (64 by 64) 33.56 95.5
3 × (64) 3 × (64) 3 × (64)

bic 6 × (64 by 64) 98, 30 — 7 × (64 by 64) 114.7 16.7 10 × (64 by 64) 163.8 66.7

lcd 2 × (64 by 64) 32.77 — 3 × (64 by 64) 49.15 50.0 4 × (64 by 64) 65.54 100.0

4.3 Discussion

These preliminary results indicate that the execution overhead of updating array
copies can be negligible, allowing full exploitation of the concurrent execution
performance benefits. The results also reveal that memory contention, even with
a small number of concurrent tasks can be substantial. In this scenario, the fully
replicated variation allows for the elimination of memory contention, and further
improve execution performance. Overall fully replicated code versions achieve
speedups between 1.4 and 2.1 with a maximum increase in memory usage by a
factor of 2.

Although there are other execution techniques, such as pipelining, these results
reveal that using replication techniques a compiler can eliminate anti-dependences
enabling substantial increases in execution speed at modest increases in mem-
ory space requirements. This experience reveals that replication can be a valuable
technique for parallel performance when memory space is not at a premium.

5 Related Work

In this section we discuss related work in the areas of array data-flow analysis,
privatization, storage reuse and replication.

Array Privatization/Renaming and Data-flow Analysis. Array privati-
zation determines that a variable assigned within the loop is used only in the
same iteration in which it is assigned [4,6]. Renaming is designed to allow for
concurrent operations that have output and anti-dependences but where there
is no flow of values between statements of a loop nest. It has been used mainly
for scalar variables as for arrays the additional memory costs make it very un-
profitable for traditional high-end architectures. Array data-flow analysis [3,10]
focuses on data dependence analysis that is used to determine the privatization
requirements as well as the conditions for parallelization.
Replication for Shared Memory Multiprocessor Systems. Many compil-
ers targeting shared memory systems replicate data to enable concurrent read
accesses [1] and further [8] investigates adaptive replication in order to reduce
synchronization overheads that may ultimately degrade performance.

74 H.E. Ziegler, P.L. Malusare, and P.C. Diniz

Memory Parallelism. There have been many approaches to improve memory
parallelism. In particular, for FPGAs, [9] introduces a novel data and code trans-
formation called custom data layout. After applying scalar replacement to reduce
the number of memory accesses, this transformation is applied to partition the
remaining array accesses across available memories.

The approach described in this paper differs from these efforts in many re-
spects. First, and unlike traditional privatization analyses, we relax the condi-
tions for privatization allowing anti-dependences both within the same iteration
as well as across iterations of the control loop. Array renaming is the tech-
nique used in our first transformation to expose concurrency across multiple
loop nests[2]. We augment this transformation with replication (or copying) to
increase the memory bandwidth and hence eliminate contention. Despite the
similarities our combined renaming and replication transformations allow for
values to flow across iterations of the control loop whereas simple renaming has
been used within the same loop nest. Second, data layout techniques typically
work in combination with loop-based transformations such as loop unrolling to
expose more parallel accesses when the unrolled body reveals references with
data access patterns that are disjoint in space. The transformations described
here are clearly orthogonal to these two approaches. Lastly, the approach de-
scribed here is geared towards non-perfectly nested loops where an outermost
control loop or loops need to be executed sequentially due to true loop-carried
dependences but each loop nested within can execute concurrently.

The approach described here takes advantage of the fact that configurable
architectures can mitigate several sources of replication overhead typically not
possible in traditional computing architectures. First, the number and connec-
tivity of memory units can be tailored to the exact number of array copies.
Second, the spatial nature of the execution in configurable architecture allows
the execution of the copy/update operations without substantially instruction
overhead. Furthermore it is possible to perform a single write operation to mul-
tiple memories simultaneously thereby updating more than one array copy.

6 Conclusion

Configurable architectures offer the potential for customized storage structures.
This flexibility enables the application of low overhead data replication and pri-
vatization techniques to mitigate or even eliminate memory contention issues in
concurrent loop execution where shared data are accessed. In this paper we have
presented a simple array data-flow analysis algorithm to uncover the opportuni-
ties for array replication and temporary privatization in computations expressed
as non-perfectly nested loops. The experimental results, for a set of kernels tar-
geted to commercially available FPGA devices, reveal that a modest increase in
storage for private and replicated data leads to hardware designs that exhibit
small speedups. These results make this approach feasible when chip capacity
for data storage is available.

Array Replication to Increase Parallelism 75

References

1. F. Allen, M. Burke, R. Cytron, J. Ferrante, W. Hsieh, and V. Sarkar. A Framework
for Determining Useful Parallelism. In Proc. Intl. Conf. Supercomputing, ACM,
pages 207–215, 1988.

2. R. Allen and K. Kennedy. Automatic Translation of Fortran Programs to Vector
Form. 9(4):491–542, 1987.

3. V. Balasundaram and K. Kennedy. A technique for summarizing data access and
its use in parallelism enhancing transformations. In Proc. ACM Conf. Programming
Languages Design and Implementation, pages 41–53, 1989.

4. R. Eigenmann, J. Hoeflinger, Z. Li, and D. Padua. Experience in the Automat-
icParallelization of four Perfect Benchmark Programs. In Proc. 4th Workshop
Languages and Compilers for Parallel Computing, LNCS. Springer-Verlag, 1991.

5. S. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. Taylor, and R. Laufer.
PipeRench: a coprocessor for streaming multimedia acceleration. In Proc. 26th Intl.
Symp. Comp. Arch., pages 28–39, 1999.

6. Z. Li. Array privatization for parallel execution of loops. In Proc. ACM Intl. Conf.
Supercomputing, 1992.

7. Mentor Graphics Inc. MonetTM, 1999.
8. M. Rinard and P. Diniz. Eliminating Synchronization Bottlenecks in object-based

Programs using Adaptive Replication. In Proc. Intl. Conf. Supercomputing, ACM,
pages 83–92, 1999.

9. B. So, M. Hall, and H. Ziegler. Custom Data Layout for Memory Parallelism. In
Proc. Intl. Symp. Code Gen. Opt., pages 291–302, March 2004.

10. C.-W. Tseng. Compiler optimizations for eliminating barrier synchronization. In
Proc. Fifth Symp. Principles and Practice of Parallel Programming, volume 30(8)
of ACM SIGPLAN Notices, pages 144–155, 1995.

11. P. Tu and D. Padua. Automatic Array Privatization. In Proc. 6th Workshop
Languages and Compilers for Parallel Computing, LNCS. Springer-Verlag, 1993.

12. Xilinx Inc. Virtex-II ProTM Platform FPGAs: introduction and overview, DS083-
1(v2.4.1) edition, March 2003.

13. H. Ziegler, M. Hall, and P. Diniz. Compiler-generated Communication for Pipelined
FPGA applications. In Proc. 40th Design Automation Conference, June 2003.

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339 , pp. 76 – 90, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Generation of Control and Data Flow Graphs from
Scheduled and Pipelined Assembly Code

David C. Zaretsky1, Gaurav Mittal1, Robert Dick1, and Prith Banerjee2

1 Department of Electrical Engineering and Computer Science, Northwestern University
2145 N. Sheridan Road, Evanston, IL 60208-3118

{dcz, mittal, dickrp}@ece.northwestern.edu
2 College of Engineering, University of Illinois at Chicago

851 South Morgan Street, Chicago, IL 60607-7043
prith@uic.edu

Abstract. High-level synthesis tools generally convert abstract designs
described in a high-level language into a control and data flow graph (CDFG),
which is then optimized and mapped to hardware. However, there has been
little work on generating CDFGs from highly pipelined software binaries,
which complicate the problem of determining data flow propagation and
dependencies. This paper presents a methodology for generating CDFGs from
highly pipelined and scheduled assembly code that correctly represents the data
dependencies and propagation of data through the program control flow. This
process consists of three stages: generating a control flow graph, linearizing the
assembly code, and generating the data flow graph. The proposed methodology
was implemented in the FREEDOM compiler and tested on 8 highly pipelined
software binaries. Results indicate that data dependencies were correctly
identified in the designs, allowing the compiler to perform complex
optimizations to reduce clock cycles.

1 Introduction

Traditionally, the high-level synthesis problem is one of transforming an abstract,
timing-independent specification of an application into a detailed hardware design.
High-level synthesis tools generally convert the abstract design into a control and data
flow graph (CDFG) that is composed of nodes representing inputs, outputs, and
operations. The CDFG is a fundamental component of most compilers, where most
optimizations and design decisions are performed to improve frequency, power,
timing, and area. Building a CDFG consists of a two-step process: building the
control flow graph (CFG), which represents the path of control in the design, and
building the data flow graph (DFG), which represents the data dependencies in the
design. However, when high-level language constructs are not readily available, such
as in the case where legacy code for an application on an older processor is to be
migrated to a new processor architecture, a more interesting problem presents itself,
known as binary translation. Much research has been performed on CDFG generation
from software binaries and assembly code. However, there has been very little work
on generating complete CDFGs from scheduled or pipelined software binaries. Data

 Generation of CDFGs from Scheduled and Pipelined Assembly Code 77

dependency analysis of such binaries is more challenging than that of sequential
binaries or high-level language applications.

When translating assembly codes from digital signal processors (DSPs), it is
common to encounter highly pipelined software binaries that have been optimized
manually or by a compiler. Consider the Texas Instrument C6000 DSP assembly code
for the vectorsum function in Figure 1. In this architecture, branch operations contain
5 delay slots and loads contain 4 delay slots. The | | symbol indicates the instruction is
executed in parallel with the previous instruction and the [] symbol indicates the
operation is predicated on an operand. Clearly, the vectorsum code is highly
pipelined; each branch instruction is executed in consecutive iterations of the loop.
Moreover, the dependencies of the ADD instruction in the loop body change with
each iteration of the loop: A6 is dependent on the load at instruction 0x0004 in the
first iteration of the loop, A6 is dependent on the load at instruction 0x000C in the
second iteration of the loop, etc. Generating a CDFG to represent this pipelined
structure is very challenging. In doing so, one must consider the varying data
dependencies and also ensure that each branch is executed at its proper time and
place. Branch instructions that fall within the delay slots of other branch instructions
complicate the structure of the control flow graph. For instance, when the predicate
condition, A1, on the branch instruction in the loop body is false, the previous branch
instructions that were encountered during the execution sequence will continue to
propagate and execute. This may occur within the loop, or possibly after exiting the
loop. More complex software pipelines may contain branch instructions with various
targets, producing multiple exit points in a CDFG block.

0x0000 VECTORSUM: ZERO A7

0x0004 LDW *A4++, A6 ; 4 delay slots

0x0008 || B LOOP ; 5 delay slots

0x000C LDW *A4++, A6

0x0010 || B LOOP

0x0014 LDW *A4++, A6

0x0018 || B LOOP

0x001C LDW *A4++, A6

0x0020 || B LOOP

0x0024 LDW *A4++, A6

0x0028 || B LOOP

0x002C || SUB A1, 4, A1

0x0030 LOOP: ADD A6, A7, A7

0x0034 || [A1] LDW *A4++, A6

0x0038 || [A1] SUB A1, 1, A1

0x003C || [A1] B LOOP ; branches executes here

0x0040 STW A7, *A5

0x0044 NOP 4

Fig. 1. TI C6000 assembly code for a pipelined vectorsum procedure

78 D.C. Zaretsky et al.

In this paper, we present a methodology for generating CDFGs from scheduled and
pipelined assembly code. This process consists of three stages: generating a control
flow graph, linearizing the assembly code, and generating the data flow graph. We use
the methods described by Cooper et al. [6] for generating a CFG from scheduled
assembly code. In addition, we extend their work to support more complex
architectures that employ parallel instruction sets and dynamic branching. We also
present a linearization process, in which pipelined structures are serialized into linear
assembly. This allows for proper data dependency analysis when constructing data
flow graphs. This methodology was incorporated in the FREEDOM compiler, which
translates DSP assembly code into hardware descriptions for FPGAs. The techniques
described in this paper were briefly discussed in previous work [11,19]; here we
present a more refined and elegant approach in greater detail.

The remainder of this paper is structured as follows: Section 2 discusses related
work in the area of CDFG generation from assembly code. Section 3 provides an
overview of the FREEDOM compiler infrastructure and its intermediate language
architecture. Section 4 describes our method of generating a CDFG from scheduled
and pipelined assembly code in detail. Finally, Sections 5 and 6 present experimental
results and conclusions, respectively.

2 Related Work

There has been a great deal of fundamental research and study of binary translation
and decompilation. Cifuentes et al. [3,4,5] described methods for converting assembly
or binary code from one processor’s instruction set architecture (ISA) to another, as
well as decompilation of software binaries to high-level languages. Kruegel et al. [9]
described a technique for decompilation of obfuscated binaries. Stitt and Vahid
[16,17] reported work on hardware-software partitioning of software binaries. Levine
and Schmidt [10] proposed a hybrid architecture called HASTE, in which instructions
from an embedded processor are dynamically compiled onto a reconfigurable
computational fabric using a hardware compilation unit. Ye et al. [18] developed a
similar compiler system for the CHIMAERA architecture.

Control and data flow analysis is essential to binary translation. Cifuentes et al. [5]
described methods of control and data flow analysis in translating assembly to a high-
level language. Kastner and Wilhelm [8] reported work on generating CFGs from
assembly code. Decker and Kastner [7] described a method of reconstructing a CFG
from predicated assembly code. Amme et al. [1] presented work on a memory aliasing
technique, in which data dependency analysis is computed on memory operations
using a value-based analysis and modified version of the GCD test [2].

There has been very little work on generating CDFGs from highly pipelined
software binaries in which branch instructions appear in the delay slots of other
branch instructions. The most comprehensive work on building CFGs from pipelined
assembly code was reported by Cooper et al. [6]. However, their method does not
consider the complexities of modern processor architectures that utilize instruction-
level parallelism and dynamic branching techniques. In this paper, we address these
issues and present methods to handle CDFG generation from software binaries that
feature these sophisticated scheduling techniques.

 Generation of CDFGs from Scheduled and Pipelined Assembly Code 79

3 Overview of the FREEDOM Compiler

This section provides a brief overview of the FREEDOM compiler infrastructure, as
shown in Figure 2. The compiler was designed to have a common entry point for all
assembly languages. Towards this effort, the front-end uses a description of the source
processor’s ISA in order to configure the assembly language parser. The ISA
specifications are written in SLED from the New Jersey Machine-Code toolkit
[14,15]. The parser generates a virtual assembly representation called the Machine
Language Syntax Tree (MST), which has a syntax similar to the MIPS ISA. The MST
is generic enough to encapsulate most ISAs, including those that support predicated
and parallel instruction sets. All MST instructions are three-operand, predicated
instructions in the format: [pred] op src1 src2 dst. A CDFG is generated from the
MST, where optimizations, scheduling, and resource binding are preformed. The
CDFG is then translated into a high-level Hardware Description Language (HDL) that
models processes, concurrency, and finite state machines. Additional optimizations
and customizations are performed on the HDL for the target architecture. This
information is acquired via the Architecture Description Language (ADL) files. The
HDL is translated directly to RTL VHDL and Verilog to be mapped onto FPGAs, and
a testbench is generated to verify that the output is correct.

DSP Assembly
Language Semantics

DSP
Assembly Code

DSP
Binary Code

Parser

MST

CDFG

HDL

Architecture
Description
Language

RTL VHDL RTL Verilog Testbench

Optimizations, Linearization,
and Procedure Extraction

Optimizations,
Loop Unrolling, Scheduling,

and Resource Binding

Optimizations,
Customizations

DSP Assembly
Language Semantics

DSP
Assembly Code

DSP
Binary Code

Parser

MST

CDFG

HDL

Architecture
Description
Language

RTL VHDL RTL Verilog Testbench

Optimizations, Linearization,
and Procedure Extraction

Optimizations,
Loop Unrolling, Scheduling,

and Resource Binding

Optimizations,
Customizations

Fig. 2. Overview of the FREEDOM compiler infrastructure

The fixed number of physical registers on a processor necessitates advanced
register reuse algorithms in compilers. These optimizations often introduce false
dependencies based on register names, resulting in difficulties when determining data
dependencies for scheduled or pipelined binaries and parallel instruction sets. To
resolve these discrepancies, each MST instruction is assigned a timestep, specifying a
linear instruction order, and an operation delay, equivalent to the number of execution
cycles. Each cycle begins with an integer-based timestep, T. Each instruction n in a
parallel instruction set is assigned the timestep Tn = T + (0.01 * n). Assembly
instructions may be translated into more than one MST instruction. Each instruction m

80 D.C. Zaretsky et al.

in an expanded instruction set is assigned the timestep Tm = Tn + (0.0001 * m). The
write-back time for the instruction, or the cycle in which the result is valid, is defined
as wb = timestep + delay. If an operation delay is zero, the resulting data is valid
instantaneously. However, an operation with delay greater than zero has its write-back
time rounded down to the nearest whole number, or floor(timestep), resulting in valid
data at the beginning of the write-back cycle.

Figure 3 illustrates how the instruction timestep and delay are used to determine
data dependencies in the MST. In the first instruction, the MULT operation has one
delay slot, and the resulting value in register A4 is not valid until the beginning of
cycle 3. In cycle 2, the result of the LD instruction is not valid until the beginning of
cycle 7, and the result of the ADD instruction is not valid until the beginning of cycle
3. Consequently, the ADD instruction in cycle 3 is dependant upon the result of the
MULT operation in cycle 1 and the result of the ADD operation in cycle 2. Likewise,
the first three instructions are dependant upon the same source register, A4.

TIMESTEP PC OP DELAY SRC1 SRC2 DST

1.0000 0X0020 MULT (2) $A4, 2, $A4

2.0000 0X0024 LD (5) *($A4), $A2

2.0100 0X0028 ADD (1) $A4, 4, $A2

3.0000 0X002c ADD (1) $A4, $A2, $A3

Fig. 3. MST instructions containing timesteps and delays for determining data dependencies

4 Building a Control and Data Flow Graph

This section presents our methodology for generating a CDFG from scheduled and
pipelined assembly code. This process consists of three stages: generating a control
flow graph, linearizing the assembly code, and generating a data flow graph.

4.1 Generating a Control Flow Graph

Cooper et al. [6] presented a three-step process for building a CFG from scheduled
assembly code, which was used as the first stage in the proposed work. The first step
of their algorithm partitions the code at labels (entry points) into a set of basic blocks.
During this process, they assume all entry points are complete, and no branch targets
an instruction without a label. The second step adds edges between basic blocks in the
CFG to represent the normal flow of control. Here, they only consider non-pipelined
branch instructions, or those that do not appear within the delay slots of other branch
instructions. Pipelined branches are handled in the third step using an iterative
algorithm that simulates the flow of control for the program by propagating branch
and counter information from block to block. Their method is shown to terminate in
linear time for CFGs containing only branches with explicit targets. Figure 4
illustrates the CFG generated for the vectorsum procedure in Figure 1.

 Generation of CDFGs from Scheduled and Pipelined Assembly Code 81

0x0000 VECTORSUM: ZERO A7
0x0004 LDW *A4++, A6
0x0008 || B LOOP
0x000C LDW *A4++, A6
0x0010 || B LOOP
0x0014 LDW *A4++, A6
0x0018 || B LOOP
0x001C LDW *A4++, A6
0x0020 || B LOOP
0x0024 LDW *A4++, A6
0x0028 || B LOOP
0x002C || SUB A1, 4, A1

0x0030 LOOP: ADD A6, A7, A7
0x0034 || [A1] LDW *A4++, A6
0x0038 || [A1] SUB A1, 1, A1
0x003C || [A1] B LOOP

0x0040 STW A7, *A5

0x0044 NOP 1

0x0044 NOP 1

0x0044 NOP 1

0x0044 NOP 1

0x0000 VECTORSUM: ZERO A7
0x0004 LDW *A4++, A6
0x0008 || B LOOP
0x000C LDW *A4++, A6
0x0010 || B LOOP
0x0014 LDW *A4++, A6
0x0018 || B LOOP
0x001C LDW *A4++, A6
0x0020 || B LOOP
0x0024 LDW *A4++, A6
0x0028 || B LOOP
0x002C || SUB A1, 4, A1

0x0030 LOOP: ADD A6, A7, A7
0x0034 || [A1] LDW *A4++, A6
0x0038 || [A1] SUB A1, 1, A1
0x003C || [A1] B LOOP

0x0040 STW A7, *A5

0x0044 NOP 1

0x0044 NOP 1

0x0044 NOP 1

0x0044 NOP 1

Fig. 4. Control flow graph for vectorsum

In practice, the assumptions made in their work pose some difficulties in
generating CFGs for some modern processor architectures. For instance, they assume
all labels and branch targets are well defined. However, some disassemblers limit the
labels to a procedure level only and refrain from including them locally within
procedure bounds. In some architectures, registers may be used in branch targets, as in
the case of a long jump where a static PC value is loaded into the register prior to the
branch instruction. To handle these situations, we introduce a pre-processing step that
determines all static branch targets and adds the respective labels to the instructions.
Some architectures may also support dynamic branch targets, in which the destination
value may be passed to a register as a function parameter, such as with procedure
prologues and epilogues. In these situations, we take an optimistic approach by
assuming the dynamic branch operation is a procedure call. The branch is temporarily
treated as a NOP instruction when building the initial CFG to allow the control flow
to propagate through. We rely on post-processing steps, such as alias analysis and
procedure extraction to determine the possible destinations [12]. The CFG is then
regenerated with the newly identified destination values.

Many of today’s processor architectures utilize instruction-level parallelism to
achieve higher performances, which complicates generation of CFGs. For instance, a
branch destination may have a target within a parallel set of instructions. This would

82 D.C. Zaretsky et al.

break up the control flow at intermediate points within a basic block, creating
erroneous data dependencies. In Figure 5, the ADD, SUB, and SRL instructions are
scheduled in parallel. However, if the predicated branch is taken, the ADD instruction
is not executed. Consequently, the entry label on the SUB instruction partitions the
control flow in the middle of the parallel set, placing the latter two instructions in a
separate basic block. This forces the A7 operand in the SRL instruction to use the
resulting value from the ADD instruction in the previous block. To account for such
discrepancies, we introduce a procedure that checks for entry points (labels) within a
parallel set of instructions. If such an entry point exists, the instructions falling below
the entry point are replicated and added to the top portion of the parallel set. Figure 6
shows the MST code after instruction replication. The SUB and SRL instructions
have been replicated and a branch operation has been added to jump over the
replicated code segment. We rely on subsequent optimizations in the CDFG, such as
code-hoisting [13], to eliminate superfluous operations.

0x0800 [A1] B L1

0x0804 NOP 5

0x0808 ADD A4, A7, A7

0x080C L1: || SUB A4, 1, A4

0x0810 || SRL A4, A7, A8

0x0814 L2: ...

Fig. 5. Branch target inside a parallel instruction set

10.0000 0x0800 [A1] GOTO (6) L1

11.0000 0x0804 NOP (5) 5

16.0000 0x0808 ADD (1) $A4, $A7, $A7

16.0100 0x080C SUB (1) $A4, 1, $A4 ; replicated SUB

16.0200 0x0810 SRL (1) $A4, $A7, $A8 ; replicated SRL

16.0300 0x0810 GOTO (0) L2 ; added ‘branch-over’

17.0000 0x080C L1: SUB (1) $A4, 1, $A4

17.0100 0x0810 SRL (1) $A4, $A7, $A8

18.0000 0x0814 L2: ...

Fig. 6. MST representation with instruction replication

4.2 Event-Triggered Operations

In the previous section, a methodology for generating a CFG from pipelined assembly
code was presented. The CFG represents the flow of control in the program via edges
connecting basic blocks in the graph. However, the CFG does not inherently contain
any information regarding propagation delay. In translating pipelined or scheduled
assembly code from one architecture to another, it is essential that the compiler
capture the propagation delay and data dependencies correctly. Failure to do so may
result in false data dependencies, incorrect data value propagation, and possibly an ill-
terminated or non-terminating program. Referring back to the vectorsum procedure in

 Generation of CDFGs from Scheduled and Pipelined Assembly Code 83

Figure 1, we find that the main loop body will execute an unknown number of times
until the predicate condition on the branch instruction is false, namely, when A1 = 0.
At that point, the loop will continue to iterate for 5 more cycles until the branches
within the pipeline have completed. During this time, data is still computed and
propagated through the loop. Should the compiler not consider the propagation delay
on the branch instructions, the loop may terminate early, producing erroneous data.
Similarly, failure to consider the propagation delay in the pipelined load instructions
will also result in erroneous data.

As a solution, we introduce the concept of an event-triggered operation, composed
of a trigger and an execute stage. An event trigger is analogous to the read stage in a
pipelined architecture, where the instruction is fetched and register values are read; an
event execute is analogous to the write-back stage in the pipeline, during which the
values are written to the destination register or memory. The event triggering and
execution stages are offset by the delay of the operation.

An operation event is encapsulated in the MST language using a virtual shift
register with a precision d, corresponding to the number of delay cycles for the
operation. Virtual registers are temporary operands created by the compiler that do
not exist within the framework of the source architecture’s physical registers. In
practice, this results in the addition of a very small shift register since most ISAs
generally have no more than 4-6 delay slots in any given multi-cycle instruction.
When a pipelined instruction is encountered during the normal flow of the program,
an event is triggered by assigning a ‘1’ to the highest bit (d-1) in the shift register. In
each successive cycle, a shift-right logical operation is performed on the register. The
event is executed after d cycles, when a ‘1’ appears in the zero bit of the shift register.

1 1 0 0 0 0

1 1 1 0 0 0

1 1 1 1 0 0

1 1 1 1 1 0

0 1 1 1 1 1

0 0 1 1 1 1

Event 1 Triggered

Event 2 Triggered

Event 3 Triggered

Event 4 Triggered

Event 5 Triggered

Event 1 Executed

Event 2 Executed

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Iteration 6

Iteration 7

0 0 0 0 0 1 Event 5 ExecutedIteration 10

Bit 5 Bit 0SRL

1 0 0 0 0 0

1 1 0 0 0 01 1 0 0 0 01 1 0 0 0 0

1 1 1 0 0 01 1 1 0 0 01 1 1 0 0 0

1 1 1 1 0 01 1 1 1 0 01 1 1 1 0 0

1 1 1 1 1 01 1 1 1 1 01 1 1 1 1 0

0 1 1 1 1 10 1 1 1 1 10 1 1 1 1 1

0 0 1 1 1 10 0 1 1 1 10 0 1 1 1 1

Event 1 Triggered

Event 2 Triggered

Event 3 Triggered

Event 4 Triggered

Event 5 Triggered

Event 1 Executed

Event 2 Executed

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Iteration 6

Iteration 7

0 0 0 0 0 10 0 0 0 0 10 0 0 0 0 1 Event 5 ExecutedIteration 10

Bit 5 Bit 0SRL

1 0 0 0 0 01 0 0 0 0 01 0 0 0 0 0

Fig. 7. Event-triggering for a pipelined branch operation in a loop body

Figure 7 illustrates the event triggering for the branch operation in the loop body of
the vectorsum procedure, which has an operation delay of 6 cycles. In the first
iteration of the loop, an event is triggered when the branch instruction is encountered
by setting the high bit of shift register. In each subsequent cycle, the register is shifted
right while a new event is triggered. After six iterations, event 1 is executed and the

84 D.C. Zaretsky et al.

branch to LOOP is taken. This is followed by subsequent event executions through
the tenth iteration of the loop, until the pipeline in the shift register has been cleared.

The technique described here is utilized in the linearization process for pipelined
operations as discussed in the following sections.

4.3 Linearizing Pipelined Operations

This section describes the linearization process for pipelined operations. The concept
of this process is to serialize the pipelined assembly instructions into linear assembly,
such that the each pipelined instruction has a well-defined data flow path. The process
for linearizing computational operations (arithmetic, logical, memory, etc.) and
branch operations are described independently, as they function differently in pipeline
architectures. The linearization process assumes that the CFG is complete, i.e., no
edges will be inserted between blocks in the future. Consequently, if new edges are
added in the future, data propagation and data dependencies are not guaranteed to be
correct. To ensure its completeness, we force the algorithm to cover all possible
control paths when generating the CFG. This is accomplished in a preprocessing pass
that ensures all branch instructions in the program are predicated. A constant
predicate of ‘1’, whose condition always resolves to true, is added to all non-
predicated branch instructions. This forces the branch to be treated as a conditional,
and allows the control flow to propagate to the fall-through block. Subsequent
optimizations, such as dead-code elimination [13], will remove any resulting
extraneous operations.

4.3.1 Linearizing Computational Operations
In the linearization process for computational operations, multi-cycle instructions are
serialized into a well-defined data flow path along the pipeline. In order to accomplish
this task, virtual registers are introduced to break multi-cycle instructions into a
sequence of multiple single-cycle instructions. Each instruction in the sequence is
guarded by a predicate on an event-triggering register, as described above. Should the
program encounter the instruction through a path outside the normal pipeline data
flow path, the predicate will prevent the operation from executing.

The linearization process works as follows: For an instruction with n delay slots,
the original instruction is modified to write to a temporary virtual register Rn, and the
delay of the instruction is changed to a single cycle. In each of the subsequent n-1
cycles, the value is propagated through virtual registers along the pipelined data flow
path by assigning Rn-1�Rn, Rn-2�Rn-1, …, R0�R1 in sequence, where R0 is the
original register name. Each of these instructions is predicated on its respective cycle
bit of the shift register: P[n-1] through P[0]. If the end of a basic block is reached, the
linearization is propagated to the successor blocks. This approach assumes that no two
instructions are scheduled such that both have the same destination register and write-
back stages in the same cycle. This is a fair assumption, since compilers generally do
not produce code resulting in race conditions. If two or more identical instructions
have intersecting pipeline paths, redundant instructions may be avoided by tracking
the timesteps to which they have been written. We rely on optimizations, such as copy
and constant propagation [13], to remove any extraneous operations.

 Generation of CDFGs from Scheduled and Pipelined Assembly Code 85

 : :

12.000 0x000C MOVE(0) 1, $P1[4] ; LD event cycle 1

12.001 0x000C SRL(1) $P1, 1, $P1

12.002 0x000C [$P1[4]] LD(1) *mem($A4), $A6_4

 : :

13.000 0x000C SRL(1) $P1, 1, $P1 ; LD event cycle 2

13.001 0x000C [$P1[3]] MOVE(1) $A6_4, $A6_3

 : :

14.000 0x000C SRL(1) $P1, 1, $P1 ; LD event cycle 3

14.001 0x000C [$P1[2]] MOVE(1) $A6_3, $A6_2

 : :

15.000 0x000C SRL(1) $P1, 1, $P1 ; LD event cycle 4

15.001 0x000C [$P1[1]] MOVE(1) $A6_2, $A6_1

 : :

16.000 0x000C LOOP: SRL(1) $P1, 1, $P1 ; LD event cycle 5

16.001 0x0014 OR(0) $P1[0], $P2[0], $MP0

16.002 0x001C OR(0) $MP0, $P3[0], $MP1

16.003 0x0024 OR(0) $MP1, $P4[0], $MP2

16.004 0x0034 OR(0) $MP2, $P5[0], $MP3

16.005 0x000C [$MP3] MOVE(1) $A6_1, $A6 ; intersecting LDs 1-5

 : :

Fig. 8. Linearization of pipelined load (LD) instruction in the vectorsum procedure

Figure 8 illustrates the linearization process in the MST for the first pipelined LD
instruction in the vectorsum example of Figure 1. In timestep 12, an event is triggered
for the LD instruction by posting a ‘1’ to the high bit in the virtual shift register P1.
Additionally, the LD instruction is modified to write to virtual register A6_4, and the
operation delay is changed from 5 cycles to 1 cycle. In the subsequent cycles, A6_4 is
written to A6_3, A6_3 is written to A6_2, and A6_2 is written to A6_1, at which point
the linearization is propagated to the LOOP block. A6_1 is finally written to the
physical register A6 in timestep 16. Each of these move instructions is guarded by a
predicate on a P1 bit, which is right-shifted in each cycle along the same control path.
The same methodology is applied to each LD instruction in program. Although the
propagation instructions may read and write to the same register in parallel, the one-
cycle delay on each instruction enforces the correct data dependencies.

It is interesting to note that the pipelined LD instructions have intersecting paths.
As an example, all five LD instructions will have their 5th cycles intersect in the same
timestep (16), where A6 � A6_1. To avoid extraneous instructions, the propagation
instructions are merged by OR-ing their predicates, as shown in the figure.

4.3.2 Linearizing Branch Operations
Unlike computational instructions, branch instructions do not propagate data. Rather,
they trigger a change in control flow after a certain number of delay cycles. In
linearizing branch operations, only the event is propagated through the CFG, as

86 D.C. Zaretsky et al.

described above. At each branch execution point in the CFG, which can only be the
end of a basic block, a copy of the branch instruction is inserted. The branch
instruction is predicated on the event shift-register. Similar to the process above, if
two or more of the same branch instruction have intersecting paths, redundant
instructions may be eliminated by tracking the timesteps to which the instructions
have been written. Two or more of the same branch instruction that execute at the
same point can be merged by OR-ing their predicates. The original branch
instructions are replaced with NOP instructions in order to maintain the correct
instruction flow. Figure 10 illustrates the linearization process for pipelined branch
operations.

 : :

11.000 0x0008 MOVE(0) 1, $P1[5] ; branch event cycle 1

11.001 0x0008 SRL(1) $P1, 1, $P1

11.002 0x0008 NOP(1) 1 ; branch replaced with NOP

 : :

12.000 0x0008 SRL(1) $P1, 1, $P1 ; branch event cycle 2

 : :

13.000 0x0008 SRL(1) $P1, 1, $P1 ; branch event cycle 3

 : :

14.000 0x0008 SRL(1) $P1, 1, $P1 ; branch event cycle 4

 : :

15.000 0x0008 SRL(1) $P1, 1, $P1 ; branch event cycle 5

 : :

16.000 0x0008 LOOP: SRL(1) $P1, 1, $P1 ; branch event cycle 6

16.008 0x0008 OR(0) $P1[0], $P2[0], $MP0

16.009 0x0010 OR(0) $MP0, $P3[0], $MP1

16.010 0x0018 OR(0) $MP1, $P4[0], $MP2

16.011 0x0020 OR(0) $MP2, $P5[0], $MP3

16.012 0x0028 OR(0) $MP3, $P6[0], $MP4

16.013 0x003C [$MP4] GOTO(0) LOOP ; intersection branches 1-6

 : :

Fig. 9. Linearization of a pipelined branch instruction in the vectorsum procedure

4.3.3 The Linearization Algorithm
Figure 9 presents our algorithm for linearizing pipelined operations. The procedure
has the same general organization as the algorithm presented by Cooper et al. [6] for
generating CFGs. The algorithm initially creates a worklist of instruction counters for
each basic block in the CFG in lines 1-3, and then iterates through the worklist in
lines 4-25. An instruction counter is particular to a block, and holds a list of pending
instructions and a counter representing the remaining clock cycles before each
instruction is executed. To prevent redundant iterations over blocks, in lines 8-9, the
algorithm checks that the block has not seen any of the pending instruction counters
before continuing. The algorithm then iterates over the block by whole timesteps in

 Generation of CDFGs from Scheduled and Pipelined Assembly Code 87

lines 10-20. The instructions in each timestep are iterated through in lines 11-17, as
the algorithm searches in line 12 for previously unvisited pipelined instructions to add
to the instruction counter. Lines 13-15 add a counter for the branch instructions with
cycle delays greater than zero; the original branch instruction is replaced with a NOP
instruction to maintain the correct program flow. Lines 16-17 add counters for all
multi-cycle instructions whose write-back time falls outside the block. Unique event
instructions are inserted for each pending instruction in lines 18-20, as described
above; those that have completed are removed from the instruction counter list. After
iterating over the instructions within each timestep, the pending instruction counters
are decremented in line 21. At the conclusion of the iteration over timesteps in the
block, lines 22-26 propagate all pending counters to new instruction counters for each
successor block edge; the new instruction counters are added to the worklist. The
algorithm terminates once no new instruction counters are encountered by any block
and the worklist is empty. The algorithm runs in O(n) time, where n is the number of
instructions in the program, assuming a small, constant number of outgoing edges
between blocks.

 Linearize_Pipelined_Operations(CFG)
 1 worklist = empty list of InstrCounters
 2 for each basic block in CFG do
 3 add InstrCounter(block) to worklist
 4 while worklist->size() > 0 do
 5 instr_counter = worklist->front()
 6 remove instr_counter from worklist
 7 block = instr_counter->block
 8 if block has seen all live counters in instr_counter then
 9 continue
10 for each whole timestep ts in block do
11 for each instruction i in timestep ts do
12 if i has not been seen by instr_counter then
13 if i is a branch instruction and i->delay > 0 then
14 add {i:i->delay} to instr_counter
15 replace branch instruction i with NOP instruction
16 else if (i->timestep + i->delay) > block->max_time
17 add {i:i->delay} to instr_counter
18 for each counter c in instr_counter do
19 insert a unique event instruction for c in timestep ts
20 if c = 0 then remove c from instr_counter
21 instr_counter->DecrementCounters()
22 if instr_counter has live counters
23 for each successor s of block do
24 target_instr_counter = InstrCounter(s)
25 add unique live counters to target_instr_counter
26 add target_instr_counter to worklist

Fig. 10. Linearization algorithm for pipelined operations

4.4 Generating the Control and Data Flow Graph

In the previous sections we described how to build a CFG and break data
dependencies in pipelined and scheduled assembly code. In this section we combine
the two techniques to generate the complete CDFG. The procedure is described in
Figure 12, which takes a list of assembly instructions as input and returns a CDFG.
The procedure begins with a preprocessing step to ensure that all branch instructions

88 D.C. Zaretsky et al.

in the program are predicated as described in the previous section. The algorithm
constructs the CFG using Cooper’s algorithm, and then linearizes the pipelined
operations as described above. The data flow graph is then generated from the newly
serialized instructions, based on the data dependency analysis technique described in
Section 3. The procedure concludes by implementing single static-variable
assignment (SSA) [13], which is a method of breaking data dependencies by ensuring
that every assignment in the CDFG has a unique variable name.

Traditionally, a -function is used in SSA to join multiple assignments to a
variable, stemming from different paths in the CFG. The number of arguments to the

-function is equal to the number of definitions of the variable from each point in the
CFG. This method often causes a significant bottleneck when handling numerous data
paths. Interestingly, once the pipelined operations in the CDFG have been linearized,
the -function becomes superfluous, as only the latest definition of a variable will
reach the end of the block and propagate through the control flow. Those instructions
with multi-cycle delays that originally crossed basic block boundaries have since been
serialized into multiple single-cycle instructions. As a result, the latest definition of
each SSA variable may be assigned back to its original variable name at the end of the
block, thus eliminating the need for the -function. Optimizations, such as copy
propagation and dead-code elimination [13], will remove extraneous assignment
operations created by this process.

 Generate_CDFG(instr_list)
1 Predicate_Pipelined_Instrs(CFG)
2 CFG = Generate_Ctrl_Flow_Graph(instr_list)
3 Linearize_Pipelined_Operations(CFG)
4 CDFG = Generate_Data_Flow_Graph(CFG)
5 Generate_SSA(CDFG)
6 return CDFG

Fig. 11. Procedure for generating a CDFG

5 Experimental Results

The correctness of the methodology presented in this paper was verified using the
FREEDOM compiler [11,19] on 8 highly pipelined benchmarks in the Texas
Instruments C6000 DSP assembly language. The FREEDOM compiler generated
CDFGs and RTL code targeting the Xilinx Virtex II FPGA. Each benchmark was
simulated using Mentor Graphic’s ModelSim to verify bit-true accuracy and obtain
cycle counts.

There has been little work reported on translating highly pipelined software
binaries to RTL code for FPGAs. This makes comparison with other approaches
difficult. However, it is interesting to consider the impact and effectiveness of this
algorithm in a high-level synthesis tool. Table 1 shows comparisons in cycle counts
for the TI C6000 DSP and the Virtex II FPGA, generated by the FREEDOM
compiler. Also shown is the number of pipelined operations in each benchmark and

 Generation of CDFGs from Scheduled and Pipelined Assembly Code 89

the number of instructions inserted during the linearization process to demonstrate the
impact on code size when using this approach.

Results indicate the FREEDOM compiler successfully generated the correct
CDFGs from the pipelined assembly code, allowing complex optimizations and
scheduling to significantly reduce clock cycles in the FPGA design. On average,
approximately 9 instructions were added for each pipelined operation and there was a
27% increase in code size during the linearization process. Please note that these
values reflect the size of the design before CDFG optimizations, which will further
reduce implementation complexity. A detailed evaluation of the performance and
optimizations of the FREEDOM compiler has been presented in other work [11,19].

Table 1. Experimental results on pipelined benchmarks using the FREEDOM compiler

Benchmark

DSP Cycles

FPGA Cycles

Pipelined
Instructions

Added
Instructions

memmove 125747 2516 33 352 (24.7%)
memcpy 69615 2004 14 136 (52.3%)
divi 282301 16127 17 141 (27.3%)
mpyd 1329176 39669 26 269 (14.0%)
remi 260148 16888 13 130 (34.6%)
dsp_fir_gen 30851 685 49 683 (43.1%)
lms_filter 33537580 773288 147 967 (13.7%)
noise_canceller_fir 8239397 163778 21 105 (5.3%)

6 Conclusions

This paper presents a methodology for correctly representing the data dependencies
and data propagation when generating CDFGs from highly pipelined and scheduled
assembly code. This process consists of three stages: generating a control flow graph,
linearizing the assembly code, and generating the data flow graph. We use a known
method for generating the control flow graph from scheduled assembly code and
describe further techniques for handling more complex architectures that employ
parallel instruction sets and dynamic branching. We present a linearization process, in
which pipelined structures are serialized into linear assembly. This allows for proper
data dependency analysis when generating the data flow graph.

The work was verified in the FREEDOM compiler on 8 highly pipelined software
binaries for the TI C6000 DSP, targeting the Xilinx Virtex II FPGA. Results indicate
that data dependencies were correctly identified, enabling the compiler to perform
complex optimizations and scheduling to reduce clock cycles in the designs.

References

1. Amme W, Braun P, Thomasset F, and Zehendner E (2000) Data Dependence Analysis of
Assembly Code. International Journal of Parallel Programming, vol. 28, issue 5.

2. Banerjee U (1988) Dependence Analysis for Supercomputers. Kluwer Academic
Publishers, Norwell, MA.

90 D.C. Zaretsky et al.

3. Cifuentes C and Gough K (1993) A Methodology for Decomposition. Proceedings for
XIX Conferencia Latinoamericana de Informatica. Buenos Aires, Argentina, pp 257-266.

4. Cifuentas C and Malhotra V (1996) Binary Translation: Static, Dynamic, Retargetable?
Proceedings for the International Conference On Software Maintenance (ICSM).
Monterey, CA, pp 340-349.

5. Cifuentes C, Simon D, and Fraboulet A (1998) Assembly to High-Level Language
Translation. Proceedings of the International Conference on Software Maintenance
(ICSM). Washington, DC, pp 228-237.

6. Cooper K, Harvey T, and Waterman T (2002) Building a Control-Flow Graph from
Scheduled Assembly Code. Technical Report 02-399. Department of Computer Science,
Rice University, Houston, TX.

7. Decker B and Kästner D (2003) Reconstructing Control Flow from Predicated Assembly
Code. Proceedings of the 7th International Workshop on Software and Compilers for
Embedded Systems (SCOPES). Vienna, Austria, pp 81-100.

8. Kästner D and Wilhelm S (2002) Generic Control Flow Reconstruction from Assembly
Code. Proceedings of the Joint Conference on Languages, Compilers and Tools for
Embedded Systems (LCTES), vol. 37, issue 7, pp 46-55.

9. Kruegel C, Robertson W, Valeur F, and Vigna G (2004) Static Disassembly of Obfuscated
Binaries. Proceedings of USENIX Security 2004. San Diego, CA, pp 255-270.

10. Levine B and Schmidt H (2003) Efficient Application Representation for HASTE: Hybrid
Architectures with a Single Executable. Proceedings of the 11th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines. Napa, CA, pp 101-107.

11. Mittal G, Zaretsky D, Tang X, and Banerjee P (2004) Automatic Translation of Software
Binaries onto FPGAs. Proceedings of the 41st Annual Conference on Design Automation.
San Diego, CA, pp 389-394.

12. Mittal G, Zaretsky D, Memik G, and Banerjee P (2005) Automatic Extraction of Function
Bodies from Software Binaries. Proceedings for the IEEE/ACM Asia and South Pacific
Design Automation Conference (ASPDAC). Beijing, China.

13. Muchnick S (1997) Advanced Compiler Design Implementation. Morgan Kaufmann
Publishers, San Francisco, CA.

14. Ramsey N and Fernandez M (1995) New Jersey Machine-Code Toolkit. Proceedings of
the 1995 USENIX Technical Conference. New Orleans, LA, pp 289-302.

15. Ramsey N and Fernandez M (1997) Specifying Representations of Machine Instructions.
ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 19, issue 3.
New York, NY, pp 492-524.

16. Stitt G and Vahid F (2003) Dynamic Hardware/Software Partitioning: A First Approach.
Proceedings of the Design Automation Conference. Anaheim, CA, pp 250-255.

17. Stitt G and Vahid F (2002) Hardware/Software Partitioning of Software Binaries.
Proceedings of the International Conference of Computer Aided Design (ICCAD). Santa
Clara, CA, pp 164-170.

18. Ye Z, Moshovos A, Hauck S, and Banerjee P (2000) CHIMAERA: A High-Performance
Architecture with a Tightly-Coupled Reconfigurable Functional Unit. Proceedings of the
27th International Symposium on Computer Architecture. Vancouver, Canada pp 225-235.

19. Zaretsky D, Mittal G, Tang X, and Banerjee P (2004) Overview of the FREEDOM
Compiler for Mapping DSP Software to FPGAs. Proceedings of the 12th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines. Napa, CA, pp 37-46.

Applying Data Copy to Improve Memory
Performance of General Array Computations

Qing Yi

Department of Computer Science, University of Texas at San Antonio�

Abstract. Data copy is an important compiler optimization which dy-
namically rearranges the layout of arrays by copying their elements into
local buffers. Traditionally, array copy is considered expensive and has
been applied only to the working sets of fully blocked computations. This
paper presents an algorithm which automatically applies data copy to
optimize the performance of general computations independent of block-
ing. The algorithm automatically decides where to insert copy operations
and which regions of arrays to copy. In addition, when specialized, it is
equivalent to a general scalar replacement algorithm on arbitrary array
computations. The algorithm is fully implemented and has been applied
to optimize several scientific kernels. The results show that the algorithm
is highly effective and that data copy can significantly improve the per-
formance of scientific computations, both when combined with blocking
and when applied alone without blocking.

1 Introduction

Most scientific applications operate on large multi-dimensional arrays that can-
not fit in the caches of modern computers. Such computations typically include
sequences of loop nests, with each loop selectively accessing elements of arrays.
When a loop accesses a non-continuous collection of array elements, that is, when
the array elements accessed together close in time are far from each other in the
memory, the loop demonstrates poor spatial locality and additionally could incur
conflict misses in the cache.

Data copy is an important compiler optimization that can dynamically re-
arrange the layout of arrays. At the beginning of each computation phase, the
transformation can choose to copy a subset of array elements into local buffers.
All the relevant array accesses within the computation phase can then be changed
to instead operate on the local buffers. At the end of the computation phase,
if the selected elements are modified, the local buffers are copied back to the
original arrays. Because the local buffers store working sets of computations
continuously, data copy optimization can significantly improve the spatial local-
ity of computations.

Data copy was first proposed by Lam, Rothberg and Wolf [9] to reduce cache
conflict misses for blocked computations. As an example, Figure 1(a) shows a
� The work was developed when the author was under employment by Lawrence Liv-

ermore National Laboratory, Livermore, CA, 94550.

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 91–105, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

92 Q. Yi

int j, k, i,j,k,i;
double alpha, *A, *B, *C;
......
for (j=0; j<n; j+=16)

for (k=0; k<l; k+=16)
l i:for (i=0; i<m; i+=16)
lj : for (j= j; j<min(n, j+15); ++j)
lk: for (k= k; k<min(l, k+15); ++k)
li: for (i= i; i<min(m, i+15); ++i)

{
s: C[i+j*m] = c[i+j*m] +

alpha * A[i+k*m]*B[k+j*l];
}

int j, k, i,j,k,i, bi, bk, v0, v1;
double alpha, *A, *B, *C;
......
for (j=0; j<n; j+=16)

for (k=0; k<l; k+=16)
l i:for (i=0; i<m; i+=16) {

bi = min(m- i,16); bk = min(l- k,16);
v0 = 0;

for (v1= k; v1< k+ bk; ++ v1)
for (v2= i; v2< i+ bi; ++ v2)
A buf[v0++] = A[v1*m+ v2];

lj : for (j= j; j<min(n, j + 15); ++j) {
v0 = 0;

for (v1= i; v1< i+ bi; ++ v1)
C buf[v0++] = C[j*m+ v1];

lk: for (k= k; k< k+ bk; ++k) {
B buf = B[j*l+k];

li: for (i= i; i<min(m, i+15); ++i)
s: C buf[i- i] = c buf[i- i] +

alpha*B buf*A buf[(k- k)* bi+i- i];
}
v0 = 0;

for (v1=j*m+ i; v1<min(m, i+16); ++ v1)
C[v1] = C buf[v0++];

}
}

(a) without array copy (b) with array copy

Fig. 1. Example: blocked matrix multiplication

code fragment (written in C) that performs matrix multiplication, C = C +
alpha ∗ A ∗ B, where alpha is a scaling factor, and A,B,C are m ∗ l, l ∗ n and
m∗n matrices respectively (each stored in a linearized single-dimensional array).
The computation in Figure 1(a) is fully blocked in all loop dimensions, where
A,B and C are each partitioned into 16∗16 sub-matrices, and each computation
phase (enumerated by the inner loops lj, lk and li) multiplies a pair of sub-
matrices. Because the working set of each computation phase is small enough to
fit in the cache of most memory systems, the loop structure in (a) is likely to
perform well on modern computers.

The computation in Figure 1(a), however, is not guaranteed to have good
memory performance. Because the working set of each computation block is not
stored continuously in the memory, each memory access may bring useless ele-
ments into cache, resulting in poor spatial locality. Further, when non-continuous
array elements are brought into cache, their addresses may conflict with each
other, resulting in premature evictions of useful elements. To resolve such prob-
lems, compilers could apply data copy transformation, which copies all elements
accessed within the computation phase into continuous buffers.

This paper presents a new data copy algorithm for optimizing the performance
of general array computations. Figure 1(b) shows the result of transformation
after automatically applying our algorithm to the code in (a). Here all elements

Applying Data Copy to Improve Memory Performance 93

accessed by the inner loops are copied into separate buffers. Specifically, elements
in array B are copied into a scalar variable B buf , elements in C are copied into
a single-dimensional buffer C buf , and elements in A are copied into a two-
dimensional buffer A buf . The buffer sizes are 1 for B buf , bi for C buf , and
bi ∗ bk for A buf respectively, where bi and bk are the iteration numbers of

loops li and lk respectively. The loop body has been accordingly changed to
access elements from the local buffers. Since elements in C buf are modified,
these elements are copied back to the original matrix C at the end. As shown in
Section 4, the code in (b) can significantly outperform the code in (a) in many
cases.

The algorithm in this paper significantly improves previous research [9,13],
which treats array copy as an auxiliary optimization for blocking. Previous for-
mulations would have optimized Figure 1(a) by performing all copy operations
at the beginning and end of each computation block, i.e., the location that ma-
trix A is copied in Figure 1(b). Our algorithm is much more flexible in that it
treats data copy as a stand-alone optimization. Based on heuristics to reduce
both buffer size and the overall copy cost, our algorithm automatically decides
where to insert copy operations and which regions of the arrays to copy. The
transformed code can use buffers at various levels, corresponding to the differ-
ent levels of caches in modern computers. Our algorithm can also be specialized
to perform scalar replacement optimization, which relocates array elements to
scalar variables.

The algorithm in this paper is fully implemented and has been applied to
optimize several kernels both combined with blocking and without blocking.
Our results show that the algorithm is highly effective and that array copy
can significantly improve the performance of scientific computations, both when
combined with blocking and when applied separately without blocking.

2 Related Work

Lam, Rothberg and Wolf [9] first proposed applying array copy to reduce cache
conflict misses in blocked computations. A few years later, Temam, Granston and
Jalby [13] investigated different strategies for applying array copy after blocking
and presented an effective strategy that selectively copy arrays based on compile-
time cost-benefit analysis. Both Lam et al and Temum et al assumed that the
blocked computations access arrays only through regular affine expression sub-
scripts, where data copy can always be safely applied. They both consider data
copy as an auxiliary optimization for blocking, where copy operations are in-
serted only at the beginning and end of blocked computations. Since then, very
little work has been published to further investigate applying data copy to opti-
mize array computations in scientific applications.

The data copy algorithm in this paper extends previous work in two aspects.
First, our algorithm can optimize computations even if they contain regions
of code that access arrays through non-affine expression subscripts. Second,
our algorithm includes heuristics both to automatically select arrays to copy

94 Q. Yi

and to automatically identify different locations to insert copy operations. Thus
our algorithm can be applied to optimize general computations independent of
blocking.

Besides array copy, many data layout optimizations have been proposed to
improve the memory system performance of regular array operations [11,12,3].
These optimizations statically reorganize the layout of arrays to reduce cache
conflict misses and to improve spatial locality. They are effective when compu-
tations access arrays in a consistent fashion throughout an entire application.
However, when computations include different phases, a single memory layout
may not be sufficient. This paper does not attempt to globally restructure the
layout of data structures. Instead, we dynamically rearrange array elements ac-
cessed in each computation phase when beneficial.

Despite being considered expensive, dynamic data layout transformations
have been widely applied in optimizing irregular applications [6,7,10], where
the structures of the input data are unknown until runtime. Because arrays in
irregular applications are accessed through indirect pointers (or index arrays),
current compiler technology cannot automate the optimization. In contrast, the
data copy transformation in this paper is applied automatically to optimize reg-
ular array computations.

The algorithm presented in this paper is similar to the scalar-replacement al-
gorithm by Carr and Kennedy [5] in many respects. Their algorithm aggressively
promotes array elements into scalar variables so that these elements can later
be allocated to registers. Our algorithm can similarly be configured to perform
scalar replacement through restrictions on the size of array regions being copied.
Our algorithm is more general than the algorithm by Carr and Kennedy in that
we apply data copy to dynamically rearrange the layout of arrays in addition to
performing scalar replacement.

3 Applying Data Copy

Figure 2 presents our algorithm for applying data copy to arbitrary array compu-
tations. This algorithm takes a code fragment C, partitions the array references
in C into groups where each group can be safely copied into a single buffer, per-
forms profitability analysis on each group of array references, and finally applies
transformations when beneficial. Section 3.1 describes each step of the algorithm.
Section 3.2 then describes the profitability analysis in more detail.

3.1 Data Copy Algorithm

As shown in Figure 2, given an input code fragment C, the algorithm includes
the following steps.

Step (1) Construct a dependence graph R, where each node of R is a memory
reference in the original code C, and each edge from reference r1 to r2 indicates
that r1 and r2 may access the same memory location (i.e., r2 and r1 depend on

Applying Data Copy to Improve Memory Performance 95

Apply-data-copy(C)
(1) R = construct-dependence-graph(C)

nodes(R): memory references in C; edges(R): dependences between references
∀e ∈ edges(R), dep(e): dependence relation; precise(e): whether dep(e) is precise

(2) Construct a DAG R′ from R
order = evaluate-reference-order(C); nodes(R′) = nodes(R)
for (each edge e : r1 → r2 in R)

if (order(r1) < order(r2)) then add e : r1 → r2 to R′

else if (order(r1) > order(r2)) then add reverse(e) : r2 → r1 to R′

(3) groups = apply-typed-fusion(R′)
BadEdges = {e ∈ edges(R′) | not precise(e)}
∀r ∈ nodes(R), type(r) = array-name(r)

(4) Profitability-analysis(R,groups)
for (each refs ∈ groups), compute

init-stmt(refs) and save-stmt(refs): start and ending points of computation
cp-region(refs): elements to be copied to local buffer
shift-buf(refs): offset to shift local buffer
init-region(refs): elements to be copied before starting

(5) For (each refs ∈ groups), perform array copy transformation
(5.1) buf = create-buffer(cp-region(refs))
(5.2) if (!cover-modify(init-stmt(refs), save-stmt(refs),refs))

init = copy-init(buf ,init-region(refs)); insert-before(init-stmt(refs), init)
if (is-modified(refs) or shift-buf(refs) �= 0)

save = copy-save(buf ,cp-region(refs),shift-buf(refs));
insert-after(save-stmt(refs), save)

(5.3) for (each r ∈ refs)
r buf = buffer-access(r,buf ,cp-region(refs)); replace-ref(r, r buf)

Fig. 2. Algorithm for applying array copy

each other), and r1 is evaluated before r2. Each edge e from r1 to r2 is anno-
tated with two attributes: dep(e), the dependence relation that must be satisfied
between iterations of loops surrounding r1 and r2; and precise(e), whether the
dependence relation dep(e) is precisely determined by the dependence analysis
algorithm (i.e., whether both r1 and r2 contain only affine expression subscripts).
Only when precise(e) is true, r1 and r2 are guaranteed to refer to the same mem-
ory location when dep(e) is satisfied, and the elements accessed by r1 and r2 can
be copied into a single buffer.

The dependence graph R can be constructed using well-studied dependence
analysis techniques [1,14,4]. The only difference here is that nodes in R are mem-
ory references rather than statements, and that a pair of references may depend
on each other even if neither modifies the memory (that is, input dependences
are considered together with the true, output and anti dependences).

Step (2) Prepare for Step (3) by converting the dependence graph R into a
DAG (directed acyclic graph) R′. First, define a function order which assigns
a unique integer number to each memory reference and thus imposes a linear
order on all memory references. Specifically, ∀r1, r2 ∈ nodes(R), if order(r1) <

96 Q. Yi

order(r2), then r1 appears before r2 in C in static evaluation order; that is, r1 is
traversed before r2 when we statically interpret the statements in C, assuming all
loop bodies and conditional branches (both true and false branches) are entered
exactly once.

Copy all the nodes and edges from R into R′. Ensure R′ is acyclic by enforcing
that every edge e from r1 to r2 in R′ satisfies the condition order(r1) < order(r2).
Specifically, ∀e : r1 → r2 in the original graph R, if order(r1) < order(r2), copy
e into R′. Otherwise, if order(r1) > order(r2), reverse dep(e) and then add the
reversed dependence from r2 to r1 into R′. Finally, if r1 == r2, the edge is
simply ignored because it does not affect the partitioning of memory references.

Step (3) Partition the memory references in R′ into separate groups by applying
the typed-fusion algorithm by Kennedy and McKinley [8], originally developed
for performing loop fusion optimizations. The input to the original typed-fusion
algorithm is a loop dependence graph, where each node of the graph is a loop,
and each edge from node x to y indicates that there are dependences from
statements inside loop x to statements inside loop y. An edge from x to y is
annotated as a bad edge if the dependence relations between x and y prevent
them from being legally fused. Additionally, each node in the loop dependence
graph is assigned a type so that loops of different types are never fused. For each
given type of loops (e.g., parallel or serial loops), the typed-fusion algorithm
aggressively clusters nodes of the given type that are not connected by fusion-
preventing bad paths. In order for the algorithm to work correctly, it is required
that the input dependence graph must be acyclic (i.e., a DAG).

To adapt the typed-fusion algorithm for partitioning memory references, we
use the DAG R′ (computed in Step (2)) as input to the algorithm. Here bad
edges are defined to include each edge e ∈ R′ such that precise(e) is false,
so that memory references connected by imprecise dependence paths are never
placed into the same group. The names of arrays are used to represent types of
memory references, and all non-array memory references are assigned a unique
dummy type, which is never used as input to the fusion algorithm. Therefore no
data copy transformation is applied to non-array memory references.

After applying the typed-fusion algorithm to the dependence DAG R′, the
result is a collection of clustered groups, where each group refs includes a col-
lection of array references that can be safely relocated to a single buffer. Based
on the correctness proof of the original typed-fusion algorithm, it is guaranteed
that no references in refs are connected to each other by imprecise dependence
paths.

Step (4) Use profitability analysis (described in Section 3.2) to further filter and
configure the groups of array references to be copied. For each group of memory
references refs, this step computes the following attributes.

– init-stmt(refs) The starting point of a computation phase to apply data
copy. When applying the transformation, the initialization operations should
be inserted before this statement.

Applying Data Copy to Improve Memory Performance 97

– save-stmt(refs) The ending point of the computation phase. If the local
buffer needs to be saved, the necessary operations should be inserted after
this statement.

– cp-region(refs) The region of array elements to be relocated to the local
buffer.

– shift-buf(refs) The offset to shift the local buffer between consecutive it-
erations of the current computation phase. Since accessing the local buffer
is cheaper than operating on the original array, when appropriate, the local
buffer can be shifted to reduce the overhead of copying from the original
array. For more details, see Section 3.2.

– init-region(refs) The region of array elements to be copied into the local
buffer before init-stmt(refs). Specifically, init-region(refs) equals to cp-
region(refs) if the local buffer cannot be shifted (that is, shift-buf(refs)
= 0); otherwise, init-region(refs) contains the elements accessed by refs at
the first iteration of the computation phase.

The above attributes are used by Step (5) to perform data copy transformations.
As example, Figure 3 presents the configuration of these attributes when apply-
ing data copy to the matrix multiplication code in Figure 1(a). The evaluation
of these attributes is described in more detail in Figure 4 and in Section 3.2.

Step (5) For each group of array references refs to be copied, perform the
transformation by allocating a local buffer, inserting operations to copy data
between buffer and the original array, and replacing array references in refs
with the corresponding buffer accesses.

First, step (5.1) invokes function create-buffer to allocate a local buffer from
the heap. The allocation is placed at the outermost location where the size of the
buffer can be correctly evaluated. Deallocation of the buffer is also automatically
inserted if necessary.

Then, step (5.2) inserts operations to copy data between the local buffer and
the original array. Unless each iteration of the computation phase modifies all ele-
ments accessed by refs before reading them (cover-modify(init-stmt(refs),save-
stmt(refs),refs) is true), operations are inserted before init-stmt(refs) to copy
elements from the original array to the local buffer. Similarly, if the computa-
tion phase modifies elements accessed by refs, or if the local buffer needs to be
shifted (shift-buf(refs) 	= 0) between consecutive iterations of the computation
phase, the necessary operations are inserted after save-stmt(refs).

Finally, step (5.3) replaces each array reference in refs with the corresponding
buffer access.

3.2 Profitability Analysis

This section describes Step (4) of the data copy algorithm in Figure 2. As shown
in Figure 4, this step uses heuristics to determine whether a data copy trans-
formation is beneficial and how to perform the transformation to ensure prof-
itability. For each group of memory references refs to be copied, it includes the
following sub-steps.

98 Q. Yi

references: {A[i + k ∗ m]}
init-stmt: lj
save-stmt: lj
cp-region and init-region
start: i + k ∗ m
copy: (0,min(m − i, 16),1),

(0,min(l − k, 16),m)
shift-buf: 0

references: {B[k + j ∗ l]}
init-stmt: li
save-stmt: li
cp-region and init-region
start: k + j ∗ l
copy: ()

shift-buf: 0

references: {C[i + j ∗ m]}
init-stmt: lk
save-stmt: lk
cp-region and init-region
start: i + j ∗ m
copy: (0,min(m − i,16),1)

shift-buf: 0

Fig. 3. Array copy configurations for Figure 1(a)

Step (4.1) To reduce the overhead of performing data copy, make sure that each
array element accessed by refs needs to be copied at most twice: initially copied
from the original array to the local buffer, and finally copied back from local
buffer to original array.

First, invoke function split-disconnected-refs(refs,R) to separate array refer-
ences in refs that are not connected by dependence paths in R. Disconnected
memory references are removed from refs and added into the overall collection
(groups) of array reference groups.

To ensure that each array element is copied at most twice, find inroot =
common-loop(refs), the innermost loop that surrounds all array references in
refs. For each reference r2 	∈ refs, if r2 is connected with references in refs
by dependence edges, and if ∃r1 ∈ refs such that lr1r2 is the innermost loop
surrounding both r1 and r2, then the required copy operations must be inserted
between r1 and r2 and inside loop lr1r2 . If lr1r2 is nested at a deeper loop level
within inroot, the copy operations inside lr1r2 will be evaluated multiple times at
each iteration of inroot (the current computation phase). To avoid such situation,
split refs so that r1 is placed into a separate group. After this step, all copy
operations can be safely inserted immediately inside inroot.

Using Figure 1(a) as example, when applying steps (1)-(3) of the algorithm
in Figure 2, Figure 3 presents the resulting three array reference groups. Since
no splitting is necessary, this step merely set inroot to loop li for all reference
groups.

Step (4.2) Decide the outermost loop, cproot, where copy operations can be
safely inserted; that is, it is safe to relocate all elements accessed by refs at
each iteration of cproot. A single iteration of cproot therefore comprises the
computation phase of the current copy transformation.

First, invoke function copy-loop(inroot,refs,R) to find the outermost loop,
outroot, that contains all references in refs but does not contain any refer-
ence r such that (i) r is outside inroot, and (ii) r and refs may depend on each
other within outroot. If outroot == inroot, copy operations must be inserted
inside inroot (cproot = inroot). Otherwise, since no reference r 	∈ refs can in-
terfere with the memory accessed by refs throughout the execution of outroot,
it is safe to insert copy operations outside outroot. So cproot should be the loop
immediately enclosing outroot.

Applying Data Copy to Improve Memory Performance 99

Profitability-analysis(R,groups)
for (each refs ∈ groups)
(4.1) Ensure each element is copied at most twice:

split-disconnected-refs(refs, R); inroot = common-loop(refs)
cut = {r1∈refs | ∃r2 �∈refs s.t. dep(r2,refs) �=∅ and common-loop(r1,r2) is

inside inroot }
if (cut �= ∅) split(refs,cut); groups∪ = {cut}; inroot = common-loop(refs)

(4.2) Compute outermost loop level to perform copy:
outroot = copy-loop(inroot,refs,R)
if (outroot == inroot) cproot = inroot
else cproot = loop-immediately-outside(outroot)

(4.3) Impose size limit on the local buffer
split-disconnected-refs(refs,R(cproot));
cut={r∈refs | is-too-big(array-region(r,cproot))}
if (cut == refs) cproot = loop-immediately-inside(cproot); repeat step (4.3)
else split(refs,cut); groups∪ = {cut}; go back to step (4.1)

(4.4) Ensure profitability of copy transformation
reuse = {l | l ∈ loops-between(cproot, inroot) and carry-temporal-reuse(refs,l)}
if (reuse �= ∅) cproot = loop-immediately-outside(outermost-loop(reuse))
else if (|refs| ≤ 3) groups− = {refs}; continue

(4.5) configure copy transformation
cp-region(refs) = array-region(refs,cproot)
shift-buf(refs) = array-region-shift(refs,cproot)
if (shift-buf(refs) �= 0 and cproot �= inroot and cproot �=loop-immediately-

outside(outroot))
init-stmt(refs) = cproot; init-region(refs)=init-array-region(refs,cproot)
save-stmt(refs)=last-stmt(refs,loop-body(cproot))

else
init-stmt(refs)=first-stmt(refs,loop-body(cproot)); init-region(refs)=
cp-region(refs)
shift-buf(refs)=0; save-stmt(refs)=last-stmt(refs,loop-body(cproot))

Fig. 4. Profitability analysis of array copy

Using Figure 1(a) as example, since no dependence interference exists, we
have outroot = lj for all three array reference groups in Figure 3. Consequently
we would have cproot = l i for all reference groups.

Step (4.3) Impose a size limit on the local buffer. The size limit is dependent on
various features of the computer architecture and is given to the data copy algo-
rithm as a configuration parameter. In our prototype implementation, the size
limit is imposed by restricting the dimensionality of local buffers using command-
line options (see Section 4).

First, invoke function split-disconnected-refs(refs,R(cproot)) to separate refer-
ences that are disconnected from each other in the dependence graph of cproot.
Next, find each reference r in refs such that at each iteration of cproot, the
elements accessed by r exceed the buffer size limit. If the collection of refer-
ences that access too many elements includes everything in refs (cut == refs),

100 Q. Yi

lower cproot to be the loop immediately inside and repeat step (4.3). Otherwise,
since only a subset of references in refs are causing the problem, split refs by
removing such references, then restart from step (4.1).

Using Figure 1(a) as example, after Step (4.2), we have cproot = l i for
all reference groups in Figure 3. Since each reference group has a single array
reference, and each array reference accesses at most 16 ∗ 16 elements at each
iteration of loop l i, the local buffer for each reference group has two dimensions.
If only single-dimensional buffers are allowed, this step would reset cproot = lj
for all reference groups. Similarly, if only scalar replacement is allowed, we would
have cproot({B[k + j ∗ l]}) = lk, and cproot({A[i + k ∗m]}) = cproot({C[i + j ∗
m]}) = li.

Step (4.4) Evaluate the benefit of applying data copy and refrain from apply-
ing the transformation (by removing refs from groups) if the benefit does not
outweigh the cost.

First, find all the loops between cproot and inroot that carry temporal reuses
of refs; that is, these loops do not increase the overall size of elements accessed
by refs. Collect these loops into a set reuse in Figure 4.

If reuse is not empty, it is profitable to perform array copy because the local
buffer will be reused many times. Find the outermost loop l in reuse such that
all the other loops between cproot and l merely increase the buffer size without
introducing any memory reuse. Reduce buffer size by lowering cproot to be the
loop immediately enclosing l.

If reuse is empty, the copied elements are reused at most a few times (≤ the
number of elements in refs). If the number of elements in refs is less than 3,
the copy overhead is likely to outweigh the benefit of reuse. In this case, remove
refs from the groups of references to be optimized.

Using Figure 1(a) as example, suppose that cproot = l i for all reference
groups in Figure 3 before entering this step. After this step, we would have
reuse = {lj}, {lk} and {li} for reference groups {A[i + k ∗ m]}, {C[i + j ∗
m]} and {B[k + j ∗ l]} respectively. Consequently, cproot({C[i + j ∗ m]}) and
cproot({B[k + j ∗ l]} would be reset to lj and lk respectively, resulting in the
data copy transformation shown in Figure 1(b).

Step (4.5) Suppose it is beneficial to apply data copy at each iteration of loop
cproot. Compute necessary configurations to determine where to insert copy
operations and what to copy.

First, invoke function array-region(refs,cproot) to summarize all the array
elements accessed by refs at each iteration of cproot. The result includes the
starting address of the array to be copied and a sequence of tuples, (i1, n1, s1),
(i2, n2, s2), ..., (im, nm, sm), where in each (ij , nj , sj)(j = 1, ..., m), ij specifies
the current array dimension to be copied, nj specifies the number of elements to
be copied at dimension ij , and sj specifies the incremental stride at dimension
ij. This formulation allows multiple copy specifications for each array dimension,
thus allowing linearized arrays (e.g., the arrays in Figure 1(a)) to be correctly

Applying Data Copy to Improve Memory Performance 101

0.2

0.4

0.6

0.8

1.0

proctime

50.4 54.4

size(2000)
x
n
0
n
1
n
x
b
0
b
1
b
2
b

size(2048)
x
n
0
n
1
n
x
b
0
b
1
b
2
b

0.2

0.4

0.6

0.8

1.0

proctime in thousands

0.94 1.24

size(2000)
x
n
0
n
1
n
x
b
0
b
1
b
2
b

size(2048)
x
n
0
n
1
n
x
b
0
b
1
b
2
b

0.2

0.4

0.6

0.8

1.0

2.0

proctime

32.7 40.3

size(2000)
x
n
0
n
1
n
x
b
0
b
1
b
2
b

size(2048)
x
n
0
n
1
n
x
b
0
b
1
b
2
b

(a) on a Dell PC (b) on a SGI workstation (c) on a IBM machine

Fig. 5. Performance of dgemm (nx:original non-blocked version; n0:optimized with 0-
dimensional data copy; n1:optimized with 1-dimensional data copy; bx:optimized with
loop blocking; b0:optimized with blocking and 0-dimensional data copy; b1:optimized
with blocking and 1-dimensional data copy; b2:optimized with blocking and 2-
dimensional data copy)

copied. Given the the sequence (i1, n1, s1)(i2, n2, s2)...(im, nm, sm), the size of
the buffer is n1 ∗ n2 ∗ ... ∗ nm.

After computing cp-region(refs), invoke function array-region-shift(refs,cproot)
to compute the intersection of cp-region between consecutive iterations of cproot.
If the overlapping region is not empty (shift-buf(refs) 	= 0), it is more efficient to
shift the local buffer rather than re-initiating the entire buffer from the original
array. Shifting the local buffer is safe if cproot does not contain other references
that interfere with refs (cproot 	= inroot and cproot is not the loop enclosing
outroot).

If shifting the local buffer is necessary, the local buffer should be initial-
ized before entering cproot. Thus init-stmt(refs) = cproot. The initialization
should copy elements accessed by refs at the first iteration of cproot, so init-
region(refs) = init-array-region(refs, cproot). The buffer needs to be shifted
and re-initialized at the end of each iteration of cproot, so save-stmt(refs) is the
last statement in the loop body of cproot.

If shifting of local buffer is not necessary, we configure the transformation
to always initialize the entire buffer in the loop body of cproot before the first
statement that contains a reference in refs. Similarly, if necessary, the entire
buffer should be restored back to the original array after the last statement that
contains a reference in refs.

The configurations for applying array copy to Figure 1(a) is shown in Figure 3.
Based on these configurations, applying Step (5) of Figure 2 to the code in
Figure 1(a) would result in the optimized code in Figure 1(b).

4 Experimental Results

We have implemented our data copy algorithm within the loop transforma-
tion framework by Yi, Kennedy and Adve [15], which has been integrated as a
C/C++ source-to-source translator within ROSE, a C/C++ compiler

102 Q. Yi

0.2

0.4

0.6

0.8

1.0

proctime

8.95 63.0

size(1000)
x
n
0
n
1
n
x
b
0
b
1
b

size(1024)
x
n
0
n
1
n
x
b
0
b
1
b

0.2

0.4

0.6

0.8

1.0

proctime in thousands

0.16 0.71

size(1000)
x
n
0
n
1
n
x
b
0
b
1
b

size(1024)
x
n
0
n
1
n
x
b
0
b
1
b

0.2

0.4

0.6

0.8

1.0

proctime

10.5 52.0

size(1000)

n
0
n
1
n b

0
b
1
b

size(1024)

n
0
n
1
n b

0
b
1
b

(a) on a Dell PC (b) on a SGI workstation (c) on a IBM machine

Fig. 6. Performance of dgetrf (nx:original non-blocked version; n0:optimized with 0-
dimensional data copy; n1:optimized with 1-dimensional data copy; bx:optimized with
loop blocking; b0:optimized with blocking and 0-dimensional data copy; b1:optimized
with blocking and 1-dimensional data copy)

0.2

0.4

0.6

0.8

1.0

proctime in thousands

0.82 1.01 4.56 4.16

(1000)
x
n
0
n
1
n

(1024)
x
n
0
n
1
n

(2000)
x
n
0
n
1
n

(2048)
x
n
0
n
1
n

0.2

0.4

0.6

0.8

1.0

proctime

43.8 829 177 2859

(1000)
x
n
0
n
1
n

(1024)
x
n
0
n
1
n

(2000)
x
n
0
n
1
n

(2048)
x
n
0
n
1
n

0.2

0.4

0.6

0.8

1.0

proctime

5.39 12.4 23.8 79.3

(1000)
x
n
0
n
1
n

(1024)
x
n
0
n
1
n

(2000)
x
n
0
n
1
n

(2048)
x
n
0
n
1
n

(a) on a Dell PC (b) on a SGI workstation (c) on a IBM machine

Fig. 7. Performance of tomcatv using mesh sizes 1000, 1024, 2000 and 2048 (nx:original
version; n0:optimized with 0-dimensional data copy; n1:optimized with 1-dimensional
data copy)

infrastructure at LLNL [17]. This section presents the result of applying our
algorithm to optimize three kernels, dgemm (matrix multiplication), dgetrf (ma-
trix LU factorization with partial pivoting), and tomcatv (mesh generation with
Thompson solver). All kernels are written in C. Both dgemm and dgetrf are
transcribed from the corresponding non-blocked Fortran kernels in the LAPACK
library [2], and tomcatv is transcribed from the Fortran kernel in SPEC95. When
applying optimizations to these transcribed C codes, the dependence analysis in
ROSE assumed that no arrays are aliased.

Data copy is applied to optimize all kernels. In addition, blocking is applied
to dgemm and dgetrf to investigate the combination of blocking and data copy
(the result of applying blocking to tomcatv is not shown because it was not
beneficial). For each blocked version, different block sizes were experimented and
the version with the best performance is presented. When performing data copy
transformation, the optimizer is configured by command-line options to restrict
the dimensionality of required buffers — if the buffer dimension is restricted to
be m (denoted as m-dimensional copy), the optimizer would only perform data

Applying Data Copy to Improve Memory Performance 103

copy to arrays that require at most m dimensional buffers. When the buffer
dimension is restricted to be 0, only scalar replacement is performed.

For each kernel, different problem sizes were experimented. The performance
of each version was measured on three different machine architectures: a Dell
PC with two 2.2GHz Intel XEON processors (each with a 512KB cache) and
2GB memory; a SGI workstation with a 195 MHz R10000 processor, 32KB
2-way associative first-level cache, 1MB 4-way associative second-level cache,
and 256MB memory; and a single 8-way P655+ node (with 16GB memory)
on a IBM terascale machine. The kernels were compiled using gcc on the Dell
PC and vendor-provided compilers on the SGI work station and IBM machine.
All versions were compiled using -O3 option, which instructs the compilers to
perform aggressive backend optimizations. The processor time (proctime) spent
executing each version is presented.

Figure 5 presents the performance of dgemm using two matrix sizes, 20002 and
20482. Seven versions are measured for each matrix size, including the original
non-blocked version (version nx), versions optimized with data copy optimiza-
tions only (versions n0 and n1), the version optimized with only blocking(version
bx, shown in Figure 1(a)) and the versions optimized with both blocking and
data copy (versions b0,b1 and b2, version b2 is shown in Figure 1(b)1).

From Figure 5, we see that 0-dimensional array copy (i.e., scalar replacement)
is beneficial for dgemm in all cases, and the improvements range from 3%-12%.
When using matrix size 20002, additional copy transformations do not further
improve performance. However, when using matrix size 20482, the additional
data copy, especially the two dimensional copy of array A, significantly improves
the performance (over 40% for the blocked versions on the Dell PC and on the
SGI workstation). Here the 20482 matrices have incurred much more cache con-
flict misses, which are subsequently eliminated when the accessed elements are
copied into local buffers. The optimizations did not improve the performance as
much on the IBM machine due to the heavy integer operation overhead intro-
duced by the optimizations, which will be further investigated.

Figure 6 presents the performance of dgetrf (matrix LU factorization with
partial pivoting) using two matrix sizes, 10002 and 10242. Six versions are mea-
sured for each matrix size, including the original non-blocked version (version
nx), versions optimized with data copy only (versions n0 and n1), the version
optimized with blocking only (version bx), and versions optimized with both
blocking and copy optimizations (versions b0 and b1). Because dgetrf can be
blocked only in the column direction (for details, see Yi et al [16]), at most a
single dimension of the matrix needs to be copied. Thus there is no b2 version
for dgetrf .

From Figure 6, we see that 0-dimensional array copy (scalar replacement)
is not profitable for dgetrf on the Dell PC and incurs a slight overhead on
the IBM machine due to increased register pressure. The 1-dimensional copy
transformation, however, significantly improves performance in most cases by

1 The b1 and b0 versions are different from version b2 in that array A is not copied in
b1, and only array B is copied in b0.

104 Q. Yi

20%-40% except when using 10002 matrix on the SGI workstation and when
using 10242 matrix on the IBM machine. Here because the original arrays were
accessed with a large stride, applying data copy have provided much better
spatial locality. Again, the versions using 10242 matrix have performed much
worse than using 10002 matrix due to conflict misses in memory systems.

Figure 7 presents the performance of tomcatv (mesh generation with Thomp-
son solver) using four mesh sizes, 10002, 10242, 20002 and 20482. Because block-
ing is generally not profitable for tomcatv, array copy is the only optimization
applied. Three versions are measured for each mesh size, denoted using nx (the
original version), n0 (optimized with 0-dimensional data copy), and n1 (opti-
mized with 1-dimensional data copy). In tomcatv, as each element is accessed
within the inner loop, the four neighboring elements are also accessed. The local
buffer therefore serves as a small shifting window through the entire mesh.

From Figure 7, we see that 0-dimensional array copy (scalar replacement)
is profitable for tomcatv in almost all cases (ranging from 0.5% to 12%). The
1-dimensional copy transformation significantly improves performance by 11%-
19% when using 10242 and 20482 meshes on the SGI workstation and on the
IBM machine, but slightly slows down performance by 0.5%-8% in other cases.
Here again, when using 10242 and 20482 meshes, the extra benefit of applying
array copy comes from the reduction of conflict misses in the memory system.

In summary, the experimental results indicate that selectively applying data
copy to optimize array computations can significantly improve the performance of
scientific applications, especially when array elements are accessed in large strides
and when conflict misses become a factor in the memory performance. The per-
formance measurements also indicate that data copy does not need to be applied
together with blocking to be effective. In fact, data copy optimization was able to
significantly improve performance for all three kernels without blocking. Finally,
even when data copy is not beneficial, the overhead is not overly significant, and
only small slow downs (.5%-8%) in performance are observed for all kernels.

5 Conclusion

This paper presents a general algorithm for applying data copy to optimize ar-
bitrary array computations. The algorithm is fully implemented and has been
applied to automatically optimize several scientific computation kernels on differ-
ent platforms. The results indicate that the algorithm is highly effective and that
array copy can significantly improve the performance of scientific computations,
both when combined with blocking and when applied alone without blocking.

References

1. R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures. Morgan
Kaufmann, San Francisco, October 2001.

2. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’
Guide. The Society for Industrial and Applied Mathematics, 1999.

Applying Data Copy to Improve Memory Performance 105

3. J. Anderson, S. Amarasinghe, and M. Lam. Data and computation transformation
for multiprocessors. In ACM Symposium on Principles and Practices of Parallel
Programming, Santa Barbara, July 1995.

4. U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publish-
ers, Boston, 1988.

5. S. Carr and K. Kennedy. Scalar replacement in the presence of conditional control
flow. Software — Practice and Experience, 24(1):51–77, Jan. 1994.

6. C. Ding and K. Kennedy. Improving cache performance in dynamic applications
through data and computation reorganization at run time. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, Gorgia, May
1999.

7. H. Han and C.-W. Tseng. Improving locality for adaptive irregular scientific codes.
Technical Report CS-TR-4039, Dept. of Computer Science, University of Maryland,
September 1999.

8. K. Kennedy and K. S. McKinley. Typed fusion with applications to parallel and se-
quential code generation. Technical Report TR93-208, Dept. of Computer Science,
Rice University, Aug. 1993. (also available as CRPC-TR94370).

9. M. Lam, E. Rothberg, and M. E. Wolf. The cache performance and optimiza-
tions of blocked algorithms. In Proceedings of the Fourth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-IV), Santa Clara, Apr. 1991.

10. J. Mellor-Crummy, D. Whalley, and K. Kennedy. Improving Memory Hierar-
chy Performance For Irregular Applications. In Proceedings of the 13th ACM-
SIGARCH International Conference on Supercomputing, Phodes, Greece, 1999.

11. M. O’Boyle and P. Knijnenburg. Integrating loop and data transformations for
global optimisation. In International Conference on Parallel Architectures and
Compilation Techniques, Paris, France, Oct 1998.

12. G. Rivera and C.-W. Tseng. Data transformations for eliminating conflict misses.
In ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, Montreal, Canada, June 1998.

13. O. Temam, E. Granston, and W. Jalby. To copy or not to copy: A compile-
time technique for assessing when data copying should be used to eliminate cache
conflicts. In Proceedings of Supercomputing ’93, Portland, OR, Nov. 1993.

14. M. J. Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press,
Cambridge, 1989.

15. Q. Yi, K. Kennedy, and V. Adve. Transforming complex loop nests for locality.
The Journal Of Supercomputing, 27:219–264, 2004.

16. Q. Yi, K. kennedy, H. You, K. Seymour, and J. Dongarra. Automatic blocking of
qr and lu factorizations for locality. In The Second ACM SIGPLAN Workshop on
Memory System Performance, Washington, DC, USA, June 2004.

17. Q. Yi and D. Quinlan. Applying loop optimizations to object-oriented abstrac-
tions through general classification of array semantics. In The 17th International
Workshop on Languages and Compilers for Parallel Computing, West Lafayette,
Indiana, USA, Sep 2004.

A Cache-Conscious Profitability Model for
Empirical Tuning of Loop Fusion�

Apan Qasem and Ken Kennedy

Department of Computer Science
Rice University
Houston, TX

{qasem,ken}@cs.rice.edu

Abstract. Loop fusion is recognized as an effective program transfor-
mation for improving memory hierarchy performance. However, uncon-
strained loop fusion can lead to poor performance because of increased
register pressure and cache conflict misses. The complex interaction be-
tween different levels of the memory hierarchy with the input program
makes it very difficult to always make the right choice in fusing loops. In
this paper, we present a cache-conscious analytical model for profitable
loop fusion to be used with a constrained weighted fusion algorithm.
We then extend the model to show its effectiveness in the context of an
empirical tuning framework. A preliminary evaluation of the model is
presented using hand experiments on four applications.

1 Introduction

Loop fusion is recognized as an effective program transformation for improving
memory hierarchy performance of applications. Fusion improves data locality by
merging loops that access the same data. Although fusion is a useful transforma-
tion it is not always profitable. Previous research has shown that unconstrained
application of fusion may sometime lead to performance loss [4,10].

Consider the code in Fig 1. In the first loop nest we compute values for array
b. These same values are then used in the second loop nest. We can exploit
this locality in array b by performing a two-level fusion operation. In the fused
loop nest shown in Fig 1(b) the two references to array b are close enough to
be put into a register. Thus as a result of fusion we can potentially save NM
memory operations. However, there is also an outer loop reuse in array a for the
references to a(i,j-1) and a(i,j-2) in loop nest l1 that we need to consider. In
the unfused version the same memory locations in array a are touched in every
iteration of the outer loop. In the fused version, although we do touch the same
locations in array a, the amount of data that we bring into cache between reuses
has increased. In the fused version, we will be accessing locations in arrays b, c
and d before we get to the reused reference of a. If the intermediate data between
� This material is based on work supported by the Department of Energy under Con-

tract Nos. 03891-001-99-4G, 74837-001-03 49, 86192-001-04 49, and 12783-001-05 49
from the Los Alamos National Laboratory.

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 106–120, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Cache-Conscious Profitability Model for Empirical Tuning of Loop Fusion 107

 l1: do j = 1, N
 do i = 1, M
 b(i,j) = a(i,j)+a(i,j-1)+a(i,j-2)
 enddo
 enddo

 l2: do j = 1, N
 do i = 1, M
 c(i,j) = b(i,j) + d(i,j)
 enddo
 enddo

outer-loop reuse of a()

cross-loop reuse of b()

(a) code before fusion

(b) code after two-level fusion

l12: do j = 1, N
 do i = 1, M
 b(i,j) = a(i,j)+a(i,j-1)+a(i,j-2)
 c(i,j) = b(i,j) + d(i,j)
 enddo
 enddo

lost reuse of a()

 saved loads for b()

Fig. 1. Example of non-profitable fusion

reuses is larger than the cache capacity then we will incur 2NM cache misses
due to the references to a. Moreover, by bringing in data from different arrays
between reuses we also increase the likelihood of conflict misses. The occurrence
of conflict misses in the loop nest can be even more damaging to performance
because it can lead to lost spatial locality in both arrays c and d. Thus for the
code in Fig 1 fusion will not yield an overall profit. (Many readers will observe
that these issues can be ameliorated by tiling the loop that results after fusion.
Although we do not analyze the interaction of tiling with fusion in the body of
this paper, we discuss the subject in the final section.)

Fusion can also degrade memory performance by increasing register pressure
for the innermost loop. When fusing loops at the innermost level the register
requirements may increase to the point where a large number of register spills
occur. The cost of these spills may offset any benefits gained by improved locality
in the fused loop. The possibility of exceeding the instruction cache capacity is
also a concern when fusing loops with large instruction counts in the innermost
loop bodies.

The problem of finding the optimal fusion solution has been shown to be
NP-complete [2]. For large applications with many fusible loops finding a good
fusion solution involves using good heuristics. In this paper, we present a strategy
that combines an architecture sensitive cost model with empirical tuning to
perform profitable loop fusion. Our cost model considers the size, associativity
and latency of various levels of the cache in determining if it is profitable to

108 A. Qasem and K. Kennedy

fuse a pair of loops. We incorporate this cost model into a constraint-based
fusion algorithm. We formulate two constraints for the fusion algorithm to ensure
that performance does not degrade as a result of increased pressure on system
resources due to fusion. Finally, we use empirical tuning to tune a set of fusion
parameters which cannot be measured accurately through static analysis.

In the sections that follow we discuss related work, present our analytical
model, demonstrate how it can be used in an empirical tuning system, present
a preliminary evaluation of the model and finally discuss our conclusions and
future work.

2 Related Work

Fusion has been studied in the literature both as a tool for improving data
locality and increasing the granularity of parallelism [8]. In this paper we look
at fusion in the context of improving data locality only.

In its general form the task of finding the optimal fusion has been shown to
be NP-complete [2]. Several algorithms have been described that use heuristics
to find good fusion solutions in reasonable time. Lim and Lam use affine trans-
formations to apply fusion [9]. Gao et. al. use a max-flow-min-cut algorithm to
partition loop nests into fusible clusters [5]. Kennedy describes a fast-greedy
weighted fusion algorithm that runs in polynomial time [7]. In our work we do
not look at algorithms for performing loop fusion but rather focus on establishing
suitable profitability constraints for legally fusible loops.

Many researchers have proposed models for performing loop fusion to im-
prove memory performance. Ding and Kennedy have looked at reducing effec-
tive bandwidth through loop fusion [4]. Verdoolaege et. al. [14] describe a greedy
fusion algorithm for incremental loop fusion at multiple levels. However, their
locality models do not consider input dependences or the costs associated with
cache misses. Song et. al. [13] present a model that combines loop fusion, loop
alignment and array contraction. In their model, the primary profitability con-
sideration is reducing bandwidth through reduced-sized arrays. Although they
apply conditions to check for excessive register pressure and cache capacity they
do not address the issue of conflict misses.

There are two main differences between our approach and the previous work
done in this area. Firstly, unlike previous models our approach uses machine
specific information (e.g. cache line size, latency) in combination with reuse
distances in determining if fusion is profitable for a pair of loops. Secondly, we
extend our model to be used in the context of an empirical framework. To our
knowledge fusion has not been applied in this setting.

3 Profitability Model

3.1 Quantifying Reuse in Fusible Loops

Capturing inter-loop nest reuse: To determine if it is profitable to fuse a
pair of loops we first need to compute the amount of reuse that is exploited

A Cache-Conscious Profitability Model for Empirical Tuning of Loop Fusion 109

as a result of fusion. Fusion improves locality by merging loops that access the
same data. Thus any memory location that is accessed in the first loop nest and
then re-accessed in the second loop nest is a candidate for potential reuse. This
inter-loop reuse can be captured in a dependence graph through the use of loop-
crossing dependence edges. A loop-crossing dependence is defined as follows:

Definition 1. Let l1 and l2 be two fusible loop nests where reference r1 accesses
location M in some iteration i in l1 and reference r2 accesses location M ′ in
some iteration j in l2. Then there is a loop-crossing dependence from r1 to r2 if
M = M ′.

To quantify reuse in fusible loops we start with the dependence graph for sin-
gle loop nests. Then for each pair of adjacent loop nests we add loop-crossing
dependence edges between the two dependence graphs.

Pruning the dependence graph: The extended dependence graph described
above is able to identify points of potential reuse in fusible loops. However, in cases
where there are multiple inter loop dependences with overlapping thresholds the
graph might overestimate the amount of reuse exploited by fusion. To account for
such situations we need to prune the graph so that the sink of each loop-crossing
dependence represents a potential savings in memory operations. We note that if
there are multiple loop-crossing dependences emanating from the same source ref-
erence then all but one of the loop-crossing dependence edges can be eliminated.
The edge that remains is the one that points to the sink reference that has no in-
coming dependence edge from within the loop nest. Similarly, if there are multiple
loop-crossing dependences that have a single reference as their sink we can elim-
inate all but one of the edges. In this case, the edge that remains is the one that
has a source with no dependence edges flowing into it from within the loop nest.

In addition to handling the loop-crossing dependences we also need to prune
the dependence graph for each loop nest so that the pruned graph has at most
one predecessor for each reference and that predecessor refers to the most recent
use of the sink. This pruning is essential for our cost model which assumes one
predecessor per sink in order to avoid double counting of cost on particular
references. We adopt strategies described by Carr [1] to perform this pruning.
The strategy involves eliminating all killed dependences from the graph and in
cases of group temporal reuse keeping only those edges that have the smallest
dependence threshold.

Hierarchical classification of reuse: Once, we have the pruned depen-
dence graph we need to augment it to include information about reuse distances
and memory hierarchy levels. The effects of fusion may not be beneficial across
all levels of the memory hierarchy. Fusing a pair of loops may improve locality
at some level of cache but actually hurt locality at other levels. Hence, to im-
prove overall memory performance we need to be able to quantify reuse that is
exploited at each level of the memory hierarchy.

When considering multiple levels of the memory hierarchy, the reuse classifica-
tion described in [15] is somewhat inadequate. We introduce a new classification
of temporal reuse based on the level at which locality is exploited. We associate

110 A. Qasem and K. Kennedy

with each sink node in the dependence graph a value that expresses the level at
which the reuse is exploited. This term is called the reuse level of a reference
and we define this formally as follows:

Definition 2. Let Li refer to the memory at level i. Then the reuse level of a
reference r involved in temporal reuse is the smallest k such that

ReuseDistance(r) ≤ Capacity(Lk)

3.2 Accounting for Conflict Misses

Conflict misses can be a big concern for profitable fusion. When fusing loops
we often bring accesses to a number of different arrays within the iterations of
a single loop nest. If the array locations overlap in cache then we would have
to pay the penalty of increased conflict misses. To account for conflict misses
we extend the cache associativity model described by Mark and Hill in [6]. We
compute the probability of a cache line being evicted before it is reused based
on the size and associativity of the cache and the reuse distance.

Let,

r1 and r2 = references to the same cache line
m = reuse distance between r1 and r2
s = number of sets in cache
a = associativity

If we assume, each line from m is equally likely to be mapped to any of the
sets then (this assumption is revisited in Section 5)

Pr[a lines landing in line occupied by r1] = Pr[conflict miss on r1]

=
m∑

i=a

(
m

i

)[
1
s

]i [
s− 1

s

]m−i

= 1−
a−1∑
i=0

(
m

i

)[
1
s

]i [
s− 1

s

]m−i

Now, we introduce a tolerance term T that expresses how high a probability of
a conflict miss we are willing to accept. We then have,

T ≥ Pr[conflict miss on r1] = 1−
a−1∑
i=0

(
m

i

)[
1
s

]i [
s− 1

s

]m−i

From this inequality we can derive an upper bound on m for a given value of T .

m ≤ E(a, s, T)

Here, E(a, s, T) is the maximum integral m such that Pr[conflict miss on r1]
≤ T .

Now, given a tolerance term T and the size and associativity of a cache at level
k we can express our formula for effective cache capacity (ECC) in the following
manner:

A Cache-Conscious Profitability Model for Empirical Tuning of Loop Fusion 111

ECC(Lk) = E(ak, sk, T) (1)

where, sk and ak refer to the size and associativity of the cache at level k.
Based on this model of effective cache capacity we now have a new definition

for the reuse level of a reference.

Definition 3. Let Li refer to the memory at level i. Then the reuse level of a
reference r involved in temporal reuse is the smallest k such that

ReuseDistance(r) ≤ ECC(Lk)

3.3 Estimating Profitability

With reuse information and the heuristics for conflict miss in place we are now
able to estimate the profitability of fusing a pair of loops. For each loop-crossing
dependence in the pruned graph we want to determine how many memory oper-
ations are saved as a result of placing the source and the sink within the same
iteration of the fused loop.

Let,

l1 and l2 = candidate loops for fusion that have the same nesting depth
D = set of loop-crossing true and input dependences between l1 and l2
C = set of dependences carried by either l1 or l2
ReuseLevel{pre,post}(d) = reuse level for d before and after fusion
Lk = cache at the kth level where 0 ≤ k ≤ L, L0 refers to the register level
and LL refers to main memory
cost(Lk) = cost of a miss access to Lk

Then for each d ∈ D we assign a weight w based on the following condition:
if ReuseLevelpre(d) > ReuseLevelpost(d)
then

w(d) =
ReuseLevelpre(d)−1∑
i=ReuseLevelpost(d)

cost(Li)

else
w(d) = 0

Then total weight is just ∑
d∈D

w(d)

Computing the number of memory operations saved from loop-crossing depen-
dences is not enough to determine if fusion is profitable. As illustrated in the ex-
ample in Fig 1 in some cases fusion may destroy locality within loop nests. When
fusing two loops the reuse distance of any carried dependence increases if that
reuse is also not involved in a loop-crossing dependence. We need to account for
all such cases where fusion might lead to loss of potential reuse.

112 A. Qasem and K. Kennedy

For each c ∈ C we need to compute the cost based on the following condition:
if ReuseLevelpre(c) < ReuseLevelpost(c)
then

w(c) =
ReuseLevelpost(c)−1∑
i=ReuseLevelpre(c)

cost(Li)

else
w(c) = 0

Then total cost is ∑
c∈C

w(c)

Hence, the final formula for computing the weight between two fusible loops is:

W (l1l2) =
∑
d∈D

w(d)−
∑
c∈C

w(c)

3.4 Resource Constraints

A detailed analysis of the savings in memory operations does not guarantee bene-
ficial fusion. There are several factors that can affect fusion that are not captured
by the model we presented for computing weights. Most of these factors have to do
with the resource requirements of the fused loop. If the requirements for a partic-
ular resource is higher than what is available to the program then the benefits of
improved locality through fusion may not be realized. In this section, we establish
a set of constraints that need to be considered by a constrained weighted fusion
algorithm [3].

(i) Register Pressure: If the number of required registers for the fused loop
body is more than what is available then we have to pay the price for spill
costs. To account for register pressure we enforce the following constraint:

Register Pressure(Loopfused) ≤ Register Set Size

We use the methods presented in [1] to estimate register pressure in a loop
body. Information about the number of registers available to the program is
collected before compilation.

(ii) Instruction Cache Capacity: If the number of instructions in the fused
body is large enough to blow out of the instruction cache then we have to
pay the penalty of fetching those instructions from memory. Again, this phe-
nomenon should be considered when fusing two loops.

Instructions(Loopfused) ≤ Capacity(I-Cache)

It should be noted that although data cache capacity is another critical resource
requirement for a program we do not include it as a constraint here. When us-
ing our cost model with a weighted fusion algorithm the weights of the individual
edges account for the data cache miss costs. For this reason we do not consider the
total data requirements of the fused loop as a separate constraint.

A Cache-Conscious Profitability Model for Empirical Tuning of Loop Fusion 113

3.5 Using the Model with a Greedy Fusion Algorithm

The fusion model and the resource constraints that we formulated can be incor-
porated into a constrained weighted fusion algorithm. We choose the pair-wise
greedy fusion algorithm as described by Kennedy and Ding in [3]. In this algorithm
fusion is formulated as a graph clustering problem in which the vertices represent
loops in the program and the weights represent the amount of benefit obtained by
fusing the endpoints. At each step the algorithm picks the heaviest prime edge in
the graph and fuses its endpoints. After each fusion operation weights are recom-
puted and the graph is updated with new successor, predecessor and prime edge
information.

The chief issue that needs to be considered in incorporating our model with
the greedy algorithm is the cost associated with recomputing the weights at every
step. Since, we perform a detailed analysis in calculating the benefits of fusing two
loops we need to annotate the graph with more information to make the reweigh-
ing process more efficient.

We construct the pruned dependence graph with reuse information as described
previously. We then group the references within each loop nest and label the sub-
graphs as supernodes. We compute the weights between each pair of fusible loops
according to the procedure described in section 3.3 We connect each pair of su-
pernodes using these weights. Hence, each pair of supernodes has only one node
connecting them that represents the net gain from fusing the two loops.

Now, the pair-wise fusion algorithm can proceed normally on the supernodes
and the edges between them. After fusing a pair of loops, edge weights between
supernodes have to be updated and the loop-crossing dependence edges adjusted.
For this step, we need to examine each loop-crossing dependence coming into and
out of the fused loop nest. The edges within the supernodes representing outer
loop reuse also have to be examined. We note however, that the number of edges
in both cases is bounded above by the number of arrays in the loop. Hence, the
complexity of a reweighing operation will be O(A) where A is the number of arrays
in the program. Having the complexity of the update operation bounded by the
number of arrays ensures that the fast greedy algorithm will be able to maintain its
original asymptotic time bound inspite of the more detailed profitability analysis.

3.6 Parameterizing the Model

Even the most detailed analytical models may not produce the optimal fusion so-
lution. Profitable fusion depends on a number of architectural features and it is
often difficult to determine a priori how these features will interact with the fu-
sion choices. For example, using the model presented in 3.3 we may be able to
make a prediction about the possibility of conflict misses but we cannot say how
good our prediction is until the program is actually run on the target machine.
Similar uncertainties remain in measuring register pressure and cache footprints.
Our approach to dealing with these uncertainties is the use of empirical tuning.
In this section, we show how the analytical model that we have presented in this
paper can be parameterized and used in an empirical tuning framework.

114 A. Qasem and K. Kennedy

The basic idea behind our algorithm for empirically tuning fusion parameters is
this: we identify system resources (e.g. available registers) that impose constraints
on fusion choices. We then introduce a tolerance factor T which determines how
much of a given resource we can use in each tuning step. The relationship between
the tolerance factor for a given resource R and the available resource R′ can be
expressed as

R′ = f(T, R) s.t. R′ ≤ R

For example, in the instance of tuning the register pressure parameter, the func-
tion f() is a multiplication of the tolerance factor T with the register set size fol-
lowed by a ceiling operation on the product. We start off conservatively with a low
tolerance factor and increase the value of T at each subsequent iteration. We stop
the iterative process either when performance degrades or when we have reached
the availability threshold of a particular resource.

Since, at each step we only relax some fusion constraint, it is easy to show that
the set of fused loops grows monotonically during the tuning process. Because of
this property we chose a search strategy that is sequential and orthogonal. For n
resources we have an n-dimensional search space where the size of each dimen-
sion is the range of tolerance factors for a particular resource. For each dimension
we perform a sequential search. When searching in a particular dimension we use
reference values for all other dimensions.

Our current search model includes three resources: data cache capacity, instruc-
tion cache capacity and register pressure.Although, these three resources are some-
what similar they interact with fusion choices in different ways and hence consti-
tute individual search dimensions. We discuss the tolerance factors and feedback
parameters for each of these resources next.

Effective Cache Capacity: We compute the effective cache capacity using
Eq. 1. Intuitively, Eq. 1 tells us what fraction of the cache we can use so that there
is T% probability of a conflict miss between two accesses to the same memory
location. So, in this case we have

Effective D-Cache Capacity = E(a, s, T)

where E(a, s, T) is obtained from Eq. 1.
We start of with a low value for T (T < 0.02) and at each step we increment T

by 0.05 and measure the number of data cache misses at different levels. We stop
the search in this dimension when we reach a T for which the number of cache
misses increases.

Register Pressure: For the register pressure constraint we have the following
equation for T :

Effective Registers = �T × Register Set Size� where 0 ≤ T ≤ 1

Feedback parameters we use here are total loads and cycle count. Both parameters
serve as good indicators about the occurrence of register spills.

A Cache-Conscious Profitability Model for Empirical Tuning of Loop Fusion 115

Table 1. Performance results for advect3d (large) for different fusion strategies

Fusion Cycles L1D Misses L2 Misses L1 I Misses Loads Speedup
Strategy (×108) (×107) (×106) (×105) (×108) over no-fuse
ccfm 8.41 4.48 5.13 6.14 3.66 1.17
simple 12.30 3.78 5.08 4.31 4.26 0.80
mips-pro 9.86 3.76 9.18 6.16 3.06 1.00
no-fuse 9.87 3.76 9.19 6.26 3.06 1.00

Table 2. Performance results for advect3d (small) for different fusion strategies

Fusion Cycle L1D Misses L2 Misses L1 I Misses Loads Speedup
Strategy (×108) (×107) (×106) (×105) (×108) over no-fuse
ccfm 4.22 1.38 2.29 6.98 1.19 1.08
simple 5.70 1.68 2.79 7.80 1.61 0.80
mips-pro 5.73 1.68 2.80 7.80 1.61 0.80
no-fuse 4.58 1.46 2.49 6.98 1.30 1.00

Instruction Cache Capacity: The instruction cache constraint is dealt sep-
arately since we do not compute reuse distances for instruction and we are mainly
concerned with capacity misses. So, in this case we have:

Effective I-Cache Capacity = �T × Capacity(I-Cache)� where 0 ≤ T ≤ 1

For feedback we measure instruction cache misses directly.

4 Preliminary Evaluation

We are currently in the process of implementing our profitability model in a
performance-based empirical tuning framework[12]. The system includes a source-
to-source code transformer (LoopTool) that is capable of performing a collection
of loop optimizations including multi-level fusion. In this section, we present an
evaluation of our model using the empirical tuning framework.

We applied our model by hand to a set of benchmarks. We then annotated the
source with directives to tell LoopToolwhich loops to fuse. The transformed code
was then compiled using the native compiler on the target platform.1 In order to
avoid conflicts with the fusion strategies of the native compiler, programs trans-
formed by LoopTool were compiled with the fusion option turned off. All experi-
ments were performed on an SGI R12K machine with a two-level cache hierarchy.
Experiments were run on four different programs: advect3d an advection kernel
for weather modeling, erlebacher a differential equation solver, liv18 a hydro-
dynamics kernel from Livermore loops and mgrid, a multi grid solver from SPEC
1 Since, we applied the model by hand we do not have numbers for the total tuning time.

The measured time for the source-to-source transformation was never more than 15
seconds.

116 A. Qasem and K. Kennedy

Table 3. Performance results for erlebacher for different fusion strategies

Fusion Cycle L1D Misses L2 Misses L1 I Misses Loads Speedup
Strategy (×109) (×108) (×107) (×104) (×108) over no-fuse
ccfm 5.23 2.00 2.72 6.57 4.02 1.08
simple 5.68 1.85 3.09 6.77 3.90 0.99
mips-pro 5.23 1.70 2.74 9.85 4.52 1.08
no-fuse 5.65 2.34 2.92 5.95 4.34 1.00

Table 4. Performance results for liv18 for different fusion strategies

Fusion Cycle L1D Misses L2 Misses L1 I Misses Loads Speedup
Strategy (×109) (×108) (×107) (×104) (×109) over no-fuse
ccfm 3.77 2.14 2.33 4.52 1.55 1.46
simple 3.77 2.14 2.33 4.52 1.55 1.46
mips-pro 5.06 2.32 3.33 5.54 0.98 1.09
no-fuse 5.51 2.62 4.08 5.13 1.18 1.00

2000. We compare results from applying our strategy (ccfm) with three different
strategies: the simple strategy always fuses loops that share some common data,
mips-pro is the fusion strategy chosen by the MIPSPro 7.3 compiler and no-fuse
is the option of applying no fusion at all.

Results from advect3d using a 256×256×256 data set is presented in Table 1.
The results show that our strategy is able to achieve a 17% speedup over both
mips-pro and no-fuse. Performance improvement of ccfm over simple is even
more dramatic (46%). For advect3d, ccfm fuses all loops at the two outer levels
but refrains from fusing all the innermost loops because it estimates the register
pressure will exceed available resources on the target machine. simple fuses all
loops at each nesting level and creates a large fused body for the inner loop. As
a result, this version of the code incurs many register spills as indicated by the
large number of issued loads in column 6 of Table 1. Although simple is able to
achieve some locality in L1 and L2 cache and also the L1 instruction cache, the
cost of register spills for this strategy outweighs its benefits. The peformance of
mips-pro and no-fuse is almost identical in this case. Closer inspection of the
generated code revealed that MIPSPro chose not to fuse any loops for advect3d
because the data set was too large for the stack frame size for the target machine.
For this reason, we ran another set of experiments with advect3d using a smaller
(128×128×128) data set. Results from the second set of experiments are shown in
Table 2. Again, ccfm performs significantly better than both no-fuse and simple.
Although, the performance gains have somewhat diminished due to the smaller
data set. The more interesting result from this set of experiments is the perfor-
mance of the mips-pro strategy. mips-pro performs as poorly as simple in this
case. We inspected the code generated by mips-pro and discovered that it cre-
ated two separate fully fused loop nests from the 27 fusible loops in the program.
In addition, it performed tiling on each fused loop nest. As it turned out the combi-
nation of fusion and tiling was not able to improve locality in the program. This is

A Cache-Conscious Profitability Model for Empirical Tuning of Loop Fusion 117

Table 5. Performance results for mgrid for different fusion strategies

Fusion Cycle L1D Misses L2 Misses L1 I Misses Loads Speedup
Strategy (×1010) (×108) (×107) (×105) (×109) over no-fuse
ccfm 1.05 4.63 6.37 3.39 3.64 1.07
simple 1.02 4.53 6.27 3.31 3.59 1.11
mips-pro 1.02 4.53 6.27 3.26 3.59 1.11
no-fuse 1.13 5.14 6.86 3.74 3.74 1.00

indicated by the increased number of misses at all levels of the cache. These results
demonstrate that indiscriminate fusion can indeed lead to performance degrada-
tion. Our fusion strategy, although less aggressive, achieves locality at both cache
levels while keeping the register spill cost at a moderate level. Hence, we are able
to achieve an overall performance improvement across all levels of the memory
hierarchy.

Results from our experiments with erlebacher are presented in Table 3. Again
ccfm is able to outperform both simple and no-fuse through improved local-
ity in the L2 cache. However, in this case mips-pro does as well as ccfm. For
erlebacher, mips-pro fuses loops that our fusion strategy rejects because of lost
reuse in the outer loops. However, as was the case with advect3d, the MIPSPro
compiler applies tiling to these fused loops and in this case tiling is able to recover
some of the lost reuse due to over fusion. Thus there is no significant increase in
the number of L2 cache misses for mips-pro.

In Table 4 we present results from liv18. We observe the most significant per-
formance improvement for this kernel. This is not surprising since all the work in
liv18 is spent in three fusible loop nests. For liv18, our fusion strategy chooses
to fuse all three loops all the way through which is equivalent to the simple strat-
egy. Thus in Table 4 the rows corresponding to ccfm and simple are identical. We
notice that fusing all the way through does cause some extra loads. However, this
loss is more than offset by the benefits obtained from reduced L2 cache misses.
mips-pro does not do too well on liv18. It decided to fuse only two of the three
fusible loops in the kernel leaving some unexploited reuse in the third loop nest. It
was not totally clear as to why mips-pro decided not to fuse the third loop nest.
We speculate that it may have been due to loop alignment issues. The loop nests
in liv18 need to be aligned before they can be fused. For LoopTool we use the
Omega code generator which inserts guards within fused loop nests after align-
ment. On the other hand, it appears that MIPSPro prefers to peel off iterations
of the loop nest that fall outside the alignment range. It is possible that because
of this approach the third loop nest was left unfused. Thus the performance im-
provement we observe over mips-pro may not be due to an improved profitabil-
ity model but rather due to a limitation in their implementation of the fusion
algorithm.

The final benchmark we look at is mgrid. The experimental results from mgrid
are presented in Table 5. In this case, although ccfm achieves better performance
than no-fuse it is beaten by both mips-pro and simple. mgrid poses a similar
situation as advect3d for our fusion strategy. Because ccfm expects lost reuse in

118 A. Qasem and K. Kennedy

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

advect3d erlebacher liv18 mgrid

Benchmarks

S
p

e
e
d

u
p

 o
v
e
r

n
o
-
fu

s
e

ccfm

simple

mips-pro

no-fuse

Fig. 2. Performance improvement for different fusion strategies

outer levels it chooses to perform only a two level fusion leaving the innermost
loops alone. On the other hand, mips-pro decided to fuse all the way through
and then apply both tiling and outer loop unrolling to the fused loop nests. This
combined transformation strategy improved locality for L2 cache and also reduced
the number of loads for the program.

We summarize the results of our experiments in Fig 2. The experimental re-
sults presented in this section expose several key aspects for profitable loop fusion.
The results show that overly aggressive fusion can indeed lead to performance loss
through increased register pressure and lost reuse at outer levels of loop nests. In
some cases, this loss can be mitigated by applying transformations such as tiling
and unroll-and-jam. However, there are cases when these additional transforma-
tions are unable to help improve the overall performance. Thus the interaction
between fusion and other transformations, particularly tiling is critical in improv-
ing memory performance. To address this issue, we have begun work on a more
complex model discussed in the concluding section.

5 Accuracy of the Cache Miss Prediction Model and Its
Implications

The cache miss model presented in Section 3.1 makes the assumption that memory
accesses between any two reused references are essentially random. Although, this
scheme works well when integrated with the rest of our framework it is important
to evaluate the accuracy of the model on its own. To validate our model, we per-
formed a series of experiments with a set of synthetic benchmarks and real-world
applications [11]. In this section, we provide a brief summary of the experimental
results and discuss their implications.

Experimental results from [11] revealed that our model is able to predict an
upper bound for the conflict miss rate with reasonable accuracy. However, the pre-
dicted upper bound for the miss rate can sometimes be significantly greater than
the actual miss rate of the program. Although a conservative estimate suffices for
profitability estimates of loop fusion it is important to consider its implications on
other transformations. A key transformation for improving memory performance

A Cache-Conscious Profitability Model for Empirical Tuning of Loop Fusion 119

in numerical applications is tiling. If we use our conflict miss model with tiling then
the effective cache capacity would directly determine the tile size for a given loop
nest. In that case, a conservative estimate would imply choosing a smaller tile size
which in turn may lead to lost reuse in inner loops. Therefore, in such situations
we need a cache miss model that is able to predict the cache miss rate more ac-
curately. We are currently working on such a model. Our new model incorporates
the effects of tiling and also considers the layout of arrays in memory.

6 Conclusions and Future Work

In this paper, we have presented a model for estimating the profitability of loop
fusion and a strategy for parameterizing the model for use in an empirical tuning
framework. Preliminary experiments in Section 4 suggest that our strategy can
help make the right fusion choices on a set of applications. However, to make a
stronger statement about the effectiveness of our approach the model has to be
evaluated on a large class of benchmarks and a variety of platforms. Our future
plans include a complete implementation of the model in our empirical tuning
framework and a more thorough evaluation on a large benchmark suite.

Experimental results from Section 4 also emphasize the need for considering
interactions between optimizations for overall improvement in memory perfor-
mance. In particular, there are complex interactions between tiling and fusion that
need to be considered to make fusion profitable. By merging loop bodies fusion can
increase the working set size of a loop nest and force the selection of a smaller tile
size. A smaller tile size might result in lost reuse in the inner loops. If arrays are
not aligned at cache line boundaries (generally the case) then a smaller tile size
may result in lost reuse in outer loops as well. In such cases, it may be profitable
to tile the two loop nests separately. We are currently working on a profitability
model that considers these complex interactions between tiling and fusion to im-
prove overall memory performance. In addition, this model employs a more accu-
rate estimator for effective cache capacity that takes the effects of tiling and array
allocation strategies into account.

References

1. S. Carr. Memory-Hierarchy Management. PhD thesis, Dept. of Computer Science,
Rice University, Sept. 1992.

2. A. Darte. On the complexity of loop fusion. In PACT ’99: Proceedings of the 1999 In-
ternational Conference on Parallel Architectures and Compilation Techniques, 1999.

3. C. Ding and K. Kennedy. Resource-constrained loop fusion. Technical report, Dept.
of Computer Science, Rice University, Oct. 2000.

4. C. Ding and K. Kennedy. Improving effective bandwidth through compiler enhance-
ment of global cache reuse. In International Parallel and Distributed Processing
Symposium, San Francisco, CA, Apr. 2001. (Best Paper Award.).

5. G. Gao, R. Olsen, V. Sarkar, and R. Thekkath. Collective loop fusion for array
contraction. In Proceedings of the Fifth Workshop on Languages and Compilers for
Parallel Computing, New Haven, CT, Aug. 1992.

120 A. Qasem and K. Kennedy

6. M. D. Hill and A. J. Smith. Evaluating associativity in cpu caches. IEEE Trans.
Comput., 38(12), 1989.

7. K. Kennedy. Fast greedy weighted fusion. In ICS ’00: Proceedings of the 14th in-
ternational conference on Supercomputing, 2000.

8. K. Kennedy and K. S. McKinley. Maximizing loop parallelism and improving data
locality via loop fusion and distribution. In Proceedings of the Sixth Workshop on
Languages and Compilers for Parallel Computing, Portland, OR, Aug. 1993.

9. A. Lim and M. Lam. Cache optimizations with affine partitioning. In Proceed-
ings of the Tenth SIAM Conference on Parallel Processing for Scientific Computing,
Portsmouth, Virginia, Mar. 2001.

10. K. S. McKinley, S. Carr, and C.-W. Tseng. Improving data locality with loop trans-
formations. ACM Transactions on Programming Languages and Systems, 18(4):424–
453, July 1996.

11. A. Qasem and K. Kennedy. Evaluating a model for cache conflict miss prediction.
Technical report, Dept. of Computer Science, Rice University, Oct. 2005.

12. A. Qasem, K. Kennedy, and J. Mellor-Crummey. Automatic tuning of whole ap-
plications using direct search and a performance-based transformation system. In
Proceedings of the Los Alamos Computer Science Institute Second Annual Sympo-
sium, Santa Fe, NM, Oct. 2004.

13. Y. Song, R. Xu, C. Wang, and Z. Li. Data locality enhancement by memory reduc-
tion. In Proceedings of the 15th ACM International Conference on Supercomputing,
Sorrento, Italy, June 2001.

14. S. Verdoolaege, M. Bruynooghe, G. Jenssens, and F. Catthoor. Multi-dimensional
incremental loop fusion for data locality. In Proceedings of the IEEE International
Conference on Application Specific Systems, Architectures, and Processors, June
2003.

15. M. E. Wolf and M. Lam. A data locality optimizing algorithm. In Proceedings of the
SIGPLAN ’91 Conference on Programming Language Design and Implementation,
Toronto, Canada, June 1991.

Optimizing Matrix Multiplication with a Classifier
Learning System∗

Xiaoming Li and Marı́a Jesús Garzarán

Department of Computer Science
University of Illinois at Urbana-Champaign
{xli15, garzaran}@cs.uiuc.edu
http://polaris.cs.uiuc.edu

Abstract. Compilers have been very successful on automating the process of
program optimization, but there is still a significant difference in performance
between the code generated by the compiler and the hand-optimized code. Li-
brary generators such as ATLAS, SPIRAL, and FFTW address this problem by
using empirical search to find the parameter values of certain optimization such
as degree of unroll. We have recently developed a generator of sorting routines.
Sorting differs from the algorithms implemented by other library generators in
that performance of sorting depends not only on the target platform but also on
the characteristics of the input data. In our work we used a classifier learning sys-
tem to generate sorting routines that are capable of adapting to the input data. In
this paper we follow a similar approach and use a classifier learning system to
generate high performance libraries for matrix-matrix multiplication. Our library
generator produces matrix multiplication routines that use recursive layouts and
several levels of tiling. Our approach is to use a classifier learning system to
search in the space of the different ways to partition the input matrices the one
that performs the best. As a result, our system will determine the number of lev-
els of tiling and tile size for each level depending on the target platform and the
dimensions of the input matrices.

1 Introduction

Compilers have been very successful on automating the process of program optimiza-
tion, but there is still a significant difference in performance between the code generated
by the compiler and the hand-optimized code. The growing complexity of the architec-
tural features of modern processors makes it very difficult to optimize performance. An
approach that some researchers have followed is to use library generators to generate
high performance code for some specific problem domains.

Examples of well-known library generators are ATLAS [30], PHiPAC [4], FFTW
[11] and SPIRAL [33]. ATLAS and PHiPAC generate linear algebra routines and fo-
cus the optimization process on the matrix multiplication routine. During installation,
the parameter values of a matrix multiplication implementation, such as tile size and

∗ This work was supported in part by the National Science Foundation under grant CCR 01-21401
ITR; by DARPA under contract NBCH30390004; and by gifts from INTEL and IBM. This work
is not necessarily representative of the positions or policies of the Army or Government.

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 121–135, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

122 X. Li and M.J. Garzarán

amount of loop unrolling, that deliver the best performance are identified using
empirical search. This search proceeds by generating different versions of matrix multi-
plication that only differ in the parameter value that is being sought. An almost exhaus-
tive search is used to find the best parameter values. The other two systems mentioned
above, SPIRAL and FFTW, generate signal processing libraries.

Recently we have built a library generator for sorting [17,18]. Sorting is different
from the algorithms implemented by the previous library generators in that performance
of sorting depends not only on the target platform but also on characteristics of the input
data, which are only known at runtime. In the work presented in [18] we used a classifier
learning system to generate algorithms capable of adapting to the input data. In the work
discussed herein, we follow a similar approach and use a classifier learning system
to generate high performance libraries for matrix-matrix multiplication (MMM). Our
library generator generates MMM routines that use recursive layouts [7,8] and several
levels of tiling. Our approach is to use a classifier learning system to search among
all the different ways to partition the input matrices, the one that performs the best.
The MMM routine generated with our classifier learning system uses different levels
of tiling and tile sizes based on the dimensions of the matrices and the architectural
features of the target machine.

ATLAS is a library generator that also produces a MMM routine. The difference
between our approach and the one followed by ATLAS is that we use recursive layouts
to place the blocks in consecutive memory locations and focus the search on levels of
tiling and size of each tile. ATLAS does not search for the number of levels of tiling. In
fact, ATLAS only searches for the tile size for a single level of tiling, although a second
level of tiling can be implemented [1]. Also, notice that the performance delivered by
ATLAS in some platforms is still far from the one delivered by the vendor provided
libraries [36], mainly because ATLAS does not take into account all the levels of the
memory hierarchy and does not take advantage of some optimizations like prefetching.
Our objective is to reduce the performance gap between the hand-optimized code and
the automatic generated code by extending the search to consider parameters ignored
by ATLAS.

When using a single level of tiling, it has been shown that a model can predict the
best value of the tile size almost as well as the empirical search of ATLAS by simply
taking into account certain cache parameters [35,36]. However, when tiling for the dif-
ferent levels of the memory hierarchy, the size of the matrices becomes important. If
the matrices are not a multiple of the tile sizes, we need to use padding or cleanup code.
With padding, the size of the matrices is increased with additional rows or columns of
zeros. Arithmetic operations are usually blindly performed on them. With cleanup, ad-
ditional code (which is usually suboptimal) is executed to multiply the remainder rows
or columns. With recursive layouts, padding is the method usually preferred. Given the
large sizes of the second and third level of caches of current machines (6 to 8 MB),
padding can represent a significant overhead if the tile sizes are computed without tak-
ing into account the matrix sizes. On the other hand, choosing the tile sizes based on
the matrix sizes and disregarding the cache sizes will result in poor cache utilization.
In addition, choosing the number of levels of tiling based on the number of caches of
the machine may result in slow-downs. In some platforms it is better to use a single

Optimizing Matrix Multiplication with a Classifier Learning System 123

level of tiling because additional levels of tiling introduce additional instructions such
as branches that may execute slowly.

We compared the MMM routine generated using a classifier learning system with the
MMM routine generated by ATLAS when multiplying matrices of sizes 1000 to 5000.
Our preliminary results show that the MMM routine generated using the approach we
follow in this paper runs always faster than ATLAS in a Sun UltraSparc III by an av-
erage 18%. In the case of Intel Pentium Xeon, our routine is almost always faster than
ATLAS by an average 5%. However, ATLAS runs on average 14% faster than our rou-
tine in Intel Itanium II. Our experiments also show that padding is important to obtain
high performance, and we plan to implement more sophisticated padding strategies to
improve the performance of the generated library.

The paper is organized as follows. Section 2 revises some of the compiler optimiza-
tions that are applied to MMM. Section 3 presents the partition primitives that will
be used by the classifier learning system, which is presented in Section 4. Section 5
presents our experimental setup and preliminary results. Section 6 presents related
work, and finally, Section 7 concludes.

2 Matrix-Matrix Multiplication

In this Section we present an overview of an automatic tiling and discuss copying and
recursive layouts in the context of matrix-matrix multiplication.

A naı̈ve implementation of matrix-matrix multiplication is shown in Figure 1-(a).
Usually this code runs slowly because of the poor utilization of cache memories. A
transformation used to increase cache locality is loop tiling. This transformation was
first introduced by McKellar and Coffman [19] and discussed in the context of compil-
ers by Abu-Sufah [3] and later by Wolfe [32]. Figure 1-(b) shows the code for a tiled
matrix-matrix multiplication using a square tile of size NB × NB. This tile size is a
parameter that must be chosen to minimize capacity misses. However, when the ma-
trices are large each row (in a row major layout) can be in a different physical page
and then TLB misses can occur. This problem can be avoided if the tile selection con-
siders the number of entries in the TLB in conjunction with the cache size [20]. In
any case, to reduce conflict and TLB misses, tiling is usually used in combination with
copying [16,28] where the elements of each NB×NB submatrix are copied into con-
tiguous memory locations.

Tiling has been extensively considered in the literature when applied to a single cache
level [9,16,21,25,35]. However, when tiling for a single level of cache, we do not exploit
all the cache levels. For example, Figure 2-(a), shows the order in which the submatrices
of A, B and C are accessed when executing the code of Figure 1-(b). Each iteration of
the outermost loop (j) will traverse the 16 blocks of matrix A. Unfortunately, if matrix
A is large, it will not fit in the second level cache. Therefore each j iteration will have
to bring all the A blocks back to the second and first cache level. A solution to this
problem is to apply another level of tiling [25,34].

Suppose that we apply another level of tiling to the code in Figure 1-(b) by adding
three additional loops with the same order JIK . The outer loops would operate on
blocks consisting of 2 × 2 tiles so that the blocks of matrix A will be traversed in the

124 X. Li and M.J. Garzarán

for (j = 0; j < M ; j+ = NB)
for (i = 0; i < N ; i+ = NB)
for (k = 0; k < K; k = +NB)

for (j = 0; j < M ; j + +) for (jj = 0; jj < j + NB; jj + +)
for (i = 0; i < N ; i + +) for (ii = 0; ii < i + NB; ii + +)
for (k = 0; k < K; k + +) for (kk = 0; kk < k + NB; kk + +)

C[i][j]+=A[i][k] ∗ B[k][j] C[ii][jj]+=A[ii][kk] ∗ B[kk][jj]

(a) Naı̈ve implementation (b) Tiled implementation

Fig. 1. Matrix Multiplication Code

matrix C matrix A matrix B matrix C matrix A matrix B

i
j i

k
j

k

(a) One level of Tiling (b) Two levels of tiling. Recursive layouts

Fig. 2. Memory layouts for tiled matrix-matrix multiplication. (a)- One level of tiling and block
data layout. (b)- Two levels of tiling and recursive layout.

order shown in Figure 2-(b). The blocks of the second level of tiling are no longer con-
secutive in memory and, as a result, these accesses can result in cache conflicts and
TLB misses [22]. To avoid this problem, nonlinear array layout or recursive layouts
together with tiling have been used [7,8]. The idea is to copy these blocks into consecu-
tive memory locations. These array layouts are described as based on quadtrees [10] or
on space-filling-curves[15,23,27]. Instances of this family are familiar in parallel com-
puting under the names Morton ordering and Hilbert Ordering. The layout shown in
Figure 2-(b) for matrix A is known as Z-Morton. These recursive layouts were shown
to deliver high performance [7,8], but some considerations need to be taken into account
in their implementation:

• These nonlinear layouts can be applied recursively down to the level of individual
matrix elements [10]. However, Chatterjee et al. [8] showed that this was counter-
productive, and that it is better to follow a recursive layout only until the tile fits in
the cache.

• These recursive layouts require that for a matrix of size M × N and a tile of size
tm × tn, the following equations be satisfied: M

tm = N
tn = 2d. Sometimes it is

necessary to add padding to the matrix in order to satisfy this equation. The general
idea is to select the appropriate tile tm × tn for the cache of the machine, insert a
zero padding and perform the arithmetic operations on the zero padding.

3 Partition Primitives

The library generator used in this study produces a matrix-matrix multiplication
(MMM) routine that computes C = αAB + βC, where A, B and C are matrices

Optimizing Matrix Multiplication with a Classifier Learning System 125

of dimensions M ×K , K ×N and M ×N respectively. The generated MMM routine
uses multilevel tiling and recursive layouts as discussed above. The routine first copies
the original matrices from row or column major layout to the recursive layout. Then, it
multiplies the matrices and transforms the resulting C matrix back to the row or column
major layout. The copy and multiplication procedures are determined by the number
of levels of tiling and tile sizes. These values will be selected using empirical search
as discussed below. This Section describes the partition primitives which will be used
by the search procedure to determine the best number of levels of tiles and tile sizes
for the dimensions of the input matrices and target architecture. Before explaining the
primitive partitions, we briefly describe the procedures for copying and padding.

We denote the matrix dimensions at level i as Mi, Ni and Ki, where i ranges from
1 to the number of levels of tiling. If the matrices at level i are partitioned with
factors pmi, pni and pki, the dimensions of each submatrix in the next recursion level
will be Mi−1 = Mi

pmi
, Ni−1 = Ni

pni
and Ki−1 = Ki

pki
respectively. The partition factors

determine how the sub-blocks must be copied from row (or column) major layout to the
recursive layout. An example of these recursive layouts has been shown in Figure 2-(b).

2004
668

first level
padding

padding
second level

1000
500

Fig. 3. Example of padding

When the factors in the partition vector are not a divisor of the matrix dimensions we
need to use padding. For example suppose A is a matrix of 2000× 1000, and we divide
it first by (3,2) and then (4,1). Since 3 is not a divisor of 2000, we need to add padding
so that we can divide the matrix in exactly 3 pieces. Each resulting submatrix will be
of size 667× 500. Now, the 667 elements of the X dimension need to be divided by 4.
Since 4 is not a divisor of 667, we need to pad each submatrix, and make them to be
668. Thus, we end up with a matrix of size 2004× 500. We have 4 additional columns
of zeroes which will be blindly multiplied. The example is shown in Figure 3.

Next, we describe the partition primitives that we use in this work.

1. Partition by Block(PB)
This primitive specifies the tile or block size. It has three parameters, which are the
block size for each M, N and K dimension. So, consider M = 100, N = 100, K =
40. If we want tiles of sizes 50, 50, and 20 for the dimensions M, N, and K , respec-
tively, we would specify this as follows Partition By Block (50,50,20).

126 X. Li and M.J. Garzarán

The Partition By Block primitive will compute the partition factors (pm,pn,
pk) as follows:

pm = � m
bm�,pn = � n

bn�,pk = � k
bk �

The Partition by Block primitive allows to specify tiles of any size, not
only square tiles.

2. Partition by Size(PS)
This partition primitive specifies the size of a block and partitions the different di-
mensions of the matrix until the resulting submatrices are equal or smaller than the
size of the specified block. The primitive guarantees that the ratio between the di-
mensions is kept constant. The primitive allows the specification of the dimensions
to be partitioned. It has four parameters. The first three parameters specify if a given
dimension M, N and K needs to be partitioned. The fourth parameter specifies the
block size. The algorithm used by this primitive is shown below.

Input Parameters:
m,n,k: input matrix dimensions
muse, nuse, kuse: boolean variables indicating the

dimensions to be partitioned
size: the block size

begin
maxratio = MIN(m,n,k)

2
for(ratio=maxratio; ratio ≥ 2;ratio--){

if(muse) tmpm=� m
ratio�

if(nuse) tmpn=� n
ratio�

if(kuse) tmpk=� k
ratio�

tmpsize=tmpm ∗ tmpk + tmpk ∗ tmpn + tmpm ∗ tmpn
if(tmpsize≤ size)

break;
}
if(muse) pm = ratio;
if(nuse) pn = ratio;
if(kuse) pk = ratio;

end

Notice that most of the previous research on recursive layouts works by divid-
ing each dimension by half. The Partition by Size primitive is a general-
ization of the divide by half strategy which can be implemented by setting
muse = nuse = kuse = true and size = m∗k+k∗n+m∗n

4 . In some studies, the
recursion is carried down all the way to the individual elements [10,12]. The work
in [12] showed that this strategy resulted in minimum number of cache misses. Un-
fortunately in this case minimizing the number of misses does not necessarily results
in better performance, because of the additional instructions that need to be exe-
cuted. In fact, the work by Chaterjee et al. [7,8] showed that stopping the recursion

Optimizing Matrix Multiplication with a Classifier Learning System 127

at tiles of the appropriate size returned better performance. In this paper, when gen-
erating the kernel routine for the MMM we will follow the approach of Chatterjee et
al.(Section 5).

4 Classifier Learning System

To build a high performance library we need to determine how the input matrices should
be partitioned along the M, N and K dimensions. The best partitioning is a function of
architectural features such as number of caches and size of each cache and the dimen-
sions of the input matrices. Choosing the correct partition is hard. For some machines,
we need to apply a single level of tiling, since the overhead of the additional instruc-
tions executed when more levels of tiling are applied results in lower performance.
Even when tiling for a single level of cache we need to decide whether to tile for L1 or
L2 [2,35]. When tiling for L2 and L3, it is important to take into account the dimen-
sions of the matrices. Since L2 and L3 tend to be large (sometimes 6 or 8 MB), when a
dimension of the matrix is not a multiple of the tile size, the amount of padding can be
substantial.

We plan to use the partition primitives described in the previous Section as the build-
ing blocks to generate a MMM library. By combining the different primitives and se-
lecting different parameter values, the space of the different algorithms that we can
generate is very large. As a result, exhaustive search is unfeasible. Our approach is to
use a classifier learning system [6,24,31] to search the space of possible algorithms.
The main reason to use a classifier learning system is that with this mechanism input
characteristics can be used to create a table with the best partitioning parameters. This
table can be used at runtime to enable dynamic adaptation.

A classifier system consists of a set of rules. Each rule has two parts, a condition and
an action. A condition is a string that encodes certain characteristics of the input, where
each element of the string can have three possible values: “0”, “1”, and “*” (don’t care).
Similarly, the input characteristics are encoded with a bit string of the same length. If
i and c are the input bit string and the condition string respectively, we can define the
function match(i, c) as follows:

match(i, c) =
{

true, ∀(j)ij = cj ∨ cj =′ ∗′, wherej = length of the bit string
false, otherwise

If there is only one match(i, c) which is true, the action corresponding to the con-
dition bit string c is selected. However, for a given input several matches are possible.
In this case, we will choose one action among all the rules that match. The mechanism
for the selection is explained below (in Section 4.3).

Next we explain how the classifier learning system is tuned for each platform and
input

4.1 Representation

Encoding of the Rule Condition. The input characteristic that will determine the pa-
rameter values of the partition primitives is the dimension of the matrices. Thus, we will
encode possible values of the dimensions of the matrices A, B and C in the condition
of the rules.

128 X. Li and M.J. Garzarán

Action of the Rule. The action part will be a list of the partition primitivespartition
by size (PS) or partition by block (PB) with their corresponding pa-
rameter values. For example, an action will have the shape (PS param-list (PB
param-list)), where param-list is the list of parameters. This action will re-
turn a single function that will decompose the input matrices of size M ×N ×K into
submatrices of size M ′ ×N ′ ×K ′, that result from applying first the PS primitive and
them the PB primitive.

Notice that each action, even if it contains several partition primitives correspond to
a single level of tiling. To apply several levels of tiling, we can recursively invoke the
rule set of the classifier system with the size of the resulting submatrices. The recursion
will finish when the number of levels of tiling has already reach the maximum number
of levels allowed, or when the size of the submatrices is within a predefined range.

4.2 Training

During the training process we generate matrices of different sizes. Given a training in-
put, we have a match rule set, which are the set of rules where the condition matches the
bit string that encodes the input characteristics. We use a XCS classifier learning system
as the one in [6,31]. In this type of classifier systems, each rule has two attributes. The
first attribute is the fitness. The fitness is an estimation of the performance of this rule
on the inputs that match the associated condition. The second attribute is the accuracy.
The accuracy measures the confidence of the fitness attribute in predicting the correct
performance.

In our approach we use a multi-step classifier system, since the output of an invo-
cation can be used as the input for the next invocation. This system works as follows.
The first time we invoke the rule set with a training input we have a match rule set. All
the actions in the matching rules are the set of strategies that can be used to partition
the input matrices. During the training process, all the actions in the matching rules are
applied. Thus, given an input of size M×IN×K , the result will be submatrices of sizes
M ′

i×IN′
i×K ′

i, where i = 1..number of matching rules. Each of the M ′
i×IN′

i×K ′
i

generated outputs can be used as the input to the next invocation to the learning classi-
fier system. The system, as explained above, will stop when the maximum level of calls
is reached or when the size of the submatrices is within a specified range. At the end,
we have many different partition strategies, each of them blocking the matrices with
tiles of different sizes, and possibly different levels of tiling. We generate the MMM
routine for each partition strategy and measure the execution time. Based on the results
obtained, we update the fitness and accuracy of all matching rules used to generate each
of the MMM routines. The algorithm is shown in Figure 4.

To generate new conditions and actions, transformations such as mutation and
crossover applied in genetic algorithms [13,18] are also used here. MOre details about
the XCS classifier learning system that we use in this work can be found in [6,31].

4.3 Runtime

At the end of the training phase we have a tuned rule set. At runtime, the bit string
encoding the input characteristics will be used to extract all the rules whose condition
matches the input. Among all these rules, the one selected will depend on a function that

Optimizing Matrix Multiplication with a Classifier Learning System 129

rewards low execution time and penalizes low accuracy. The runtime overhead includes
the computation of the input bit string, and the scan of the rule set to select the best one.

We train the classifier system to learn a set of rules that cover the space of the possible
input parameter values, discover the conditions that better divide the input space and
tune the actions to learn the best partition scheme based on the input characteristics.

Multi Step Classifier Learning
Inputs:

M,N,K: dimensions of the input matrices
l: current level of recursion

Outputs:
pmi, pni, pki, i=[0..max-num-levels]: partition factors
exec: execution time

begin
P= variable that contains the partition factors —pmi, pni, pki, i=[0..max-num-levels]
Encode M,N,K into the bit string

−→
in

mset = ∅

for each rule r−−−→
rcond = condition of r

if match(
−→
in,

−−−→
rcond)

add r to mset
while (mset �= ∅)

extract r from mset
act= action part in r
pmi, pni, pki= result of applying act on M, N, K
Update P with the new pmi, pni, pki

M ′, N ′, K′= result of applying pmi, pni, pki on M, N, K
if notend then

call Multi Step Classifier Learning (M ′, N ′, K′,l + 1)
else

Run matrix multiply with M, N, K using P
Measure execution time exec

Use exec to update fitness and accuracy of r
return exec

end

Fig. 4. Classifier learning algorithm

5 Experiments

In this section we evaluate our approach of using a classifier learning system to optimize
a MMM routine. In Section 5.1 we discuss the environmental setup that we use for the
evaluation and in Section 5.2 we present performance results.

5.1 Environmental Setup

We evaluated our approach on three different platforms: Sun UltraSparc III, Intel Ita-
nium 2, and Intel Xeon. Table 1 lists for each platform the main architectural

130 X. Li and M.J. Garzarán

Table 1. Test Platforms. (1) Intel Xeon has a 8KB trace cache instead of a L1 instruction cache.
(2) Intel Itanium2 has a L3 cache of 6MB.

Sun Intel Intel

CPU UltraSparcIII Itanium 2 P4 Intel Xeon
Frequency 750MHz 1.5GHz 3GHz
L1d/L1i Cache 64KB/32KB 16KB/16KB 8KB/12KB (1)
L2 Cache 1MB 256KB (2) 512KB
Memory 4GB 8GB 2GB
OS SunOS5.8 RedHat7.2 RedHat3.2.3
Compiler Workshop cc 5.0 gcc3.3.2 gcc3.4.1
Options -native -xO5 -O3 -O3

parameters, the operating system, the compiler and the compiler options used for the
experiments.

To generate the MMM library we used the classifier learning system. We trained the
classifier with the algorithm of Figure 4. The classifier determines the number of levels
of tiling and the tile size for each matrix size. For the implementation of the MMM
at the last level of tiling we used the kernel generated by ATLAS. ATLAS generates
a MMM routine and uses empirical search to look for the best parameter values of
certain compiler transformations such as tile size, loop unrolling and software pipelin-
ing [30,35,36]. The kernel in ATLAS produces code for a MMM routine with a single
level of tiling and square tiles. Thus, in our MMM library the submatrices in the last
level of tiling must also be square. We allow these submatrices to be in the range of 40
- 120, since this range cover most of the different values that ATLAS finds for current
platforms [36]. ATLAS generates a single MMM routine and searches for the tile size
that obtains the best performance results. In our system, the tile size of the last level is
determined by the classifier learning system, but we use ATLAS to search for the rest of
the other parameters for each tile size in the range 40 - 120. We limited the maximum
number of levels of tiling to be 3, since current architectures have three or less caches,
and our experiments showed that increasing the level of tiling beyond 3 resulted in less
performance. Apart from this, after we determine the partitioning strategy, we need to
copy the tiles to the corresponding recursive layout. In this work we use the Z-Morton
layout, although in a longer study we could also search for the best layout. When the
matrix is not a multiple of the tiling we insert padding, as shown in Figure 3. Padding
can also be necessary to obtain a square tile at the last level of tiling.

To encode the size of the matrices, we used 13 bits per dimension. Since we have
3 dimensions M × N × K , we used a total of 39 bits. Initially we generated 1000
rules, and we randomly generated the condition and the action part of each rule. For the
training we randomly generated matrices whose sizes were between 1000 and 5000.
We did not specify any condition to end the training process. Instead, we let the training
run for a certain amount of time. In the experiments reported here, we let it run for
1 week.

Optimizing Matrix Multiplication with a Classifier Learning System 131

We compare the MMM routine generated by our classifier learning system with three
different approaches:

– L1, where the MMM routine has a single level of tiling.
– L2, where the MMM routine has two levels of tiling.
– ATLAS.

To make a fair comparison with L1 and L2 approaches we used ATLAS to generate
the kernel of the MMM routine. In both cases we used the same copying strategy and
padding as the one used in the MMM routine generated using the classifier. For the L1
approach we used the tile size that ATLAS found to be the best. For the L2 approach
we used the value found by ATLAS for the first level of tiling. For the second level of
tiling we chose the size so that T ile2 = K × T ile1. We selected K so that T ile2 is
multiple of T ile1, and smaller than the value that results from resolving the inequality
3∗T ile22 ≤ CacheSize. The exception is Sun UltraSparc III. This machine has a large
L2 cache (1 MB) and selecting the T ile2 using the previous formula resulted in low
performance, since padding represented a large overhead in some cases. We decided to
select for the Sun UltraSparc a tile of size 1/3 of the computed value using the previous
formulas. Table 2 shows the values used for each T ile1 and T ile2. In both L1 and L2
we allowed the T ile1 to vary within the value reported in the Table and +/ − 10. We
varied the size of the T ile1 based on the matrix size to minimize the amount of padding.

Table 2. Tile Sizes

UltraSparcIII Itanium 2 P4 Intel Xeon

L1 Tile 68 120 60
L2 Tile 380 240 240

For ATLAS we used the code produced by the ATLAS Code Generator using empir-
ical search. ATLAS can also use hand tuned BLAS routines. When ATLAS is installed
these hand-coded routines are also executed and evaluated. However, since in this work
we are only interested on the comparison on the MMM routine generated by ATLAS,
we only used the code generator, without hand-coded code. Notice, that ATLAS can
have a L2 Cache Blocking parameter by setting a variable called CacheEdge. For the
ATLAS experiments, we set this variable to the appropriate value as reported in [1].

5.2 Experimental Results

Figure 5 presents the performance results of the four MMM routines described in the
previous Section: L1, L2, Classifier and ATLAS. For the experiments we multiplied
square matrices whose sizes vary from 1000 to 5000, in steps of 100.

The results vary from platform to platform. In the case of the Sun UltraSparc, Clas-
sifier is always the best. For this platform L2 is also better than ATLAS and L1. For
Itanium 2, the code generated by ATLAS performs better than any of the other routines.
Only in a few points the code generated by the Classifier is equal or better. For Intel

132 X. Li and M.J. Garzarán

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
er

fo
rm

an
ce

 (
M

F
L

O
P

S
)

Matrix Size

Sun UltraSparcIII

Classifier MMM
L1

L2
ATLAS

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
er

fo
rm

an
ce

 (
M

F
L

O
P

S
)

Matrix Size

Intel Itanium 2

Classifier MMM
L1

L2
ATLAS

 2000

 2100

 2200

 2300

 2400

 2500

 2600

 1000 1500 2000 2500 3000 3500 4000 4500 5000

P
er

fo
rm

an
ce

 (
M

F
L

O
P

S
)

Matrix Size

Intel Xeon

Classifier MMM
L1

L2
ATLAS

Fig. 5. Performance Results

Xeon, the code generated by the Classifier is usually the fastest, followed by that of
ATLAS.

It has been stated [26] that tiling for L1 was enough and that multi-level tiling was
not necessary. However, our results for Sun UltraSparc III show that multi-level tiling
can improve performance over one level of tiling, since L2 and Classifier are always the
best approaches for this platform. For the other two platforms it is not clear if multilevel
tiling is better.

The performance results for the Intel platforms Itanium 2 and Xeon shows high vari-
ability in performance for the code generated by Classifier, L1 and L2. Since these 3
approaches use padding when the dimensions of the matrices are not multiple of the tile
sizes, while ATLAS (whose performance is very stable) uses cleanup code, we think
that the variability is due to the fact that the amount of padding changes for the differ-
ent matrices being multiplied. We need to conduct further experiments to verify this.
Also, in the future we plan to study different strategies to pad the matrices more effi-
ciently. For example, we can concentrate all the padding at the end of the matrix, instead
of distribute it in each tile, as we have done in the routine in this paper. We will also
study the possibility of combining cleanup code with recursive layouts. If we find out
that performance is highly dependent on the padding or clean up strategies, we can also
search in this space.

Overall, our results, still preliminary, show that the MMM routine generated us-
ing the approach we follow in this paper runs always faster than the code generated by

Optimizing Matrix Multiplication with a Classifier Learning System 133

ATLAS in a Sun UltraSparc III by an average of 18%. In the case of an Intel Pentium
Xeon, our routine runs almost always faster than ATLAS by an average of 5%. However,
ATLAS runs 14% faster than our routine in Intel Itanium II. In the future, we will also
add more platforms to this study.

6 Related Work

As mentioned in Section 2 the use of loop tiling to increase cache locality has been
extensively studied in the literature. Lam et al. [16], Coleman and McKinley [9] and
others have developed algorithms to compute the optimal tile sizes when a single level
of tiling is applied. Lam et al. [16] present an algorithm that selects the largest square
tile that does not cause self interference misses. Coleman and McKinley [9]’s technique
uses the Euclidean G.C.D. to generate a set of tiles without self-interference misses and
from those tiles select the one that maximizes cache utilization and minimizes cross-
interference misses.

Recursive matrix multiplication has been studied by Frens and Wise [10], Gus-
tavson [14], Chatterjee et al. [8] and Frigo et al [12]. Chaterjee et al [8] shows that
recursive layouts can significantly outperform traditional layouts for standard matrix-
matrix multiplication. They also show that stopping the recursion when the tile fits into
the cache results in better performance because it avoid some of the overheads due to
recursive calls. Our approach is different than that of Chaterjee et al. [8]. We use ma-
chine learning techniques to search for the appropriate number of levels of tiling and
tile sizes based on the dimensions of the input matrices and the architectural platform.

The ATLAS [30] generator uses empirical search to find the optimal tile size for a
single level of tiling. However, the ATLAS’ search problem is simpler than that of our
system because ATLAS only considers the case where the same tile size is used for all
the matrix sizes.

Finally, the approach that we present in this paper is also related to the problem of
selecting from a set of candidate algorithms the one that performs best for a particular
input and system. Systems that follow this approach are described by Li et al. [17,18],
Brewer [5] and Thomas et al. [29]. In [17] we used the Winnow algorithm to select from
three sequential sorting algorithms the one that performs best for a target system based
on the entropy and number of keys of the input data, while in [18] we used a learning
classifier system to generate composite sorting algorithms. Brewer [5] and Thomas et
al. [29] use a framework for algorithm selection to generate parallel operations that
adapt to the input and platform. In particular Thomas et al. [29] describe a general
framework that can be easily extended with new operations and different empirical
learning approaches.

7 Conclusions

In this paper we have generated a MMM routine using a classifier learning system.
The MMM routine generated with our classifier learning system uses different levels
of tiling and tile sizes based on the dimensions of the matrices and the architectural
features of the machine where it is installed.

134 X. Li and M.J. Garzarán

We compared the MMM routine generated using a classifier learning system with the
MMM routine generated by ATLAS when multiplying matrices of sizes 1000 to 5000.
Our preliminary results show that the MMM routine generated using the classifier runs
always faster than ATLAS in a Sun UltraSparc III by an average of 18%. In the case of
an Intel Pentium Xeon, our routine runs almost always faster than ATLAS by an average
of 5%. However, ATLAS runs on average 14% faster than our routine in Intel Itanium II.
Our experiments also show that padding is important to obtain high performance, and
we plan to implement more sophisticated padding strategies to improve the performance
of the generated library.

References

1. ATLAS home page. [Online]. http://math-atlas.sourceforge.net/errata.html#tuneCE.
2. ATLAS home page. [Online]. http://math-atlas.sourceforge.net/faq.html#NB80.
3. W. Abu-Sufah, D. Kuck, and D. Lawrie. On the Performance Enhancememt of Paging Sys-

tems through Program Analysis and Transformations. IEEE Transactions on Computers,
30(5):341–356, May 1981.

4. J. Bilmes, K. Asanovic, C. Chin, and J. Demmel. Optimizing Matrix Multiply using PHiPAC:
A Portable, High-Performance, ANSI C Coding Methodology. In Proc.of the 11th ACM
International Conference on Supercomputing (ICS), July 1997.

5. E. A. Brewer. High-level Optimization via Automated Statistical Modeling. In Proc. of
the Symposium on Principles and Practice of Parallel Programming (PPoPP), pages 80–91,
New York, NY, USA, 1995. ACM Press.

6. M. V. Butz and S. W. Wilson. An Algorithmic Description of XCS. Lecture Notes in Com-
puter Science, 1996:253–272, 2001.

7. S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and M. Thottethodi. Nonlinear Array
Layouts for Hierarchical Memory Systems. In International Conference on Supercomputing,
pages 444–453, 1999.

8. S. Chatterjee, A. R. Lebeck, P. K. Patnala, and M. Thotterhodi. Recursive array layouts and
fast matrix multiplication. IEEE Transactions on Parallel and Distributed Systems, 13:1105–
1123, 2002.

9. S. Coleman and K. s. McKinley. Tile Selection Using Cache Organization and Data Layout.
In Proc. of Int. Conference Programming Language Design and Implementation, pages 279–
290, June 1995.

10. J. Frens and D. Wise. Auto-blocking Matrix-Multiplication or Tracking BLAS3 Performance
with Source Code. In Proc. of the Intenational Symp. on Principles and Practice of Parallel
programming (PPoPP), pages 206–216, June 1997.

11. M. Frigo. A Fast Fourier Transform Compiler. In Proc. of Programing Language Design
and Implementation, 1999.

12. M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-Oblivious Algorithms.
In Proc. of the Intenational Symp. on Foundations of Computer Science (FOCS), October
1999.

13. D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-
Wesley, Reading, MA, 1989.

14. F. G. Gustavson. Recursion Leads to Automatic Variable Blocking for Dense Linear-Algebra
Algorithms. IBM Journal of Research and Development, 41(6):737–755, November 1997.

15. D. Hilbert. Über Stetige Abbildung einer Linie auf ein Flächenstrück. Mathematische An-
nalen, 38:459–60, 1891.

Optimizing Matrix Multiplication with a Classifier Learning System 135

16. M. Lam, E. Rothberg, and M. E. Wolf. The Cache Performance and Optimizations of
Blocked Algorithms. In Proc. of the Int. conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 63–74, October 1991.

17. X. Li, M. J. Garzarán, and D. Padua. A Dynamically Tuned Sorting Library. In In Proc. of
the Int. Symp. on Code Generation and Optimization, pages 111–124, 2004.

18. X. Li, M. J. Garzarán, and D. Padua. Optimizing Sorting with Genetic Algorithms. In In
Proc. of the Int. Symp. on Code Generation and Optimization, pages 99–110, March 2005.

19. A. McKellar and E. Coffman. Organizing Matrices and Matrix Operations for Paged Memory
Systems. In Communications of the ACM, 12(3):153–165, March 1969.

20. N. Mitchell, K. Hogstedt, L. Carter, and J. Ferrante. Quantifying the Multi-Level Nature of
Tiling Interactions. Int. Journal of Parallel Programming, 26(6):641–670, June 1998.

21. P. Panda, H. Nakamura, N. Dutt, and A. Nicolau. Augmenting Loop Tiling with Data Align-
ment for Improved Cache Performance. IEEE Trans. on Computers, 48(2):142–149, Febru-
ary 1999.

22. N. Park, B. Hong, and V. Prasanna. Tiling, Block Data Layout, and Memory Hierarchy
Performance. IEEE Trans. on Parallel and Distributed Systems, 14(7):640–654, July 2003.

23. G. Peano. Sur Une Curbe qui Remplit Toute une Aire Plaine. Mathematische Annalen,
36:157–160, 1890.

24. W. S. Pier Luca Lanzi and S. W. Wilson. Learning Classifier Systems, From Foundations to
Applications. Springer-Verlag, 2000.

25. G. Rivera and C. Tseng. Data Transformations for Eliminating conflict Misses. In Proc.
of Int. Conference Programming Language Design and Implementation, pages 38–49, June
1998.

26. G. Rivera and C. Tseng. Locality Optimizations for Multi-Level Caches. In Proc. of IEEE
Supercomputing, November 1999.

27. H. Sagan. Space-Filling Curves. Springer-Verlag, 1994.
28. O. Temam, E. Granston, and W. Jalby. To Copy or Not to Copy: A Compile–Time Technique

for Assessing When Data Copying Should be Used to Eliminate Cache Conflicts. In Proc. of
the ACM/IEEE Supercomputing Conference, November 1993.

29. N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N. M. Amato, and L. Rauchwerger. A
Framework for Adaptive Algorithm Selection in STAPL. In Proc. of Symposium on Princi-
ples and Practice of Parallel Programming (PPoPP), pages 277–288, New York, NY, USA,
2005. ACM Press.

30. R. Whaley, A. Petitet, and J. Dongarra. Automated Empirical Optimizations of Sofware and
the ATLAS Project. Parallel Computing, 27(1-2):3–35, 2001.

31. S. W. Wilson. Classifier Fitness Based on Accuracy. Evolutionary Computation, 3(2):149–
175, 1995.

32. M. Wolfe. Iteration Space Tiling for Memory Hierarchies. In Third SIAM Conference on
Parallel Processing for Scientific Computing, December 1987.

33. J. Xiong, J. Johnson, R. Johnson, and D. Padua. SPL: A Language and a Compiler for DSP
Algorithms. In Proc. of the International Conference on Programming Language Design
and Implementation, pages 298–308, 2001.

34. Q. Yi, V. Adve, and K. Kennedy. Transforming Loops To Recursion for Multi-Level Memory
Hierarchies. In Proc. of the Int. Conf. on Programming Language Design and Implementa-
tion (PLDI), pages 169–181, June 2000.

35. K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzarán, D. Padua, K. Pingali,
P. Stodghill, and P. Wu. A Comparison of Empirical and Model-driven Optimization. In
Proc. of Programing Language Design and Implementation, pages 63–76, June 2003.

36. K. Yotov, X. Li, G. Ren, M. J. Garzarán, D. Padua, K. Pingali, and P. Stodghill. Is Search Re-
ally Necessary to Generate a High Performance Blas? In Proc. of the IEEE, special issue on
Program Generation, Optimization, and Platform Adaptation, 23:358–386, February 2005.

A Language for the Compact Representation of Multiple
Program Versions

Sebastien Donadio1,2, James Brodman4, Thomas Roeder5, Kamen Yotov5,
Denis Barthou2, Albert Cohen3, Marı́a Jesús Garzarán4, David Padua4,

and Keshav Pingali5

1 BULL SA
2 University of Versailles St-Quentin-en-Yvelines

3 INRIA Futurs
4 University of Illinois at Urbana-Champaign

5 Cornell University

Abstract. As processor complexity increases compilers tend to deliver subop-
timal performance. Library generators such as ATLAS, FFTW and SPIRALz
overcome this issue by empirically searching in the space of possible program
versions for the one that performs the best. Empirical search can also be applied
by programmers, but because they lack a tool to automate the process, program-
mers need to manually re-write the application in terms of several parameters
whose best value will be determined by the empirical search in the target ma-
chine.

In this paper, we present the design of an annotation language, meant to be
used either as an intermediate representation within library generators or directly
by the programmer. This language that we call X represents parameterized pro-
grams in a compact and natural way. It provides an powerful optimization frame-
work for high performance computing.

1 Introduction

Processors and machines in general are becoming increasingly complex and it has be-
come extremely difficult even for experts to identify the fastest code sequences and the
sequence of transformations that would optimize a given code sequence [6,7,29,30].
Furthermore, the best code for a particular machine is not necessarily the best for other
machines, even when architectural differences are minute. Because of this complexity,
compilers tend to deliver suboptimal performance and programmers make limited at-
tempts at manual optimization. The result is that, in many cases, applications only use
a small fraction of the target machine’s power.

Clearly, an optimization methodology must be developed to improve the current sit-
uation. Recent studies have shown that a conceptually simple strategy, known as empir-
ical search, can be a very effective optimization strategy. Empirical search consists of
searching the space of possible program versions, executing each of them on the target
machine, and selecting the fastest version.

Empirical search has been studied in the context of compiler transformations [14]
and library generators. Thus, ATLAS [27], a linear algebra library generator, searches
the space of possible forms of matrix-matrix multiplication routines. The different

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 136–151, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Language for the Compact Representation of Multiple Program Versions 137

forms vary in the size of tiles, degree of unrolling, and schedule of operations. The SPI-
RAL [20] and FFTW [10] signal processing library generators search a space consisting
of implementations of different formulas representing the transform to be implemented.
In the case of library generators, empirical search leads to performance improvements
of an order of magnitude over good generic libraries that have not been tuned for a
particular machine.

Empirical search can also be applied manually by a programmer. The idea would
be for the programmer to write the application in terms of several parameters whose
best value for a particular target machine is to be determined by empirical search. The
parameters could specify values such as degree of unrolling of a given loop, tile size,
etc. Parameters could also be used to represent completely different ways of carrying
out a computation or part of a computation by numbering the different strategies and
making this number one of the parameters whose value is to be identified.

In this paper we describe an ongoing effort to design and implement a new language,
X, that could be used by programmers and also serve as an intermediate representa-
tion within of library generators. X is a language to represent parameterized programs
naturally and compactly. Programmers would be able to program in X directly. Library
generators could be organized as depicted in Figure 1 where it is assumed that func-
tions of the library are designed in a very high level domain specific language which
is analyzed, parameterized and translated into X programs. The availability of X would
enable the reuse of a search engine across library generators.

DSL Translator

Algorithm
in

Domain
Specific

Language

X program

Search engine

Optimized
program

X Translator Machine
language

Execution
and

measurement

High
Level

language
HLL Translator

Fig. 1. Programming adaptive library generators

Our objective is to design X so that it is easy for the programmer to specify which
transformations to apply, and change the order or the values of the transformations. The
value of the parameters can be determined using empirical search orchestrated by a
search engine which could use the target machine to evaluate the performance of each
version of the program or rely on analytical models.

Since many programs spend most of their time executing loops, loop-based opti-
mizations are the main focus of attention of the transformations we propose in this
initial version of X, although non-loop transformations are also possible.

The output of processing X could be machine code, which would give programmers
access to low-level optimizations. However, this approach would force the development
of an X translator for each machine. To make X portable, high level language code could

138 S. Donadio et al.

be generated so that each version of the code, that is, each point in the search space,
would have to be fed to the native compiler. This compiler is in charge of the low-
level optimizations such as register allocation and code generation of the executable
code. In many occasions, we would like to disable many of the optimizations of the
native compiler, but this is not always possible, because disabling all optimizations (-
O0) could lead to poor performance. As a result, the transformations represented in X
may or may not be preserved by the native compiler. The only solution to this problem
is the search of the best combination of transformation at the source level that interacts
with the low level compiler.

The rest of the paper is organized as follows: Section 2 lists the language require-
ments to ease the design of multiversion programs; Section 3 analyzes the multiver-
sionning capabilities of macro or multistage languages with respect to these require-
ments; Section 4 presents the X language which combines multistage evaluation with
reification and transformation pragmas; Section 5 details the design of the X language
source-to-source compiler; Section 6 presents promising results on mimicking the code
generator for DGEMM (matrix-matrix multiplication) in ATLAS [27]; and Section 7
compares the X language with related work and results, before we conclude and sketch
future work.

2 Necessary Features of the Language

In this section, we discuss the features that must be exhibited by any language designed
specifically for the compact representation of multiple code versions.

1. Elementary transformations. The first features that come to mind are constructs to
generate multiple versions of a statement by applying elementary transformations to
a statement. Elementary transformations are widely used transformations that cannot
be conveniently cast in terms of other, simpler transformations. For program opti-
mization, the targets of the transformations are usually compound statements and the
transformations typically manipulate the order of execution and the control struc-
ture of the components. For sequences of assignment statements, typical elemen-
tary transformations are statement reordering, replication, and deletion. Loop trans-
formations include unrolling, interchanging, stripmining, fusion, fission, and scalar
replacement. We also consider loop tiling an elementary transformation although
in theory it can be represented as a combination of stripmining and interchanging.
Some loop scheduling transformations, such as software pipelining, are be consid-
ered to be elementary transformations. The reason is that, although scheduling can
be represented as a sequence of simpler transformations, it is usually difficult to do
so.

Many of elementary transformations require input parameters, such as the degree
of unrolling, tile size, and locations where the loop is to be split in the case of fission.
Multiple versions of the initial statement are obtained by varying the values of these
parameters.

Elementary transformations are used in library generators during empirical search.
Thus, ATLAS makes use of tiling, unrolling, and loop scheduling; FFTW makes use
of scheduling; and SPIRAL applies loop unrolling.

A Language for the Compact Representation of Multiple Program Versions 139

2. Composition of transformations. Usually, the best version of a statement is the re-
sult of applying several elementary transformations. Thus, for example, ATLAS
applies interchanging, tiling, unrolling and scheduling to the triply nested matrix-
matrix multiplication loop during its empirical search for an optimal form of the
loop. Therefore, our language should allow the application of multiple transforma-
tions to a single statement. An example of composite transformation is unroll&jam
shown in Figure 2. This transformation can be implemented by applying an outer
unroll followed by fusion of the two inner loops. Alternatively, unroll&jam can be
implemented by first stripmining the outer loop, then interchanging the inner loop
with the newly generated loop, and finally unrolling the innermost loop.

outer unroll

fusion

stripmine

interchange

inner unroll

for (i=0; i<n*2; i++)
for (j=0; j<m; m++)

a(i) = a(i) + b(j)

for (i=0; i<n*2; i++)
for (j=0; j<m; j++)

a(i) = a(i) + b(j)
for (j=0; j<m; j++)

a(i+1) = a(i+1) + b(j)

for (i=0; i<n*2; i++)
for (j=0; j<m; j++)

a(i) = a(i) + b(j)
a(i+1) = a(i+1) + b(j)

for (i=0; i<n*2; i+=2)
for (ii=i; ii<i+2; ii++)

for (j=0; j<m; j++)
a(ii) = a(ii) + b(j)

for (i=0; i<n*2; i+=2)
for (j=0; j<m; j++)

for (ii=i; ii<i+2; ii++)
a(ii) = a(ii) + b(j)

Fig. 2. Unroll & Jam

An important form of transformation composition is conditional composition,
where a condition is used to select the transformation or the parameter value of a
transformation. For example, consider a loop that is to be first stripmined and then
the resulting inner loop unrolled. We may want to fully unroll the inner loop but only
when the size of the strip is less than a certain threshold and partially unroll otherwise.

3. Procedural Abstraction. For composite transformations, it is convenient to have pro-
cedural abstractions to encapsulate new transformations and to avoid having to rewrite
sequences of transformations that are applied more than once.

4. A mechanism to define new transformations. This extension mechanism enables the
user to add new transformations that cannot be represented as composition of el-
ementary transformations. In particular, programmers should be able to generate
application-dependent transformations that take into account the semantics of the
computation. The simplest way to represent a transformation is using transforma-
tion rules which are adequate to represent many transformations. The transformation
rules consist of a code template followed by the form resulting after modification by
the transformation. For instance, a stripmine transformation with a tile of size 4
could be defined as follows:

for (i = 0; i < N; i++) { <body> }
->

for (ii = 0; ii < (N/4)*4; ii += 4)
for (i = ii; i < ii+4; i++) { <body> }

for (i = (N/4)*4; i < N; i++) { <body> };

Transforming the top code template into the bottom code is the stripmine transfor-
mation, where variable <body> represents the body of the loop to be stripmined.

140 S. Donadio et al.

As the example illustrates, transformation rules are quite convenient. However,
since transformations rules are not universal, some transformations must be repre-
sented as a program written in, for example, a conventional programming language.
In this case, the interface between the source language and the transformation rou-
tines must be clearly specified. This interface should contain the abstract syntax tree
of the code to be transformed and perhaps other related information such as depen-
dence graphs.

5. A mechanism to name statements. When applying a sequence of transformations,
it is often necessary to apply one of the transformations to one of the components
of the resulting code. For example, to implement unroll&jam unrolling is applied to
the innermost loop resulting from stripmining. Therefore, the ability to name com-
ponents and subcomponents of statements is necessary to enable the composition of
transformations.

3 Macro Language

Perhaps the simplest approach to implement X would be to use a macro language.
Assuming that the macro language statements are C-like statements preceded by the
character % and that references to macro language variables are also preceded by %,
Figure 3 shows an example where the %for statement produces the body of a loop un-
rolled %d times. That is, when the %for loop is executed, it produces the sequence of
assignments: s=s+a[i+0]; s=s+a[i+1]; ...;s=s+a[i+%d-1]. In this this
example we assumed that %d is a sub-multiple of 256 and, for that reason did not in-
clude the clean-up code needed to correctly handle the remainder of the 256 iterations
of the original loop. Notice that %d in Figure 3 will be assigned a value at compile-
time, and will usually be assigned several values in successive compilations during an
empirical search for the best version of the program.

sum=0;
for (i=0;i<256;i+=%d) {

%for (k=i; k<=i+(%d-1); k++)
s = s + a[i+%k];

}

Fig. 3. Loop unroll using macro statements

An implementation based on macro language would produce a system that relies on
generation rather than transformation. Thus, the construct of Figure 3 does not trans-
form an initial loop but generates a loop with the body unrolled %d times. If the macro
language includes procedures, it would be possible to write generation routines that
accomplish the same objectives as any transformation. For example, we could conceiv-
ably develop an %unroll-loop routine that accepts the body of the loop, the index
variable, and the degree of unrolling as parameters. These generation routines could be
a convenient way to extend the base language with new parameterized statements.

In some cases it is preferable to use the generation approach so that the programmer
can produce exactly the transformed code that he desires. For this reason, X

A Language for the Compact Representation of Multiple Program Versions 141

includes a macro language. However, we have found that the generation approach has
two disadvantages:

• The generative approach leads to code that is difficult to develop and understand. If
we want to optimize an existing program it will be necessary to modify the origi-
nal code which may introduce errors. Furthermore, code containing generative state-
ments is difficult to write and read. Therefore, the generative approach has disadvan-
tage even when the parameterized code is to be written from scratch.

• Complexity when composing transformations. Since the programmer is directly ma-
nipulating source text, when two or more transformations are applied to a statement,
the macro statements can become complicated. For instance, tiling the three loops of
the matrix-matrix multiplication code in Figure 4-(a) with square tiles of size tile
results in the code shown in Figure 4-(b). The variable %tile will be instantiated
at compile time, so that versions of matrix-matrix multiplication with different tile
sizes can be generated by just changing the value of the %tile variable. The code in
Figure 4-(b) shows the remainder loops when %tile is not divisible by K, and out-
lines the additional code that should be written to generate the remainders of M and
N. A programmer who needs to write all this additional code is likely to make mis-
takes. This problem will be less severe if the macro language contains procedures,
but then there would be the need to develop a procedure for each combination of
transformations or procedures with a cumbersome parameter list. In any case, tiling
can be obtained by composing loop stripmine and loop interchange. Unfortunately,
the programmer using macro statements cannot take advantage of this.

for (i=0;i<N;i++) { for (i=0;i<(N/%tile)*%tile;i+=%tile) {
for (j=0;j<M;j++) { for (j=0;j<(M/%tile)*%tile;j+=%tile) {
for (k=0;k<K;k++) { for (k=0;k<(K/%tile)*%tile;k+=%tile) {
c[i][j] += a[i][k] * b[k][j]; for (ii=i;ii<i+%tile;i++) {

}}} for (jj=j;jj<j+%tile;j++) {
for (kk=k;kk<k+%tile;kk++) {

(a) c[ii][jj] += a[ii][kk] * b[kk][jj];
}}}}

%if ((K/%tile)*%tile)!=K) {
for (k=(K/%tile)*%tile;k<K;k++) {
for (ii=i;ii<i+%tile;i++) {
for (jj=j;jj<j+%tile;j++) {
for (kk=k;kk<k+%tile;kk++) {
c[ii][jj] += a[ii][kk] * b[kk][jj];

}}}}}}
%if (((M/%tile)*%tile) != M) {

....
}

%if (((N/%tile)*%tile) != N) {
....

}
(b)

Fig. 4. (a)-Matrix-matrix multiplication code. (b)-Tiled matrix-matrix multiplication code using
macro statements.

4 X Language Using Pragmas

In this Section, we describe the X language that we have designed taking into account
the features described in Section 2. X uses #pragmas to name loops or portions of
code and to specify the transformations to apply. The syntax of the #pragmas used to
name loops or code sections has the form:

#pragma xlang name <id> { ... }

142 S. Donadio et al.

The {} are only necessary when naming a set of statements, but they are not required
to name a single statement. These pragmas need to be placed right before the code sec-
tion to be named. The syntax of the #pragmas to specify transformations has the form:

#pragma xlang transform keyword <list-input-par> <list-output-par>

The original source code only needs to be modified with the name #pragmas. The
transform #pragmas can be in the same file that the source code or in a different one.

sum=0; sum=0;
#pragma xlang name l1 #pragma xlang name l1
for (i=0;i<256;i++) { for (i=0;i<256;i+=4) {

s = s + a[i]; s = s + a[i];
} s = s + a[i+1];
#pragma xlang transform unroll l1 4 s = s + a[i+2];

s = s + a[i+3];
}

(a) (b)

Fig. 5. Example in X of loop unroll. (a)- Pragmas to name the loop and specify the unroll 4 (b)-
Generated code.

In X, the loop unrolling transformation in Figure 3 is specified as shown in
Figure 5. #pragma xlang name l1 is used to name the loop right after it, while
#pragma xlang transform unroll l1 4 specifies the transformation
unroll l1 4 times.

The stripmine transformation is specified in X with #pragma xlang transform

stripmine l1 4 l3 l1rem as shown in Figure 6-(a). This transformation will
stripmine the l1 loop using a tile size of 4. The generated code is shown in Fig-
ure 6-(b). The new loop that results of the stripmine transformation is named l3.
To name the remainder loop, the example uses l1rem. Using this postfix notation we
can apply the same transformation to l1 and l1rem by simply using l1∗

#pragma xlang name l1 #pragma xlang name l1
for (i=0;i<N;i++) { for (i=0;i<(N/4)*4;i+=4) {

#pragma xlang name l2 #pragma xlang name l3
for (j=0;j<M;j++) { for (ii=i;ii<i+4;ii++) {

c[i] = a[i][j] * b[j]; #pragma xlang name l2
}} for (j=0;j<M;j++) {

#pragma xlang transform stripmine l1 4 l3 l1rem c[ii] = a[ii][j] * b[j];
}}}

#pragma xlang name l1rem
for (i=(N/4)*4;i<N;i++) {

#pragma xlang name l2
for (j=0;j<M;j++) {

c[ii] = a[ii][j] * b[j];
}}

(a) (b)

Fig. 6. Example in X of stripmine.(a)-Pragmas to name loops and specify the stripmine transfor-
mation. (b)-Generated code.

Another transformation that X includes is array scalarization. The syntax for this
transformation is #pragma xlang transform scalarize-func <array-
name> in [<id>], where func can be in, out, -in&out or none. scalarize
-in is used when copy-in is needed, that is, when the initial values in the array have to

A Language for the Compact Representation of Multiple Program Versions 143

sum=0; double a0,a1;
#pragma xlang name l1 sum=0;
for (i=0; i<256; i+=2){ #pragma xlang name l1

s = s + a[i]; for (i=0; i<256; i+=2){
s = s + a[i+1]; #pragma xlang name l1.loads

} { a0 = a[i];
#pragma xlang transform scalarize-in a in l1 a1 = a[i+1]; }

#pragma xlang name l1.body
{ s = s + a0;
s = s + a1; }
}

(a) (b)

Fig. 7. Example in X of the scalarize-in transformation. (a)-Pragmas for scalarize-in. (b)-
Code after scalarize-in array a in l1.

be loaded into the scalar variables. scalarize-out is used when copy-out is needed,
that is, when the scalar values need to be written back to memory to the correspond-
ing array locations. scalarize-in&out is used when both both in and out are
required. scalarize is used when nor in or out are necessary. The programmer
must determine which is the appropriate scalarize transformation to apply so that the
generated code is correct.

Figure 7-(a) shows an example where the scalarize-in transformation is used
to scalarize the array a in l1. The generated code is shown in Figure 7-(b). The
generated code contains the declaration of the new scalar variables a0 and a1, and
two new pragmas that name certain statements of the generated code. #pragma
xlang name l1.loads name the statements that load the array values into the
scalars. #pragma xlang name l1.body name the statements where the array
references have been replaced with scalars. Notice that these #pragmas are auto-
matically generated after a scalarize transformation is applied, without the program-
mer specifying anything. In the case of a scalarize-out transformation an addi-
tional #pragma naming l1.stores would have been generated. Naming these loop
sections allows the programmer to apply new transformations on the generated code.
For example, Figure 8-(a) shows an example where the load statements of the copy-in
phase have been moved before l1 and the store statements of the copy-out phase have
been moved outside l1 as shown in Figure 8-(b). In this new example, we have used
#pragma xlang transform lift l1.loads before l1 and #pragma

for (i=0;i<N;i++) { double c0,c1;
for (j=0;j<M;j++) { for (i=0; i<N; i++) {
#pragma xlang name l1 for (j=0; j<M; j++) {
for (k=0;k<K;k+=2){ #pragma xlang name l1.loads
c[i][j] += a[i][k] * b[k][j]; { c0 = c[i][j]; }
c[i][j] += a[i][k+1] * b[k+1][j]; #pragma xlang name l1

}}} for (k=0; k<K; k+=2) {
#pragma xlang transform scalarize-out c in l1 #pragma xlang name l1.body
#pragma xlang transform lift l1.loads before l1 { c0 += a[i][k]*b[k][j];
#pragma xlang transform lift l1.stores after l1 c0 += a[i][k+1]*b[k+1][j]; }

}
#pragma xlang name l1.stores
{ c[i][j] = c0; }

}}

(a) (b)

Fig. 8. Example in X of scalarize-out and lift transformation. (a)-Pragmas for
scalarize-out and lift. (b)-Generated code.

144 S. Donadio et al.

xlang transform lift l1.stores after l1, where the syntax of this
transformation is
#pragma xlang transform lift <statement-id><before |after>
<loop-id>.

X also includes transformations for software pipelining. One difference between the
software pipelining and the loop transformations is that software pipelining operates on
statements instead of loops. The lower granularity of software pipelining transforma-
tions makes them more complex, since the programmer needs to deal with movement of
individual statements. The two transformations used for software pipelining are split
and shift. The split transformation is not necessarily a software pipelining trans-
formation. It is used to separate atomic instructions. Figure 9 shows how an instruction
combining a load and an operation is breaking assignment statements into two state-
ments, one to compute the right hand side and the other to assign the computed value
to the left hand side.

for (i=0; i<N; i++) { double temp[0..K];
for (j=0; j<M; j++) { for (i=0; i<N; i++){

for (k=0; k<K; k++) { for (j=0; j<M; j++){
#pragma xlang name statement st1 for (k=0; k<K; k++){
c[i][j] += a[i][k] * b[k][j]; #pragma xlang name statement st1

}}} temp[k] = a[i][k] * b[k][j];
#pragma xlang split st1 st2 temp #pragma xlang name statement st2

c[i][j] = c[i][j] + temp[k];
}}}

(a) (b)

Fig. 9. Example split. (a)-Pragmas for split. (b)-Generated code.

Figure 10 shows how to software pipeline a loop with the shift transformation. We
have used #pragma xlang transform shift l1.1 2. The first argument
l1.1 corresponds to the first statement of loop l1 and in general, the loop.<n> nota-
tion is used to designate the sequence of the first n statements in the body of loop loop.
In the example, the first statement is shifted with respect to the remaining statements
with a latency of 2, given by the second argument. Application of the shift transforma-
tion creates a pipeline with multiple stages. The example shows the resulting code, with

for (i=0; i<N; i++) { for (i=0; i<N; i++) {
for (j=0; j<M; j++) { for (j=0; j<M; j++) {

#pragma xlang name l1 #pragma xlang name l1.prolog
for (k=0; k<K; k++) { for (k=0; k<2; k++) {

temp[k] = a[i][k] * b[k][j]; temp[k] = a[i][k] * b[k][j];
c[i][j] += temp[k]; }

}}} #pragma xlang name l1
#pragma shift l1.1 2 for (k=2; k<K; k++) {

temp[k] = a[i][k] * b[k][j];
c[i][j] += temp[k-2];

}
#pragma xlang name l1.epilog
for (k=N-1; k<K; k++) {

c[i][j] += temp[k];
}}}

#pragma xlang transform fullunroll l1.prolog
#pragma xlang transform fullunroll l1.epilog

(a) (b)

Fig. 10. Example shift for software pipeline. (a)-Pragmas for shift. (b)-Generated code,
including fullunroll.

A Language for the Compact Representation of Multiple Program Versions 145

a prolog and a epilog loop. Notice that these loops can be unrolled using the pragma
fullunroll as shown in Figure 10-(b).

Defining transformations with respect to existing ones provides a procedural abstrac-
tion to the X language. We describe them in Section 5.

5 Implementation

In this section, we describe the implementation of the X language translator and present
how transformations are encoded.

5.1 X Translation

The X language is translated in two steps. The frontend performs several tasks before
passing the result to the backend. First, the frontend parses the annotated C program
and builds the associated abstract syntax tree. Next, a tree-walk identifies the loops
and transformations specified by the X language directives. The marked loops are then
rewritten as series of library calls that represent the loops inside the backend. Also,
transformation directives are translated into library calls for performing the appropriate
transformations on the annotated loops. After all the annotations of the C program have
been translated, the remaining code is transformed using a multistage language similar
to the language described in Section 3. Our multistage language also resembles ‘C [19]
which is a generalization of a macro language with arbitrary recursion and where a
program may generate another program and execute it, having multiple program levels
cooperate and share data possibly at run-time. The final translated program is then ready
to be processed by the backend.

In the second step, this program is executed: it reads a separate file describing the
optimizations, performs the optimizations and produces the final optimized C code. The
macro language is used to manipulate code expressions and to write some optimizations
(such as unroll) in a compact way. Partial evaluation of expressions that contain only %
variables and constants is done in this step: as presented in Section 3, variable names
such as c %i are then expanded into c 0, c 1,... in the resulting code.

Finally, all unoptimized code (not prefixed by pragmas) is printed out without any
modification in the final code.

5.2 Defining New Transformations

The definition of transformations in X can use pattern rewriting rules and macro code.
A pattern rewriting rule contains two patterns: the first pattern is for matching and the
second one is for rewriting. When an input code matches the first pattern, the code is
rewritten as indicated by the second pattern. If the pattern rewriting rule is not expres-
sive enough, the user has the possibility to define the code using macro code directly.
Thus an X program could contain both pragmas and macro statements. In fact, it is
possible to define a code generator associated with a pattern of code.

In the current implementation, no dependence analysis is integrated yet, so no valid-
ity check is performed for the transformation. We envision that, contrary to the com-
piler, validity checks in X only raise warnings to the user, since the user is assumed to
know what he is doing and validity checks may be too conservative.

146 S. Donadio et al.

Procedural abstraction enables the writing of complex transformations from simpler
ones. It is an important feature in the definition of transformations. The destination
pattern can contain some transform pragmas. For instance, a line such as #pragma
xlang transform fullunroll l1rem could be added to the destination pat-
tern of stripmine and would fully unroll the remainder loop.

6 Experimental Results

We study in this section a matrix-matrix multiplication and its optimization with X lan-
guage. Starting from a very simple implementation, the goal is to mimic ATLAS by
performing the same transformations with the X. For this preliminary experiment, the
platform used is a NovaScale 4020 server from Bull featuring two 1.3Ghz Itanium 2
(Madison) processors, with a 256KB level 2 cache and a 1.5MB level 3 cache. Quality
of compiled code is the key to performance on Itanium because of its explicit paral-
lel assembly and its in-order execution. Scheduling problems cannot be smoothed by
hardware mechanisms. All codes (including ATLAS) are compiled using the Intel C
compiler (icc) version 8.1 with -03 -fno-aliases flags.

6.1 Pragmas for MMM

The initial code for matrix-matrix multiply is a triple-nested loop where the inner loop
contains one floating point multiply-add operation. Blocking the code for L2 and L3
cache is key to obtaining high performance. Therefore each loop is tiled three times
using X pragmas in order to perform the multiplication with blocks fitting into registers

#pragma xlang name iloop
for (i = 0; i < NB; i++)
#pragma xlang name jloop
for (j = 0; j < NB; j++)

#pragma xlang name kloop
for (k = 0; k < NB; k++) {
c[i][j]=c[i][j]+a[i][k]*b[k][j];

}
#pragma xlang transform stripmine iloop NU NUloop
#pragma xlang transform stripmine jloop MU MUloop
#pragma xlang transform interchange kloop MUloop
#pragma xlang transform interchange jloop NUloop
#pragma xlang transform interchange kloop NUloop
#pragma xlang transform fullunroll NUloop
#pragma xlang transform fullunroll MUloop
#pragma xlang transform scalarize_in b in kloop
#pragma xlang transform scalarize_in a in kloop
#pragma xlang transform scalarize_in&out c in kloop
#pragma xlang transform lift kloop.loads before kloop
#pragma xlang transform lift kloop.stores after kloop

(a)

#pragma xlang name iloop
for(i = 0; i < NB; i++){
#pragma xlang name jloop
for(j = 0; j < NB; j += 4){
#pragma xlang name kloop.loads
{c_0_0 = c[i+0][j+0];
c_0_1 = c[i+0][j+1];
c_0_2 = c[i+0][j+2];
c_0_3 = c[i+0][j+3];
}
#pragma xlang name kloop
for(k = 0; k < NB; k++){

{a_0 = a[i+0][k];
a_1 = a[i+0][k];
a_2 = a[i+0][k];
a_3 = a[i+0][k];}
{b_0 = b[k][j+0];
b_1 = b[k][j+1];
b_2 = b[k][j+2];
b_3 = b[k][j+3];}
{c_0_0=c_0_0+a_0*b_0;
c_0_1=c_0_1+a_1*b_1;
c_0_2=c_0_2+a_2*b_2;
c_0_3=c_0_3+a_3*b_3;}
...

}
#pragma xlang name kloop.stores
{c[i+0][j+0] = c_0_0;
c[i+0][j+1] = c_0_1;
c[i+0][j+2] = c_0_2;
c[i+0][j+3] = c_0_3;}

} }
... // Remainder code

(b)

Fig. 11. (a) mini-mmm code in X. (b) Code after transformation with MU = 4, NU = 1.

A Language for the Compact Representation of Multiple Program Versions 147

and the L2 and L3 caches. Figure 11-(a) shows the mini-MMM code tailored for L2
cache, with the pragmas to generate register-blocking.

Note that we do not perform software pipelining because the compiler handles this
optimization better than we can at the source level in this case. Likewise, basic block
scheduling is correctly handled by the compiler. We have used two stripmine and
three interchange transformations to tile the two nested loops iloop and jloop.
Fig.11-(b) shows a fragment of the resulting code when the values of blocking are 1 for
iloop and 4 for jloop.

For the L2 and L3 tilings, copies of a, b and c are made in order to have all the
elements of the submatrices in a contiguous memory block.

6.2 Optimization Tuning

Expressing the optimization is only one step towards high performance code. The other
important step consists of finding the right values for the parameters. Many search
strategies can be applied, such as the search employed by ATLAS.

For DGEMM, we performed an exhaustive search for the appropriate tile sizes around
the expected values.Comparison with the naive code shows a speed-up of 80 (for ma-
trices of size 600 × 600). Figure 12 shows that code optimized with the X language
outperforms ATLAS for all matrix sizes when coupling it with a custom memory copy
routine called dcopy. This routine was automatically produced by a specialized as-
sembly generator, the Xemsys Library Generator [28], using hardware performance
counters and static analysis of the assembly code [9].

Coupling our code with the less specialized copy routine of the Intel Math Kernel
Library (MKL) yields performance on par with ATLAS on average, and using the plain
memcopy subroutine of the C library degrades performance slightly. These results are

Fig. 12. Preliminary results comparing ATLAS to naive code with pragmas for DGEMM

very encouraging. Yet the peak architectural performance for matrix-matrix product on
Itanium is 0.5 cycle per fma operation, and the MKL implementation of dgemm does
achieve 0.55 cycle per fma on average, which is 10% to 15% faster than ATLAS and
the X-language implementation. Our future work includes the continuation of our X-
language experiment to fully reproduce or outperform the MKL, showing that the added

148 S. Donadio et al.

productivity in adaptive library development can translate into added performance as
well (with respect to manual designs like ATLAS).

7 Related Work

It is well known that manual optimizations degrade portability: the performance of a
C or Fortran code on a given platform does not say much about its performance on
different architectures. Several works have successfully addressed this issue, not by im-
proving the compiler, but through the design of application-specific program generators,
a.k.a. active libraries [26]. Such generators often rely on feedback-directed optimization
to select the best generation strategy [23], but not exclusively [29]. The most popular ex-
amples are ATLAS [27] for dense matrix operations and FFTW [10] for the fast Fourier
transform. Such generators follow an iterative optimization scheme. Most optimizations
performed by these generators are classical loop transformations; some of them involve
domain knowledge, from the specialization and interprocedural optimization of library
functions [3,8], to application-specific optimizations such as algorithm selection [17].
Recently, the SPIRAL project [21] pioneered the extension of this application-specific
approach to a whole domain of programs: digital signal processing. This project is
one step forward to bridge the gap between application-specific generators and generic
compiler-based approaches, and to improve the portability of application performance.

Beyond application specific generators, iterative optimization techniques prove use-
ful to drive complex transformations in traditional compilers. They use the feedback
from real executions of the optimized program to explore the optimization search space
using operations research algorithms [15], machine learning [17], and empirical experi-
ence [18]. In theory, iterative optimization is fully disconnected from the technical im-
plementation of program optimizations. Yet generative approaches such as multistage
evaluation avoid the pattern-matching limitations of syntactic transformation systems,
which improves the structure of the search space and the applicability of empirical tech-
niques. Indeed, systematic exploration techniques require a higher degree of flexibility
in program manipulation than traditional compiler frameworks [5].

We thus advocate a framework that would allow the domain expert to design and
express his own transformations, and to meta-program the search for optimal perfor-
mance through iterative optimization [4]. This goal is similar to the one of telescoping
languages [3,13], a compiler approach to reduce the overhead of calling generic li-
brary functions and to enable aggressive interprocedural optimizations, by making the
semantical information about these libraries available to the compiler. Beyond libraries,
similar ideas have been proposed for domain-specific optimizations [16]. These works
highlight the increased need for researchers and developers in the field of high-
performance computing to meta-program their optimizations in a portable fashion.

Another alternative is multistage evaluation. Most programming languages support
macro expansion, where the macro language allows a limited amount of control (not
recursive, in general) on code parts. Yet multistage evaluation denotes the syntactic and
semantic support allowing a program to generate another program and execute it, having
multiple program levels cooperate and share data. String-based multistage languages
support true recursion and cooperation between levels, but offer no syntactic guarantees
on the generated code; the most widely used are the various shell interpreters, and the

A Language for the Compact Representation of Multiple Program Versions 149

current version of the X language is also of this kind. To increase productivity, struc-
tured multistage languages enforce syntactic correctness of the generated code: e.g.,
C++ expression templates [25], ‘C [19] and Jumbo [12]. To further increase productiv-
ity and ease debugging, a few multistage languages guarantee that the generated code
will not produce any compilation error (syntax, definition and initialization errors, type
checking): e.g., MetaML and its successor MetaOCaml [2,24]. The added safety is very
valuable to increase the productivity of program generator designers, but the associated
constraints may also complicate the meta-programming of specific optimizations [4].
Up to now, the multistage language and meta-programming community has mostly fo-
cused on general-purpose transformations like in partial evaluation, specialization and
simplification. These transformations are useful, in particular to lower the abstraction
penalty, but far from sufficient to adapt a compute-intensive application to a complex
architecture. As a matter of fact, research on generative programming and multistage
evaluation has not greatly influenced the design of high-performance applications and
compilers, most application-specific adaptive libraries being ad-hoc string-based pro-
gram generators.

The TaskGraph library [1] is closely related with the X language. It combines a struc-
tured multistage evaluation layer built on top of C++ expression templates, with run-
time generation and compilation, and with a transformation toolkit based on SUIF (1.3)
[11] and/or ROSE [22]. It is not a language per se, but a set of C++ templates and classes
associated with customizable source-to-source transformation capabilities. As such, it
should be understood like the underlying infrastructure to build a general-purpose mul-
tiversioning language such as X. We preferred to redesign our own infrastructure for
multistage evaluation and source-to-source transformation, for the sake of simplicity,
to avoid the memory and code overhead of C++ templates, and because we do not cur-
rently aim for run-time code generation.

8 Conclusions

We presented the design of the X language, aimed for application experts who wish to
implement adaptive programs without knowledge of compiler internals. The language
is designed so that it is easy for the programmer to generate multiversion programs, to
specify which transformations to apply on each program part, and to tune the order or
the parameters of the transformations. The parameters driving the generation of a spe-
cific program version and the application of program transformations can be determined
using empirical search orchestrated by a search engine which could use the target ma-
chine to evaluate the performance of each version of the program or rely on analytical
models.

The X language combines the expressive power of multistage languages with a flex-
ible pattern-matching and rewriting language to implement and compose custom pro-
gram transformations. Also the language is still in its infancy, we presented promising
results on mimicking the code generator for DGEMM (matrix-matrix multiplication)
in ATLAS [27]. This experiment demonstrates vast amounts of productivity improve-
ments, compared to the manual implementation of an ad-hoc code generator in C, as
well as good performance results.

150 S. Donadio et al.

Our future work will include a more thorough experiment with the ongoing design
of an active library for adaptive, block-recursive linear algebra computations. For in-
creased productivity, we also plan to provide a more structured multistage sub-language,
and to integrate the results of pointer and dependence analyses as indicative feedback to
the programmer. Such static analyses should also enable the design of smarter (higher-
level) transformation primitives. In the longer term, we also wish to invest in a more
robust implementation of the X language, based on a run-time compilation framework,
like ROSE [22] or TaskGraph [1], and/or using a more abstract code representation in
the polytope model [5]. Our main long-term goal is the adoption by application experts
with little interest in compiler design and implementation.

References

1. O. Beckmann, A. Houghton, P. H. J. Kelly, and M. Mellor. Run-time code generation in
c++ as a foundation for domain-specific optimisation. In Proceedings of the 2003 Dagstuhl
Workshop on Domain-Specific Program Generation, 2003.

2. C. Calcagno, W. Taha, L. Huang, and X. Leroy. Implementing multi-stage languages using
ASTs, Gensym, and reflection. In ACM SIGPLAN/SIGSOFT Intl. Conf. Generative Pro-
gramming and Component Engineering (GPCE’03), pages 57–76, 2003.

3. A. Chauhan and K. Kennedy. Optimizing strategies for telescoping languages: procedure
strength reduction and procedure vectorization. In ACM Int. Conf. on Supercomputing
(ICS’04), pages 92–101, June 2001.

4. A. Cohen, S. Donadio, M.-J. Garzaran, D. Padua, and C. Herrmann. In search for a pro-
gram generator to implement generic transformations for high-performance computing. In
1st MetaOCaml Workshop (associated with GPCE), Vancouver, British Columbia, October
2004.

5. A. Cohen, S. Girbal, D. Parello, M. Sigler, O. Temam, and N. Vasilache. Facilitating the
search for compositions of program transformations. In ACM Int. Conf. on Supercomputing
(ICS’05), Boston, Massachusetts, June 2005. To appear.

6. K. D. Cooper, D. Subramanian, and L. Torczon. Adaptive Optimizing Compilers for the 21st
Century. Journal of Supercomputing, 23(1):7–22, 2002.

7. K. D. Cooper and T. Waterman. Investigating Adaptive Compilation using the MIPSPro
Compiler. In Proc. of the Symp. of the Los Alamos Computer Science Institute, October
2003.

8. L. De Rose and D. Padua. Techniques for the translation of matlab programs into fortran 90.
ACM Trans. on Programming Languages and Systems, 21(2):286–323, 1999.

9. L. Djoudi, D. Barthou, P. Carribault, C. Lemuet, J.-T. Acquaviva, and W. Jalby. A new tool
for assembler analysis and optimization on epic architecture. In Proc. of the Epic Workshop
(in conjunction with CGO’05), 2005.

10. M. Frigo and S. G. Johnson. FFTW: An adaptive software architecture for the FFT. In Proc.
of the ICASSP Conf., volume 3, pages 1381–1384, 1998.

11. M. Hall et al. Maximizing multiprocessor performance with the SUIF compiler. IEEE Com-
puter, 29(12):84–89, December 1996.

12. Sam Kamin, Lars Clausen, and Ava Jarvis. Jumbo: run-time code generation for java and its
applications. In ACM Conf. on Code Generation and Optimization (CGO’03), pages 48–56,
2003.

13. K. Kennedy. Telescoping languages: A compiler strategy for implementation of high-level
domain-specific programming systems. In Proc. Intl. Parallel and Distributed Processing
Symposium (IPIPS’00), pages 297–304, 2000.

A Language for the Compact Representation of Multiple Program Versions 151

14. P. Kisubi, P.M.W. Knijnenburg, and M.F.P. O’Boyle. The Effect of Cache Models on Iterative
Compilation for Combined Tiling and Unrolling. In Proc. of the International Conference
on Parallel Architectures and Compilation Techniques, pages 237–246, 2000.

15. T. Kisuki, P. Knijnenburg, M. O’Boyle, and H. Wijshoff. Iterative compilation in program
optimization. In Proc. CPC’10 (Compilers for Parallel Computers), pages 35–44, 2000.

16. C. Lengauer, D. Batory, C. Consel, and M. Odersky, editors. Domain-Specific Program
Generation. Number 3016 in LNCS. Springer-Verlag, 2003.

17. X. Li, M.-J. Garzaran, and D. Padua. A dynamically tuned sorting library. In ACM Conf. on
Code Generation and Optimization (CGO’04), pages 111–124, San Jose, CA, March 2004.

18. D. Parello, O. Temam, A. Cohen, and J.-M. Verdun. Towards a systematic, pragmatic and
architecture-aware program optimization process for complex processors. In ACM Super-
computing’04, page 15, Pittsburgh, Pennsylvania, November 2004.

19. M. Poletto, W. C. Hsieh, D. R. Engler, and M. F. Kaashoek. ‘C and tcc: A language and com-
piler for dynamic code generation. ACM Trans. on Programming Languages and Systems,
21(2):324–369, March 1999.

20. M. Puschel, J. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong, F. Franchetti,
A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo. SPIRAL: Code Generation
for DSP Transforms. Proceedings of the IEEE, To appear 2005. Special issue on “Program
Generation, Optimization, and Adaptation”.

21. M. Puschel, B. Singer, J. Xiong, J. M .F. Moura, J. Johnson, D. Padua, M. M. Veloso, , and
R. W. Johnson. SPIRAL: A Generator for Platform-Adapted Libraries of Signal Processing
Algorithms. Journal of High Performance Computing and Applications, special issue on
Automatic Performance Tuning, 18(1):21–45, 2004.

22. Markus Schordan and Daniel J. Quinlan. A source-to-source architecture for user-defined
optimizations. In Joint Modular Languages Conference (JMLC’03), volume 2789 of LNCS,
pages 214–223. Springer-Verlag, August 2003.

23. M. D. Smith. Overcoming the challenges to feedback-directed optimization. In ACM SIG-
PLAN Workshop on Dynamic and Adaptive Compilation and Optimization, pages 1–11,
2000. (Keynote Talk).

24. W. Taha. Multi-Stage Programming: Its Theory and Applications. PhD thesis, Oregon Grad-
uate Institute of Science and Technology, November 1999.

25. T. Veldhuizen. Using C++ template metaprograms. C++ Report, 7(4):36–43, 1995.
26. T. Veldhuizen and D. Gannon. Active libraries: Rethinking the roles of compilers and li-

braries. In SIAM Workshop on Object Oriented Methods for Inter-operable Scientific and
Engineering Computing, pages 21–23, October 1998.

27. R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated Empirical Optimiza-
tion of Software and the ATLAS Project. Parallel Computing, 27(1–2):3–35, 2001. Also
available as University of Tennessee LAPACK Working Note #147, UT-CS-00-448, 2000
(www.netlib.org/lapack/lawns/lawn147.ps)”.

28. Caps entreprise. http://www.caps-entreprise.com.
29. K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzarán, D. Padua, K. Pingali,

P. Stodghill, and P. Wu. A Comparison of Empirical and Model-driven Optimization. In
Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design
and Implementation, pages 63–76. ACM Press, 2003.

30. K. Yotov, X. Li, G. Ren, M. Garzarán, D. Padua, K. Pingali, and P. Stodghill. Is Search Really
Necessary to Generate High-Performance BLASs? Proceedings of the IEEE, 93(2):358–386,
February 2005. Special issue on “Program Generation, Optimization, and Adaptation”.

Efficient Computation of
May-Happen-in-Parallel Information for

Concurrent Java Programs

Rajkishore Barik

IBM India Research Lab
rajbarik@in.ibm.com

Abstract. Modeling of runtime threads in static analysis of concur-
rent programs plays an important role in both reducing the complexity
and improving the precision of the analysis. Modeling based on type
based techniques merges all runtime instances of a particular type and
thereby introduces inaccuracy in the analysis. Other approaches model
individual runtime threads explicitly in the analysis and are of high com-
plexity. In this paper we introduce a thread model that is both context
and flow sensitive. Individual thread abstractions are identified based on
the context and multiplicity of the creation site. The interaction among
these abstract threads are depicted in a tree structure known as Thread
Creation Tree (TCT). The TCT structure is subsequently exploited to
efficiently compute May-Happen-in-Parallel (MHP) information for the
analysis of multi-threaded programs. For concurrent Java programs, our
MHP computation algorithm runs 1.77x (on an average) faster than pre-
viously reported MHP computation algorithm.

1 Introduction

As concurrent programming is embraced by more and more users, there are
several on-going research activities for the last few years in the area of static
analysis of concurrent programs. To name a few of these activities: computation
of May Happen in Parallel (MHP) information, detection of synchronization
anomalies like data races and deadlock, hiding the effect of weak memory models
at the programming level, improving the accuracy of data flow analysis, and
optimization of concurrent programs.

May Happen in Parallel (MHP) analysis computes pairs of statements that
may be executed concurrently in a multi-threaded program. This information can
be used in program optimization [9], debugging, program understanding tools,
improving the accuracy of data flow approaches, and detecting synchronization
anomalies like data races.

Several approaches for computing MHP information for programs have been
suggested in the past: B4 analysis by Callahan et al. [3], inter-procedural B4
analysis by Duesterwald et al. [6], non-concurrency analysis by Masticola et
al. [14], and data flow analysis based MHP computation for programs with a
rendezvous model of concurrency by Naumovich et al. [16]. Most recently [15]

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 152–169, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Efficient Computation of MHP Information for Concurrent Java Programs 153

developed an efficient algorithm for computing MHP information for concur-
rent Java programs. Their algorithm uses a data flow framework to compute
a conservative estimate of MHP information and is shown to be more efficient
than reachability analysis based algorithms that determines ’ideal’ static MHP
information. However, the underlying thread model used in the data flow frame-
work explicitly enumerates all runtime threads during compilation time leading
to the complexity of the algorithm bounded by number of runtime threads, i.e.,
Θ((pN)3) complexity, where p is the number of runtime threads and N is the
maximum number of statements per runtime thread. Such an explicit enumer-
ation of threads makes the algorithm time consuming, and it is inapplicable to
programs with unbounded or large number of runtime threads.

Subsequently, there has been work [13] on aiding a feasible implementation
of the MHP algorithm presented by Naumovich et al. [16]. Their main focus is
to reduce the size of the program execution graph (PEG) which is the core of
MHP algorithm.

1.1 Our Contribution

The main contribution of this paper are:

– We introduce a static model of threads that is flow sensitive and context
sensitive; this model is more precise than type based thread disambiguation
used in previous approaches [20,18]; yet our model is capable of handling an
indefinite number of runtime threads.

– We introduce a thread structure analysis and the concept of the thread
creation tree (TCT), which captures the start and join interactions among
threads.

– We present an efficient algorithm that computes the MHP information at
two levels: first at the thread level, then at the node level. The complexity
of our algorithm is Θ((kN)2) where k is the number of thread abstractions
and N is the maximum number of inter-procedural control flow graph nodes
per thread abstraction.

Our results show that our MHP algorithm runs 1.77x faster than MHP algo-
rithm presented by naumovich et al. [16] using our context and flow sensitive
thread model.

1.2 Example

Figure 1 shows a sample program that updates a shared object of class Shared
concurrently. Main thread creates two Task1 threads. These Task1 threads in
turn create various Task2 threads. Note that modifications of the shared object
in Task2 threads are synchronized. In addition, Task2 threads join back to Task1
threads without causing any exception.

For this example, the thread model presented by [15] considers 43 runtime
threads explicitly during the static analysis: initial thread starting at main
method, 2 Task1 threads, and each Task1 thread creating 20 Task2 threads.

154 R. Barik

Management of such a huge number of runtime threads in the static analysis
requires a lot of space and is computationally expensive.

However, the type based thread disambiguation model described in [20,18]
considers only 3 thread abstractions during the analysis: initial thread starting
at main method, one for Task1 thread and one for Task2 thread. This kind of
modeling seems very efficient but does not produce precise results. To elaborate
this: Let us consider the MHP information computation problem. The type based
thread modeling concludes that the shared object access in Line 9 of Main thread
may execute in parallel with the access in Line 24 of Task1. This is not always
true as the same access in Line 24 for t2 instance of Task1 never executes in
parallel with Line 9 of Main thread (as t2 is started after Line 9 has finished
execution). Additional machinery has to be built into these type based techniques
to obtain such precise results.

2 Flow and Context Sensitive Thread Model

2.1 Abstract Thread

An abstract thread is a compile time entity that corresponds to a call of the
Thread::start method in a certain context. Contexts are determined along a
symbolic execution of the whole program [18]. In this paper, we use the terms
thread and abstract thread interchangeably; if we refer to runtime threads, we
note that explicitly.

An abstract thread ti might correspond to one or multiple runtime threads.
In cases where the static analysis can determine that an abstract thread ti is not
started in a loop or recursion (and the creator thread is itself unique), ti has a
unique runtime correspondence, and the predicate isUnique[ti] holds.

1 class Shared { int field=0; } 22 class Task1 extends Thread {
2 class Main { 23 public void run() {
3 static Shared s; 24 Main.s.field++;
4 public static void main(String[] args){ 25 Thread[] ta = new Thread[10];
5 s = new Shared(); 26 for(int i=0;i<10;i++) {
6 s.field++; 27 ta[i] = new Task2();
7 Thread t1 = new Task1(); 28 ta[i].start(); // t3, t5
8 t1.start(); // t1 29 }
9 s.field++; 30 for(int i=0;i<10;i++) {
10 Thread t2 = new Task1(); 31 ta[i].join();
11 t2.start(); // t2 32 }
12 s.field++; 33 Main.s.field++;
13 } 34 Thread tb= new Thread[10];
14 } 35 for(int i=0;i<10;i++) {
15 class Task2 extends Thread { 36 tb[i] = new Task2();
16 public void run() { 37 tb[i].start(); // t4, t6
17 synchronized(Main.s){ 38 }
18 Main.s.field++; 39 for(int i=0;i<10;i++) {
19 } 40 tb[i].join();
20 } 41 }
21 } 42 }

43 }

Fig. 1. Example program

Efficient Computation of MHP Information for Concurrent Java Programs 155

In the example of Figure 1, our thread model computes 7 different abstract
threads: thread corresponding to the main method denoted as t0 , Task1 thread
in Line 8 denoted as t1, Task2 thread started in Line 28 of t1 denoted as t3, Task2
thread started in Line 37 of t1 denoted as t4, Task1 thread started in Line 11
denoted as t2, Task2 thread started in Line 28 of t2 denoted as t5, and Task2
thread started in Line 37 of t2 denoted as t6. The abstract thread t1 started in
line 8 is unique because the creator thread (main) is unique, and the start site
is not executed in a loop/recursion. The abstract thread t3 created in line 28, in
contrast is not unique, because it is started inside a loop.

3 Program Representation

In this section, we describe other data structures that are necessary for perform-
ing MHP analysis on concurrent programs. The thread creation graph (TCG)
data structure depicts various start-join interactions among abstract threads and
is used to develop an efficient algorithm for MHP.

3.1 Intra-thread Control Flow Graph

The control-flow structure of an abstract thread ti is represented in an intra-
thread control flow graph (ICFG), i.e., ICFG(ti). ICFG(ti) = 〈V (ti), E(ti)〉
where E(ti) denotes the intra-procedural and inter-procedural control flow edges
of abstract thread ti, and V (ti) comprises of the following types of nodes:

– USE (ti) refers to the set of shared read access (get/load of shared refer-
ence/field/array) nodes in ti.

– ASS(ti) refers to the set of shared write access (put/store of shared refer-
ence/field/array) nodes in ti.

– NEW (ti) refers to the set of allocation nodes in ti.
– BEGIN (ti) refers to the set of method entry nodes in ti.
– END(ti) refers to the set of method exit nodes in ti.
– ENTRY (ti) refers to the unique thread entry node for ti.
– EXIT (ti) refers to the unique thread exit node for ti.
– CSTART(ti) refers to the set of abstract thread start nodes in ti.
– CJOIN (ti) refers to the set of abstract thread join nodes in ti.
– CALL(ti) refers to the set of method call nodes in ti.
– ACQUIRE(ti) refers to the set of monitor enter nodes in ti.
– RELEASE (ti) refers to the set of monitor exit nodes in ti.

V (ti) contains two special nodes: ENTRY (ti) and EXIT (ti). There is an edge
from ENTRY (ti) to any node at which the thread can be entered, and there is
an edge to EXIT (ti) from any node that can exit the thread.

E(ti) contains intra-procedural and inter-procedural control flow edges in ti.
The inter-procedural control flow edges do not comprise of subsequent thread
creation edges from ti.

156 R. Barik

Certain statements need not be represented in the ICFG, e.g., statements
that only have a thread-local effect. This includes access nodes (USE , ASS)
that operate on thread local objects (the underlying object model and analysis
for determining thread locality is presented in [5,18]

Figure 2 shows the inter-procedural control flow graph for the main abstract
thread of the example program. Each node in the figure is annotated with
the object/field it accesses. CSTART [t1] and CSTART [t2] nodes represent the

BEGIN[main]

NEW[Shared]

ASS[s]

USE[s]

USE[s::field]

ASS[s::field]

CSTART[t1]

USE[s]

USE[s::field]

ASS[s::field]

CSTART[t2]

USE[s]

USE[s::field]

ASS[s::field]

END[main]

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

CALL[Shared::init]

BEGIN[Shared::init]

ASS[Shared::field]

END[Shared::init]

Fig. 2. Inter-procedural control flow graph (ICFG)

Efficient Computation of MHP Information for Concurrent Java Programs 157

invocation of abstract threads t1 and t2 respectively. Note that there is no inter-
procedural control flow edge connecting the node CSTART [t1] to ICFG(t1).

Let the creationnode of an abstract thread tj in ti is denoted asCSTART (ti, tj),
i.e., CSTART(ti, tj) ∈ CSTART (ti). There is no inter-procedural control flow
edge from ti to tj in ICFG(ti). Similarly, the join node of an abstract thread tj in
ti is denoted as CJOIN (ti, tj).

3.2 Must-Join

A common pattern in parallel programs is that some threads create subsidiary
threads and later join those. We capture this information using the concept of
a must-join abstract thread. Let CSTART (ti, tj) be the node where abstract
thread tj is created in ti. Let CJOIN (tk, tj) ∈ V (tk) be the node where abstract
thread tj is joined. tj is then termed as a must-join abstract thread if ti = tk
and CJOIN (ti, tj) postdom CSTART(ti, tj).

3.3 Thread Creation Tree (TCT)

Threads can be structured according to their start-relationships. The thread
creation tree (TCT) encodes this information: Abstract threads are represented
as nodes, edges encode the start relation. The main thread constitutes the root,
threads started by the main thread are found at the first hierarchy level etc..

The must-join information for each node in the TCT is encoded using a pred-
icate mjoin , i.e., mjoin [ti] = true if ti is a must-join abstract thread.

t0

t

t t t t

t1 2

3 4 5 6

Fig. 3. Thread Creation Tree

The TCT for the program in Figure 1 is given in Figure 3. t1 and t2 are
colored black as they do not join the main abstract thread t0, i.e., mjoin [t1] =
mjoin [t2] = false.

The specific case of a mutual thread creation inside a recursion, might lead
to an unbounded TCT. We detect this case and resolve it by combining the
involved abstract threads. For example, abstract thread ti creates tj : Both ti
and tj have the same static thread type. Since there is recursion involved in the
static types of ti and tj , the TCT will be unbounded. To handle this, we add
only one node to the TCT with ICFG as the ICFG of ti. The number of runtime
instances of the added node in the TCT is not unique. The must-join information
of the added node is set based on must-join information of ti or tj . In general, if a
set of static types are involved in mutual recursion, we create a single node for the

158 R. Barik

same in TCT. The ICFG of this node is created by combining ICFG of all the
involved static types (details described in Appendix A).

4 MHP Computation

Given all abstract threads of a program, their ICFGs and the TCT, we com-
pute nodes which may potentially execute in parallel, i.e., MHP information.
This computation is performed at two levels: first at the abstract thread level
and then at node level. At the abstract thread level, MHP computes pairs of
abstract threads that may potentially execute in parallel. This is coarse-grained
MHP information. Node level MHP refines this information by considering the
individual statements and control-flow structure of threads that are identified as
MHP at the thread-level. Since we are doing a compile time approximation of
MHP (considering every control flow path), the MHP information we compute
is a conservative superset of what actually happens at runtime.

Apart from ordering criteria among threads due to thread start and join, locks
are also commonly used to order the execution among threads. We conservatively
compute the locks statically using the following manner: In Java, locks are used
in a scoped manner. Locks held during an access statement are recorded during
the creation of the ICFG and associated with the corresponding node. We define
locks [vm

i] as the set of objects that are locked while executing any node vm
i ∈

V (ti). Nodes that execute in the context of a common unique lock cannot execute
concurrently.

Our MHP analysis is based on graph algorithms like reachability and dom-
inance. We write x

∗→ y to indicate a directed path from start node x to end
node y. A null path is a path whose start node and end node are the same,
i.e., a single node. A non-null path from x to y is written as x

+→ y. This path
definition applies to both ICFG and TCT.

A directed path t1
∗→ tn in the TCT is called a must-join path if all the nodes

that lie on the path from t1 to tn are must-join abstract threads, i.e., mjoin [ti]
= true, ∀i = 1, · · · , n. For example, the path t0

+→ t1
+→ t3 in Figure 3 is not a

must-join path as mjoin [t1] = false.
The dominance relation between two nodes in the ICFG is represented by dom.

Further, we denote node dominance as domvm
i

[vn
i] that consists of all nodes that

lie on all possible directed paths from vm
i ∈ V (ti) to vn

i ∈ V (ti) in ICFG(ti).

4.1 Thread Level MHP

Thread level MHP computes pairs of abstract threads that may execute in
parallel. It exploits the rooted tree structure of the TCT to determine such
information.

Let ‖t denote the MHP relation between two abstract threads. The ancestors
of an abstract thread ti in the TCT are represented in a set anc(ti). child and
parent represent the child and parent relationship in the TCT. Let yca(ti, tj)
denote the youngest common ancestor of ti and tj in TCT. Let canc(ti, tj) be

Efficient Computation of MHP Information for Concurrent Java Programs 159

ti jt

tp

p jcanc(t ,t)p i canc(t ,t)

(a)

t i t j

pt

canc(t ,t) canc(t ,t)p i p j

(b)

t t

canc(t ,t)

t

canc(t ,t)p i p j

i j

p

(c)

Not must−join thread

Must−join thread

TCT path

(d)

Fig. 4. Thread level MHP

the child of the abstract thread ti that is either tj itself or an ancestor of tj .
Mathematically,

yca(ti, tj) =
{

tk | tk is the youngest common
ancestor of ti and tj

}

canc(ti, tj) =

⎧⎨⎩
tj , if tj = child(ti)
child (ti), if child(ti) ∈ anc(tj)
nil otherwise

Computation of thread level MHP is conservative. If an abstract thread ti is
an ancestor of another abstract thread tj , then we conservatively assume that
ti and tj run in parallel with each other, i.e., ti‖ttj . Further refinement to this
MHP information is done in node level MHP in which we consider fine-grained
statement level parallelism.

ti‖ttj = true if ti ∈ anc(tj) or tj ∈ anc(ti)

Apart from the above conservative case, all other possible cases to determine
if any two TCT nodes ti and tj may execute in parallel are presented below. For
compact representation of the cases we denote the youngest common ancestor
of ti and tj as tyca , i.e., tyca = yca(ti, tj).

– Case 1: Let us consider the case where neither the TCT path canc(tyca , ti)
∗→

ti nor the TCT path canc(tyca , tj)
∗→ tj is a must-join path. The TCT for

this case is shown in Figure 4(a). ti and tj may execute in parallel, if at least

160 R. Barik

one of the following conditions holds: (1) their common parent tyca is not
unique, or (2) both threads canc(tyca , ti) and canc(tyca , tj) may be started
in some control-flow in ICFG(tyca). This case is mathematically presented
in Table 1.

Table 1. Thread Level MHP:Case 1

ti‖ttj =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

true, if isUnique[tyca] = false⎛⎜⎝CSTART (tyca , canc(tyca , ti))
+→ CSTART (tyca , canc(tyca , tj))∨

CSTART (tyca , canc(tyca , tj))
+→ CSTART(tyca , canc(tyca , ti))

⎞⎟⎠ otherwise

– Case 2: Let us consider the case where the TCT path canc(tyca , ti)
∗→ ti is

a must-join path and the TCT path canc(tyca , tj)
∗→ tj is not a must-join

path. This case is shown in Figure 4(b). ti may execute in parallel with tj if
at least one of the following conditions holds: (1) tyca has multiple runtime
instances, (2) there is a control-flow path from CSTART(tyca , canc(tyca , tj))
to CSTART(tyca , canc(tyca , ti)) in ICFG(tyca), or (3) there is a control-
flow path from CSTART(tyca , canc(tyca , ti)) to CSTART(tyca , canc(tyca , tj))
without CJOIN (tyca , canc(tyca , ti)) in ICFG(tyca). This case is mathemat-
ically presented in Table 2.

Table 2. Thread Level MHP:Case 2

ti‖ttj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

true, if isUnique[tyca] = false⎛⎜⎜⎜⎜⎜⎝
CSTART (tyca , canc(tyca , tj))

+→ CSTART(tyca , canc(tyca , ti))∨⎛⎝ CSTART (tyca , canc(tyca , ti))
+→ CSTART (tyca , canc(tyca , tj))
∧

CJOIN (tyca , canc(tyca , ti)) /∈ domCSTART(tyca ,canc(tyca ,ti))[CSTART (tyca , canc(tyca , tj))]

⎞⎠

⎞⎟⎟⎟⎟⎟⎠ otherwise

– Case 3: Let us the consider the case where the TCT paths canc(tyca , ti)
∗→ ti

and canc(tyca , tj)
∗→ tj are must-join paths. This case is shown in Figure 4(c).

ti may execute in parallel with tj if at least one of the following conditions
holds: (1) tyca has multiple runtime instances, (2) there is a control-flow path
from the CSTART (tyca , canc(tyca , tj)) to CSTART (tyca , canc(tyca , ti)) with-
out the CJOIN (tyca , canc(tyca , tj)) in ICFG(tyca), or (3) there is a control-
flow path from CSTART(tyca , canc(tyca , ti)) to CSTART (tyca , canc(tyca , tj))
without the CJOIN (tyca , canc(tyca , ti)) in ICFG(tyca). This case is mathe-
matically presented in Table 3.

Consider our example program and its corresponding TCT in Figure 3. t3
cannot execute in parallel with t4 because abstract thread t3 joins t1 before
abstract thread t4 is started. Similarly t5 can never run in parallel with t6.
However, all other pairs of abstract threads may run in parallel with each other.

Efficient Computation of MHP Information for Concurrent Java Programs 161

Table 3. Thread Level MHP:Case 3

ti‖ttj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

true, if isUnique[tyca] = false⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎝ CSTART (tyca , canc(tyca , ti))
+→ CSTART(tyca , canc(tyca , tj))
∧

CJOIN (tyca , canc(tyca , ti)) /∈ domCSTART(tyca ,canc(tyca ,ti))[CSTART (tyca , canc(tyca , tj))]

⎞⎠
∨⎛⎝ CSTART (tyca , canc(tyca , tj))
+→ CSTART (tyca , canc(tyca , ti))
∧

CJOIN (tyca , canc(tyca , tj)) /∈ domCSTART(tyca ,canc(tyca ,tj))[CSTART (tyca , canc(tyca , ti))]

⎞⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
otherwise

t j

it

canc(t ,t)i j

(a)

t

jt

i

canc(t ,t)i j

(b)

Fig. 5. Node level MHP

4.2 Node Level MHP

Thread level MHP ‖t is a coarse grained approximation of MHP information,
because all statements of a thread are subsumed and given the same MHP
information. MHP information among statements from threads ti and tj can
be refined further at the node level in the case where either ti is an ancestor of
tj or tj is ancestor of ti in TCT.

Consider our example program and its corresponding TCT in Figure 3. Thread
level MHP computation computes that t1‖tt3. This suggests that all statements
of threads t1 occur in parallel with statements in thread t3, i.e., t1 ‖t t3. How-
ever, the ICFG nodes corresponding to statement 33 in t1 will never run in
parallel with ICFG nodes corresponding to statement 18 of t3. This is because
the abstract thread t3 terminates before thread t1 executes statement 33.

We use the symbol ‖n to denote node level MHP information between two
ICFG nodes. Let ti and tj be two abstract threads such that ti ∈ anc[tj]. All
possible cases to determine if any two ICFG nodes vm

i and vn
j may execute in

parallel are presented below:

– Case 1: Let us the consider the case where the TCT path canc(ti, tj)
∗→ tj

is not a must-join path. This case is shown in Figure 5(a). vm
i may exe-

cute in parallel with vn
j if at least one of the following conditions holds: (1)

ti has multiple runtime instances, or (2) there is a control-flow path from
CSTART(ti, canc(ti, tj)) to vm

i in ICFG(ti). This case is mathematically
presented in Table 4.

162 R. Barik

Table 4. Node Level MHP:Case 1

vm
i ‖nvn

j =
{

true, if isUnique[ti] = false
CSTART (ti, canc(ti, tj)) → vm

i otherwise

– Case 2: Let us the consider the case where the TCT path canc(ti, tj)
∗→ tj

is a must-join path. This case is shown in Figure 5(b). vm
i may execute

in parallel with vn
j if at least one of the following conditions holds: (1)

ti has multiple runtime instances, or (2) there is a control-flow path from
CSTART(ti, canc(ti, tj)) to vm

i without the CJOIN (ti, canc(ti, tj) in ICFG
(ti). This case is mathematically presented in Table 5.

Table 5. Node Level MHP:Case 2

vm
i ‖nvn

j =

⎧⎪⎪⎨⎪⎪⎩
true, if isUnique[ti] = false⎛⎝ CSTART(ti, canc(ti, tj)) → vm

i

∧
CJOIN (ti, canc(ti, tj)) /∈ domCSTART(ti,canc(ti,tj))[vm

i]

⎞⎠ otherwise

Table 6. Final MHP computation formula

vm
i ‖vn

j =

⎧⎪⎪⎨⎪⎪⎩
(locks[vm

i] ∩ locks [vn
j]) = ∅, if ti = tj and isUnique(ti) = false⎛⎝ (locks [vm

i] ∩ locks [vn
j]) = ∅

∧
(ti‖ttj) ∧ (vm

i ‖nvn
j)

⎞⎠ otherwise

To summarize the MHP information based on thread level and node level,
let ‖ denote the generic MHP information between any two nodes vm

i ∈ V (ti)
and vn

j ∈ V (tj). Then the condition under which vm
i may execute in parallel

with vn
j is given in Table 6. Besides the thread and node level MHP relations,

the condition also accounts for ordering through common lock protection and
concurrency among nodes of abstract threads that are not unique.

The skeleton of the MHP algorithm is provided in Algorithm 1. Step 1 com-
putes the abstract threads and their ICFGs along a symbolic program execu-
tion [18]. Step 3 computes postdom relation which is necessary to determine if
the abstract thread is a must-join abstract thread or not. Step 4 finds out all
possible execution paths in the ICFG. Step 5-7 compute node dominance with
respect to various CSTART nodes in the abstract thread. Step 8 adds a TCT
node along with its must-join information. Step 10 computes all possible must-
join chains and also computes youngest common ancestor information for each
pair of nodes in TCT. This can be obtained by performing a bottom-up traver-
sal of the TCT. Steps 11-20 compute MHP information between every pair of
nodes across all abstract threads using the equation given in Table 6. Since MHP
information between a pair of nodes is symmetric, we carefully choose tj in step
12 so as to reduce the number of comparisons.

Efficient Computation of MHP Information for Concurrent Java Programs 163

Algorithm 1. MHP computation.
1: Perform a symbolic execution over the whole program to identify various abstract

threads and their ICFGs.
2: for every abstract thread ti in the program do
3: Compute postdom(vm

i) for each vm
i ∈ Vi.

4: Compute reachability information (→) for every pair of nodes in Vi.
5: for every child abstract thread tj created by ti do
6: Compute domCSTART(ti,tj)[vm

i] for each vm
i ∈ Vi.

7: end for
8: Add appropriate node to TCT.
9: end for

10: Compute must-join chains and gather youngest common ancestor information for
every pair of nodes in TCT.

11: for all abstract thread ti do
12: for all abstract thread tj do
13: for all vm

i ∈ Vi do
14: for all vn

j ∈ Vj do
15: Determine vm

i ‖vn
j using Table 6.

16: end for
17: end for
18: end for
19: end for

4.3 Complexity Analysis

Let k be the total number of abstract threads. Let N be the total number of
ICFG nodes per abstract thread. Step 3 can be computed in Θ(N2) time using
the algorithm suggested by Alstrup et al. [2]. Reachability information in Step
4 can be computed in Θ(N2) time using standard depth first search algorithm.
Since dominance with respect to a single node is computed in Θ(N2) time, steps
2-9 can be executed in a worst case complexity of Θ((kN)2). Computation of
must-join chain and common parent information in step 10 can be obtained
in Θ(k2) complexity using a bottom up traversal of TCT. Careful selection of
tj will yield a time complexity of Θ((k +

(
k
2

)
)N2) for steps 11-21. Hence, the

overall worst case time complexity of the algorithm is Θ((kN)2). Note that the
complexity analysis does not include the cost of computation of abstract threads
and their ICFGs.

5 Implementation Details

The abstract threads and their ICFGs are computed by performing a symbolic
execution over the whole program. The focus of the description here is on the
MHP analysis and details of the symbolic execution are discussed in [18].

5.1 Intra-procedural Analysis

During intra-procedural analysis, we obtain a flow-sensitive control flow graph
for a method. Each node in this graph corresponds to instructions in the original

164 R. Barik

program/byte-code sequence: BEGIN and END nodes to indicate begin and
end of methods, USE and ASS nodes for accessing and modifying shared data,
CSTART and CJOIN nodes to indicate child abstract thread start and joins,
ACQUIRE and RELEASE nodes to represent monitor regions, NEW nodes to
indicate object/array allocations, CALL nodes to denote method invocations,
and ENTRY and EXIT nodes to indicate thread entry and exit points (these
two nodes can be maintained separately or merged with BEGIN and END nodes
of the run method of the thread). While creating CSTART nodes, we create
new abstract threads. For the main thread in Java, we create a special abstract
thread.

5.2 Inter-procedural Analysis

The CALL nodes of various methods are linked to their polymorphic callee’s
BEGIN nodes. The END nodes of the callee’s are connected back to the suc-
cessors of the caller’s CALL node. In case a method is involved in recursion, we
reuse the already computed intra-thread control flow graph nodes and hence do
not descend into its call again. This approach can lead to artifact paths in the
ICFG that cannot execute in real program execution. However, this does not
affect the conservative results of the analysis. In case the target of a CALL node
is not involved in any shared data access (leads to side effect free calls), we do
not descend into it.

The nodes in ICFG are properly annotated with current set of locks. The lock
sets are propagated as a stack in a flow sensitive manner along with the symbolic
execution. Since the symbolic execution in every method is performed in a depth
first order, the lock set of a successor depends both on the lock set of one of the
predecessors and on the current node. Lock sets are modified appropriately for
ACQUIRE and RELEASE nodes.

Along with the symbolic execution we gradually update the TCT. Initially
TCT contains one node for the abstract thread corresponding to the main thread.
Then as and when we encounter new CSTART nodes at various contexts, we
create new abstract threads and add them to TCT.

5.3 Barriers

A barrier synchronization point has the effect of causing all threads to wait
at the barrier until every thread has reached it. Barriers can be implemented in
various ways in Java [12]. Since it is hard to detect barrier synchronization points
using program analysis, we annotate programs at barrier synchronization points.
This annotation helps us reduce the MHP pairs as the following way: statements
above a barrier point never execute concurrently with the ones below the barrier.

5.4 Limitation

The 2-level MHP algorithm computes MHP information for programs with no
synchronization constructs like wait, notify and notifyAll. The presence of
such constructs may require the MHP algorithm to enumerate every runtime

Efficient Computation of MHP Information for Concurrent Java Programs 165

threads explicitly in the compilation time and thereby making the analysis ex-
pensive and inapplicable to unbounded number of threads.

6 Experience

In this section, we report our experience in a Java-IA32 way-ahead compilation
environment on a Pentium IV CPU at 2.66GHz running Redhat Linux. Our run-
time system is based on GNU libgcj version 2.96 [7]. The numbers we present
refer to the overall program including library classes, and excluding native code.
The effect of native code for aliasing and object access has been modeled explic-
itly in the compiler.

We use several multi-threaded benchmark programs [10,24] to evaluate the
precision of our analysis. JGFCrypt, JGFSeries, JGFSor, JGFLUFact,
JGFSparsematmult, JGFMoldyn, JGFRaytracer, and JGFRaytracer are multi-
threaded benchmarks from Java Grande Forum [10]. Other benchmarks philo,
elevator, sor and tsp are described in [18].

We compare the running time of our analysis with that of [16] et al. We
modified their MHP algorithm to use our context and flow sensitive thread
model. We also use the interprocedural control flow graph structure (ICFG)
described in Section 3.1 instead of the Program Execution Graph (PEG) that
they proposed. To model PEG interactions at thread start and join in ICFG, we
keep additional information in ICFG nodes regarding threads started and joined
at that node; this helps us propagate the OUT and M information in their MHP
algorithm. Abstract threads which do not represent multiple instances of the
runtime threads are handled easily by their MHP algorithm. For a non-unique
abstract thread, we add additional explicit MHP computation among the nodes
of the abstract thread (similar to the way our MHP algorithm computes MHP
information for non-unique abstract threads).

Table 7. Running time of our MHP algorithm vs Naumovich et al.

Benchmarks Naumovich et al. MHP [16] Our 2-level MHP Speedup
in millisecond in milliseconds

JGFSor 51 27 1.89
JGFSparsematmult 34 9 3.78

JGFSeries 33 11 3.00
JGFLUFact 50 29 1.72
JGFCrypt 163 83 1.96

JGFMoldyn 13415 13119 1.02
JGFMontecarlo 3242 3193 1.02
JGFRaytracer 2176 2034 1.07

philo 34 15 2.43
elevator 248 183 1.36

sor 338 210 1.61
tsp 696 696 1.00
mtrt 4217 3823 1.10

166 R. Barik

Table 8 reports number of abstract threads and their corresponding number
of ICFG nodes. In all the benchmarks, except the main thread which is unique,
other abstract threads have multiple instances. Table 7 compares the running
time of our MHP algorithm as opposed to Naumovich et al. On an average, we
show 1.77x speedup on the running time of MHP algorithm.

For larger benchmarks like JGFMoldyn, JGFMontecarlo, JGFRayTracer, and
tsp, the abstract thread(s) except the main thread have higher number of ICFG
nodes (Column 2 in Table 8). Since the computation of MHP information for ab-
stract threads having multiple instances is same for both our algorithm and Nau-
movich et al. algorithm (Note that Naumovich et al. modeled runtime threads
and hence did not have multiple instances of a thread; we added extra code
to adapt to our thread model), the improvements are not significant. However,
for other benchmarks like JGFSeries and JGFSparsematmult, we obtain large
running time benefits.

Table 8. Details about benchmarks

Benchmarks Num of abstract threads Num of ICFG nodes
in abstract threads

JGFSor 2 48+69
JGFSparsematmult 2 68+20

JGFSeries 2 53+21
JGFLUFact 2 57+57
JGFCrypt 3 52+61+61

JGFMoldyn 2 280+758
JGFMontecarlo 2 520+316
JGFRaytracer 2 387+221

philo 2 17+93
elevator 2 83+142

sor 3 83+77+77
tsp 2 181+398
mtrt 3 85+1022+1022

7 Conclusion

In this paper, we present a new thread model where individual thread abstrac-
tions are obtained in a flow and context sensitive manner from the program. The
new thread abstraction models runtime threads precisely and yet efficiently dur-
ing compile time. This thread model can be used in various concurrent program
analysis and optimizations to improve the precision of results.

The thread model is subsequently used to compute MHP information effi-
ciently. Splitting the MHP computation based on thread structure level (TCT)
and individual thread abstraction’s control flow structure level reduces the com-
plexity of the algorithm as opposed to data flow based approach proposed by
Naumovich et al. [15]. The TCT structure depicts interaction among threads
and can be used to perform various thread structure analysis.

Efficient Computation of MHP Information for Concurrent Java Programs 167

As concurrent programming is embraced by more users (and finds its way into
future processor architectures), there will be increased demand on the compiler
to produce precise static analysis results. Context and flow sensitive thread ab-
stractions and thread structure analysis described in this paper can provide a
solid back-bone for concurrency -aware compilation systems.

Acknowledgments

We thank Christoph v. Praun, Vivek Sarkar and Prof. Thomas Gross for their in-
valuable comments during early version of the paper. We also thank Matteo Corti
and Florian Schneider for their contributions to the compiler infrastructure.

References

1. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers Principles, Tech-
niques, and Tools. Addison-Wesley publishing company, 1986.

2. Stephen Alstrup, Peter W. Lauridsen, and Mikkel Thorup. Dominators in linear
time. DIKU technical report, (35), 1996.

3. David Callahan and Jaspal Subhlok. Static analysis of low-level synchronization.
In Workshop on parallel and distributed debugging, pages 100–111, 1989.

4. Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano, Vugranam C. Sreedhar, and
Samuel P. Midkiff. Escape analysis for java. In Proceedings of the Conference on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA),
pages 1–19, 1999.

5. JongDeok. Choi, K. Lee, A. Loginov, R. O. Callahan, V. Sarkar, and M. Srid-
haran. Efficient and precise datarace detection for multithreaded object-oriented
programs. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 258–269, 2002.

6. Evelyn Duesterwald and Mary Lou Soffa. Concurrency analysis in the presence
of procedures using a data-flow framework. In Proceedings of the Symposium on
Testing, Analysis, and Verification, pages 36–48, 1991.

7. Gnu software, gcj - the gnu compiler for the java programming language.
http://gcc.gnu.org/java.

8. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Spec-
ification. Sun Microsystems, second edition, 2000.

9. Krinke J. Static slicing of threaded programs. Proceedings of the ACM SIG-
PLAN/SIGSOFT Workshop on Program Analysis for Software Tools and Engi-
neering, pages 35–41, June 1998.

10. Java grande forum, multi-threaded benchmark suite.
http://www.epcc.ed.ac.uk/javagrande.

11. Leslie Lamport. How to make a correct multiprocess program execute correctly on
a multiprocessor. IEEE Transactions on Computers, 46(7):779–782, July 1997.

12. D. Lea. Concurrent Programming in Java. Addison-Wesley, second edition, 2000.
13. Lin Li and Clark Verbrugge. A practical mhp information analysis for concurrent

java programs. In The 17th International Workshop on Languages and Compilers
for Parallel Computing (LCPC’04), 2004.

168 R. Barik

14. S. P. Masticola and B. G. Ryder. Non-concurrency analysis. In Proceedings of the
Fourth Symposium on on Principles and Practices of Parallel Programming, pages
129–138, May 1993.

15. G. Naumovich, G. S. Avunin, and L. A. Clarke. An efficient algorithm for com-
puting mhp information for concurrent java programs. In Proceedings of the 7th
European Software Engineering Conference and 7th International Symposium on
Foundations of Software Engineering, pages 338–354, September 1999.

16. Gleb Naumovich and George S. Avrunin. A conservative data flow algorithm
for detecting all pairs of statements that may happen in parallel. In Proceedings
of the 6th ACM SIGSOFT international symposium on Foundations of software
engineering, pages 24–34, 1998.

17. Christoph von Praun and Thomas R. Gross. Object race detection. In Proceedings
of Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA’01), pages 70–82, October 2001.

18. Christoph von Praun and Thomas R. Gross. Static conflict analysis for multi-
threaded object-oriented programs. In In Proceedings of the ACM SIGPLAN 2003
conference on Programming language design and implementation, pages 115–128,
2003.

19. Martin Rinard. Analysis of multithreaded programs. In Proceedings of Static
Analysis Symposium (SAS’01), July 2001.

20. Erik Ruf. Effective synchronization removal for java. In Proceedings of the ACM
SIGPLAN 2000 conference on Programming language design and implementation
(PLDI’00), pages 208–218, 2000.

21. V. Sarkar. Analysis and optimization of explicitly parallel programs using the
parallel program graph representation. In The 10th International Workshop on
Languages and Compilers for Parallel Computing (LCPC’04), 1997.

22. V. Sarkar and Simons B. Parallel program graphs and their classification. In
The Proceedings of ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering, 1998.

23. Dennis Shasha and Marc Snir. Efficient and correct execution of parallel programs
that share memory. ACM Transactions on Programming Languages and Systems,
10(2):282–312, April 1988.

24. Spec jvm98 benchmarks, the standard performance evaluation corporation.
http://www.spec.org/osg/jvm98.

25. Zehra Sura, Xing Fang, Chi-Leung Wong, Samuel P. Midkiff, Jaejin Lee, and David
Padua. Compiler techniques for high performance sequentially consistent java pro-
grams. In PPoPP ’05: Proceedings of the tenth ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages 2–13, New York, NY, USA,
2005. ACM Press.

26. Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146–160, June 1972.

27. R. N. Taylor. Complexity of analyzing the synchronization structure of concurrent
programs. Acta Informatica, 19:57–84, 1983.

A Appendix – Thread Creation Tree

The thread creation tree described in Section 3.3 precisely depicts the start-
join ordering semantics among abstract threads in a program. Since the tree
is computed in a context and flow sensitive manner, presence of cyclic thread

Efficient Computation of MHP Information for Concurrent Java Programs 169

Fig. 6. Recursive program

creation might make the TCT unbounded. Consider the code fragment given
Figure 6: Thread A creates Thread B; Thread B creates Thread C; Thread
C subsequently creates Thread A. Clearly there is a recursion involved in the
creation of various threads. This requires special handling to avoid the recursive
invocation of start methods.

To handle the above scenario, we perform a strongly connected component
search algorithm over the call graph of the whole program to detect all those
start methods of static thread types that are involved in a recursion. Let
{s1, s2, · · · , sn} be the set of all such strongly connected components, where each
si = {xi1, xi2, · · · , xim}. Each xij denote a static thread type. Subsequently, we
compute a conservative inter-procedural control flow graph for each si by com-
bining the inter-procedural control flow graph of all xij . While combining the
inter-procedural control flow graphs, start method invocations for static thread
types in si are treated as normal method invocations and are connected via con-
trol flow edges.

While performing symbolic execution (described in Section 5), if we encounter
a start method invocation of a static thread type which belongs to any of the
above computed si then we create a node in the TCT corresponding to si.
isUnique and mjoin predicates for the created TCT node are conservatively set
to false. ICFG of the created TCT node is set to the inter-procedural control
flow graph of si.

Evaluating the Impact of Thread Escape
Analysis on a Memory Consistency

Model-Aware Compiler

Chi-Leung Wong1, Zehra Sura2, Xing Fang3, Kyungwoo Lee3,
Samuel P. Midkiff3, Jaejin Lee4, and David Padua5

1 KAI Software Lab, Intel Americas, Inc., Champaign, IL, USA
chi.leung.david.wong@intel.com

2 IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA
zsura@us.ibm.com

3 Purdue University, West Lafayette, IN, USA
{xfang,kwlee,smidkiff}@ecn.purdue.edu

4 Seoul National University, Seoul, Korea
jlee@cse.snu.ac.kr

5 Dept. of Computer Science, University of Illinois at Urbana-Champaign, USA
padua@cs.uiuc.edu

Abstract. The widespread popularity of languages allowing explicitly
parallel, multi-threaded programming, e.g. Java and C#, have focused
attention on the issue of memory model design. The Pensieve Project
is building a compiler that will enable both language designers to pro-
totype different memory models, and optimizing compilers to adapt to
different memory models. Among the key analyses required to implement
this system are thread escape analysis, i.e. detecting when a referenced
object is accessible by more than one thread, delay set analysis, and
synchronization analysis.

In this paper, we evaluate the impact of different escape analysis al-
gorithms on the effectiveness of the Pensieve system when both delay set
analysis and synchronization analysis are used. Since both analyses make
use of results of escape analyses, their precison and cost is dependent on
the precision of the escape analysis algorithm. It is the goal of this paper
to provide a quantitative evalution of this impact.

1 Introduction

In shared memory parallel programs, different threads of the program commu-
nicate with each other by reading from and writing to shared memory locations.
Experience shows that to achieve high performance without extensive analyses,
it is necessary to allow memory accesses to follow an order of execution that is
non-intuitive one[13]. Memory system behavior observed by different processors
constitute the memory model. It is difficult to define a memory model that is
both easy to use and implement efficiently. The goal of the Pensieve compiler
system is to provide a testbed to evaluate memory models by creating “virtual”

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 170–184, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Evaluating the Impact of Thread Escape Analysis 171

memory models and to evaluate the overhead of these models in the presence of
aggressive compiler analyses and optimizations. Given a program and a mem-
ory model specification, the Pensieve compiler will ultimately be able to generate
different versions of machine code corresponding to the specified memory model.
However, the current version of the Pensieve system only creates a sequentially
consistent “virtual” memory model and implements it on the Intel IA32 and
PowerPC processors, so the virtual memory model and the target memory mod-
els are currently hardwired inside the system. An important issue in the system
design is performance — both the compilation time and application time should
be minimized. In this paper, we investigate the impact of escape analysis on
our Pensieve system. We study how escape analysis affects the cost and pre-
cision of other analysis algorithms, which in turn affects both the compilation
cost and application performance. In particular, this paper makes the following
contributions:

– it describes the Pensieve compilation system;
– it describes the interaction between escape analysis and synchronization/

delay set analyses.
– it presents a quantitative study on the impact of escape analysis on the

Pensieve system.

1.1 Memory Models

A memory model1 specifies the memory system behavior, and can be specified
for programming languages as well as hardware. Memory models are necessary
because they define the allowable set of outcomes of a parallel program and, as
a result, they allow programmers to reason about their programs and compilers
to generate valid code. Until recently, memory models were of concern only
to expert systems programmers, and computer architects. With the advent of
languages like Java and C#, many programmers write multi-threaded programs
targeting Internet, database, and GUI applications, in addition to traditional
high performance computing applications. Because of this, memory models have
become an issue for much of the programmer community and for language and
compiler designers. The trade-offs between ease-of-use and performance have
become increasingly important.

Sequential Consistency. A well-known memory model is sequential consis-
tency (SC), defined by Lamport[15]. It is often considered to be the simplest
and most intuitive memory consistency model [13]. Scheurich and Dubois[19]
described a sufficient condition for SC and Gharachorloo et. al.[8] presented the
condition in a slightly difference way. The idea of these sufficient conditions is to
delay a memory access until all previous ones within the same thread are com-
pleted. These conditions impose constraints so that some performance improv-
ing optimizations cannot be applied in the hardware . In addition, it constrains

1 Memory models are often called consistency models in the context of hardware.

172 C.-L. Wong et al.

compiler optimizations that may reorder memory accesses. The issue of mem-
ory models can be illustrated by the busy-wait synchronization example shown
in Figure 1(a). Both x and a are shared variables accessible by two concurrent
threads. Thread 1 does some computation and stores the result in a, and then
uses x to inform Thread 2 that a new value of a is ready to be read. Thread
2 waits for the data by executing a while loop that reads x and waits for the
value to become non-zero, at which time the thread will read the value from a.
The program shown in Figure 1(a), if executed in a SC environment, achieves
the described intention.

Relaxed Consistency Models. Most multiprocessor systems implement con-
sistency models, such as weak ordering and release consistency [4], which impose
fewer constraints than SC on the order of shared memory accesses. Where clear,
we will refer to these more relaxed models by the acronym RC. RC models al-
low more instruction reordering, increasing the potential for instruction level
parallelism and as a result can potentially deliver better performance. Synchro-
nization primitives, such as fences, are used in these systems to force an order
on memory operations that is more constrained than that implied by the default
consistency model.

The program shown in Figure 1(a), if executed in a RC environment, is not
guaranteed to achieve the programmer’s intention. This is because, for perfor-
mance reasons, the compiler or hardware may reorder the two memory operations
performed by Thread 1 such that the update of x reaches Thread 2 before the
update of a. If this happens, T2 could read the updated value of x (i.e. 1), exit
the loop, and then read an old value (i.e. 0) of a. Therefore, the intention of
the programmer is not achieved. In the presence of the fence instruction, the
memory reording does not happen. Figure 1(b) shows a correct implementation
of the busy-wait construct using fences.

Both x and a are zero initially.

// Thread 1

.

.

.
S1: a = 1;
S2: x = 1;

// Thread 2

.

.

.
T1: while (x==0) wait;
T2: print a;

.

.

.
U1: a = 1;
U2: fence
U3: x = 1;

.

.

.
V1: while (x==0) wait;
V2: fence
V3: print a;

(a) Busy-wait synchronization (b) Fence instruction inserted to avoid
reordering

Fig. 1. Memory model issues example

1.2 Enforcing Memory Models

Enforcing a memory model implies enforcing some memory access orders. How-
ever, not all orderings specified by the memory model need to be enforced. In
fact, only those orderings that may affect the outcome of the program must
be enforced. To generate efficient and correct code, a compiler must determine

Evaluating the Impact of Thread Escape Analysis 173

which memory accesses may not be reordered and enforce only those orderings.
The orderings that must be enforced are called delays. In [20], Shasha and Snir
give minimal criteria for which orders must be enforced in order to have a se-
quential consistent execution of a program. Both [20] and this paper assume that
the hardware provides primitives, such as fences, powerful enough to enforce the
required orderings. Moreover, some compiler optimizations must be constrained
if applying them may violate a delay. In [20], the authors present a delay set
analysis (DSA) algorithm to determine the required orderings. DSA requires the
thread structure of the programs to determine the delay information.

In Section 2, we describe the Pensieve system design. In Section 3, we describe
the escape analysis proposed in [23]. In Section 4 and Section 5, we describe
how the escape analysis impact delay set analysis and synchronization analyses
respectively. In Section 6, experimental results are presented to evaluate the
impact of escape analysis quantitatively. This paper concludes in Section 7.

2 Pensieve Compiler System Design

Our Pensieve Compiler System supports SC on top of two hardware platforms
that support more relaxed memory models — the Intel platform and the Pow-
erPC platform, which is an extension of the Jikes RVM infrastructure [7,9].
Figure 2 gives an overview of the Pensieve system.It shows three phases:

1. In the analysis phase, a set of delays is computed. The delays are the ordering
constraints to be enforced both by the compiler and the hardware.

2. In the modified code optimization phase, the set of delays identified by the
analysis phase is checked before performing an optimization transformation.
If a transformation would violate a delay, it is not applied.

3. In the fence insertion and optimization phase, fences are inserted into the
program to force the delays to be enforced by the hardware. This phase
looks for opportunities to synchronize multiple delays with a single fence
instruction. The details of this phase are described in [10,11].

Target Program

Thread Escape
Anaysis Analysis

Synchronization

Alias Analysis
Analysis

Delay Set

Program Analyses

Source Program

Consistency Model
Hardware Memory

and Optimization
Fence Insertion

Optimizations
Code

Constraints
Ordering

to Enforce

Fig. 2. Overview of the Pensieve system

3 Thread Escape Analysis

Thread escape analysis aims at identifying objects which may be accessed by
two or more threads. In the Pensieve System environment, the analysis is per-
formed as the application programs are running, so the time to perform escape

174 C.-L. Wong et al.

analysis is a part of the overall execution time. Therefore, an inexpensive and
moderately accurate analysis algorithm will be a good choice in our approach.
In this project, we balance analysis algorithm performance and accuracy. While
we are not aiming at having an escape analysis that is precise for the whole pro-
gram, the analysis should be precise enough that fences are not unnecessarily
inserted into frequently executed methods. In light of this, we chose to design the
simplest possible algorithm to minimize the cost of the analysis. In the Pensieve
compiler system, we have implemented four escape analysis algorithms:

– a connectivity based analysis described in [23]
– a field based analysis described in [22]
– Bogda’s analysis described in [6]
– Ruf’s analysis described in [18]

3.1 Connectivity Based Analysis

The basic characteristics of the algorithm[23] are:

– Analysis ofmostmemory accesses is field insensitive,with accesses inRunnable
objects being field sensitive.

– More precise context information is constructed for the run() method of a
Runnable class (i.e. this is not assumed to escape) than for other methods.

– Objects assumed to be reachable by multiple threads, are marked as escaping
only if they are accessed by multiple threads.

The analysis is a two-phase analysis. The bottom-up phase computes the
effect of methods and computes how the methods make arguments escaping.
The top-down phase computes the context of methods and determines how
the caller makes arguments escaping before passing them to their callees. Both
phases are done by visiting the strongly connected component (SCC) graph
induced by the call graph in (reverse) topological order. The analysis makes use
of the union-find data structure to avoid fixed point computations for recursive
methods within an SCC.

3.2 Field Based Analysis

The basic characteristics of the algorithm[22] are:

– Analysis of all objects is field sensitive. To avoid an expensive analysis, unlike
[18], it merges escaping properties of fields of all objects of the same type.
For example, if O1.f = O2 and O2 is found to be escaping, then for any
object O, if O is referened by a field f, it is assumed to be escaping.

– Analysis of the run() method of a Runnable, looks for conditions implying
this is not escaping, instead of assuming this is escaping. .

The analysis is an iterative analysis — the analysis is performed until no es-
caping properties of variables and fields change. It is a partially context sensitive
analysis.

Evaluating the Impact of Thread Escape Analysis 175

3.3 Bogda’s Analysis

Bogda’s analysis[6] is a two phase and iterative analysis. The basic characteristics
of the algorithm are:

– an object is escaping if any of the following conditions is fulfilled
• it is reachable via more than one field reference;
• it is reachable by a static field; or
• it is reachable by a Runnable object.

3.4 Ruf’s Analysis

Ruf’s analysis[18] is a three phase analysis. Like our connectivity based analysis,
it makes use of the union-find data structure to avoid fixed point computations for
recursive methods inside an SCC. The basic characteristics of the algorithm are:

– an object is escaping if it is both
• reachable from static fields or Runnable objects;
• synchronized by more than one thread.

Since the analysis is designed for synchronization removal, we have adapted it for
fence insertion. Instead of using the second condition “synchronized by more than
one thread”, the adapted analysis checks whether an object is “accessed by more
than one thread”. After the adaptation, the cost of analysis could be increased
because there are more object accesses than synchronization operations.

4 Impact of Escape Analysis on Delay Set Analysis

Delay set analysis computes a delay set, i.e. a set of ordered pairs of memory ac-
cess (x, y) such that y must be delayed until x has completed. In [20], Shasha and
Snir present an accurate method to find the minimal delay set. In the Pensieve
compiler system, we use a much simpler approximate method described in[21].
The analysis in [20] finds cycles in a graph where nodes are shared variable ac-
cesses from two or more threads. In our simplified escape analysis, we look for
pairs of shared memory accesses (x, y) such that x precedes y; y is aliased to y′

in another thread; x is aliased to x′ in another thread; and y′ precedes x′.
Escape analysis affects both the precision and cost of delay set analysis. The

fewer the number of escaping variables, the fewer pairs (x, y) that need to be
checked, and the fewer the number of x′ and y′ accesses. This increases both the
speed and the precison of delay set analysis.

5 Impact of Escape Analysis on Synchronization Analysis

Synchronization information helps reduce the number of conflict edges in the
graph considered for delay set analysis, and thus improves the precision of delay
set analysis[14].

176 C.-L. Wong et al.

In our analysis, we consider the following Java synchronization primitives:

– synchronized blocks, used for lock-based synchronization
– thread start() and join() calls, used to determine the program thread

structure.

Our lock-based synchronization analysis has been described in [22]. It improves
the accuracy of our approximate delay set analysis. In essence, we can ignore
pairs of nodes (x, y) and (x′, y′), as described above, when both are synchronized
with the same lock. See [22] for details.

A detailed description of our start-join-based synchronization analysis is given
in [21]. The idea is to make use of the Java language semantics of start() and
join(). When a thread is spawned via a thread start(), all memory accesses of
the creator thread that are initiated before start(), complete before the point
where the new thead starts. Also, if a thread T invokes a join() call to wait
for another thread to terminate, then all memory accesses performed by the
terminating thread complete before T continues execution after the join().

Escape analysis affects the precision of synchronization analysis. When doing
synchronization analysis, we consider only join() calls that are matched with
some start() call. A join() is matched with a start() only if the objects that
they are invoked on do not escape. Matched join() calls can reduce the number of
pairs (x, y) to be considered. Therefore, when escape information is more precise,
more join() calls can be matched, so more pairs (x, y) can be ignored.

6 Experimental Results

In this section we present the results of executing benchmark programs compiled
with our Pensieve compiler using the four escape analyses described in Section 3.
Our goal is to quantitatively evaluate the impact of different escape analysis
algorithms.

6.1 Benchmark Programs

Table 1 shows the benchmark programs used in the experiments. These are stan-
dard benchmarks from the SPECjvm98, SPECjbb2000 and the Java Grande
benchmark suite. There are also some programs taken from the literature, in-
cluding the concurrent implementation of two data structures, hashmaps and

Table 1. Benchmark Characteristics

Benchmark Description Source # bytecodes
moldyn Molecular dynamics application Java Grande Forum Multithreaded Benchmarks[3] 26,913
montecarlo MonteCarlo simulation Java Grande Forum Multithreaded Benchmarks[3] 63,452
raytracer Ray tracing application Java Grande Forum Multithreaded Benchmarks[3] 33,198
mtrt Ray tracing application From the SPECjvm98 benchmark suite[2] 290,260
boundedbuf Producer-consumer application Uses Doug Lea’s Blocking Queue class[16] 12,050
geneticalgo Parallel genetic algorithm Adapted from the sequential version version in [16] 30,147
hashmap Microbenchmark for concurrent hashmaps Uses Doug Lea’s ConcurrenthashMap class[16] 24,989
seive Sieve of Erastothenes From an example in [12] 10,811
disksched Disk scheduler using an elevator algorithm From an example in [17] 21,186
jbb Middle-layer database server application SPECjbb2000[1] 521,021

Evaluating the Impact of Thread Escape Analysis 177

queues. These concurrent data structures are expected to be widely used and
have been incorporated in the Java standard libraries.

6.2 Target Architectures

The experiments are performed on two platforms — the Intel IA32 platform and
the PowerPC platform:

– The Intel platform is a Dell PowerEdge 6600 SMP with 4 Intel 1.5Ghz Xeon
processors with 1MB cache each, and 6G system memory.

– The PowerPC platform is an IBM SP 9076-550 with 8 375Mhz processors
with 8GB system memory.

6.3 Software Settings

Our compiler system is implemented on top of the Jikes Research Virtual Ma-
chine [7,5,9] version 2.3.4. We use the FastAdaptiveSemiSpace configuration with
no fences inserted within the virtual machine code. For the experiments reported
below, we force the system to use the optimizing compiler. To evaluate the im-
pact of escape analyses, we compare the analysis times of delay set analysis
and synchronization analysis. In addition, we compare the precision of delay set
analysis and synchronization analysis w.r.t. different escape analyses by com-
paring the application execution time and the number of fences inserted. In all
the graphical plots, the geometrical means are included to summarize data for
all the benchmark programs.

There are six escape analyses compared:

– empty assumes all memory accesses are escaping accesses.
– argEscape assumes all memory locations reachable from some arguments

are escaping.
– connect is the connectivity based escape analysis algorithm described in

Section 3.
– field-based is the field based escape analysis algorithm described in

Section 3.
– bogda is Bogda’s escape analysis algorithm described in Section 3.
– ruf5 is Ruf’s escape analysis algorithm described in Section 3.

6.4 Cost of Escape Analysis

Figure 3 presents the time taken using a log scale for performing escape analy-
sis. The times for empty and argEscape are small because they are very simple.
Other than these two trivial analyses, the connectivity based analysis is the
fastest because it does not require a fixed-point computation. It takes longer
than empty and argEscape because it is an interprocedural analysis. The analy-
sis times of field-based and bogda are longer because they are interprocedural
iterative analyses that requires a fixed-point computation. On average, the anal-
ysis time of ruf5 is between those of connect and field-based.

178 C.-L. Wong et al.

1

10

100

1000

10000

100000

1000000

mt
rt

mo
ldy

n

mo
nte

ca
rlo

ray
tra

ce
r

bo
un

de
db

uf

dis
ks

ch
ed

ge
ne

tic
alg

o

ha
sh

ma
p

se
ive jbb AV

G

Escape Analysis Time in ms

empty argEscape connect ruf5 field-base bogda

Fig. 3. Escape analysis time in msec

connect ruf5 bogda field-based argEscape empty
mtrt 62371 54240 200307 207529 243376 247371
moldyn 11782 297740 297782 298239 308673 309121
montecarlo 22132 3583 4101 7095 31766 31847
raytracer 17768 46960 48967 49116 63153 63539
boundedbuf 2599 4498 4733 4778 6163 6163
disksched 4855 5394 5425 5791 7748 7748
geneticalgo 9574 17126 18282 16877 26952 26952
hashmap 4030 4134 4274 4274 4972 4972
seive 2668 4925 4925 5139 5525 5525
jbb 1872250 916591 832800 836559 1847126 1852503

1

10

100

1000

10000

100000

1000000

10000000

mt
rt

mo
ldy

n

mo
nte

ca
rlo

ray
tra

ce
r

bo
un

de
db

uf

dis
ks

ch
ed

ge
ne

tic
alg

o

ha
sh

ma
p

se
ive jbb AV

G

Number of Delay Check Performed

connect ruf5 bogda field-base argEscape empty

Fig. 4. Number of delay checks

6.5 Impact on the Cost of Delay Set Analysis and Synchronization
Analysis

We evaluate the impact of escape analysis on delay set analysis and synchroniza-
tion analysis separately. In both cases, we measure the time taken to perform
these two analyses. In case of delay set analysis, we also measure the number of
memory access pairs checked for delays.

Figure 4 shows the number of delay checks for different escape analysis al-
gorithms. Since the value range is huge, it is plotted using a log scale. We
can see connect analysis lead to fewer checks than other escape analyses for
most benchmarks except mtrt, montecarlo and jbb. By comparing connect
and field-based for benchmarks montecarlo and jbb, we can see that in these
benchmarks, being field sensitive is important. On average, connect leads to

Evaluating the Impact of Thread Escape Analysis 179

connect ruf5 bogda field-based argEscape empty
mtrt 58.41 56.25 93.52 90.38 104.20 108.35
moldyn 1.90 46.26 47.04 47.26 49.53 49.61
montecarlo 9.53 1.77 1.88 2.27 11.13 10.48
raytracer 2.80 8.14 8.53 8.70 11.05 11.07
boundedbuf 0.42 0.70 0.71 0.69 0.89 1.83
disksched 0.85 1.03 1.03 1.09 1.46 1.46
geneticalgo 1.93 3.59 3.68 3.41 5.25 4.76
hashmap 0.59 0.69 0.72 0.71 0.79 0.83
seive 0.87 1.16 1.19 1.19 1.48 1.30
jbb 304.09 144.76 127.21 127.43 297.69 295.74

0

50

100

150

200

250

300

350

mt
rt

mo
ldy

n

mo
nt

ec
ar

lo

ra
ytr

ac
er

bo
un

de
db

uf

dis
ks

ch
ed

ge
ne

tic
alg

o

ha
sh

ma
p

se
ive jbb AV

G

Delay Set Analysis Time in ms

connect ruf5 bogda field-base argEscape empty

Fig. 5. The time spent on delay set analysis in msec

field-based bogda empty argEscape connect ruf5
mtrt 478.30 829.88 873.38 905.41 841.13 839.60
moldyn 73.85 122.74 133.15 132.14 130.63 132.87
montecarlo 270.28 343.19 359.99 362.02 358.69 349.72
raytracer 134.14 188.00 198.61 200.09 200.85 190.60
boundedbuf 67.57 118.79 117.81 117.04 125.85 123.36
disksched 103.17 160.92 180.60 182.97 165.02 161.78
geneticalgo 159.78 228.40 248.58 247.21 248.88 251.44
hashmap 139.50 237.22 251.10 251.19 252.38 247.33
seive 38.18 74.56 76.94 76.75 76.04 75.48
jbb 56070.55 74231.65 59977.42 58466.61 72130.53 133368.70

1

10

100

1000

10000

100000

1000000

mt
rt

mo
ldy

n

mo
nte

ca
rlo

ray
tra

ce
r

bo
un

de
db

uf

dis
ks

ch
ed

ge
ne

tic
alg

o

ha
sh

ma
p

se
ive jbb AV

G

Synchronization Time in ms

field-base bogda empty argEscape connect ruf5

Fig. 6. The time spent on synchronization analysis time in msec

180 C.-L. Wong et al.

1

10

100

1000

10000

100000

1000000

mt
rt

mo
ldy

n

mo
nte

car
lo

ray
tra

cer

bo
un

de
db

uf

dis
ksc

he
d

ge
ne

tica
lgo

ha
shm

ap

sei
ve jbb AV
G

Total Compilation Time in ms

connect ruf5 argEscape empty field-base bogda

Fig. 7. Total Compilation Time in msec

connect ruf5 bogda field-based argEscape empty
mtrt 61168 52331 198331 205700 240965 244926
moldyn 10312 294371 294409 294409 302913 302913
montecarlo 10410 1449 1544 2707 18182 18263
raytracer 16477 41063 41767 41767 52902 53288
boundedbuf 1468 2596 2764 2625 3067 3067
disksched 3590 4074 4074 4441 5923 5923
geneticalgo 6802 12846 12846 12780 14771 14771
hashmap 1871 2031 2075 2075 2158 2158
seive 1545 3150 3150 3150 3439 3439
jbb 1050402 252850 265206 264630 962122 965368

1

10

100

1000

10000

100000

1000000

10000000

mt
rt

mo
ldy

n

mo
nte

ca
rlo

ray
tra

ce
r

bo
un

de
db

uf

dis
ks

ch
ed

ge
ne

tica
lgo

ha
sh

ma
p

se
ive jbb AV

G

Number of Delays Found (DSA Only)

connect ruf5 bogda field-base argEscape empty

Fig. 8. The number of delays found (delay set analysis only)

fewer checks than other escape analyses. A similar pattern is observed for the
delay set analysis times shown in Figure 5.

Figure 6 shows the synchronization analysis time. We can see the analysis
times for synchronization analysis are similar for bogda, empty, argEscape,
connect and ruf5. We observe that field-based leads to faster synchronization
analysis on all benchmarks. In our system implementation, field-based shares
some data structures with synchronization analysis, so synchronization analysis
reuses data computed by field-based. We expect these data reuses reduce the
synchronization analysis time.

The total compilation time is shown in Figure 7. We observe that, on av-
erage, connect outperforms other non-trivial escape analysis algorithms in
this aspect.

Evaluating the Impact of Thread Escape Analysis 181

connect ruf5 bogda field-based argEscape empty
mtrt 61160 52323 197468 204837 239914 243875
moldyn 10312 294324 294362 294362 302866 302866
montecarlo 9846 1406 1501 2664 17618 17699
raytracer 16477 40945 41648 41648 52783 53169
boundedbuf 1468 2596 2764 2625 3067 3067
disksched 3590 4069 4069 4436 5918 5918
geneticalgo 6802 12835 12835 12769 14760 14760
hashmap 1871 2028 2072 2072 2155 2155
seive 1541 3146 3146 3146 3435 3435
jbb 1049689 252753 265108 264532 961432 964669

1

10

100

1000

10000

100000

1000000

10000000

mtr
t

mo
ldy

n

mo
nte

car
lo

ray
trac

er

bou
nde

dbu
f

dis
ksc

hed

gen
etic

alg
o

has
hm

ap

sei
ve jbb AV
G

Number of Delays Found (DSA+Sync Analysis)

connect ruf5 bogda field-base argEscape empty

Fig. 9. The number of delays found (delay set analysis + synchronization analysis)

connect ruf5 bogda field-based argEscape empty
mtrt 3.80 3.78 23.47 24.26 27.08 27.06
moldyn 74.08 659.89 663.48 660.92 661.80 664.59
montecarlo 119.25 96.52 75.79 93.09 143.04 143.33
raytracer 74.94 798.80 796.49 795.08 801.13 798.53
boundedbuf 1484.75 1467.53 1430.16 1506.80 1443.88 1407.05
disksched 5.83 4.70 4.88 4.86 5.54 5.86
geneticalgo 53.22 59.16 55.91 58.92 57.62 65.74
hashmap 42.07 52.63 50.12 48.45 48.20 55.05
seive 160.79 219.55 220.04 217.83 214.93 215.61
jbb 4346.56 4419.63 4822.99 4746.00 4206.01 4231.55

(a) Application execution time

0

2

4

6

8

10

12

14

mt
rt

mo
ldy

n

mo
nte

ca
rlo

ray
tra

ce
r

bo
un

de
db

uf

dis
ks

ch
ed

ge
ne

tic
alg

o

ha
sh

ma
p

se
ive jbb AV

G

Slowdown (DSA only)

connect ruf5 bogda field-base argEscape empty

(b) Slowdown

Fig. 10. Slowdown due to fence instruction insertion (delay set analysis only)

6.6 Impact on Analysis Precision

The analysis precision of delay set analysis and synchronization analysis can be
measured in terms of application execution time and number of delays found. In
both cases, we can view the precision in the following cases:

– the performance of delay set analysis (without applying synchronization
analysis)

– the performance of delay set analysis with refinement of synchronization
analysis

182 C.-L. Wong et al.

connect ruf5 bogda field-based argEscape empty
mtrt 3.77 3.80 23.50 24.70 27.08 27.05
moldyn 76.42 664.30 670.10 665.27 663.29 666.33
montecarlo 119.21 95.26 76.88 98.98 147.86 144.56
raytracer 74.91 798.32 795.36 796.14 801.17 802.04
boundedbuf 1496.27 1464.73 1453.98 1491.85 1415.81 1432.90
disksched 4.89 5.87 4.37 4.05 5.75 5.55
geneticalgo 56.76 62.55 63.92 56.26 58.61 57.24
hashmap 51.78 41.29 48.66 59.47 49.31 49.44
seive 161.18 220.07 220.14 220.81 218.31 221.04
jbb 4330.03 4417.78 4803.98 4741.15 4221.02 4215.59

(a) Application execution time

0

2

4

6

8

10

12

14

mt
rt

mo
ldy

n

mo
nte

ca
rlo

ray
tra

ce
r

bo
un

de
db

uf

dis
ks

ch
ed

ge
ne

tic
alg

o

ha
sh

ma
p

se
ive jbb AV

G

Slowdown (DSA+Synchronization Analysis)

connect ruf5 bogda field-base argEscape empty

(b) Slowdown

Fig. 11. Slowdown due to fence instruction insertion (delay set analysis + synchro-
nization analysis)

Figure 8 shows the number of delays found when only delay set analysis is ap-
plied. We can see that for most benchmarks fewer delays are found when connect
is applied. Similar to the pattern described in previous section, connect does not
outperform other escape analyses for benchmarks mtrt, montecarlo and jbb.
We can see a similar pattern when both delay set analysis and synchronization
analysis are applied, shown in Figure 9.

Finally, the application execution times are reported in Figure 10 (only DSA
applied) and Figure 11 (both DSA and synchronization analysis applied). In both
settings, we also plot the slowdown graphs in the same figure. We can see the
connect performs well for most benchmarks except for montecarlo, disksched
and jbb. On average, connect is the best analysis from slowdown perspective.

7 Conclusions

In this paper, we have presented the Pensieve Compiler System. The system
presented in this paper focuses on enforcing SC on the Intel IA32 and Pow-
erPC platforms. We also presented the interactions between our thread escape
analyses, synchronization analysis, and delay set analysis implemented in the
system. We can see, on average, the connectivity analysis is the best escape
analysis algorithms leading to good application performance. From the analy-
sis time perspective, connectivity analysis is much faster than other non-trivial
analyses. Ruf’s analysis is the second best analysis that lead to good application

Evaluating the Impact of Thread Escape Analysis 183

performance. For some benchmarks, Ruf’s analysis outperforms connectivitiy
analysis. However, Ruf’a analysis is much slower than connectivity analysis, so
we choose to use connect as the escape analysis in the Pensieve system.

By comparing with the field based analysis, we can see the importance of
being field sensitive for benchmarks like montecarlo and jbb. The result moti-
vates further works to design a fast and precise escape analysis to be used by
delay set analysis and synchronization analysis by enabling field sensitivity for
connectivity analysis without increasing the analysis cost significantly.

References

1. SPEC JBB 2000 Benchmark. URL: http://www.specbench.org/jbb2000.
2. SPEC JVM Client98 Suite. URL: http://www.specbench.org/jvm98/jvm98.
3. The Java Grande Forum Multi-threaded Benchmarks. URL:

http://www.epcc.ed.ac.uk/javagrande/threads/contents.html.
4. Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models:

A tutorial. IEEE Computer, pages 66–76, December 1996.
5. M. Arnold, S. Fink, D. Grove, M. Hind, and P. Sweeney. Adaptive optimization

in the Jalapeño JVM. In Proc. ACM SIGPLAN Conference on Object-Oriented
Programming and Systems, Languages, and Applications (OOPSLA) 2000, Min-
neapolis, MN, October 2000.

6. Jeff Bogda and Urs Holzle. Removing unnecessary synchronization in java. In Pro-
ceedings of the 14th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 35–46. ACM Press, 1999.

7. B. Alpern et. al. The Jalapeño virtual machine. IBM System Journal, 39(1),
February 2000.

8. Kourosh Gharachorloo et. al. Memory consistency and event ordering in scalable
shared-memory multiprocessors. In Proceedings of The 17th Annual International
Symposium on Computer Architecture (ISCA), pages 15–26, May 1990.

9. Michael G. Burke et. al. The Jalapeño Dynamic Optimizing Compiler for Java. In
Proceedings of the 1999 ACM Java Grande Conference, pages 129–141, Palo Alto,
CA, USA, Jun 1999.

10. Xing Fang, Jaejin Lee, and Samuel P. Midkiff. Automatic fence insertion for shared
memory processing. In 2003 ACM International Conference on Supercomputing,
June 2003.

11. Xing Fang, Jaejin Lee, and Samuel P. Midkiff. An optimizing and retargetable
fence insertion algorithm. Technical Report ECE-HPCLab-033002, High Perfor-
mance Computing Lab, School of Electrical and Computer Engineering, Purdue
University, 2003.

12. Stephen Hartley. Concurrent Programming: the Java Programming Language. Ox-
ford University Press, 1998.

13. Mark D. Hill. Multiprocessors should support simple memory-consistency models.
IEEE Computer, August 1998.

14. Arvind Krishnamurthy and Katherine Yelick. Analyses and optimizations for
shared address space programs. Journal of Parallel and Distributed Computing,
38:139–144, 1996.

15. Leslie Lamport. How to make a multiprocessor computer that correctly exe-
cutes multiprocess programs. IEEE Transactions on Computers, C-28(9):690–691,
September 1979.

184 C.-L. Wong et al.

16. Doug Lea. Concurrent Programming in Java. Addison Wesley, 1999. URL:
http://gee.cs.oswego.edu/dl/cpj.

17. Douglas Lea and Doug Lea. Concurrent Programming in Java: Design Principles
and Patterns. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1996.

18. Erik Ruf. Effective synchronization removal for java. In Conference on Program-
ming Languages, Design, and Implementation (PLDI), 2000.

19. C. Scheurich and M. Dubois. Correct memory operation of cache-based multi-
processors. In Proc. of the 14th Annual Int’l Symp. on Computer Architecture
(ISCA’87), pages 234–243, 1987.

20. Dennis Shasha and Marc Snir. Efficient and correct execution of parallel programs
that share memory. ACM Transactions on Programming Languages and Systems,
10(2):282–312, April 1988.

21. Zehra Sura, Xing Fang, Chi-Leung Wong, Samuel P. Midkiff, Jaejin Lee, and David
Padua. Compiler techniques for high performance sequentially consistent java pro-
grams. In Proceedings of the ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, Chicago IL, 2005.

22. Zehra N. Sura. Analyzing Threads for Shared Memory Consistency. PhD thesis,
University of Illinois at Urbana-Champaign, 2004.

23. Chi-Leung Wong. Thread Escape Analysis for a Memory Consistency Model-aware
Compiler. PhD thesis, University of Illinois at Urbana-Champaign, 2005.

Concurrency Analysis for Parallel Programs with
Textually Aligned Barriers

Amir Kamil and Katherine Yelick

Computer Science Division, University of California, Berkeley
{kamil,yelick}@cs.berkeley.edu

Abstract. A fundamental problem in the analysis of parallel programs is to de-
termine when two statements in a program may run concurrently. This analysis
is the parallel analog to control flow analysis on serial programs and is useful in
detecting parallel programming errors and as a precursor to semantics-preserving
code transformations. We consider the problem of analyzing parallel programs
that access shared memory and use barrier synchronization, specifically those
with textually aligned barriers and single-valued expressions. We present an in-
termediate graph representation for parallel programs and an efficient interpro-
cedural analysis algorithm that conservatively computes the set of all concurrent
statements. We improve the precision of this algorithm by using context-free lan-
guage reachability to ignore infeasible program paths. We then apply the algo-
rithms to static race detection and show that it can benefit from the concurrency
information provided.

1 Introduction

As the rate of scaling of uniprocessor machines slows down, application writers and
system vendors alike have been turning to multiprocessor machines for performance.
Most major CPU manufacturers have chip products with multiple cores, so that paral-
lelism once hidden within the micro-architecture will now be exposed to the assembly
language and, in all likelihood, to application level software. Such systems are modeled
after SMP multiprocessors and allow all processors to simultaneously access shared
memory. In addition, for large-scale parallel machines there is increasing interest in
global address space languages, which give programmers the illusion of a shared mem-
ory machine on top of distributed memory machines and clusters. Analysis and op-
timization of parallel shared memory code is increasingly important in both of these
settings.

In this paper we introduce an interprocedural concurrency analysis for programs
with barrier synchronization, which captures information about the potential concur-
rency between statements in a program. The analysis is done for the Titanium language
[25], a single program, multiple data global address space variation of Java that runs on
most parallel and distributed memory machines. We first construct a concurrency graph
representation of a program, taking advantage of two features of the Titanium language
parallel execution model: textual barrier alignment, which statically guarantees that
all threads reach the same textual sequence of barriers, and single-valued expressions,
which provably evaluate to the same value on all threads [1]. We then present a simple

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 185–199, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

186 A. Kamil and K. Yelick

algorithm that uses the concurrency graph to determine the set of all concurrent expres-
sions in a program. This analysis proves too conservative, however, and we improve
its precision by performing a context-free language analysis on a modified form of the
concurrency graph. We prove the correctness of both analyses and show that their total
running times are quadratic in the size of the input program.

Concurrency analysis can be used to improve the quality of other analyses and to
enable optimizations. To demonstrate the usefulness of our concurrency analysis, we
apply it to data race analysis, which can be used to report potential program errors to
application programmers. In related work with Su [16] and in a companion report [17],
we tackled the problem of memory consistency model enforcement, which can be used
to provide a stronger and more intuitive memory model while still allowing the compiler
and hardware to reorder memory operations in many instances. We demonstrated that
memory model enforcement can have a significant negative impact on optimizations,
but that this effect is mitigated when combined with our concurrency analysis. In this
paper, we focus on the foundations of the concurrency analysis problem: how it can be
performed efficiently and be made accurate enough to effectively increase the precision
of both clients on a set of application benchmarks.

2 Titanium Background

Titanium is a dialect of Java, but does not use the Java Virtual Machine model. Instead,
the end target is assembly code. For portability, Titanium is first translated into C and
then compiled into an executable. In addition to generating C code to run on each proces-
sor, the compiler generates calls to a runtime layer based on GASNet [6], a lightweight
communication layer that exploits hardware support for direct remote reads and writes
when possible. Titanium runs on a wide range of platforms including uniprocessors,
shared memory machines, distributed-memory clusters of uniprocessors or SMPs, and
a number of specific supercomputer architectures (Cray X1, Cray T3E, SGI Altix, IBM
SP, Origin 2000, and NEC SX6). Instead of having dynamically created threads as in
Java, Titanium is a single program, multiple data (SPMD) language, so the number of
threads is fixed at program startup and all threads execute the same code image.

2.1 Textually Aligned Barriers

Like many SPMD languages, Titanium has a barrier construct that forces threads to
wait at the barrier until all threads have reached it. Aiken and Gay introduced the con-
cept of structural correctness to enforce that all threads execute the same number of
barriers, and developed a static analysis that determines whether or not a program is
structurally correct [1,13]. The following code is not structurally correct:

if (Ti.thisProc() % 2 == 0)
Ti.barrier(); // even ID threads

else
; // odd ID threads

Titanium provides a stronger guarantee of textually aligned barriers: not only do all
threads execute the same number of barriers, they also execute the same textual

Concurrency Analysis for Parallel Programs with Textually Aligned Barriers 187

sequence of barriers. Thus, both the above structurally incorrect code and the following
structurally correct code are erroneous in Titanium:

if (Ti.thisProc() % 2 == 0)
Ti.barrier(); // even ID threads

else
Ti.barrier(); // odd ID threads

The fact that Titanium barriers are textually aligned is central to our concurrency analy-
sis: not only does it guarantee that code before and after each barrier cannot run concur-
rently, it also guarantees that code immediately following two different barriers cannot
execute simultaneously.

Titanium’s type system ensures that barriers are textually aligned by making use of
single-valued expressions [1]. Such expressions provably evaluate to the same value for
all threads1, and include the following:

– compile-time constants
– program arguments
– certain library functions, such as Ti.numProcs(), which returns the total num-

ber of threads
– expressions that are combinations of the above

Other expressions such as those involving references and method calls can also be
single-valued, the details of which can be found in the Titanium reference manual [14].

Barrier alignment can only be violated if different threads take different program
paths, and any of those paths contain a barrier. Titanium statically prevents this by
requiring path forks, including conditionals, loops, and dynamically dispatched method
calls, to be conditioned on single-valued expressions if any of the branches contains
a barrier. This guarantees that all threads take the same branch and therefore execute
the same barriers. The examples above are erroneous: they each have branches with
barriers but Ti.thisProc() % 2 == 0 is not single-valued, so not all threads
take the same branch. If the condition was replaced by the single-valued expression
Ti.numProcs() % 2 == 0, then both examples would become legal.

In addition to the existing barriers in a program, our concurrency analysis also ex-
ploits single-valued expressions to determine which conditional branches can run con-
currently. The analysis does not insert any new barriers, and it ignores the lock-based
synchronized construct of Java, which is rarely used in Titanium programs.

2.2 Intermediate Language

In this paper, we will operate on an intermediate language that allows the full semantics
of Titanium but is simpler to analyze. In particular, we rewrite dynamic dispatches,
switch statements, and conditional expressions (?/:) as conditional if ... else
... statements.

1 In the case of single-valued expressions of reference type, the result is not the same but is
replicated and coherent. See the Titanium language reference for details [14].

188 A. Kamil and K. Yelick

Fig. 1. Construction of the interprocedural control flow graph of a program from the individual
method flow graphs

2.3 Control Flow Graphs

The algorithms in this paper are whole-program analyses that operate over a control
flow graph that represents the flow of execution in a program. Nodes in the graph corre-
spond to expressions in the program, and a directed edge from one expression to another
occurs when the target can execute immediately after the source.

The Titanium compiler produces an intraprocedural control flow graph for each
method in a program. We modify each of these graphs to model transfer of control
between methods by splitting each method invocation node into a call node and a re-
turn node. The incoming edges of the original node are attached to the call node, and
the outgoing edges to the return node. An edge is added from the call node to the target
method’s entry node, and from the target method’s exit node to the return node. Figure 1
illustrates this procedure. We also add edges to model interprocedural control flow due
to exceptions.

3 Concurrency Analysis

Titanium’s structural correctness allows us to develop a simple graph-based algorithm
for computing concurrent expressions in a program. The algorithm specifically takes
advantage of Titanium’s textually aligned barriers and single-valued expressions. The
following definitions are useful in developing the analysis:

Definition 3.1 (Single Conditional). A single conditional is a conditional guarded by
a single-valued expression.

Since a single-valued expression provably evaluates to the same result on all threads,
every thread is guaranteed to take the same branch of a single conditional. A single
conditional thus may contain a barrier, since all threads are guaranteed to execute it,
while a non-single conditional may not.

Definition 3.2 (Cross Edge). A cross edge in a control flow graph connects the end of
the first branch of a conditional to the start of the second branch.

Concurrency Analysis for Parallel Programs with Textually Aligned Barriers 189

Algorithm 3.3.
ConcurrencyGraph(P : program) : graph

1. Let G be the interprocedural control flow graph of P , as described in §2.3.
2. For each conditional C in P {
3. If C is not a single conditional:
4. Add a cross edge for C in G.
5. } // End for (2).
6. For each barrier B in P :
7. Delete B from G.
8. Return G.

Fig. 2. Algorithm 3.3 computes the concurrency graph of a program by inserting cross edges into
its control flow graph and deleting all barriers

Cross edges do not provide any control flow information, since the second branch of
a conditional does not execute immediately after the first branch. They are, however,
useful for determining concurrency information, as shown in Theorem 3.4.

In order to determine the set of concurrent expressions in a program, we construct a
concurrency graph G of the program P by inserting cross edges in the interprocedural
control flow graph of P for every non-single conditional and deleting all barriers and
their adjacent edges. Algorithm 3.3 in Figure 2 illustrates this procedure. The algorithm
runs in time O(n), where n is the number of statements and expressions in P , since
it takes O(n) time to construct the control flow graph of a program. The control flow
graph is very sparse, containing only O(n) edges, since the number of expressions that
can execute immediately after a particular expression e is constant. Since at most n
cross edges are added to the control flow graph and at most O(n) barriers and adjacent
edges are deleted, the resulting graph G is also of size O(n).

The concurrency graph G allows us to determine the set of concurrent expressions
using the following theorem:

Theorem 3.4. Two expressions a and b in P can run concurrently only if one is reach-
able from the other in the concurrency graph G.

In order to prove Theorem 3.4, we require the following definition:

Definition 3.5 (Code Phase). For each barrier in a program, its code phase is the set of
statements that can execute after the barrier but before hitting another barrier, including
itself2.

Figure 3 shows the code phases of an example program. Since each code phase is pre-
ceded by a barrier, and each thread must execute the same sequence of barriers, each
thread executes the same sequence of code phases. This implies the following:

Lemma 3.6. Two expressions a and b in P can run concurrently only if they are in the
same code phase.

Using Lemma 3.6, we can prove Theorem 3.4. Details are in [17].
2 A statement can be in multiple code phases, as is the case for a statement in a method called

from multiple contexts.

190 A. Kamil and K. Yelick

B1: Ti.barrier();
L1: int i = 0;
L2: int j = 1;
L3: if (Ti.thisProc() < 5)
L4: j += Ti.thisProc();
L5: if (Ti.numProcs() >= 1) {
L6: i = Ti.numProcs();
B2: Ti.barrier();
L7: j += i;
L8: } else { j += 1; }
L9: i = broadcast j from 0;
B3: Ti.barrier();
LA: j += i;

Code Phase Statements
B1 L1, L2, L3, L4, L5, L6, L8, L9
B2 L7, L9
B3 LA

Fig. 3. The set of code phases for an example program

Algorithm 3.7.
ConcurrentExpressions(P : program) : set

1. Let concur ← ∅.
2. Let G ← ConcurrencyGraph(P) [Algorithm 3.3].
3. For each access a in P {
4. Do a depth first search on G starting from a.
5. For each expression b reached in the search:
6. Insert (a, b) into concur.
7. } // End for (3).
8. Return concur.

Fig. 4. Algorithm 3.7 computes the set of all concurrent expressions in a given program

By Theorem 3.4, in order to determine the set of all concurrent expressions, it suffices
to compute the pairs of expressions in which one is reachable from the other in the
concurrency graph G. This can be done efficiently by performing a depth first search
from each expression in G. Algorithm 3.7 in Figure 4 does exactly this. The running
time of the algorithm is dominated by the depth first searches, each of which takes O(n)
time, since G has at most n nodes and O(n) edges. At most n searches occur, so the
algorithm runs in time O(n2).

4 Feasible Paths

Algorithm 3.7 computes an over-approximation of the set of concurrent expressions.
In particular, due to the nature of the interprocedural control flow graph constructed in
§2.3, the depth first searches in Algorithm 3.7 can follow infeasible paths, paths that
cannot structurally occur in practice. Figure 5 illustrates such a path, in which a method
is entered from one context and exits into another.

In order to prevent infeasible paths, we follow the procedure outlined by Reps [21].
We label each method call edge and corresponding return edge with matching paren-
theses, as shown in Figure 5. Each path then corresponds to a string of parentheses

Concurrency Analysis for Parallel Programs with Textually Aligned Barriers 191

Fig. 5. Interprocedural control flow graph for two calls to the same function. The dashed path is
infeasible, since foo() returns to a different context than the one from which it was called. The
infeasible path corresponds to the unbalanced string “[}”.

Fig. 6. Feasible paths that correspond to unbalanced strings. The dashed path on the left corre-
sponds to a method call that has not yet returned, and the one on the right corresponds to a path
that starts in a method call that returns.

composed of the labels of the edges in the path. A path is then infeasible, if in its corre-
sponding string, an open parenthesis is closed by a non-matching parenthesis.

It is not necessary that a path’s string be balanced in order for it to be feasible. In
particular, two types of unbalanced strings correspond to feasible paths:

– A path with unclosed parentheses. Such a path corresponds to method calls that
have not yet finished, as shown in the left side of Figure 6.

– A path with closing parentheses that follow a balanced prefix. Such a string is
allowed since a path may start in the middle of a method call and corresponds to
that method call returning, as shown in the right side of Figure 6.

Determining the set of nodes reachable3 using a feasible path is the equivalent of
performing context-free language (CFL) reachability on a graph using the grammar
for each pair of matching parentheses (α and)α. CFL reachability can be performed

3 In this section, we make no distinction between reachable and reachable without hitting a
barrier. The latter reduces to the former if all barrier nodes are removed from each control
flow graph.

192 A. Kamil and K. Yelick

in cubic time for an arbitrary grammar [21]. Algorithm 3.7 takes only quadratic time,
however, and we desire a feasibility algorithm that is also quadratic. In order to accom-
plish this, we develop a specialized algorithm that modifies the concurrency graph G
and the standard depth first search instead of using generic CFL reachability.

At first glance, it appears that a method must be revisited in every possible context
in which it is called, since the context determines which open parentheses have been
seen and therefore which paths can be followed. However, as shown in the companion
report, the set of expressions that can be executed in a method call is the same regardless
of context [17]. This implies that the set of nodes reachable along a feasible path in a
program’s control flow graph is also independent of the context of a method call, with
two exceptions:

– If a method call can complete, then the nodes after the call are reachable from a
point before the call.

– If no context exists, such as in a search that starts from a point within a method f ,
then all nodes that are reachable following any method call to f are reachable.

The second case above can easily be handled by visiting a node twice: once in some
context, and again in no context. The first case, however, requires adding bypass edges
to the control flow graph.

4.1 Bypass Edges

Recall that the interprocedural control flow graph was constructed by splitting a method
call into a call node and a return node. An edge was then added from the call node to
the target method’s entry, and another from the target’s exit to the return node. If the
target’s exit is reachable (or for our purposes, reachable without hitting a barrier) from
the target’s entry, then adding a bypass edge that connects the call node directly to the
return node does not affect the transitive closure of the graph.

Computing whether or not a method’s exit is reachable from its entry is not trivial,
since it requires knowing whether or not the exits of each of the methods that it calls
are reachable from their entries. Algorithm 4.1 in Figure 7 computes this by continually
iterating over all the methods in a program, marking those that can complete through an
execution path that only calls previously marked methods, until no more methods can
be marked. In the first iteration of loop 3, it only marks those methods that can complete
without making any calls, or equivalently, those methods that can complete using only
a single stack frame. In the second iteration, it only marks those that can complete by
only calling methods that don’t need to make any calls, or equivalently, those methods
that can complete using only two stack frames. In general, a method is marked in the
ith iteration if it can complete using i, and no less than i, stack frames4. As shown in
the companion report, Algorithm 4.1 marks all methods that can complete using any
number of stack frames [17].

4 Note that just because a method only requires a fixed number of stack frames doesn’t mean
that it can complete. A method may contain an infinite loop, preventing it from completing at
all, or barriers along all paths through it, preventing it from completing without executing a
barrier. Algorithm 4.1 does not mark such methods.

Concurrency Analysis for Parallel Programs with Textually Aligned Barriers 193

Algorithm 4.1.
ComputeBypasses(P : program, G1, . . . , Gk : intraprocedural flow graph) : set

1. Let change ← true.
2. Let marked ← ∅.
3. While change = true {
4. change ← false.
5. Set visited(u) ← false for all nodes u in G1, . . . , Gk.
6. For each method f in P {
7. If f �∈ marked and CanReach(entry(f), exit(f), Gf , marked) {
8. marked ← marked ∪ {f}.
9. change ← true.

10. } // End if (7).
11. } // End for (6).
12. } // End while (3).
13. Return marked.

14. Procedure CanReach(u, v : vertex, G : graph, marked : method set) : boolean:
15. Set visited(u) ← true.
16. If u = v:
17. Return true.
18. Else If u is a method call to function g and g �∈ marked:
19. Return false.
20. For each edge (u, w) ∈ G {
21. If visited(w) = false and CanReach(w, v, G, marked):
22. Return true.
23. } // End for (20).
24. Return false.

Fig. 7. Algorithm 4.1 uses each method’s intraprocedural control flow graph (Gi) to determine if
its exit is reachable from its entry

Algorithm 4.1 requires quadratic time to complete in the worst case. Each iteration of
loop 3 visits at most n nodes. Only k iterations are necessary, where k is the number of
methods in the program, since at least one method is marked in all but the last iteration
of the loop. The total running time is thus O(kn) in the worst case. In practice, only a
small number of iterations are necessary5, and the running time is closer to O(n).

After computing the set of methods that can complete, it is straightforward to add
bypass edges to the concurrency graph G: for each method call c, if the target of c can
complete, add an edge from c to its corresponding method return r. This can be done in
time O(n).

4.2 Feasible Search

Once bypass edges have been added to the graph G, a modified depth first search can be
used to find feasible paths. A stack of open but not yet closed parenthesis symbols must

5 Even on the largest example we tried (>45,000 lines of user and library code, 1226 methods),
Algorithm 4.1 required only five iterations to converge.

194 A. Kamil and K. Yelick

Algorithm 4.2.
FeasibleSearch(v : vertex, G : graph) : set

1. Let visited ← ∅.
2. Let s ← ∅.
3. Call F easibleDFS(v, G, s, visited).
4. Return visited.

5. Procedure F easibleDFS(v : vertex, G : graph, s : stack, visited : set):
6. If s = ∅ {
7. If no context mark(v) return.
8. Set no context mark(v) ← true.
9. } // End if (6).

10. Else {
11. If context mark(v) return.
12. Set context mark(v) ← true.
13. } // End else (10).
14. visited ← visited ∪ {v}
15. For each edge (v, u) ∈ G {
16. Let s′ ← s.
17. If label(v, u) is a close symbol and s′ �= ∅ {
18. Let o ← pop(s′).
19. If label(v, u) does not match o:
20. Skip to next iteration of 15.
21. } // End if (17).
22. Else if label(v, u) is an open symbol:
23. Push label(v, u) onto s′.
24. Call F easibleDFS(u, G, s).
25. } // End for (15).

Fig. 8. Algorithm 4.2 computes the set of nodes reachable from the start node through a feasible
path

be maintained, and an encountered closing symbol must match the top of this stack, it
the stack is nonempty. In addition, as noted above, the modified search must visit each
node twice, once in no context and once in some context. Algorithm 4.2 in Figure 8
formalizes this procedure, and a proof of correctness is provided in the companion
report [17].

Since G contains bypass edges and Algorithm 4.2 visits each node both in some
context and in no context, it finds all nodes that can be reachable in a feasible path from
the source. Since it visits each node at most twice, it runs in time O(n).

4.3 Feasible Concurrent Expressions

Putting it all together, we can now modify Algorithm 3.7 to find only concurrent ex-
pressions that are feasible. As in Algorithm 3.7, the concurrency graph G must first be
constructed. Then the intraprocedural flow graphs of each method must be constructed,
Algorithm 4.1 used to find the methods that can complete without hitting a barrier, and

Concurrency Analysis for Parallel Programs with Textually Aligned Barriers 195

Algorithm 4.3.
FeasibleConcurrentExpressions(P : program) : set

1. Let G ← ConcurrencyGraph(P) [Algorithm 3.3].
2. For each method f in P {
3. Construct the intraprocedural flow graph Gf of f .
4. For each barrier B in f {
5. Delete B from Gf .
6. } // End for (4).
7. } // End for (2).
8. Let bypass ← ComputeBypasses(P , G1, . . . , Gk) [Algorithm 4.1].
9. For each method call and return pair c, r in P {

10. If the target f of c, r is in bypass:
11. Add an edge (c, r) to G.
12. } // End for (9).
13. For each expression a in P {
14. Let visited ← FeasibleSearch(a, G) [Algorithm 4.2].
15. For each expression b ∈ visited:
16. Insert (a, b) into concur.
17. } // End for (13).
18. Return concur.

Fig. 9. Algorithm 4.3 computes the set of all concurrent expressions that can feasibly occur in a
given program

the bypass edges inserted into G. Then Algorithm 4.2 must be used to perform the
searches instead of a vanilla depth first search. Algorithm 4.3 in Figure 9 illustrates this
procedure.

The setup of Algorithm 4.3 calls Algorithm 4.1, so it takes O(kn) time. The searches
each take time O(n), and at most n are done, so the total running time is O(kn+n2) =
O(n2), quadratic as opposed to the cubic running time of generic CFL reachability.

5 Evaluation

Concurrency information is useful for many program analyses and optimizations. In this
paper, we focus on one in particular, static race detection, to evaluate our concurrency
analysis. Results for how enforcement of a sequentially consistent memory model can
benefit from the analysis are available in a companion report [17].

5.1 Benchmarks

We use the following set of benchmarks for our evaluation:

– gas [5] (8841 lines): Hyperbolic solver for a gas dynamics problem in computa-
tional fluid dynamics.

– gsrb (1090 lines): Nearest neighbor computation on a regular mesh using red-
black Gauss-Seidel operator. This computational kernel is often used within multi-
grid algorithms or other solvers.

196 A. Kamil and K. Yelick

Number of Data Races Detected

0

0.2

0.4

0.6

0.8

1

1.2

gas gsrb lu-fact pps spmv
Benchmark

F
ra

c
ti

o
n

 C
o

m
p

a
re

d
 t

o
 b

as
e

base concur feasible

Fig. 10. Fraction of data races detected at compile-time compared to base (lower is better)

– lu-fact (420 lines): Dense linear algebra.
– pps [4] (3673 lines): Parallel Poisson equation solver using the domain decompo-

sition method in an unbounded domain.
– spmv (1493 lines): Sparse matrix-vector multiply.

The line counts for the above benchmarks underestimate the amount of code actually
analyzed, since all reachable code in the 37,000 line Titanium and Java 1.0 libraries is
also processed.

5.2 Static Race Detection

In parallel programs, a data race occurs when multiple threads access the same memory
location, at least one of the accesses is a write, and the accesses can occur concurrently
[19]. Data races often correspond to programming errors and potentially result in non-
deterministic runtime behavior. Concurrency analysis can be used to statically detect
races at compile-time [11,12], particularly when combined with alias analysis [2].

Using our concurrency analysis and a thread-aware alias analysis, we built a compile-
time data race analysis into the Titanium compiler. Static information is generally not
enough to determine with certainty that two memory accesses compose a race, so nearly
all reported races are false positives. (The correctness of the alias and concurrency anal-
yses ensure that no false negatives occur.) We therefore consider a race detector that
reports the fewest races to be the most effective.

Figure 10 compares the effectiveness of three levels of race detection:

– base: only alias analysis is used to detect potential races
– concur: our basic concurrency analysis (§3) is used to eliminate non-concurrent

races
– feasible: our feasible paths concurrency analysis (§4) is used to eliminate non-

concurrent races

Concurrency Analysis for Parallel Programs with Textually Aligned Barriers 197

The results show that the addition of concurrency analysis can eliminate most of the
races reported by our detector. Two of the benchmarks do not benefit at all from the
basic concurrency analysis, but all benefit considerably from the feasible paths analysis.
The concurrency analysis should be of significant help to users of our race detector by
weeding out many false positives.

6 Related Work

An extensive amount of work on concurrency analysis has been done for both languages
with dynamic parallelism and SPMD programs. Duesterwald and Soffa presented a data
flow analysis to compute the happened-before and happened-after relation for program
statements [11]. Their analysis is for detecting races in programs based on the Ada ren-
dezvous model [23]. Masticola and Ryder developed a more precise non-concurrency
analysis for the same set of programs [18]. The results are used for debugging and op-
timization. Jeremiassen and Eggers developed a static analysis for barrier synchroniza-
tion for SPMD programs with non-textual barriers and used the information to reduce
false sharing on cache-coherent machines [15]. Their analysis doesn’t take advantage
of barrier alignment or single-valued expressions, so it isn’t as precise as ours.

Others besides Duesterwald and Soffa and Masticola and Ryder have developed tools
for race detection. Flanagan and Freund presented a static race detection tool for Java
based on type inference and checking [12]. Boyapati and Rinard developed a type sys-
tem for Java that guarantees that a program is race-free [7]. Tools such as Eraser [22]
and TRaDe [9] detect races at runtime instead of statically. Other static and dynamic
race detection schemes have also been developed [24,3,10,8,20].

Our work differs from previous work in that we develop an analysis specifically for
SPMD programs with textual barriers. This allows our analysis to be both sound and
precise. In addition, our analysis takes advantage of single-valued expressions, which
no previous analysis does.

We presented a more abstract version of our concurrency analysis and its application
to sequential consistency in a previous paper [16]. That analysis was slightly less pre-
cise, followed infeasible program paths, and would have been much more difficult to
modify to ignore them.

7 Conclusion

In this paper, we made several contributions to the foundation of parallel program anal-
ysis, specifically the concurrency analysis problem of determining whether two state-
ments can execute concurrently. We introduced a graph representation of parallel pro-
grams with textually aligned barriers and two different concurrency analyses. The first
was a basic concurrency analysis that uses barriers and single-valued expressions, and
the second a more complex one that only explores those execution paths across function
calls that can occur in practice. We experimented with several benchmark programs us-
ing a data race detector built on our concurrency analysis. Our experiments showed that
the analyses were able to eliminate a large fraction of the false positives reported in all

198 A. Kamil and K. Yelick

programs. We believe the efficiency and precision of our concurrency analysis make it
a very useful tool in analyzing parallel programs with textually aligned barriers.

In addition to aiding in optimizations and helping to detect parallel programming
errors, the ability to perform such analyses may affect a language designer’s choice of
programming model semantics. Simpler programming models, such as those that pro-
hibit races, use synchronous communication, or ensure a strong memory model, may
be feasible if accurate analyses can be developed to enable optimizations while ensur-
ing a stronger semantics. Our analysis is one piece of a larger picture on the kinds of
parallelism constructs and synchronization operations for which accurate concurrency
analyses can be developed.

Acknowledgments

We would like to thank Jimmy Su, who helped us a great deal both in developing the
concurrency algorithms and in implementing them. We would also like to thank the
Titanium group for their valuable support.

This work was supported in part by the Department of Energy under contracts DE-
FC03-01ER25509 and DE-AC02-05CH11231, by the California State Micro program,
by Sun Microsystems, and by Microsoft.

References

1. A. Aiken and D. Gay. Barrier inference. In Principles of Programming Languages, San
Diego, California, January 1998.

2. L. O. Andersen. Program Analysis and Specialization for the C Programming Language.
PhD thesis, DIKU, University of Copenhagen, May 1994.

3. D. F. Bacon, R. E. Strom, and A. Tarafdar. Guava: a dialect of Java without data races.
In OOPSLA ’00: Proceedings of the 15th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 382–400, New York, NY, USA,
2000. ACM Press.

4. G. T. Balls. A Finite Difference Domain Decomposition Method Using Local Corrections
for the Solution of Poisson’s Equation. PhD thesis, Department of Mechanical Engineering,
University of California at Berkeley, 1999.

5. M. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics. Journal
of Computational Physics, 82(1):64–84, May 1989. Lawrence Livermore Laboratory Report
No. UCRL-97196.

6. D. Bonachea. GASNet specification, v1.1. Technical Report UCB/CSD-02-1207, University
of California, Berkeley, November 2002.

7. C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming: preventing data
races and deadlocks. In OOPSLA ’02: Proceedings of the 17th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, pages 211–230, New
York, NY, USA, 2002. ACM Press.

8. G.-I. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, and A. F. Stark. Detecting data races in
Cilk programs that use locks. In SPAA ’98: Proceedings of the tenth annual ACM symposium
on Parallel algorithms and architectures, pages 298–309, New York, NY, USA, 1998. ACM
Press.

Concurrency Analysis for Parallel Programs with Textually Aligned Barriers 199

9. M. Christiaens and K. De Bosschere. TRaDe, a topological approach to on-the-fly race detec-
tion in Java programs. In Proceedings of the Java Virtual Machine Research and Technology
Symposium (JVM ’01), April 2001.

10. A. Dinning and E. Schonberg. Detecting access anomalies in programs with critical sections.
In PADD ’91: Proceedings of the 1991 ACM/ONR workshop on Parallel and distributed
debugging, pages 85–96, New York, NY, USA, 1991. ACM Press.

11. E. Duesterwald and M. Soffa. Concurrency analysis in the presence of procedures using a
data-flow framework. In Symposium on Testing, analysis, and verification, Victoria, British
Columbia, October 1991.

12. C. Flanagan and S. N. Freund. Type-based race detection for Java. In PLDI ’00: Proceedings
of the ACM SIGPLAN 2000 conference on Programming language design and implementa-
tion, pages 219–232, New York, NY, USA, 2000. ACM Press.

13. D. Gay. Barrier Inference. PhD thesis, University of California, Berkeley, May 1998.
14. P. N. Hilfinger, D. Bonachea, K. Datta, D. Gay, S. Graham, B. Liblit, G. Pike, J. Su, and

K. Yelick. Titanium language reference manual, version 2.19. Technical Report UCB/EECS-
2005-15, University of California, Berkeley, November 2005.

15. T. Jeremiassen and S. Eggers. Static analysis of barrier synchronization in explicitly parallel
programs. In Parallel Architectures and Compilation Techniques, Montreal, Canada, August
1994.

16. A. Kamil, J. Su., and K. Yelick. Making sequential consistency practical in Titanium. In
Supercomputing 2005, November 2005. To appear.

17. A. Kamil and K. Yelick. Concurrency analysis for parallel programs with
textually aligned barriers. Technical Report UCB/EECS-2006-41, EECS De-
partment, University of California, Berkeley, April 18 2006. Available at
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-41.html.

18. S. Masticola and B. Ryder. Non-concurrency analysis. In Principles and practice of parallel
programming, San Diego, California, May 1993.

19. R. H. B. Netzer and B. P. Miller. What are race conditions?: Some issues and formalizations.
ACM Lett. Program. Lang. Syst., 1(1):74–88, 1992.

20. R. O’Callahan and J.-D. Choi. Hybrid dynamic data race detection. In PPoPP ’03: Proceed-
ings of the ninth ACM SIGPLAN symposium on Principles and practice of parallel program-
ming, pages 167–178, New York, NY, USA, 2003. ACM Press.

21. T. Reps. Program analysis via graph reachability. In ILPS ’97: Proceedings of the 1997
international symposium on Logic programming, pages 5–19, Cambridge, MA, USA, 1997.
MIT Press.

22. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: a dynamic data
race detector for multithreaded programs. ACM Trans. Comput. Syst., 15(4):391–411, 1997.

23. United States Department of Defense. Reference manual for the Ada programming language.
Technical Report ANSI/MIL-STD-1815A, Washington, D.C., January 1983.

24. C. von Praun and T. R. Gross. Static conflict analysis for multi-threaded object-oriented pro-
grams. In PLDI ’03: Proceedings of the ACM SIGPLAN 2003 conference on Programming
language design and implementation, pages 115–128, New York, NY, USA, 2003. ACM
Press.

25. K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P. Hilfinger,
S. Graham, D. Gay, P. Colella, and A. Aiken. Titanium: A high-performance Java dialect. In
Workshop on Java for High-Performance Network Computing, Stanford, California, Febru-
ary 1998.

Titanium Performance and Potential:
An NPB Experimental Study

Kaushik Datta1, Dan Bonachea1, and Katherine Yelick1,2

1 Computer Science Division, University of California at Berkeley
2 Lawrence Berkeley National Laboratory

{kdatta,bonachea,yelick}@cs.berkeley.edu

Abstract. Titanium is an explicitly parallel dialect of JavaTM designed
for high-performance scientific programming. We present an overview
of the language features and demonstrate their use in the context of the
NAS Parallel Benchmarks, a standard suite of common scientific kernels.
We argue that parallel languages like Titanium provide greater expres-
sive power than conventional approaches, enabling much more concise
and expressive code that minimizes time to solution. Moreover, we have
found that the Titanium implementations of three of the NAS Parallel
Benchmarks can match or even exceed the performance of the standard
Fortran/MPI implementations at realistic problem sizes and processor
scales, while still using far cleaner, shorter and more maintainable code.

1 Introduction

The tension between programmability and performance in software development
is nowhere as acute as in the domain of high end parallel computing. The entire
motivation for parallelism is high performance, so programmers are reluctant to
use languages that give control to compilers or runtime systems. Yet the diffi-
culty of programming large-scale parallel machines is notorious– it limits their
marketability, hinders exploration of advanced algorithms, and restricts the set
of available programmers. The Titanium language was designed to address these
issues, providing programmers with high level program structuring techniques,
yet giving them control over key features of parallel performance: data layout,
load balancing, identification of parallelism, and synchronization.

Modern parallel architectures can be roughly divided into two categories based
on the programming interface exposed by the hardware: shared memory systems
where parallel threads of control all share a single logical memory space (and
communication is achieved through simple loads and stores), and distributed
memory systems where some (but not necessarily all) threads of control have
disjoint memory spaces and communicate through explicit communication op-
erations (e.g. message passing). Experience has shown that the shared memory
model is often easier to program, but it presents serious scalability challenges to
hardware designers. Thus, with a few notable exceptions, distributed memory
machines currently dominate the high-end supercomputing market.

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 200–214, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Titanium Performance and Potential: An NPB Experimental Study 201

The Partitioned Global Address Space (PGAS) model seeks to combine the
advantages of both shared and distributed memory. It offers the programma-
bility advantages of a globally shared address space, but is carefully designed
to allow efficient implementation on distributed-memory architectures. Tita-
nium [1], UPC [2] and Co-array Fortran [3] are examples of modern programming
languages that provide a global address space memory model, along with an
explicitly parallel SPMD control model. PGAS languages typically make the
distinction between local and remote memory references explicitly visible to en-
courage programmers to consider the locality properties of their program, which
can have a noticeable performance impact on distributed memory hardware.

A major focus of this paper is to showcase the performance and produc-
tivity benefits of the Titanium programming language in the context of the
NAS Parallel Benchmarks [4], a set of benchmarks representative of common
scientific kernels. We demonstrate by example that scientific programming in
PGAS languages like Titanium can provide major productivity improvements
over programming with serial languages augmented with a message-passing li-
brary. Furthermore, we show evidence that programming models with one-sided
communication (such as that used in PGAS languages) can achieve application
performance comparable to or better than similar codes written using two-sided
message passing, even on distributed memory platforms.

2 Titanium Overview

Titanium [1] is an explicitly parallel, SPMD dialect of JavaTM that provides a
Partitioned Global Address Space (PGAS) memory model. Titanium supports
the creation of complicated data structures and abstractions using the object-
oriented class mechanism of Java, augmented with a global address space to
allow for the creation of large, distributed shared structures. As Titanium is
essentially a superset of Java [5], it inherits all the expressiveness, usability and
safety properties of that language.

Titanium notably adds a number of features to standard Java that are de-
signed to support high-performance computing. They include: flexible and ef-
ficient multi-dimensional arrays, built-in support for multi-dimensional domain
calculus, locality and sharing reference qualifiers, explicitly unordered loop iter-
ation, user-defined immutable classes, operator-overloading, and cross-language
support. These features are described in detail later in this paper, as well as in
the Titanium language reference [6]. Titanium also adds several other features
to Java, including: C++-style templates, user-controlled memory management
with explicit memory zones, compile-time checking of barrier synchronization,
and library support for synchronization and collective communication.

The current Titanium compiler implementation [7] uses a static compilation
strategy - programs are translated to intermediate C code and then compiled to
machine code using a vendor-provided C compiler. They are then linked to na-
tive runtime libraries which implement communication, garbage collection, and
other system-level activities. There is no JVM, no JIT, and no dynamic class

202 K. Datta, D. Bonachea, and K. Yelick

loading. Thus, Titanium is extremely portable, and Titanium programs can
basically be run unmodified on uniprocessors, shared memory machines and dis-
tributed memory machines. The current implementation runs on a large range of
platforms, including uniprocessors, shared memory multiprocessors, distributed-
memory clusters of uniprocessors or SMPs, and a number of specific supercom-
puter architectures (Cray X1/T3E, IBM SP, SGI Altix/Origin).

3 The NAS Parallel Benchmarks

The NAS Parallel Benchmarks consist of a set of kernel computations and larger
pseudo-applications taken primarily from computational fluid dynamics [4]. They
reflect several different types of communication and computation patterns: near-
est neighbor computation on a 3-D mesh (MG), FFTs with an all-to-all transpose
on a 3-D mesh (FT), and 2-D sparse matrices with indirect array accesses (CG).
However, they do not reflect features of some full applications, such as adaptivity,
multiple physical models, or dynamic load balancing. Titanium has been demon-
strated on these more complete and more general application problems [8, 9].

The original reference implementation of the NAS Parallel Benchmarks is
written in serial Fortran with MPI [10]. We use this implementation as the base-
line for comparison in this study. MPI represents both the predominant paradigm
for large-scale parallel programming and the target of much concern over pro-
ductivity, since it often requires tedious packing of user level data structures into
aggregated messages to achieve acceptable performance.

4 Titanium Features in the Multigrid (MG) Benchmark

4.1 Titanium Arrays

The NAS benchmarks, like many scientific codes, rely heavily on arrays for the
main data structures. Titanium extends Java with a powerful multidimensional
array abstraction that provides the same kinds of subarray operations available
in Fortran 90. Titanium arrays are indexed by points and built on sets of points,
called domains. Points and domains are first-class entities in Titanium – they can
be stored in data structures, specified as literals, passed as values to methods and
manipulated using their own set of operations. For example, the class A version
of the MG benchmark requires a 2563 grid with a one-deep layer of surrounding
ghost cells, resulting in a 2583 grid. Such a grid can be constructed with the
following declaration:

double [3d] gridA = new double [[-1,-1,-1]:[256,256,256]];

The 3-D Titanium array gridA has a rectangular index set that consists of all
points [i, j, k] with integer coordinates such that −1 ≤ i, j, k ≤ 256. Titanium
calls such an index set a rectangular domain with Titanium type RectDomain,
since all the points lie within a rectangular box. Titanium arrays can only be
built over RectDomains (i.e. rectangular sets of points), but they may start at
an arbitrary base point, as the example with a [−1,−1,−1] base shows. In this

Titanium Performance and Potential: An NPB Experimental Study 203

example the grid was designed to have space for ghost regions, which are all the
points that have either -1 or 256 as a coordinate.

The language also includes powerful array operators that can be used to create
alternative views of the data in a given array, without an implied copy of the
data. For example, the statement:

double [3d] gridAIn = gridA.shrink(1);

creates a new array variable gridAIn which shares all of its elements with gridA
that are not ghost cells. This domain is computed by shrinking the index set of
gridA by one element on all sides. gridAIn can subsequently be used to reference
the non-ghost elements of gridA. The same operation can also be accomplished
using the restrict method, which provides more generality by allowing the in-
dex set of the new array view to include only the elements referenced by a given
RectDomain expression, e.g.: gridA.restrict(gridA.domain().shrink(1)), or
a using RectDomain literal: gridA.restrict([[0,0,0]:[255,255,255]]).

Titanium also adds a looping construct, foreach, specifically designed for
iterating over the points of a domain. More will be said about foreach in sec-
tion 5.1, but here we demonstrate the use of foreach in a simple example, where
the point p plays the role of a loop index variable:

foreach (p in gridAIn.domain()) {
gridB[p] = applyStencil(gridA, p);

}

The applyStencil method may safely refer to elements that are one point away
from p, since the loop is over the interior of a larger array. Note that this one loop
concisely expresses iteration over multiple dimensions, corresponding to a multi-
level loop nest in other languages. A common class of loop bounds and indexing
errors is avoided by having the compiler and runtime system keep track of the
iteration boundaries for the multidimensional traversal.

4.2 Stencil Computations Using Point Literals

The stencil operation itself can be written easily using constant offsets. At this
point the code becomes dimension-specific, and we show the 2-D case with the
stencil application code shown in the loop body (rather than a separate method)
for illustration. Because points are first-class entities, we can use named con-
stants that are declared once and re-used throughout the stencil operations in
MG. Titanium supports both C-style preprocessor definitions and Java’s final
variable style constants. The following code applies a 5-point 2-D stencil to each
point p in gridAIn’s domain:

final Point<2> NORTH = [0,1], SOUTH = [0,-1],
EAST = [1,0], WEST = [-1,0];

foreach (p in gridAIn.domain()) {
gridB[p] = S0 * gridAIn[p] +

S1 * (gridAIn[p + NORTH] + gridAIn[p + SOUTH] +
gridAIn[p + EAST] + gridAIn[p + WEST]);

}

204 K. Datta, D. Bonachea, and K. Yelick

P0 P1 P2

myBlock myBlock myBlock

blocks blocks blocks

Fig. 1. Distributed data structure built using the exchange operation in MG

The full MG code used for benchmarking in section 7 includes a 27-point sten-
cil applied to 3-D arrays, and the Titanium code, like the Fortran code, uses a
manually-applied stencil optimization that eliminates redundant common subex-
pressions, a key optimization for the MG benchmark [11].

4.3 Distributed Arrays

Titanium supports the construction of distributed array data structures using
the global address space. Since distributed data structures are built from local
pieces rather than declared as a distributed type, Titanium is referred to as a “lo-
cal view” language [11]. The generality of Titanium’s distributed data structures
are not fully utilized in the NAS benchmarks, because the data structures are
simple distributed arrays, rather than trees, graphs or adaptive structures [8].
Nevertheless, the general pointer-based distribution mechanism combined with
the use of arbitrary base indices for arrays provides an elegant and powerful
mechanism for shared data.

The following code is a portion of the parallel Titanium code for the MG
benchmark. It is run on every processor and creates the blocks distributed
array that can access any processor’s portion of the grid.

Point<3> startCell = myBlockPos * numCellsPerBlockSide;
Point<3> endCell = startCell + (numCellsPerBlockSide - [1,1,1]);
double [3d] myBlock = new double[startCell:endCell];

// create distributed array "blocks"
double [1d] single [3d] blocks = new double
[0:(Ti.numProcs()-1)] single [3d];

blocks.exchange(myBlock);

First, each processor computes its start and end indices by performing point
arithmetic operations. These indices are used to create the local 3-D array
myBlock. Then, the pointer-based distributed data structure blocks is created
using the exchange collective. Figure 1 illustrates the resulting data structure
for a 3-processor execution.

4.4 Domain Calculus

A common operation in any grid-based code is updating ghost cells according
to values stored on other processors or boundary conditions in the problem

Titanium Performance and Potential: An NPB Experimental Study 205

statement. Ghost cells are a set of array elements surrounding the local grid
that cache elements of neighboring grids. Simple array operations can be used
to fill in these ghost regions, thereby migrating the tedious business of index
calculations and array offsets out of the application code and into the compiler
and runtime system. The entire Titanium code for updating one plane of ghost
cells is as follows:

// use interior as in stencil code
double [3d] myBlockIn = myBlock.shrink(1);
// update overlapping ghost cells of neighboring block
blocks[neighborPos].copy(myBlockIn);

The array method A.copy(B) copies only those elements in the intersection of
the index domains of the two array views in question. Using an aliased array for
the interior of the locally owned block (which is also used in the local stencil
computation), this code performs copy operations only on ghost values. Com-
munication will be required on some machines, but there is no coordination for
two-sided communication, and the copy from local to remote could easily be
replaced by a copy from remote to local by swapping the two arrays in the copy
expression. The use of the global indexing space in the grids of the distributed
data structure (made possible by the arbitrary index bounds feature of Titanium
arrays) makes it easy to select and copy the cells in the ghost region, and is also
used in the more general case of adaptive meshes.

Similar Titanium code is used for updating the other five planes of ghost cells,
except in the case of the boundaries at the end of the problem domain. The MG
benchmark requires periodic boundary conditions, and an additional array view
operation is needed before the copy to logically translate the array elements to
their corresponding elements across the domain:

// update neighbor’s overlapping ghost cells across periodic boundary
// by logically shifting the local grid to across the domain
blocks[neighborPos].copy(myBlockIn.translate([-256,0,0]));

The translate method translates the indices of the array view, creating a new
view where the relevant points overlap their corresponding non-ghost cells in the
subsequent copy.

4.5 Distinguishing Local Data

The blocks distributed array contains all the data necessary for the compu-
tation, but one of the pointers in that array references the local block which
will be used for the local stencil computations and ghost cell surface updates.
Titanium’s global address space model allows for fine-grained implicit access to
remote data, but well-tuned Titanium applications perform most of their crit-
ical path computation on data which is either local or has been copied into
local memory. This avoids fine-grained communication costs which can limit
scaling on distributed-memory systems with high interconnect latencies. To

206 K. Datta, D. Bonachea, and K. Yelick

ensure the compiler statically recognizes the local block of data as residing lo-
cally, we declare a reference to this thread’s data block using Titanium’s local
type qualifier.The original declaration of myBlock should have contained this
local qualifier. Below we show an example of a second declaration of such a
variable along with a type cast:

double [3d] local myBlock2 = (double [3d] local) blocks[Ti.thisProc()];

By casting the appropriate grid reference as local, the programmer is ask-
ing the compiler to use more efficient native pointers to reference this array,
potentially eliminating some unnecessary overheads in array access (for exam-
ple, dynamic checks of whether a given global array access references data that
actually resides locally and thus requires no communication). As with all type
conversion in Titanium and Java, the cast is dynamically checked to maintain
type safety and memory safety. However, the compiler provides a compilation
mode which statically disables all the type and bounds checks required by Java
semantics to save some computational overhead in production runs of debugged
code.

The Titanium optimizer also includes a Local Qualification Inference (LQI)
optimization that automatically propagates locality information gleaned from
allocation statements and programmer annotations in the application code using
a constraint-based inference [12]. LQI can effectively remove serial overheads
associated with global pointers, as evidenced by the 81% reduction in the running
time of MG on 8 processors of the G5/InfiniBand machine.

4.6 The MG Benchmark Implementation

99
45

162
46

203
84

121

552399

148

60

76

3

27

28
37

4114

0

100

200

300

400

500

600

700

800

900

Fort+MPI Titanium Fort+MPI Titanium Fort+MPI Titanium

P
ro

d
u

c
ti

v
e

 l
in

e
s

 o
f

c
o

d
e

Declarations

Communication

Computation

CG FT MG

Fig. 2. Timed region line count comparison

Figure 2 presents a line count
comparison for the Titanium
and Fortran/MPI implementa-
tions of the benchmarks, break-
ing down the code in the timed
region into categories of com-
munication, computation and
declarations. Comments, timer
code, and initialization code
outside the timed region are
omitted.

The figure shows that MG
communication and computa-
tion line counts heavily favor
Titanium. This discrepancy is
mainly due to Titanium’s do-
main calculus and array copy operations, and to a lesser extent, Titanium array
features for local stencil computations.

Titanium Performance and Potential: An NPB Experimental Study 207

5 Titanium Features in the Conjugate Gradient (CG)
Benchmark

5.1 Foreach Loops

As described in section 4.2, Titanium has an unordered loop construct called
foreach that simplifies iteration over multidimensional arrays and provides per-
formance benefits. If the order of loop execution is irrelevant to a computation,
then using a foreach loop to traverse the points in a RectDomain explicitly allows
the compiler to reorder loop iterations to maximize performance– for example
by performing automatic cache blocking and tiling optimizations [13, 14]. It
also simplifies bounds-checking elimination and array access strength-reduction
optimizations.

Another example of the foreach loop can be found in the sparse matrix-vector
multiplies performed in every iteration of the CG benchmark. The sparse matrix
below is stored in CSR (Compressed Sparse Row) format, so the rowRectDomains
array contains a RectDomain for each row of the matrix. Each RectDomain then
contains its row’s first and last indices for arrays colIdx and a.

// the following represents a matrix in CSR format
// all three arrays were previously populated
RectDomain<1> [1d] rowRectDomains; // RectDomains of row indices
int [1d] colIdx; // column index of nonzeros
double [1d] a; // nonzero matrix values
...
public void multiply(double [1d] sourceVec, double [1d] destVec) {

foreach (i in rowRectDomains.domain()) {
double sum = 0;
foreach (j in rowRectDomains[i])

sum += a[j] * sourceVec[colIdx[j]];
destVec[i] = sum;

} }

This calculation uses nested foreach loops that highlight the semantics of
foreach; namely, that the loop executes the iterations serially in an unspecified
order. The outer loop is expressed as a foreach because each of the dot products
operates on disjoint data, so ordering does not affect the result. The inner loop
is also a foreach, which indicates that the sum can be done in any order. This
allows the compiler to apply associativity and commutativity transformations
on the summation. Although these may affect the exact result, it does not affect
algorithm correctness for reasonable matrices.

5.2 The CG Benchmark Implementation

Figure 2 illustrates the line count comparison for the timed region of the
Fortran+MPI and Titanium implementations of the CG benchmark. In con-
trast with MG, the amount of code required to implement the timed region of
CG in Fortran+MPI is relatively modest, primarily owing to the fact that no

208 K. Datta, D. Bonachea, and K. Yelick

application-level packing is required or possible for this communication pattern.
Also, MPI’s message passing semantics implicitly provide pairwise synchroniza-
tion between message producers and consumers, so no additional code is required
to achieve that synchronization.

6 Titanium Features in the Fourier Transform (FT)
Benchmark

6.1 Immutables and Operator Overloading

The Titanium immutable class feature provides language support for defining
application-specific primitive types (often called “lightweight” or “value” classes)
- allowing the creation of user-defined unboxed objects, analogous to C structs.
These provide efficient support for extending the language with new types which
are manipulated and passed by value, avoiding pointer-chasing overheads which
would otherwise be associated with the use of tiny objects in Java.

One compelling example of the use of immutables is for defining a Complex
number class, which is used to represent the complex values in the FT bench-
mark. Figure 3 compares how one might define a Complex number class using
either standard Java Objects versus Titanium immutables.

Java Version

public class Complex {

private double real, imag;

public Complex(double r, double i)

{ real = r; imag = i; }

public Complex add(Complex c)

{ ... }

public Complex multiply(double d)

{ ... }

...

}

/* sample usage */

Complex c = new Complex(7.1, 4.3);

Complex c2 = c.add(c).multiply(14.7);

Titanium Version

public immutable class Complex {

public double real, imag;

public Complex(double r, double i)

{ real = r; imag = i; }

public Complex op+(Complex c)

{ ... }

public Complex op*(double d)

{ ... }

...

}

/* sample usage */

Complex c = new Complex(7.1, 4.3);

Complex c2 = (c + c) * 14.7;

Fig. 3. Complex numbers in Java and Titanium

In the Java version, each complex number is represented by an Object with
two fields corresponding to the real and imaginary components, and methods
provide access to the components and mathematical operations on Complex ob-
jects. If one were then to define an array of such Complex objects, the resulting
in-memory representation would be an array of pointers to tiny objects, each
containing the real and imaginary components for one complex number. This
representation is wasteful of storage space – imposing the overhead of storing a

Titanium Performance and Potential: An NPB Experimental Study 209

pointer and an Object header for each complex number, which can easily dou-
ble the required storage space for each such entity. More importantly for the
purposes of scientific computing, such a representation induces poor memory
locality and cache behavior for operations over large arrays of such objects. Fi-
nally, note the cumbersome method-call syntax which is required for performing
operations on the Complex Objects in standard Java.

Titanium allows easy resolution of these performance issues by adding the
immutable keyword to the class declaration, as shown in the figure. This one-
word change declares the Complex type to be a value class, which is passed
by value and stored as an unboxed type in the containing context (e.g. on the
stack, in an array, or as a field of a larger object). The figure illustrates the
framework for a Titanium-based implementation of Complex using immutables
and operator overloading, which mirrors the implementation provided in the
Titanium standard library (ti.lang.Complex) that is used in the FT benchmark.

Immutable types are not subclasses of java.lang.Object, and induce no over-
heads for pointers or Object headers. Also they are implicitly final, which means
they never pay execution-time overheads for dynamic method call dispatch. An
array of Complex immutables is represented in-memory as a single contiguous
piece of storage containing all the real and imaginary components, with no point-
ers or Object overheads. This representation is significantly more compact in
storage and efficient in runtime for computationally-intensive algorithms such as
FFT.

The figure also demonstrates the use of Titanium’s operator overloading,
which allows one to define methods corresponding to the syntactic arithmetic
operators applied to user classes (the feature is available for any class type, not
just immutables). This allows a more natural use of the + and ∗ operators to
perform arithmetic on the Complex instances, allowing the client of the Complex
class to handle the complex numbers as if they were built-in primitive types.

6.2 Cross-Language Calls

Titanium allows the programmer to make calls to kernels and libraries written
in other languages, enabling code reuse and mixed-language applications. This
feature allows programmers to take advantage of tested, highly-tuned libraries,
and encourages shorter, cleaner, and more modular code. Several of the major
Titanium applications make use of this feature to access computational kernels
such as vendor-tuned BLAS libraries.

Titanium is implemented as a source-to-source compiler to C, which means
that any library offering a C interface is potentially callable from Titanium. To
perform cross language integration, programmers simply declare methods using
the native keyword, and then supply implementations written in C.

The Titanium NAS FT implementation featured in this paper calls the FFTW
[15] library to perform the local 1-D FFT computations, thereby leveraging the
auto-tuning features and machine-specific optimizations made available in that
off-the-shelf FFT kernel implementation. Note that although the FFTW library
does offer a 3-D MPI-based parallel FFT solver, our benchmark only uses the

210 K. Datta, D. Bonachea, and K. Yelick

serial 1-D FFT kernel – Titanium code is used to create and initialize all the
data structures, as well as to orchestrate and perform all the interprocessor
communication operations.

6.3 Nonblocking Arraycopy

Titanium’s explicitly nonblocking array copy library methods helped in imple-
menting a more efficient 3-D FFT.

The Fortran code performs a bulk-synchronous 3-D FFT, whereby each pro-
cessor performs two local 1-D FFTs, then all the processors collectively perform
an all-to-all communication, followed by another local 1-D FFT. This algorithm
has two major performance flaws. First, because each phase is distinct, there is
no resulting overlap of computation and communication - while the communica-
tion is proceeding, the floating point units on the host CPUs sit idle, and during
the computation the network hardware is idle. Secondly, since all the proces-
sors send messages to all the other processors during the global transpose, the
interconnect can easily get congested and saturate at the bisection bandwidth
of the network. This can result in a much slower communication phase than if
the same volume of communication were spread out over time during the other
phases of the algorithm.

Both these issues can be dealt with using a slight reorganization of the 3-D
FFT algorithm employing nonblocking array copy. The new algorithm, imple-
mented in Titanium, first performs a local strided 1-D FFT, followed by a local
non-strided 1-D FFT. Then, we begin sending each processor’s portion of the
grid (slab) as soon as the corresponding rows are computed. By staggering the
messages throughout the computation, the network is less likely to become con-
gested and is more effectively utilized.

Moreover, we send these slabs using nonblocking array copy, addressing the
other issue with the original algorithm. Nonblocking array copy allows us to
inject the message into the network and then continue with the local FFTs, thus
overlapping most of the communication costs incurred by the global transpose
with the computation of the second FFT pass. Reorganizing the communication
in FT to maximize overlap results in a large performance gain, as seen in figure 4.

6.4 The FT Benchmark Implementation

In terms of code size, figure 2 shows that the Titanium implementation of FT
is considerably more compact than the Fortran+MPI version. There are three
main reasons for this. First, over half the declarations in both versions are dedi-
cated to verifying the checksum, a Complex number that represents the correct
“answer” after each iteration. The Titanium code does this a bit more efficiently,
thus saving a few lines. Secondly, the Fortran code performs cache blocking for
the FFTs and transposes, meaning that it performs them in discrete chunks in
order to improve locality on cache-based systems. Moreover, in order to per-
form the 1-D FFTs, these blocks are copied to and from a separate workspace
where the FFT is performed. While this eliminates the need for extra arrays for

Titanium Performance and Potential: An NPB Experimental Study 211

FT Class C Speedup - Opteron/InfiniBand

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70
Processors

S
p

e
e
d

u
p

 (
B

es
t

16
 P

ro
c:

 3
6.

1s
ec

)

Linear Speedup
Titanium (non-blocking)
Titanium (blocking)
Fortran w/MPI

FFTW is used for all
serial 1-D FFT's

FT Class C Speedup - G5/InfiniBand

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70
Processors

S
p

e
e
d

u
p

 (
B

es
t 1

6
P

ro
c:

 3
7.

9s
ec

)

Titanium (non-blocking)
Linear Speedup
Titanium (blocking)
Fortran w/MPI

FFTW is used for all
serial 1-D FFT's

MG Class D Speedup - Opteron/InfiniBand

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140
Processors

S
p

e
e
d

u
p

 (
B

es
t

32
 P

ro
c:

 1
71

.3
se

c)

Fortran w/MPI

Linear Speedup

Titanium

MG Class D Speedup - G5/InfiniBand

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140
Processors

S
p

e
e

d
u

p

 (
B

es
t 1

6
P

ro
c:

 3
35

.1
se

c)

Linear Speedup

Fortran w/MPI

Titanium

CG Class D Speedup - Opteron/InfiniBand

0

50

100

150

200

250

300

0 50 100 150 200 250 300
Processors

S
p

e
e
d

u
p

 (
B

es
t

64
 P

ro
c

:
69

7.
1s

ec
)

Fortran w/MPI

Linear Speedup

Titanium

CG Class D Speedup - G5/InfiniBand

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300
Processors

S
p

e
e

d
u

p

 (
B

es
t 6

4
P

ro
c:

 1
60

5.
7s

ec
)

Fortran w/MPI

Titanium

Linear Speedup

Fig. 4. Performance comparisons for FT, MG, and CG respectively

each 1-D FFT, any performance benefit hinges on how quickly the copies to and
from the workspace are done. The Titanium code, on the other hand, allocates
several arrays for the 3D FFT, and therefore does not do extra copying. It is
consequently shorter code as well. Finally, Titanium’s domain calculus opera-
tions allow the transposes to be written much more concisely than for Fortran,
resulting in a 121 to 3 disparity in lines of communication.

7 Performance Results

7.1 Experimental Methodology

In order to compare performance between languages, we tested the Titanium
and Fortran with MPI implementations on an Opteron cluster and a G5 cluster,
both with InfiniBand interconnects. For details concerning the input sizes for
each problem class, please see the NAS benchmark specification [4].

During data collection, each data point was run consecutively three times,
with the minimum being reported. In addition, for a given number of processors,
the Fortran and Titanium codes were both run on the same nodes (to ensure
consistency). In all cases, performance variability was low, and the results are
reproducible.

212 K. Datta, D. Bonachea, and K. Yelick

The actual performance results for all three benchmarks are shown in figure 4.
Note that all speedups are measured against the base case of the best time at
the lowest number of processors for that graph, and the absolute performance of
that case is shown on the y axis. Consequently, the language that has the higher
speedup for a given number of processors actually runs faster for that case.

7.2 FT Performance

Both implementations of the FT benchmark use the same version of the FFTW
library [15] for the local 1-D FFT computations, since it always outperformed
the local FFT implementation in the stock Fortran implementation. However, all
the communication and other supporting code is written in the language being
examined.

As seen at the top of figure 4, the Titanium FT benchmark thoroughly outper-
forms Fortran, primarily due to two optimizations. First, the Titanium code uses
padded arrays to avoid the cache-thrashing that results from having a power-of-
two number of elements in the contiguous array dimension. This helps to explain
the performance gap between Fortran and the blocking Titanium code.

Secondly, as explained in section 6 the best Titanium implementation also
performs nonblocking array copy. This permits us to overlap communication
during the global transpose with computation, giving us a second significant
improvement over the Fortran code. As a result, the Titanium code performs
36% faster than Fortran on 64 processors of the Opteron/InfiniBand system.

7.3 MG Performance

For the MG benchmark, the Titanium code again uses nonblocking array copy to
overlap some of the communication time spent in updating ghost cells. However,
the performance benefit is not as great as for FT, since each processor can only
overlap two messages at a time, and no computation is done during this time.
Nonetheless, the results in figure 4 demonstrate that Titanium performs nearly
identically to Fortran for both platforms and for both problem classes.

7.4 CG Performance

The Titanium CG code implements the scalar and vector reductions using point-
to-point synchronization. This mechanism scales well, but only provides an ad-
vantage at larger numbers of processors. At small processor counts (8 or 16 on
the G5), the barrier-based implementation is faster.

The CG performance comparison is shown at the bottom of figure 4. In some
cases the CG scaling for both Titanium and Fortran is super-linear due to cache
effects. For both platforms, however, Titanium’s performance is slightly worse
than that of Fortran, by a constant factor of about 10-20%. One reason for this
is that point-to-point synchronization is still a work in progress in Titanium.
Currently, if a processor needs to signal to a remote processor that it has com-
pleted a put operation, it sends two messages. The first is the actual data sent

Titanium Performance and Potential: An NPB Experimental Study 213

to the remote processor, and the second is an acknowledgment that the data has
been sent. This will eventually be implemented as one message in Titanium, and
should help bridge the remaining performance gap between the two languages.

8 Related Work

The prior work on parallel languages is too extensive to survey here, so we
focus on three current language efforts (ZPL, CAF, and UPC) for which similar
studies of the NAS Parallel Benchmarks have been published. All of these studies
consider performance as well as expressiveness of the languages, often based on
the far-from-perfect line count analysis that appears here.

ZPL is a data parallel language developed at the University of Washington.
A case study by Chamberlain, Deitz and Snyder [11] compared implementa-
tions of NAS MG across various machines and parallel languages (including
MPI/Fortran, ZPL, Co-Array Fortran [3], High Performance Fortran, and Single-
Assignment C). They compared the implementations in terms of running time,
code complexity and conciseness. Our work extends theirs by providing a similar
evaluation of Titanium for MG, but also includes two other NAS benchmarks.

Co-Array Fortran (CAF) is an explicitly parallel, SPMD, global address space
extension to Fortran 90 initially developed at Cray Inc [3]. CAF has a built-
in distributed data structure abstraction. However, layouts are more restrictive
than in a language like ZPL or HPF, since distribution is specified by identify-
ing a co-dimension that is spread over the processors. Titanium’s pointer-based
layouts can be used to express arbitrary distributions. Communication is more
visible in CAF than the other languages, because only statements involving the
co-dimension can result in communication. Because CAF is based on F90 ar-
rays, it has various array statements (which are not supported in Titanium) and
subarray operations (which are).

Unified Parallel C (UPC) [2] is a parallel extension of ISO C99 that provides
a global memory abstraction and communication paradigm similar to Titanium.
The Berkeley UPC [16] and Intrepid UPC compilers use the same GASNet com-
munication layer as Titanium, and Berkeley UPC uses a source-to-source com-
pilation strategy analogous to the Berkeley Titanium compiler and Rice CAF
compiler. Bell et al [17] reimplemented some of the NAS benchmarks in UPC’s
one-sided communication paradigm, producing performance improvements of up
to 2x over the MPI-Fortran versions.

9 Conclusions

We have shown that Titanium is well-suited to three common yet diverse scien-
tific kernels from both an expressiveness and performance standpoint. However,
Titanium applications are not merely limited to the NAS benchmarks, as it sup-
ports more general distributed data layouts and irregular parallelism patterns
than these problems require. In addition, the use of Java as a base language

214 K. Datta, D. Bonachea, and K. Yelick

provides support for strong typing, user-defined classes, inheritance, and dy-
namic memory management. All of these features help raise the level of ab-
straction when compared to most serial languages commonly used in parallel
computing.

References

[1] Yelick, K., Semenzato, L., Pike, G., Miyamoto, C., Liblit, B., Krishnamurthy,
A., Hilfinger, P., Graham, S., Gay, D., Colella, P., Aiken, A.: Titanium: a high-
performance Java dialect. In: Proceedings of ACM 1998 Workshop on Java for
High-Performance Network Computing. (1998)

[2] UPC Community Forum: UPC specification v1.2. (2005)
http://upc.gwu.edu/documentation.html.

[3] Numrich, R., Reid, J.: Co-array fortran for parallel programming. In: ACM
Fortran Forum 17, 2, 1-31. (1998)

[4] Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, D.,
Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon, H.D.,
Venkatakrishnan, V., Weeratunga, S.K.: The NAS Parallel Benchmarks. The
International Journal of Supercomputer Applications 5(3) (1991) 63–73

[5] Gosling, J., Joy, B., Steele, G.: The Java Language Specification. second edn.
(2000)

[6] Hilfinger, P., Bonachea, D., Gay, D., Graham, S., Liblit, B., Pike, G., Yelick,
K.: Titanium language reference manual. Tech Report UCB/CSD-01-1163, U.C.
Berkeley (2001)

[7] Titanium home page. http://titanium.cs.berkeley.edu.
[8] Wen, T., Colella, P.: Adaptive mesh refinement in Titanium. In: 19th International

Parallel and Distributed Processing Symposium (IPDPS). (2005)
[9] Givelberg, E., Yelick, K.: Distributed immersed boundary simulation in Titanium

(2003)
[10] MPI Forum: MPI: A message-passing interface standard, v1.1. Tech-

nical report, University of Tennessee, Knoxville (June 12, 1995)
http://www.mpi-forum.org/docs/mpi-11.ps .

[11] Chamberlain, B.L., Deitz, S.J., Snyder, L.: A comparative study of the NAS MG
benchmark across parallel languages and architectures. In: Supercomputing ’00:
Proceedings of the 2000 ACM/IEEE conference on Supercomputing. (2000)

[12] Liblit, B., Aiken, A.: Type systems for distributed data structures. In: the 27th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL). (2000)

[13] Pike, G., Hilfinger, P.N.: Better tiling and array contraction for compiling scientific
programs. In: Proceedings of the IEEE/ACM SC2002 Conference. (2002)

[14] Pike, G.R.: Reordering and storage optimizations for scientific programs (2002)
[15] Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proceed-

ings of the IEEE 93(2) (2005) 216–231 Special issue on “Program Generation,
Optimization, and Platform Adaptation”.

[16] The Berkeley UPC Compiler (2002). http://upc.lbl.gov.
[17] Bell, C., Bonachea, D., Nishtala, R., Yelick, K.: Optimizing application perfor-

mance using one-sided communication. Technical Report to appear, Lawrence
Berkeley National Laboratory (2005)

Efficient Search-Space Pruning for Integrated
Fusion and Tiling Transformations

Xiaoyang Gao1, Sriram Krishnamoorthy1, Swarup Kumar Sahoo1,
Chi-Chung Lam1, Gerald Baumgartner2, J. Ramanujam3, and P. Sadayappan1

1 Department of Computer Science and Engineering
The Ohio State University, Columbus, OH 43210, USA

{gaox,krishnsr,sahoo,clam,saday}@cse.ohio-state.edu
2 Department of Computer Science

Louisiana State University, Baton Rouge, LA 70803, USA
gb@csc.lsu.edu

3 Department of Electrical and Computer Engineering and
Center for Computation and Technology

Louisiana State University, Baton Rouge, LA 70803, USA
jxr@ece.lsu.edu

Abstract. Compile-time optimizations involve a number of transfor-
mations such as loop permutation, fusion, tiling, array contraction, etc.
Determination of the choice of these transformations that minimizes the
execution time is a challenging task. We address this problem in the con-
text of tensor contraction expressions involving arrays too large to fit in
main memory. Domain-specific features of the computation are exploited
to develop an integrated framework that facilitates the exploration of the
entire search space of optimizations. In this paper, we discuss the explo-
ration of the space of loop fusion and tiling transformations in order
to minimize the disk I/O cost. These two transformations are integrated
and pruning strategies are presented that significantly reduce the number
of loop structures to be evaluated for subsequent transformations. The
evaluation of the framework using representative contraction expressions
from quantum chemistry shows a dramatic reduction in the size of the
search space using the strategies presented.

1 Introduction

Optimizing compilers incorporate a number of loop transformations such as per-
mutation, tiling, fusion, etc. Considerable work has been done on improving
locality and/or parallelism by loop fusion [8,9,10,11,19]. Fusion often creates im-
perfectly nested loops, which are more complex to tile effectively than perfectly
nested loops. Several works have addressed the tiling of imperfectly nested loops
[2,20]. Although there has been much progress in developing unified frameworks
for modeling a variety of loop transformations [1,2,16], their use has so far been
restricted to optimization of indirect performance metrics such as reuse distance,
degree of parallelism, etc.

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 215–229, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

216 X. Gao et al.

The development of model-driven optimization strategies that target direct
performance metrics remains a difficult task. In this paper, we address the prob-
lem in the specific domain of tensor contractions involving tensors too large to
fit into physical memory. We use certain properties of the computations in this
domain to integrate various transformations and investigate pruning strategies
to reduce the search space to be explored.

The large sizes of the tensors involved require the development of out-of-
core implementations that orchestrate the movement of data between disk and
main memory. In this paper, we discuss the integration of loop fusion and tiling
transformations with the objective of minimizing disk I/O cost. We first divide
the input program into several independent loop nests, then enumerate the set
of fusion structures of each loop nest. Then, a generalized tiling approach that
significantly reduces the number of loop structures to be explored is presented. It
also enables subsequent optimizations of I/O placements and loop permutations.
This approach enables an exploration of the entire search space using a realistic
performance model, without the need to resort to heuristics and search of a
limited subspace of the search space to limit search time.

The rest of this paper is organized as follows. In the next section, we elab-
orate on the computational context of interest and introduce some preliminary
concepts; in addition, an overview of the program synthesis system and the
overall approach are given. Section 3 describes a tree partitioning algorithm.
In Section 4, we propose a loop structure enumeration algorithm and prove its
completeness. The reduction in the space of loop structures to be explored is
shown for representative computations in Section 5. Conclusions are provided in
Section 6.

2 Background

The work presented in this paper is being developed in the context of the Tensor
Contraction Engine (TCE) program synthesis tool [3,4,5,6,14]. The TCE takes
as input a high-level specification of a computation expressed as a set of tensor
contraction expressions, and transforms it into efficient parallel code. The current
prototype of the TCE incorporates several compile-time optimizations which are
treated in a decoupled manner, with the transformations being performed in a
pre-determined sequence. In [12,13], we presented an integrated approach to de-
termine the tile sizes and I/O placements for a fixed loop structure. Techniques
to prune the search space of possible I/O placements, orderings, loop permuta-
tions and tiling for given a choice of fusion of tensor contractions were presented
in [18]. In this paper, we present a technique to enumerate the various fusion
structures and develop an algorithm to significantly reduce the number of loop
nests to be evaluated for each fusion structure.

2.1 Computational Context

In the class of computations considered, the final result can be expressed using
a collection of multi-dimensional summations of the product of several input

Efficient Search-Space Pruning 217

arrays. For example, we consider a transformation used in quantum chemistry
to transform a set of two-electron integrals from an atomic orbital (AO) basis
to a molecular orbital (MO) basis:

B(a, b, c, d) =
∑

p,q,r,s

C1(d, s)× C2(c, r)× C3(b, q)× C4(a, p)×A(p, q, r, s)

Here, all arrays would be initially stored on disk. The indices p, q, r and s have
the same range N. The indices a, b, c and d have the same range V. Typical
values for N range from 60 to 1300; the value for V is usually between 50 and
1000.

The calculation of B is done in four steps to reduce the number of floating
point operations.

T 1(a, q, r, s) =
∑

p

C4(a, p)×A(p, q, r, s)

T 2(a, b, r, s) =
∑

q

C3(b, q)× T 1(a, q, r, s)

T 3(a, b, c, s) =
∑

r

C2(c, r) × T 2(a, b, r, s)

B(a, b, c, d) =
∑

s

C1(d, s)× T 3(a, b, c, s)

The sequence of contractions in this form can be represented by an operation
tree as shown in Fig. 1(a). The leaves correspond to the input arrays and the
root corresponds to the output array. The intermediate arrays and output ar-
ray are produced by the tensor contraction of their immediate children. The
edges in the operation tree represent the producer-consumer relationship between
contractions.

Assuming that the available memory space is less than V 4 (which is 3TB for
V = 800), any one of the arrays A, T 1, T 2, T 3 and B is too large to entirely
fit in memory. Therefore, if the computation is implemented as a succession of
four independent steps, the intermediates T 1, T 2 and T 3 have to be written to
disk after they are produced, and read from disk before they are used in the
next step. Furthermore, the amount of disk access volume could be much larger
than the total volume of the data on disk. Since none of these arrays can be
fully stored in memory, it is not possible to read each element only once from
disk. Suitable fusion of the common loops between producing and consuming
contractions can reduce the size of the intermediate array, making it feasible to
retain it in memory. Henceforth, the term intermediate node will be used to refer
to both the intermediate array produced in the corresponding interior node, and
the contraction that produces it. The reference shall be clear from the context.

Given a choice of fusion, an intermediate node not fused with its parent divides
the operation tree into two parts, both of which can be evaluated independently.
Such an intermediate node is called a cut-point. A cut-point node is assumed to
be resident on disk. A connected operation tree without any interior cut-points

218 X. Gao et al.

T3 C1

C2
 T2

C3 T1 = SUM(A*C4)

A C4

T2 = SUM(T1*C3)

T3 = SUM(T2*C2)

B = SUM(T3*C1)

(a) Operation tree for the four-index
transform

for a,r,q,s,p[
t1a,q,r,s += Ap,q,r,s ∗ C4a,p

for a,b,r,s,q[
t2a,b,r,s += t1a,q,r,s ∗ C3b,q

for a,b,c,r,s[
t3a,b,c,s += t2a,b,r,s ∗ C2c,r

for a,b,c,d,s[
Ba,b,c,d += t3a,b,c,s ∗ C1d,s

(b) Corresponding unfused code structure

Fig. 1. Operation tree and unfused code structure for the four-index transform

is called a fused sub-tree. The divided operation tree for the four-index transform
corresponding to T 1 being a cut-point is shown in Fig. 2(a). The loop nesting
tree (LNT) represents the loop structure of a fused sub-tree. Each node in a LNT
is labeled by the indices of a set of fully permutable loops appearing together
at the same level in the imperfectly nested loop structure. Loops in the children
nodes are surrounded by loops in the parent node. Fig. 2(b) shows two possible
LNT’s for the two fused subtrees in Fig. 2(a), respectively. The corresponding
code structure is shown in Fig. 2(c).

2.2 Overall Approach

The program synthesis system takes an operation tree representing a set of tensor
contractions as input, and generates an efficient loop structure with explicit disk
I/O statements to implement the computation. The optimization process may
be viewed in terms of the following steps.

1. Operation Tree Partitioning: In this step, we divide the original operation
tree into several fused subtrees by identifying cut-points. The optimal loop
structures for the subtrees are independent of each other, and are determined
separately.

2. Loop Structures Enumeration: For each fused subtree, we enumerate candi-
date loop structures to be evaluated, as a set of LNT’s.

3. Intra-Tile Loop Placements: For a given LNT, we tile all loops at each node
and propagate intra-tile loops to all the nodes below it.

4. Disk I/O Placements and Orderings: We then explore various possible place-
ments and orderings of disk I/O statements for each disk array in a tiled loop
structure with a pruning strategy to determine the best placement and or-
dering.

Efficient Search-Space Pruning 219

T3 C1

C2
 T2

C3

T2 = SUM(T1*C3)

T3 = SUM(T2*C2)

B = SUM(T3*C1)

T1 = SUM(A*C4)

A C4

T1

(a) Divided operation trees

a , b

r , s

 q (T2) c (T3)

c,d,s (B)

a,r,q,s,t (T1)

(b) Loop nesting trees

loopNest1 :
for a,r,q,s,p[
t1a,q,r,s += Ap,q,r,s ∗ C4a,p

loopNest2 :
for a,b⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

for r,s⎡⎢⎢⎣
for q[
t2r,s += t1a,q,r,s ∗ C3b,q

for c[
t3c,s += t2r,s ∗ C2c,r

for c,d,s[
Ba,b,c,d += t3c,s ∗ C1d,s

(c) Corresponding code
structure

Fig. 2. Representations involved in generation of a fused code structure

5. Tile Size Selection: For each combination of loop transformations and I/O
placements, the I/O cost is formulated as a non-linear optimization problem
in terms of the tile sizes. The tile sizes that minimize the disk I/O cost are
determined using a general-purpose non-linear optimization solver.

6. Code Generation: We calculate the disk access cost for each solution ob-
tained, and generate code for the one with the minimal disk I/O cost.

The possible choices of fused subtrees are first enumerated. This is explained
in Section 3. Given a fused sub-tree, the optimal loop structure and the cor-
responding cost can be determined by the following steps: 1) enumerating all
candidate loop structures; 2) enumerating placements and ordering of disk I/O
statments; 3) determining the tile size to minimize the disk I/O cost for each
combination; and 4) selecting the program structure with the minimal disk I/O
cost. The algorithm for enumerating candidate loop structures is discussed in
Section 4. The search space of disk I/O placements and orderings, loop permu-
tations and tile sizes is pruned and modeled as a non-linear optimization problem
in [18], which is then solved to determine the disk I/O cost. In this paper, we
focus on determination of the fused sub-trees and the enumeration of candidate
loop nesting trees to be evaluated.

3 Tree Partitioning

In this section, we discuss the procedure to enumerate the set of all fused subtrees
to be evaluated. In general, fusing a loop between the producer of an intermediate
array and its consumer eliminates the corresponding dimension of the array and
reduces the array size. If the array fits in memory after fusion, no disk I/O
is required for that array. On the other hand, if the array does not fit in the

220 X. Gao et al.

physical memory after fusion, the disk I/O cost will remain the same and there
is no improvement in locality. Therefore, fusion of any loops corresponding to
an intermediate node is assumed to cause the resulting intermediate to reside
in memory. Alternatively, an intermediate node not fused with its parent (cut-
point) is assumed to reside in disk.

An arbitrary operation tree with M intermediate nodes theoretically has
O(2M) possible fused sub-trees, but not all of them are legal. If both the children
of an intermediate node are fused with it, then the loops corresponding to the
summation indices in the given node must be the outermost loops; and it can
not be fused with its parent anymore. Thus, either the node itself or one of its
children must be a cut-point.

Based on this property, we can restrict the number of top sub-trees to O(M2).
The algorithm to enumerate the fused sub-trees rooted at a given node is shown
in Algorithm 1. It proceeds in a bottom-up fashion, constructing all fused sub-
trees rooted at a given node from those of its children. Given a node t with two
children left and right, we can extend a fused sub-tree from either left or right
to include the given node. These sub-trees can further be extended to include the
given node’s parent. Besides, the given node can be considered as a cut-point.
In this scenario, all possible pairs of left and right fused sub-trees may form a
valid fused sub-tree for the given node. The field t.T reeSet represents the set of
fused sub-trees which can be extended to include the parent of t.

4 Loop Structure Enumeration

In this section, we first present an algorithm that can generate a set of loop
structures for a fused sub-tree. Then, we present the result that for any loop
structure S of the fused sub-tree, we can find a corresponding loop structure S′

in the generated set, so that S′ can be transformed to S by use of a multi-level
tiling strategy.

4.1 Enumeration Algorithm

In the previous section, we showed that a fused sub-tree must be in one of these
two forms:

– All contractions form a chain called a contraction chain. For instance, Fig. 1
is such an operation tree in which the contraction chain is T 1, T 2, T 3, B.

– The contractions form two chains joining at the root node. In this case,
the contraction chain is connected by these two chains. An example of
such an operation tree is shown in Fig. 3, in which the contraction chain
is T 1, T 2, B, T3, T 4.

Given an operation tree that has n contraction nodes t1, t2, ..., tn, let ti.indices
denote all loop indices surrounding the contraction node ti. First, we create a
contraction chain of the operation tree. It corresponds to a sequence of perfectly
nested loops. Many different choices exist for the ordering of the fusions within

Efficient Search-Space Pruning 221

Algorithm 1. EnumerateFusedSubtrees(t: the root of a subtree) returnsTreeSet

t1 = the left child of t; t2 = the right child of t; TreeSet = empty
//Only one subtree
if both t1 and t2 are input nodes then

Create a new Tree Tr with Tr.CutpointSet = ∅
Insert Tr into TreeSet

end if
//Extending subtrees from the child not an input
if t1 is an input node and t2 is an intermediate node then

childSet = t2.T reeSet
Create a new Tree Tr with Tr.CutpointSet = {t2}
Insert Tr into TreeSet

end if
if t2 is an input node, and t1 is an intermediate node then

childSet = t1.T reeSet
Create a new Tree Tr with Tr.CutpointSet = {t1}
Insert Tr into TreeSet

end if
for each subtree st in childSet do

Create a new Tree Tr with Tr.CutpointSet = st.CutpointSet
Insert Tr into TreeSet

end for
t.T reeSet = TreeSet
//Entending subtrees from either child, and cutting another child off
if both t and t2 are intermediate nodes then

childSet1 = t1.T reeSet
for each subtree st in childSet1 do

Create a new Tree Tr with Tr.CutpointSet = {st.CutpointSet, t2}
Insert Tr into TreeSet

end for
childSet2 = t2.T reeSet
for each subtree st in childSet2 do

Create a new Tree Tr with Tr.CutpointSet = {st.CutpointSet, t1}
Insert Tr into TreeSet

end for
Create a new Tree Tr with Tr.CutpointSet = {t1, t2}
Insert Tr into TreeSet
t.T reeSet = TreeSet
//Merging subtrees from both children, and extending the result
for each pair of subtrees st1 in childSet1 and st2 in childSet2 do

Create a new Tree Tr
Tr.CutpointSet = {st1.CutpointSet, st2.CutpointSet}
Insert Tr into TreeSet

end for
end if

222 X. Gao et al.

T3

C3 T1 = SUM(A*C4)

A C4

T3 = SUM(C2*T4) T2 = SUM(T1*C3)

B = SUM(T2*T3)

T4 = SUM(D*C1)

D C1

C2

Fig. 3. An operation tree with two chains

this sequence of perfectly nested loop nests. Each of the perfectly nested loops
corresponding to a contraction can be considered an independent loop nesting
tree. The fusion of sub-trees producing and consuming an intermediate array
creates an imperfectly nested loop nest, in which some of the common loops
are merged. The process of construction of the loop nesting trees corresponding
to a fused sub-tree can be modeled as a paranthesization problem. Consider
the sequence of contraction nodes T1, T2, T3, and B in the operation tree
shown in Fig. 1. ((T 1(T 2 T 3))B) corresponds to a parenthesization in which the
contractions producing T3 and consuming T3 are fused first and the resulting
loop nest is fused with the contractions producing T1 and B, in that order.
Fig. 4 shows one possible parenthesization for the four-index transform and the
corresponding loop nesting tree.

We enumerate all possible parenthesizations of the contraction chain. For
each parenthesization, a maximally fused loop structure is created by a recur-
sive construction procedure. We call it maximally fused since, in the construction
procedure, each intermediate node will have its indices fused as much as possible
with its parent. The construction procedure is shown in Algorithm 2. It takes
a parenthesization P as input, and generate a corresponding LNT. A parenthe-
sization of a contraction chain with n nodes has n−1 pairs of parentheses. Each
pair of parentheses includes two elements, left and right element. Each element
is either a single contraction node or a parenthesization of a sub-chain within a
pair of parentheses.

Fig. 4 illustrates this proceduce for the ((T 1(T 2 T 3))B) parenthesization of
the four-index transform.

4.2 Completeness

In this section, we state results that are useful in proving that the set of maxi-
mally fused loop structures generated by the enumeration algorithm above can
represent all loop structures of a fused subtree.

Efficient Search-Space Pruning 223

Algorithm 2. Construction(P)
//Given a parenthesization, the algorithm map it to a maximally fused loop structure
in LNT

l = P.left
r = P.right
if l is a parenthesization then

lt = Construction(left)
else if l is a contraction then

lt = Create a new LNT node
lt.indices = l.indices
lt.children = null
lt.contraction = l {lt is a leaf, which includes a contraction node in it}

end if
if r is a parenthesization then

rt = Construction(right)
else if r is a contraction then

rt = Create a new LNT node
rt.indices = r.indices
rt.children = null
rt.contraction = r {rt is a leaf, which includes a contraction node in it}

end if
comindices = lt.indices ∩ rt.indices
lt.indices = lt.indices − comindices
rt.indices = rt.indices − comindices
lnt = Create a new LNT node
lnt.indices = comindices
lnt.children = {lt, rt}
return lnt

Given an arbitrary loop nesting tree lnt, we can map it to a maximal fused
loop nesting tree lnt′, which is generated by the enumeration algorithm above
and can be translated to lnt with proper multi-level tiling strategy. The mapping
algorithm consists of two steps:

1. Take lnt as input, and create a parenthesization P of the contraction chain
using the generation routine provided in Algorithm 3.

2. Apply the construction procedure in Algorithm 2 on P to generate a maxi-
mally fused loop structure lnt′.

Obviously, lnt′ is the set of maximally fused loop structures generated by the
enumeration algorithm. We note that lnt′ can be translated to lnt by sinking
indices at upper levels down.

Remark 1. For any pair of contraction nodes ti and tj , let common(lnt, ti, tj)
be defined as the loops shared by ti and tj in lnt. We have common(lnt, ti, tj)
⊆ common(lnt′, ti, tj).

224 X. Gao et al.

Parenthesization LNT
(T2 T3)

(T1 (T2 T3))

((T1 (T2 T3)) B)

 b

q (T2) c (T3)

 a,r,s

p,q (T1)

 r

 a,s

b,c,d (B)

 b

q (T2) c (T3)

 a,r,s

p,q (T1)

a,b,r,s

q (T2) c (T3)

Fig. 4. Construction of a maximally fused loop structure for a particular parenthesiza-
tion of the four-index transform

Remark 2. If common(lnt, ti, tj) ⊂ common(lnt′, ti, tj), then we can trans-
form lnt′ to form lnt′′ by sinking indices down, so that common(lnt, ti, tj) =
common(lnt′′, ti, tj)

Applying the sinking operation in Remark 2 for each pair of contraction nodes (ti,
tj), we can transform lnt′ to lnt′′, which satisfies the condition: ∀(ti, tj), common
(lnt, ti, tj) = common(lnt′′, ti, tj). After that, if a node r has no indices in
r.indices, we remove r from lnt′′, and put all children of r to its parent. Then,
lnt′′ is same as lnt.

Using a multi-level tiling strategy, a maximally fused loop strcuture can be
transformed into an arbitrarily fused loop structure by appropriate choice of tile
sizes. Multi-level tiling can transform the LNT of a loop structure as follows.
Each loop present in the root is split into two components, an inter-tile loop and
an intra-tile loop. The intra-tile loop is placed on child nodes of the root. Then
the loops present at each of the child nodes, including the intra-tile loops from the
root, are again split and intra-tile loops are placed on their respective child nodes.

Efficient Search-Space Pruning 225

Algorithm 3. Parenthesize(lnt)
//Given an LNT, the algorithm map it to a corresponding parenthesization

if lnt.children �= null then
P = null
for each child c in lnt.children do

P ′ = Parenthesize(c)
if P is null then

P = P ′

else
P = new Parenthesization(P , P ′)

end if
end for

else
P = c.contraction {c is a leaf and includes a contraction node}

end if
return P

This process is porformed recursively until leaf nodes are encountered. The loop
structure corresponding to the LNT can also be transformed accordingly. Fig. 5
shows the tiling of loop a in the LNT in Fig. 4 and the relationship between
different tiles, where a.range represents the range of loop a.

 aT3,b

aI3,q (T2) aI3,c (T3)

 a,r,s

aI2, p,q (T1)

 aT2, r

 aT1,s

aI1, b,c,d (B)

(a) Multi-level tiling loop a

aT1.range × aI1.range = a.range

aT2.range × aI2.range = aI1.range

aT3.range × aI3.range = aI2.range

(b) Range of different level tiles

Fig. 5. An example of multi-level tiling in LNT

The sinking operation in an LNT can be modeled as a multi-level tiling in the
loop structure. If we tile a fused loop with a tile size equal to its loop range, it
leads to the same result as sinking the loop index from the original node to its
children. Let S and S′ be loop structures representd by lnt and lnt′ respectively.
Since we can transform lnt′ to lnt by sinking operations, we can also transform
S′ to S by suitable multi-level tiling. We use an example to show the details of
the transformation procedure below.

An arbitrary fully fused loop structure S for the four-index transform is shown
in Fig. 6(a), and the corresponding maximally fused loop structure S′ may be
seen in Fig. 6(b). After we apply multi-level tiling, S′ is translated to the form

226 X. Gao et al.

for a⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

for r⎡⎢⎢⎣
for q,s,p[
t1s,q += Ap,q,r,s ∗ C4a,p

for b,s,q[
t2b,r,s += t1s,q ∗ C3b,q

for b,c,r,s[
t3b,c,s += t2b,r,s ∗ C2c,r

for b,c,d,s[
Ba,b,c,d += t3b,c,s ∗ C1d,s

(a) Arbitrary fused loop structure: S

for a,s⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

for r⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

for q⎡⎢⎢⎣
for p[
t1 += Ap,q,r,s ∗ C4a,p

for b[
t2b += t1 ∗ C3b,q

for b,c[
t3b,c += t2b ∗ C2c,r

for b,c,d[
Ba,b,c,d += t3b,c ∗ C1d,s

(b) Maximally fused loop structure: S’

Fig. 6. An arbitrary loop structure and the corresponding maximally fused structure

for aT1,sT1⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

for rT1,aT2,sT2⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

for qT1,rT2,aT3,sT3⎡⎢⎢⎣
for p,qI1,rI2,aI3,sI3[
t1aI,qI,rI,sI+ = Ap,q,r,s ∗ C4a,p

for b, qI1,rI2,aI3,sI3[
t2aI,b,rI,sI+ = t1aI,qI,rI,sI ∗ C3b,q

for b, c, rI1, aI2,sI2[
t3aI,b,c,sI+ = t2aI,b,rI,sI ∗ C2c,r

for aI1, b, c, d, sI1[
Ba,b,c,d+ = t3aI,b,c,sI ∗ C1d,s

(a) After inserting intra-tile loops

for aT1⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

for rT1⎡⎢⎢⎣
for p,qI1,sI3[
t1aI,qI,rI,sI+ = Ap,q,r,s ∗ C4a,p

for b,qI1,sI3[
t2aI,b,rI,sI+ = t1aI,qI,rI,sI ∗ C3b,q

for b,c,rI1,aI2,sI2[
t3aI,b,c,sI+ = t2aI,b,rI,sI ∗ C2c,r

for b,c,d,sI1[
Ba,b,c,d+ = t3aI,b,c,sI ∗ C1d,s

(b) After selecting proper tile counts

Fig. 7. Translate S’ to S by multi-level tiling strategy

shown in Fig. 7(a). In addition, if we set ranges of inter-tile loops as shown below,
and remove all loops with range = 1, S′ can be rewritten in the form shown
in Fig. 7(b), which is exactly the same as S. The indexing of the intermediate
arrays has been shown in a generic fashion.

aT2 = aT3 = sT1 = sT2 = sT3 = rT2 = qT1 = 1; aT1 = a.range; rI1 = r.range

4.3 Complexity

The total number of loop structures generated by the enumeration algorithm
is the same as the number of parenthesizations of the contraction chain. For a
contraction chain with n nodes, the number of all possible parenthesizations is
called the nth Catalan Number. It is exponential in n, and the upper bound is
O(4n/n3/2). In contrast, the number of possible loop structures is potentially
exponential in the total number of distinct loop indices in the n intermediate

Efficient Search-Space Pruning 227

nodes, a considerably larger number. The fused operation tree is not very long
for most representative computations. In most practical applications, a fused
subtree usually has no more than 5 contractions in a single chain. Note that the
nth Catalan Number is not very large when n is small. The first six Catalan
Numbers are listed here: 1, 1, 2, 5, 14, 42,

5 Experimental Results

The enumeration algorithm discussed in Section 4.1 generates a set of candidates
loop structures to be considered for data locality optimization. Without this
algorithm, and generalized tiling, the set of loop structures to be evaluated might
be too large, precluding their complete evaluation and necessitating the use of
heuristics.

We evaluate the effectiveness of our approach using the following tensor con-
tractions from representative computations from the quantum chemistry domain.

1. Four-index transform (4index): Introduced in Section 2.
2. CCSD: The second and the third computations are from the class of Cou-

pled Cluster (CC) equations [7,15,17] for ab initio electronic structure mod-
eling. The sequence of tensor contraction expressions extracted from this
computation is shown as follows:

S(j, i, b, a) =
∑

l,k (A(l, k, b, a)
× (

∑
d (

∑
c(B(d, c, l, k)× C(i, c))×D(j, d)))

3. CCSDT: This is a more accurate CC model. A sub-expression from the
CCSDT theory is:

S(h3, h4, p1, p2) =
∑

p9,h6,h8 (y ooovvv(h8, h6, h4, p9, p1, p2)×∑
h10

(
t vo(p9, h10)×∑

p7 (t vo(p7, h8)×∑
p5 (t vo(p5, h6)× v oovv(h10, h3, p7, p5))

)))
We evaluated the fused subtree corresponding to the entire operation tree with-

out any cut-points. The number of all possible loop structures and the number
of candidate loop structures enumerated by our approach are shown in Table 1.
It can be seen that a very large fraction of the set of possible loop structures, up
to 98%, is pruned away using the approach developed in this paper.

Table 1. Effectiveness of pruning of loop structures

#Contractions #Loop structures Reduction
Total Pruned

4index 4 241 5 98%
CCSD 3 69 2 97%

CCSDT 4 182 5 98%

228 X. Gao et al.

6 Conclusions

In this paper we addressed the problem of optimizing the disk access cost of
tensor contraction expressions by applying loop transformations. We discussed
approaches to partitioning of the operation tree into fused sub-trees and gen-
erating a small set of maximally-fused loop structures that cover all possible
imperfectly nested fused loop structures. The approach was evaluated on a set
of computations representative of the targeted quantum chemistry domain and
a significant reduction was demonstrated in the number of loop structures to be
evaluated.

Acknowledgments. This work is supported in part by the National Science Foun-
dation through awards 0121676, 0121706, 0403342, 0508245, 0509442, 0509467,
and 0541409.

References

1. N. Ahmed, N. Mateev, and K. Pingali. Synthesizing transformations for locality
enhancement of imperfectly nested loops. In Proc. of ACM Intl. Conf. on Super-
computing, 2000.

2. N. Ahmed, N. Mateev, and K. Pingali. Tiling imperfectly-nested loops nests. In
Proc. of SC 2000, 2000.

3. G. Baumgartner, D.E. Bernholdt, D. Cociorva, R. Harrison, S. Hirata, C. Lam,
M. Nooijen, R. Pitzer, J. Ramanujam, and P. Sadayappan. A High-Level Approach
to Synthesis of High-Performance Codes for Quantum Chemistry. In Proc. of SC
2002, November 2002.

4. D. Cociorva, G. Baumgartner, C. Lam, J. Ramanujam P. Sadayappan, M. Nooijen,
D. Bernholdt, and R. Harrison. Space-Time Trade-Off Optimization for a Class of
Electronic Structure Calculations. In Proc. of ACM SIGPLAN PLDI 2002, pages
177–186, 2002.

5. D. Cociorva, X. Gao, S. Krishnan, G. Baumgartner, C. Lam, P. Sadayappan, and
J. Ramanujam. Global Communication Optimization for Tensor Contraction Ex-
pressions under Memory Constraints. In Proc. of IPDPS, 2003.

6. D. Cociorva, J. Wilkins, G. Baumgartner, P. Sadayappan, J. Ramanujam, M. Nooi-
jen, D. E. Bernholdt, and R. Harrison. Towards Automatic Synthesis of High-
Performance Codes for Electronic Structure Calculations: Data Locality Optimiza-
tion. In Proc. of the Intl. Conf. on High Performance Computing, volume 2228,
pages 237–248. Springer-Verlag, 2001.

7. T. Crawford and H. F. Schaefer III. An Introduction to Coupled Cluster Theory
for Computational Chemists. In K. Lipkowitz and D. Boyd, editor, Reviews in
Computational Chemistry, volume 14, pages 33–136. John Wiley, 2000.

8. C. Ding and K. Kennedy. Improving effective bandwidth through compiler en-
hancement of global cache reuse. J. Parallel Distrib. Comput., 64(1):108–134,
2004.

9. G. Gao, R. Olsen, V. Sarkar, and R. Thekkath. Collective Loop Fusion for Array
Contraction. In Proc. of the Fifth LCPC Workshop, 1992.

10. K. Kennedy. Fast greedy weighted fusion. In Proc. of ACM Intl. Conf. on Super-
computing, 2000.

Efficient Search-Space Pruning 229

11. K. Kennedy and K. S. McKinley. Maximizing loop parallelism and improving data
locality via loop fusion and distribution. In Proc. of Languages and Compilers for
Parallel Computing, pages 301–320. Springer-Verlag, 1993.

12. S. Krishnan, S. Krishnamoorthy, G. Baumgartner, C. Lam, J. Ramanujam, P. Sa-
dayappan, and V. Choppella. Efficient synthesis of out-of-core algorithms using a
nonlinear optimization solver. In Proc. of IPDPS, page 34b, 2004.

13. S. Krishnan, S. Krishnamoorthy, G. Baumgartner, C. Lam, J. Ramanujam, P. Sa-
dayappan, and V. Choppella. Efficient synthesis of out-of-core algorithms using
a nonlinear optimization solver. Journal of Parallel and Distributed Computing,
66(5):659–673, May 2006.

14. C. Lam. Performance Optimization of a Class of Loops Implementing Multi-
Dimensional Integrals. PhD thesis, The Ohio State University, Columbus, OH,
August 1999.

15. T. J. Lee and G. E. Scuseria. Achieving chemical accuracy with coupled clus-
ter theory. In S. R. Langhoff, editor, Quantum Mechanical Electronic Structure
Calculations with Chemical Accuracy, pages 47–109. Kluwer Academic, 1997.

16. A. W. Lim and M. S. Lam. Maximizing Parallelism and Minimizing Synchroniza-
tion with Affine Partitions. Parallel Computing, 24(3-4):445–475, May 1998.

17. J. M. L. Martin. Benchmark Studies on Small Molecules. In P. v. R. Schleyer, P. R.
Schreiner, N. L. Allinger, T. Clark, J. Gasteiger, P. Kollman, and H. F. Schaefer
III, editors, Encyclopedia of Computational Chemistry, volume 4, pages 115–128.
John Wiley, 1998.

18. S. K. Sahoo, S. Krishnamoorthy, R. Panuganti, and P. Sadayappan. Integrated loop
optimizations for data locality enhancement of tensor contraction expressions. In
Proc. of Supercomputing (SC 2005), 2005.

19. S. Singhai and K. S. McKinley. Loop Fusion for Parallelism and Locality. In Proc.
of Mid-Atlantic States Student Workshop on Programming Languages and Systems,
1996.

20. Y. Song and Z. Li. New Tiling Techniques to Improve Cache Temporal Locality.
In Proc. of ACM SIGPLAN PLDI, 1999.

Automatic Measurement of
Instruction Cache Capacity

Kamen Yotov, Sandra Jackson, Tyler Steele, Keshav Pingali,
and Paul Stodghill

Department of Computer Science,
Cornell University,
Ithaca, NY 14853

kyotov@cs.cornell.edu, {sjj3,ths22}@cornell.edu,
{pingali,stodghil}@cs.cornell.edu

Abstract. There is growing interest in autonomic computing systems
that can optimize their own behavior on different platforms without
manual intervention. Examples of successful self-optimizing systems are
ATLAS, which generates Basic Linear Algebra Subroutine (BLAS) Li-
braries, and FFTW, which generates FFT libraries.

Self-optimizing systems may need the values of hardware parameters
such as the number of registers of various types and the capacities of
caches at various levels. For example, ATLAS uses the capacity of the
L1 cache and the number of registers in determining the size of cache
tiles and register tiles.

We have built a system called X-Ray1, which uses micro-benchmarks
to measure such parameter values automatically. The micro-benchmarks
currently implemented in X-Ray can determine the latency of various
instructions, the existence of important instructions like fused multiply-
add, the number of registers of various kinds, and parameters of the
memory hierarchy.

In this paper, we discuss how X-Ray determines the capacity of the
instruction cache (I-cache), which is needed for important optimizations
such as loop unrolling. We present the micro-benchmark used in X-Ray to
measure I-cache capacity, the experimental methodology used to obtain
accurate estimates, and experimental results on a large number of current
platforms.

1 Introduction

There is growing interest in self-optimizing systems that can optimize their own
behavior on different platforms without manual intervention [2,8,5]. These sys-
tems are based on the generate-and-test paradigm: instead of writing a program,
one implements a program generator that produces a large number of program
variants, and determines empirically which variant performs best. To prevent
1 This work was supported by an IBM Faculty Partnership Award, DARPA grant

NBCH30390004, and by NSF grants ACI-0085969, ACI-0090217, ACI-0103723, ACI-
0121401, and ACI-0406345.

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 230–243, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Automatic Measurement of Instruction Cache Capacity 231

a combinatorial explosion in the number of program variants that have to be
considered, self-optimizing systems bound the search space by using hardware
parameter values such as the number of registers and the capacity of the L1
cache [8,9].

For software to be truly self-optimizing, the values of hardware parameters
relevant for software optimization must be determined automatically. It is im-
portant to note that these values are not necessarily the same as the values
one might find in a hardware manual. For example, loop unrolling in ATLAS
is limited by the number of registers on the target architecture. However, most
compilers set aside certain registers for holding special values such as the stack
or frame pointer, so the number of registers available to the register allocator is
usually less than the total number of architected registers. In practice, it is hard
to find documentation even for hardware parameter values, let alone for values
relevant to software optimization.

To address this need, we have developed a framework called X-Ray, which
can be used to implement micro-benchmarks to measure relevant values of hard-
ware parameters automatically. For portability, X-Ray is entirely implemented in
ANSI C’89. Currently, X-Ray can determine the latency of various instructions,
the existence of important instructions like fused multiply-add, the number of
registers of various kinds, and parameters of the memory hierarchy.

In this paper, we describe how X-Ray measures the capacity of the instruction
cache (I-cache). Neither well known benchmarks [3,6], nor existing tools [4,7]
attempt to measure this parameter.

The I-cache capacity is needed in the implementation of important optimiza-
tions like loop unrolling, which is used to reduce loop overhead, to prepare the
loop body for scheduling of operations, to improve processor pipeline utilization,
to enable register allocation of array values, etc. [1]. If the loop is unrolled too
few times, loop overhead can be substantial, and pipeline and register utilization
can suffer, lowering performance. On the other hand, if the loop is unrolled too
many times, I-cache misses may cause performance to drop. Therefore, compilers
need I-cache capacity to estimate how many times a loop should be unrolled.

An example on Intel Itanium 2 is presented in Figure 1. This figure shows
the sensitivity of performance to the unrolling of the K loop (KU) of Matrix-
Matrix Multiply in ATLAS for two different cache blocking factors (NB). We
have verified with hardware counters that the performance drop observed for
KU > 9 is caused by excessive number of instruction cache misses.

The rest of this paper is organized as follows. In Section 2, we give an overview
of the X-Ray framework. The major challenge is to ensure that the C compiler
does not restructure the micro-benchmarks thereby polluting the timing results,
while enabling performance critical optimizations such as register allocation.
In Section 3, we describe the micro-benchmark we use for measuring I-cache
capacity. In Section 4, we present experimental results on a number of modern
high-performance processors. We also compare I-cache capacity estimates from
X-Ray with published values for these architectures. These comparisons show

232 K. Yotov et al.

2 4 6 8 10 12 14
KU

1000

2000

3000

4000

MFLOPS

NB�360

NB�80

Fig. 1. Sensitivity of performance to K-unrolling on Intel Itaniun 2 in ATLAS

that the estimates of I-cache capacity that X-Ray produces are accurate to within
3% on most architectures.

2 The X-Ray Framework

Hardware parameters are measured by X-Ray micro-benchmarks. Figure 2
presents the general structure of a micro-benchmark in the X-Ray framework.

Nano-benchmark
SpecificationControl

Engine

Nano-
benchmark
Generator

Compile,
Execute,

Time

Nano-benchmark
C Code

Execution Time

Micro-benchmark
Parameters

Hardware
Parameter Value

Fig. 2. A micro-benchmark in X-Ray

As an example, consider the measurement of the number of available registers
of a particular data type T . One way to determine this value is to perform a
number of experiments, all of which perform the same computations but on a
different number of variables (N) of type T . When N exceeds the number of
available registers for type T , not all variables can be register allocated, and
execution time should increase substantially. The number of available registers
can be inferred from this cross-over point.

Some general conclusions can be drawn from this example. A micro-benchmark
to determine the value of some parameter may need to time a number of dif-
ferent but related programs that we call nano-benchmarks. Since there may
be no a priori bound on the number of required nano-benchmarks, we need a

Automatic Measurement of Instruction Cache Capacity 233

Nano-benchmark Generator, which can produce Nano-benchmark C Code from
a high-level Nano-benchmark Specification. Finally, generation should happen
on-the-fly since the results of one nano-benchmark may determine the nano-
benchmark to be executed next.

In X-Ray, the execution of a micro-benchmark is orchestrated by its Control
Engine, which chooses the nano-benchmarks to execute, the order in which they
should be executed, and the appropriate parameters for each one. The Control
Engine determines the value of the hardware parameter based on these timing
results.

Some micro-benchmarks may also need the results obtained from running
other micro-benchmarks. For example, to determine the latency of an instruction
in cycles rather than in nanoseconds, the control engine needs to know the cycle
time of the processor. This can be specified by the user or it can be measured
by another micro-benchmark.

2.1 Nano-benchmarks

Even with access to a high-resolution timer, it is hard to accurately time opera-
tions that take only a few CPU cycles to execute. Suppose we want to measure
the time required to execute a C statement S. If this time is small compared to
the granularity of the timer, we must measure the time required to execute this
statement some number of times RS (dependent on S), and divide that time by
RS . If RS is too small, the time for execution cannot be measured accurately,
whereas if RS is too big, the experiment will take longer than it needs to.

RS ← 1;
while (measureS (RS) < tmin)

RS ← RS × 2;
return (measureS (RS) ÷ RS);

Fig. 3. Nano-benchmark timing

Figure 3 shows the timing strategy used in X-Ray nano-benchmarks. In this
code, measureS(RS) measures the time required to execute RS repetitions of
statement S. To determine a reasonable value for RS , the code in Figure 3 starts
by setting RS to 1, and then doubles it until the experiment runs for at least
tmin seconds. The value of tmin can be specified by the user and defaults to 0.25
seconds in the current implementation.

A simplistic implementation of measureS is shown in Figure 4(a). This code
incurs considerable loop overhead, so we unroll the loop U times (Figure 4(b)).

Another problem is that restructuring compiler optimizations may corrupt
the experiment. For example, consider the case when we want to measure the
latency of a single addition. In our framework, we would measure the time taken
to execute the C statement p0 = p0 + p1. It is important to allocate p0 and p1
in registers, but it is crucial that the compiler not replace the U statements in
the loop body by the statement p0 = p0 + U × p1, since this would prevent the
code from timing the original statement correctly.

234 K. Yotov et al.

To solve such problems, we need to generate programs which the compiler can
aggressively optimize without disrupting the sequence of operations whose exe-
cution time we want to measure. We solve this problem using a switch statement
on a volatile variable v as shown in Figure 4(c). The semantics of C require
that v be read from memory; therefore the compiler cannot assume anything
about which case of the switch is selected. Because there is potential control
flow to each of the case blocks, it is impossible for the compiler to combine or
reorder them in any way.

The final problem is that if the compiler is able to deduce that the result of the
computations performed in S is not used in the rest of the code, it might perform
dead-code elimination and remove all instances of S altogether. To prevent this
unwanted optimization, all variables that appear in S are assigned to values
read from appropriately typed volatile variables in the initialize statement;
similarly, their final values are copied back to the same volatile variables in
the use statement.

There are cases where we wish to measure the performance of a sequence of
different statements S1, S2, . . . , Sn. To prevent the compiler from optimizing this
sequence, the code generator will give each Si a different case label, generating
code of the form shown in Figure 4(d). In this figure, the number of case labels
W is the smallest multiple of n greater than or equal to U .

2.2 Nano-benchmark Generator

The X-Ray nano-benchmark generator accepts as an input a nano-benchmark
specification and produces nano-benchmark C code structured as shown in Fig-
ures 4(c) and 4(d).

The nano-benchmark specification is a tuple which contains a statement S to
be timed and type information for all variables in S. For example, to measure
the latency of double-precision floating point ADD operation, we use the nano-
benchmark specification 〈p1 = p1 + p2, 〈p1, p2 : F64〉〉, which means that we time
the statement p1 = p1+p2, where p1 and p2 are variables of type double (defined
as F64 in X-Ray). Given this specification, the nano-benchmark generator can
produce code as shown in Figure 4(c). Generating code of the form shown in
Figure 4(d) is more complex and requires the first element of the tuple to be a
function f : integer → string, which computes the code for statement Si from
the case label i.

2.3 Implementing a New Micro-benchmark

Implementing a new micro-benchmark in X-Ray requires:

1. Implementing the nano-benchmarks for all timing experiments. If their code
fits the template in Figure 4(d), nano-benchmark specifications are enough;

2. Implementing the micro-benchmark control engine to describe which nano-
benchmarks to run, with what parameters, in what order, and how to pro-
duce a final result from the external parameters and the timings.

Automatic Measurement of Instruction Cache Capacity 235

measureS(R) {
ts = now();
i = R;

loop: S;
if (--i)

goto loop;
te = now();
return te − ts;

}
(a)

measureS(R) {
ts = now();
i = R / U;

loop:
S;
S;
...repeat U times...
S;
if (--i)

goto loop;
te = now();
return te − ts;

}
(b)

measureS(R) {
initialize;
volatile int v = 0;
switch (v)
{
case 0:

i = R/U;
ts = now();

loop:
case 1: S;
case 2: S;
...
case U: S;

if (--i)
goto loop;

te = now();
if (!v)

return te − ts;
}
use;

}
(c)

measureS(R) {
initialize;
volatile int v = 0;
switch (v)
{
case 0:

i = R/U;
ts = now();

loop:
case 1: S1;
case 2: S2;
...
case i: Si;
...
case n: Sn;
case n + 1: S1;
...
case W: Sn;

if (--i)
goto loop;

te = now();
if (!v)

return te − ts;
}
use;

}
(d)

Fig. 4. Implementation of measureS

236 K. Yotov et al.

The X-Ray implementation of many useful micro-benchmarks is described in
detail in [11,10].

3 Measuring I-Cache Capacity

To estimate I-cache capacity, X-Ray measures the execution time of code se-
quences of different sizes. These sequences are carefully chosen so that the pro-
cessor can run them at full speed unless they are too long to fit completely in
the I-cache.

More precisely, the X-Ray micro-benchmark generates a sequence of nano-
benchmarks. Each nano-benchmark measures the average time needed to execute
one statement of a code sequence of specific length N . The micro-benchmark uses
these nano-benchmarks to determines the largest value of N for which there is no
significant increase in the average execution time per statement. The capacity of
the I-cache is declared to be the binary code size for this longest code sequence.

Although this is straight-forward in theory, there are several practical prob-
lems we had to address to make this idea work.

3.1 Nano-benchmark

Figure 5 shows the nano-benchmark generated by X-Ray. The basic statements
used in the loop body by X-Ray are assignment statements that increment one

volatile int v = 0;
volatile int p0 = v, p1 = v, p2 = v, p3 = v, p4 = v;

switch (v)
{
case 0 :

i = R/N ;
ts = now () ;

start :
case 1 : {p1+ = p0; p2+ = p0; p3+ = p0; p4+ = p0; }
case 2 : {p1+ = p0; p2+ = p0; p3+ = p0; p4+ = p0; }

. . .
case N : {p1+ = p0; p2+ = p0; p3+ = p0; p4+ = p0; }

if(−−i)
goto start;

finish :
te = now () ;
if(!v)

return te − ts;
}

v = p0; v = p1; v = p2; v = p3; v = p4;

Fig. 5. Nano-benchmark code generated by X-Ray for measuring I-cache capacity

Automatic Measurement of Instruction Cache Capacity 237

integer variable with the value of another integer variable. The C compiler is also
advised to assign these variables to registers. Therefore, most compilers will map
each assignment statement to a single register-to-register integer add instruction
since such an instruction is available on all ISAs.

Each case statement in Figure 5 consists of a number of independent assign-
ment statements. The idea is to provide enough instruction level parallelism in
each case statement to avoid stalls caused by dependencies. This way we ensure
that instructions are dispatched at the highest possible rate by the processor,
so the slowdown caused by I-cache misses will be prominent. We have found
that using four independent assignment statements per case is adequate on all
current architectures.

Therefore, the X-Ray nano-benchmark is parameterized by N , the number
of cases in the switch statement, and B, the number of independent assignment
statements per case. Not surprisingly, the specification X-Ray uses for its I-cache
nano-benchmark is the following.

SN,B = 〈[1, N] �→ {p1+ = p0; p2+ = p0; . . . ; pB+ = p0; }, 〈p0, p1, . . . , pB : int〉〉
Currently we measure the binary code size of the sequence by using an exten-

sion to the C language available in the GCC family of compilers, namely taking
the address of a code label. Using this feature, the binary size of the code shown
above would be computed by (char *)&&finish - (char *)&&start.

We are currently looking into other ways of doing this measurement if a com-
piler that supports this feature is not available. One possibility is to generate a
program listing which includes the generated assembly instructions along with
their code addresses and deduce the addresses of the labels of interest by ana-
lyzing the listing.

3.2 Micro-benchmark

Figures 7 and 8 show how the average execution time per statement of the nano-
benchmark varies as a function of the computed value of binary code size. It
can be seen that on many architectures such as the IBM Power 4, there are
significant fluctuations in I-cache access time even when loop bodies are small
enough to fit comfortably in the I-cache. In particular, access time can increase
significantly when the size of the loop body is increased by a small amount, but
decreases when the size of the loop body is increased further. This effect is not
entirely noise because some part of it is reproducible. Figures 9 and 10 show the
distribution of the average access times for various architectures when the loop
body is small enough to fit in the I-cache.

Consequently, the micro-benchmark cannot just look for an increase in the
statement execution time to determine the capacity of the I-cache; furthermore,
performing the measurement for each code size some number of times and using
the average time does not always help since some fluctuations occur for different
values of code size.

The solution used by X-Ray is to estimate first the mean and standard de-
viation of the fluctuations in statement execution time when the loop body is

238 K. Yotov et al.

μ ← 0;
σ ← 0;
N ← 256;
while (N < 256 + S)

τ ← time (SN,B) ;
μ ← μ + τ ;
σ ← σ + τ 2;
N ← N + 1;

μ ← μ ÷ S;
σ ← √

(σ − μ2 × S) ÷ (S − 1);
while (time (SN,B) < μ + T × σ)

N ← N × 2;
R ← N ;
L ← N ÷ 2;
while (R − L > 1)

N ← (R + L) ÷ 2;
if (time (SN,B) ≥ μ + T × σ)

R ← N ;
else

L ← N ;
return L × B;

Fig. 6. Control engine script for I-cache micro-benchmark

10000 20000 30000 40000 50000

Size

�bytes�

2

4

6

8

10

12

14

16

Time

�nanoseconds�

(a) SGI R12000

20000 40000 60000 80000 100000

Size

�bytes�

2

3

4

5

6

7

8

Time

�nanoseconds�

(b) SUN UltraSPARC IIIi

20000 40000 60000 80000 100000120000

Size

�bytes�

1.3

1.4

1.5

1.6

Time

�nanoseconds�

(c) IBM Power 4

20000 40000 60000 80000

Size

�bytes�

1.2

1.4

1.6

1.8

2

2.2

2.4

Time

�nanoseconds�

(d) IBM Power 5

Fig. 7. Execution time per statement on RISC architectures

Automatic Measurement of Instruction Cache Capacity 239

20000 40000 60000 80000 100000

Size

�bytes�

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Time

�nanoseconds�

(a) AMD Athlon MP

20000 40000 60000 80000 100000

Size

�bytes�

0.5

1

1.5

2

2.5

3

Time

�nanoseconds�

(b) AMD Opteron 240

7500 10000 12500 15000 17500 20000 22500

Size

�bytes�

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Time

�nanoseconds�

(c) Intel Itanium 2

5000 10000 15000 20000 25000 30000

Size

�instructions�

0.2

0.4

0.6

0.8

1

Time

�nanoseconds�

(d) Intel Pentium 4 Xeon

5000 10000 15000 20000 25000

Size

�bytes�

1.5

2

2.5

3

3.5

4

Time

�nanoseconds�

(e) Intel Pentium 3

10000 20000 30000 40000

Size

�bytes�

1.45

1.5

1.55

1.6

1.65

Time

�nanoseconds�

(f) Intel Pentium M

Fig. 8. Execution time per statement on x86 and EPIC architectures

small enough to fit in the I-cache. An increase in execution time is declared to
be significant when the jump exceeds some multiple of the measured standard
deviation of the fluctuations.

More precisely, X-Ray measures the statement execution times for nano-
benchmarks of the form shown in Figure 5 for N ∈ [256, 256 + S − 1], where
the sample size S is a parameter we currently set to 8. It computes the mean μ
and the standard deviation σ of these times, and uses μ+T ×σ as the threshold
above which a change in execution time is declared to be significant; currently,
we set the parameter T to 2 since this seems to work well in practice.

240 K. Yotov et al.

The sensitivity of Intel Pentium 4 is shown in Figure 8(d). On this architecture
we observed that for some values of N , well before the I-cache edge, there are
significant, but isolated fluctuations. To avoid confusing these fluctuations with
the actual edge, X-Ray applies a smoothing function, which takes the minimum
timing in a small neighborhood of N , namely

[
N − I

2 , N + I
2

]
. I is a parameter

of the I-cache micro-benchmark. In our experiments we found that I = 5 works
well in practice.

These considerations lead to the actual control engine algorithm specified in
Figure 6.

This code can be summarized as follows. First, the control engine computes the
mean μ and the standard deviation σ of the timings for N ∈ [256, 256 + S − 1].
Then it starts with N = Nmin = 256 and doubles N until timing exceeds the
threshold μ + T × σ for some N = Nmax. After that it performs a binary search
in the interval [Nmax ÷ 2, Nmax) to find the maximum N , whose timing is below
the threshold μ + T × σ. Finally it returns the number of instructions in the
sequence, which is L×B. The actual size of the binary code is computed as part
of the nano-benchmark (executed for N = L) as discussed above.

6.64 6.66 6.68 6.7 6.72

Time

�nanoseconds�

Frequency

(a) SGI R12000

1.94 1.96 1.98 2 2.02 2.04

Time

�nanoseconds�

Frequency

(b) SUN UltraSPARC IIIi

1.365 1.37 1.375 1.38 1.385 1.39

Time

�nanoseconds�

Frequency

(c) IBM Power 4

1.21 1.212 1.214 1.216 1.218 1.22

Time

�nanoseconds�

Frequency

(d) IBM Power 5

Fig. 9. Hit-time distribution on RISC architectures

4 Experimental Results

We tried the I-cache capacity micro-benchmark, described in Section 3 on a va-
riety of modern architectures. The results obtained on ten of them are presented

Automatic Measurement of Instruction Cache Capacity 241

Table 1. I-cache capacity experimental results

Architecture Actual Size Measured Size Error Time (seconds)
SGI R12000 32768 bytes 32108 -2.01% 534
SUN UltraSPARC IIIi 32768 bytes 32768 0.00% 321
IBM Power 4 65536 bytes 64956 -0.89% 350
IBM Power 5 65536 bytes 65016 -0.79% 365
AMD Athlon MP 65536 bytes 65496 -0.06% 904
AMD Opteron 240 65536 bytes 65480 -0.09% 647
Intel Itanium 2 16384 bytes 16352 -0.20% 101
Intel Pentium 4 Xeon 12000 uops 11245 -6.29% 187
Intel Pentium 3 16384 bytes 15940 -2.71% 285
Intel Pentium M 32768 bytes 33040 0.83% 295

0.7 0.705 0.71 0.715

Time

�nanoseconds�

Frequency

(a) AMD Athlon MP

0.96 0.965 0.97 0.975 0.98

Time

�nanoseconds�

Frequency

(b) AMD Opteron 240

0.67250.6730.67350.6740.67450.675

Time

�nanoseconds�

Frequency

(c) Intel Itanium 2

0.44 0.45 0.46 0.47 0.48 0.49 0.5

Time

�nanoseconds�

Frequency

(d) Intel Pentium 4 Xeon

2 2.05 2.1 2.15

Time

�nanoseconds�

Frequency

(e) Intel Pentium 3

1.44 1.45 1.46

Time

�nanoseconds�

Frequency

(f) Intel Pentium M

Fig. 10. Hit-time distribution on x86 and EPIC architectures

242 K. Yotov et al.

in Table 1. X-Ray was able to estimate the I-cache capacity within 3% of the
actual value, except on the Intel Pentium 4, where the error was about 6%.

All running times are reported for a smoothing interval of I = 5. This is
only really necessary on the Pentium 4 architecture. No smoothing (I = 1) is
required for other architectures, which can dramatically decrease runtime (up to
five times in this case).

4.1 Intel Pentium 4

The Intel Pentium 4 is an interesting architecture because it translates x86 CISC
instructions to RISC-like micro-ops before caching them in its I-cache. Moreover,
the I-cache does not have a conventional design but is organized as a trace cache.
Because of all this, the information we can determine about the capacity of this
cache is limited. The architecture manual reports I-cache size in number of micro-
ops, and we have verified that each of our addition statements translates to a
single CISC instruction which in turn translates to a single micro-op according
to the architecture manual. Therefore X-Ray is able to measure the capacity in
micro-ops.

However, this information may not be very useful for self-optimizing software
systems because to use it, one needs to consider how many micro-ops each CISC
instruction translates to, and to avoid the cases of isolated performance hits
visible in Figure 8(d).

5 Conclusions and Future Work

To the best of our knowledge, X-Ray is the first system that can measure I-cache
capacity. The micro-benchmark seems to be fairly accurate on all current archi-
tectures. The techniques described in this paper for eliminating fluctuations and
for smoothing are useful in other contexts as well. For example, we successfully
applied them to improve the accuracy of the micro-benchmark for measuring the
number of registers in X-Ray.

We are actively developing new micro-benchmarks inside the X-Ray frame-
work. Our current focus includes measuring other parameters of the memory
hierarchy such as bandwidth of different levels of the memory hierarchy, as well
as determining all bundles of instructions that can be issued in a single CPU
cycle at a sustained rate.

X-Ray can be downloaded at http://iss.cs.cornell.edu/Software/
X-Ray.aspx.

References

1. R. Allan and K. Kennedy. Optimizing Compilers for Modern Architectures. Morgan
Kaufmann Publishers, 2002.

2. Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3.
Proceedings of the IEEE, 93(2), 2005. special issue on ”Program Generation, Op-
timization, and Adaptation”.

Automatic Measurement of Instruction Cache Capacity 243

3. J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann Publishers, 1990.

4. Larry McVoy and Carl Staelin. lmbench: Portable tools for performance analysis.
In USENIX 1996 Annual Technical Conference, January 22–26, 1996. San Diego,
CA, pages 279–294, Berkeley, CA, USA, January 1996.

5. Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua, Manuela
Veloso, Bryan W. Singer, Jianxin Xiong, Franz Franchetti, Aca Gačić, Yevgen
Voronenko, Kang Chen, Robert W. Johnson, and Nick Rizzolo. SPIRAL: Code
generation for DSP transforms. Proceedings of the IEEE, 93(2), 2005. special issue
on ”Program Generation, Optimization, and Adaptation”.

6. Rafael H. Saavedra and Alan Jay Smith. Measuring cache and TLB performance
and their effect of benchmark run. Technical Report CSD-93-767, February 1993.

7. Carl Staelin and Larry McVoy. mhz: Anatomy of a micro-benchmark. In USENIX
1998 Annual Technical Conference, January 15–18, 1998. New Orleans, Louisiana,
pages 155–166, Berkeley, CA, USA, June 1998.

8. R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical
optimization of software and the ATLAS project. Parallel Computing, 27(1–2):3–
35, 2001. Also available as University of Tennessee LAPACK Working Note #147,
UT-CS-00-448, 2000 (www.netlib.org/lapack/lawns/lawn147.ps).

9. Kamen Yotov, Xiaoming Li, Gang Ren, Maria Garzaran, David Padua, Keshav Pin-
gali, and Paul Stodghill. Is search really necessary to generate high-performance
BLAS? Proceedings of the IEEE, 93(2), 2005. special issue on ”Program Genera-
tion, Optimization, and Adaptation”.

10. Kamen Yotov, Keshav Pingali, and Paul Stodghill. Automatic measurement of
memory hierarchy parameters. In SIGMETRICS’05, June 2005.

11. Kamen Yotov, Keshav Pingali, and Paul Stodghill. X-ray: A tool for automatic
measurement of hardware parameters. In QEST’05, September 2005.

Combined ILP and Register Tiling: Analytical
Model and Optimization Framework

Lakshminarayanan Renganarayana, U. Ramakrishna,
and Sanjay Rajopadhye

Computer Science Department
Colorado State University

{ln,ramakrsn,svr}@cs.colostate.edu

Abstract. Efficient use of multiple pipelined functional units and reg-
isters is very important for achieving high performance on modern pro-
cessors. Instruction Level Parallelism (ILP) and register reuse (through
register tiling) are two mechanisms for this, respectively. Program trans-
formations that expose and exploit ILP and register reuse interact with
each other in subtle ways. We study the combined problem of optimal
ILP and register reuse. We consider the class of uniform dependence, fully
permutable, rectangular loop nests. We develop an analytical model of
the combined problem and formulate a mathematical optimization prob-
lem that chooses the parameters of the ILP-exposing transformation and
register tiling so as to minimize the total execution time. We distinguish
two cases: when loop permutation can and cannot expose a parallel loop.
We show that the combined problem can be reduced to a single integer
convex optimization problem for the former case, and to a set of integer
convex optimization problems for the latter case, both of which can be
solved to global optimality.

1 Introduction

It takes more than a good algorithm to achieve high performance: efficient use
of the multiple pipelined functional units and registers are also important. In-
struction level parallelism (ILP) allows a sequence of instructions derived from
a sequential program to be parallelized for execution on multiple pipelined func-
tional units in modern processors. Exploiting ILP and register reuse is critical for
efficient use of execution resources. State-of-the-art compilers perform a variety
of program optimizations to expose, enhance and exploit ILP and register reuse.

Loop nests are often the main sources for ILP and register reuse. The tradi-
tional approach uses unroll and jam [1] to expose ILP and scalar replacement to
expose register reuse. However, this approach has the disadvantage of increased
code size and register pressure. Further, it is hard to quantify the interactions [2]
between unroll and jam, scalar replacement and software pipelining, the widely
used loop scheduling technique [3,4,5].

Loop parallelizing techniques offer many transformations that can expose par-
allelism. Examples include, loop permutation, loop skewing [1], multi dimen-
sional scheduling [6], etc. In addition, loop tiling [7] can be used enable register

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 244–258, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Combined ILP and Register Tiling 245

reuse. We propose to use loop permutation and skewing to expose ILP, followed
by tiling to enable register reuse. Our approach does not suffer from increased
code size. However, enabling register reuse with tiling requires a register alloca-
tor for array variables as compared to the use of scalar register allocator in the
scalar replacement approach.

Program transformations that expose ILP and those that enable register reuse
interact with each other in subtle ways. For example, loop unrolling and loop
skewing will expose ILP but might also increase the number of live values and
hence the register pressure. On the other hand, register tiling will enable register
reuse but might also limit the amount of ILP with the new order of execution
of the tiled program. Quantifying and modeling these interactions between vari-
ous program transformations is crucial for finding optimal (w.r.t. total program
execution time) transformations. In this paper we seek to solve the combined
problem of choosing the optimal parameters for the ILP exposing (loop skew-
ing) transformation and register tiling. Our contributions are as follows.

– We give an analytical model that quantifies the interaction between the ILP
exposing transformation (loop skewing) and register tiling.

– We formulate the optimal ILP and register tiling problem as a mathematical
optimization problem. We present a globally optimal solution to this problem
by reducing it to a convex optimization problem.

– We distinguish two cases: when loop permutation can and cannot expose
a parallel loop. In the former case, we reduce the combined optimization
problem to a single integer convex optimization problem. In the later case,
when skewing is required to expose ILP, we show that the combined problem
can be reduced to a set of integer convex optimization problems.

The solution to our combined problem will produce a loop nest in which the ILP
and register reuse are exposed. The scheduling and register allocation phase is an
important step in achieving good performance. This phase is beyond the scope of
this paper. Our main observation is that this phase can be constructed by adapt-
ing well studied techniques like modulo scheduling [4] and register allocation for
array variables.

In the next section we give an outline of our solution to the ILP and register
tiling problem. In section 3, we define the program, tiling, and execution models
and describe the basic building blocks of our analytical model. In section 4, we
formulate the mathematical optimization problem that chooses the optimal skew
and tile parameters. In section 5, we characterize the condition under which a
permutation can expose a parallel loop and present an efficient algorithm to
check this condition. In section 6, we characterize the space of valid skewing
transformations. In section 7, we show how the optimal tiling problem can be
reduced to a convex program and solved efficiently and in section 8, we present
the strategy for finding the globally optimal solution to the combined ILP and
register tiling problem. In section 9, we illustrate our solution method with an
example. In section 10, we present related work and in section 11, we present a
discussion and future work. A more detailed version of this paper can be found
in the technical report [8].

246 L. Renganarayana, U. Ramakrishna, and S. Rajopadhye

2 Our Approach to ILP and Register Tiling

Our approach is to use loop skewing to expose ILP, and register tiling to enable
register reuse, and software pipelining to expose the ILP so exposed. Since we are
using register tiling together with loop skewing, we require that after skewing,
the resulting loop nest must admit rectangular tiling.

Software pipeliners look at the innermost loop1 to find ILP among operations
from different iterations of the loop. Hence, if we could transform the loop nest
into one in which the inner most loop does not carry any dependences, i.e.,
all of its iterations can be executed in parallel, then the software pipeliner can
find a schedule in which the performance is constrained only by the execution
resources as opposed to dependencies. When sufficient ILP exists and can be
exploited, the performance is limited only by the available execution resources
– or the execution bandwidth of the machine. Such a schedule will exploit the
maximum possible ILP and have maximum utilization of functional units.

Motivated by the above discussion, we seek a transformation that would trans-
form the given fully permutable loop nest into one

– (C1): for which rectangular tiling is valid for any given tile sizes t = (t1, . . . ,
tn). This validity condition reduces to non-negativity of all the components
of all the dependences, under the reasonable assumption that the tile size be
larger than the dependence lengths, and the iteration space size be larger
than the tile size [11].

– (C2): in which there is at least one loop which does not carry any depen-
dences (i.e., whose iterations are all parallel). We can always permute this
loop to the inner most position, as full permutability (of the transformed
loop nest) is necessary for condition (C1) to hold.

There are many classes of transformations that can produce a loop nest that
would satisfy the above two conditions. Loop skewing is one such class and we
have chosen it for the following reasons. First, for uniform dependence loops,
we can always find a skewing transformation that will produce a loop that sat-
isfies (C1) and (C2). Second, loop skewing is conceptually simple and easy to
construct, and this allows us to develop an efficient algorithm for finding the
optimal skew transformation parameters.

Our solution methodology is as follows. Using the performance model de-
scribed in Section3, we formulate an optimization problem whose solution yields
the skew factor and tile sizes that minimize the overall execution time. We check
whether permutation can expose any parallel loop. If so, we permute, expose
the parallelism, and then tile for registers. In this case, the combined problem
reduces to the problem of finding the optimal tile sizes, which can be reduced
to a single integer convex optimization problem. When loop permutation cannot
expose a parallel loop, loop skewing is required to expose the ILP. In this case,
we need to find the optimal skewing and tile sizes. We find these by solving a
set of integer convex optimization problems.
1 The two exceptions are the works of Rong et al. [9] and Ramanujam [10]. See the

related work section for details.

Combined ILP and Register Tiling 247

3 An Analytical Model

In this section we develop an analytical model that quantifies the interaction
between loop skewing and register tiling transformations. A similar model was
previously used in the context of tiling for memory hierarchy [12].

3.1 Program and Tiling Model

The programs we consider belongs to the class of fully permutable rectangular
loop nests with uniform dependence bodies. Note that this class of programs
admit rectangular tiling and are also the class for which software pipelining is
usually applied. We consider an n-dimensional loop nest with constant upper and
lower bounds. The loop body contains statements with uniform dependences. Let
L = [L1, . . . , Ln] be the given n-dimensional loop nest, where each Li denotes a
loop at depth i. Any n-D vector formed by the loop counters of L is called an
iteration vector. Let D = [d1, . . . , dm] be a matrix whose columns are the (n-D)
dependence vectors.

To expose ILP we use skewing and permutation. A skewing (transformation)
matrix has the form of an upper triangular matrix with all the diagonal entries
equal to 1. The non-diagonal entries are determined by the skewing factors. We
denote the skewing matrix that we seek by S. Skewing a loop Li with respect
to a loop Lj, by an appropriate factor f , makes the loop Li carry all the depen-
dences that were originally carried by loop Lj . A permutation transformation
that permutes the ith loop with the jth loop can be represented by an identity
matrix (of appropriate size) in which the ith and jth rows are interchanged.

We consider rectangular (or orthogonal) loop tiling: tiling the loop nest with
hyper-rectangles whose boundaries are orthogonal to the canonic axes. We assume
that rectangular loop tiling is valid for the given loop nest [7]. Note that the
tiled loops are fully permutable. The tile graph is the graph where each node
represents a tile and each arc represents a dependency between tiles. In our case,
each node of the tile graph represents a hyper-rectangle in the iteration space of
size t1 × t2 × · · · × tn. Note that though our iteration space is rectangular, after
skewing, we will have hyper-parallelepiped shaped iteration space, and when we
tile this with rectangular tiles, we will have some full rectangular tiles and some
partial non-rectangular tiles.

It is well known that [13] if the ti’s are large compared to the elements of the
dependency vectors, then the dependencies between the tiles are unit vectors
(or binary combinations thereof, which can be neglected for analysis purposes
without loss of generality). In general, the feasible value of each ti is bounded
from below by some constant. For the sake of notational simplicity, in this paper
we assume that this is 1.

3.2 Architecture and Execution Model

We use an atomic tile execution model. However, the parallelism available inside
the tile is exploited with software pipelining. We first present the architectural

248 L. Renganarayana, U. Ramakrishna, and S. Rajopadhye

parameters used in the execution model and then introduce the functions that
model various aspects of the execution time of the transformed loop nest.

Although we do not provide experimental validation of our execution time
model in this paper, similar models of execution time have been used by Sarkar
[14] (in the IBM XL Fortran compiler) and also by Wolf et al. [15], and they
have been thoroughly validated.

We seek an abstraction of the architecture (processor and memory features)
that is suitable for use in a cost model for tiling loop programs in our program
class. Our model uses the following parameters:

– α – cost of an iteration: this is the cost of executing an instance of the
loop body (in cycles per iteration). In our case, since the innermost loop
is completely parallel, a modulo scheduler can always achieve the resource
minimum initiation interval (ResMII) [4], and hence α is equal to ResMII.

– β – the cost (in cycles) for transferring a word from lowest level cache to the
registers.

– η – loop increment and test cost : this is the cost for incrementing a loop
variable and checking its bounds.

– NR – number of registers available: depending on the loop body, NR could
be either the number of integer or floating point registers.

3.3 Fundamental Measures

Computation volume. The computation volume, TV(t), of a tile is the amount
of computation done in a tile. The computation volume of a tile t = (t1, . . . , tn),
is the number of integer points in the n-dimensional hyper-rectangle: TV(t) =∏n

i=1 ti. The tile volume, TV(t), represents the volume of full tiles. We approxi-
mate the volume of partial tiles with that of the full tiles, and hence use TV(t)
as the volume for all the tiles.
Load store volume. The load store volume, LS(t, D), of a tile is the total
amount of data that is loaded and stored when the tile is executed. This quantity
is also known as the tile foot-print. The dependences and data reuse patterns
determine the load store volume. Our program model restricts dependences to
be uniform (constant distance). A tile is compute bound if the amount of data
accessed (input/output) during the computation of the tile is at least one di-
mension less than the computation; otherwise the tile is I/O-bound. It is easy to
see that with uniform dependences, the load store volume of I/O-bound tiles is
proportional to the tile volume TV(t). The interesting case, where tiling is really
useful, is when the tile is compute bound.

For an n-dimensional compute bound tile, the input and output are O(xn−1),
where, x = maxn

i=1 ti, where ti is the tile size along dimension i. We consider the
case in which the input and output are of O(xn−1), other cases when the input
or output is smaller than O(xn−1) can be handled easily. Since our tile graph has
dependence vectors that correspond to unit vectors, the O(xn−1) input/output
of a tile directly corresponds to the (n − 1) dimensional facets of the tile, and
a constant multiple of every facet contributes to the load store volume of a

Combined ILP and Register Tiling 249

tile. The constant is determined by the dependence distances. There are n pairs
of facets, and in rectangular tiling, each of these is potentially involved in a
communication. The volume of the ith facet, Δi, is given by

∏n
j=1,j �=i tj . Now,

the load store volume is LS(t, D) =
∑n

i=1 aiΔi, where ai is a constant that
denotes distance along the ith facet that is involved in the communication and is
determined by the longest ith dimension component of any dependence vector in
the dependence matrix D. Based on the schedule, some facets need not be stored
and loaded again. There is at most one such facet, say f, and sharing of f can
be captured by excluding it from the load store, i.e., LS(t, D) =

∑n
i=1,i�=f aiΔi.

We can take care of multiple dependences to the same variable by considering
the bounding box of the dependences to each variable and using the diagonal of
this bounding box as the columns of D.
Number of tiles. The number of tiles, NT(t, N) = N1×···×Nn

t1×···×tn
, counts the total

number of tiles after a rectangular tiling with tiles of sizes t = (t1, . . . , tn), of the
rectangular iteration space of size N = (N1, . . . , Nn). After skewing, the iteration
space may no longer be rectangular and counting the number of tiles in this
case is complicated. We use the quantity (iteration space volume)/(tile volume),
which is a lower bound on the actual number of tiles, as an approximation. Since
we start with a rectangular iteration space and skewing is a volume preserving
unimodular transformation, the quantity (iteration space volume)/(tile volume)
is the same as2 NT(t, N).
Loop overhead. The loop overhead of a loop is used to account for the cost of
loop termination test and loop variable increment. It is proportional to the num-
ber of times the loop body is executed. An n-dimensional rectangular loop nest
after one level of tiling will have 2n loops. We call the outer n loops inter-tile loops
and the inner n loops intra-tile loops. The ith inter-tile loop is executed precisely
Ni

ti
times for each instance of the surrounding loop indices. The total overhead

of the n inter-tile loops , LoInterTile(t, N), is
∑n

i=1 xi, where xi = N1×...×Ni

t1×...×ti
.

The ith intra-tile loop is executed ti times. The overhead of the set of n intra-tile
loops, LoIntraTile(t, N), is

∑2n
i=n+1 yi, where yi = (t1×. . .×ti)×NT(t,N), where

NT(t, N) is the total number of tiles and also equal to the number of times the n
inter-tile loops surrounding the intra-tile loops will be executed. The total (intra
plus inter tile) loop overhead, LO(t, N) = LoIntraTile(t, N) + LoInterTile(t, N).
Since after skewing the iteration space may not be rectangular, the rectangular
tiling might leave some partial and full tiles. Treating partial tiles as full tiles
and using the approximation for number tiles, developed above, we can approx-
imate by LO(t, N), the loop overhead of a skewed rectangular loop nest tiled
with rectangular tiles.

When we use skewing to expose ILP, the shape of the iteration space, as well
as the dependences change. The iteration space becomes a parallelepiped and
the transformed dependences are given by SD, where S and D are the skewing
and dependence matrices, respectively.

2 Given that we are tiling for registers, the tile sizes are going to be very small and
with small tile sizes, this approximation is better.

250 L. Renganarayana, U. Ramakrishna, and S. Rajopadhye

4 Optimization Problem Formulation

We now formulate an optimization problem that clearly captures and quantifies
the interaction between the skewing and the register tiling transformations. The
objective function is the total execution time and the unknowns are the tile sizes
(t) and the skewing matrix (S).

minimize ηLO(t, N) + NT(t, N)×max (α× TV (t), β × LS(t, bbox(SD)))
s.t. LS(t, bbox(SD)) ≤ NR (1)

N ≥ t ≥ 1, SD ≥ 0, t ∈ Z
n, S ∈ Z

n×n

where, t and S are the variables representing tile sizes and skew matrix, re-
spectively, NT(t, N) is the number of tiles, TV(t) is the tile volume, D is the
dependence matrix, LS(t, bbox(SD)) is the load store volume, LO(t, N) is the
loop overhead, NR is the number of registers available, α, β and η are respec-
tively the cost of an iteration, load store cost, and loop bounds check cost. All
vector inequalities in the constraints are component-wise. The first constraint
makes sure that the register foot print LS(t , bbox(SD)) fits in the number of
available registers, NR, and the second constraint t ≥ 1 makes sure that the tile
sizes are positive and the third constraint SD ≥ 0 ensures that the skewed loop
nest is fully permutable and hence admits a rectangular tiling.

Once we choose a skew transformation S, substituting it in the combined
problem gives an optimization problem with t as the only variable. Let D̂ =
bbox(SD). Then the resulting optimization problem is shown below (2). We
call (2) the optimal tiling problem (for a fixed skew).

minimize η LO(t, N) + NT(t, N)×max (αTV(t), β LS(t, D̂))

s.t. LS(t , D̂) ≤ NR, N ≥ t ≥ 1, t ∈ Z
n

Note that, though D̂ is shown as a parameter to the LS(t, D̂) function, it is here
a given constant vector, and not a variable of the optimization problem.

5 Can Permutation Expose a Parallel Loop

We will first introduce some notations (used only in this section) which will
make the exposition clear and concise. For any vector x, x(j) represents its j-th
component. The level of a vector level(x) is j if ∀i < j : x(i) = 0 and x(j) 	= 0,
i.e., x(j) is the first non-zero component of x. A zero-lead column is a column
vector of the form (0, 0, . . . , 0, c)T for some c 	= 0. The j-th unit vector ej is a
vector with ej(j) = 1 and ej(i) = 0, ∀i 	= j. A scaled unit vector, suv(c, j) is a
vector x of the form ∀i 	= j : x(i) = 0 and x(j) = c for some non-zero constant
c. In other words, scv(c, j) is an unit vector along j scaled by a non-zero factor
c. The dimension of a scaled unit vector is often obvious from the context. An
example (of dimension 4) is suv(2, 3) = (0, 0, 2, 0). Note that level(suv(c, j)) = j.
diag(c1, c2, . . . , cn) constructs a diagonal matrix with c1, . . . , cn as the diagonal
entries. A loop is called parallel if it does not carry any dependences.

Combined ILP and Register Tiling 251

5.1 Existence of a Loop with No Carried Dependences

We seek to characterize a condition under which there exists no permutation of L
with at least one parallel loop. In other words, in every permutation of L, all the
loops carry dependences. We seek a characterization based on the dependences.
Let us form a dependence (distance vector) matrix D = [d1 d2 . . . dm] whose
columns are the m dependences, d1, d2, . . . , dm present in L’s body. The effect of
loop permutation on the dependences is completely captured by permuting the
rows of D. In any permutation of L, if there is a dependence d with level(d) = j
then loop lj , of the permuted loop nest, carries d.

Consider the two dependence matrices:

D1 =

d1 d2 d3⎛⎝ 1 0 0
1 0 2
1 1 0

⎞⎠ D2 =

d1 d2 d3 d4⎛⎝ 1 0 0 3
1 0 2 0
1 1 0 0

⎞⎠ .

In the matrix D1, the dependence vectors d2 and d3 are scaled unit vectors:
d2 = suv(1, 3) and d3 = suv(2, 2). Now, in this permutation, the dependences
d1, d2 and d3 have levels 1, 3 and 2 respectively and are carried by the loops
L1, L3 and L2 respectively. However, we can see that by exchanging rows 1 and
3 of D1 we can get an innermost loop (row 3 of permuted D1) with no carried
dependences. Now consider matrix D2 : there exists no permutation of rows of
D2 which can create a parallel loop. What is the structure of the matrix D2 that
induces this property? We seek to characterize this structure in the following
discussion leading to Theorem 1.

In any given permutation of the loops, all the n loops will carry dependences
if and only if there are (at least) n dependence vectors with levels 1, 2, . . . , n.
If we have dependence vectors of all levels (1, 2, . . . , n) in every permutation of
the loops in L, then we can say that there is no permutation that will expose a
parallel loop.

Theorem 1: Every permutation of the rows of D will contain n columns with
levels 1, 2, . . . , n if and only if D contains a n×n sub matrix whose columns can
be permuted to form a diagonal matrix, say diag(c1, c2, . . . , cn), where c1, . . . , cn

are the scale factors of the n scaled unit vectors.

Proof: (=⇒) Assume that every permutation of the rows of D will contain
n columns with levels 1, 2, . . . , n. Let x1, . . . , xn be these n columns with lev-
els 1, 2, . . . , n respectively. Given that we have exactly n vectors each having a
different level, they all have to be linearly independent. If we show that these
n columns are scaled unit vectors, then we can always permute these columns
to form a n × n diagonal sub matrix of D. To show that x1, . . . xn are scaled
unit vectors we will use proof by contradiction. Let us assume that they are (all)
not scaled unit vectors. Note that the vector xn with level n has to be a scaled
unit vector. Let the n − 1 columns each have one more non-zero entry below
their first non-zero entry. Without loss of generality we can assume that this
entry is the next immediate entry. Then the matrix looks the matrix M given
below.

252 L. Renganarayana, U. Ramakrishna, and S. Rajopadhye

Algorithm 1. Algorithm to check whether the input loop nest has any parallel
loop.
1. Input: Dependence matrix D. Output: boolean value indicating whether the in-

put loop nest has any parallel loop or not.
2. Pick all the columns of D which are scaled unit vectors. This can be done in O(nm),

where, n is the number of rows of D and m, the number of columns. There can be
at most m such columns.

3. As we pick the columns in the previous step we can note their levels. Check whether
there are n columns each of which is a scaled unit vector for a distinct j, i.e.,
suv(cj , j) for j = 1 . . . n. This can also be done in time O(nm). If there are such n
columns return a true; return a false otherwise.

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1,1 0 · · · 0 0
x2,1 x2,2 · · · 0 0

... x2,2 · · ·
...

...

...
...

. . . xn−1,n−1 0
· · · xn,n−1 xn,n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=⇒ M ′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1,1 0 · · · 0 0
x2,1 x2,2 · · · 0 0

... x2,2 · · ·
...

...

...
...

. . . xn,n−1 xn,n

· · · xn,n−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Now we can interchange the last two rows of M to get M ′ in which there is no
dependence of level n and hence loop ln does not carry any dependence. But
this is a contradiction to our assumption that every permutation of the rows of
D contains n columns with all the levels. Hence the proof. �

Proof: (⇐=) Now we assume that D contains a n×n sub matrix whose columns
can be permuted to form a diagonal matrix say diag(c1, c2, . . . , cn). Let C be this
n×n sub matrix of D whose columns can be permuted to form diag(c1, . . . , cn).
We need to show that every permutation of D will contain n column with levels
1, 2, . . . , n. It is obvious that after any set of row permutations of a diagonal
matrix there exists a set of column permutations that will bring it back to
diagonal matrix form. Hence, after any set of permutations of C we can column
permute C to make it a diagonal matrix. This diagonal matrix form makes it
obvious that the n columns have levels 1, . . . , n respectively. Hence the proof. �

Theorem 1 gives us an efficient way to check whether there exists at least one
loop no carried dependences – we only need to check whether the dependence
matrix D contains n× n sub matrix whose columns can be permuted to form a
diagonal matrix diag(c1, . . . , cn). This can be done in time linear in the size of
the dependence matrix D. The outline of the algorithm is given in Algorithm 1.

6 Space of Valid Skewing Transformations

When loop permutations alone cannot expose a parallel loop, we need to skew
the loop nest. We make two observations regarding the skew matrix S that we
seek in the combined optimization problem (1). These observations narrow down
the search space of S.

Combined ILP and Register Tiling 253

– Only positive skews produce loops that admit rectangular tiling.
We have two constraints: D ≥ 0 (since our input loop nest admits rectangular
tiling) and SD ≥ 0 (since we require the skewed loop nest to admit rect-
angular tiling). From Theorem 1, we know that, if the input loop nest does
not have any parallel loop, then the dependence matrix D has a n × n sub
matrix whose columns are scaled unit vectors and which can be permuted to
form a diagonal matrix, say M = diag(c1, · · · , cn). Without loss of generality
we can assume that that these n columns c1, c2, . . . , cn have levels 1, 2, . . . , n
respectively. At least two of these columns should be made to have the same
levels, only then we will have a loop with no carried dependences. Let us
view the matrix D as a partitioned as [M N], where M = diag(c1, . . . , cn)
is the n× n diagonal sub matrix and N is the sub matrix that contains rest
of the columns of D. We claim that negative skew factors will lead to an
invalid transformation by creating negative entries in the sub-matrix M . To
see why, let us see what happens when we skew loop Li with respect to a
loop Lj with a negative skew factor −f (cf. Section 3.1 for notation). Such a
skew would add to the i-th row of M, the j-th row multiplied by (−f). The
new i-th row would have −f × cj in its j-th entry. This negative entry is
not permitted since we require that all the entries of the transformed matrix
(SD) be non-negative. Hence, only positive skew factors are valid, since a
zero skew factor is just an identity transformation.

– Skewing any one loop with respect to just one other loop is suf-
ficient and optimal. We seek to transform the loop nest so that in the
transformed loop nest there is one loop that carries no dependences, i.e.,
parallel. Given that the input loop nest is fully permutable, after skewing,
we can permute this parallel loop to the inner most position to get our de-
sired loop nest. To make any one loop, say Li, parallel, it is sufficient to
skew some other loop, say Lj , with respect to Li. Also, given that (positive)
skewing increases the length of the (positive) dependences, skewing with re-
spect to more than one loop will always produce longer (when compared to
skewing w.r.t. to just one loop) dependences. And, the longer the depen-
dences, the larger the bounding box and hence, the greater the load store
volume, LS(t, bbox(SD)). So, skewing with respect to just one other loop is
also optimal. By a similar argument, skewing by a factor larger than 1 to
parallelize the loop only increases the load store cost and is sub-optimal.

Based on these two observations, we seek to find positive skews of one loop with
respect to just one other loop. The number of choices for such skews is d×(d−1)
where, d is the depth of the loop nest. This gives a list of d(d − 1) potentially
optimal skews. For example, for a loop nest with depth 2 or 3 we will have 2 or
6 choices of skews, respectively.

7 Solving the Optimal Tiling Problem

The optimal tiling problem (2) seeks to choose tile sizes that minimize some
criteria and satisfy some constraints. The key insight is that the variables of this

254 L. Renganarayana, U. Ramakrishna, and S. Rajopadhye

optimization problem, tile sizes, are always positive. Based on this insight we
can directly cast it as an Integer Geometric Program (igp) [16]. Due to space
constraints, we do not give the translation of the optimal tiling problem into an
igp. The techniques used to cast the optimal tiling problem as an igp can be
found in the technical report [8].

Geometric programs can be transformed into convex optimization problems
using a variable substitution [17] and solved efficiently using polynomial time
interior point methods [18]. Integer solutions can be found by using a branch-
and-bound algorithm. We use YALMIP [19] – a tool that provides an high level
symbolic interface in MATLAB to define and solve igps. The number of (tile)
variables of our igps are related to number of dimensions tiled and hence are
often small. In our experience with solving igps related to tiling, the integer
solutions were found in few (less than ten) iterations of the branch-and-bound
algorithm. The (wall clock) running time of this algorithm was just a few seconds,
even with the overhead of using the symbolic MATLAB interface.

8 Solving the Combined ILP and Register Tiling Problem

Recall that, according to our solution strategy, we need skewing only when the
input loop nest does not contain any parallel loop that can be exposed by permu-
tation. Hence, first we check (using Algorithm 1 discussed in section 5) whether
the input loop nest has any parallel loop that can be exposed by permutation.
If it does, then just permuting the loop to the inner most position will achieve
our goal. This permutation is always valid, since our input loop nest is fully per-
mutable (since rectangular tiling is valid for it). In this case, we just permute the
loop and do not skew (i.e., the skew matrix S becomes the identity matrix). Then
the combined problem (1) reduces to the optimization problem for finding the
optimal tile sizes (for the permuted loop nest), i.e., the optimal tiling problem
(c.f. problem (2)) with S = I(the identity matrix) and hence D̂ = bbox(D). This
problem can now be directly solved as discussed in section 7. Note that when
permutation alone is sufficient, it is globally optimal too, because any skewing
will only increase the load store cost and hence the execution time.

When permutation cannot expose a parallel loop, we need skewing to expose
ILP. In this case, as shown in Section 6, we have d(d−1) choices for the skewing
matrix (where d is the depth of the loop nest). We construct d(d − 1) optimal
tiling problems (with fixed skewing matrices), one for each choice of the skewing
matrix. The optimal skew and tile sizes are obtained by solving these d(d − 1)
optimal tiling problems (2) and picking the one that has the smallest objective
function value (i.e., the minimum execution time).

9 A Complete Example

1 f o r (i 1 = 1 ; i 1 ≤ N1 ; i 1++)
2 f o r (i 2 = 1 ; i 2 ≤ N2 ; i 2++)
3 A[i 2] = A[i2 −1] + A[i 2] ;

Combined ILP and Register Tiling 255

Consider the above loop nest and its dependence matrix D =
(

1 0
0 1

)
. As inidicated

by Theorem 1, there exists no permutation of the loops that can expose the
parallelism to a software pipeliner. However, the loop has lots of parallelism
that can be exposed to a software pipeliner by skewing. We have d(d − 1) = 2
choices for skewing the loops, viz., skewing i1 w.r.t to i2 or vice-versa. But, due
the symmetry of D, both skews will have the same effect on the bounding box.
Let us consider skewing loop i2 with respect to i1, and then permuting them to
make the i1 loop the innermost. Now, all the dependences are carried by outer
loop (i2) and the inner loop (i1) is completely parallel. A software pipeliner
can exploit this parallelism to construct a schedule which is constrained only the
available execution resources (and not by the dependence constraints). We then
tile this skewed-permuted loop nest to enable register reuse.

To determine the optimal tile sizes, we instantiate the combined optimization
problem (1) with the optimal skew (and permute) matrix S =

(
1 1
0 1

)
, as follows.

Now, D̂ = bbox(SD) =
(

1
1

)
. Instantiating the optimal tiling problem we get

minimize N1×N2
t1×t2

×max (α× t1 × t2, β × (t1 + t2)) +

η
(
N1 ×N2 + N1×N2

t2
+ N1×N2

t1×t2
+ N1

t1

)
(2)

s.t. t1 + t2 ≤ NR, t ≥ 1, t ∈ Z

where, α is the cost per iteration and is equal to the II (initiation interval), β is
the cost of moving a data item from the lowest level cache to the register and η
is the cost of a loop bound check. NR is the number of (floating point) registers
in the architecture.

10 Related Work

Unroll and jam. Sarkar [14] addresses the same problem as ours and uses
unroll and jam followed by scalar replacement [20] for exposing ILP and register
reuse. He formulates the problem as a discrete optimization problem with unroll
factors as variables, and proposes an exhaustive search with heuristics to solve
it. Our formulation seeks both the skew matrix and the tile sizes, and is solved
to global optimality via convex programming. The class of programs considered
by Sarkar, loops with affine dependences, is larger than what is considered by
ours, loop nests with uniform dependences. However for uniform dependence
loop nests, by setting the skew matrix to identity, viewing the tile sizes as unroll
factors, and adding the code size constraint, our method can be directly used to
solve the problem addressed by Sarkar. In this sense, for this class of loop nests,
the problem of solving for optimal unroll factors is a special case of our problem.

Carr and Kennedy [21] propose an algorithm to determine the unroll factors
that balance the floating-point and memory access operations. This objective
function is different from ours, as well as Sarkar’s, viz., minimizing the execution
time.

256 L. Renganarayana, U. Ramakrishna, and S. Rajopadhye

Hierarchical tiling. The work of Carter et al. [22], followed up by Mitchell
et al. [23], uses tiling to expose the register reuse as well as ILP. They propose
hierarchical tiling as a hand tuning technique to better exploit pipelined func-
tional units and registers. Our work is similar to this work in spirit, however, we
have proposed a completely automatic method to determine the tile sizes and
skew factors.

Code generation for register tiling. Jiminez et al. [24] propose a code gen-
eration strategy for non-rectangular loop nests tiled for registers. Their strategy
uses index set splitting to strip off the partial boundary tiles and the full tiles are
completely unrolled. Hence, they assume that unroll and jam followed by scalar
promotion is used for exposing ILP and register reuse. Sarkar [14] also proposes
a code generation algorithm which takes the unroll factors as input and produces
an unrolled loop nest.

Software pipelining of loop nests. Traditionally software pipeliners have
only looked at innermost loop nests. Ramanujam [10] proposed a technique where
an integer linear programming formulation is used to find a (software) pipelined
schedule that exploits the parallelism available in the whole loop nest. However,
he did not consider resource constraints. Rong et al. [25] have recently proposed
a technique called single dimension software pipelining for multi-dimensional
loops. Their technique computes the initiation interval and (cache) locality of
every loop in the given loop nest and picks the best. They do not consider
any ILP exposing transformations like permutation or skewing, and hence, are
limited in how ILP can be exploited. On the other hand, our approach, by the
virtue of looking at skewing and permutation, will always be able to expose the
available ILP. Rong et al. also propose a method for code generation [26] and
recently have addressed the register allocation issue [9]. A similar problem in the
context of ILP and caches has been addressed by Wolf et al. [15].

11 Discussion and Future Work

We have formulated the combined problem of choosing an ILP-exposing (skew-
ing) transformation and register tiling. We have proposed an efficient way to
check whether permutation can expose any parallel loops. We have distinguished
two cases: when loop permutation can expose a parallel loop, and when it can-
not. For the former case, we have reduced the combined problem to a single
convex optimization problem and for the latter case we have reduced the com-
bined problem to a typically small set of convex optimization problems. All these
convex optimization problems can be solved efficiently using currently available
tools (e.g., YALMIP [19]).

The formulation of the combined problem exposes the fact that the skewing
transformation affects the dependences and which in turn affects the overall ex-
ecution time of transformed loop nest. We see this formulation, and its analysis,
as a first step in understanding the structure of this important complex problem.
To the best of our knowledge, this is the first formulation and globally optimal
solution of this combined problem.

Combined ILP and Register Tiling 257

Future work. We are currently working on adapting modulo scheduling tech-
niques [4,5] to schedule the transformed loop nest. Note that the modulo sched-
uler is guaranteed to find the inner most loop nest parallel. Hence, we do not
need any dependence analysis to determine the achievable initiation interval.
We are also investigating array register allocation techniques to map all the ar-
ray values accessed in a tile to registers. Note that from the constraints of the
optimal tiling problem, we are guaranteed to have enough registers.

As a future work, we plan to extend the program class. One direction is to
extend the work to include iteration spaces with parallelepiped shapes. Another
direction is to permit non-uniform (affine) dependences in the loop body.

References

1. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures: A De-
pendence Based Approach. Morgan Kaufman, San Francisco (2002)

2. Carr, S., Sweany, P.: An experimental evaluation of scalar replacement on scientific
benchmarks. Software Practice and Experience 33(15) (2003) 1419–1445

3. Lam, M.: Software pipelining: an effective scheduling technique for vliw machines.
In: PLDI ’88: Proceedings of the ACM SIGPLAN 1988 conference on Programming
Language design and Implementation, New York, NY, USA, ACM Press (1988)
318–328

4. Rau, B.R.: Iterative modulo scheduling: an algorithm for software pipelining loops.
In: MICRO 27: Proceedings of the 27th annual international symposium on Mi-
croarchitecture, New York, NY, USA, ACM Press (1994) 63–74

5. Allan, V.H., Jones, R.B., Lee, R.M., Allan, S.J.: Software pipelining. ACM Com-
put. Surv. 27(3) (1995) 367–432

6. Darte, A., Robert, Y., Vivien, F.: Scheduling and Automatic Parallelization.
Birkhauser Boston (2000)

7. Xue, J.: Loop tiling for parallelism. Kluwer Academic Publishers (2000)
8. Renganarayana, L., Ramakrishna, U., Rajopadhye, S.: Combined ILP and register

tiling: Analytical model and optimization framework. Technical Report CS-05-102,
Department of Computer Science, Colorado State University (2005) Available from
http://www.cs.colostate.edu/˜ln/publications/TR-CS-05-102.pdf.

9. Rong, H., Douillet, A., Gao, G.R.: Register allocation for software pipelined multi-
dimensional loops. In: PLDI ’05: Proceedings of the 2005 ACM SIGPLAN confer-
ence on Programming language design and implementation, New York, NY, USA,
ACM Press (2005) 154–167

10. Ramanujam, J.: Optimal software pipelining of nested loops. In: IPPS. (1994)
335–342

11. Xue, J.: On tiling as a loop transformation. Parallel Processing Letters 7(4) (1997)
409–424

12. Renganarayana, L., Rajopadhye, S.: A geometric programming framework for op-
timal multi-level tiling. In: SC ’04: Proceedings of the 2004 ACM/IEEE conference
on Supercomputing, Washington, DC, USA, IEEE Computer Society (2004) 18

13. Andonov, R., Balev, S., Rajopadhye, S.V., Yanev, N.: Optimal semi-oblique tiling.
IEEE Trans. Parallel Distrib. Syst. 14(9) (2003) 944–960

14. Sarkar, V.: Optimized unrolling of nested loops. International Journal of Parallel
Programming 29(5) (2001) 545–581

258 L. Renganarayana, U. Ramakrishna, and S. Rajopadhye

15. Wolf, M.E., Maydan, D.E., Chen, D.K.: Combining loop transformations consid-
ering caches and scheduling. In: Proceedings of the 29th Annual International
Symposium on Microarchitecture, Paris, IEEE Computer Society TC-MICRO and
ACM SIGMICRO (1996) 274–286

16. Duffin, R., Peterson, E., Zener, C.: Geometric Programming – Theory and Appli-
cations. John Wiley (1967)

17. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press.
(Online version available at: http://www.stanford.edu/˜boyd/cvxbook.html)
(2004)

18. Kortanek, K.O., Xu, X., Ye, Y.: An infeasible interior-point algorithm for solving
primal and dual geometric programs. Math. Program. 76(1) (1997) 155–181

19. Löfberg, J.: YALMIP : A toolbox for modeling and optimization in MATLAB.
In: Proceedings of the CACSD Conference, Taipei, Taiwan (2004) Available from
http://control.ee.ethz.ch/˜joloef/yalmip.php.

20. Callahan, D., Carr, S., Kennedy, K.: Improving register allocation for subscripted
variables. In: PLDI ’90: Proceedings of the ACM SIGPLAN 1990 conference on
Programming language design and implementation, New York, NY, USA, ACM
Press (1990) 53–65

21. Carr, S., Kennedy, K.: Improving the ratio of memory operations to floating-point
operations in loops. ACM Trans. Program. Lang. Syst. 16(6) (1994) 1768–1810

22. Carter, L., Ferrante, J., Hummel, S.F.: Hierarchical tiling for improved superscalar
performance. In: Proceedings of the 9th International Symposium on Parallel
Processing, Washington, DC, USA, IEEE Computer Society (1995) 239–245

23. Mitchell, N., Högstedt, K., Carter, L., Ferrante, J.: Quantifying the multi-level
nature of tiling interactions. International Journal of Parallel Programming 26(6)
(1998) 641–670

24. Jiménez, M., Llabería, J.M., Fernández, A.: Register tiling in nonrectangular iter-
ation spaces. ACM Trans. Program. Lang. Syst. 24(4) (2002) 409–453

25. Rong, H., Tang, Z., Govindarajan, R., Douillet, A., Gao, G.R.: Single-dimension
software pipelining for multi-dimensional loops. In: CGO ’04: Proceedings of the
international symposium on Code generation and optimization, Washington, DC,
USA, IEEE Computer Society (2004)

26. Rong, H., Douillet, A., Govindarajan, R., Gao, G.R.: Code generation for single-
dimension software pipelining of multi-dimensional loops. In: CGO ’04: Proceedings
of the international symposium on Code generation and optimization, Washington,
DC, USA, IEEE Computer Society (2004)

Analytic Models and Empirical Search:
A Hybrid Approach to Code Optimization

Arkady Epshteyn1, Marı́a Jesús Garzaran1, Gerald DeJong1, David Padua1, Gang
Ren1, Xiaoming Li1, Kamen Yotov2, and Keshav Pingali2

1 University of Illinois at Urbana-Champaign, Urbana IL 61801
2 Cornell University, Ithaca, NY 14853

Abstract. Compilers employ system models, sometimes implicitly, to make
code optimization decisions. These models are analytic; they reflect their imple-
mentor’s understanding and beliefs of the system. While their decisions can be
made almost instantaneously, unless the model is perfect their decisions may be
flawed. To avoid exercising unique characteristics of a particular machine, such
models are necessarily general and conservative. An alternative is to construct an
empirical model. Building an empirical model involves extensive search of a pa-
rameter space to determine optimal settings. But this search is performed on the
actual machine on which the compiler is to be deployed so that, once constructed,
its decisions automatically reflect any eccentricities of the target system. Unfortu-
nately, constructing accurate empirical models is expensive and, therefore, their
applicability is limited to library generators such as ATLAS and FFTW. Here
the high up-front installation cost can amortized over many future uses. In this
paper we examine a hybrid approach. Active learning in an Explanation-Based
paradigm allows the hybrid system to greatly increase the search range while
drastically reducing the search time. Individual search points are analyzed for
their information content using an known-imprecise qualitative analytic model.
Next-search-points are chosen which have the highest expected information con-
tent with respect to refinement of the empirical model being constructed. To eval-
uate our approach we compare it with a leading analytic model and a leading
empirical model. Our results show that the performance of the libraries generated
using the hybrid approach is comparable to the performance of libraries gener-
ated via extensive search techniques and much better than that of the libraries
generated by optimization based solely on an analytic model.

1 Introduction

Application of high-level program transformations such as loop unrolling, array tiling,
and software pipelining is critical in optimizing the performance of compiled code.
Deciding how to apply these transformations can be exceedingly challenging. These
decisions must balance subtle interactions among characteristics of the underlying ar-
chitecture, the source code, other compilation decisions, and so on. Every optimizing
compiler, therefore, embodies a decision procedure either explicitly or implicitly to re-
solve these choices. Intuitions (confirmed by decision theory) tell us that resolving such
difficult choices satisfactorily requires a great deal of information.

Most commonly, this information is supplied explicitly via prior performance models.
Such models are extremely efficient, generating solutions almost instantaneously. But

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 259–273, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

260 A. Epshteyn et al.

the information they embody comes entirely from their designer’s formal idealization
of the process to be optimized. It excludes phenomena that the designer believes to be
negligible or too complex to analyze.

By contrast, an empirical approach collects information directly from the system
on which the compiler is deployed. This results in first-hand information which can
be more accurate than that of a prior performance model. For example, many versions
of a loop with different tilings crossed with various loop unrolling amounts might be
generated and executed. It then selects the combination with the best measured per-
formance. Unfortunately, searching through combinations of parameter values can be
hugely expensive. As a result, this approach cannot service the real-time requests of a
compiler as can the prior performance model. But it is well suited to library generation
where the high cost of optimal configuration decisions can be paid once. Well-known li-
brary generators that employ empirical optimization include FFTW [12], ATLAS [17],
PhiPAC [3] and SPIRAL [19].

An alternative decision procedure is an adaptive hybrid which includes only the prior
information from the designer which he or she is most confident of. The rest is then
filled in empirically. The prior partial model might answer some optimization questions
directly but might instead suggest which measurements are likely to be most informative
and so guide and limit the empirical searches. The accuracy of this decision procedure
is rooted in first-hand measurement of the actual system to be optimized. But it might
be efficient enough to make real-time optimization decisions or be automatically re-
invoked when necessary to react to changing situations.

The possibility of adaptive models is the motivation and the subject of our current
research which we offer as the first tentative steps along a lengthy but, we believe,
promising path. We employ an Explanation-Based Learning paradigm [10]. Empirical
results are treated as illustrations or manifestations of a deeper pattern to be discovered.
They are explained in terms of the existing partial model and therefore serve to refine
the model and reduce the need for future empirical searches.

To evaluate our adaptive approach we compare it directly with a leading analytic
model and a leading empirical optimization approach. Methodologically, these three
approaches must be compared on equal footing. They be applied to the same optimiza-
tion task in as similar a setting as possible. To this end we use the matrix multiplication
framework of ATLAS as our experimental platform but without its hand-tuned additions
whose influences could be conflated with the behaviors we wish to monitor.

ATLAS produces an optimized Basic Linear Algebra Subroutine (BLAS) library
including a module for optimized matrix multiplication. The generated code (referred to
in this paper as the mini-MMM code) is compiled and executed to measure its observed
performance. ATLAS finds parameter values that maximize the performance of mini-
MMM code (in MFLOPs) using a routine that performs a near-exhaustive sampling of
a region of the parameter space. It is this module that we replace in our experiments.
In one experimental condition it is replaced by a leading analytic model [20], in a
second it is replaced by our adaptive system, and in a third the original ATLAS routine
is employed. In all three cases the remainder of the MMM generation code is unchanged
as are the routines to measure MMM performance.

Analytic Models and Empirical Search 261

Our results confirm that the the adaptive approach can perform better than the ana-
lytic model and is much more efficient than the empirical approach. The analytic model
is based on an architectural idealization that cannot perfectly capture the actual ma-
chine to be optimized. On the other hand, the ATLAS routine samples broadly from a
large but limited region of the parameter space that, on occasion does not contain the
optimal configuration. The adaptive approach only samples those points deemed to be
informative given the results of previous samples. This can greatly increase the range
of parameter values it entertains, but it only does so when there is an expectation of
optimization improvement.

In library installation efficiency is less crucial since cost can be amortized over the
lifetime of the machine. But even here there are at least four situations in which effi-
ciency can be important.

1) Adaptation may have to be applied at runtime, in which case an extensive search
is not possible, and prior models (when available) may not be accurate enough.
This type of search involves measuring the performance of various versions of pre-
compiled code during the sampling phase of the executing, and then using the best
version during the (much longer) production phase [11]. Note that runtime search-
ing tailors the optimization system to the requirements of the user not available
at library installation time (for instance, small blocking parameter values will be
selected if the user only multiplies small matrices).

2) Efficient adaptation can be applied at the time of compilation. [16] describes a
compile-time optimization framework that employs empirical search which re-
ceives performance feedback from a fast estimator.

3) The space of possible versions can be too large even for once-in-a-life time in-
stallation. Empirical search complexity grows exponentially with the number of
interacting optimization parameters.

4) An interesting application of library routines is as a benchmark to evaluate alterna-
tive machine designs. More efficient adaptation can enable a wider exploration of
possible designs.

The paper is organized as follows: we describe the search module of ATLAS in Sec-
tion 2. The model approach to optimization is discussed in Section 3. Our hybrid ap-
proach is presented in Section 4. Finally, experimental results are shown in Section 5.

2 ATLAS

ATLAS is a system that employs empirical search to generate highly-tuned BLAS
libraries [17]. In this paper, we focus on the optimization of the matrix-matrix mul-
tiplication (MMM) routine. This is the key routine in BLAS since many other kernel
operations use it as a primitive. ATLAS contains a generator search module and a mul-
tiple implementations search module. The generator search contains a code generator
that outputs a kernel based on input parameters. This module searches the inputs that

262 A. Epshteyn et al.

result in the best performing kernel. The multiple implementation module searches
among hand-written codes for MMM kernels. ATLAS selects the best-performing ker-
nel out of both modules. ATLAS also records results from previous installations on
the target platform and can reduce the installation time by using these instead of the
empirical search.

In this work, we focus on the generator search module. The search is used during
the installation procedure to find the optimal values of code transformation parameters
(amount of tiling, unrolling, etc.). It consists of: (1) generating the versions of matrix
multiplication with the parameter values to be tested, (2) compiling and executing them,
and (3) selecting the version that perform best.

ATLAS is not a restructuring compiler, but the code generated by ATLAS can be
seen as the result of applying a sequence of compiler transformations. We first examine
these code transformations (Section 2.1). Then, we explain how ATLAS searches for
the most appropriate parameter values of these transformations (Section 2.2).

2.1 Transformations

The code implementing a MMM is shown in Figure 1. Yotov et al [20,21] and Cooper
et al [8] found that computing this matrix multiplication using the library generated
by ATLAS results in higher performance than that obtained when the naive MMM
implementation in Figure 1 is compiled using a general purpose compiler. The reason
for this performace gap is that compilers do not apply the appropriate transformations
and/or they do not use the correct parameter values for these transformations [8,20,21].

for (j = 1; j <= M ; j + +)
for (i = 1; i <= N ; i + +)
for (k = 1; k <= K; k + +)
C[i][j] = C[i][j] + A[i][k] ∗ B[k][j]

Fig. 1. Matrix Multiplication Code

The code generated by ATLAS can be seen as the result of applying well-known
compiler transformations to the code in Figure 1. To increase the locality ATLAS uses
blocking, while to increase Instruction Level Parallelism (ILP) ATLAS uses pipeline
scheduling. Next, we examine these transformations.

• Blocking: This transformation converts matrix multiplication into a sequence of
smaller matrix multiplications. Blocking can be accomplished by a loop trans-
formation called tiling, introduced by Wolfe [18]. ATLAS applies blocking at the
cache and the register level:

- Cache Blocking: ATLAS uses blocking to decompose the matrix multiplication
of large matrices into the multiplication of smaller sub-blocks. The size of each
sub-block is NB × NB, where NB is an optimization parameter that needs to
be chosen so that the working set of the sub-blocks being multiplied fits in the
cache [4,7,18]. We call the resulting code mini-MMM.

Analytic Models and Empirical Search 263

- Register blocking: The mini-MMM code itself is blocked and then unrolled to
optimize the utilization of the registers. The resulting code, that we call micro-
MMM, multiplies a column of MU elements of matrix A by a row of NU elements
of matrix B and stores the result into a MU × NU sub-matrix of C. MU and NU
are optimization parameters that must be chosen so that MU + NU + MU × NU
fit in the registers of the processor [2].

To improve register allocation, ATLAS uses scalar replacement [5]: each element of
A, B and C that is accessed in the unrolled micro-MMM code is assigned to a scalar.
The array accesses in the micro-MMM code are replaced by these scalar variables.
ATLAS expects that the compiler will assign registers to these scalars. Also, ATLAS
copies the NB × NB sub-matrices to consecutive memory locations. This reduces the
number of cache and TLB misses. Additional transformations such as loop unrolling
and load scheduling applied in ATLAS are described in detail in [17,20,21].

2.2 Search

ATLAS does an almost exhaustive search of the parameter values presented in the pre-
vious Section. Since ATLAS searches for several parameters, when searching for one
parameter, ATLAS needs to assign values to the other parameters it has not yet opti-
mized. These values are initially assigned based on results obtained from the execution
of benchmarks. These benchmarks estimate characteristics of the platform on which
ATLAS is being installed, such as cache size and number of registers. After a parame-
ter is optimized, the value that obtains the best performance is used for the search of the
subsequent parameters. Parameter values are searched in the same order that appears in
our explanation below.

1. L1 cache blocking (NB × NB): ATLAS generates versions of the mini-MMM code
with a matrix size NB × NB, where NB varies from 16 to the minimum of (80 and√

L1 Size), in steps of 4.
2. Register blocking (MU and NU): ATLAS exhaustively searches for the best values of

MU and NU. All possible combinations of MU and NU satisfying MU×NU+MU+
NU+Latency≤Number Of Registers are tried, and the best performing combination
is selected.

3. Loop unrolling, instruction scheduling parameters, etc. are described in [17,20]

More details about ATLAS can be found in [17,20].

3 Model

Yotov et al. [20,21] challenged the notion that empirical optimization is more effec-
tive than model-driven optimization by demonstrating that a model-based optimization
strategy can calculate near-optimal parameter values without incurring the sampling
cost of empirical search. We use Yotov’s model as our initial guess of the parameter
values. In this Section we summarize it. A further description of the model can be
found in [20,21].

264 A. Epshteyn et al.

The model depends on accurate estimates of machine parameters that include the L1
cache and line size, the number of registers, the latency of the multiply instruction, the
existence of a fused multiply-add instruction, and the number of functional units.

1. L1 cache blocking (NB × NB): The idea of the model is to compute the value of
NB that optimizes the use of the L1 data cache. The model is based on the memory
access trace of the mini-MMM, and takes into account the loop order, L1 cache and
line size, and the LRU replacement strategy of caches. This analysis finds that for
a JIK order, the optimal value for NB is the maximum value of NB that satisfies the
inequality below:⌈

NB2

L1 Line Size

⌉
+ 3 ∗ ⌈

NB
L1 Line Size

⌉
+ 1 ≤ L1 Size

L1 Line Size

Notice that the model in [21] is more accurate that the one just discussed. We started
the work reported in this paper before the model was improved and we are using
the simpler model from [20]. In any case the value found using the more elabo-
rate model in [21] is close to the value found by the model described above and
presented in [20].

2. Register blocking (MU and NU): To estimate the appropriate values of the register
blocking parameters, the model takes into account how the ATLAS generator al-
locates registers to variables, and the need of Latency additional registers to hold
the temporary results of the multiplication. With all this, the model picks the max-
imum values of MU and NU such that NU≈MU and MU×NU+MU+NU+Latency
≤ Number Of Registers.

This model mimics ATLAS in that it computes a blocking value for the L1 cache.
However, sensitivity analysis reported in [20,21] shows that in some machines blocking
values that overflow the L1 cache obtain better performance. The conjecture is that, in
these machines, the large block size that results in the best performance corresponds to
the block size that fits in the L2 cache. Blocking for L2 may result in higher performance
than blocking for the L1 cache because in out-of-order processors, which have a deep
pipeline, the latency of accessing the L2 cache can usually be hidden without stalling
the processor. The rationale is that the processor can continue executing instructions that
do not depend on the missed data. A larger block size also increases the opportunity for
higher ILP and for the compiler to reorder instructions [6]1.

Given that for some behavioral profiles it may be advantageous to block for the L2
cache, we would like to extend the model from [20,21] to estimate an appropriate L2
blocking parameter value. The inequality above used to compute the L1 cache blocking
factor cannot be used to compute the L2 cache blocking factor because it does not
take conflict misses into account. Ignoring conflict misses in the L1 cache is safer than

1 Notice that tiling for L2 may not always be the best choice, because large tiles can result in
more time spent in the cleanup code, which can degrade performance for some of the codes
calling the MMM library generated by ATLAS [1]. However, it has been shown that in some
cases it is necessary to tile for L2 [1], and this is confirmed by our experiments (Figure 5)
where the MMM library generated by ATLAS is evaluated in the contex of matrix-matrix
multiplication.

Analytic Models and Empirical Search 265

ignoring conflict misses in the L2 cache because the difference in latencies between the
L1 and L2 caches is much smaller than the difference in latencies between the L2 cache
and the main memory.

To compute the L2 blocking factor we use a conservative approach that ensures that
NBxNB blocks of data from all three matrices A, B, and C fit in the L2 cache. This
happens when the combined size of these three blocks (3 ∗NB2) is equal to the size of
the L2 cache.

4 Adaptive Modeling

Our adaptive approach combines the information embedded in the model from Section 3
with feedback information obtained from the execution of versions of the mini-MMM
code. Both types of information are used to search for the maximum of the mini-MMM
performance function. The approach determines the shape of this function through ex-
perimentation. Each experiment consists of generating, compiling, and executing mini-
MMM code. The mini-MMM code is generated by ATLAS’s code generation module,
ensuring that the space of available transformations is the same for ATLAS search and
the adaptive approach. The parameter values for transformations, however, are deter-
mined by our algorithm. The feedback provided by each experiment (in form of mini-
MMM performance) is used to design subsequent experiments to maximize information
about the location of performance-maximizing parameter values. Maximizing perfor-
mance can be done either via a local search (e.g., by performing hill climbing) or by
modeling the whole performance function globally via appropriately chosen regression
curves. Experiments that provide the best feedback about the shape of the regression
function are preferred. The location of the maximum in this scenario is determined in-
directly from the shape of the regression function. Prior knowledge obtained from the
model is used to indicate to the family of regression curves that the maximum perfor-
mance is going to be located in the neighborhood of the model-predicted
values.

In our experiments, we focus on optimizing the cache blocking parameter (NB): This
is done by analyzing the general shape of the plot of mini-MMM performance as a
function of the cache blocking parameters. Figure 2, for example, shows sampled data

0

100

200

300

400

500

600

0 100 200 300 400 500 600

M
F

L
O

P
s

Tile Size

a) Sparc

L1 L2
0

100

200

300

400

500

0 50 100 150 200 250 300 350

M
F

L
O

P
s

Tile Size

b) SGI

L1 L2

Fig. 2. Performance as a function of cache block size NB (complete instruction cache unroll:
KU=NB)

266 A. Epshteyn et al.

collected on two different machines. In each plot, the points show the performance of
the mini-MMM code (Y-axis) for different values of cache block size (X-axis). As these
sampled points are being collected, a regression curve is fitted to the data (this curve is
shown in Figure 2 as well). The shape of the curve is adjusted with each newly collected
sample point. The best values of the optimization parameters can be determined directly
from the location of the maximum point on the regression curve.

Certain characteristics of the shape of the plot can be guessed before any data is col-
lected. For example, we expect the peak in the curve of Figure 2-(a) to coincide with
the optimal cache blocking (NB) factor predicted by the model. This is the point where
the L1 cache is fully utilized. Further increase in the block size results in L1 cache over-
flow that results in performance degradation. We expect to see a phenomenon similar
to this on most of the architectures under consideration. Information about the shape of
the performance curve that is available before any data is collected is known as prior
information. In statistics, prior information is captured by a probability distribution in
the space of optimization parameters. We use the model from Section 3 to construct
such a distribution.

Optimization requires a sophisticated algorithm because multiple levels of the cache
hierarchy introduce multiple local maxima in the performance function. For example
Figure 3 shows the performance obtained by the mini-MMM code as the tile size in-
creases. On Pentium III, the figure shows two distinct peaks, each corresponding to
blocking factors for L1 and L2 caches. Our optimization algorithm is described in de-
tail in Section 4.1.

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350 400 450

M
F

L
O

P
s

Tile Size

a) Pentium III

L1 L2
0

100

200

300

400

500

600

700

0 100 200 300 400 500 600

M
F

L
O

P
s

Tile Size

b) Sparc

L1 L2

Fig. 3. Complete sampled performance curves on two machines. The vertical lines correspond to
the blocking factors for L1 and L2 as predicted by the model.

4.1 Cache Blocking Parameters

The adaptive approach constructs a nonlinear regression curve representing the sampled
performance of the mini-MMM code as a function of tile size, with register blocking
parameters being held constant. Figure 2 shows examples of such curves fitted to the
data collected on the platforms that we evaluate in Section 5.2.

The optimal tile size is calculated directly from the fitted regression function. Thus
each point provides global information about the location of the maximum by affecting
the shape of the regression curve. A set of regression curves that could fit the data

Analytic Models and Empirical Search 267

sample is hard-coded and available before any data is collected. In this work, we use
a double-peaked family of regression curves, each peak corresponding to a blocking
factor for one of the caches.

Our algorithm has two main strategies:

1) The first strategy uses the regression curve available at a given time to identify
the next experimental point. That is, it identifies the size of the tile that will be used
for the next sample (tile sizen+1, performancen+1). The goal is to sample the point
that provides the best feedback about the location of the maxima. This strategy is called
Active Sampling.

2) The second computes the curve that “best” fits a set D of experimental points
(tile size1, performance1)...(tile sizen, performancen), taking into account the
prior information provided by the model from Section 3. This strategy is done using
the Maximum a Posteriori Bayessian Estimate.

Our algorithm consists of a loop that in each iteration applies strategy (1) to gen-
erate a sample point and then applies strategy (2) to compute the best fit given all the
points selected so far. As the search is conducted, each sample point is determined by
generating a mini-MMM program based on the tile size determined by the strategy (1),
compiling the program, and measuring the program’s execution time.

Maximum a Posteriori Bayessian Estimate. Given a set of experimental points, the
second strategy computes a curve that is a good fit to these points and, at the same time,
to the model (known as prior). In our case, good fit to the model means that the two
peaks of the resulting curve are not too distant from the values predicted by the model.
We now describe this strategy more formally.

A typical performance profile is presented in Figure 3-(a). We expect performance
to improve until the L1 cache is fully utilized. At that point, it drops off, but begins
to improve again as the tile size increases until it reaches the point where L2 cache
is fully utilized. The regression curves where the maxima are located at the model-
predicted locations are initially favored. As more data is collected, the preference of
the system shifts towards the regression curves that fit the data best. This trade-off
is governed by the size of the collected sample and is determined by maximum-a-
posteriori estimation as follows: let β be one of the curves identified by our algo-
rithm. This curve is defined by the regression parameters w and the separators (l1, l2)
that correspond to our two peaks (l1 and l2). Initially l1 and l2 are at the values L1
and L2 predicted by the model. In successive iterations of our algorithm, the val-
ues of l1 and l2 are determined in the process of maximizing the formula given
below.

Given a set of data points D, the maximum a posteriori Bayesian estimate is used
to determine the best curve β̂ that maximizes the probability density function P (β|D).
This density function can be computed via Bayes rule: P (β|D) = P (D|β)P (β)/P (D).
P (β) is known as the prior and incorporates information from the model. Since any
curve β is identified by the regression coefficients w and the peak location parameters

268 A. Epshteyn et al.

(l1, l2), P (β) = P (w, (l1, l2)) = P (w|(l1, l2))P (l1, l2). Now, we assume that the
curves with peaks at l1 and l2 have a uniform prior disttribution, i.e. P (w|(l1, l2)) is
a constant. We also assume that the random variables (l1, l2) have a normal distribu-

tion centered at L1 and L2: P (l1, l2) = N(
[
L1
L2

]
,

[
σ2

1 0
0 σ2

2

]
), where σ2

1 and σ2
2are

user-controlled parameters representing one’s confidence in the model’s prediction. The
other term of the equation, P (D|β) computes the total squared error of the sample with
respect to the curve β assuming that the errors are produced by white Gaussian noise:

P (D|β) = (1√
2πσ2)ne

−
n∑

i = 1
(performancei−β(tile sizei))2/(2σ2)

.

Notice that P (l1, l2) favors the curves that agree with the model, while P (D|β)
favors the curves β that fit the sample well. As the sample size increases more points
contribute to the total squared error and penalize the curves that do not fit the data
more heavily, while P (l1, l2) remains unchanged. Thus, the system converges to the
best regression curve in the limit even if the prior information is inaccurate, but this
convergence happens much faster when the model is good.

Active Sampling. The search performs a dual function. First of all, prior knowledge
may be inaccurate. Figure 3-(b) shows an example of a peak that does not coincide
with any of the predicted blocking factors. Search can verify the tile sizes that fully
utilize the caches and adjust them empirically. Second of all, prior knowledge alone
does not indicate which cache (L1 or L2) to tile for (see Figure 3-(a)). Search resolves
this problem by empirically determining which peak is the dominant one. Moreover,
the adaptive search produces a statistical measure of confidence in its estimate that is
not available with either pure model or ATLAS search.

The main source of our algorithm’s efficiency comes from its ability to select infor-
mative sample points intelligently. This process, known as active sampling, represents
a major deviation from the philosophy of ATLAS and other empirical optimization en-
gines - the system uses feedback from conducted experiments to adjust its sampling
strategy, while ATLAS samples at pre-determined locations.

In doing so, it must take into account conflicting objectives: reducing the time to
collect the sample and selecting the most informative points. The first objective directs
the system to sample points close to the origin, because the sampling time increases
with increasing tile size NB due mainly to the significant increase in the amount of
time required to compile the program.2 The second objective is to select the points that
provide more information about the location of the peak of the function.

To reconcile these objectives, a heuristic that simulates potential fields is used. It
places a negative charge at each sample point to discourage oversampling in the same

2 With bigger tile sizes, the size of the completely unrolled register loop nest increases, forcing
the optimizing compiler to spend more time on instruction scheduling. Increasing the cache
block size from 40 to 400 on the SGI machine increases compilation time from 4 seconds to 4
minutes.

Analytic Models and Empirical Search 269

region and a positive charge at the origin to encourage less time-consuming data points
(since programs generated with smaller values of cache blocking/unrolling take less
time to compile). Positive charges encourage sampling in the region around them, neg-
ative charges have the opposite effect. The point that minimizes the potential field is
selected for sampling. A positive charge is also imposed on regions contributing infor-
mation about the highest peak. This charge is proportional to the estimated probability
that the peak that appears to be the highest actually is the highest.

An example of the heuristic can be seen in Figure 4. The potential field U(x) is a
function of the tile size x. Tile sizes with low potentials experience the least amount of
repulsive force and the greatest amount of attractive force. The system computes U(x)
for every tile size x and chooses the tile size with minimum potential energy for sam-
pling. The potential field is calculated as a sum of contributing factors. Each previously
sampled tile size y contributes ν

(x−y)2 to the potential field at x, creating a repulsive
force that increases at tile sizes x close to the sampled point y. The attractive field at the
origin contributes ξ ∗ (x− 0)2 to the potential field at x, resulting in an attractive force
that decreases with increasing tile size. ν and ξ are user-defined constants controlling
the strengths of the forces creating the field. The advantage of using this heuristic is its
efficiency in combining multiple objectives.

-5e+006

-4.99995e+006

-4.9999e+006

-4.99985e+006

-4.9998e+006

-4.99975e+006

-4.9997e+006

0 50 100 150 200 250

F
ie

ld
 S

tr
en

g
th

Tile Size

Pentium III
potential

Fig. 4. Potential Field for Active Sam-
pling. The field is constructed based on
three sample points. It increases away
from the origin and at previously sampled
locations.

Examples of application of this heuristic are
presented in Figure 2. In Figure 2-(a), a two-
peaked function is used to fit the data. The first
peak (blocking for the L1 cache) is the dom-
inant one. The location of the L1 peak is es-
timated by the system from the sampled data.
The L2 peak is predicted from the intersection
of the regression function that fits the data and
the location of the L2 blocking factor deter-
mined by the prior knowledge. The uncertainty
of the estimated regression curve parameters is
used to calculate the probability that blocking
for the L1 peak yields better performance than
blocking for L2. This probability, in turn, forces
the sampling heuristic to direct its attention to
the points that contribute information about the
L1 peak. This, in conjunction with the fact that
smaller block sizes correspond to less expensive sample points (in terms of compilation
time), prompts the system to direct its attention to the region around the L1 blocking
factors.

In Figure 2-(b), a different performance profile results in a different sampling be-
havior. In this architecture, the optimal cache block size must take advantage of the L2
cache. After the system determines that the dominant peak lies beyond the L1 satura-
tion point, it attempts to collect as much information as possible to ascertain how to
take advantage of the L2 cache, even at the expense of incurring a higher sampling cost.
It does not make any sense to sample at lower tile sizes if these points do not provide
any information about the predicted optimal peak of the model.

270 A. Epshteyn et al.

5 Experimental Results

In this section, we evaluate the adaptive optimization algorithm. The environmental
setup used for our experiments is discussed in Section 5.1 and performance results are
shown in Section 5.2. Our experiments demonstrate the feasibility of application of our
approach by showing that the adaptive model can achieve performance comparable to
(and sometimes exceeding that of) ATLAS and outperform the analytic model, while
requiring many fewer experiments than an exhaustive search.

5.1 Environmental Setup

Our experiments were performed on two different architectural platforms: Ultra Sparc
III and SGI R12000). Table 1 lists the salient architectural parameters of each platform3

The following algorithms were executed on each platform:

1) Model: We use the model from [20] described in Section 3. The model assumes
that tiling for the L1 cache is usually optimal.

2) ATLAS search: This is the search strategy using the code generator as described in
Section 2. ATLAS assumes that tiling for the L1 cache is optimal for these archi-
tectures, and performs a near-exhaustive search of the cache tile space from 16 to
the minimum of (80 and

√
L1 Cache Size), in steps of 4.

3) Adaptive: This is the approach we present in this paper, as described in Section 4.
The search for the optimal cache blocking parameter values terminates after col-
lecting 20 points.

Table 1. Test Platforms

Sparc SGI

CPU Ultra Sparc III R12000

Frequency 750 MHz 300 MHz

L1d/L1i Cache 64 KB/32 KB 32 KB/32 KB

L2 Cache 8 MB 2 MB

Memory 4 GB 512 MB

OS SunOS 5.8 IRIX64 v6.5

ATLAS Compiler Workshop cc v5.0 MIPSPro cc v7.30

ATLAS Compiler -dalign -fsingle -O3 -64 -OPT:Olimit=15000

Options -xO2 -native -TARG:platform=IP30

-LNO:blocking=OFF -LOPT:alias=typed

All of the search strate-
gies are integrated with AT-
LAS version 3.4.1. Each
search strategy optimizes
performance by generating
versions of code (mini-
MMM) with the param-
eter values under test,
compiling and executing
them. Once the optimal
transformation parameter
values are found, a library
is generated that uses the
discovered values to multi-
ply user-provided matrices.
While it is plausible that
optimal mini-MMM performance will translate into good performance when multi-
plying arbitrary matrices, this is not guaranteed. In this Section we generate libraries
for multiplying double-precision floating point numbers. For each algorithm and each
platform under test, the following measurements are made:

3 ATLAS compiler and options are the defaults that ATLAS selects in each target platform.

Analytic Models and Empirical Search 271

– The amount of time needed to find the optimal parameter values.
– Performance of mini-MMM code generated with the values found to be the optimal.
– Performance of the generated library on a wide range of matrix sizes.

Table 2. Selected Block Size
(NB)

Model Adaptive ATLAS

Sparc 88 60 68
SGI 62 170 64

Table 3. Mini-MMM Perfor-
mance (in MFLOPs)

Model Adaptive ATLAS

Sparc 376.66 851.04 772.33
SGI 499.81 553.15 505.4

Table 4. Time To Complete
Search (in minutes)

Model Adaptive ATLAS

Sparc 0:00 3:12 8:59
SGI 0:00 14:02 59:00

5.2 Experimental Results

Table 2 lists the optimal cache block size chosen by each strategy. Table 4 presents
the amount of time required for each search strategy to complete. The model performs
simple calculations and, therefore, takes a negligible amount of time to complete. The
adaptive search, while slower than the model, is three-four times faster than ATLAS
search.

The measured performance of each strategy appears in Table 3. As expected, the
model is outperformed by ATLAS on these two platforms since the model, while ex-
tremely fast, is brittle due to its lack of feedback. ATLAS, on the other hand, requires
an extensive sample size to achieve superior performance. The adaptive optimization
outperforms both the model and ATLAS after collecting a small sample of points. Its
performance gain over ATLAS is most significant on the SGI machine, where it chooses
to tile for the L2 cache, not considered for optimization by ATLAS.

On the Sparc machine, while it appears that the adaptive strategy significantly outper-
forms the model, most of the performance gain is due to the optimal setting of the MU ,
NU , and Latency parameters which are not considered in this work. The performance
gain due to the adaptive search for the optimal NB value is only∼10%. All the reported
results for this machine are also affected by the -native flag that we are using in the
cc compiler of the Sparc machine (Table 1) and that is automatically selected by AT-
LAS. The -native flag should direct the compiler to optimize the code for the current
machine, but apparently the code generated when using this flag corresponds to that of
an older architecture. If instead of -native we use the flag -xarch=v9awhich cor-
responds to the architecture of the target Sparc machine, we found that the performance
results of the code generated by Model were very similar to those in Table 3 for ATLAS
or Adaptive.

Figure 5 shows the performance of the libraries generated using the parameters in
Table 2 for each of the optimization algorithms under study. Figure 5 shows the perfor-
mance of each library as the size of the matrices being multiplied increases from 100×
100 to 3000× 3000. The Figure demonstrates that there is a strong correlation between
mini-MMM performance and performance of the final generated library, the metric that
the end user of the system is interested in.

272 A. Epshteyn et al.

0

200

400

600

800

1000

0 500 1000 1500 2000 2500 3000

M
F

L
O

P
s

Matrix Size

a) Sparc

350

400

450

500

550

600

0 500 1000 1500 2000 2500 3000

M
F

L
O

P
s

Matrix Size

b) SGI Legend:

Adaptive
Model

ATLAS

Fig. 5. Library Performance Comparison for ATLAS Search, Model, and Adaptive Search

6 Conclusions and Related Work

Machine learning has been applied to construct adaptive compiler optimizers before.
Cooper et. al., for example, use genetic algoithms to search through sequences of
optimizing code transformations [9]. Using genetic algorithms (and other machine
learning optimization algorithms) can be time-consuming in a large space of possible
optimizations.

These techniques have also been extended to search for entire versions of algorithms,
as opposed to just code transformations. Li et. al. [13] present a two-phase algorithm
for optimizing sorting. The first (offline) phase performs a search to construct a mapping
from the parameters of a sorted array (its data entropy and size) to the best-performing
sorting algorithm. The second (online) phase uses that mapping to apply the best sorting
algorithm to the given array at runtime. A similar framework was applied by Thomas
et. al. to optimize parallel matrix multiplication [15].

An important feature which distinguishes our approach to searching is explicit inte-
gration of information from the analytic model to guide the search, thereby reducing its
time. We believe that adaptive intelligent modeling represents a promising and important
direction in code optimization. The defining motivation is to integrate all relevant infor-
mation into a hybrid model which can both resolve optimization decisions and guide
further information collection. The challenge is combining information from different
sources that come in radically different forms. In this first proof of concept research, the
forms include a general but approximate prior analytical model and empirical measure-
ments of code samples taken directly on the system to be optimized. In our narrow but
important test domain of mini-MMM optimization, our adaptive model is much more
efficient than the empirical optimization approach. We believe our most significant re-
search contribution is to open a new direction for code optimization. The principle of
adaptive intelligent modeling is to actively seek out information that can be used as ev-
idence for refining and restructuring itself so that the optimization decisions are always
the best they can be. Our end goal is to expand the applicability of feedback-directed
search in the online optimization setting, where both accuracy and speed are crucial.

References

1. ATLAS home page. [Online]. http://math-atlas.sourceforge.net/faq.html#NB80.
2. R. Allan and K. Kennedy. Optimizing Compilers for Modern Architectures. Morgan Kauf-

mann Publishers, 2002.

Analytic Models and Empirical Search 273

3. J. Bilmes, K. Asanović, C. Chin, and J. Demmel. Optimizing Matrix Multiply using PHiPAC:
a Portable, High-Performance, ANSI C Coding Methodology. In Proc. of Int. Conf. on
Supercomputing, Vienna, Austria, July 1997.

4. P. Boulet, A. Darte, T. Risset, and Y. Robert. (Pen)-ultimate Tiling? In INTEGRATION, the
VLSI Journal, volume 17, pages 33–51. 1994.

5. D. Callahan, S. Carr, and K. Kennedy. Improving Register Allocation for Subscripted Vari-
ables. In Proc. of PLDI, pages 53–65, 1990.

6. S. Carr, C. Ding, and P. Sweany. Improving software pipelining with unroll-and-jam. Proc.
of 29th Hawaii International Conference on System Sciences, 1996.

7. S. Coleman and K. S. McKinley. Tile Size Selection Using Cache Organization and Data
Layout. In Proc. of PLDI. ACM Press, June 1995.

8. K. Cooper and T. Waterman. Investigating Adaptive Compilation Using the MIPSPro Com-
piler. In Proc. the LACSI Symposium,, Los Alamos Computer Science Institute, October
2003.

9. K. D. Cooper, D. Subramanian, and L. Torczon. Adaptive optimizing compilers for the 21st
century. The Journal of Supercomputing, 23(1), 2002.

10. G. DeJong. Explanation-based learning. In A. Tucker, editor, Computer Science Handbook,
pages 68.1 – 68.18. Chapman & Hall/CRC and ACM, 2nd edition, 2004.

11. P. Diniz and M. Rinard. Dynamic feedback: An effective technique for adaptive computing.
Proc. of PLDI, 1997.

12. M. Frigo and S. G. Johnson. FFTW: An Adaptive Software Architecture for the FFT. Proc.
IEE Intl. Conf. on Acoustics, Speech, and Signal Processing, 3:1381–1384, 1998.

13. X. Li, M. J. Garzaran, and D. A. Padua. A dynamically tuned sorting library. In CGO, pages
111–124, 2004.

14. C. P. Robert. The Bayesian Choice. Springer-Verlag, 1994.
15. N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N. M. Amato, and L. Rauchwerger. A

framework for adaptive algorithm selection in stapl. Proc. ACM SIGPLAN Symp. Prin. Prac.
Par. Prog. (PPOPP) (to appear), 2005.

16. S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. August. Compiler optimization-
space exploration. Int. Symp. on CGO, 2003.

17. R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated Empirical Optimization of Software
and the ATLAS Project. Parallel Computing, 27(1–2):3–35, 2001.

18. M. Wolfe. Iteration Space Tiling for Memory Hierarchies. In Third SIAM Conf. on Parallel
Processing for Scientific Computing, December 1987.

19. J. Xiong, J. Johnson, R. Johnson, and D. Padua. SPL: A Language and a Compiler for DSP
Algorithms. In Proc. of PLDI, pages 298–308, 2001.

20. K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M.Garzaran, D. Padua, K. Pengali,
P. Stodghill, and P. Wu. A Comparison of Empirical and Model-driven Optimization. Proc.
of PLDI, pages 63–76, 2003.

21. K. Yotov, X. Li, G. Ren, M. J. Garzarán, D. Padua, K. Pingali, and P. Stodghill. Is Search Re-
ally Necessary to Generate a High Performance Blas? In Proc. of the IEEE, special issue on
Program Generation, Optimization, and Platform Adaptation, 23:358–386, February 2005.

Testing Speculative Work in a Lazy/Eager
Parallel Functional Language�

Alberto de la Encina, Ismael Rodŕıguez, and Fernando Rubio

Facultad Informática. Universidad Complutense de Madrid
C/. Prof. José Garćıa Santesmases, E-28040 Madrid. Spain

{albertoe,isrodrig,fernando}@sip.ucm.es

Abstract. Eden is a parallel extension of the functional language
Haskell. Eden inherits from Haskell its laziness, which allows it to avoid
unnecessary computations. However, in order to enable the parallel ex-
ecution of processes in Eden, this feature must be disabled when new
processes are instantiated. Hence, any newly created process can be spec-
ulative, as it is not known whether the computations it performs will
actually be required for the overall computation. Therefore, the perfor-
mance of a program may be affected by the unneeded speculation. In
this paper we present a framework to compare the speculated compu-
tations of an Eden program with the computations it actually requires.
Thus, the programmer is provided with a profiling tool allowing him to
produce better programs where speculative work fits better the actual
necessities.

1 Introduction

Parallel programming faces several specific challenges that are not met in se-
quential programming. The programmer of a sequential program defines a com-
putation in terms of some subcomputations, and the coordination of them is
trivially achieved because the order of subcomputations is implicitly given. How-
ever, the coordination of subcomputations in parallel programs increases their
complexity. In this sense, the functional paradigm provides some advantages for
the programmer. In particular, parallel functional languages are endowed with
useful abstraction mechanisms like function composition and higher-order func-
tions. The higher-order programming level provided by them allows to define
the coordination of subcomputations in terms of the same constructions used in
the rest of the program, which enables the definition and use of skeletons [2,3,7]
to develop simpler parallel programs. Besides, since functional programs do not
have state, side-effects are eliminated. So, the dependencies between processes
are limited to obtaining the arguments needed to execute each function. These
features ease the coordination issues and allow to define them in a natural way.

Several parallel functional languages have been proposed (see e.g. [20,7,17,19]).
Among them, Eden has the interesting characteristic of requiring relatively low
� Work partially supported by the MCYT project TIC2003-07848-C02-01, the JCCLM

project PAC-03-001, and the Marie Curie project MRTN-CT-2003-505121/TAROT.

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 274–288, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Testing Speculative Work in a Lazy/Eager Parallel Functional Language 275

programming effort to create programs with acceptable speedups (see [12]). Its
main advantage is that it combines high-level constructions to simplify the de-
velopment of parallel programs, and some controlled low-level constructions to
allow increasing the efficiency. Eden extends the (lazy evaluation) functional
language Haskell [15] by adding syntactic constructions for defining and instan-
tiating processes. As a Haskell extension, Eden applies the laziness for deciding
the computations to be executed in each moment. That is, a computation is per-
formed only after it is detected that the result of that computation is required for
continuing another computation that is already initiated. Let us note that pure
laziness implies sequential computation. So, in order to allow parallel computa-
tions, Eden creates new processes eagerly. Moreover, any newly created process
is able to perform computations in parallel before its creator actually demands
the result for continuing its execution. This feature, which is necessary for en-
abling parallelism, may cause that a program performs some computations that
turn out to be unneeded. In fact, Eden processes are speculative: They perform
computations under the assumption that they will actually be needed.

The uncontrolled speculation may be a source of inefficiency in parallel pro-
grams. In order to achieve a better use of resources and a higher performance, the
programmer should be provided with a measure of the unnecessary speculation
of a program. In this paper we present a method for comparing the speculative
computations and the computations actually needed in an Eden program. Basi-
cally, the method consists in comparing the data actually needed by a process
and the speculative data evaluated by processes launched by this process.

Unfortunately, making a functional program to show the results of partial
computations in some points is not easy. Let us remind that, contrarily to an
imperative program, a functional program does not have state. Thus, the obser-
vation of partial computations cannot be based on observing how some variables
change, because variables do not exist in functional environments. Besides, due
to the laziness of Eden, the execution of a computation may turn out to be
unnecessary, but a simple observation (e.g., writing a result in the screen or in
a file) could create a false demand on such unneeded computation. Hence, ob-
servations must be defined in such a way that they produce a (neutral) result
that is actually required only in the same situations as if the observations were
not introduced. We will address this issue by using and extending Hood (Haskell
Object Observation Debugger [5]). This tool allows a programmer to observe the
behavior of a Haskell program by inserting some calls to an observation function
in the program. The observation function records the value returned by a func-
tion in some point of the program, but without creating extra demand. These
functions will be the basis of our method to compare the useful speculation and
the actual speculation in an Eden program.

The rest of the paper is structured as follows. In the next section we sketch
the Eden language. Then, in Section 3 we present the observation constructions
of Hood. Next, in Section 4 we present our method to assess the unnecessary
speculation in Eden programs. A case study is shown in Section 5, and related
work in Section 6. Section 7 contains our conclusions and lines of future work.

276 A. de la Encina, I. Rodŕıguez, and F. Rubio

2 The Eden Language

Eden [7,13] extends the lazy functional language Haskell [15] by adding syntactic
constructs to explicitly define and instantiate processes. It is possible to define a
new process abstraction p by using the following notation that relates the inputs
and the outputs of the process: p = process x -> e , where variable x will
be the input of the process, while the behavior of the process will be given
by expression e. Process abstractions can be compared to functions, the main
difference being that the former, when instantiated, are executed in parallel.

Process abstractions are not actual processes. To really create a process, a
process instantiation is required. This is achieved by using the predefined infix
operator #. Given a process abstraction and an input parameter, it creates a
new process and returns the output of the process. Each time an expression e1 #

e2 is evaluated, the instantiating process will be responsible for evaluating and
sending e2, while a new process is created to evaluate the application (e1 e2).

Once a process is running, only fully evaluated data objects are communicated.
The only exceptions are lists, which are transmitted in a stream-like fashion, i.e.
element by element. Each list element is first evaluated to full normal form
and then transmitted. Concurrent threads trying to access not yet available
inputs are temporarily suspended. This is the only way in which Eden processes
synchronize. Notice that process creation is explicit, but process communication
(and synchronization) is completely implicit.

In contrast to most parallel functional languages, Eden also includes high-level
constructions (not shown in the paper) both for developing reactive applications
and for dynamically establishing direct connections between any pair of pro-
cesses. This allows handling low-level parallel features that cannot be used in
conventional functional languages. Thus, Eden provides an intermediate point
between very high-level parallel functional languages (whose performance use
to be poor), and classical parallel languages (which do not allow using high-
level constructions). We do not claim that Eden can obtain optimal speedups,
but it can obtain quite acceptable speedups with small programming effort (see
e.g. [13,12]).

Eden’s compiler (see http://www.mathematik.uni-marburg.de/inf/eden)
has been developed by extending the most efficient Haskell compiler (GHC [14]).
Hence, Eden’s compiler reuses GHC’s capabilities to interact with other program-
ming languages. Thus, Eden can be used as a coordination language, while the
sequential computation language can be, for instance, C.

To easily port the compiler to different architectures, the runtime system
works on top of a message passing library (the user can choose PVM or MPI).

Eden Skeletons. Process abstractions in Eden are not just annotations, but
first class values which can be manipulated by the programmer (passed as pa-
rameters, stored in data structures, and so on). This facilitates the definition
of skeletons as higher order functions. Next, we illustrate, by using simple ex-
amples, how skeletons can be written in Eden. More complex skeletons can be
found in [13,18].

Testing Speculative Work in a Lazy/Eager Parallel Functional Language 277

The most simple skeleton is map. Given a list of inputs xs and a function f to
be applied to each of them, the sequential specification in Haskell is as follows:

map f xs = [f x | x <- xs]

that can be read as for each element x belonging to the list xs, apply function
f to that element. This can be trivially parallelized in Eden. In order to use a
different process for each task, we will use the following approach:

map_par f xs = [pf # x | x <- xs] ‘using‘ spine
where pf = process x -> f x

The process abstraction pf wraps the function application (f x). It determines
that the input parameter x as well as the result value will be transmitted through
channels. The spine strategy (see [21] for details) is used to eagerly evaluate the
spine of the process instantiation list. In this way, all processes are immediately
created. Otherwise, they would only be created on demand.

Let us remark that it is not necessary to explicitly use constructions for syn-
chronizing the processes. The main process initially sends a task to each of the
worker processes of the map par. Afterwards, as soon as any of the workers fin-
ishes its assignment, it automatically sends the result to the main process (by
using PVM or MPI messages). When the main process has received all the results
that it needs, it finishes the computation.

map par is an essential primitive skeleton used to eagerly create a set of in-
dependent processes, but it can be easily improved by reducing the number of
processes to be created. In a map farm the number of processes to be created is
fixed (for instance, it can be the number of processors), and tasks are evenly dis-
tributed into processes. The implementation firstly distributes the tasks among
the processes, producing a list of lists where each inner list is to be executed
by an independent process. Then, it applies map par, and finally it collects the
results joining the list of lists of results into a single list of results. Notice that,
due to the laziness, these three tasks are not done sequentially, but in interleav-
ing. As soon as any worker computes one of the outputs it is computing, it sends
this subresult to the main process, and it goes on computing the next element
of the output list. Notice that the communications are asynchronous, so that it
is not necessary to wait for acknowledgments from the main process. When the
main process has received all the needed results, it finishes the computation. The
Eden source code of this skeleton is shown below, where not only the number np
of processors but also the distribution and collection functions (unshuffle and
shuffle respectively) are also parameters of the skeleton:

map_farm np unshuffle shuffle f xs
= shuffle (map_par (map f) (unshuffle np xs))

Different strategies to split the work into the different processes can be used
provided that, for every list xs, (shuffle (unshuffle np xs)) == xs.

Let us remark that developing skeletons in Eden is relatively easy. Due to the
lack of space, we have only shown the simplest examples, but many others have
already been implemented. Details about them can be found in [13].

278 A. de la Encina, I. Rodŕıguez, and F. Rubio

3 Basic Hood

In this section we show the basic ideas behind Hood. The interested reader is
referred to [5,4] for more details about it.

When debugging programs written in an imperative language, the program-
mer can explore not only the final result of the computation, but also the inter-
mediate values stored in the variables being used by the program. Moreover, it
is simple to trace how the value of each variable changes along time.

Let us remark that debugging lazy functional code has two main difficulties.
First, lazy functional languages do not contain variables whose value change
along time and that can be traced as in imperative languages. Second, intro-
ducing observations can modify the order of evaluation, affecting to the overall
computation.

Fortunately, Hood allows the programmer to observe something similar to
what can be observed in imperative environments. In fact, Hood allows the pro-
grammer to observe any intermediate structure appearing in a program. More-
over, we can also observe the evolution in time of the evaluation of the structures
under observation.

In order to illustrate what kind of observations can be obtained by using Hood,
let us consider an example. It will be complex enough to highlight important
aspects of Hood, but also relatively simple to be easily understandable with-
out requiring knowledge about Haskell. Given a natural number, the following
Haskell function returns the list of digits of that number:1

natural :: Int -> [Int]
natural = reverse

. map (‘mod‘ 10)

. takeWhile (/= 0)

. iterate (‘div‘ 10)

That is, natural 3408 returns the list 3:4:0:8:[], where [] denotes the
empty list and : denotes the list constructor. Note that, in order to compute the
final result, three intermediate lists where produced in the following order:

-- after iterate
3408:340:34:3:0:_
-- after takeWhile
3408:340:34:3:[]
-- after map
8:0:4:3:[]

1 The first line of the definition only provides the type declaration of the function:
given an integer it returns a list of integers. The other four lines define the sequence
of functions to be applied to obtain the overall effect, being reverse the last one
to be applied. The higher-order function iterate applies infinite times the first
function it receives. For instance, applying iterate (+3) 1 returns the infinite list
1:4:7:10:13:...

Testing Speculative Work in a Lazy/Eager Parallel Functional Language 279

Notice that the first intermediate list is infinite, although only the first five
elements are computed. As the rest of the list does not need to be evaluated, it
is represented as (the underscore char).

By using Hood we can annotate the program in order to obtain the output
shown before. In order to do that, we have to use the observe combinator that
is the core of Hood. The type declaration of this combinator is: observe ::
String -> a -> a . From the evaluation point of view, observe only returns
its second value. That is, observe s a = a. However, as a side effect, the value
associated to a will be squirrelled away, using the label s, in a file that will be
analyzed after the evaluation finishes. It is important to remark that observe
returns its second parameter in a completely lazy, demand driven manner. That
is, the evaluation degree of a is not modified by introducing the observation, in
the same way that it is not modified when applying the identity function id.
Thus, as the evaluation degree is not modified, Hood can deal with infinite lists
like the one appearing after applying iterate (‘div‘ 10).

If we consider again our previous example, we can observe all of the interme-
diate structures by introducing three observations as follows:

natural :: Int -> [Int]
natural = reverse

. observe "after map" . map (‘mod‘ 10)

. observe "after takeWhile" . takeWhile (/= 0)

. observe "after iterate" . iterate (‘div‘ 10)

After executing natural 3408, we will obtain the desired result. Hood does
not only observe simple structures like those shown before. In fact, it can observe
anything appearing in a Haskell program, including functions. For instance,

observe "length" length (4:2:5:[])

will generate the following observation:

-- length
{ \ (_:_:_:[]) -> 3 }

That is, we are observing a function that returns the number 3 (without
evaluating the concrete elements appearing in the list) when it receives a list with
three elements. Let us remark that it is only relevant the number of elements,
but not the concrete elements. That is, the observation mechanism detects that
the laziness of the language will not demand the concrete elements to compute
the overall output. As it can be expected, higher-order functions can also be
observed, but we do not show it due to lack of space.

4 Testing Speculation by Parallelizing Hood

In this section we present our method to assess the speculation of a parallel Eden
program. The method is based on using the observation functionalities provided

280 A. de la Encina, I. Rodŕıguez, and F. Rubio

by Hood in specific points of the program under assessment. Let us recall that
the application of observe to a term returns only the (partial) evaluation of the
term that is actually required by other subcomputations in the context where
observe is invoked. Hence, it gives us the (partial) term that is demanded in
the context of the observation. When a process instantiates another process,
the former process demands the computation of a term from the latter (from
now on, invoker and instantiated processes, respectively). In order to perform
our analysis, we need to consider the evaluation of this term at two different
points. On the one hand, the observation of the term required by the invoker
(in the context of the invoker) gives us the true necessities of the program at
this point. On the other hand, the observation of the term constructed by the
instantiated process (in the context of instantiated process) gives us the result of
the speculated work performed by the instantiated process. By comparing both
values, we can assess the amount of unnecessary speculation performed by the
program at this point. In fact, if we obtain not only the final values of the term
at both sides but also the order in which each part of the term is calculated,
then we can infer not only the amount of unnecessary work but also the relative
speeds of both parts. Hence, we can enrich the profiling capabilities of Eden.

4.1 A Simple Example

Let us consider a näıve but illustrative example. The following process generates
the (infinite) list of primes greater than or equal to a given input number n.
The process receives a natural number n as input, and produces a (potentially
infinite) list of primes outputs:

pprimes = process n -> outputs
where outputs = generatePrimes n

generatePrimes x = if (isPrime x) then x : restOfPrimes
else restOfPrimes

where restOfPrimes = generatePrimes (x+1)

The list of primes outputs is obtained by calling function generatePrimes
with parameter n. Given any parameter x, this function firstly computes the
(infinite) list of all the rest of primes, that is, the list of all primes greater than
or equal to x+1 (as we will see below, depending on the necessities of other
external computations, only a finite part of the list might be computed). Then,
x is added at the head of the list if x is prime or it is ignored otherwise.

Let us suppose that we are interested in using this process to obtain the short-
est list of consecutive primes (greater than or equal to initialNumber) such that
the multiplication of its elements is greater than or equal to a given minimal
threshold threshold.2 For example, given initialNumber=2and threshold=26,
we wish to obtain [2,3,5] since 2 ∗ 3 ∗ 5 = 30. The function myComputation per-
forms this task:
2 A similar functionality will be required in Section 5 to implement the LinSolv algo-

rithm. In particular, it will be required to apply the Chinese Remainder Theorem.

Testing Speculative Work in a Lazy/Eager Parallel Functional Language 281

myComputation initialNumber threshold = take neededNumber primes
where primes = pprimes # initialNumber

products = scanl (*) 1 primes
neededNumber = length (takeWhile (< threshold) products)

Let us explain how function myComputation works. The term primes repre-
sents the list of all primes from initialNumber on, and it is computed by in-
stanting a new process that executes function pprimes with parameter initial
Number. Fortunately, the rest of expressions used in the context of function
myComputation will only demand a finite amount of elements of primes. Thus,
the new process will not compute new primes forever. This is so because when
the invoker process finishes the computation of function myComputation, the
runtime system automatically terminates the instantiated process. The term
products performs the multiplication of all elements in list primes by using
function scanl. Function scanl applies a given binary operator to all the ele-
ments in a list. This is done by applying the function to each element in order
and cumulating the partial result from each element to the next. An initial cu-
mulated value is given as parameter. Function scanl returns a new list where
the elements are the cumulated values after each element in the input list is
applied. For instance, scanl (*) 1 [2,3,5] returns the list [1,2,6,30]. The
term neededNumber computes the number of elements in products that are be-
low threshold. Since the ith element in products provides the multiplication
of the first i primes of primes, neededNumber gives us the number of elements
needed in list primes. The number neededNumber is calculated by taking the list
of the elements of products below threshold and computing its length. Finally,
the output of myComputation is given by taking neededNumber elements from
the list primes.

Let us remark that the aim of the previous program is not to provide an
efficient parallel solution, but to serve as a simple but illustrative basis to develop
a first approach to our method. In particular, we will use the previous example
to study the speculative work performed by the instantiated process to compute
the function pprimes. Although this process is devoted to produce an infinite
list of numbers, not all of them will be actually required. However, we do not
know in advance how many elements of the list will be actually required. We are
interested in comparing the amount of primes used by the process that executes
the function myComputationwith the amount of primes computed by the process
that runs the function pprimes. In fact, all primes calculated by pprimes that
are higher than the last prime used by myComputation are the result of the
unnecessary speculated work, because these primes are useless for the program
necessities. Let us note that a programmer is not likely to properly assess the
amount of unnecessary speculative work of this program in advance, because
the time required by each process to perform each operation depends on several
uncontrollable factors. Actually, both involved processes will race each other to
perform their computations. Hence, if their relative speed is unbalanced (in any
of both senses) then the overall performance of the program will fall.

282 A. de la Encina, I. Rodŕıguez, and F. Rubio

Next we show how the previous program can be modified to provide the
required information. The modification will be based on introducing observations
that will report the computation/use of the list of primes in both processes.
First, let us consider the instantiated process. In order to observe the list of
primes that is produced by this process, we just need to observe the list that
it returns to its invoker. The term to be returned is now replaced by a new
expression. It returns the same value to the invoker, but only after any change
on the evaluation of outputs is properly reported to a log file with a suitable tag
(outsFromProcess). So, though the introduction of the observation is innocuous
for the overall computation, the required profiling information will be obtained:

pprimes = process n -> (observe "outsFromProcess" outputs)
where outputs = generatePrimes n

Let us consider the instantiated process. In order to minimize the number of
requests between invoker processes and instantiated processes, any value com-
puted by an instantiated process is immediately sent to the invoker in Eden.
This means that all primes computed by the instantiated process are locally
available for being used by the invoker. However, let us note that the laziness is
locally applied in each process in Eden. Hence, the number of primes obtained
by the invoker (i.e., actually taken from those received by the communication
channel) perfectly matches its necessities, and no unneeded prime is used. So,
by observing the list of primes obtained by the invoker from the instantiated
process, we can calculate the true necessities of this process. Any change in this
list will be reported in a file with the tag insFromProcess:

myComputation initialNumber threshold = take neededNumber primes
where primes = observe "insFromProcess" (pprimes # initialNumber)

products = scanl (*) 1 primes
neededNumber = length (takeWhile (< threshold) products)

After running the program using 327 and 49472453 as inputs in a two-
processors environment, our observations inform us that outsFromProcess has
37 entries, while insFromProcess has only 4. That is, 33 unnecessary primes
where computed by the auxiliary process in our näıve example.

4.2 General Scheme

In the previous example, the speculative work was performed by the instanti-
ated process. However, this could be the other way around: The invoker process
instantiates a new process and afterwards produces some values that this new
process may or may not need. The values demanded by the instantiated pro-
cesses are its parameters. In this case, the instantiated process takes the values
computed by the invoker as long as it needs them, and the speculative work
is performed by the invoker process. Let us note that the application of our
method to this case is similar to that shown in the previous example. Actually,
the method developed in the previous example can be generalized to deal with

Testing Speculative Work in a Lazy/Eager Parallel Functional Language 283

any scenario where the speculative work of some processes has to be assessed.
Next we present a redefinition of the basic Eden constructors. This redefinition
performs all the required tracing issues in such a way that the programmer can
forget any details concerning observations: He must just instantiate the processes
he wants to analyze by calling the functions provided by the new constructors and
introducing his function as parameter. Then, the system automatically reports
any change on both its input and its output. By applying the new observation
constructors to both an invoker and an instantiated process, all the needed in-
formation will be properly reported. Thus, if we want to observe the inputs and
outputs of a process that computes a given function f then, instead of directly
using f, we will call the following function processObs using f as parameter:

processObs f = process ins -> (observe "outsFromProcess" outs)
where outs = f ins’

ins’ = observe "insToProcess" ins

The previous function defines a process with input ins. In order to observe the
data that this new process receives from its creator and it actually requires,
this parameter is observed by the second observation in the previous definition,
labelled by insToProcess. After function f is normally applied to the input, the
output outs is obtained. The observation of this term (first observation, labelled
by outsFromProcess) reports the data this process transmits to its creator.

The previous function allows us to observe the treatment of inputs and outputs
of the instantiated process. Similarly, we need a new functionality to observe
the behavior of the invoker process. Next we redefine the process instantiation
operator to include the observation capabilities. The new operator, based on the
standard operator #, is ##:

p ## actualParameters =
observe "insFromProcess"

(p # (observe "outsToProcess" actualParameters))

The new operator allows any process to instantiate a new process by using
the standard one. Besides, two observations are introduced to report the inputs
and outputs that the invoker process exchanges with the new process. Observa-
tions labelled by insFromProcess report the data that the invoker receives (and
actually requires) from the newly instantiated process. Observations labelled by
outsToProcess report the data that is sent from the invoker to the instantiated
process (regardless of whether the instantiated process requires them).

The use of both new constructors leads to the general scheme depicted in
Figure 4.2. By combining the new process abstractions processObs and ## we
obtain four relevant data. These data provide us with two critical measures
concerning the usefulness of the speculation at this point of the program. On
the one hand, the difference between outsFromProcess and insFromProcess
gives us how much unnecessary speculative work was done by the new process.
On the other hand, the difference between outsToProcess and insToProcess

284 A. de la Encina, I. Rodŕıguez, and F. Rubio

Fig. 1. Invoker and Instantiated Processes

provides us a measure to know how much unnecessary speculative work was
performed by the process creating the new instantiation.

Let us note that the definitions of processObs and ## could be trivially ex-
tended to include extra parameters representing the strings that want to be used
for marking the inputs and outputs of the processes. Moreover, the framework can
be easily applied to other general schemes and programming structures in Eden.
In particular, all the skeletons defined in the Eden library can be trivially rewrit-
ten in terms of the new process abstraction and process instantiation operators.
Hence, they inherit the capability to test the amount of speculative work.

5 Case Study: LinSolv

The linSolv algorithm finds an exact solution of a linear system of equations
of the form Ax = b where A ∈ Z

n×n, b ∈ Z
n, n ∈ N. In contrast to more

common numerical algorithms, which usually produce an approximate solution
over floating point numbers for a given accuracy, the algorithm presented here
finds an exact solution and works over arbitrary precision integers.

To find an exact solution for a given system of equations, linSolv uses a
multiple homomorphic images approach [9]. This is a common computer algebra
approach and consists of the following three stages: (1) map the input data into
several homomorphic images; (2) compute the solution in each of these images;
and (3) combine the results of all images to a result in the original domain.

This structure is particularly useful for operations on arbitrary precision in-
tegers. In this case the original domain is Z, the set of all integer values, and the
homomorphic images are Z modulo p, written Zp, with p being a prime number.
If the input numbers are very big and each prime number fits into one machine
word the basic arithmetic in the homomorphic images is cheap because fixed pre-
cision arithmetic can be used. Only in the combination phase, when applying a
fold-based Chinese Remainder Algorithm (CRA) (see [10]), expensive arbitrary
precision arithmetic has to be used to construct the result values.

Details about the implementation of linSolv in Haskell can be found in [12].
In brief, the main part to be parallelized consists in solving each of the homo-
morphic images, whose basic definition is: xList = map get_homSol primes

Testing Speculative Work in a Lazy/Eager Parallel Functional Language 285

xList_all = map_farm get_homSol primes

xList = filter lucky xList_all

Fig. 2. Parallel linSolv (Eden speculative version)

xList_all = map_rw get_homSol primes

xList = filter lucky xList_all
xList_unlucky = filter (not.lucky) xList_all

(p_needed, p_spec) = splitAt (1 + toInt noOfPrimes) primes
primes’ = p_needed ++ (additional xList_unlucky p_spec)

additional :: [Integer] -> [Integer] -> [Integer]
additional xs ys = zipWith (\ x y -> y) xs ys

Fig. 3. Parallel linSolv (Eden conservative version)

where primes is an infinite list of primes, and get homSol solves the system
modulo a given prime. Thus, the basic parallel structure of the algorithm consists
in performing all computations in the homomorphic images in parallel. It uses
LU-decomposition followed by forward and backsubstitution to compute the
solution pmx in the homomorphic image [16]. From a speculation point of view,
the main difficulty in the parallelization is that we have to make sure that new
results are computed if primes turn out to be “unlucky”, i.e. if the determinant of
the input matrix A in the homomorphic image generated by this prime number
is zero. Let us remark that this is similar to the näıve example we showed in the
previous section. However, in this case the task of the processes is not only to
create primes, but also to solve a linear system modulo that prime.

Even though the situation now is more complex than in the example of the
previous section, our strategy to check how much useless work is done is the
same. As we have to solve the linear system modulo several prime numbers, the
most obvious parallel scheme is to use a map par scheme as shown in Section
2, so that an independent process is created for each prime. However, as we
commented in Section 2, it is better to use a map farm to avoid creating too
many processes. So, in our first approach (shown in Figure 2) we just replaced
the top level map by its parallel counterpart map farm. Unfortunately, when using
the map farm version that includes observations, our tools detected a quite big
amount of useless work, that reduced considerably the overall speedup.

As a second approach, to avoid the potential waste of resources due to spec-
ulation we used a conservative version as shown in Figure 3. In this version the
prime numbers are divided into those known to be needed (p needed) and those
which are only needed if some of the earlier primes are unlucky (p spec). The
function additional adds for each unlucky prime a new prime number to the
task list primes’. Note in the definition of additional that, due to the demand-
driven evaluation, the availability of unlucky primes in xs triggers the generation
of one result element in ys. With this conservative version, the amount of useless

286 A. de la Encina, I. Rodŕıguez, and F. Rubio

xList_all = map_rw get_homSol primes

xList = filter lucky xList_all

Fig. 4. Parallel linSolv (Eden semi-speculative version)

work was zero. Unfortunately, this does not necessarily implies optimal speedups.
The problem is that we had avoided useless work, but at the cost of forcing pro-
cesses to stop for a while each time they finish a task. So, tough the speedups
were better than before, there was still free room for improvement.

Finally, we used a third solution where speculation was restricted but not
completely avoided. In this sense, we used a variation of the task farm skele-
ton as outlined in Section 2. More specifically, we used the replicated workers
paradigm. A manager and a set of worker processes are created, and two tasks
are initially released to each of the workers. As soon as any worker finishes a
task, it sends the result to the manager, and a new task is delivered to the
worker. The computation in the manager is demand-driven and triggered by the
availability of result values. As soon as the manager has all the needed results it
terminates all the worker processes. Notice that in this semi-speculative version
the workers may be working speculatively on useless tasks, but only when the
useful tasks have already been consumed and hence the degree of speculation is
tightly limited. More details about the replicated workers skeleton can be found
in [8]. Figure 4 shows the Eden code for the semi-speculative version of linSolv.
The only modification to the sequential code is the use of a parallel replicated
workers map (map rw) instead of a sequential map over the infinite list of primes.
By using this new version, only a few useless messages where sent. That is, the
speculation was actually controlled.

Finally, we illustrate the speedups that can be obtained with Eden, by run-
ning the semi-speculative version on a concrete parallel machine. We run the
experiments on a 32-node Beowulf cluster consisting of workstations with a 533
MHz Celeron processor, 128 Kb cache and 128 MB of DRAM. The workstations
are connected through a 100Mb/s fast Ethernet switch with a latency of 142
μs, measured under PVM 3.4.2. The sequential runtime in this environment was
491.7s. In this environment, an acceptable speedup of 14 is achieved with 16
nodes. For the input data used in these measurements 45 useful and 39 unlucky
primes are generated. This leads to a total of 45 top level threads, one for each
homomorphic image.

6 Related Work

In addition to Hood, during the last years there have been several proposals
for incorporating execution traces to sequential lazy functional languages. In
particular, we can highlight the work done with Hat, HsDebug, and the declar-
ative debuggers Freja and Buddha. The approaches followed in each of them
are quite different, both from the point of view of the user of the system and

Testing Speculative Work in a Lazy/Eager Parallel Functional Language 287

from the implementation point of view. From the user point of view, Freja and
Buddha are question-answer systems that directs the programmer to the cause
of an incorrect value, while Hat allows the user to travel backwards from a value
along the redex history leading to it. The interested reader can found a detailed
comparison between Freja, Hat and Hood in [1].

Regarding parallel functional profilers, we can highlight GranSim [11] and
its derivatives (GranSP and GranCC). GranSim is a GpH [20] simulator. This
system provides an accurate and flexible way of studying the dynamic behaviour
of GpH programs. It supports extensive tuning of the simulated architecture,
having parameters such as number of processors, communication latencies, and
others. Additionally, an ideal simulation mode allowing an unlimited number of
processors is provided.

Paradise [6] is an adaptation of GranSim to deal with Eden programs. Cur-
rently, Eden programers can obtain feedback from Paradise in order to improve
the performance of their programs. In this sense, they can detect bottlenecks in
the distribution of work. However, it lacks the possibility to check the amount of
speculation done by the programs. Thus, the approach presented in this paper
constitutes a complement to the profiling capabilities presented in Paradise.

7 Conclusions and Future Work

In this paper we have extended the parallel functional language Eden with capa-
bilities to test how much useless work has been performed in a given execution.
Since the core sequential part of Eden uses lazy evaluation while some parallel
constructions of it require the use of strict evaluation, we have designed a tool
to compare how much data was actually needed (known because of the lazy part
of the language) and how much data was actually transmitted (known because
of the eager parallel part of the language).

We have rewritten the basic constructions of the language to include facilities
for testing the amount of speculative work, and we have also rewritten skeleton
libraries so that we can test the amount of speculation of any program written
by using skeletons. In fact, we have tested the tool with a concrete case study
that consists in solving a linear system of equations.

Currently, our tools only provide textual information about the amount of
speculation, and this is the reason why we do not show examples of outputs of the
tool in this paper. However, we are working on the implementation of a graphical
interface to show not only the amount of speculation, but also the evolution in
time of the speculation of the program. This can be done by recording also time-
information about the observations. Thus, the implementation of this graphical
tool and the application of the framework to a wider set of examples constitute
our current lines of work.

References

1. O. Chitil, C. Runciman, and M. Wallace. Freja, Hat and Hood — a comparative
evaluation of three systems for tracing and debugging lazy functional programs. In
IFL’00, LNCS 2011, pages 176–193. Springer-Verlag, 2001.

288 A. de la Encina, I. Rodŕıguez, and F. Rubio

2. M. Cole. Algorithmic Skeletons: Structure Management of Parallel Computations.
MIT Press, 1989. Research Monographs in Parallel and Distributed Computing.

3. M. Cole. Bringing skeletons out of the closet: A pragmatic manifesto for skeletal
parallel programming. Parallel Computing, 30:389–406, 2004.

4. A. Encina, L. Llana, and F. Rubio. Formalizing the debugging process in Haskell. In
International Conference on Theoretical Aspects of Computing, ICTAC’05, LNCS
3722, pages 211–226. Springer-Verlag, 2005.

5. A. Gill. Debugging Haskell by observing intermediate data structures. In Proceed-
ings of the 4th Haskell Workshop. Tech. Rep. University of Nottingham, 2000.

6. F. Hernández, R. Peña, and F. Rubio. From GranSim to Paradise. In Scottish
Functional Programming Workshop, SFP’99, pages 11–19. Intellect, 2000.

7. U. Klusik, R. Loogen, S. Priebe, and F. Rubio. Implementation skeletons in Eden:
Low-effort parallel programming. In Implementation of Functional Languages,
IFL’00, LNCS 2011, pages 71–88. Springer-Verlag, 2001.

8. U. Klusik, R. Peña, and F. Rubio. Replicated workers in Eden. In Constructive
Methods for Parallel Programming, CMPP’00, pages 143–164. Nova Science, 2000.

9. M. Lauer. Computing by homomorphic images. In Computer Algebra — Symbolic
and Algebraic Computation, pages 139–168. Springer-Verlag, 1982.

10. J. D. Lipson. Chinese remainder and interpolation algorithms. In Symposium
on Symbolic and Algebraic Manipulation, SYMSAM’71, pages 372–391. Academic
Press, 1971.

11. H. W. Loidl. Gransim user’s guide. Department of Computing Science. University
of Glasgow, 1996.

12. H. W. Loidl, F. Rubio, N. Scaife, K. Hammond, S. Horiguchi, U. Klusik, R. Loogen,
G. J. Michaelson, R. Peña, Á. J. Rebón Portillo, S. Priebe, and P. W. Trinder.
Comparing parallel functional languages: Programming and performance. Higher-
Order and Symbolic Computation, 16(3):203–251, 2003.

13. R. Loogen, Y. Ortega-Mallén, R. Peña, S. Priebe, and F. Rubio. Parallelism ab-
stractions in Eden. In F. A. Rabhi and S. Gorlatch, editors, Patterns and Skeletons
for Parallel and Distributed Computing, pages 95–128. Springer-Verlag, 2002.

14. S. L. Peyton Jones. Compiling Haskell by program transformation: A report from
the trenches. In European Symposium on Programming, ESOP’96, LNCS 1058,
pages 18–44. Springer-Verlag, 1996.

15. S. L. Peyton Jones and J. Hughes. Report on the programming language Haskell
98. Technical report, February 1999. http://www.haskell.org.

16. W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in C:
The Art of Scientific Computing, chapter LU Decomposition and Its Applications.
Cambridge University Press, 2nd Edition, 1992.

17. R.F. Pointon P.W. Trinder, H.W. Loidl. Parallel and distributed Haskells. Journal
of Functional Programming, 12(4-5):469–510, 2002.

18. F. Rubio and I. Rodŕıguez. A parallel framework for computational science. In
International Conference on Computational Science, ICCS’03, LNCS 2658, pages
1002–1011. Springer-Verlag, 1998.

19. N. Scaife, Horiguchi S., G. Michaelson, and P. Bristow. A parallel SML compiler
based on algorithmic skeletons. J. Functional Programming, 15(4):615–650, 2005.

20. P. W. Trinder, K. Hammond, J. S. Mattson Jr., A. S. Partridge, and S. L. Peyton
Jones. GUM: a portable parallel implementation of Haskell. In Programming
Language Design and Implementation, PLDI’96, pages 79–88. ACM Press, 1996.

21. P. W. Trinder, K. Hammond, H-W. Loidl, and S. L. Peyton Jones. Algorithm +
Strategy = Parallelism. Journal of Functional Programming, 8(1):23–60, 1998.

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339 , pp. 289 – 303, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Loop Selection for Thread-Level Speculation

Shengyue Wang, Xiaoru Dai, Kiran S. Yellajyosula,
Antonia Zhai, and Pen-Chung Yew

Department of Computer Science and Engineering
University of Minnesota

Minneapolis, MN 55455, USA
{shengyue, dai, kiran, zhai, yew}@cs.umn.edu

Abstract. Thread-level speculation (TLS) allows potentially dependent threads
to speculatively execute in parallel, thus making it easier for the compiler to ex-
tract parallel threads. However, the high cost associated with unbalanced load,
failed speculation, and inter-thread value communication makes it difficult to
obtain the desired performance unless the speculative threads are carefully
chosen.

In this paper, we focus on extracting parallel threads from loops in general-
purpose applications because loops, with their regular structures and significant
coverage on execution time, are ideal candidates for extracting parallel threads.
General-purpose applications, however, usually contain a large number of
nested loops with unpredictable parallel performance and dynamic behavior,
thus making it difficult to decide which set of loops should be parallelized to
improve overall program performance. Our proposed loop selection algorithm
addresses all these difficulties. We have found that (i) with the aid of profiling
information, compiler analyses can achieve a reasonably accurate estimation of
the performance of parallel execution, and that (ii) different invocations of a
loop may behave differently, and exploiting this dynamic behavior can further
improve performance. With a judicious choice of loops, we can improve the
overall program performance of SPEC2000 integer benchmarks by as much as
20%.

1 Introduction

Microprocessors that support multiple threads of execution are becoming increasingly
common [1, 13, 14]. Yet how to make the most effective use of such processors is still
unclear. One attractive method of fully utilizing such resources is to automatically
extract parallel threads from existing programs. However, automatic parallelization
[4, 10] for general-purpose applications (e.g., compilers, spreadsheets, games, etc.) is
difficult because of pointer aliasing, irregular array accesses, and complex control
flow. Thread-level speculation (TLS) [3, 6, 9, 11, 16, 22, 24, 26] facilitates the paral-
lelization of such applications by allowing potentially dependent threads to execute in
parallel while maintaining the original sequential semantics of the programs through
runtime checking. Although researchers have proposed numerous techniques for pro-
viding the proper hardware [17, 18, 23, 25] and compiler [27-29] support for improv-
ing the efficiency of TLS, how to provide adequate compiler support for decomposing

290 S. Wang et al.

sequential programs into parallel threads that can deliver the desired performance
has not yet been explored with the proper depth. In this paper, we present a detailed
investigation of extracting speculative threads from loops for general-purpose
applications.

Loops are attractive candidates for extracting thread-level parallelism, as programs
spend significant amounts of time executing instructions within loops, and the regular
structure of loops makes it relatively easy to determine (i) the beginning and the end
of a thread (i.e., each iteration corresponds to a single thread of execution) and (ii) the
inter-thread data dependences. Thus it is not surprising that most previous research on
TLS has focused on exploiting loop-level parallelism. However, general-purpose
applications typically contain a large number of potentially nested loops, and thus
deciding which loops should be parallelized for the best program performance is not
always clear. We have found 7800 loops from 11 benchmarks in the SPEC2000 inte-
ger benchmarks; among these, gcc contains more than 2600 loops. Thus it is neces-
sary to derive a systematic approach to automatically select loops to parallelize for
these applications.

It is difficult for a compiler to determine whether a loop can speed up under TLS,
as the performance of the loop depends on (i) the characteristics of the underlying
hardware, such as thread creation overhead, inter-thread value communication la-
tency, and mis-speculation penalties, and (ii) the characteristics of the parallelized
loops, such as the size of iterations, the number of iterations, and the inter-thread data
dependence. While detailed profiling information and complex estimations can poten-
tially improve the accuracy of estimation, it is not clear whether these techniques will
lead to an overall better selection of loops.

When loops are nested, we can parallelize at only one loop nest level. We say that
loop B is nested within loop A when loop B is syntactically nested within loop A or
when A invokes a procedure that contains loop B. On average, we observe that the
SPEC2000 integer benchmarks have a nesting depth of 8. Figure 1 shows that
straightforward solutions that always parallelize the innermost or the outermost loops
do not always deliver the desired performance. Therefore a judicious decision must be
made to select the proper nest level to parallelize.

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

m
cf

cr
af

ty
tw

olf gz
ip

bz
ip2

vo
rte

x
vp

r

pa
rs

er ga
p

gc
c

pe
rlb

m
k

s
p

e
e
d

u
p

Outer loop Inner loop Best

Fig. 1. Performance comparison of simple loop selection techniques

 Loop Selection for Thread-Level Speculation 291

Furthermore, different invocations of the same static loop may have different
behaviors. For instance, a parallelized loop may speed up relative to the sequential
execution in some invocations but slow down in others. We refer to this behavior as
context sensitivity. Exploiting this behavior and parallelizing a loop invocation only if
that particular invocation is likely to speed up can potentially offer additional per-
formance benefit.

This paper makes the following contributions. First, we propose a loop selection
algorithm that decides which loops should be parallelized to improve overall perform-
ance for a program with a large number of nested loops. Second, we find that com-
piler analyses can achieve a reasonably accurate performance prediction of parallel
execution. And third, we observe that exploiting dynamic loop behavior can further
improve this performance. Overall, by making a judicious choice in selecting loops,
we can improve the performance of SPEC2000 integer benchmarks by 20%.

The rest of this paper is organized as follows. In Section 2, we describe a loop se-
lection algorithm that selects the optimal set of loops if the parallel performance of a
loop can be accurately predicted. In Section 3, we describe our experimental frame-
work. Three performance estimation techniques are discussed and evaluated in
Section 4. We investigate the impact of context sensitivity in Section 5. We discuss
related work in Section 6 and present our conclusions in Section 7.

2 Loop Selection Algorithm

In this section, we present a loop selection algorithm that chooses a set of loops to
parallelize while maximizing overall program performance. The algorithm takes as
input the speedup and coverage of all the loops in a program and outputs an optimal
set of loops for parallelization.

2.1 Loop Graph

The main constraint in loop selection is that there should be no nesting relation be-
tween any two selected loops. To capture the nesting relation between loops, we con-
struct a directed acyclic graph (DAG) called a loop graph. As shown in Figure 2(b),

Fig. 2. Examples of loop graph and loop tree

main_for1

main_for2

goo_for1

foo_for1

(b) Loop graph

main() {
 for (i = 0; i < 10; i++) {
 for (j = 0; j < 10; j++) {
 foo();
 goo();
 }
 }
}
foo() {
 for (i = 0; i < 10; i++) {
 goo();
 }
}
goo() {
 for (i = 0; i < 10; i++) {
 }
}
 (a) Source code

main_for1

main_for2

foo_for1

goo_for1_A goo_for1_B

(c) Loop tree

292 S. Wang et al.

each node in the graph represents a static loop in the original program, and a directed
edge represents the nesting relation between two loops. Loops could have a direct
nesting relation or an indirect nesting relation through procedure calls. In this exam-
ple, the edge from main_for1 to main_for2 indicates direct nesting, while the edge
from main_for2 to foo_for1 indicates indirect nesting.

A recursive call introduces a cycle in the loop graph that violates the acyclic prop-
erty. But cycles can be broken if we can identify backward edges. An edge from node
s to node t is a backward edge if every path that reaches s from the root passes
through t. All backward edges are removed once they are detected. If no backward
edge is detected, we arbitrarily select an edge and remove it to break the cycle.

A loop graph, like a call graph, can be constructed through runtime profiling or
compiler static inter-procedure analysis. In this study, it is built upon efficiently col-
lected runtime profiles.

2.2 Selection Criterion

We cannot simultaneously select any two loops that have nesting relations. To decide
which loop to select, we use a criterion called benefit that considers both speedup and
coverage of a loop. It is defined as follows:

benefit = coverage × (1 – 1 / speedup) (1)

The benefit value indicates the overall performance gain that can be obtained by
parallelizing that loop. A loop with a larger benefit value is more likely to be selected.
The benefit value is additive, as there is no nesting relationship between the selected
loops. The speedup for the whole program can be computed directly from the benefit
value as follows:

program speedup = 1 / (1 – benefit) (2)

2.3 Loop Selection Problem

The general loop selection problem can be stated as follows: given a loop graph with
benefit value attached to each node, find a set of nodes that maximizes the overall
benefits such that there is no path between any two selected nodes.

We transform this loop selection problem into a well-known NP-complete prob-
lem, weighted maximum independent set problem [8], by computing the transitive
closure of the loop graph. A set of nodes is called an independent set if there is no
edge between any two of them.

2.4 Graph Pruning

The general loop selection problem is NP-complete, so that an exhaustive search
algorithm only works for a graph with few nodes. For a graph with hundreds or thou-
sands of nodes, which is common for most of the benchmarks that we are studying, a
more efficient heuristic has to be used. Because a heuristic-based algorithm only gives
a sub-optimal solution, we must use it wisely. By applying a technique called graph
pruning, we can find a reasonable approximation more efficiently. Graph pruning
simplifies the loop graph by eliminating those loops that will not be selected as specu-
lative threads. These would include such loops as: (i) loops that have less than 100

 Loop Selection for Thread-Level Speculation 293

dynamic instructions on average, as they are more appropriate for instruction-level
parallelism (ILP); (ii) loops that have no more than 2 iterations on average, as they are
more likely to underutilize multiple processor resources; and (iii) loops that are pre-
dicted to slow down the program execution if parallelized.

Graph pruning reduces the size of a loop graph by eliminating unsuitable loops.
After we delete unnecessary nodes, one single connected graph is split into multiple
small disjointed sub-graphs. Then we can apply selection algorithm to each sub-graph
independently. It is efficient to use exhaustive searching algorithm for small sub-
graphs. For larger sub-graphs, heuristic-based searching algorithm usually gives a
reasonable approximation.

2.5 Exhaustive Searching Algorithm

In this simple algorithm, we exhaustively try every set of independent loops to find
the one that provides the maximum benefit. For each computed independent loop set,
we track all loops that have nesting relations to any loop within this independent set
and record them in a vector called a conflict vector. By using a conflict vector, it is
easy to find a new independent loop to add into the current independent set. After a
new loop is added, the conflict vector is updated as well.

An exhaustive searching algorithm gives an accurate solution for the loop selection
problem, but is very inefficient. Graph pruning creates smaller sub-graphs that are
suitable for exhaustive searching that works efficiently for sub-graphs with fewer than
50 nodes in our experiments.

2.6 Heuristic-Based Searching Algorithm

Even after graph pruning, some sub-graphs are still very big. For those, we use a heu-
ristic-based algorithm. We first sort all the nodes in a sub-graph according to their
benefit values. Then we pick one node at a time and add it into the independent set
such that the node has the maximal benefit value and it does not conflict with already
selected nodes. Similarly to the exhaustive searching algorithm, we maintain a conflict
vector for the selected independent set and update it whenever a new node is added.

Although this simple greedy algorithm gives a sub-optimal solution, it can select a
set of independent loops from a large graph in polynomial time. In our experiments,
the size of sub-graph is less than 200 nodes after graph pruning, so the inaccuracy
introduced by this algorithm is negligible.

3 Experimental Framework

We implement the loop selection algorithm in the Code Generation phase of the ORC
compiler [2], which is an industrial-strength open-source compiler based on the Pro64
compiler and targeting on Intel’s Itanium Processor Family (IPF).

For each selected loop, the compiler inserts special instructions to mark the begin-
ning and the end of parallel loops. Fork instruction is inserted at the beginning of the
loop body. We optimize inter-thread value communication using the techniques de-
scribed in [28, 29]. The compiler synchronizes all inter-thread register dependences
and memory dependences with a probability greater than 20%. Both intra-thread

294 S. Wang et al.

control and data speculation are used for more aggressive instruction scheduling so as
to increase the overlap between threads.

Our execution-driven simulator is built upon Pin [15]. The configuration of our
simulated machine model is listed in Table 1. We simulate four single-issue in-order
processors. Each of them has a private L1 data cache, a write buffer, an address
buffer, and a communication buffer. The write buffer holds the speculatively modified
data within a thread. The address buffer keeps all memory addresses accessed by a
speculative thread. The communication buffer stores data forwarded by the previous
thread. All four processors share a L2 data cache.

Table 1. Machine configuration

Issue Width 1
L1-D Cache 32K, 2-way, 1 cycle
L2-D Cache 2M, 4-way, 10 cycles
Write Buffer 32K, 2-way, 1 cycle
Address Buffer 32K, 2-way, 1 cycle
Communication Buffer 128 entries, 1 cycle
Communication Delay 10 cycles
Thread Spawning Overhead 10 cycles
Thread Squashing Overhead 10 cycles
Main Memory 50 cycles

Table 2. Benchmark statistics

Program Number of
Loops

Average Loop
Iteration Size

Maximal
Nest Depth

mcf 51 29,605 4
crafty 420 59,775 10
twolf 899 12,437 7
gzip 178 206,755 6

bzip2 163 109,227 9
vortex 212 45,179 7

vpr 401 1,500 5
parser 532 8,820 10

gap 1,655 53,721 10
gcc 2,619 5,394 10

perlbmk 729 2,826 10

3.1 Benchmarks

We study all the SPEC2000 integer benchmarks except for eon, which is written in
C++. The statistics for each benchmark are listed in Table 2. The average loop itera-
tion size is measured by using the ref input set and counting dynamic instructions.
Most of the benchmarks have a large set of loops with complex loop nesting, which
makes it difficult, if not impossible, to select loops without a systematic approach.

3.2 Simulation Methodology

All simulation is performed using the ref input set. To save simulation time, we paral-
lelize and simulate each loop once. After applying a selection technique, we directly
use the simulation result to calculate the overall program performance. In this way, we
avoid simulating the same loop multiple times if it is selected by different techniques.

Moreover, we use a simple sampling method to further speed up the simulation.
For each loop, we select the first 50 invocations for simulation. For each invocation,
we simulate the first 50 iterations. This simple sampling method allows us to simulate
up to 6 billion dynamic instructions while covering all loops.

4 Loop Speedup Estimation

Our goal in loop selection is to maximize the overall program performance, which is
represented as the benefit value of the selected loops. In order to calculate the benefit

 Loop Selection for Thread-Level Speculation 295

value for each loop, we have to estimate both the coverage and speedup of each loop.
Coverage can be estimated using a runtime profile. To estimate speedup, we have to
estimate both sequential and parallel execution time.

We assume that each processor executes one instruction per cycle, i.e., each in-
struction takes one cycle to finish. It is relatively easy to estimate sequential execution
time Tseq of a loop. We can determine the average size of a thread (average number of
instructions executed per iteration) and the average number of parallel threads (aver-
age number of times a loop iterates) by using a profile. Tseq can be approximated by
using equation (3), where S is the average thread size and N is the average number of
threads.

Tseq = S × N (3)

Fig. 3. Impact of delay D assuming 4 processors

On the other hand, the parallel execution time depends on other factors such as the
thread creation overhead, the cost of inter-thread value communication, and the cost
of mis-speculation. We simplify the calculation by dividing the total parallel execu-
tion time Tpar into two parts: perfect execution time Tperfect and mis-speculation time
Tmisspec. Tperfect is the parallel execution time on p processors assuming that there is no
mis-speculation. Tmisspec is the wasted execution time due to mis-speculation.

Tpar = Tperfect + Tmisspec (4)

We also define delay D as the delay between two consecutive threads caused by in-
ter-thread value communication Tcomm and thread creation overhead O.

D = max(Tcomm, O) (5)

Depending on the delay D, we use different equations to estimate Tperfect. If D S /
p, we can have a perfect pipelined execution of threads, as shown in Figure 3(a), and
use equation (6) for estimation.

Tperfect = ((N – 1) / p + 1) × S + ((N – 1) mod p) × D (6)

If D > S / p, delay D causes bubbles in the pipelined execution of threads and has a
higher impact on the overall execution time, as shown in Figure 3(b). In this case, we
use equation (7) for estimation.

T1
T2

T3
T4

T5
T6

T7
T8

S D×4 T1

T2

T4

T5

T8

S

D×4

T6

T7

T3

(a) (b)

296 S. Wang et al.

Tperfect = (N – 1) × D + S (7)

The key to accurately predicting speedup is how to estimate Tcomm and Tmisspec.
Tcomm is caused by the synchronization of frequently occurring data dependences,
while Tmisspec is caused by the mis-speculation of unlikely occurring data dependences.
We describe techniques to estimate Tmisspec and Tcomm in the following sections.

4.1 Tmisspec Estimation

When a mis-speculation is detected, the violating thread will be squashed and all the
work done by this thread becomes useless. We use the amount of work thrown away
in a mis-speculation to quantify the impact of the mis-speculation on the overall paral-
lel execution. The amount of work wasted depends on when a mis-speculation is
detected. For instance, if a thread starts at cycle c1 and mis-speculation is detected at
cycle c2, we have (c2 – c1) wasted cycles.

In our machine model, a mis-speculation in the current thread is detected at the end
of the previous thread, so we could waste (S – D) cycles for a mis-speculation. The
overall execution time wasted due to mis-speculation is calculated in equation (8),
where Pmisspec is the probability that a thread will violate inter-thread dependences and
is obtained through a profile.

Tmisspec = (S – D) × Pmisspec (8)

4.2 Tcomm Estimation I

One way to estimate the amount of time that parallel threads spend on value commu-
nication is to identify all the instructions that are either the producers or the consum-
ers of inter-thread data dependences and estimate the cost of value communication as
the total cost of executing all such instructions.

Although this estimation technique is simple, it assumes that the value required by
a consumer instruction is immediately available when it is needed. Unfortunately, this
assumption is not always realistic, since it is often the case that the instruction that
consumes the value is issued earlier than the instruction that produces the value, as
shown in Figure 4(a). Thus the consumer thread T2 has to stall and wait until the
producer thread T1 is able to forward it the correct value, as shown in Figure 4(b).
The flow of the value between the two threads serializes the parallel execution, so we
refer to it as a critical forwarding path.

4.3 Tcomm Estimation II

To take into consideration the impact of the critical forwarding path, we propose
estimation technique II. Assuming that load1, the consumer instruction in thread T2,
is executed at cycle c2 and that store1, the producer instruction in thread T1, is exe-
cuted at cycle c1, the cost of value communication between these two instructions is
estimated as (c1 – c2).

If the data dependence does not occur between two consecutive threads but rather
has a dependence distance of d, the impact on the execution time of a particular thread

 Loop Selection for Thread-Level Speculation 297

should be averaged out over the dependence distance. Thus the impact of communi-
cating a value between two threads is estimated as follows:

criticalness = (c1 – c2) / d (9)

There is one more mission piece if this estimation technique is to be successful,
which is how to determine which cycle of a particular instruction should be executed.
Since it is not possible to perfectly predict the dynamic execution of a thread, we
made a simplification assuming each instruction will take one cycle to execute; thus
the start cycle is simply an instruction count of the total number of instructions be-
tween the beginning of the thread and the instruction in question. However, due to
complex control flows that are inherent to general-purpose applications, there can be
multiple execution paths, each with different path length, that reach the same instruc-
tion. Thus the start time of a particular instruction is the average path length weighted
by path taken probability, as shown in equation (10).

c = pi∈all_paths(length(pi) × prob(pi)) (10)

Fig. 4. The data dependence patterns between two speculative threads

For many loops, multiple data dependences exist between two threads, as shown in
Figure 4(c). In such cases, the cost of value communication is determined by the most
costly one, since the cost of other synchronizations can be hidden.

4.4 Tcomm Estimation III

Previous work has shown that the compiler can effectively reduce the cost of syn-
chronization through instruction scheduling and that such optimizations are particu-
larly useful for improving the efficiency of communicating register-resident scalars
[28, 29]. Unfortunately, the estimation technique described in the previous section
does not take such optimization into consideration and tends to overestimate the cost
of inter-thread value communication.

It is desirable to find an estimation technique that considers the impact of instruc-
tion scheduling on reducing the critical forward path length. Thus, we use a third
technique, in which the start time of an instruction is computed from the data depend-
ence graph. When there are multiple paths that can reach an instruction in the data
dependence graph, the average start time of this instruction can be measured by

298 S. Wang et al.

equation (11), assuming that the average length of a path pi that reaches this instruc-
tion in the data dependence graph is length(pi).

c = max(length(pi)) (11)

4.5 Evaluation

The three speedup estimation techniques described above have been implemented in
our loop selection algorithm and three sets of loops are selected for parallelization
respectively. The performance improvement of the parallel execution is evaluated
against sequential execution and the results are illustrated in Figure 5. For compari-
son, we also select loops using speedup value calculated from simulation results and
use this perfect estimation as the upper bound.

We make several observations. First, for estimation I, the performance improve-
ment obtained by most benchmarks is close to the perfect performance improvement
obtained through simulation. However, for gzip, the loops selected using this estima-
tion is completely wrong and results in a 40% performance degradation. Second, the
set of loops selected using estimation II is able to achieve only a fraction of the per-
formance obtained by the set of loops selected using simulation results. This estima-
tion technique tends to be conservative in selecting loops. Third, the set of loops

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

m
cf

cr
af

ty
tw

olf gz
ip

bz
ip2

vo
rte

x
vp

r

pa
rse

r
ga

p
gc

c

pe
rlb

m
k

s
p

e
e
d

u
p

Estimation I Estimation II Estimation III Perfect

Fig. 5. Performance comparison of different speedup estimation techniques

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

m
cf

cr
af

ty
tw

olf gz
ip

bz
ip2

vo
rte

x
vp

r

pa
rse

r
ga

p
gc

c

pe
rlb

m
k

c
o

v
e
ra

g
e

Estimation I Estimation II Estimation III Perfect

Fig. 6. Coverage comparison of different speedup estimation techniques

 Loop Selection for Thread-Level Speculation 299

selected with estimation III always performs at least as well as the set of loops se-
lected by estimation I and estimation II.

Figure 6 illustrates the coverage of parallel execution on the total execution time.
We have found that although the set of loops selected using simulation results demon-
strate the most performance improvement, these loops do not always have the large
coverage on execution time. In mcf, the set of loops selected using estimation III has
the similar performance as the set of loops selected using simulation results, however,
the coverage of the perfect loop set is significantly smaller. This phenomenon sug-
gests that our estimation method may not be very accurate but is useful in selecting a
set of loops that have good performance potential.

5 The Impact of Dynamic Loop Behavior on Loop Selection

Once a loop is selected by our current loop selection algorithm, every invocation of
this loop is parallelized. The underlying assumption is that the parallel execution of a
loop behaves the same across different invocations. However, some loops exhibit
different behaviors when they are invoked multiple times. Different invocations of a
loop may differ in the number of iterations, the size of iterations, and the data depend-
ence patterns, and thus demonstrate different parallel execution efficiency. Conse-
quently, it might be desirable to parallelize only certain invocations of a loop. In this
section, we address this phenomenon. In particular, we examine whether exploiting
such behavior can help us select a better set of loops and improve the overall program
performance.

5.1 Calling Context of a Loop

In the loop graph, as described in Section 2, we refer to the path from the root node to
a particular loop node as the calling context of that loop. It is possible for a particular
loop to have several distinct calling contexts, and it is also possible for loops with
different calling contexts to behave differently. To study this behavior, we replicate
the loop nodes for each distinct calling context. An example is shown in Figure 2(c),
where the loop node goo_for1 has two distinct calling contexts and is thus replicated
into goo_for1_A and goo_for1_B. After the replication, the original loop graph is
converted into a tree, which we refer to as the loop tree.

We parallelize a loop under a certain calling context if the parallel execution
speeds up under that calling context. Loop selection on the loop tree is straightfor-
ward. The algorithm is as follows. We first traverse the loop tree bottom-up. For each
node in the tree, we evaluate its benefit value as Bcurrent. We sum up the benefit values
if we parallelize its descendants, and refer to this number as Bsubtree. If Bcurrent is greater
than Bsubtree, we mark this node as a potential candidate for parallelization. We also
record the larger of these two numbers as Bperfect, which is used to calculate Bsubtree of
its parent. Next we traverse the loop tree top-down. Once we have encountered a loop
node that is marked as a potential candidate from the previous step, we prune its chil-
dren. The leaf nodes of the remaining loop tree correspond to the loops that should be
parallelized. The accurate solution for selecting loops from a loop tree can be found in
polynomial time.

300 S. Wang et al.

5.2 Dynamic Behavior of a Loop

It is possible for two different invocations of a loop to behave differently even if they
have the same calling context. To study this behavior further, we assume an oracle
that can perfectly predict the performance of a particular invocation of a loop and
parallelize this invocation only when it speeds up. A different set of loops are selected
and evaluated assuming that such an oracle is in place.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

m
cf

cr
af

ty
tw

olf gz
ip

bz
ip2

vo
rte

x
vp

r

pa
rse

r
ga

p
gc

c

pe
rlb

m
k

s
p

e
e
d

u
p

No Context Calling Context Oracle

Fig. 7. Performance comparison of loop selection based on different contexts

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

m
cf

cr
aft

y
tw

olf gz
ip

bz
ip2

vo
rte

x
vp

r

pa
rse

r
ga

p
gc

c

pe
rlb

m
k

c
o

v
e
ra

g
e

No Context Calling Context Oracle

Fig. 8. Coverage comparison of loop selection based on different contexts

5.3 Evaluation

In this section, we evaluate the impact of considering the calling context of a loop (as
described in Section 5.1) and the impact of parallelizing only selected invocations of a
loop (as described in Section 5.2). The impact of such behavior on overall program
performance is shown in Figure 7. We have observed that by differentiating loops
with different calling contexts, some benchmarks are able to obtain better program
performance. Among them, crafty has an additional speed up of 2% and perlbmk
speeds up by 7%. The performance of mcf, crafty, and bzip2 improves an additional
2% by having an oracle that parallelizes only invocations of loops that speed up.
Thus, we found that the dynamic behavior of loops has performance impact for some

 Loop Selection for Thread-Level Speculation 301

benchmarks. We believe that a dynamic or static loop selection strategy that can pre-
dict whether a particular invocation of a loop speeds up can help us achieve additional
performance improvement.

Figure 8 shows the coverage for the selected loops. For some benchmarks, such as
perlbmk, we observe that the overall program performance improves although the
coverage of parallelized loops decreases when we take context information into con-
sideration. Close examination reveals that perlbmk contains a loop that only speeds up
under certain circumstances, and by parallelizing only such invocations, we can
achieve better performance. For some other benchmarks, such as crafty and vortex,
the coverage of parallel loops increased due to the selection of a different set of loops.

6 Related Work

Colohan et al. [7] have empirically studied the impact of thread size on the perform-
ance of loops, and derived several techniques to determine the unrolling factor of each
loop. Their goal is to find the optimal thread size for parallel execution. Our estima-
tion techniques can be employed to determine the candidate loops to unroll. They also
propose a runtime system to measure the performance and select loops dynamically.

Oplinger et al. [19] have proposed and evaluated a static loop selection algorithm
in their study of the potential of TLS. In their algorithm, they select the best loops in
each level of a dynamic loop nest as possible candidates to be parallelized and com-
pute the frequency with which each loop is selected as the best loop. Then they select
loops for parallelization based on the computed frequencies. Their concept of a dy-
namic loop nest is similar to the loop tree proposed in this paper, but is used only to
guide the heuristic in context-insensitive loop selection. Their performance estimation
is obtained directly from simulation and does not consider the effect of compiler
optimization.

Chen et al. [5] have proposed a dynamic loop selection framework for the Java
program. They use hardware to extract useful information (such as dependence timing
and speculative state requirements) and then estimate the speedup for a loop. Their
technique is similar to the runtime system proposed by Colohan et. al. [7] and can
only select loops within a simple loop nest. Considering the global loop nesting rela-
tions and selecting loops globally introduces significant overhead for a runtime
system.

Several papers [12, 21] have studied thread generation techniques that extract
speculative parallel threads from consecutive basic blocks. Threads generated using
these techniques are fine-grained and usually contain neither procedure calls nor inner
loops. These thread generation techniques can complement loop-based threads by
exploiting parallelism in the non-loop potion of the program or in loops that are not
selected for parallel execution by our algorithm.

Prabhu et al. [20] manually parallelize several SPEC2000 applications using tech-
niques beyond the capabilities of current parallelizing compilers. However, only a few
loops are evaluated due to the time-consuming and error-prone nature of this process.

302 S. Wang et al.

7 Conclusions

Loops, with their regular structures and significant coverage on execution time, are
ideal candidates for extracting parallel threads. However, typical general-purpose
applications contain a large number of nested loops with complex control flow and
ambiguous data dependences. Without an effective loop selection algorithm, deter-
mining which loops to parallelize can be a daunting task. In this paper, we propose a
loop selection algorithm that takes the coverage and speedup achieved by each loop as
inputs and produces the set of loops that should be parallelized to maximize program
performance as the output. One of the key components of this algorithm is the ability
to accurately estimate the speedup that can be achieved when a particular loop is
parallelized. This paper evaluates three different estimation techniques and finds that
with the aid of profiling information, compiler analyses are able to come up with
reasonably accurate estimates that allow us to select a set of loops to achieve good
overall program performance. Furthermore, we have observed that some loops behave
differently across different invocations. By exploiting this behavior and parallelizing
only invocations of a loop when it actually speeds up, we can potentially achieve
better overall program performance for some benchmarks.

References

1. Intel Pentium Processor Extreme Edition.
http://www.intel.com/products/processor/pentiumXE/prodbrief.pdf.

2. Open Research Compiler for Itanium Processor Family. http://ipf-orc.sourceforge.net/.
3. Akkary, H. and Driscoll, M., A Dynamic Multithreading Processor. in Proceedings of Mi-

cro-31, (December 1998).
4. Blume, B., Eigenmann, R., Faigin, K., Grout, J., Hoeflinger, J., Padua, D., Petersen, P.,

Pottenger, B., Rauchwerger, L., Tu, P. and Weatherford, S., Polaris: Improving the Effec-
tiveness of Parallelizing Compilers. in Proceedings of the 7th LCPC, (1994).

5. Chen, M. and Olukotun, K., TEST: A Tracer for Extracting Speculative Threads. in Pro-
ceedings of 2003 International Symposium on CGO, (March 2003).

6. Cintra, M.H., Martínez, J.F. and Torrellas, J., Architectural support for scalable specula-
tive parallelization in shared-memory multiprocessors. in Proceedings of the ISCA,
(2000).

7. Colohan, C.B., Zhai, A., G., S.J. and Mowry, T.C., The Impact of Thread Size and Selec-
tion on the Performance of Thread-Level Speculation. in progress.

8. Du, D.Z. and Pardalos, P.M., Handbook of Combinatorial Optimization. Kluwer Aca-
demic Publishers., 1999.

9. Gopal, S., Vijaykumar, T., Smith, J. and Sohi, G., Speculative Versioning Cache. in Pro-
ceedings of the 4th HPCA, (February 1998).

10. Hall, M.W., Anderson, J.M., Amarasinghe, S.P., Murphy, B.R., Liao, S.-W., Bugnion, E.
and Lam, M.S., Maximizing Multiprocessor Performance with the SUIF Compiler. IEEE
Computer, 1999 (12).

11. Hammond, L., Willey, M. and Olukotun, K., Data Speculation Support for A Chip Multi-
processor. in Proceedings of ASPLOS-8, (October 1998).

12. Johnson, T.A., Eigenmann, R. and Vijaykumar, T.N., Min-Cut Program Decomposition
for Thread-Level Speculation. in Proceedings of PLDI, (2004).

 Loop Selection for Thread-Level Speculation 303

13. Kalla, R., Sinharoy;, B. and Tendler, J.M., IBM Power5 Chip: a Dual-Core Multithreaded
Processor. IEEE MICRO, 2004 (2).

14. Kongetira, P., Aingaran, K. and Olukotun, K., Niagara: A 32-Way Multithreaded Sparc
Processor. IEEE MICRO, 2005 (2).

15. Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi,
V.J. and Hazelwood, K., Pin: Building Customized Program Analysis Tools with Dynamic
Instrumentation. in Proceedings of the ACM Intl. Conf. on Programming Language De-
sign and Implementation, (June 2005).

16. Marcuello, P. and Gonzlez, A., Clustered Speculative Multithreaded Processors. in Pro-
ceedings of MICRO-32, (November 1999).

17. Moshovos, A.I., Breach, S.E., Vijaykumar, T. and Sohi, G.S., Dynamic Speculation and
Synchronization of Data Dependences. in the proceedings of the 24th ISCA, (June 1997).

18. Olukotun, K., Hammond, L. and Willey, M., Improving the Performance of Speculatively
Parallel Applications on the Hydra CMP. in Proceedings of the ACM Int. Conf. on Super-
computing, (June 1999).

19. Oplinger, J., Heine, D. and Lam, M.S., In Search of Speculative Thread-Level Parallelism.
in Proceedings of PACT, (October 1999).

20. Prabhu, M. and Olukotun, K., Exposing Speculative Thread Parallelism in SPEC2000. in
Proceedings of the 9th ACM Symposium on Principles and Practice of Parallel Program-
ming, (2005).

21. Quinones, C.G., Madriles, C., Sanchez, J., Marcuello, P., González, A. and Tullsen, D.M.,
Mitosis Compiler: An Infrastructure for Speculative Threading Based on Pre-Computation
Slices. in Proceedings of the ACM Intl. Conf. on Programming Language Design and Im-
plementation, (June 2005).

22. Rauchwerger, L. and Padua, D.A., The LRPD Test: Speculative RunTime Parallelization
of Loops with Privatization and Reduction Parallelization. IEEE Transactions on Parallel
Distributed Systems, 1999 (2). 160-180.

23. Renau, J., Tuck, J., Liu, W., Ceze, L., Strauss, K. and Torrellas, J., Tasking with Out-of-
Order Spawn in TLS Chip Multiprocessors: Microarchitecture and Compilation. in Pro-
ceeding of the 19th ACM International Conference on Supercomputing, (2005).

24. Sohi, G.S., Breach, S.E. and Vijaykumar, T.N., Multiscalar Processors. in Proceedings of
the 22nd ISCA, (June 1995).

25. Steffan, J.G., Colohan, C.B., Zhai, A. and Mowry, T.C., Improving Value Communication
for Thread-Level Speculation. in Proceedings of the 8th HPCA, (February 2002).

26. Tsai, J.-Y., Huang, J., Amlo, C., Lilja, D. and Yew, P.-C., The Superthreaded Processor
Architecture. IEEE Transactions on Computers, 1999 (9).

27. Vijaykumar, T.N. and Sohi, G.S., Task Selection for a Multiscalar Processor. in Proceed-
ing of the 31st International Symposium on Microarchitecture, (December 1998).

28. Zhai, A., Colohan, C.B., Steffan, J.G. and Mowry, T.C., Compiler Optimization of Mem-
ory-Resident Value Communication Between Speculative Threads. in Proceedings of 2004
International Symposium on CGO, (March 2004).

29. Zhai, A., Colohan, C.B., Steffan, J.G. and Mowry, T.C., Compiler Optimization of Scalar
Value Communication Between Speculative Threads. in Proceedings of the 10th ASPLOS,
(October 2002).

Software Thread Level Speculation for the Java
Language and Virtual Machine Environment

Christopher J.F. Pickett and Clark Verbrugge

School of Computer Science, McGill University
Montréal, Québec, Canada H3A 2A7

{cpicke,clump}@sable.mcgill.ca

Abstract. Thread level speculation (TLS) has shown great promise as a strategy
for fine to medium grain automatic parallelisation, and in a hardware context tech-
niques to ensure correct TLS behaviour are now well established. Software and
virtual machine TLS designs, however, require adherence to high level language
semantics, and this can impose many additional constraints on TLS behaviour,
as well as open up new opportunities to exploit language-specific information.
We present a detailed design for a Java-specific, software TLS system that op-
erates at the bytecode level, and fully addresses the problems and requirements
imposed by the Java language and VM environment. Using SableSpMT, our re-
search TLS framework, we provide experimental data on the corresponding costs
and benefits; we find that exceptions, GC, and dynamic class loading have only a
small impact, but that concurrency, native methods, and memory model concerns
do play an important role, as does an appropriate, language-specific runtime TLS
support system. Full consideration of language and execution semantics is critical
to correct and efficient execution of high level TLS designs, and our work here
provides a baseline for future Java or Java virtual machine implementations.

1 Introduction

Thread level speculation (TLS), also known as speculative multithreading (SpMT), is a
technique for automatic program parallelisation that has been investigated from a hard-
ware perspective for several years, and current systems are capable of showing good
speedups in simulation based studies [1,2]. As a hardware problem, the issues of en-
suring correctness under speculative execution have been well defined, and different
rollback or synchronization approaches are sufficient to guarantee overall correct pro-
gram behaviour. Software approaches to TLS, however, need to take into account the
full source language semantics and behaviour to ensure correct and efficient execution,
and in general this is not trivially ensured by low level hardware mechanisms.

In this paper we provide a detailed description of the requirements and performance
impact of various high level aspects of Java TLS execution. We consider the full Java
semantics, including all bytecode instructions, garbage collection (GC), synchroniza-
tion, exceptions, native methods, dynamic class loading, and the new Java memory
model [3]. These requirements are often dismissed or ignored in existing Java TLS
work [1,4,5,6,7,8], but in fact are crucial to correct execution and can significantly af-
fect performance.

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 304–318, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Software TLS for the Java Language and Virtual Machine Environment 305

Language and VM level speculation also produce design constraints due to efficiency
concerns; for instance, Java programs tend to have frequent heap accesses, object alloca-
tions, and method calls. Our runtime TLS support system accomodates this behaviour,
and we evaluate the relative importance of dependence buffering, stack buffering, return
value prediction, speculative allocation, and priority queueing.

General purpose software and intermediate, VM level implementations of TLS are
difficult goals, but have significant potential advantages, including the use of high level
program information and the ability to run on existing multiprocessor hardware. Pre-
viously we used SableSpMT, our Java TLS analysis framework, to characterize both
thread parallelism and overhead in software speculation [9]; our work here is comple-
mentary and aims to provide a thorough Java TLS design and an understanding of the
requirements and relative impact of high level language semantics.

2 Related Work

Thread level speculation has been the subject of hardware investigations for over a
decade, and a variety of general purpose machines have been proposed and simu-
lated (reviewed in [2]). These have also been tailored to specific speculation strategies;
loop level speculation focusses on loop iterations, whereas method level speculation or
speculative method level parallelism (SMLP) speculates over method calls. SMLP has
been identified as particularly appropriate for Java, given the relatively high density of
method calls in Java programs, and simulation studies have shown quite good potential
speedup [4]. The impact of frequent method calls was further explored and optimised
by Hu et al. in their study of return value prediction [5].

Most current hardware designs could in fact be classified as hybrid hardware/soft-
ware approaches since they rely to various extents on software assistance. Most com-
monly, compiler or runtime processing is required to help identify threads and insert
appropriate TLS directives for the hardware [6,10]. Jrpm makes further use of several
code optimisations that reduce variable dependencies [1], and other recent designs such
as STAMPede [2] and Mitosis [11] are based to a large degree on cooperative compiler
and software help.

Speculative hardware, even with software support, largely obviates the considera-
tion of high level language semantics: correct machine code execution implies correct
program behaviour. Pure software architectures based on C or FORTRAN also have
relatively straightforward mappings to speculative execution, and thus designs such as
Softspec [12], thread pipelining for C [7], and others [13,14] do not require a deep
consideration of language semantics.

For Java stronger guarantees must be provided. In the context of designing JVM
rollback for debugging purposes some similar semantic issues have been considered
[15], but much less so for Java TLS. As part of their software thread partitioning strat-
egy, Chen and Olukotun do discuss Java exceptions, GC, and synchronization require-
ments [1]. However, they do not consider class loading, native methods, or copying GC
behaviour, and nor does their handling of speculative synchronization by simply ignor-
ing it correctly enforce Java semantics. Pure Java source studies, such as the partially
or fully hand-done examinations by Yoshizoe et al. [8] and Kazi [7], focus on small

306 C.J.F. Pickett and C. Verbrugge

execution traces in a limited environment or rely on human input respectively. In the
former case the environment is too constrained for Java language issues to arise. In
the latter, exceptions, polymorphism, and GC are discussed, though not analysed, and
assumptions about ahead-of-time whole program availability are contrary to Java’s dy-
namic linking model. Differences and omissions such as these make it difficult to com-
pare Java studies, and leave important practical implementation questions open; our
work here is meant to help rectify this situation.

3 Background and System Overview

In our design for Java TLS we employ speculative method level parallelism (SMLP),
as depicted in Figure 1. SMLP uses method callsites as fork points: the parent thread
enters the method body, and the child thread begins execution at the first instruction past
the callsite. When the parent returns from the call, then if there are no violations the
child thread is committed and non-speculative execution continues where speculation
stopped, otherwise the parent re-executes the child’s body.

Fig. 1. (a) Sequential execution of Java bytecode. The target method of an INVOKE<X> instruc-
tion executes before the instructions following the return point. (b) Speculative execution of Java
bytecode under speculative method level parallelism (SMLP). Upon reaching a method callsite,
the non-speculative parent thread T1 forks a speculative child thread T2. If the method is non-
void, a predicted return value is pushed on T2’s Java operand stack. T2 then continues past the
return point in parallel with the execution of the method body, buffering main memory accesses.
When T1 returns from the call, it joins T2. If the actual return value matches the predicted return
value, and there are no dependence violations between buffered reads and post-invoke values,
T2’s buffered writes are committed and non-speculative execution jumps ahead to where T2 left
off, yielding speedup. If there are dependence violations or the prediction is incorrect, T2 is
simply aborted.

An overview of the SableSpMT analysis framework [9] and Java TLS execution
environment is shown in Figure 2. SableSpMT is an extension of the “switch” byte-
code interpreter in SableVM [16], a Free / open source software Java virtual machine.
Static analysis with Soot [17] occurs ahead-of-time, and SableSpMT uses the results
to prepare special speculative code arrays for Java methods from their non-speculative
equivalents in SableVM; code arrays are generated from Java bytecode, and are contigu-
ous sequences of word-sized instructions and instruction operands representing method

Software TLS for the Java Language and Virtual Machine Environment 307

Fig. 2. The SableSpMT thread level speculation execution environment. SableSpMT is an exten-
sion of SableVM. Soot is used to transform, analyse, and attach attributes to .class files in
an ahead-of-time step. SableVM reads in these classes during class loading, parsing attributes
and preparing method bodies. Sequential execution depends only the non-speculative code ar-
rays, and interacts with normal JVM support components. Speculative execution requires prepa-
ration of special speculative code arrays, and depends on additional TLS support components.
SableSpMT’s single-threaded execution mode shares processors with non-speculative execution,
whereas the multithreaded mode splits single non-speculative threads across multiple processors.

bodies. SableSpMT forks and joins child threads at runtime, and these depend on the
speculative code arrays for safe out-of-order execution. Various TLS runtime support
facilities are needed, including priority queueing, return value prediction, dependence
buffering, and stack buffering. SableSpMT also interacts with SableVM’s own runtime
support components, including a semi-space copying garbage collector, native method
execution, exception handling, synchronization, and the Java memory model. Outside
of thread forking and joining, speculation has negligible impact on and is largely invis-
ible to normal multithreaded VM execution, with speculative threads running only on
free processors.

4 Java TLS Design

We now describe the main Java TLS structures in our design for SMLP at the Java
virtual machine level. These can be broadly classified into speculative method prepa-
ration components, speculative runtime support components, and speculative execution
modes.

4.1 Speculative Method Preparation

In order to prepare method bodies for TLS, classfile attributes are parsed for static
analysis info, fork and join points are inserted, and bytecode instructions are modified.
The final stages of preparation occur when a method is invoked for the first time. Once
primed for speculation, a child thread can be forked at any callsite within the method
body. Furthermore, speculation can continue across method boundaries as long as the
methods being invoked or returned to have been similarly prepared.

308 C.J.F. Pickett and C. Verbrugge

Static Analysis and Attribute Parsing. An advantage to language level TLS is the
ability to use high level program information. In our case we incorporate information
from the Soot compiler analysis framework [17], and include two analyses for improved
return value prediction [18]. The results are encoded using Soot’s attribute generation
framework, and parsed by SableVM during class loading. During method preparation,
the analysis data are associated with callsites for use by the return value prediction
component.

Fork and Join Insertion. The SableSpMT TLS engine needs the ability to fork and
join child threads. We introduce new SPMT FORK and SPMT JOIN instructions that pro-
vide this functionality. Under SMLP threads are forked and joined immediately be-
fore and after method invocations, and so these instructions are inserted around every
INVOKE<X> instruction.

Table 1. Java bytecode instructions modified to support speculation. Each instruction is marked
according to its behaviours that require special attention during speculative execution. These
behaviours are marked “once”, “maybe”, or “yes” according to their probabilities of occurring
within the instruction. “Forces stop” indicates whether the instruction may force termination of
a speculative child thread, but does not necessarily imply abortion and failure. Not shown are
branch instructions; these are trivially fixed to support jumping to the right pc.

instruction reads writes locks unlocks allocates throws enters loads orders forces
global global object object object exception native code class(es) memory stop

GETFIELD yes maybe once maybe maybe
GETSTATIC yes once maybe maybe
<X>ALOAD yes maybe maybe
PUTFIELD yes maybe once maybe maybe
PUTSTATIC yes once maybe maybe
<X>ASTORE yes maybe maybe

(I|L)(DIV|REM) maybe maybe
ARRAYLENGTH maybe maybe
CHECKCAST maybe once maybe
ATHROW yes yes

INSTANCEOF once maybe
RET maybe

MONITORENTER yes yes yes maybe yes yes
MONITOREXIT yes yes yes maybe yes yes
INVOKE<X> maybe maybe maybe maybe maybe once maybe maybe
<X>RETURN maybe maybe maybe maybe maybe once maybe maybe

NEW yes yes maybe once maybe
NEWARRAY yes yes maybe maybe
ANEWARRAY yes yes maybe once maybe

MULTIANEWARRAY yes yes maybe once maybe
LDC STRING once once

Bytecode Instruction Modification. The majority of Java’s 201 bytecode instructions
can be used verbatim for speculative execution; however, roughly 25% need modifica-
tion to protect against potentially dangerous behaviours, as shown in Table 1. If these
instructions were modified in place, the overhead of extra runtime conditionals would
impact on the speed of non-speculative execution. Instead, modification takes place in

Software TLS for the Java Language and Virtual Machine Environment 309

a duplicate copy of the code array created especially for speculative execution. Indeed,
the only significant change to non-speculative bytecode is the insertion of fork and join
points. Problematic operations include:

– Global memory access. Reads from and writes to main memory require buffering,
and so the <X>A(LOAD|STORE) and (GET|PUT)(FIELD|STATIC) instructions
are modified to read and write their data using a dependence buffer, as described in
Section 4.2. If final or volatile field access flags are set, these instructions may also
require a memory barrier, as described in Section 5, in which case speculation must
also stop.

– Exceptions. In unsafe situations, many instructions must throw exceptions to ensure
the safety of bytecode execution, including (I|L)(DIV|REM) that throw Arith-
meticExceptions upon division by zero, and others that throw NullPointerExcep-
tions, ArrayIndexOutOfBoundsExceptions, and ClassCastExceptions. Application
or library code may also throw explicit exceptions using ATHROW. In both cases,
speculation rolls back to the beginning of the instruction and stops immediately;
however, the decision to abort or commit is deferred until the parent joins the child.
Exceptions must also be handled safely if thrown by non-speculative parent threads
with speculative children, as discussed in Section 5.

– Detecting object references. The INSTANCEOF instruction computes type assigna-
bility between a pre-specified class and an object reference on the stack. Normally,
bytecode verification promises that the stack value is always a valid reference to
the start of an object instance on the heap, but speculative execution cannot depend
on this guarantee. Accordingly, speculation must stop if the reference does not lie
within heap bounds, or if it does not point to an object header; currently we insert
a magic word into all object headers, although a bitmap of heap words to object
headers would be more accurate and space-efficient.

– Subroutines. JSR (jump to subroutine) is always safe to execute because the target
address is hardcoded into the code array. However, the return address used by its
partner RET is read from a local variable, and must point to a valid instruction.
Furthermore, for a given subroutine, if the JSR occurs speculatively and the RET

non-speculatively, or vice versa, the return address must be adjusted to use the right
code array. Thus a modified non-speculative RET is also needed.

– Synchronization. The INVOKE<X> and <X>RETURN instructions may lock and un-
lock object monitors, and MONITOR(ENTER|EXIT) will always lock or unlock ob-
ject monitors; they furthermore require memory barriers and are strongly ordering.
These instructions are also marked as reading from and writing to global variables,
as lockwords are stored in object headers. Speculative locking and unlocking is not
currently supported, and always forces children to stop.

– Method entry. Speculatively, INVOKE<X> are prevented from entering unprepared
methods and triggering class loading and method preparation. Furthermore, at non-
static callsites, the receiver is checked to be a valid object instance, the target is
checked to have the right stack effect, and the type of the target’s class is checked
for assignability to the receiver’s type. Invokes are also prevented from entering
native code or attempting to execute abstract methods.

– Method exit. After the synchronization check, the <X>RETURN instructions require
three additional safety operations: 1) potential buffering of the non-speculative

310 C.J.F. Pickett and C. Verbrugge

stack frame from the parent thread, as described in Section 4.2; 2) verifying that
the caller is not executing a preparation sequence, a special group of instructions
used in SableVM to replace slow instructions with faster versions [16]; and 3) en-
suring that speculation does not leave bytecode execution entirely, which would
mean Java thread death, VM death, or a return to native code.

– Object allocation. Barring an exception being thrown or GC being triggered, the
NEW and ((MULTI|)A|)NEWARRAY instructions are safe to execute. The LDC-

STRING specialisation of LDC allocates a constant String object upon its first
execution, the address of which is patched into both non-speculative and specula-
tive code arrays, and forces speculation to stop only once. Allocation and GC are
discussed in greater detail in Section 5.

4.2 Speculative Runtime Support

In addition to preparing method bodies for speculative execution, the speculation en-
gine provides various support components that interact with bytecode and allow for
child thread startup, queueing, execution, and death to take place while ensuring cor-
rect execution through appropriate dependence buffering.

Thread Forking. Speculative child threads are forked by non-speculative parents and
also by speculative children at SPMT FORK instructions. Speculating at every fork point
is not necessarily optimal, and in the context of SMLP various heuristics for optimising
fork decisions have been investigated [6]. SableSpMT permits relatively arbitrary fork
heuristics; however, we limit ourselves to a simple “always fork” strategy in this paper
as a more generally useful baseline measurement.

Having made the decision to fork a child, several steps are required. First, those
variables of the parent thread environment (JNIEnv) that can be accessed speculatively
are copied to a child JNIEnv struct; in this fashion, the child assumes the identity of its
parent. Second, a child stack buffer is initialized and the parent stack frame is copied
to the child, giving it an execution context. Third, a dependence buffer is initialized;
this protects main memory from speculative execution, and allows for child validation
upon joining. Fourth, the operand stack height of the child is adjusted to account for the
stack effect of the invoke following the fork point, and the pc of the child is set to the
first instruction past the invoke. Fifth, a return value is predicted for non-void methods;
technically, any arbitrary value can be used as a “prediction”, although the chance of
speculation success is greatly reduced by doing so.

Priority Queueing. In the default multithreaded speculative execution mode, children
are enqueued at fork points on a global O(1) concurrent priority queue. Priorities 0–10
are computed as min(l× r/1000, 10), where l is the average bytecode sequence length
and r is the success rate; higher priority threads are those that are expected to do more
useful work. The queue consists of an array of doubly-linked lists, one for each priority,
and supports enqueue, dequeue, and delete operations. Helper OS threads compete
to dequeue and run children on separate processors. The queue is globally synchronized
using spinlocks, which works well for a small number of priorities and processors, as
found by Shavit et al. in their study of scalable concurrent priority queues [19].

Software TLS for the Java Language and Virtual Machine Environment 311

Return Value Prediction. Speculative children forked at non-void callsites need their
operand stack height adjusted to account for the return value, and must be aborted if
an incorrect value is used. Accurate return value prediction (RVP) can significantly im-
prove the performance of Java SMLP [5], and we previously reported on our aggressive
RVP implementation in SableSpMT [20], the use of two compiler analyses for extract-
ing further accuracy [18], and the integration of RVP analysis into our framework [9].

Return value predictors are associated with individual callsites, and can use con-
text, memoization, and hybrid strategies, amongst others. The attributes generated by
the compiler analyses are parsed during method preparation, and can be used to relax
predictor correctness requirements and reduce memory consumption.

Fig. 3. Dependence buffering. When a specu-
lative global read instruction is executed, first
the write buffer is searched, and if it does not
contain the address of the desired value then
the read buffer is searched. If the value address
is still not found, the value at that address is
loaded from main memory. When a speculative
global write instruction is executed, the write
buffer is searched, and if no entry is found a
new mapping is created.

Fig. 4. Stack buffering. f1 through f6 are stack
frames corresponding to Java methods. A spec-
ulative child is forked at f4 in the parent, and
in turn a second-generation grandchild thread
is forked at f5 in the child. Stack frames are
buffered on forking, and additionally when
children return from methods; f2 in the grand-
child is buffered from the non-speculative par-
ent, as its immediate ancestor never descended
below f3.

Dependence Buffering. Most TLS designs propose a mechanism for buffering reads
from and writes to main memory by speculative threads in order to prevent against
potential dependence violations. In Java, main memory consists of object instances and
arrays on the garbage-collected heap, and static fields in class loader memory.

In hardware, dependence buffers can be built as table based structures similar to
caches [2], and we propose a similar design for software TLS, as shown in Figure 3.
Buffer objects are attached to speculative threads on startup, and are implemented using
open addressing hashtables; values are stored using the value address as a key, and fast
lookup is provided by double hashing. A backing linked list allows for fast iteration
during validation and committal.

Stack Buffering. As well as heap and static data, speculative threads may also access
local variables and data stored on the Java operand stack. It follows that stack accesses

312 C.J.F. Pickett and C. Verbrugge

must be buffered to protect the parent stack in the event of failure, as shown in Figure 4.
The simplest mechanism for doing so is to copy stack frames from parent threads to
separate child stacks both on forking children and on exiting methods speculatively.
Additionally, children must create new stack frames for any methods they enter.

Pointers to child threads are stored one per stack frame, and this allows for conve-
nient out-of-order thread spawning [21] where each parent can have multiple immediate
children, exposing additional parallelism. When nested speculation is combined with
out-of-order spawning it leads to a tree of children for a single fork point.

Thread Joining. Upon reaching some termination condition, a speculative child will
stop execution and leave its entire state ready for joining by its parent. The child may
stop of its own accord if it attempts some illegal behaviour as summarized in Table 1,
if it reaches an elder sibling, that is, a speculative child forked earlier on by the same
parent at a lower stack frame, or if it reaches a pre-defined speculative sequence length
limit. The parent may also signal the child to stop if it reaches the join point associated
with the child’s fork point, or if it reaches the child’s forking frame at the top of the VM
exception handler loop.

The join process involves verifying the safety of child execution and committing
results. First, a full memory barrier is issued, and the child is then validated according
to four tests: 1) the predicted return value is checked against the actual return value
for non-void methods, according to the safety constraints of static analyses [18]; 2) the
parent is checked for not having had its root set garbage-collected since forking the
child; 3) the dependence buffers are checked for overflow or corruption; and 4) values
in the read dependence buffer are checked against main memory for violations.

If the child passes all four tests, then the speculation is safe; all values in the write
buffer are flushed to main memory, buffered stack frames entered by the child are copied
to the parent, and non-speculative execution resumes with the pc and operand stack size
set as the child left them. Otherwise, execution continues non-speculatively at the first
instruction past the SPMT JOIN. Regardless of success or failure, the child’s memory
is recycled for use at future fork points. Note that buffer commits may result in a re-
ordering of the speculative thread’s write operations, which must in turn respect the
requirements imposed by the new Java memory model, as discussed in Section 5.

4.3 Speculative Execution

SableSpMT supports two speculative execution modes, a single-threaded mode where
bytecode interpretation alternates between non-speculative and speculative execution in
a single thread, and a truly multithreaded mode that depends on multiple processors for
parallelisation. Both modes allow for non-speculative Java threads to coexist with the
speculative system.

The single-threaded mode has previously been described as appropriate for debug-
ging, testing, porting, and limit analyses [9]. In the multithreaded mode, children are
assigned priorities at fork points based on speculation histories, and enqueued on the
O(1) priority queue. A minimal amount of initialization is done to limit the impact of
fork overhead on non-speculative threads. There is a pool of helper OS threads running,
one per free processor, and these dequeue and execute children according to priority.

Software TLS for the Java Language and Virtual Machine Environment 313

If the parent thread joins a child that it previously enqueued, and that child did not
get removed by a helper OS thread, the child is deleted by simply unlinking it from the
list for that priority, and its memory is recycled. Otherwise, if the child has started, the
parent signals it to stop, and then begins the usual validation procedure.

5 Java Language Considerations

Several traps await the unsuspecting implementor that tries to enhance a JVM to support
thread level speculation. These traps are actually core features of the Java language
— object allocation, garbage collection, native method execution, exception handling,
synchronization, and the Java memory model — and a Java TLS implementation must
handle them all safely in order to be considered fully general. The impact of these
features is measured in Section 6.

Object Allocation. Object allocation occurs frequently in many Java programs, and
permitting speculative allocation significantly increases maximum child thread lengths.
Additionally, it is unnecessary to buffer accesses to objects allocated speculatively.
Speculative threads can either allocate without synchronization from a thread-local
heap, or compete with non-speculative threads to acquire a global heap mutex. Specula-
tion must stop if the object to be allocated has a non-trivial finalizer, i.e. not Object.-
finalize(), for it would be incorrect to finalize objects allocated by aborted children.
Allocation also forces speculation to stop if either GC or an OutOfMemoryError would
be triggered as a result. Object references only become visible to non-speculative Java
threads upon successful thread validation and committal; aborted children will have
their allocated objects reclaimed in the next collection.

Garbage Collection. All objects in Java are allocated on the garbage-collected Java
heap. SableVM uses a stop-the-world semi-space copying collector by default [16],
and every object reference changes upon every collection; thus, any speculative thread
started before GC must be invalidated after GC. Threads are invalidated if the collection
count of the parent thread increases between the fork and join points. The default col-
lector in SableVM is invoked relatively infrequently, and we find that GC is responsible
for a negligible amount of speculative invalidations. Other GC algorithms are trickier
to negotiate with, and may require either pinning of speculatively accessed objects or
updating of dependence buffer entries.

Native Methods. Java provides access to native code through the Java Native Inter-
face (JNI), and native methods are used in class libraries, application code, and the
VM itself for low-level operations such as thread management, timing, and I/O. Spec-
ulation must stop upon encountering native methods, as these cannot be executed in
a buffered environment without significant further analysis. However, non-speculative
threads can safely execute native code while their speculative children execute pure
bytecode continuations.

314 C.J.F. Pickett and C. Verbrugge

Exceptions. Implicit or explicit exceptions simply force speculation to stop. Specu-
lative exception handling is not supported in SableSpMT for three reasons: 1) excep-
tions are rarely encountered, even for “exception-heavy” applications like jack [20];
2) writing a speculative exception handler is somewhat complicated; and 3) exceptions
in speculative threads are often the result of incorrect computation, and thus further
progress is likely to be wasted effort.

Non-speculatively, if exceptions are thrown out of a method in search of an appropri-
ate exception handler, any speculative children encountered as stack frames are popped
must be aborted. In order to guarantee a maximum of one child per stack frame, chil-
dren must be aborted at the top of the VM exception handler loop, before jumping to the
handler pc. This prevents speculative children from being forked inside either catch or
finally blocks while another speculative child is executing in the same stack frame.

Synchronization. Object access is synchronized either explicitly by the MONITOR-

ENTER and MONITOREXIT instructions, or implicitly via synchronized method entry and
exit. Speculative synchronization is unsafe without explicit support [22], and must force
children to stop; somewhat surprisingly, synchronization has been unsafely ignored by
Java TLS studies in the past [1,5]. Non-speculatively, synchronization always remains
safe, and it is even possible to fork and join speculative threads inside critical sections.

The Java Memory Model. The new Java memory model (JMM) [3] imposes con-
straints on multithreaded execution; these constraints can be satisfied by inserting mem-
ory barriers [23]. Speculative execution can only continue past a memory barrier if the
dependence buffer records an exact interleaving of memory accesses and the relevant
barrier operations; that we reuse entries for value addresses already in the buffer and do
not record memory barriers precludes doing so in our current implementation.

The orderings required for various API calls, including non-speculative thread cre-
ation and joining, are provided by our design due to their implementations as native
methods, which already force speculation to stop. For object synchronization several
rules apply; most critically, a memory barrier is required before unlock operations to
guarantee that writes in the critical section are visible to future threads entering the
same monitor. By disabling speculative locking entirely we provide a much stronger
guarantee than required; future work on speculative locking will need a finer grained
approach.

Loads and stores of volatile fields also require memory barriers, to ensure interpro-
cessor visibility between operations. Similarly, the loads and stores of final fields require
barriers, except that on x86 and x86 64 these are no-ops [23]. However, speculatively,
we must stop on final field stores, which appear only in constructors, to ensure that
a final field is not used before the object reference has been made visible, a situation
that is made possible by reordering writes during commit operations. Our conservative
solution is to stop speculation on all volatile loads and stores and also all final stores.

6 Experimental Analysis

In this section we employ the SableSpMT framework to analyse the impact of both
speculation support components and Java language features on TLS execution. All

Software TLS for the Java Language and Virtual Machine Environment 315

experiments were performed on a 1.8 GHz 4-way SMP AMD Opteron machine run-
ning Linux 2.6.7, with all free processors running speculative threads. We use the
SPECjvm98 benchmark suite at size 100 (S100), and a speculative child thread is forked
at every callsite. Nested speculation is disabled, but out-of-order spawning does take
place. Although raytrace is technically not part of SPECjvm98 and therefore ex-
cluded from geometric means, we include results for purposes of comparison; it is the
single-threaded equivalent of mtrt.

Table 2. Child thread termination

termination reason comp db jack javac jess mpeg mtrt rt

class resolution and loading 2.14K 1.76K 94.8K 487K 3.80K 14.7K 4.79K 5.64K
failed object allocation 1 3 23 17 39 0 28 40
invalid object reference 563 553K 342K 280K 431K 485 407K 278K

finals and volatiles 842 1.45M 2.17M 1.11M 1.95M 888 115K 68.8K
synchronization 4.30K 26.8M 6.95M 17.0M 4.89M 10.4K 658K 351K

unsafe method entry or exit 2.66K 1.55K 16.0K 622K 2.62K 1.65K 3.60K 3.00K
implicit non-ATHROW exception 989K 828K 9.57K 572K 78.6K 2.00K 31.2K 20.8K

explicit ATHROW exception 0 0 187K 82 0 0 0 0
native code entry 332 28.2K 1.02M 1.02M 2.63M 527K 259K 260K

elder sibling reached 1.24M 3.81M 5.06M 16.1M 5.62M 14.1M 4.03M 4.23M
deleted from queue 348K 686 559K 3.13M 2.55M 4.48M 34.2M 1.57M
signalled by parent 202M 92.6M 20.1M 42.1M 56.3M 80.8M 122M 124M

TOTAL CHILD COUNT 204M 127M 36.5M 82.4M 74.5M 99.9M 162M 131M

In Table 2, total counts are given for all child thread termination reasons. In all cases,
the majority of children are signalled by their parent thread to stop speculation. Sig-
nificant numbers of child threads are deleted from the queue, and elder siblings are
frequently reached. We looked at the average thread lengths for speculative children,
and found them to be quite short, typically in the 0–10 instruction range. These data
all indicate that threads are being forked too frequently, and are consistent with the
general understanding of Java application behaviour: there are many short leaf method
calls and the call graph is very dense [24]. Inlining methods will change the call graph
structure, and it has previously been argued that inlined Java SMLP execution benefits
from coarser granularity [5]. Introducing inlining into our system and exploring fork
heuristics are therefore part of future work.

Outside of these categories, it is clear that synchronization and the memory barrier
requirements for finals and volatiles are important; enabling speculative locking and
recording barrier operations would allow threads to progress further. Native methods
can also be important, but are much harder to treat. The other safety considerations of
the Java language do not impact significantly on speculative execution; even speculative
exceptions are responsible for a minority of thread terminations.

Data on the number of speculative thread successes and failures, as well as a break-
down of failure reasons, are given in Table 3. Failures due to GC, buffer overflows and
exceptions are quite rare, and the majority of failures typically come from incorrect re-
turn value prediction. This again emphasizes the importance of accurate RVP in Java
SMLP, and the weak impact of exceptions and GC. Dependence violation counts are
not insignificant, and reusing predictors from the RVP framework for generalised load

316 C.J.F. Pickett and C. Verbrugge

Table 3. Child thread success and failure

join status comp db jack javac jess mpeg mtrt rt

exception in parent 0 0 386K 23.4K 0 0 0 0
incorrect prediction 18.0M 22.7M 2.80M 11.3M 5.80M 7.73M 4.85M 3.72M

garbage collection 4 20 119 206 470 0 90 68
buffer overflow 0 0 0 10 0 0 0 0

dependence violation 1.60M 1.44K 160K 1.53M 342K 14.7M 4.14M 4.00M
TOTAL FAILED 19.6M 22.7M 3.34M 12.9M 6.14M 22.4M 9.00M 7.72M
TOTAL PASSED 184M 103M 32.6M 66.4M 65.8M 73.0M 119M 122M

value prediction should help to lower them. In general, failures are much less common
than successes, the geometric mean failure rate being 12% of all speculations. While
this is encouraging, many threads are quite short due to an abundance of method calls
and therefore forked children, and the high overheads imposed by thread startup. Thus
it is likely the case that had they progressed a lot further, more violations would have
occurred.

Table 4. Impact of TLS support components on application speedup. The priority queue was
disabled by only enqueueing threads if a processor was free, return value prediction was disabled
by always predicting zero, and the remaining components were disabled by forcing premature
thread termination upon attempting to use them.

experiment comp db jack javac jess mpeg mtrt rt mean

forced failure baseline 1297s 931s 293s 641s 665s 669s 1017s 1530s 722s
no priority queueing 0.94x 1.22x 1.35x 1.32x 1.58x 0.97x 1.68x 2.05x 1.27x

no return value prediction 1.03x 1.17x 1.28x 1.24x 1.44x 1.03x 1.72x 1.70x 1.25x
no dependence buffering 1.04x 1.22x 1.12x 1.05x 1.16x 1.02x 0.95x 0.97x 1.08x

no object allocation 0.95x 1.30x 1.39x 1.26x 1.55x 0.98x 1.13x 1.23x 1.21x
no method entry and exit 0.94x 1.02x 0.97x 0.98x 1.02x 0.95x 0.79x 0.91x 0.95x
full runtime TLS support 1.06x 1.27x 1.39x 1.37x 1.64x 1.01x 1.82x 2.08x 1.34x

Table 4 shows the impact of individual support components on Java TLS execution.
Currently, thread overheads preclude actual speedup, and run times are within one order
of magnitude [9]. This is competitive with hardware simulations providing full archi-
tectural and program execution detail [25], but we are also optimistic about techniques
for achieving real speedup. In order to factor out the effects of fork and join overhead,
we use a baseline execution time where speculation occurs as normal, but failure is
automatically induced at every join point, calculating a mean relative speedup of 1.34x.

We note first of all that compress and mpegaudio are resilient to parallelisation,
likely due to our current, naı̈ve thread forking strategies. In some cases, disabling com-
ponents can even lead to slight speedup. This phenomenon occurs if overhead costs out-
weigh component benefits; for example, disabling return value prediction can mitigate
the cost of committing many short threads. In general, we can provide a partial order-
ing of support components by importance: the priority queue is least important; method
entry and exit, or stack buffering, and dependence buffering are most important; return
value prediction and speculative object allocation lie somewhere in-between.

Software TLS for the Java Language and Virtual Machine Environment 317

7 Conclusions and Future Work

Language and software based thread level speculation requires non-trivial consideration
of the language semantics, and Java in particular imposes some strong TLS design con-
straints. Here we have defined a complete system for Java TLS, taking into account var-
ious aspects of high level language and virtual machine behavioural requirements. Our
implementation work and experimental analysis of Java-specific behaviour show that
while most of these concerns do not result in a significant impact on TLS performance,
conservatively correct treatment of certain aspects can reduce potential speedup, most
notably synchronization. Part of our future work is thus to investigate different forms
of speculative locking [22] within a Java-specific context.

Our design focuses on defining correct Java semantics in the presence of TLS, and
demonstrating the associated cost. However, as with any speculative system, perfor-
mance and TLS overhead are also major concerns, and efforts to improve speedup
in many fashions are worthwhile, as suggested by previous profiling results [9]. We
are confident that overhead can be greatly reduced in our prototype implementation,
through optimisation of individual components, greater use of high level program in-
formation, and employment of general and Java-specific heuristics for making forking
decisions and assigning thread priorities. Further speedup is also expected by allowing
speculative children to spawn speculative children, and by supporting load value pre-
diction, both increasing the potential parallelism. Longer term future work includes an
implementation of TLS within the IBM Testarossa JIT and J9 VM, where we hope to
incorporate and measure these and other improvements, and research JIT-specific TLS
problems and opportunities.

Acknowledgements

This research was funded by the IBM Centre for Advanced Studies in Toronto, NSERC,
FQRNT, and McGill University.

References

1. Chen, M.K., Olukotun, K.: The Jrpm system for dynamically parallelizing Java programs.
In: ISCA. (2003) 434–446

2. Steffan, J.G., Colohan, C., Zhai, A., Mowry, T.C.: The STAMPede approach to thread-level
speculation. TOCS 23(3) (2005) 253–300

3. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: POPL. (2005) 378–391
4. Chen, M.K., Olukotun, K.: Exploiting method-level parallelism in single-threaded Java pro-

grams. In: PACT. (1998) 176–184
5. Hu, S., Bhargava, R., John, L.K.: The role of return value prediction in exploiting speculative

method-level parallelism. JILP 5 (2003)
6. Whaley, J., Kozyrakis, C.: Heuristics for profile-driven method-level speculative paralleliza-

tion. In: ICPP. (2005) 147–156
7. Kazi, I.H.: A Dynamically Adaptive Parallelization Model Based on Speculative Multi-

threading. PhD thesis, University of Minnesota (2000)

318 C.J.F. Pickett and C. Verbrugge

8. Yoshizoe, K., Matsumoto, T., Hiraki, K.: Speculative parallel execution on JVM. In: 1st UK
Workshop on Java for High Performance Network Computing. (1998)

9. Pickett, C.J.F., Verbrugge, C.: SableSpMT: A software framework for analysing speculative
multithreading in Java. In: PASTE. (2005) 59–66

10. Bhowmik, A., Franklin, M.: A general compiler framework for speculative multithreading.
In: SPAA. (2002) 99–108

11. Quiñones, C.G., Madriles, C., Sánchez, J., Marcuello, P., González, A., Tullsen, D.M.: Mi-
tosis compiler: An infrastructure for speculative threading based on pre-computation slices.
In: PLDI. (2005) 269–279

12. Bruening, D., Devabhaktuni, S., Amarasinghe, S.: Softspec: Software-based speculative par-
allelism. In: FDDO-3. (2000)

13. Rundberg, P., Stenström, P.: An all-software thread-level data dependence speculation system
for multiprocessors. JILP 3 (2001)

14. Cintra, M., Llanos, D.R.: Toward efficient and robust software speculative parallelization on
multiprocessors. In: PPoPP. (2003) 13–24

15. Cook, J.J.: Reverse execution of Java bytecode. The Computer Journal 45(6) (2002) 608–619
16. Gagnon, E.M.: A Portable Research Framework for the Execution of Java Bytecode. PhD

thesis, McGill University (2002) http://www.sablevm.org.
17. Vallée-Rai, R.: Soot: A Java bytecode optimization framework. Master’s thesis, McGill

University (2000) http://www.sable.mcgill.ca/soot/.
18. Pickett, C.J.F., Verbrugge, C.: Compiler analyses for improved return value prediction. Tech-

nical Report SABLE-TR-2004-6, Sable Research Group, McGill University (2004)
19. Shavit, N., Zemach, A.: Scalable concurrent priority queue algorithms. In: PODC. (1999)

113–122
20. Pickett, C.J.F., Verbrugge, C.: Return value prediction in a Java virtual machine. In: VPW2.

(2004) 40–47
21. Renau, J., Tuck, J., Liu, W., Ceze, L., Strauss, K., Torrellas, J.: Tasking with out-of-order

spawn in TLS chip multiprocessors: Microarchitecture and compilation. In: ICS. (2005)
179–188

22. Martı́nez, J.F., Torrellas, J.: Speculative synchronization: Applying thread-level speculation
to explicitly parallel applications. In: ASPLOS. (2002) 18–29

23. Lea, D.: The JSR-133 cookbook for compiler writers. http://gee.cs.oswego.edu/
dl/jmm/cookbook.html (2005)

24. Dufour, B., Driesen, K., Hendren, L., Verbrugge, C.: Dynamic metrics for Java. In: OOPSLA.
(2003) 149–168

25. Krishnan, V., Torrellas, J.: A direct-execution framework for fast and accurate simulation of
superscalar processors. In: PACT. (1998) 286–293

Lightweight Monitoring of the Progress of Remotely
Executing Computations

Shuo Yang, Ali R. Butt, Y. Charlie Hu, and Samuel P. Midkiff

School of Electrical and Computer Engineering
Purdue University, West Lafayette IN 47907, USA

{yang22,butta,ychu,smidkiff}@purdue.edu

Abstract. The increased popularity of grid systems and cycle sharing across or-
ganizations requires scalable systems that provide facilities to locate resources,
to be fair in the use of those resources, and to monitor jobs executing on remote
systems. This paper presents a novel and lightweight approach to monitoring the
progress and correctness of a parallel computation on a remote, and potentially
fraudulent, host system. We describe a monitoring system that uses a sequence
of program counter values to monitor program progress, and compiler techniques
that automatically generate the monitoring code. This approach improves on ear-
lier work by omitting the need to duplicate computation, which both simplifies
and reduces the overhead of monitoring. Our approach allows dynamic and ac-
countable cycle-sharing across the Internet. Experimental results show that the
overhead of our system is negligible and our monitoring approach is scalable.

1 Introduction

Computational workloads for academic groups, small businesses and consumers are
characterized by long periods of little or no processing punctuated by periods of intense
computational needs. It has been observed that computational resource demands can be
“smoothed out” across sub-groups by aggregating large numbers of resources and users
together. Computational resources across the world naturally experience different levels
of demand at any given time because of their distribution. Computational resources
are perishable, thus failing to use cycles, bandwidth and disk space does not create
additional resources to be used in the future. However, if resources that would otherwise
go unused could be provided to other users with the promise of sufficient compensation
to cover the overhead of providing the resources, along with a small profit, then these
resources would yield some value to the provider.

The major value of computational resources to their owner is the knowledge that
they are available when needed. The major cost of sharing unneeded cycles is the legal
and administrative overheads involved in allowing others access to the resources. Al-
lowing compensation for these administrative overheads would dramatically increase
the quantity, and decrease the cost, of available cycles. Both the decreased cost and
the ease of accessing cycles increase the number of applications that can exploit these
resources and increase the number of users that can access them. Academics and re-
search laboratories would have access to a vast array of machines for running simu-
lations, benchmarking programs, and running scientific applications; small businesses

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 319–333, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

320 S. Yang et al.

would have machines available for data-mining sales, accounting and forecasting; and
consumers would have machines available to perform computationally intensive, but
low-economic value activities such as games and digitally processing home movies.
Elimination of these overheads would allow automatic intermediation between con-
sumers and providers of resources, allowing shared resources to blend seamlessly with
locally owned resources.

Current cycle sharing systems take two approaches to minimizing these overheads.
The first approach relies on volunteers providing cycles to a trusted job provider [1,2,3]
with no desire for real compensation. These projects have allowed large computations,
which would be infeasible on committed hardware, to be performed using surplus cy-
cles on thousands of machines world-wide, and show the value of exploiting surplus
cycles. By having volunteers provide the machines and absorb the local administrative
overhead of enabling the application to run, by having a single trusted application, and
by avoiding compensation issues, these projects avoid the difficulties that a more gen-
eral approach must tackle. Although this model performs well in its targeted application
domain, it clearly cannot be generalized to support cycle sharing for applications that
do not inspire similar levels of generosity.

The second approach is typified by centrally managed systems like Condor [4] and
LoadLeveler [5] that have been developed to allow resources to be aggregated within
permanent or ad-hoc organizations. Centralized administration of resources allows a
trusted entity – the system administrators – to verify and track the trustworthiness of
users given access to the resources, and it allows users to deal with a known, trusted
entity. Although this model has allowed organizations to share unused cycles internally,
it does not work well for sharing cycles across organizations.

Four technical challenges must be overcome to allow the exploitation of the massive
amounts of computational resources that are going unused. Solutions to the first three
of these have been developed by other projects. The first challenge is how to discover
resources to be used, and how to compensate the providers of the resources and punish
cheaters [6,7,8]. The second challenge is how to enable a submitter machine to generate
executables compatible with the host platform in a heterogeneous system [9,10]. The
third challenge is how to protect the host machine, i.e. the machine executing the job,
from hostile binaries [11,12].

In this paper, we discuss a solution to the fourth technical challenge, the problem
of allowing the submitter machine, i.e. the machine submitting a job, to know its job
is being faithfully executed. This capability is necessary for widespread cycle sharing,
both to allow submitters of jobs to have confidence that their jobs are making progress
towards completion, and to allow submitters of jobs to incrementally compensate the
system hosting the job, thereby bounding the risk of the host. In this paper, we assume
that host nodes may act fraudulently, but not maliciously. That is, a host node may take
actions to gain compensation for which it is not entitled, but it will not take actions
that harm the submitter but which do not benefit the host. We make the following
contributions to monitoring the progress of remote jobs:

– We present a novel, lightweight technique to remotely monitor the incremental
progress of a program that is executing in an untrusted environment. This technique
has a lower overhead than any previous technique known to the authors.

Lightweight Monitoring of the Progress of Remotely Executing Computations 321

– We present experimental data showing the overhead of this system is less than 2.1%
on the remote system executing the program, and is negligible on the submitter
system that is monitoring the application’s progress.

– We present a monitoring technique that uses characteristics of the currently exe-
cuting binary to generate and encode progress information, and is impervious to
replay attacks.

– We show how the relatively uniform distribution of system and library calls can
be used to guide the placement of the monitoring code, allowing simple compiler
algorithms to be used to generate the monitoring code. We present experimental
data that validates this approach.

The rest of the paper is organized as follows. Section 2 presents our novel binary file
location beacon (BLB) approach to remote job monitoring for native binary executable
programs. Section 3 presents the implementation of our general BLB approach to target
MPI programs. Section 4 presents the experimental results showing the effectiveness of
the system. Finally, Section 5 discusses the related work and Section 6 concludes the
paper.

2 Monitoring Progress and Correctness with Beacons

In this section, we present a light-weight technique based on binary file location bea-
cons (BLB) for monitoring the progress of remotely executing programs.

We assume a generic Internet cycle sharing system where each participating node
can submit jobs (i.e. be a submitter node) or host jobs (i.e. be a host node). In this
paper, we focus on remote job monitoring, with other components, such as resource
location and credit management, being beyond the scope of this paper.

2.1 Key Idea

Before the submitter node submits a computational job to the host node for execution,
it passes the program to our tool which transforms the original program into a pair of
programs, one that executes on the host machine (H-code) and one that executes on
the submitter machine (S-code). The H-code is the original program augmented with
beacons and auxiliary code that send information about the program to the submitter
machine. The S-code uses this information to track the progress, and verify the execu-
tion of, the program. Figure 1 shows an example of the runtime architecture of a remote
job monitoring system.

The basic idea of this paper is to use place location beacons (L-beacons) along the
control flow graph (CFG) of a program to track the fine-grained remote job progress
information. However, a L-beacon based tracking mechanism is vulnerable to a replay
attack. For example, Miller et al. [13] describes how to use existing tools to replace,
on-the-fly, a process with another process. Thus, if a valid L-beacon value stream of a
previous execution is captured, the attacker can replace the process of the later com-
putation with a process that emits the captured L-beacon value sequence to cheat the
submitter.

322 S. Yang et al.

Asynchronous communication Synchronous communication

running H−code

job
Remote submitted

(with Beacon) (FSA transitioning)
Beacon information

running S−code

Tracking ThreadBeacon
reporting thread

One node on host cluster Submitter machine

Fig. 1. The run time monitoring system for MPI programs: displaying only one tracking thread
and the corresponding process it monitors

The contribution of this paper is on how to use the location beacons to monitor re-
mote program execution. Specifically, the key idea of this paper is that by making the
value transmitted by location beacons reflect the structure of the program and by par-
tially randomizing their placement, we can defeat replay attacks. We call this technique
binary file location beacons, or BLB-based remote monitoring for binary applications.

In our BLB-based remote job monitoring, the submitter constructs a finite state au-
tomaton (FSA) that tracks the progress of the remote job executing on the host machine.
BLBs are placed along control flow graph (CFG) edges of a program and used to iden-
tify the current location of the program during its execution. At runtime, a BLB invokes
a function f that stores the beacon value in a buffer, with the buffer sent to the submit-
ter program at predetermined intervals. The value placed in the buffer is the value of
the program counter at the BLB site, more precisely, it is the program counter of the
instruction immediately following the call to f . By using the program counter value,
the beacon value is intimately tied to the layout of the binary code generated for the
program.

Our beacon insertion technique works as follows. The original program is scanned
for candidate beacon insertion points, i.e., the entries to computationally significant
regions. Computationally significant regions can be identified by the programmer or
can be identified via an analytical cost model (see [14] for details). In this paper, we
use a variant of the former approach, but instead of having the programmer explicitly
identify candidate insertion points, we make use of the observation that system and
library calls tend to be relatively uniformly distributed across programs, and tend to
not appear within the inner loops of high performance programs. By using system and
library call sites as candidate sites for placing BLBs, we do not need to use analytical
models within the compiler to locate candidate sites.

2.2 Possible Attacks

Each BLB inserted will attempt to add a beacon value, which is a program counter
(PC) value, into the BLB buffer to be sent to the host. An attack on our monitoring

Lightweight Monitoring of the Progress of Remotely Executing Computations 323

system needs to emit a stream of valid BLB values to be communicated to the submitter
machine. There are two ways of doing this. The first is to capture a valid stream of
beacon values from a previous correct execution of the program, and then replay this
stream on future requests to execute the program. We prevent this attack by not always
inserting beacons at the same locations when generating a program. At each potential
BLB insertion site B, a beacon is actually inserted with probability PB . If PB = 0, no
beacon is ever inserted at this site, if PB = 1 a beacon is always inserted at this site. For
0 < PB < 1 a beacon may be inserted. By setting the values of PB to be non-zero and
less than one, each version of the program generated by our compiler will likely have a
different set of beacons inserted and consequently a different set of valid beacon values.
Because the values of PB can be different at different candidate sites B the placement of
beacons can be made more or less likely, depending on the hotness of a program region.
In any case, attempts to replay the old beacon values will fail, with a high probability,
because the replayed set of beacons will likely contain invalid beacon values. Because
the binaries for programs used in high performance computing are usually orders of
magnitude smaller than the data they operate on, shipping a (possibly) new binary with
each execution imposes only a small overhead.

The second form of attack is for the host to analyze the binary and to extract the set
of BLB call sites and the reachability information between BLB call sites necessary to
construct the FSA. With this information a host can reconstruct the FSA and generate a
valid sequence of BLB values. Two approaches can be used to prevent this attack. The
first is to use code obfuscation to hide the control flow structure of the program, and
consequently make it very difficult to determine the reachability information necessary
to construct the FSA. A moderate use of jump tables to implement branches, and a
moderate use of jump tables for function dispatch in code not on the critical path, should
be sufficient to thwart program analysis tools. We note that simply compiling programs
at high optimization levels performs a high degree of code obfuscation, and that is the
technique we use now. Explicit code obfuscations techniques, such as the one described
in [15] to enhance the difficulty of reverse-engineering, can be applied to our approach
to further enhance the security of the system.

We note that attacks predicated on changing the binary must simultaneously preserve
two structural properties of the program. First, the reachability of beacons from other
beacons must be unchanged. Failing to do this will cause the host to run the risk that
sequences of beacons not possible in the original program will be sent to the submitter.
Second, the location of the code (explained in detail in the next section) that obtains the
PC cannot be changed, since this will cause sequences of beacons sent to the submitter
to contain values that are not possible in the original program.

Finally, we note that our goal is not to construct an unbreakable system, but rather to
construct a system where the cost of breaking it is as high as the benefit.

3 Implementation Details

In the previous section we introduced a general BLB-based technique applicable to any
binary executable program. In this section, we present a concrete implementation using

324 S. Yang et al.

BLBs in MPI message passing programs. We choose MPI programs because MPI is the
most popular programming model for high performance computing. Moreover, MPI
programs are able to work on more diversified platforms, including SMP and distributed
memory systems, than any other programming model.

3.1 Program Counters of MPI Calls as BLB Values

As described in Section 2, BLBs provide fine-grained location information about an
executing program. The compiler in the monitoring system generates host code by in-
serting hard-coded beacon instructions at significant points in the program. Because
beacon instructions that are inserted in the host code take time to execute and therefore
add to the overhead of the program, the selection of locations to insert BLBs must ac-
count for the tradeoff between the granularity of monitoring and the program overhead.
Thus locations chosen to insert beacon instructions should be: (i) where the overhead of
executing the beacon instructions is affordable, and (ii) easily identified by a compiler
as an efficient place to locate a binary location beacon.

In an MPI program, interprocess communication and synchronization are achieved
by calling MPI library functions. Therefore, locations of interprocess communication
and synchronization points, i.e., the MPI calls in the program, naturally satisfy the above
two criteria because (i) the cost of a beacon instruction is insignificant compared to the
interprocess communication or synchronization cost plus the cost of the computation
performed since the last beacon, and (ii) a compiler front-end can trivially identify MPI
calls.

The code in Figure 2 shows our implementation to obtain PC values to be used as
BLB values. GetPC() is an instruction that obtains the PC value of the next instruction
(the invocation of the mpi send call) in a C program targeting an Intel IA32 processor
running FreeBSD. Function getPC() returns the address that is placed on the stack
frame when it is invoked, i.e. the PC of the instruction immediately after the invoca-
tion of getPC(). Adding the C expression pc = getPC() immediately before an
MPI call returns the address where the MPI operation is invoked, i.e., the PC value at
the MPI operation call site. We have implemented the same functionality for Fortran.
The only difference between the C and Fortran implementations is how the value is re-
turned by the respective getPC() functions because of the different function calling
conventions.

For different machine architectures, a slightly different function needs to be pro-
vided. AMD64 family processors have the same calling convention and stack layout as
the Intel IA32 architecture, and the above method to get the program counter value is
valid. For architectures that allow more aggressive use of registers during code gener-
ation (e.g. the PowerPC architecture), slightly different code is generated because the
return address from a function call is saved into a dedicated register instead of onto the
stack. Therefore the getPC() function for these architectures returns the value held
in the dedicated register instead of returning the value on the stack frame. For 64-bit
Intel Itanium architecture, the cost of getPC() can be reduced by utilizing its “regis-
ter stack frames” architecture, which enables getPC() to avoid accesses to the stack
frames in main memory.

Lightweight Monitoring of the Progress of Remotely Executing Computations 325

main(){
...
mpi send(...);
...

}

int pc;
main(){

...
pc = getPC();
mpi send(...);
...

}
...
int getPC(){

asm(”mov 4(%ebp), %eax”);
}

(a) An MPI call in original code (b) PC values returned by getPC() as BLB

Fig. 2. Obtaining the program counter of an MPI call in a C program on IA32

3.2 FSA Constructed with Program Counters of MPI Calls

We now present the method used to construct a finite state automaton (FSA) to track
legal sequences of BLB values. Each process in the host system executing the submitted
program runs the same MPI executable, and their FSAs are identical.

The FSA construction algorithm is presented in [14]. This algorithm projects a com-
plete program control flow graph onto a program control flow graph containing only
nodes that are annotated with beacons. A node ni in the new graph can reach a node nj

in the new graph if and only if ni could reach nj in the original graph. Using this algo-
rithm, we construct an FSA where states in the FSA represent nodes in the new control
flow graph. After compiling the code into a binary executable, we use a disassembler
(objdump() in our case) to get the addresses of the MPI calls that are identified as
beacon sites, map them onto the corresponding states in the FSA, and use the addresses
as the state labels in the FSA. The address of the call to mpi init() corresponds to
the initial state of the FSA, and the address of the call to mpi finalize() corre-
sponds to the final state of the FSA. The transition symbol α driving a transition toward
a specific state (also labeled α) is the address of the corresponding node in the binary
executable.

Figure 3 shows an MPI program fragment, the corresponding H-code and the re-
sulting FSA. In this example, we treat each MPI call as a beacon site (i.e. all PB =
1). As shown in Figure 3(b), the compiler identifies each MPI call and inserts a call
to getPC() immediately before the MPI call. The compiler also inserts a call to
deposit beacon(), which puts the BLB value into the beacon buffer, after each
MPI call identified as a BLB. After the FSA is constructed, and after the transformed
code is compiled, the BLB values are mapped onto the states and transition symbols in
the FSA, as shown in in Figure 3(c).

3.3 Runtime System of Monitoring MPI Programs

We now discuss the details of how the deposit beacon() call places the BLB value
generated by getPC() into a beacon buffer, and how the sequence of values placed
into the buffer is transmitted to the submitter machine and used to monitor the progress
of the program. Figure 1 shows a tracking thread on the submitter and the corresponding
process that it monitors in the host cluster.

326 S. Yang et al.

main(){
...
mpi irecv(...);
...
if(...)

mpi send(...);
...
mpi wait();
...

}

main(){
...
pc = getPC();
mpi irecv(...);// @0x804a641 in the executable
deposit beacon(pc);
...
if(...){

pc = getPC();
mpi send(...);// @0x804a679 in the executable
deposit beacon(pc);

}
...
pc = getPC();
mpi wait(); // @0x804a69b in the executable
deposit beacon(pc);
...

}

(a) A piece of pseudo code of MPI program (b) Generated host code

‘0x804a679’ ‘0x804a69b’‘0x804a641’

To other states

State 0x804a641 State 0x804a679 State 0x804a69b

‘0x804a69b’

(c) Part of FSA corresponding to above program: transition symbols on the edges correspond to
the unique program counter emitted by the inserted beacon instructions

Fig. 3. An example of program counter based FSA

At the beginning of the computation on the host, the H-code performs an initializa-
tion procedure. Each MPI process allocates a beacon buffer where the BLB values gen-
erated by this process are inserted. A beacon buffer in our current implementation can
hold up to 1500 beacon values. Each process also creates a separate reporting thread.
The reporting thread on each process builds a TCP socket that connects to the mon-
itoring S-code program running on the submitter. During the computation, the main
computation thread on each process takes beacon values returned by invocations of the
getPC() function and, via a call to deposit beacon(), places the beacon value
into the beacon buffer. This is shown in Figure 3(b). Periodically the reporting thread
on each process sends the contents of its buffer to the submitter, and then clears the
buffer to allow more beacon values to be deposited. The pthread mutex and condition
variables are used to synchronize access to the beacon buffer by the main computation
and the reporting thread.

The reporting thread on a process sends the values in the beacon buffer back to the
submitter using a paced transmission scheme. The paced transmission scheme works
as follows. The reporting thread sleeps for an interval, which is set by the submitter
when the program is submitted to the host. When this interval passes, the reporting
thread wakes up to send the values in the beacon buffer. If the buffer is filled before the

Lightweight Monitoring of the Progress of Remotely Executing Computations 327

interval expires, the reporting thread is woken up and immediately sends the buffer to
the submitter node. When the reporting thread finishes sending the buffer, it sleeps for
another interval. Thus, the cross-network data transfer procedure is asynchronous to the
main computation of the program.

We now discuss the submitter machine actions. The submitter machine creates a ded-
icated thread (the tracking thread) for each MPI process executing on the host machine.
Each tracking thread maintains an FSA, and the current state of the FSA is initialized
to be the initial state, i.e. a state corresponding to an mpi init call. Over time, the
tracking thread receives buffers from its corresponding reporting thread, via the al-
ready established socket. Each beacon value in the buffer is processed by comparing it
to states adjacent to the current state, which are found by performing a lookup in the
FSA’s transition table. If the beacon value does not match a valid transition from the
current state, it is an illegal transition and the appropriate action is taken. Buffers con-
tinue to be received, and beacon values in the buffers continue to be processed, until the
submitter receives the final state beacon value.

Finally we note that the monitoring runtime system can be configured with different
setups. For example, the submitter can only build a connection to a single host process
(e.g., the master node) and by receiving and tracking the single node’s BLB values, the
submitter can track the progress of the remote computation. Our system has sufficiently
low overhead when tracking all host processes that we have not investigated this strategy
further.

4 Experimental Results

In this section, we present performance results showing the overhead and effectiveness
of our system.

4.1 Experimental Platform

Our experiments were run on a submitter/host pair located at the University of Illinois at
Urbana-Champaign and Purdue University. The submitter machine, located at UIUC, is
a uniprocessor with an Intel 3GHz Xeon processor, 512KB cache and 1GB main mem-
ory running the Linux 2.4.20 kernel. It is connected to the Internet through the campus
network. The host machine is a cluster located at Purdue with 8 computational nodes,
each of which has an Intel Pentium IV processor with 512KB cache, 512MB main
memory, and runs FreeBSD 4.7. The nodes within the cluster are interconnected by a
FastEthernet. The nodes in the cluster share a single file system, and the MPICH 1.2.5
library is installed on the cluster. Programs were hand-transformed using the approach
described in Section 3.

4.2 NAS Parallel Benchmark Kernels

The NAS Parallel Benchmarks(NPB) [16] version 3.2 is a set of benchmarks developed
to evaluate the performance of highly parallel computational resources. These bench-
marks consist of five parallel kernels and three simulated applications. From these ker-
nels and applications, we selected four kernels representing totally different types of
computation and communication patterns to evaluate our approach.

328 S. Yang et al.

– EP (an embarrassingly parallel kernel) represents computations without significant
interprocessor communication. EP provides an estimate of the upper achievable
limits for floating point performance.

– IS (a large integer sort kernel) performs a sorting operation that is important in
particle method codes. IS tests both integer computation and communication
performance.

– MG (a simplified multigrid kernel) performs the 3D V-cycle multigrid algorithm
which solves the discrete Poisson problem with periodic boundary conditions. MG
represents highly structured long distance communication and tests both short and
long distance data communication.

– CG (a conjugate gradient kernel) performs the computation of the smallest eigen-
value of a large, sparse, symmetric positive definite matrix. CG represents irregular
long distance communication and unstructured matrix vector multiplication, which
is typical of unstructured grid computations.

In our measurements, the inter-transmission intervals of the beacon reporting thread
is set to 2 seconds, which represents a highly aggressive monitoring scenario. In an
actual system, the inter-transmission interval would be tens of seconds or minutes. Also,
we generate beacon information for each MPI call in the program, reflecting the case
of PB = 1 described in Section 2, which is the most expensive version of the H-code
to monitor. Therefore, our experiment provides an upper bound on the performance
overhead and network traffic incurred by using our monitoring system.

4.3 Run Time Computation Overhead

We first evaluate the scalability of our system by measuring the system performance
overhead with computations running on different numbers of processors. To evaluate
this, we run each of the above benchmarks with problem size-B inputs on 2, 4 and 8
processors of our cluster. We measure the time to run the original benchmarks on our
cluster, which reflects the scenario of remote job execution without monitoring. These
form our baseline numbers. We then run the manually transformed submitter code and
host code of the same benchmarks on the submitter/host pair, which reflects the scenario
of a remote job submission with monitoring. Figure 4 shows the overhead of job execu-
tions, using beacons for monitoring, over the corresponding un-monitored baseline job
execution times. Our experimental results show that the maximum performance over-
head is under 2.1%. We notice that the overhead does not monotonically increase with
an increasing number of processors, and now explain why. Both the base line number
(the computation time without monitoring) and the number of beacon calls under mon-
itoring (the number of the MPI function calls per process at run time) decrease when
the number of processes increases. There is, however, no explicit relationship between
these two decreasing values. As well, our monitoring system introduces additional syn-
chronization overhead by adding a single reporting thread to each process. But this
synchronization overhead is always one extra thread (the reporting thread) per process
no matter how many processes the MPI code runs on.

Next we evaluate the relationship between the problem size of a monitored compu-
tation and the monitoring overhead. A problem with size-C input represents a larger

Lightweight Monitoring of the Progress of Remotely Executing Computations 329

8 processors
4 processors
2 processors

O
ve

rh
ea

d
(%

)

Overhead on the cluster host machine

EP IS MG CG

2.5

2

1.5

1

0.5

0

Fig. 4. Host Side Overhead with Different
Number of Processors (Problem Size-B)

Size−C
Size−B

O
ve

rh
ea

d
(%

)

2.5

2

1.5

1

0.5

0

Overhead with Different Problem Size

Both on 8−Processors

EP IS MG CG

Fig. 5. Host Side Overhead with Different
Problem Sizes

problem size than the problem with size-B input. For example, for MG problem size-B
uses a 256 by 256 by 256 matrix as the input data set, and problem size-C uses a 512 by
512 by 512 matrix as the input data set. Figure 5 shows that the overhead to monitor a
larger computation (in this case, size-C) is always smaller than that to monitor a smaller
computation (in this case, size-B). This is because the number of MPI calls in problem
size-B and in problem size-C runs of each benchmark are similar. Therefore the cost of
depositing BLBs into the buffer and transferring them across the network (the overhead
on the host machine) for both problem sizes are similar. However, the total computation
time for problem size-C is greater than that for problem size-B, thus the overhead is
lower for problem size-C.

Finally, we evaluate the submitter node CPU usage to monitor a remote job. As the
submitter code only performs FSA transitioning, it uses a small fraction of the CPU.
We use the system time facility to measure the computational resources used by the
verification process on the submitter. This is an imperfect evaluation because this ratio
changes according to two factors: (1) the submitter’s hardware, and (2) the submitter’s
workload while monitoring a remote job, which affects the resources available to per-
form the monitoring. We believe, however, that the numbers give a feel for the low
overheads, and small amount of resources required to perform the monitoring. Table 1
shows the ratio of the sum of the user CPU time and the system CPU time to the wall
clock time (elapsed real time) during the S-code execution.

As the results in Table 1 show, monitoring a computation with a larger problem size
always takes a smaller percentage of the submitter’s CPU resources than monitoring
a computation with a smaller problem size. This is because the amount of beacon in-
formation processed by the submitter for problem size-B and problem size-C is same
for each benchmark, while the monitoring time, i.e., the computation time on the host
for problem size-C is significantly longer than that for problem size-B. These numbers
were measured while one author logged into the submitter machine and launched two
emacs processes, one vi process, and one Mozilla web browser process, which mimics
a ‘realistic’ working scenario of a job submitter.

4.4 Network Bandwidth Overhead

Since network resources are finite, it is necessary to limit the amount of data sent from
the host to the submitter node. We evaluate the network traffic generated by our system

330 S. Yang et al.

Table 1. CPU Usage of Monitoring Compu-
tation with Different Problem Size Code on
Submitter: 8-processors on the host in both
cases

Size-B Size-C
EP 0.06% 0.02%
IS 0.07% 0.02%
MG 0.15% 0.03%
CG 0.17% 0.07%

Table 2. Average network traffic (total traf-
fic / execution time) in for different problem
sizes

Size-B (8 procs) Size-C (8 procs)
EP 4.2 bytes/sec 1.0 bytes/sec
IS 101.5 bytes/sec 23.2 byte/sec
MG 21.2K bytes/sec 1.5K bytes/sec
CG 21.9K bytes/sec 7.9K bytes/sec

by measuring the number of bytes sent from the host machine to the submitter ma-
chine. In our experimental setup, each working process in the host cluster builds a TCP
connection to the monitoring program (S-code, which creates tracking threads for all
remote working processes) running on the submitter machine. In a real monitoring sys-
tem setup, the submitter could choose to track a subset of the processes. Therefore, our
experimental results reflect the upper bound of network traffic in a monitoring system.

In our experiment, we measured the average network traffic incurred by different
benchmarks with problem size-B and problem size-C running on 8 processors. Table 2
shows the result of the above measurement, i.e. the total bytes of BLB values divided
by the job execution time for each experiment. The results show that the larger the
problem size , the smaller the average amount of network traffic the monitoring system
incurs per unit time. The EP (embarrassingly parallel) kernel causes nearly zero traf-
fic because this benchmark represents the type of computation without interprocessor
communication. The BLB traffic is non-zero for EP because the benchmark uses several
mpi reduce() calls to get the computation result at the end of the benchmark. IS is
the integer sorting benchmark and it uses a small amount of interprocessor communi-
cation to exchange the single elements at the boundaries of sub-arrays. MG and CG are
typical numerical computations representing different communication patterns. These
numbers show that the network traffic caused by our monitoring system is within the
dial-up bandwidth.

4.5 Beacon Distribution over Time

Our BLB based MPI program tracking approach leverages the observation that MPI
calls are relatively uniformly distributed across most programs. This property enables
the incremental progress tracking by the submitter. To verify this observation, we mea-
sure the number of beacon packets received by the submitter, i.e., the number of TCP
send operations on the host machine, across the execution (monitoring) time. Figure 6
shows the number of packets received in a single tracking thread, which reflects the
beacon temporal distribution over execution time during computations of problem size-
C for a single computation process in the host cluster in our experiment. Each bin
in Figure 6 represents a two seconds interval. Figure 6 shows that with the exception
of EP, the beacon buffer packets sent by the host machine in our benchmarks are rela-
tively uniformly distributed across the program execution time. EP is an embarrassingly

Lightweight Monitoring of the Progress of Remotely Executing Computations 331

No

Yes

 0 20 40 60 80 100

P
ac

ke
t s

en
t

Time Period

No

Yes

 0 10 20 30 40 50 60 70 80

P
ac

ke
t s

en
t

Time Period

(a) EP (b) IS

No

Yes

 0 50 100 150 200

P
ac

ke
t s

en
t

Time Period

No

Yes

 0 50 100 150 200

P
ac

ke
t s

en
t

Time Period

(c) MG (d) CG

Fig. 6. Beacon packets sent by the host machine distributed during the execution (problem size-
C) period: each bin representing a 2-second interval; ‘yes’ meaning there is BLB packet sent to
receiver at that interval, ‘no’ meaning no BLB packet sent at that interval

parallel program and has no communication (because no data dependencies exist) dur-
ing the main computation. For EP style programs, the submitter may choose to insert
BLBs via an analytical cost model, as mentioned in Section 2.1 and described in [14],
to get a relatively uniform BLB distribution. (We chose not to use that approach in this
paper for the EP benchmark to keep our experimental conditions consistent.) We con-
clude that our approach of using MPI calls to place beacon calls gives good incremental
progress information for most MPI programs.

5 Related Work

With the increasing popularity of grid systems and cycle sharing, efficient protection
against malicious machines has become an important research topic. Sarmenta dis-
cusses a spot checking mechanism to catch malicious machines (saboteurs) [17]. The
central manager randomly assigns some computations, whose results are known to the
central manager, to volunteer machines. By comparing the known results with the re-
sults sent by the volunteer machines, malicious volunteers can be caught efficiently.
Du et al. [18] proposed a Merkle (Hash) tree based technique to detect cheating nodes
when embarrassingly parallel computations are being performed. By verifying a subset
of leaves in the Merkle tree, a central job manager can grant the correctness of all the re-
sults in the tree. Both of above techniques ensure the integrity of participant machines
by checking a subset of independent computations completed by the participant ma-
chines. Our approach differs in that it monitors the integrity of all parts of an application
execution. Moreover, our approach monitors the progress of the application and enables
partial payments or detection of errors before a long running application finishes. We
note that monitoring the progress of an execution is stricter than only checking that a
remote machine has faithfully executed the program. Monitoring the progress of execu-
tion requires incremental confirmation of faithful execution. This is important for long

332 S. Yang et al.

running jobs so that the submitter machine does not have to wait for the job to finish to
know the job’s progress.

Hofmeyr et al. [19] uses sequences of system calls to detect intrusions. They built a
profile of normal system call behavior for a process of interest, treating deviations from
this profile as anomalies. Chen and Wagner [20] designed the MOPS system based on
the formal model of a program and of a security property, which uses a finite state au-
tomaton to describe security rule of a process. Both of these techniques analyze system
call sequences to achieve anomaly detection. Our approach differs from theirs in that
the beacons in our monitoring system are not limited to system calls (e.g. the imple-
mentation example in this paper uses MPI function calls as beacons). Moreover, the
purpose of our approach is to monitor the remote job progress instead of assuring the
security of a local machine.

Our previous monitoring system [14] provides an approach to monitoring remote
computations running Java bytecode. The submitter constructs an FSA to track the
progress of the program, and it duplicates a portion of the computation (R-beacon) to
prevent replay attacks. The BLB approach presented in this paper differs from it in that
the BLB approach obviates the need for recomputation beacons (R-beacon), which are
the main component of network traffic and computational burden on the submitter side
incurred by the monitoring system. The BLB approach also makes the beacon location
identification much easier for the compiler.

Program monitoring is also employed in the Globus project for providing better qual-
ity of service [21]. This monitoring is either achieved indirectly by determining the re-
source utilization of the program, or by modifying the program to insert explicit calls to
the Globus API. The motivation of our work is different in that we are using the moni-
toring to determine if we are receiving a resource as promised, and we do not need any
special APIs in the host system, increasing the portability of our approach.

6 Conclusion

We have described a solution for monitoring the progress and correctness of a remote
job. We show that the overhead of performing this monitoring is small. Although we
describe our approach in the context of the MPI programming model, it is applicable
to any binary. It is beneficial to both resource providers and resource consumers by
limiting their risks. This technique, combined with our work, and the work of others, in
resource discovery, sandboxed execution and automatic credit systems, opens the way
for exploiting idle cycles across the Internet in a dynamic, ad-hoc fashion.

Acknowledgment

We thank Josep Torrellas for giving us access to his machines at UIUC to perform
remote job submission and monitoring experiments. This work was supported in part
by NSF CAREER award grant ACI-0238379 and NSF grants CCR-0313026 and CCR-
0313033.

Lightweight Monitoring of the Progress of Remotely Executing Computations 333

References

1. Genome@home: Genome at home. (http://www.stanford.edu/group/
pandegroup/genome/index.html (December 16, 2004))

2. SETI@home: Search for extraterrestrial intelligence at home. (http://setiathome.
ssl.berkeley.edu/index.html (December 16, 2004))

3. David, A.P.: BOINC:A System for Public-Resource Computing and Storage. In: Proc. 5th
IEEE/ACM International Workshop on Grid Computing. (2004)

4. Litzkow, M., Livny, M., Mutka, M.: Condor - A Hunter of Idle Workstations. In: Proc. 8th
International Conference on Distributed Computing Systems (ICDCS 1988). (1988)

5. Kannan, S., Roberts, M., Mayes, P., Brelsford, D., Skovira, J.F.: Workload Man-
agement with LoadLeveler. IBM International Technical Support Organization (2001)
http://www.ibm.com/redbooks (Dec. 17, 2004), publication number SG24-6038-00.

6. Butt, A.R., Fang, X., Hu, Y.C., Midkiff, S.: Java, Peer-to-Peer, and Accountability: Building
Blocks for Distributed Cycle Sharing. In: Proc. of VM’04. (2004)

7. Castro, M., Druschel, P., Hu, Y.C., Rowstron, A.: Exploiting Network Proximity in Dis-
tributed Hash Tables. In: International Workshop on Future Directions in Distributed Com-
puting. (2002)

8. Lo, V., Zappala, D., Zhou, D., Liu, Y., Zhao, S.: Cluster Computing on the Fly: P2P Schedul-
ing of Idle Cycles in the Internet . In: Proc. of IPTPS’04. (2004)

9. Minchew, C.H., Tai, K.C.: Experience with Porting the Portable C Compiler. In: ACM 82:
Proceedings of the ACM ’82 conference, New York, NY, USA (1982)

10. PARISC-Linux: The PARISC-Linux Cross Compiler HOWTO. (http://www.
baldric.uwo.ca/HOWTO/PARISC-Linux-XC-HOWTO.html (March 16,
2005))

11. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I.,
Warfield, A.: Xen and the Art of Virtualization. In: Proc. of SOSP’03. (2003)

12. Kamp, P.H., N.M.Watson, R.: Jails: Confining the Omnipotent Root. In: Proceedings of
SANE 2000 Conference. (2000)

13. Miller, B.P., Christodorescu, M., Iverson, R., Kosar, T., Mirgorodskii, A., Popovici, F.: Play-
ing Inside the Black Box: Using Dynamic Instrumentation to Create Security Holes. In:
Proceedings of 2nd Los Alamos Computer Science Institute Symposium. (2001)

14. Yang, S., Butt, A.R., Hu, Y.C., Midkiff, S.P.: Trust but Verify: Monitoring Remotely Execut-
ing Programs for Progress and Correctness. In: Proc. of PPOPP’05. (2005)

15. Linn, C., Debray, S.: Obfuscation of Executable Code to Improve Resistance to Static Dis-
assembly. In: Proc. of CCS’03. (2003)

16. Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R., Dagum, L., Fatoohi, R.,
Fineberg, S., P.Frederickson, Lasinski, T., Schreiber, R., Simon, H., Venkatakrishnan, V.,
Weeratunga, S.: The NAS Parallel Benchmarks. Technical Report NAS Technical Report
RNR-94-007, NASA Ames Center (1994)

17. Sarmenta, L.F.: Sabotage Tolerance Mechanism for Volunteer Computing Systems. In:
CCGrid’01. (2001)

18. Du, W., Jia, J., Mangal, M., Murugesan, M.: Uncheatable Grid Computing. In: Proceedings
of the 24th International Conference on Distributed Computing Systems (ICDCS’04). (2004)

19. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of system
calls. Journal of Computer Security 6 (1998)

20. Chen, H., Wagner, D.: MOPS: an Infrastructure for Examining Security Properties of Soft-
ware. In: Proc. of CCS’ 02. (2002)

21. Foster, I., Roy, A., Sander, V.: A Quality of Service Architecture that Combines Resource
Reservation and Application Adaptation. In: Proc. 8th International Workshop on Quality of
Service. (2000)

Using Platform-Specific Performance Counters
for Dynamic Compilation

Florian Schneider and Thomas R. Gross

Laboratory for Software Technology
Department of Computer Science

ETH Zürich
Zürich, Switzerland

Abstract. Hardware performance counters provide information about
events in the hardware platform (e.g., cache misses, pipeline stalls), in
contrast to profiles that capture program properties (e.g., execution fre-
quencies for basic blocks, methods, function calls). As platform archi-
tectures become more complex and also more diverse, it is important
for a compiler to exploit platform-specific information. A dynamic (JIT)
compiler is in the unique position to run on the same platform as the
target application, but in practice, exploiting the wealth of information
available through performance counters is far from easy. If a JIT com-
piler is to use performance counter information, this information must
be fine-grained (e.g., attributing cache misses to a single load instruc-
tion) and must be obtainable without undue overhead. We present a
runtime+compiler framework to tie hardware performance counter in-
formation to a dynamic compiler and argue that the overhead is low and
fine-grained. As parallel architectures or multi-core architectures prolifer-
ate, performance issues will play a crucial role in all compilation engines,
and our paper reports on a modular approach to make such counter
information available to the compiler.

1 Introduction

The combination of VM and JIT compiler is now the most common execution
platform for programs written in object-oriented languages. Unlike the classic
ahead-of-time compilation model, the JIT compiler is able to take immediate ad-
vantage of dynamic information. There are two kinds of information that such a
compiler may use: profiles, i.e. measurements of program properties (e.g., num-
ber of method invocations) and measurements of platform-specific properties,
such as number of cache misses, TLB misses, branch prediction failures). The
latter must be obtained from the performance measurement unit of the execu-
tion platform, and this paper details how this information can be provided to
and used by a compiler for a high-level language like Java.

Many compilers for high-performance linear algebra computing already use
information from the execution platform for cache optimization: For example,
blocking is a common technique to reduce cache misses in matrix computations,
but using it effectively requires that the characteristics of the memory hierarchy

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 334–346, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Using Platform-Specific Performance Counters for Dynamic Compilation 335

be considered [14]. Another example is inter-variable padding [18], which can
be used to reduce conflict misses, but requires a precise knowledge about the
application’s memory access patterns. For programs in the domain of scientific
computing these access patterns can often be obtained exactly or can be approx-
imated by an analytical model. Still, the design of performance monitoring units
is still the subject of current research [15].

On the other hand, object-oriented programs have many properties that are
difficult to determine at compile-time (e.g., memory access patterns, synchro-
nization patterns). As multi-core and parallel architectures proliferate, attention
to performance for object-oriented programs increases the need to use platform-
specific information to generate efficient code. Most modern CPUs (like the
Pentium 4 (P4), Itanium, PowerPC) offer the ability to deliver information
about performance-related events to the OS or the application, yet most pre-
vious JIT compilers focussed only on using program properties to guide opti-
mizations [6]. Preliminary studies (without full compiler support) have however
demonstrated that platform-specific metrics can also improve the performance
of object-oriented programs[2].

To be useful for an optimizing JIT compiler the collected information must
be accurate enough and cheap to obtain at run-time. Since modelling mem-
ory access patterns analytically for pointer-intensive code (typically found in
OO programs) is not feasible at the moment, the use of hardware performance
monitors presents a viable way of getting detailed information about memory
hierarchy performance aspects. This paper presents a general infrastructure to
feed hardware performance monitor information into a JIT compiler at run-time.

2 Requirements

Our basic assumption is that the object-oriented program executes on some VM
and that this VM provides a JIT compiler (possibly offering different optimiza-
tion levels). A module that makes information from the hardware performance
monitors available in a JIT compiler must meet a couple of requirements:

– The runtime+compiler infrastructure should be flexible enough to allow ob-
taining different execution metrics. The exact group of events that can be
monitored depends on the specific hardware performance counters that are
available, but the interface between compiler and performance monitoring
unit should attempt to hide machine-specific details where possible.

– The overhead to obtain the monitor’s information should be low, and the
executed applications should not be perturbed by the measurements.

– Processing the information should be done in a separate module, to keep the
need for changes to VM and/or the compiler to a minimum.

– The information must be accurate enough to be useful for online optimiza-
tions in a JIT compiler. Often the granularity of a method or even a basic
block is too coarse to allow the compiler to infer what instruction/operation
is responsible for some event (e.g., cache misses).

336 F. Schneider and T.R. Gross

– The platform should work for “general” VMs. We don’t want to change the
core VM code too much. Otherwise the effort to port it to another VM would
be prohibitively large.

Of course, any compiler that uses platform-specific information may also use
profile information, e.g., to decide where and when to exploit the results obtained
from the performance measurement unit. We will not dwell on this aspect in this
paper.

3 Related Work

There are two areas of prior work that we concentrate on in this paper: techniques
to provide platform-specific information in a form that the compiler can exploit
and specific optimizations in a compiler that are influenced by this information.
While there exists a fair bit of prior work regarding profiling (e.g., discussion of
types of profiles, algorithms to select the best place to insert code to maintain
counters, choice of sampling intervals), it is not central to the topic of this paper,
and so is not covered here.

3.1 Data Gathering Techniques

Profiling to obtain execution frequencies and profile-guided optimizations have
been applied in ahead-of-time compilers (see, e.g., [17,8]) and JIT compilers
[6,20]. Here we focus on related work that uses hardware-specific information for
optimizations.

Ammons et al. [5] use hardware performance counters together with path
profiling. They use code instrumentation to associate hardware metrics (like
cache misses) to basic blocks and execution paths in the program. The reported
overhead of flow and context sensitive profiling is between 60 and 80%. This
overhead is acceptable when doing off-line performance analysis.

Trace-driven simulation of the memory hierarchy can be used for analyzing
data locality and identifying bottlenecks [11,10]. The results depend on how
precise the simulation reflects the real platform. One disadvantage of precise
simulation is that the slowdown can be several orders of magnitude [23].

Vera et al. [24] use an analytical model to approximate the behavior of the
CPU and memory hierarchy. They use cache miss equations to describe the
behavior of loop-oriented code. Their approach is mainly targetted at scientific
compuations which exhibit regular access patterns.

In recent years OO applications have been analyzed using profiles and hard-
ware support. Hauswirth et al. [12] analyze Java programs and their interaction
with the VM, the OS and the hardware using vertical profiling. They distin-
guish different execution layers in a system: application, libraries, VM, OS and
hardware. To analyze the performance of these layers they introduce “software
performance monitors”. These monitors capture performance characteristics of
the different subsystems. The results are correlated with data from the hardware
performance counters to find out how different metrics influence each other.

Using Platform-Specific Performance Counters for Dynamic Compilation 337

Georges et al. [9] present an off-line technique for analyzing the performance
behavior of individual methods. Since instrumenting every method would be too
expensive, they identify method-level phases by measuring the execution time
spent in each method. In a second step, only those methods that consitute an
execution phase are instrumented. The hardware performance counters are read
at the method prologue and at the epilogue. Finally, the profiling results are
mapped back to the Java source code. The approach has a low overhead because
only those methods selected by the phase analysis are instrumented. It uses the
hardware performance counters in normal counting mode, not in event-based
sampling mode like we do.

3.2 Optimizations

Cache optimizations reduce the gap between memory and processor speeds.
Loop-tiling, loop-skewing, and blocking [25] can increase data locality in sci-
entific, array-oriented programs. To obtain maximal performance, cache para-
meters must be considered when choosing the block size [14].

Software-controlled prefetching [16] hides the memory latency by overlapping
memory access with other operations. It is mainly used for scientific applica-
tions which are array-oriented and have regular iteration patterns that can be
determined statically.

OO programs require a different approach because they usually use point-
ers heavily and do not exhibit the regular structure of scientific applications.
Adl-Tabatabai et al. [2] use hardware performance monitors of the Itanium 2
processor to inject prefetch instructions into Java programs. Their approach re-
lies on the fact that objects that are accessed consecutively often have a constant
delta between their addresses. A “meta-data graph” captures references between
classes that exhibit a large number of long-latency misses and the corresponding
deltas. The prefetching uses this graph to ensure the right data is available in the
cache. They achieve a speedup of 14% for the SPEC JBB2000 benchmark [21].
Software prefetching is very effective on Itanium because it has only in-order
execution and lacks the hardware-based prefetching of the P4.

Huang et al. [13] implemented a technique called online object reordering
that reorders objects at garbage collection time. They identify “hot” fields by
gathering access statistics using code instrumentation. The garbage collector
then copies the object referenced by hot fields together with their parent object
to increase spatial locality.

4 Implementation Platform

This section presents background of the hardware and software platform that
we used for our implementation.

4.1 Hardware Performance Monitors

The P4 offers a large variety of performance events for counting [1]. Two modes
of operation are supported:

338 F. Schneider and T.R. Gross

– Normal counting: The performance counters are configured to count events
detected by the CPU’s event detectors. A tool can read those counter values
after program execution and report the total number of events. This mode
can be used to obtain numbers like the cache miss rate, total execution
cycles, and so on. One application would be to evaluate the effect of program
transformations.

– Sampling-based counting: Whenever a certain number of events has oc-
curred, the CPU samples its register contents. This way it is possible to
locate the sources of an event. The P4 supports precise event-based sampling,
so it reports both the exact instruction where the sampled event happened
and the register contents at that point.

To keep the overhead of sampling low, the CPU stores a certain number of
samples in a buffer provided by the OS. The CPU generates a performance
monitor interrupt when this buffer is filled up to a “high-water” mark. The
interrupt service routine of the OS copies the samples to a more permanent
location.

This mechanism makes it possible to obtain data address profiles with the
P4. The instruction pointer (IP) together with the other registers’ contents
can be used to calculate the data address of an event (e.g., cache miss). A
data memory address of an event can be computed by decoding the instruc-
tion that caused the event and using the values of the registers to calculate
its address operand.

Previous CPUs could only measure an approximate location for sampled
events because of a super-scalar design and out-of-order execution. The P4 and
other newer architectures (e.g. Itanium) have the capability to localize the event
precisely (precise event-based sampling). Sprunt [19] wrote a detailed overview
of the P4’s hardware performance monitoring capabilities.

4.2 Jikes RVM

Our implementation is done with the IBM Jikes RVM (version 2.3.3) [4,3], a
high performance Java virtual machine written mostly in Java. It includes an
adaptive optimization system [6]. First, every method is compiled with a simple
and quick baseline compiler. Only methods that are executed frequently enough
are recompiled and optimized further.

5 Runtime+compiler Platform Issues

Our extension allows the VM to monitor the performance of a running applica-
tion using the CPU’s hardware performance monitors. In a dynamic compilation
environment like the Jikes VM the compiler can then react and use this informa-
tion to dynamically recompile and optimize parts of the program. We extended
the abyss&brink tools [7] to configure and access the P4 performance counters.
The tools consist of a kernel module and a user-level program to gather statistics
about the program that is being measured.

Using Platform-Specific Performance Counters for Dynamic Compilation 339

The kernel module initializes the hardware performance monitors and provides
the sampling interrupt handler that copies the samples from the kernel buffer
into a more permanent buffer supplied by the application (in our case the Java
VM). The P4 hardware supports precise event-based sampling for only a subset
of events. The most important of those are:

– L1 and L2 load misses,
– DTLB misses, and
– branch mispredictions.

At the moment the type of event that is monitored is specified as a command-line
parameter.

We modified the Linux kernel and the kernel module to be able to monitor
individual processes. Otherwise the results would be disturbed by other processes
running at the same time.

The monitoring infrastructure consists of three parts:

1. Loadable kernel module: The kernel module offers the functions to access the
performance counter hardware. It is implemented as a device driver, and the
application communicates with it via IOCTL calls. The kernel module hides
the platform-specific details from the JVM. It also provides the interrupt
handler that is called by the sampling hardware when the CPU buffer for
the samples is full. When this happens the samples are copied into a more
permanent location. At the moment we allocate a 4MB shared memory buffer
for this purpose.

2. Native shared library (C): Since we cannot call device drivers directly from
Java or from the Jikes RVM we use a native library to provide an interface
and call it via the Java Native Interface (JNI). The library gives access to
the shared buffer where all the collected samples are stored.

3. Collector thread (Java): We use a separate Java thread that polls the device
driver via the library interface whether there are any new samples. The
polling interval is set to 1-10ms depending on the size of the sample buffer.
Each sample is converted into a Java object by the collector thread and
handed to the VM for further processing.

Figure 1 shows how the samples get from the CPU to the JVM. Buffering the
samples in user space makes the JVM independent of any platform idiosynchra-
cies as those are handled by the kernel device driver.

On the P4 platform one sample has a size of 36 bytes. It contains the in-
struction pointer (IP) where the sampled event occurred and all the values of
the registers at this point in the program. Figure 2 shows the structure of one
sample. The CPU writes those values directly into the buffer provided by the
kernel module. To be able to use these raw data for optimization we need to
recover some higher-level information for each sample. The JIT compiler keeps
a sorted table of all methods’ start/end addresses that were compiled so far.
From the IP we can quickly find out the method and the bytecode instruction
where the event happened by performing a binary search. When the adaptive
optimization system recompiles a method this method table must be updated.

340 F. Schneider and T.R. Gross

Kernel level

User level

CPU data store buffer

Jikes RVMShared memory buffer (FIFO)

...

Interrupt handler

copies samples

into user space

JVM reads samples

from shared memory

via JNI calls

CPU

Hardware level

CPU stores samples,

generates interrupt when

buffer filled over threshold

Fig. 1. Getting the samples from the CPU to the JVM

The bytecode instruction tells us the operation and the type of the object
that caused the event. With the bytecode instruction we can produce a human
readable output that contains the Java statement and the source line number for
the event. When we encounter an event caused by a heap access we determine the
actual type of the responsible object by scanning backward in memory starting
at the calculated data address until we find the object header [2].

EAX EBX ECX EDX ESI EDI EBP ESP EIP

Fig. 2. One sample (total 36 bytes) contains the instruction pointer (EIP) and all
register contents

6 Evaluation

6.1 Measurements

The measurements are carried out on a 3.0 GHz P4 processor running the Linux
kernel version 2.4.26. This processor has a 1MB L2-cache and a 64K L1 cache
and 1024 MB of main memory. One cache line has a width of 64 bytes. For each
data point we ran the benchmark three times and reported the average. As a
VM we ran Jikes RVM 2.3.3 with the configuration “FastAdaptiveGenCopy”,
which includes the adaptive optimization system [6] and a generational garbage
collector.

Using Platform-Specific Performance Counters for Dynamic Compilation 341

For our experiments we set the system to measure cache misses. The sampling
interval should be large enough to keep the overhead low, but not too large.
Otherwise the collected data won’t be meaningful. A sampling interval between
1000 and 10000 events proved to be most suitable for our benchmark programs.

6.2 Sampling Overhead

Table 1 compares the performance of the system with and without sampling
enabled. For this measurement we sampled every 10000 and every 1000 events.
(columns s=10000 resp. s=1000). For the SPEC JVM98 [22] and the SPEC
JBB2000 [21] benchmarks we observed an overhead between 0.1% and 2% (av-
erage 1.6%) for a sampling interval s of 10000. For s = 1000 the overhead is
between 0.1% and 5% (average 2.1%).

Table 1. Overhead of collecting sample data with two different sampling intervals
s=1000 and s=10000

program orig s=10000 s=1000

javac 7.18 1.02 1.02
raytrace 4.04 1.02 1.02
jess 2.93 1.01 1.00
jack 2.73 1.00 1.03
db 10.49 1.01 1.03
compress 6.5 1.01 1.02
mpegaudio 6.54 1.02 1.00
jbb 6209.67 1.02 1.05

average 1.016 1.021

To analyze the influence of the sampling interval on the overall performance
we studied the JBB benchmark in more detail. Figure 3 shows the correlation
between the sampling interval and the performance as measured by the specJBB
score. The interrupt rate of the HPM hardware grows linearly with decreasing
sampling interval size. The overall performance drops even more at high interrupt
rates; the resulting context switches for each invocation of the interrupt service
routine consume further CPU time. From the observed execution times we can
estimate the cost of processing one sample with < 1μs (=3000 CPU cycles on a
3 GHz P4).

6.3 Distribution of Cache Misses

The precise event-based sampling of the P4 allows us to measure the distribution
of cache misses over the load instructions in the program. We use a sampling
interval of 1000 events for L2 misses and 10000 events for L1 misses.

For db, javac, and specJBB we measure the frequency of L1- and L2-misses.
Figure 4 shows the histogram of the 100 most contributing load instructions
for L1 cache misses. These loads produce 37% of the L1 misses in javac, 98%

342 F. Schneider and T.R. Gross

Fig. 3. Performance with different sampling intervals

in db, and 55% in specJBB. The picture is different for long latency L2 cache
misses. Figure 5 shows the same information for L2 misses. There, the 100 most
contributing load instructions are responsible for 74%, 99% and 85% of the
events. For db the distribution of L1 and L2 misses is quite similar – there are
very few “hot” loads. In javac and specJBB, on the other hand, the L1 misses are
generally distributed over the whole program, whereas the L2 misses are more
localized. (except for one instruction in specJBB that produces the majority
of the L1 misses). This suggests that if we focus optimizations on these cache
misses, or “hot” spots, we can achieve a large impact.

7 Concluding Remarks

Using platform-specific information about a program’s execution in a dynamic
compiler is attractive; the result of the platform’s performance measurement unit
can be mapped to source-language constructs that are relevant for the compiler.
A necessary condition (to be satisfied by the platform’s architect) is that the
monitoring unit can accurately capture the processor state related to an event.
Fortunately, newer processors provide this capability.

A JIT compiler is in a good position to exploit this information, since we
have shown that the overhead of gathering and processing the information about
hardware-specific events can be kept low.

To demonstrate the practicality of this approach, we implemented a module
to tie the Jikes VM to the execution monitoring unit of the P4. As an example
application we showed that the compiler can use this mechanism to identify
individual load instructions that are responsible for a high percentage of the

Using Platform-Specific Performance Counters for Dynamic Compilation 343

Fig. 4. Histograms of L1 cache misses (100 most contributing load instructions)

344 F. Schneider and T.R. Gross

Fig. 5. Histograms of L2 cache misses (100 most contributing load instructions)

Using Platform-Specific Performance Counters for Dynamic Compilation 345

cache misses. This information allows feedback-driven optimization that does
not solely rely on high-level information like method execution frequencies, but
is directly guided by information about performance critical hardware events.

Acknowledgments

We thank Lukas Löhrer and Flavio Pellanda for their help and their contributions
to the implementation.

References

1. IA-32 Intel Architecture Software Developer’s Manual, Volume 3: System Program-
ming Guide. 2005.

2. A.-R. Adl-Tabatabai, R. L. Hudson, M. J. Serrano, and S. Subramoney. Prefetch
injection based on hardware monitoring and object metadata. In Proc. of the ACM
SIGPLAN 2004 Conf. on Programming language design and implementation, pages
267–276, New York, NY, USA, 2004. ACM Press.

3. B. Alpern, C. R. Attanasio, J. J. Barton, A. Cocchi, S. F. Hummel, D. L. ber,
T. Ngo, M. F. Mergen, J. C. Shepherd, and S. Smith. Implementing jalapeno in
java. In Conference on Object-Oriented, pages 314–324, 1999.

4. B. Alpern, D. Attanasio, J. Barton, M. Burke, P. Cheng, J.-D. Choi, A. Cocchi,
S. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, T. on Ngo,
M. Mergen, V. Sarkar, M. Serrano, J. Shepherd, S. Smith, V. C. Sreedhar, H. rini
Srinivasan, and J. Whaley. The Jalapeno virtual machine. IBM Systems Journal,
Java Performance Issue, 39(1), 2000.

5. G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware performance counters
with flow and context sensitive profiling. In Proc. of the ACM SIGPLAN 1997
conference on Programming language design and implementation, pages 85–96, New
York, NY, USA, 1997. ACM Press.

6. M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. Adaptive optimization
in the jalapeo jvm. In Proc. of the 15th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages 47–65, New
York, NY, USA, 2000. ACM Press.

7. Brink & Abyss. http://www.eg.bucknell.edu/ bsprunt/e-
mon/brink abyss/brink abyss.shtm.

8. P. P. Chang, S. A. Mahlke, and W. W. Hwu. Using profile information to assist
classic code optimizations. Software Practice and Experience, 21(12):1301–1321,
Dec 1991.

9. A. Georges, D. Buytaert, L. Eeckhout, and K. D. Bosschere. Method-level phase
behavior in java workloads. In Proc. of the 19th annual ACM SIGPLAN Conference
on Object-oriented programming, systems, languages, and applications, pages 270–
287, New York, NY, USA, 2004. ACM Press.

10. A. J. Goldberg and J. L. Hennessy. Performance debugging shared memory
multiprocessor programs with mtool. In Supercomputing ’91: Proc. of the 1991
ACM/IEEE conference on Supercomputing, pages 481–490, New York, NY, USA,
1991. ACM Press.

346 F. Schneider and T.R. Gross

11. S. R. Goldschmidt and J. L. Hennessy. The accuracy of trace-driven simulations
of multiprocessors. In Proc. of the 1993 ACM SIGMETRICS conference on Mea-
surement and modeling of computer systems, pages 146–157, New York, NY, USA,
1993. ACM Press.

12. M. Hauswirth, P. F. Sweeney, A. Diwan, and M. Hind. Vertical profiling: under-
standing the behavior of object-priented applications. In Proc. of the 19th annual
ACM SIGPLAN Conference on Object-oriented programming, systems, languages,
and applications, pages 251–269, New York, NY, USA, 2004. ACM Press.

13. X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss, Z. Wang, and P. Cheng.
The garbage collection advantage: improving program locality. In Proc. of the
19th annual ACM SIGPLAN Conference on Object-oriented programming, systems,
languages, and applications, pages 69–80, New York, NY, USA, 2004. ACM Press.

14. M. S. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance and opti-
mizations of block algorithms. In 4th International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 63–74, Santa
Clara, CA, Apr. 1991.

15. Lubeck, O. et al. WS6: Hardware Performance Monitor Design and Function-
ality, Los Alamos Computer Science Institute Symposium 2005. Web archive
http://lacsi.rice.edu/workshops/hpca11, Feb 12-16 2005, San Francisco, 2005.

16. T. C. Mowry, M. S. Lam, and A. Gupta. Design and evaluation of a compiler
algorithm for prefetching. In Proc. of the 5th international conf. on Architectural
support for programming languages and operating systems, pages 62–73, New York,
NY, USA, 1992. ACM Press.

17. K. Pettis and R. Hansen. Profile guided code positioning. In Proc. ACM SIG-
PLAN’90 Conf. on Prog. Language Design and Implementation, pages 16–27,
White Plains, N.Y., June 1990. ACM.

18. G. Rivera and C.-W. Tseng. Data transformations for eliminating conflict misses.
In Proc. of the ACM SIGPLAN 1998 Conf. on Programming language design and
implementation, pages 38–49, New York, NY, USA, 1998. ACM Press.

19. B. Sprunt. Pentium 4 performance monitoring features. In IEEE Micro, pages
72–82, July–August 2002.

20. T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and T. Nakatani. A dynamic
optimization framework for a Java just-in-time compiler. In Conf. on Object-
Oriented Programming, Systems, Languages & Applications (OOPSLA ’01), pages
180–194, 2001.

21. The Standard Performance Evaluation Corporation. SPEC JBB2000 Benchmark.
http://www.spec.org/jbb2000/.

22. The Standard Performance Evaluation Corporation. SPEC JVM98 Benchmarks.
http://www.spec.org/osg/jvm98, 1996.

23. R. A. Uhlig and T. N. Mudge. Trace-driven memory simulation: a survey. ACM
Comput. Surv., 29(2):128–170, 1997.

24. X. Vera, N. Bermudo, J. Llosa, and A. González. A fast and accurate framework to
analyze and optimize cache memory behavior. ACM Trans. Program. Lang. Syst.,
26(2):263–300, 2004.

25. M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In Proc. of the
ACM SIGPLAN ’91 Conference on Programming Language Design and Implemen-
tation, volume 26, pages 30–44, Toronto, Ontario, Canada, June 1991.

A Domain-Specific Interpreter for Parallelizing a
Large Mixed-Language Visualisation Application

Karen Osmond, Olav Beckmann, Anthony J. Field, and Paul H.J. Kelly

Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2AZ, United Kingdom

p.kelly@imperial.ac.uk

Abstract. We describe a technique for performing domain-specific opti-
misation based on the formation of an execution plan from calls made to
a domain-specific library. The idea is to interpose a proxy layer between
the application and the library that delays execution of the library code
and, in so doing, captures a recipe for the computation required. This
creates the opportunity for a “domain-specific interpreter” to analyse
the recipe and generate an optimised execution plan. We demonstrate
the idea by showing how it can be used to implement coarse grained
tiling and parallelisation optimisations in MayaVi, a 44,000-line visu-
alisation application written in Python and VTK, with no change to
the MayaVi code base. We present a generic mechanism for interpos-
ing a domain-specific interpreter in Python applications, together with
experimental results demonstrating the technique’s effectiveness in the
context of MayaVi. For certain visualisation problems, in particular the
rendering of isosurfaces in an unstructured mesh fluid flow simulation,
we demonstrate significant speedups from coarse grained tiling, and from
both SMP and distributed-memory parallelisation.

1 Introduction

Key objectives in engineering high-quality software are the need for high perfor-
mance and protecting existing investment. The work we present in this paper
illustrates how the use of domain-specific libraries can make it difficult to bridge
these requirements. We propose domain-specific interpreters as a design pattern
for addressing this problem. We show an example of a domain-specific inter-
preter implemented in Python and demonstrate that this can be used to achieve
transparent parallelisation of large-scale visualisation tasks.

Software systems are being built from increasingly large and complex domain-
specific libraries. Using such domain-specific libraries (DSLs) often dominates
and constrains the way a software system is built just as much as a programming
language. To illustrate the increasing size and complexity of DSLs, consider the
following three examples:

– The Legacy BLAS 1, 2 and 3 libraries [1] are very successful libraries, domain-
specific to dense linear algebra, with a total number of around 150 functions.

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 347–361, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

348 K. Osmond et al.

user-program

vtkContourFilter

vtkPolyDataMapper

vtkActor

Render

Domain-specific libarary

...

...

...

...

(a) User program is processed by a standard compiler or interpreter. DSL code is
mixed with other code. No domain-specific optimisation is performed.

for [all processors, per chunk]
 vtkContourFilter
 vtkPloyDataMapper
 vtkActor
 Render
end

user-program

Domain-specific library

vtkContourFilter

vtkPolyDataMapper

vtkActor

Render

vtkContourFilter

vtkPolyDataMapper

vtkActor
Render

C
ap

tu
re

Optimise

. . .

. . .

. . .

. . .

. . .

(b) User program is compiled or interpreted by an unmodified language compiler or
interpreter. All calls to the DSL are captured and recorded in an execution plan.

Domain-specific optimisations are applied to the execution plan before it is executed.

Fig. 1. Domain-specific library use: (a) typical use and (b) domain-specific interpreter

– MPI is a slightly later, but equally successful library which is domain-specific
to message-passing communication. MPI-1 [2] included over 100 functions,
MPI-2 over 200 functions.

– VTK (Visualisation Toolkit) [3,4] is a large C++ visualisation library. The
total number of classes and methods is hard to count; the user’s guide is 325
pages long, and additional documentation is found in a 500-page book.

Using domain-specific libraries and abstractions often introduces domain-
specific semantics into a software system in a manner similar to a programming
language. The problem is that the base-language compilers or interpreters have
no knowledge of these domain-specific semantics, and in particular, of domain-
specific optimisations that might be possible. Furthermore, calls to DSLs are
typically mixed with other, non-domain-specific code, which might make it hard
for a conventional compiler to infer the exact sequence of calls that will be made
to the DSL. This is illustrated in Figure 1(a).

A Domain-Specific Interpreter for Parallelizing 349

1.1 Domain-Specific Interpreter Design Pattern

We propose a “domain-specific interpreter” as a design pattern for overcoming
the problem described above. The idea is illustrated in Figure 1(b): The applica-
tion program is still processed by a standard compiler or interpreter. However,
calls to the DSL are captured by a proxy layer which records an execution plan
consisting of the operations to be performed. We then have the opportunity to
apply restructuring optimisations to the execution plan before it is executed.

Applicability. The applicability of domain-specific interpreters depends on being
able to capture reliably all calls that are made to the DSL, and, on having ac-
curate data-flow information available. The latter means knowing whether the
data which is processed by the DSL can also be modified by the intervening
non-domain-specific code, and being able to derive an accurate data-flow graph
by inspection of the execution plan. As discussed in Section 3, both these re-
quirements are met for visualisation applications built on VTK and Python.

Profitability. The likely benefit of using a domain-specific interpreter depends on
whether we have domain-specific semantic information available, and on whether
opportunities for cross-component optimisation exist. For our case-study, the
optimisations we discuss are parallelisation and a form of tiling. Semantic infor-
mation is, for the time being, supplied by hand.

1.2 Visualisation of Large Scientific Datasets

Visualising large scientific datasets is a computationally expensive operation,
which typically involves processing a “visualisation pipeline” of domain-specific
data analysis and rendering components: before the rendering step various fea-
ture extraction or data filtering computations may be executed, such as iso-
surface calculation, interpolation of a regular mesh or flow-lines integration.
Modular visualisation environments (MVEs), such as the Python/VTK-based
open-source MayaVi tool [5,6,4], present end-users with an interface for assem-
bling such components. This effectively defines a high-level graphical program-
ming language for visualisation pipelines. Such a dynamic-assembly architecture
forms the core of many software frameworks, and is essential for their flexibility.
As discussed in Section 1, it unfortunately also presents a barrier to conventional
compile-time optimisation.

We describe the implementation of a domain-specific interpreter that allows
us to apply restructuring optimisations, specifically parallelisation, to visualisa-
tion pipelines specified from MayaVi. Our approach requires no changes to the
MayaVi code. We achieve this by intercepting DSL calls at the Python-VTK
binding interface. This allows us to build up a “visualisation plan” of the un-
derlying VTK routines applied to the dataset without actually executing those
routines. We partition the dataset off-line using a tool such as METIS [7], and

350 K. Osmond et al.

then apply the captured visualisation plan in parallel on each partition where
that is consistent with the semantics of the data analysis components.

The work described in this paper was motivated by the visualisation require-
ments of ocean current simulations using adaptive, unstructured (i.e. tetrahe-
dral) meshes. Even small runs generate multi-gigabyte datasets. Each stage of
such a visualisation pipeline can be a computationally very expensive operation
which is typically applied to the entire dataset. This can lead to very significant
delays before any visual feedback is offered to an application scientist who is
trying to compose and parameterise a visualisation pipeline.

1.3 Contributions

The main contributions of this paper are as follows.

– We present our experience of performing cross-component optimisation in a
challenging, dynamic, multi-language context.

– We present a domain-specific interpreter which intercepts DSL calls at the
Python/C++ interface, and we show how this allows a data-flow graph for
the required computation to be extracted at runtime while avoiding many
complex dependence issues (Section 3).

– We discuss how applying visualisation pipelines one partition at a time, even
on a uniprocessor, can lead to performance improvements. We refer to this
optimisation as “coarse grained tiling”1 (Section 4).

– We present parallelisation strategies for visualisation pipelines captured by
the domain-specific interpreter, for both shared- and distributed-memory
architectures (Sections 5–6).

– We present results from performance experiments that show encouraging
speedups for coarse grained tiling and both types of parallelisation (Sec-
tions 5–6).

This paper builds on our earlier work [8] where we restructured the MayaVi
source code by hand to improve response time. Apart from changing the MayaVi
source code, this earlier work also did not achieve parallelisation.

The remainder of this paper is structured as follows. In Section 2, we place
this work in the context of ongoing research into optimisation techniques for
dynamically composed assemblies of high-level software components. In Sec-
tion 3, we present an implementation of the domain-specific interpreter pattern
in Python for optimising the use of VTK. In Section 4, we present results for
the coarse grained tiling optimisation mentioned above. In Section 5 we discuss
parallelisation of visualisation pipelines for shared memory, and in Section 6,
we discuss parallelisation for distributed memory platforms. Section 7 concludes
and describes our plans for future work.

1 This is not tiling in the classical sense of non-linear transformations of loops over
dense arrays — however, it does represent a re-ordering of the iteration space over
a large dataset.

A Domain-Specific Interpreter for Parallelizing 351

MayaVi
written in Python, interpreted

Python VTK Bindings

VTK
 written in C++, compiled

OpenGL / XGL etc.

(a) Software architecture of MayaVi in
terms of languages and libraries.

(b) VTK visualisation pipeline in Ma-
yaVi’s pipeline browser for the visuali-
sation in Figure 3.

Fig. 2. MayaVi software architecture (a) and pipeline browser (b)

2 Background and Related Work

Modular visualisation environments (MVEs) present end-users with a GUI rep-
resenting an analysis and rendering pipeline [9]. MayaVi is one of many MVEs
implementing this general model. Other examples from image processing include
Adobe Photoshop or the Gimp, via its scripting mechanism. The MVE architec-
ture offers the potential to integrate visualisation with simulation and computa-
tional steering [10,11] and this is finding broader application in the Grid [12,13].
To make MVEs work interactively on very large datasets, execution needs to be
demand-driven, starting from a volume-of-interest (VOI) control, which specifies
the 3-dimensional region where high resolution is required [14].

However, this paper is not about visualisation itself, but rather about the
performance optimisation challenge raised by MVE-like software structures: how
can we extend optimising and restructuring compiler technologies to operate on
dynamically-composed assemblies of high-level components? This issue is part
of a wider programme of research into cross-component optimisation issues: our
DESO (delayed evaluation, self-optimising) parallel linear algebra library [15,16]
uses carefully constructed metadata to perform cross-component parallel data
placement optimisation at runtime, and the Désormi project has resulted in a
generalised framework for deploying runtime optimisation and instrumentation
in Java programs [17]. Optimising component-based applications is also one of
the research challenges addressed by the Grid effort [18].

352 K. Osmond et al.

Fig. 3. MayaVi screenshot, showing the main MayaVi GUI, the GUI for configuring a
specific visualisation module (IsoSurface) and the render window, showing an isosurface
of the x component of the velocity vectors in a turbulent flow simulation

2.1 MayaVi’s Modular Visualisation Environment Architecture

In Figure 2(a), we illustrate the software architecture of MayaVi in terms of
programming languages and libraries used: MayaVi is written in the interpreted
language Python. The core of VTK [3, 4] is written in C++ and is compiled;
however, VTK has a complete set of bindings for Python, Tcl/Tk and Java.
VTK in turn uses different graphics libraries such as OpenGL for 3D rendering.

2.2 Object-Oriented Visualisation in VTK

The VTK design distinguishes between the graphics model, an object-oriented
representation of 3D computer graphics and the visualisation model, which is
essentially a model of data-flow.

The VTK graphics model is described in detail in [4]. The key concepts that
are relevant to this paper are the following. A RenderWindow represents a win-
dow on the display. A Renderer is an object that is responsible for rendering a
region of such a window. Actors are objects that are rendered within the scene. In
Figure 3, we show an isosurface visualisation of a turbulent flow. Such an isosur-
face corresponds to one Actor. Actors consist of Mappers, representing geometric
structure (in the case of the isosurface in Figure 3, this is a set of polygons),
Properties, representing colour, texture etc., and Transforms, which are 4 × 4
matrices that describe the usual transformations on homogeneous coordinates
used in 3D computer graphics.

A Domain-Specific Interpreter for Parallelizing 353

The VTK visualisation pipeline is an object-oriented representation of a di-
rected data-flow graph, consisting of data and processes, which are operations
performed on the data. Process objects can be sources, representing inputs, fil-
ters, which can be many-to-many operations on data, and mappers, representing
outputs from the data-flow graph that are then used by the graphics model
for rendering. The VTK visualisation pipeline can represent complex data-flow
graphs, including graphs with cycles (time-stamps are used to control looping).
The VTK design provides for data-flow graphs to be executed in either a demand-
driven or a data-driven manner.

In Figure 2(b), we show the VTK visualisation pipeline for the isosurface visu-
alisation from Figure 3, as represented by MayaVi’s pipeline browser tool. Note
in particular the source (vtkUnstructuredGridReader), a filter that extracts one
of the components of the velocity vector (vtkExtractVectorComponents) and the
output of the pipeline that is passed to the mapper (vtkPolyData, representing
a polygon collection). There are several instances of the vtkExtentTranslator
process: this can be used to calculate a structured extent (i.e. a bounding box)
for an unstructured dataset.

3 A Domain-Specific Interpreter for VTK in Python

In Section 1, we outlined our proposal for a domain-specific interpreter as a
means of overcoming barriers to restructuring optimisation in the use of domain-
specific libraries. In this section, we present an implementation of this design
pattern in Python, using VTK as a domain-specific library.

The key observation is that when a MayaVi visualisation is rendered, the data
flow happens entirely on the C++ side of the Python/VTK interface. This im-
plies that all nodes in the data flow graph have to be created via calls through
the VTK Python bindings. Therefore, we are able to capture an accurate rep-
resentation of the visualisation pipeline, which represents the data-flow graph
of the computation to be performed, if we intercept calls made through this
interface.

When visualisation is “forced”, i.e. when an image has to be rendered, we
can perform optimisations on this pipeline before it is executed. The next four
sections explain how this is done.

3.1 Building the Proxy Layer

We rename the original vtkpython.py file which implements VTK’s Python
bindings to vtkpython real.py. We implement a new file vtkpython.py, which
is shown in Listing 1.1. This file dynamically creates a new, initially empty class
definition for every class in the original vtkpython interface. The key point is
that these empty classes are all derived from a new class ProxyObject; thus,
the absence of methods in the dynamically created empty classes means that all
method calls will be deferred to the superclass.

354 K. Osmond et al.

Listing 1.1. Implementation of a proxy layer for intercepting calls through the VTK
Python binding interface

1 import os
2 if ("new_vtk" in os.environ): # Control the DS interpreter via the environment
3 import vtkpython_real # Import the original VTK Python bindings
4 from parallel import proxyObject
5 from parallel import setPartitionInfo
6 from parallel import setParameters
7 from parallel import setScalar
8 for className in dir(vtkpython_real): # For all classes in vtkpython real
9 # Create a class with the same name and no methods (yet),

10 # derived from ‘‘ProxyObject’’.
11 exec "class " + className + "(proxyObject): pass"
12 else:
13 # default behaviour: fall−through to the original VTK Python bindings
14 from vtkpython_real import *

Listing 1.2. A sample portion of a visualisation plan or recipe

1 [’construct’, ’vtkConeSource’, ’vtkConeSource_913’]
2 [’callMeth’, ’vtkConeSource_913’, ’return_926’, ’SetRadius’, ’0.2’]
3 [’callMeth’, ’vtkConeSource_913’, ’return_927’, ’GetOutput’, ’’]
4 [’callMeth’, ’vtkTransformFilter_918’, ’return_928’, ’SetInput’, "self.ids[’return_927’]"]
5 [’callMeth’, ’vtkTransformFilter_918’, ’return_929’, ’GetTransform’, ’’]
6 [’callMeth’, ’return_929’, ’return_930’, ’Identity’, ’’]

3.2 Creating Skeleton Classes

MayaVi uses a dynamic lookup of method signatures in Python VTK classes as
well as __doc__ strings to create some GUI components on the fly, including for
example the Pipeline Browser tool shown in Figure 2(b). We have to make sure
therefore that the interface of the classes in the proxy layer matches the original
VTK Python classes in terms of method signatures and __doc__ strings. This is
done by adding skeleton methods and __doc__ strings on the fly following a dy-
namic lookup of class interfaces (using Python’s built-in reflection mechanism).
This adds a few seconds to program startup time when the tool is launched.

The only action performed by the skeleton methods is to call the proxyCall
method from the proxyObject superclass, passing the name of the class, the
name of the method and the list of actual parameters as arguments (more on
this below).

3.3 Representing Execution Plans

We have implemented a Python data structure called Code which holds the in-
formation representing one call through the Python VTK interface. A CodeList

A Domain-Specific Interpreter for Parallelizing 355

Listing 1.3. Code which creates an entry in the visualisation plan.

218 def proxyCall(self, callName, callArgs): # Add an entry to a recipe
219

220 # Check whether we have reached a ”force point”
221 if(globals()["codeList"].numPartitions > 0 and callName == "Render"):
222 return forcePointReached()
223

224 result = proxyObject_return() # Create an identifier for the result
225 code = Code(result,self,callName,callArgs)
226 # Construct ”Code” object which represents one method call
227 globals()["codeList"].add(code) # Add to the visualisation plan

Listing 1.4. Code snippet of recipe application for a method call

1 def callMeth(self, objId, retId, methName, argString):
2 object = self.ids[objId]
3 retobj = None
4 retobj = eval(’object.’ + methName + ’(’ + argString + ’)’)
5 self.ids[retId] = retobj
6 return retId

maintains the whole visualisation plan (or “recipe”). A symbol table for looking
up identifiers is also maintained.

Listing 1.2 gives an example of what a part of a recipe may look like. The first
item in the list is always callMeth or construct and signifies whether the recipe
component is a constructor or an ordinary method call. If it is a constructor, the
following items give the name of the class of the object to be constructed, the
name of the identifier for the returned object, and (optionally) any arguments.
If it is an ordinary method call, the following items give the object the method
is to be called on, the name of the identifier for the returned object or value, the
name of the method to be called and finally, the argument list. In the argument
list, any names of identifiers for objects are converted into the a symbol table
lookup of the form self.ids[identifier].

Listing 1.3 shows part of the implementation of the proxyCall method, which
creates entries in the visualisation plan, and which is called for every method
invocation, via the skeleton methods in the proxy layer.

3.4 Forcing Execution

Listing 1.3 shows that when we call Render, we reach a force point, i.e. we force
evaluation of the visualisation plan.

Listing 1.4 gives a code snippet (slightly simplified for clarity) of the function
which applies a method call when a visualisation plan is executed. Again, the
symbol table ids is used to map names of identifiers to real objects.

356 K. Osmond et al.

In Sections 4–6, we now present the performance benefits that accrue from
applying two kinds of optimisation (coarse grained tiling and parallelisation) to
a VTK execution plan.

4 Coarse Grained Tiling of Visualisation Pipelines

Our case study is an ocean circulation model developed by our collaborators
in the Department of Earth Science and Engineering at Imperial College. The
datasets that result from such simulations are multi-gigabyte unstructured tetra-
hedral meshes. We use the METIS tool [7] to partition these datasets. The results
presented in this paper are for a sample dataset representing a fluid flow around
a heated sphere. This dataset is 16MB in size, and we have used a 2-,4-,8- and 16-
way partitioning of this dataset. Note that VTK does have a built-in mechanism
for handling partitioned datasets (“parallel unstructured grid storage format”);
however, for the unmodified MayaVi, using such a dataset does not change the
way the data is processed — the partitions are simply ‘glued together’ after
loading from disk, resulting in a single monolithic dataset.

The first optimisation we study is coarse grained tiling. By coarse grained
tiling, we mean that we apply the visualisation plan to one partition of the
dataset at a time, rather than following the default behaviour where the parti-
tions would be merged to form one monolithic dataset which is then processed.
Note that this has strong similarities with classical tiling optimisations in that
we are effectively restructuring the execution order (iteration space).

Experimental Setup. The MayaVi GUI has the capability of being run from
a Python script, and this was of immense benefit for performance evaluation.
Python’s built-in time module was used to take wall-clock time measurements.
Each test was repeated three times (error bars are shown in all graphs). Two
hardware platforms were used in testing:

– Intel Pentium 4 2.8GHz with hyperthreading (one physical processor), cache
size 512KB, 1GB physical memory. We used this architecture both as a
uniprocessor and in a cluster of four such processors.

– Athlon MP 1600+, cache size 256KB, 1GB physical memory. We used this
architecture both as a uniprocessor and as a 2-way SMP.

In each case, the benchmarks were applied to a version of MayaVi that uses the
unmodified Python/VTK library and to “MayaVi+DSI”, the version that uses
our domain-specific interpreter for Python/VTK.

Use Case. The following usage scenario was used for evaluation: The dataset
is loaded, and the IsoSurface module added to the visualisation pipeline. The
contour value is changed seven times (0.00, 0.15, 0.30, 0.45, 0.60, 0.75 and 0.90),
and the time taken for each change is recorded. When calculating an IsoSurface,
the number of polygons generated, as well as computation time, varies widely
with contour value.

A Domain-Specific Interpreter for Parallelizing 357

Results for Coarse Grained Tiling. Table 1 includes results for the coarse grained
tiling optimisation on uniprocessors. This indicates that in some cases, we can
achieve a speedup of nearly a factor of 3 by this optimisation. Calculating iso-
surfaces partition-wise appears to be significantly cheaper than performing that
calculation on the whole dataset in one operation, due to the nature of the VTK
data structures involved.

5 Shared-Memory Parallelisation

It is apparently a simple extension of coarse grained tiling to spawn one Python
thread per partition. Unfortunately, with this basic approach, the threads always
run sequentially due to Python’s Global Interpreter Lock (GIL), which prevents
Python threads from running simultaneously. Any C code called from within
the Python program is subject to this same limitation. To allow C code called
from the VTK Python interface to be run in parallel, this lock must be explicitly
claimed and dropped from within the C code.

Python wrapper classes for VTK are generated by a special-purpose C pro-
gram (vtkWrapPython.c). Adding code to deal with the GIL within the wrapper
generator requires minimal modification (2 lines): At every point that a VTK
wrapped function is called, the function call is surrounded by code to drop and
reclaim the lock. However, since not all of VTK is thread-safe, it is necessary
to restrict parallel operation to certain parts of VTK only. In particular, no
operations on the shared Renderer and RenderWindow occur in parallel.

Table 1 shows results for SMP parallelisation using the method outlined above
on a dual-processor machine. This shows very encouraging results: a maximum
speedup of around 6 for parallel execution of the visualisation pipeline over 16
partitions. We spawn one thread per partition, rather than per processor, these
results show the combined effects of coarse grained tiling and SMP parallelisa-
tion. This explains the superlinear speedup which is seen for some IsoSurface
values. Our data indicate that on a 2-way SMP, a significant part of the overall
speedup is already obtained by coarse grained tiling alone.

Some readers may wonder where the “parallel loop” for our parallelisation is.
The answer is that this is in the domain-specific interpreter. It is the task of
this interpreter to execute the recipe that has been captured. This is done by
applying the entire recipe, which could be a multi-stage computation, to each
partition separately.

6 Distributed Memory Parallelisation

To allow for an easier implementation of distributed processing, a Python library
called ‘Pyro’ was used, which provides Java RMI-like features. Pyro allows any
pickleable2 object to be transferred across the network. A class which needs to be
2 A ‘pickleable’ object is one which can be serialised using Python’s built-in ‘pickle’

module.

358 K. Osmond et al.

T
ab

le
1.

Is
o
S
u
rf

a
ce

B
en

ch
m

a
rk

o
n

D
u
a
l
A

th
lo

n
1
6
0
0
+

S
M

P
w

it
h

2
5
6

K
B

L
2

ca
ch

e
a
n
d

1
G

B
p
h
y
si
ca

l
R

A
M

(a
b
ov

e)
a
n
d

cl
u
st

er
o
f
fo

u
r

P
en

ti
u
m

4
2
.8

G
H

z
H

T
w

it
h

5
1
2

K
B

L
2

ca
ch

e
a
n
d

1
G

B
p
h
y
si
ca

l
R

A
M

(b
el

ow
).

R
es

u
lt
s

fo
r

th
e

T
il
in

g
co

lu
m

n
s

o
n
ly

u
se

o
n
e

p
ro

ce
ss

o
r

in
b
o
th

ca
se

s.
A

th
lo

n
16

00
+

S
M

P

2
P
a
rt

it
io

n
s

4
P
a
rt

it
io

n
s

8
P
a
rt

it
io

n
s

1
6

P
a
rt

it
io

n
s

B
a
se

T
il
in

g
S
M

P
B

a
se

T
il
in

g
S
M

P
B

a
se

T
il
in

g
S
M

P
B

a
se

T
il
in

g
S
M

P

Is
o
S
u
rf

a
ce

T
im

e
T

im
e

S’
up

T
im

e
S’

up
T

im
e

T
im

e
S’

up
T

im
e

S’
up

T
im

e
T

im
e

S’
up

T
im

e
S’

up
T

im
e

T
im

e
S’

up
T

im
e

S’
up

0
4
.7

3
5
.1

2
0
.9

2
4
.9

0
.9

7
3
.3

2
3
.9

6
0
.8

4
3
.6

3
0
.9

2
3
.1

6
5
.2

1
0
.6

1
4
.9

2
0
.6

4
3
.0

1
3
.8

4
0
.7

8
2
.5

3
1
.1

9
0
.1

5
1
.6

2
0
.8

8
1
.8

4
0
.6

7
2
.4

3
1
.4

1
0
.9

2
1
.5

3
0
.7

9
1
.7

9
1
.4

8
0
.9

2
1
.6

2
0
.7

1
2
.0

8
1
.4

3
0
.9

4
1
.5

3
0
.7

4
1
.9

4
0
.3

1
.7

7
1
.6

6
1
.0

7
1
.0

2
1
.7

4
1
.6

4
1
.5

8
1
.0

4
1
.0

6
1
.5

5
1
.6

7
1
.3

5
1
.2

4
1

1
.6

7
1
.7

4
1
.3

3
1
.3

1
1

1
.7

4
0
.4

5
3
.6

5
3
.4

9
1
.0

4
2
.1

3
1
.7

1
3
.2

1
2
.8

3
1
.1

3
1
.8

2
1
.7

6
3
.2

2
1
.7

2
1
.8

7
1
.3

4
2
.4

1
3
.3

6
1
.6

1
2
.0

9
1
.2

2
2
.7

6
0
.6

7
.7

6
.9

1
1
.1

1
4
.7

8
1
.6

1
6
.9

8
5
.4

2
1
.2

9
3
.6

1
.9

4
7
.4

6
3
.2

7
2
.2

8
2
.6

5
2
.8

1
7
.2

8
2
.6

2
.8

1
.8

4
3
.9

6
0
.7

5
1
5
.4

4
1
3
.4

8
1
.1

4
1
0
.7

1
1
.4

4
1
5
.5

6
1
1

1
.4

1
8
.0

7
1
.9

3
1
5
.0

6
6
.8

9
2
.1

8
5
.7

7
2
.6

1
1
5
.2

7
4
.4

5
3
.4

3
2
.9

5
.2

7
0
.9

2
7
.5

2
2
.5

3
1
.2

2
1
9
.4

7
1
.4

1
2
4
.7

8
2
0
.4

8
1
.2

1
1
6
.8

2
1
.4

7
2
5
.9

2
1
2
.5

5
2
.0

7
1
0
.8

8
2
.3

8
2
5
.2

4
6
.5

8
3
.8

3
4

6
.3

1

P
en

ti
u
m

4
2.

8
G

H
z

C
lu

st
er

2
P
a
rt

it
io

n
s

4
P
a
rt

it
io

n
s

8
P
a
rt

it
io

n
s

1
6

P
a
rt

it
io

n
s

B
a
se

T
il
in

g
P
a
ra

ll
el

B
a
se

T
il
in

g
P
a
ra

ll
el

B
a
se

T
il
in

g
P
a
ra

ll
el

B
a
se

T
il
in

g
P
a
ra

ll
el

Is
o
S
u
rf

a
ce

T
im

e
T

im
e

S’
up

T
im

e
S’

up
T

im
e

T
im

e
S’

up
T

im
e

S’
up

T
im

e
T

im
e

S’
up

T
im

e
S’

up
T

im
e

T
im

e
S’

up
T

im
e

S’
up

0
4
.9

1
4
.5

6
1
.0

8
6
.6

0
.7

4
3
.5

5
2
.9

6
1
.2

4
.1

8
0
.8

5
3
.2

3
3
.2

8
0
.9

9
4
.1

8
0
.7

7
3
.1

4
3
.2

9
0
.9

5
1
.9

1
.6

5
0
.1

5
0
.6

5
0
.7

3
0
.8

9
0
.8

3
0
.7

8
0
.6

5
0
.6

7
0
.9

7
0
.6

4
1
.0

1
0
.6

6
0
.6

5
1
.0

2
0
.5

7
1
.1

6
0
.6

8
0
.6

6
1
.0

3
0
.6

1
.1

2
0
.3

1
.3

3
1
.4

7
0
.9

1
.3

2
1
.0

1
1
.2

5
1
.2

9
0
.9

7
0
.9

2
1
.3

6
1
.2

7
1
.0

2
1
.2

4
0
.8

1
1
.5

7
1
.3

2
0
.9

7
1
.3

6
0
.7

2
1
.8

2
0
.4

5
2
.6

4
3
.2

1
0
.8

2
2
.3

1
1
.1

4
2
.3

5
2
.3

8
0
.9

9
1
.2

3
1
.9

1
2
.3

7
1
.2

7
1
.8

6
1
.1

1
2
.1

3
2
.4

5
1
.2

3
2

1
.0

1
2
.4

3
0
.6

5
.3

5
5
.9

0
.9

1
4
.3

1
.2

4
5
.0

2
4
.5

1
.1

2
2
.5

7
1
.9

5
5
.0

8
2
.4

1
2
.1

2
.0

1
2
.5

3
5
.1

8
2
.1

2
2
.4

5
1
.4

5
3
.5

7
0
.7

5
1
0
.8

2
1
0
.5

4
1
.0

3
8
.6

9
1
.2

4
1
0
.4

3
8
.6

4
1
.2

1
5
.6

6
1
.8

4
1
0
.4

9
4
.7

9
2
.1

9
4
.1

4
2
.5

3
1
0
.6

3
.7

7
2
.8

1
2
.1

1
5
.0

3
0
.9

1
8
.2

8
1
7
.2

4
1
.0

6
1
4
.3

9
1
.2

7
1
8
.6

1
4
.7

2
1
.2

6
1
0
.2

1
1
.8

2
1
6
.9

2
8
.4

8
2

7
.3

8
2
.2

9
1
7
.0

4
5
.8

3
2
.9

2
2
.7

9
6
.1

A Domain-Specific Interpreter for Parallelizing 359

 0

 1

 2

 3

 4

 5

 6

16 Parttions8 Parttions4 Parttions2 Parttions

S
p

e
e

d
u

p

Number of Partitions

Range of Speedups Obtained over all IsoSurface Values

Athlon Tiling only
Athlon SMP Parallel

Pentium 4 Tiling only
Pentium 4 DMP Parallel

Fig. 4. Summary of speedups obtained through our optimisations: For each experi-
ment, we show for all degrees of partitioning the average, smallest and largest speedup
obtained over all IsoSurface values in our use case. The details for these figures are
contained in Table 1.

remotely accessible is subclassed from Pyro.core.ObjBase. In addition, there
is a Pyro.core.SynchronizedObjBase class, which automatically synchronises
remote access to the class methods.

Unfortunately, VTK pipeline components and data objects are not pickleable,
and, as such, cannot be transferred using Pyro. Data objects may, however,
be read and written to temporary files using VTK’s data reading and writing
classes, and these files are written by servers and read by clients to transfer input
and output data. MayaVi includes some pickling capabilities for VTK pipeline
components, although it is not complete enough as not all attributes are pickled.
Therefore, in order to propagate the pipeline structure, the client needs to cache
and transfer all calls and arguments needed to recreate the visualisation pipeline.

A limitation of the data transfer implementation is that files are not explicitly
transferred between server and client, but rather to a shared file system. A
direct transfer between local disks would be more flexible and may give better
performance.

Table 1, as well as Figure 4 show the performance of our distributed memory
parallelisation scheme. This shows that the speedup obtained from distributed
memory parallelisation for most calculations (in particular, the slowest ones)
exceeds the benefit of coarse grained tiling on a uniprocessor. The key overhead
involved with distributed memory parallelisation is the saving and loading of

360 K. Osmond et al.

resultant data (the implementation of returning results involves the server writ-
ing VTK data to a file, which the client then has to read in). So, it is indeed
expected that the performance gains will be best when the decrease in com-
putation time can outweigh this overhead (this, in turn, is smallest when the
computation results are small).

In Figure 4, we summarise our experimental results. Since the computation
time in our use case varies greatly with the IsoSurface value, we show speedups
as box-and-whisker plots, giving the average, minimum and maximum speedup
over all IsoSurface values. This shows that coarse grained tiling is almost al-
ways beneficial: we obtain a speedup of around a factor 2 for larger numbers
of partitions on both architectures. Furthermore, for the computationally more
expensive operations, combining coarse grained tiling with parallelisation can
lead to significant performance improvements (up to a factor 6 for both a dual-
processor Athlon SMP and a 4-processor Pentium 4 cluster).

7 Conclusions and Future Work

We have presented an overview of a project which is aimed at applying tra-
ditional restructuring compiler optimisations in the highly dynamic context of
modular visualisation environments. The challenge is that a computationally ex-
pensive pipeline of operations is constructed by the user via interactions with the
GUI and then executed. Our approach is based on intercepting the construction
of the visualisation pipeline, assembling a visualisation plan, on which we can
then perform optimisations such as coarse grained tiling before it is executed.
The MayaVi modular visualisation environment enabled us to capture reliably
the construction of the visualisation pipeline by intercepting all calls that pass
through the Python/C++ VTK interface. We have presented results for coarse
grained tiling on a uniprocessor, as well as shared- and distributed-memory par-
allelisation.

We are currently exploring how we can build on the infrastructure we have
described.

– Using VTK Streaming Constructs. As stated in Section 2.2, VTK itself pro-
vides various constructs for data streaming and parallel execution using MPI
that could be exploited from within our framework; we are planning to in-
vestigate this.

– Interaction with the Underlying Simulation. We are interested in investigat-
ing the possibility of pushing the scope for cross-component restructuring
optimisations further back into the simulation software that generates the
datasets which are visualised by MVEs such as MayaVi. In particular, we are
interested in extending demand-driven data generation into the simulation
model: if a higher level of detail is required for a small VOI of the dataset,
how much of the simulation has to be re-run?

We see this work as part of a wider programme of research into optimising
component-based scientific software frameworks.

A Domain-Specific Interpreter for Parallelizing 361

References

1. BLAST Forum: Basic linear algebra subprograms technical forum standard. (2001)
Available via www.netlib.org/blas/blas-forum.

2. Message Passing Interface Forum: MPI: A Message Passing Interface Standard.
University of Tenessee, Knoxville, Tenessee. (1995) Version 1.1.

3. Kitware, Inc.: The VTK User’s Guide: VTK 4.2. (2003)
4. Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit: An Object-

Oriented Approach To 3D Graphics. 3rd edn. Kitware, Inc. (2002)
5. Ramachandran, P.: MayaVi: A free tool for CFD data visualization. In: 4th Annual

CFD Symposium, Aeronautical Society of India. (2001) mayavi.sourceforge.net.
6. van Rossum, G., Fred L. Drake, J.: An Introduction to Python. Network Theory

Ltd (2003)
7. Karypis, G., Kumar, V.: Multilevel algorithms for multi-constraint graph parti-

tioning. In: Supercomputing ’98, IEEE Computer Society (1998) 1–13
8. Beckmann, O., Field, A.J., Gorman, G., Huff, A., Hull, M., Kelly, P.H.J.: Over-

coming barriers to restructuring in a modular visualisation environment. In Cox,
A., Subhlok, J., eds.: LCR ’04: Languages, Compilers and Runtime Support for
Scalable Systems. (2004) ACM Digital Library.

9. Cameron, G.: Modular visualization environments: Past, present, and future. Com-
puter Graphics 29 (1995) 3–4

10. Parker, S.G., Johnson, C.R.: SCIRun: A scientific programming environment for
computational steering. In: Proceedings of Supercomputing 1995. (1995)

11. Wright, H., Brodlie, K., Brown, M.: The dataflow visualization pipeline as a prob-
lem solving environment. In: Virtual Environments and Scientific Visualization
’96. Springer-Verlag, Vienna, Austria (1996) 267–276

12. Johnson, C.R., Parker, S.G., Weinstein, D.: Large-Scale Computational Science
Applications Using the SCIRun Problem Solving Environment. In: ISC 2000: In-
ternational Supercomputer Conference, Mannheim, Germany (2000)

13. Foster, I., Vöckler, J., Wilde, M., Zhao, Y.: Chimera: A virtual data system for
representing, querying, and automating data derivation. In: 14th International Con-
ference on Scientific and Statistical Database Management (SSDBM’02). (2002)

14. Cignoni, P., Montani, C., Scopigno, R.: MagicSphere: An insight tool for 3D data
visualization. Computer Graphics Forum 13 (1994) C/317–C/328

15. Beckmann, O., Kelly, P.H.J.: Efficient interprocedural data placement optimisation
in a parallel library. In: LCR98: Languages, Compilers and Run-time Systems for
Scalable Computers. Number 1511 in LNCS, Springer-Verlag (1998) 123–138

16. Liniker, P., Beckmann, O., Kelly, P.H.J.: Delayed evaluation self-optimising soft-
ware components as a programming model. In: Euro-Par 2002: Proceedings of the
8th International Euro-Par Conference. Number 2400 in LNCS (2002) 666–673

17. Yeung, K.C., Kelly, P.H.J.: Optimising Java RMI programs by communication re-
structuring. In: Proceedings of the ACM/IFIP/USENIX International Middleware
Conference 2003, Rio De Janeiro, Brazil, 16–20 June 2003. LNCS (2003)

18. Furmento, N., Mayer, A., McGough, S., Newhouse, S., Field, T., Darlington, J.:
Optimisation of component-based applications within a grid environment. In: Su-
percomputing 2001. (2001)

Compiler Control Power Saving Scheme for
Multi Core Processors

Jun Shirako1, Naoto Oshiyama1, Yasutaka Wada1, Hiroaki Shikano2,
Keiji Kimura1,2, and Hironori Kasahara1,2

1 Dept. of Computer Science
2 Advanced Chip Multiprocessor Research Institute

Waseda University
3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan

{shirako,oshiyama,yasutaka,shikano,kimura,kasahara}@oscar.elec.waseda.ac.jp

Abstract. With the increase of transistors integrated onto a chip, multi
core processor architectures have attracted much attention to achieve
high effective performance, shorten development period and reduce the
power consumption. To this end, the compiler for a multi core processor
is expected not only to parallelize program effectively, but also to control
the voltage and clock frequency of processors and storages carefully in-
side an application program. This paper proposes a compilation scheme
for reduction of power consumption under the multigrain parallel pro-
cessing environment that controls Voltage/Frequency and power supply
of each processor core on a chip. In the evaluation, the OSCAR com-
piler with the proposed scheme achieves 60.7 percent energy savings for
SPEC CFP95 applu without performance degradation on 4 processors,
and 45.4 percent energy savings for SPEC CFP95 tomcatv with real-time
deadline constraint on 4 processors, and 46.5 percent energy savings for
SPEC CFP95 swim with the deadline constraint on 4 processors.

1 Introduction

According to the increase of transistors integrated onto a chip, a chip multi-
processor architecture, or multicore architecture, that can achieve higher perfor-
mance and save the power consumption is collecting much attention as future
processors. To realize efficient parallel processing on multiprocessor systems,
cache and local memory optimization to cope with memory wall problems and
minimization of data transfer among processors using DMAC (Direct Memory
Access Controller), in addition to the extraction of parallelism from an appli-
cation program. For the exploitation of parallelism for multiprocessors, there
have been a large number of researches in the areas of loop parallelizing com-
pilers [1,2,3]. However, the loop parallelization techniques are almost matured
and new generation of parallelization techniques like multi-grain parallelization
are required to attain further speedup. There are a few compilers trying to ex-
ploit multiple levels of parallelism, for example, NANOS compiler[4] extracts
the multi-level parallelism including the coarse grain task parallelism by using

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 362–376, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Compiler Control Power Saving Scheme for Multi Core Processors 363

extended OpenMP API and OSCAR multigrain parallelizing compiler [5,6,7] ex-
tracts coarse grain task parallelism among loops, subroutines and basic blocks
and near fine grain parallelism among statements inside a basic block, in ad-
dition to the loop parallelism. Also, OSCAR compiler realizes the automatic
determination of parallelism of each part of a program and the number of re-
quired processors to process the program part efficiently with the global cache
memory optimization over different loops.

This required number of processors determination scheme determines the suit-
able number of processors to execute each part of a program and stops the
unnecessary processors to minimize processing overhead and reduce power con-
sumption by shutting off power supply for idle processors.

For the power saving techniques, various methods have been proposed. Adap-
tive Processing[8] estimates the workload of computing resources using counters
for cache misses and instruction queues and powers off unnecessary resources.
Online Methods for Voltage and Frequency Control [9] settles on the fitting
voltage and frequency for each domain of processors using instruction issue
queue occupancies as feedback signals. As the compiler algorithm for CPU en-
ergy reduction, compiler-directed DVS(dynamic voltage scaling)[10] is known.
This method gets the relations between frequency and execution time for each
part of a program by profiling. It solves minimization problem of total energy
consumption and determines the suitable frequency for each part.

This paper proposes a static compiler control scheme of power saving for a
multi core processor without profiling, which realizes

– power supply cutoff for unnecessary processors
– voltage/frequency(V/F) control of each task or of each processor in an ap-

plication program under the constraints of the minimum time execution or
the satisfaction of real-time deadline

2 Multigrain Parallel Processing

The proposed power saving scheme is mainly used with the coarse grain task
parallelization in the multigrain parallel processing. This section describes the
overview of the coarse grain task parallel processing.

2.1 Generating Macro-tasks [5,6,7][11,12]

In multigrain parallelization, a program is decomposed into three kinds of coarse
grain tasks, or macro-tasks, such as block of pseudo assignment statements(BPA)
repetition block(RB), subroutine block(SB)[7]. Macro-tasks can be hierarchically
defined inside each un-parallelizable repetition block, or sequential loop, and a
subroutine block as shown in Figure 1. Repeating the macro-task generation
hierarchically, the source program is decomposed into the nested macro-tasks as
in Figure 1.

364 J. Shirako et al.

BPA

RB

SB

Program

Near fine grain parallelism

Loop level parallelism

Coarse grain parallelism

Coarse grain parallelism

all system 1st layer 2nd layer 3rd layer

Near fine grain parallelism
in loop body

BPA
RB
SB

BPA
RB
SB

BPA
RB
SB

BPA
RB
SB

BPA
RB
SB

BPA
RB
SB

Fig. 1. Hierarchical Macro Task Definition

2.2 Extraction of Coarse Grain Task Parallelism

After generation of macro-tasks, the data dependency and the control flow among
macro-tasks are analyzed in each nested layer, and hierarchical macro flow
graphs(MFG) representing control flow and data dependencies among macro-
tasks are generated [5,6,7]. Then, to extract coarse grain task parallelism among
macro-tasks, Earliest Executable Condition analysis [5,6,7] which analyzes con-
trol dependencies and data dependencies among macro-tasks simultaneously is
applied to each Macro flow graph. Earliest Executable Conditions are the con-
ditions on which macro-task may begin its execution earliest. By this analysis, a
macro-task graph(MTG)[5,6,7] is generated for each macro flow graph. Macro-
task graph represents coarse grain parallelism among macro-tasks.

2.3 Processor Groups and Processor Elements

To execute hierarchical macro-task graphs efficiently, the compiler groups pro-
cessors hierarchically. This grouping of processor elements(PEs) into Processor
Groups(PGs) is performed logically, and macro-tasks are assigned to processor
groups in each layer.

Figure 2 shows an example of a hierarchical processor groups. For execution
of a macro-task graph in the 1st nest level, or 1st layer, the 8 processors are
grouped into 2 processor groups each of which has 4 processor elements. This
is represented as (2PGs, 4PEs). The macro-task graph in the 1st nest level
is processed by the 2PGs. For each macro-task graph in the 2nd nest level, 4
processors are available. In the Figure 2, the grouping of (4PGs, 1PE) is chosen
for the left PG and (2PGs, 2PEs) is chosen for the right PG.

2.4 Automatic Determination Scheme of Parallelizing Layer

In order to improve the performance of multigrain parallel processing, it is nec-
essary to schedule the tasks on the macro-task graph with the extracted paral-
lelism to processors the grouped processor layer. OSCAR compiler with the au-
tomatic parallelized layer determination scheme [11,13] estimates the parallelism

Compiler Control Power Saving Scheme for Multi Core Processors 365

8PE

PG0(4PE) PG1(4PE)

PG1-0(2PE) PG1-1(2PE)2nd layer

1st layer

PG0-0 PG0-1 PG0-2 PG0-3

0th layer

Fig. 2. Hierarchical definition of processor groups and processor elements

of each macro-task graph and determine the suitable (PGs, PEs) grouping. This
scheme determines the suitable number of processors executing each macro-task,
considering trade-off between parallelization and scheduling and data transfer
overhead. Therefore, OSCAR compiler doesn’t assign tasks to the excessive pro-
cessors to reduce parallel processing overhead.

2.5 Macro-task Scheduling

In the coarse grain task parallel processing, a macro-task in the macro-task
graph is assigned to a processor group. At this time, static scheduling or dynamic
scheduling is chosen for each macro-task graph.

If a macro-task graph has only data dependencies and is deterministic, the
static scheduling is selected. In this case, the compiler schedules macro-tasks to
processer groups. The static scheduling is effective since it can minimize data
transfer and synchronization overhead without runtime scheduling overhead.

If a macro-task graph is un-deterministic by conditional branches among
coarse grain tasks, the dynamic scheduling is selected to handle the runtime
uncertainties. The dynamic scheduling routines are generated by the compiler
and inserted into a parallelized program code to minimize scheduling overhead.

This paper proposes the power saving static scheduling scheme for the deter-
minable macro-task graphs.

In the following sections, MT represents macro-task, MTG is macro-task
graph, PG is processor group, PE is processor element, BPA is block of pseudo
assignment statements, RB is repetition block and SB is subroutine block.

3 Compiler Control Power Saving Scheme

The multigrain parallel processing can take full advantage of multi level paral-
lelism in a program. However, there isn’t always enough parallelism in all part of
a program for available resources. In such a case, shutting off the power supply
to the idle processors, to which tasks are not assigned, can reduce power con-
sumption. Also, execution at lower voltage and frequency may reduce the total
energy consumption in real time processing with the deadline constraint. The
proposed scheme realizes the following two modes of power reduction. The first
is the fastest execution mode that doesn’t apply the power saving scheme to the

366 J. Shirako et al.

Table 1. The rate of frequency, voltage, dynamic energy and static power

state FULL MID LOW OFF

frequency 1 1/2 1/4 0

voltage 1 0.87 0.71 0

dynamic energy 1 3/4 1/2 0

static power 1 1 1 0

critical path of a program to guarantee the fastest processing speed. The second
is real-time processing mode with deadline constraint that minimizes the total
energy consumption within the given deadline.

3.1 Target Model for the Proposed Power Saving Scheme

In this paper, it is supposed that the target multi core processors have the fol-
lowing functions with the hardware supports like OSCAR multi core processor
shown in Figure 3. The OSCAR(Optimally Scheduled Advanced Multiprocessor)
architecture has been proposed to support optimization of multigrain paralleliz-
ing compiler [14,5,6], especially static and dynamic task scheduling [15,14,16]. In
the OSCAR architecture, simple processor cores having local and/or distributed
shared memory both of which are double mapped to the global address space so
that can be accessed by remote processor cores DTC(Data Transfer Controller),
or DMAC, are connected by interconnection network like multiple busses or
cross bar switches to control shared memory(CSM) [15,14,16,17]. In addition to
the traditional OSCAR architecture, in this paper, the following power control
functions are supported.

– The frequency for each processor can be changed in several levels individu-
ally.

– The voltage can be changed with the frequency.
– Each processor can be powered on and off individually.

There are a lot of approaches for voltage and frequency(V/F) control. The
proposed power saving scheme assumes frequency changes discretely, and the
optimal voltage is fixed for each frequency. Table 1 shows an example of the
combinations of voltage, dynamic energy and static power at each frequency,
which supposes FULL is 400MHz, MID is 200MHz and LOW is 100MHz at
90nm technology. For the table, dynamic energy rate for each frequency is the
rate of energy consumption to the energy consumption at FULL. The power
supply is shut off completely at OFF, then the static power becomes 0. These
parameters and the number of frequency states can be changed, according to
architectures and technology. This scheme also considers the state transition
overhead that is given for each state.

Compiler Control Power Saving Scheme for Multi Core Processors 367

SCMm

OSCAR Chip Multiprocessor for Multigrain Parallel Processing

CSM / L2 Cache

PE0 PE1 PE n

Intra-chip connection network (Multiple Buses, Crossbar, etc)

DSM

LDM/
D-cacheAdjustable

Pre-fetch
I-Cache

SCM 0

Inter-chip connection network (Crossbar, Buses, Multistage network, etc)

CSMj

CSM

I/O
SCMk

Network Interface

CPU

DTC

I/O
DevicesI/O

Devices

Fig. 3. OSCAR architecture(Chip multiprocessor)

3.2 Target MTG for the Proposed Control Scheme

OSCAR compiler selects dynamic scheduling or static scheduling for each MTG,
as to whether there is runtime uncertainty like conditional branches in the
MTG. The proposed scheme can be only applied to static scheduled MTGs.
However, separating the parts without branches from dynamic scheduled MTG,
this scheme is applied for the static scheduling parts of MTGs. In the static
scheduling at the compile time, execution cost and consumed energy of each
MT is estimated. The cost and energy at each frequency level like “FULL” and
“MID” can be calculated using the previously prepared parameter table for each
target multicore processor of each instruction cost embedded in the compiler.

3.3 Deadline Constraint of Target MTG

The proposed scheme determines suitable voltage and frequency for each MT
on a MTG based on the result of static task assignment. In other words, the
proposed power saving scheme is applied for the static task schedule like Figure
4 generated by static task scheduling algorithms to minimize processing time in-
cluding data transfer overhead, such as CP/DT/MISF, DT/CP, ETF/CP, which
have been used for a long time in OSCAR compiler. Figure 4 shows MTs 1, 2
and 5 are assigned to PG0, MTs 3 and 6 are assigned to PG1, MTs 4, 7 and 8
are assigned to PG2 by the static scheduling algorithms. The best schedule is
chosen among different schedules generated by the different heuristic scheduling
algorithms. In Figure 4, edges among tasks show data dependence.

First, the following is defined for MTi, in order to estimate the execution time
of the target MTG to which the proposed scheme is applied.

Ti : execution time of MTi after V/F control
Tstarti : start time of MTi

Tfinishi : finish time of MTi

368 J. Shirako et al.

PG0 PG1 PG2
MT1

MT2 MT3
MT4

MT5 MT6
MT7

MT8

time Given Dead Line

Margin

Phase 1

Phase 2

Phase 3

Fig. 4. static scheduled MTG

At the beginning of the proposed scheme, Ti is not yet fixed. The start time of
the target MTG is set to 0. If MTi is the first macro-task executed by a PG
and has no data dependent predecessor. Tstarti and Tfinishi are represented as
shown below.

Tstarti = 0
Tfinishi = Tstarti + Ti = Ti

For instance, the MT1 is the entry node of MTG, so it is the first and has no
data dependent predecessor. Then, Tstart1 = 0, Tfinish1 = T1. In other case, the
previous macro-task which is assigned to the same PG as MTi is represented as
MTj. The data dependent predecessors of MTi are defined as {MTk, MTl, ...}.
Then, MTi starts when MTj, MTk, MTl, ... finish.

Tstarti = max(Tfinishj , Tfinishk
, Tfinishl

, ...)
Tfinishi = Tstarti + Ti

In Figure 4, MT2 and MT3 start execution immediately after the time MT1 is
finished. So, the start time is represented as Tstart2 = Tstart3 = Tfinish1 = T1, the
finish time is Tfinish2 = Tstart2 +T2 = T1 +T2, Tfinish3 = Tstart3 +T3 = T1 +T3.
MT6 is started after MT2 and MT3, then Tstart6 = max(Tfinish2 , Tfinish3) =
max(T2 + T1, T3 + T1). In addition, the common term of the arguments in max
may be put out of max. Then, Tstart6 = max(T2+T1, T3+T1) = max(T2, T3)+T1.
As the same way, the finish time of MT8 which is the exit node is represented
as Tfinish8 = T1 + T8 + max(T2 + T5, T6 + max(T2, T3), T7 + max(T3, T4)).

The exit node is generally represented by
Tfinishexit = Tm + Tn + ... + max1(...) + max2(...) + ...

The start time of the entry node is 0, therefore Tfinishexit expresses the execution
time of the target MTG, defined as TMTG. The given deadline for the target
MTG is defined as TMTG deadline. Then, the next condition should be satisfied.

TMTG ≤ TMTG deadline

The proposed scheme determines suitable clock frequency for MTi to satisfy the
condition.

Compiler Control Power Saving Scheme for Multi Core Processors 369

PG0 PG1 PG2
MT1

MT2 MT3
MID

MT4

MT5
MID MT6 MT7

MT8
time

PG3
idle (1) idle (1)

idle (2) idle (2)

idle (3)

Fig. 5. Result of FV control

3.4 Voltage / Frequency Control

This paragraph describes how to determine the voltage and frequency to ex-
ecute each MT using next conditions. The execution time of MTi is Ti, the
execution time of target MTG is TMTG, the real-time deadline of the terget
MTG is TMTG deadline, then

TMTG = Tm + Tn + ... + max1 + max2 + ... - - - (a)
TMTG ≤ TMTG deadline - - - (b)

For sake of simplicity, the MTs corresponding to each term of the expression (a)
such as Tm, Tn, ..., max1, max2, ... are called Phase. Each term represents the
different part of TMTG. Therefore, the different Phase is not executed in parallel
on any account as shown in Figure 4. The following parameters for Phasei at
frequency Fn are defined.

Tschedi(Fn) : scheduling length at Fn

Energyi(Fn) : energy consumption at Fn

Tschedi(Fn) represents the execution time when the whole Phasei is processed
at Fn. Tschedi(FULL) is the minimum value of the term in the expression (a).
Energyi(Fn) expresses the total energy consumption as Phasei is excuted at Fn.

Here, it is considered to change frequency from Fn to Fm. The scheduling
length is increased from Tschedi(Fn) to Tschedi(Fm). The energy is decreased
from Energyi(Fn) to Energyi(Fm). Using these values, Gaini(Fm) is defined as

Gaini(Fm) = −Energyi(Fm)−Energyi(Fn)
Tschedi

(Fm)−Tschedi
(Fn)

Gaini(Fm) represents reduction rate of energy on scheduling length when Fn is
changed into Fm. Therefore, if the increases of scheduling length are same, the
more energy consumption can be prevented by prioritizing Phasei with larger
Gaini(Fm).

Next, to estimate the margin of the target MTG, the minimum value of TMTG

is calculated. This is equal to the summation of Tschedi(FULL). Then, using this
minimum value and TMTG deadline, the margin TMTG margin is defined as

TMTG margin = TMTG deadline −
∑

Tschedi(FULL)
As the target MTG must finish in minimum execution time, TMTG margin = 0,
then each Phase has to be executed at FULL. When TMTG margin > 0, the pro-
posed scheme turns down the voltage and frequency of each Phase, according to

370 J. Shirako et al.

Table 2. Power and frequency transition overhead

dynamic power 220[mW]

static power 2.2[mW]

overhead(FULL - MID - LOW) 0.1[ms]

overhead({FULL, MID, LOW} - OFF) 0.2[ms]

Gaini(Fm). If Phase has a single MT, the frequency of MT is the same as the
Phase. If Phase includes some MTs and corresponds to max term, the proposed
scheme also defines Phases for each argument of max, then determines clock fre-
quency to execute these Phases. The algorithm to determine frequency for each
Phase is described below. The initial value of each frequency is FULL.

Step.1 Determining each frequency of Phase
Step.1.1 selecting target Phase
This step considers only a Phase whose frequency isn’t fixed. Fn is represented
as current frequency and Fm is defined as one step lower than Fn, then Phasei

having the maximum Gaini(Fm) is selected as the target Phase. goto Step.1.2
Step.1.2 determining effectiveness for target Phase
For target Phase, the conditions to change the frequency from Fn to Fm is as
follows.

1. Including the frequency transition overhead, the target Phase can finish at
Fm within the TMTG margin.

2. The energy at Fm with overhead is lower than the energy at Fn.

If both conditions are satisfied,
then the frequency of target Phase is changed to Fm. goto Step.1.3
else the frequency of target Phase is confirmed as Fn. goto Step.1.4

Step.1.3 updating the margin of MTG
The required time to execute the target Phase at Fm is calculated, then the
required time is subtracted from TMTG margin. If Fm is the lowest frequency,
the frequency of target Phase is confirmed as Fm. goto Step.1.4
Step.1.4 determining exit
The conditions to exit are as follows.

1. The frequency of all Phase is confirmed.
2. TMTG margin is 0.

If either of these conditions is satisfied,
then goto Step.2
else goto Step.1.1

The remained margin is given Phasei which satisfies next conditions, if
TMTG margin is not 0 at the end.

– The frequency is not the lowest.
– Gaini(Fm) is the maximum.

Compiler Control Power Saving Scheme for Multi Core Processors 371

DOALL6

LOOP10

DOALL14

LOW

OFF

LOOP21

DOALL7

MID

LOOP11

DOALL15

LOW

OFF

LOOP20

OFF

DOALL8

MID

OFF

LOOP12

DOALL16

LOW

OFF
LOOP19

OFF

DOALL9

LOW

OFF

LOOP13

DOALL17

LOOP18

OFF

PE0 PE1 PE2 PE3

clock

0

200M

400M

600M

Fig. 6. FV control of applu(4proc.)

Step.2 Voltage/frequency control within each Phase
In the proposed scheme, the following algorithm is applied to each Phase.
Step.2.1 classifying Phases
If Phase includes only a single MT,

then the frequency of the MT is the same as Phase. exit
else goto Step.2.2

Step.2.2 Voltage/frequency control of max term
Phase includes some MTs and corresponds to max term, the proposed scheme
calculates the executing time of this Phase at the already determined frequency
in Step.1. Then, the calculated execution time is defined as Tmaxi deadline.

maxi = max(argi 1, argi 2, ...) ≤ Tmaxi deadline

argi j = Ti j m + Ti j n + ... + maxi j 1 + maxi j 2 + ...
Therefore, argi j should meet the next condition.

Ti j m + Ti j n... + maxi j 1 + maxi j 2... ≤ Tmaxi deadline - - - (c)
The MTs corresponding to each term in the expression (c) are also considered
as Phase, then Step.1 is applied to determine the frequency of each Phase. At
this time, the execution time of each argi j at FULL frequency is calculated.
Then each argi j is applied Step.1 in descending order of the execution time,
or ascending order of the margin. Some Phases in different args may include the
same macro-tasks in common. However, once the frequency of a macro-task has
been determined, the frequency isn’t changed.

Applying Step.1 and Step.2 recursively, the suitable frequency of all MTs
are determined.

3.5 Power Supply Control

This paragraph explains power supply control to reduce unnecessary energy
consumption including static leak current by idle processors. The cases where
the idle time occurs in a MTG are,

372 J. Shirako et al.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

1 2 4 1 2 4 1 2 4
tomcatv swim applu

benchmark

sp
ee

du
p

ra
ti

o
w/o Saving
w Saving

Fig. 7. Speedup in fastest execution mode

1. before MT with data dependency is executed,
2. after all MTs in a PG are finished,
3. the idle time created by the determination scheme of parallelizing layer,

which is described in paragraph 2.4.

The gray parts of Figure 5 are the idle in each case. Here, the PG3 is the
processor group determined as unnecessary. In the idle time which meets the
next conditions, the power of the processor is turned off.

– The idle time is longer than the frequency transition overhead.
– The energy becomes lower by power-off.

3.6 Applying Power Saving Scheme to Inner MTG

If a MTi includes a MTGi inside, it may be more effective to control each MTi j

in MTGi than to process the whole MTi at the same clock frequency. Therefore,
the deadline for MTGi is defined as TMTGi deadline, which is given by Ti. Then,
MTGi is applied the proposed power saving control described in paragraph 3.4
and 3.5. Comparing both case to execute the whole MTi at the same frequency
and case to apply the power saving control to MTGi, the more effective one is
selected.

4 Performance Evaluation

This section describes the performance of OSCAR multigrain parallelizing com-
piler with the proposed power saving scheme. The evaluation are performed by
using the static scheduler in the compiler. For this evaluation, the parameters
for frequencies, voltages, dynamic energies, and static powers shown in Table 1
are used. In this paper, only energy for processors was evaluated. The state tran-
sition overhead with frequency, dynamic and static power is shown in Table 2.
The dynamic power at FULL frequency is measured by using Wattch[18]. Co-
operative Voltage Scaling[19] is vebered to determine the parameters like the

Compiler Control Power Saving Scheme for Multi Core Processors 373

0
20
40
60
80

100
120
140
160
180
200

1 2 4 1 2 4 1 2 4
tomcatv swim applu

benchmark

en
er

gy
(J

)
w/o Saving
w Saving

Fig. 8. Energy in fastest execution mode

transition overhead, attribute of voltage/frequency and dynamic power at MID
and LOW frequency. Application programs, such as applu, tomcatv and swim
from SPEC95 CFP, are used in the evaluation. For applu, inline expansion and
loop aligned decomposition for the data localization[12] are applied. Also, the
main loop in applu is divided into the static part without conditional branch
and the dynamic part with branches, in order to apply the proposed scheme.

4.1 Performance in the Fastest Execution Mode

Figure 7 shows the speedup ratio of each program, and Figure 8 shows the total
energy consumption for 1, 2 and 4 processors in the fastest execution mode. In
these graphs, the left bars represents the results of OSCAR compiler without the
proposed power saving scheme, the right bars show the results of OSCAR com-
piler using the proposed scheme. As shown in Figure 7, there is no performance
degradation by using the power saving scheme in the fastest execution mode,
while the energy consumption is reduced as shown in Figure 8. The proposed
scheme reduced the consumed energy by 36.3 %(from 102[J] down to 65.0[J]) for
2 processors, 60.7 %(from 174[J] down to 68.4[J]) for 4 processors in SPEC95
applu, 1.56 %(from 92.1[J] down to 90.6[J]) for 2 processors, 4.64 %(from 95.0[J]
down to 90.6[J]) for 4 processors in tomcatv.

The reason why the proposed scheme can not reduce the energy consumption
in tomcatv and swim is that the both application programs have large parallelism
and the all processors must execute in “FULL” mode to attain the minimum
execution time. The parallel execution time of these programs with 4 processors
is about one quarter of sequential execution time. Therefore, though the power
consumption is quadrupled by using 4 processors, the total energy consumption
is almost equal to the energy of sequential execution.

On the other hand, there is a certain amount of idle time in applu. Therefore,
the following controls were made. Figure 6 shows the main loop to which the
power saving scheme is applied for 4 processors. The DOALL6, LOOP10-13,
DOALL17, LOOP18-21, DOALL22 had no margin, then their frequencies were

374 J. Shirako et al.

set to FULL. MID or LOW was chosen for other MTs according to each margin
of task. Furthermore, the proposed scheme shut off the power supply in the idle
times.

4.2 Performance in Real-Time Processing with Deadline
Constraints

Next, the evaluation results of real-time execution mode with the deadline con-
straint are described. Figure 9 shows the speedup ratio and Figure 10 shows
the total energy consumption with the real-time deadline that was set to equal
to the sequential execution time. The speedup ratio could be kept almost 1, as
shown in Figure 9. This means the proposed scheme could satisfy the deadline
constraints, or the sequential processing time.

Figure 10 shows that the saved power for real-time processing mode were
37.8 %(from 102[J] down to 63.3[J]) for 2 processors, 62.2 %(from 174[J] down
to 65.8[J]) for 4 processors in applu, 21.6 %(from 92.1[J] down to 72.2[J]) for 2
processors, 45.4 %(from 95.0[J] down to 51.9[J]) for 4 processors in tomcatv, and

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

1 2 4 1 2 4 1 2 4
tomcatv swim applu

benchmark

sp
ee

d
up

 r
at

io

w/o Saving
w Saving

Fig. 9. Speedup in deadline mode

0
20
40
60
80

100
120
140
160
180
200

1 2 4 1 2 4 1 2 4
tomcatv swim applu

benchmark

en
er

g
y(

J)

w/o Saving
w Saving

Fig. 10. Energy in deadline mode

Compiler Control Power Saving Scheme for Multi Core Processors 375

23.7 %(from 103[J] down to 78.7[J]) for 2 processors, 46.5 %(from 103[J] down
to 55.2[J]) for 4 processors in swim.

These results shows the proposed scheme could realize large power reduction
for programs with large parallelism under the real-time execution mode.

5 Conclusions

This paper has proposed compiler control power saving scheme for multi core
processors. The proposed scheme can be applied for both the fastest parallel
executing mode and the real-time execution mode with deadline constraint. The
scheme gives us good effective performance and low energy consumption for the
both modes.

The evaluation using OSCAR multigrain parallelizing compiler has shown the
proposed scheme gave 60.7 percent energy savings for SPEC CFP95 applu using 4
processors without the performance degradation, and 45.4 percent energy savings
for SPEC CFP95 tomcatv using 4 processors with real-time deadline constraint,
or the sequential processing time, and 46.5 percent energy savings for SPEC
CFP95 swim using 4 processors with the deadline constraint.

The detailed evaluation using an actual multi core processor and the imple-
ment of the dynamic scheduling are the future works.

Acknowledgments

A part of this research has been supported by NEDO “Advanced Heterogeneous
Multiprocessor”, STARC “Automatic Parallelizing Compiler Cooperative Single
Chip Multiprocessor” and NEDO “Multi core processors for real time consumer
electronics”.

References

1. M.Wolfe. High performance compilers for parallel computing. Addison-Wesley
Publishing Company, 1996.

2. R. Eigenmann, J. Hoeflinger, and D. Padua. On the automatic parallelization of
the perfect benchmarks. IEEE Trans. on parallel and distributed systems, 9(1),
Jan. 1998.

3. M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S. Liao, E. Bugnion,
and M. S. Lam. Maximizing multiprocessor performance with the suif compiler.
IEEE Computer, 1996.

4. Marc Gonzalez, Xavier Martorell, Jose Oliver, Eduard Ayguade, and Jesus Labarta.
Code generation and run-time support for multi-level parallelism exploitation. In
Proc. of the 8th International Workshop on Compilers for Parallel Computing, Jan.
2000.

5. H. Honda, M. Iwata, and H. Kasahara. Coarse grain parallelism detection scheme
of a fortran program. Trans. of IEICE, J73-D-1(12):951–960, Dec. 1990.

6. H.Kasahara et al. A multi-grain parallelizing compilation scheme on oscar. Proc.
4th Workshop on Language and Compilers for Parallel Computing, 1991.

376 J. Shirako et al.

7. Hironori Kasahara. Advanced automatic parallelizing compiler technology. IPSJ
MAGANIE, Apr 2003.

8. David H. Albonesi et al. Dynamically tuning processor resources with adaptive
processing. In IEEE Computer, Dec. 2003.

9. Q. Wu, P. Juang, M. Martonosi, and D. W. Clark. Formal online methods for
voltage/frequency control in multiple clock domain microprocessors. In Eleventh
International Conference on Architectural Support for Programming Languages and
Operating Systems, Oct. 2004.

10. Chung-Hsing Hsu and Ulrich Kremer. The design, implementation, and evalua-
tion of a compiler algorithm for cpu energy reduction. In The ACM SIGPLAN
Conference on Programming Language Design and Implementation, Jun. 2003.

11. M. Obata, J. Shirako, H. Kaminaga, K. Ishizaka, and H. Kasahara. Hierarchical
parallelism control for multigrain parallel processing. In Proc. of 15th International
Workshop on Languages and Compilers for Parallel Computing, Aug. 2002.

12. K. Ishizaka, T. Miyamoto, M. obata J. Shirako, K. kimura, and H. Kasahara.
Performance of oscar multigrain parallelizing compiler on smp servers. In Proc. of
17th International Workshop on Languages and Compilers for Parallel Computing,
Sep. 2004.

13. Jun shirako, Kouhei Nagasawa, Kazuhisa Ishizaka, Motoki Obata, and Hironori
Kasahara. Selective inline expansion for improvement of multi grain parallelism.
PDCN2004, Feb. 2004.

14. H. Kasahara, H. Honda, M. Iwata, and M. Hirota. A compilation scheme for macro-
dataflow computation on hierarchical multiprocessor system. Proc. Int Conf. on
Parallel Processing, 1990.

15. H. Kasahara, S. Narita, and S. Hashimoto. Architecture of oscar. Trans of IEICE,
J71-D(8), Aug. 1988.

16. H. Kasahara, H. Honda, and S. Narita. Parallel processing of near fine grain tasks
using static scheduling on oscar. Proceedings of Supercomputing ’90, Nov. 1990.

17. K. Kimura, W. Ogata, M. Okamoto, and H. Kasahara. Near fine grain parallel
processing on single chip multiprocessors. Trans. of IPSJ, 40(5), May. 1999.

18. David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A framework for
architectural-level power analysis and optimizations. In Proc. of the 27th ISCA,
Jun. 2000.

19. Hiroshi Kawaguchi, Youngsoo Shin, and Takayasu Sakurai. uitron-lp: Power-
conscious real-time os based on cooperative voltage scaling for multimedia ap-
plications. In IEEE Transactions on multimedia, Feb. 2005.

Code Transformations for One-Pass Analysis

Xiaogang Li and Gagan Agrawal

Department of Computer Science and Engineering
Ohio State University, Columbus OH 43210

{xgli,agrawal}@cse.ohio-state.edu

Abstract. With the growing popularity of streaming data model, processing
queries over streaming data has become an important topic. Streaming data has
received attention in a number of communities, including data mining, theoreti-
cal computer science, networking, and grid computing. We believe that streaming
data processing involves challenges for compilers, which have not been addressed
so far. Particularly, the following two questions are important:

– How do we transform queries so that they can be correctly executed with a
single pass on streaming data ?

– How do we determine when a query, possibly after certain transformations,
can be correctly executed with only a single pass on the dataset.

In this paper, we address these questions in the context of XML query lan-
guage, XQuery. Because of XQuery’s single assignment nature and special con-
structs for dealing with sequences, the above questions can be answered more
easily than for a general imperative language. However, we believe our work also
forms the basis for addressing these questions for more general languages.

1 Introduction

Increasingly, a number of applications across computer sciences and other science and
engineering disciplines rely on, or can potentially benefit from, analysis and monitoring
of data streams. In the stream model of processing, data arrives continuously and needs
to be processed in real-time, i.e., the processing rate must match the arrival rate. There
are two trends contributing to the emergence of this model. First, scientific simulations
and increasing numbers of high precision data collection instruments (e.g. sensors at-
tached to satellites and medical imaging modalities) are generating data continuously,
and at a high rate. The second is the rapid improvements in the technologies for Wide
Area Networking (WAN), as evidenced, for example, by the National Light Rail (NLR)
proposal and the interconnectivity between the TeraGrid and Extensible Terascale Fa-
cility (ETF) sites. As a result, often the data can be transmitted faster than it can be
stored or accessed from disks within a cluster.

Realizing the challenges posed by the applications that require real-time analysis of
data streams, a number of computer science research communities have initiated efforts.
In the theoretical computer science or data mining algorithms research area, work has
been done on developing new data analysis or data mining algorithms that require only
a single pass on the entire data [17]. At the same time, database systems community has
been developing architectures and query processing systems targeting continuous data
streams [4].

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 377–396, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

378 X. Li and G. Agrawal

We believe that streaming data processing involves challenges for compilers, which
have not been addressed so far. Particularly, the following two questions are important:

– How do we transform queries so that they can be correctly executed with a single
pass on streaming data ?

– How do we determine when a query, possibly after certain transformations, can be
correctly executed with only a single pass on the dataset.

In this paper, we address these questions in the context of XML query language,
XQuery. XML is a flexible exchange format that has gained popularity for represent-
ing many classes of data, including structured documents, heterogeneous and semi-
structured records, data from scientific experiments and simulations, digitized images,
among others. As a result, querying XML documents has received much attention. To
query and process XML data streams, XQuery designed by W3C [7] can be an ideal
language, because of its declarative nature and powerful features. XQuery is a high-
level language like SQL, but it also supports more advanced and complex features such
as types and recursive functions. XQuery allows user-defined functions, which are often
key for specifying the type of processing that is required for streaming data.

In this paper, we make the following contributions. In many cases, direct transla-
tion of a XQuery query requires multiple passes on the data, whereas the query can
be transformed to correctly execute with only a single pass. We present techniques for
enabling such transformations. We model the dependencies in the query using a rep-
resentation we refer to as the stream data flow graph. We apply a series of high-level
transformations, including horizontal and vertical fusion. These techniques enable a
larger number of queries to be evaluated correctly on streaming data, and efficiently on
any large dataset. Moreover, based on our stream data flow graph, we present a method-
ology to determine if a query can be evaluated correctly in a single pass. This enables
us to avoid generating a query evaluation plan that is going to fail, and instead, a user
can be given feedback sooner.

Our transformations are implemented as part of a XQuery compilation system. Our
experiments with eight queries show that our techniques are able to transform them for
single-pass execution, whereas naive execution is very expensive.

The rest of the paper is organized as follows. A motivating application is described
in Section 2.3. The overall problem is described in Section 3. Our analysis, including
the stream data flow graph, horizontal and vertical fusion techniques, and the analysis
to determine if the query can be executed correctly on streaming data are presented in
Section 4. Experimental evaluation is presented in Section 5. We compare our work
with related research efforts in Section 6 and conclude in Section 7.

2 Background: XML, XML Schemas, and XQuery

This section gives background on XML, XML Schemas, and XQuery.

2.1 XML and XML Schemas

XML provided a simple and general facility which is useful for data interchange.
Though the initial development of XML was mostly for representing structured and

Code Transformations for One-Pass Analysis 379

< student >
< firstname > Darin < / firstname >
< lastname > Sundstrom < /lastname >
<DOB > 1974-01-06 < / DOB >
< GPA > 3.73 < / GPA >

< / student >
...

(a) XML example

Schema Declaration
< xs:element name=”student” >
< xs:complexType >

< xs:sequence >
< xs:element name=”lastname” type=”xs:string”/ >
< xs:element name=”firstname” type=”xs:string”/ >
< xs:element name=”DOB” type=”xs:date”/>
< xs:element name= ”GPA” type=”xs:float”/ >

< /xs:sequence >
< /xs:complexType >

< /xs:element >

(b) XML Schema

Fig. 1. XML and XML Schema

semi-structured data on the web, XML is rapidly emerging as a general medium for ex-
changing information between organizations. XML and related technologies form the
core of the web-services model [13] and the Open Grid Services Architecture (OGSA)
[15].

XML models data as a tree of elements. Arbitrary depth and width is allowed in such a
tree, which facilitates storage of deeply nested data structures, as well as large collections
of records or structures. Each element contains character data and can have attributes
composed of name-value pairs. An XML document represents elements, attributes, char-
acter data, and the relationship between them by simply using angle brackets.

Applications that operate on XML data often need guarantees on the structure and
content of data. XML Schema proposals [5,6] give facilities for describing the structure
and constraining the contents of XML documents. The example in Figure (a) shows an
XML document containing records of students. The XML Schema describing the XML
document is shown in Figure (b). For each student tuple in the XML file, it contains two
string elements to specify the last and first names, one date element to specify the date
of birth, and one element of float type for the student’s GPA.

2.2 XML Query Language: XQuery

As stated previously, XQuery is a language recently developed by the World Wide Web
Consortium (W3C). It is designed to be a language in which queries are concise and

380 X. Li and G. Agrawal

easily understood, and to be flexible enough to query a broad spectrum of information
sources, including both databases and documents.

XQuery is a functional language. The basic building block is an expression. Sev-
eral types of expressions are possible. The two types of expressions important for our
discussion are:

– FLWR expressions, which support iteration and binding of variables to intermediate
results. FLWR stands for the keywords for, let, where, and return.

– Unordered expressions, which use the keyword unordered. The unordered expres-
sion takes any sequence of items as its argument, and returns the same sequence of
items in a nondeterministic order.

unordered(
for $d in document(”depts.xml”)//deptno

let $e := document(”emps.xml”)//emp[deptno = $d]
where count($e) >= 10

return
<big-dept>

{
$d,
<headcount> { count($e) } </headcount>,
<avgsal> {avg($e/salary)} </avgsal>

}
</big-dept>

)

Fig. 2. An Example Using XQuery’s FLWR and Unordered Expressions

We illustrate the XQuery language and the for, let, where, and return expressions
by an example, shown in Figure 2. In this example, two XML documents, depts.xml
and emps.xml are processed to create a new document, which lists all departments with
ten or more employees, and also lists the average salary of employees in each such
department.

In XQuery, a for clause contains one or more variables, each with an associated ex-
pression. The simplest form of for expression, such as the one used in the example here,
contains only one variable and an associated expression. The evaluation of the expres-
sion typically results in a sequence. The for clause results in a loop being executed, in
which the variable is bound to each item from the resulting sequence in turn. In our
example, the sequence of distinct department numbers is created from the document
depts.xml, and the loop iterates over each distinct department number.

A let clause also contains one or more variables, each with an associated expression.
However, each variable is bound to the result of the associated expression, without
iteration. In our example, the let expression results in the variable $e being bound to
the set or sequence of employees that belong to the department $d. The subsequent

Code Transformations for One-Pass Analysis 381

operations on $e apply to such sequence. For example, count($e) determines the length
of this sequence.

A where clause serves as a filter for the tuples of variable bindings generated by the
for and let clauses. The expression is evaluated once for each of these tuples. If the
resulting value is true, the tuple is retained, otherwise, it is discarded. A return clause is
used to create an XML record after processing one iteration of the for loop. The details
of the syntax are not important for our presentation.

The last key-word we explain is unordered. By enclosing the for loop inside the
unordered expression, we are not enforcing any order on the execution of the iterations
in the for loop, and in generation of the results. Without the use of unordered, the
departments need to be processed in the order in which they occur in the document
depts.xml. However, when unordered is used, the system is allowed to choose the order
in which they are processed, or even process the query in parallel.

2.3 A Motivating Application

We now describe an application we refer to as satellite data processing [9]. We show
how it can be expressed in XQuery, and the issues involved in transforming and execut-
ing it correctly on streaming data.

This application involves processing the data collected continuously from satellites
and creating composite images. A satellite orbiting the Earth collects data as a sequence
of pixels. Each pixel is characterized by the spatial coordinate (the latitude and longi-
tude) and a time coordinate. The satellite contains sensors for five different bands. Thus,
each pixel captured by the satellite stores the latitude, longitude, time, and 16-bit mea-
surements for each of the 5 bands.

The typical computation on this satellite data is as follows. A portion of Earth is
specified through latitudes and longitudes of end points. For any point on the Earth
within the specified area, all available pixels (corresponding to different time values)
are scanned and an application dependent output value is computed. To produce such a
value, the application will perform computation on the input bands to produce one out-
put value for each input value, and then the multiple output values for the same point on
the planet are combined by a reduction operation. For instance, the Normalized Differ-
ence Vegetation Index (ndvi) is computed based on bands one and two, and correlates
to the “greenness” of the position at the surface of the Earth. Combining multiple ndvi
values consists of execution a max operation over all of them, or finding the “greenest”
value for that particular position.

XQuery specification of such processing is shown in Figure 3. The code iterates over
the two-dimensional space for which the output is desired. Since the order in which the
points are processed is not important, we use the directive unordered. Within an iteration
of the nested for loop, the let statement is used to create a sequence of all pixels that
correspond to the those spatial coordinates. The desired result involves finding the pixel
with the best NDVI value. In XQuery, such reduction can only be computed recursively.

The computations performed to obtain the output value of a given spatial coordinate
are often associative and commutative. In such cases, these computations can be per-
formed correctly on streaming data. When a pixel is received, we can find the spatial
coordinate it corresponds to, and update the output value for that spatial coordinate.

382 X. Li and G. Agrawal

unordered(
for $i in ($minx to $maxx)

for $j in ($miny to $maxy)
let $p := /stream/data/pixel

where(($p/x = $i) and ($p/y = $j))
return

<pixel>
<latitude> {$i} </latitude>
<longitude> {$j} </longitude>
<summary> {accumulate($p)} </summary>

</pixel>
)

declare function accumulate ($p)
as double

{
let $inp := $p[1]
let $NVDI := (($inp/band1 - $inp/band0) div

($inp/band1 + $inp/band0)+1) * 512
return

if(fn:empty($p))
then 0
else { fn:max($NVDI, accumulate(fn:subsequence($p,2))) }

}

Fig. 3. Satellite Data Processing Expressed in XQuery

However, direct translation of the XQuery specification, as we had shown in Figure 3,
will require multiple scans on the entire dataset. It is clearly desirable that the streaming
XQuery processor can transform the query to execute it correctly with only a single pass
on the entire dataset. Thus, we have the following challenges:

1. How can we systematically and correctly transform a given XQuery query so that it
can be executed on streaming data, when possible ?
2. How can we determine if a given XQuery query, possibly after our transformations,
can be executed correctly with only a single pass on the entire dataset ?

We address the above two challenges in the rest of this paper.

3 Preliminaries

This section describes our data and evaluation model. We introduce the notion of pro-
gressive blocking operators, and describe the overall problem.

3.1 Evaluation Model

We assume that the length of the incoming XML stream exceeds our capability of stor-
ing it. We only investigate the possibility of obtaining exact query results in a single

Code Transformations for One-Pass Analysis 383

pass. Approximate processing of queries using a single pass on streaming data has
been extensively studied by many researchers, and we do not consider this possibility
here. We limit the number of input streams to be one. Also, we assume that duplicate-
preserving is always used for XPath expressions in the query.

When an incoming tuple is available, it is fetched for evaluation and a series of
internal computations are performed. As a result of this computation, an output tuple
may be dispatched. A limited amount of memory is available for internal buffering,
which is much smaller than the entire length of the data stream.

The internal computations can be viewed as a series of linked operators. Each op-
erator receives input from its parent(s), performs an operation on the input, and sends
the output tuples to its children. An operator could be a pipeline operator or a blocking
operator.

Pipeline Operator: A pipeline operator can immediately dispatch the output tuple after
processing one input tuple. In our system, assume that the input of the operator f is

Input(f) = [x1, x2, . . . , xn]

and the output stream is

Output(f) = [y1, y2, . . . , yk]

A pipeline operator f has the property:

yi = g(xh(i), b)

where, h is monotonically increasing and b is a bounded size buffered synopsis of
x1, x2, . . . , xh(i)−1. An example of a pipeline operator is the selection operation.

Blocking Operator: A blocking operator must receive all its input before generating
the output. Using the above notation for input and output, for a blocking operator we
have

[y1, y2, ...yk] = g(x1, x2, ..., xn)

An example of a blocking operator is the sort operation.
For our analysis, we introduce a special type of a blocking operator, which we refer

to as the progressive blocking operator. This is based on the observation that not all
blocking operators require buffering of the entire input before generating the output. If
the following two conditions hold true, a blocking operator is a progressive blocking
operator.

|Output(f)| � |Input(f)| (1)

g(x1, x2, ..., xn) = g1(g(x1, x2, ..., xn−1), xn) (2)

In such cases, the operator can be evaluated as follows. At each step, we only need
to buffer the temporary results and can discard the input. This is because the Equation 2
ensures that the input is no longer necessary for the later computations. Equation 1
ensures that temporary results can actually be buffered in our evaluation model. An
example of such an operator is the count operation.

384 X. Li and G. Agrawal

3.2 Problem Overview

The analysis we perform in this paper is based on the following key observation. In a
system with limited memory, a query cannot be evaluated using a single pass on the
entire data stream to obtain an exact answer if the following conditions holds true:

– A blocking operator with unbounded input is involved in the query, or
– A progressive blocking operator with unbounded input is involved and its output is

used by another pipeline or progressive blocking operator.

The first condition is straight-forward. Let us consider the second condition. When
the final output of a progressive blocking operator f1 is referred by another operator f2,
which is either a pipeline or a progressive blocking operator, f2 must wait until the com-
putation of f1 finishes. This blocks the pipeline or progressive blocking computation f2
defines. Queries that satisfy this propriety are referred to as correlated aggregates [16],
which in most cases can only be evaluated approximately with a single pass.

The dependence between blocking operators and pipeline or progressive blocking
operators that prevents a query from being evaluated in a single pass can either be
a control dependence or a data dependence. The following query, referred to as the
Query 1, is an example where data dependence between operators is involved. Here,
pixel contains two elements, x and y.

Query 1:
let $b = count(stream/pixel[x>0])
for $i in stream/pixel

return $i/x idvi $b

4 High-Level Analysis

This section describes the high-level analysis done in our system. Our goal is to cor-
rectly transform the query so that it can be processed in a single pass, when it is pos-
sible, and also to recognize when single pass analysis is not possible. Initially, we give
an overview of our overall framework.

4.1 Overview

As we had discussed in the previous section, there are two cases in which a query cannot
be processed in a single pass. The first one involves a blocking operator with unbounded
input. The second one involves a progressive blocking operator with unbounded input
whose output is used by another pipeline or progressive blocking operator. The first
case is simple to detect. Therefore, for our analysis in this section, we assume that we
only have pipelined or progressive blocking operators in our query, i.e., we do not have
a blocking operator which cannot be evaluated progressively.

Figure 4 shows the key phases in our system. First, we construct the stream data
flow graph representing the data dependence information for the query. Then, we apply
a series of high-level transformations to prune and merge the stream data flow graph.

Code Transformations for One-Pass Analysis 385

Such techniques not only simplify the later analyses, but most importantly, they can
rewrite some queries to enable single pass processing. After pruning the graph, a single
pass analysis algorithm will be applied to the resulting data flow graph to check if single
pass evaluation is possible. If the answer is no, further processing will not be performed.
Otherwise, we apply low-level transformations and our code generation algorithm, and
efficient single pass execution code is generated.

Single−Pass Analysis

Recurrsion Analysis

GNL Generation

Stream Code Generation

Data Flow Graph Construction

High−level Transformations

Low−level Transformations

Aggregation Rewrite

Horizontal Fusion

Vertical Fusion

Fig. 4. Overview of the Framework

4.2 Stream Data Flow Graph

We introduce the stream data flow graph to represent dependence information and en-
able high-level analysis and optimizations on XQuery.

Definition 1. A stream data flow graph is a directed graph in which each node repre-
sents a variable in the original query and the directed edges e = (v1, v2) implies that
v2 is dependent on v1.

We introduce nodes for the variables defined in the original query, such as those defined
in Let and For clauses, as well as for output value of a function or an XPath expression
that is not explicitly defined in the original query. We distinguish between nodes that
represent a sequence, and nodes which represent atomic values. This is because depen-
dence relationships between sequences and atomic values are of particular importance.
We represent nodes of sequence type (of unbounded length) with rectangles and nodes
of atomic type (or sequences of bounded length) with circles.

The stream data flow graph for the Query 1 described in the previous section is
shown in Figure 5. S1 is the implicit variable that represents the XPath expression
stream/pixel[x>0]. Similarly, S2 is used to represent stream/pixel. The
output of the aggregate function count() is represented by v1. Here i in the for
clause is treated as an atom variable to represent each item in the binding sequence.

Lemma 1. The stream data flow graph for a valid XQuery query is acyclic.

Proof: The proof directly follows from the single assignment feature of XQuery [7].
Assume there is a cycle, then one of the following conditions must hold true: 1) a
variable v is defined more than once, or 2) a variable v is referred to without definition.

Neither of the above are allowed in a valid XQuery query. �

386 X. Li and G. Agrawal

We distinguish between two types of dependence relationship among the nodes.

Definition 2. Given two variables v1,v2, we say that v2 is aggregate dependent on v1
if: 1) v2 is dependent on v1, and 2) v1 is a sequence variable, v2 is an atomic variable,
and moreover, v2 is not used as the iterator variable for any for expression. In such a
case, we denote v1 � v2.

Aggregate dependence typically exists between a progressive blocking operator and its
output.

Definition 3. Given two variables v1,v2, we say that v2 is flow dependent on v1 if: 1)
v2 is dependent on v1, and 2) v2 is not aggregate dependent on v1. In such a case, we
denote v1 → v2.

S1 S2

S1: Stream/pixel[x>0]

v1

 b

v1 : count()

The Original Dependence Graph

 i

S2: Stream/pixel

Fig. 5. Example of Stream Data Flow Graph

Let us reconsider the Figure 5. We have used dashed arrows to represent aggregate
dependence, and solid arrows for flow dependence.

4.3 High-Level Transformations

Let us consider a stream data flow graph. If this graph contains multiple rectangle nodes,
the corresponding query cannot be evaluated in a single pass, if we strictly follow the
original syntax and do not allow pipelined execution. This is because each rectangle
node represents a sequence that may have an infinite length, which cannot be buffered
in the main memory.

However, by applying our query transformation and graph pruning techniques, in-
cluding horizontal and vertical fusion, many queries can still be evaluated in a single
pass.

Graph Pruning with Horizontal Fusion. Consider a query that involves multiple
traversals of a data stream. If these traversals share a common prefix in their corre-
sponding XPath expressions, we can merge these traversal into one, and could enable
processing in a single pass.

As an example, we consider the following query:

Query 2:
let $b = count(stream/pixel[x>0])

return sum(stream/pixel/y) idvi $b

Code Transformations for One-Pass Analysis 387

v1 v2

The Original Dependence Graph

S1: Stream/pixel[x>0]

S2: Stream/pixel/y
v1 : count()
v2 : sum()

S1 S2

S0

v1 v2

S0: Stream/pixel
S1: [x>0]
S2: y
v1 : count()
v2 : sum()

Dependence Graph after Horizonal Fusion

S1 S2S1 S2

 b
 b

(a) (b)

Fig. 6. Example of Horizontal Fusion

The original query involves two traversals of the entire stream, and cannot be pro-
cessed directly without buffering the stream. However, since the two XPath expressions
share a common prefix stream/pixel, the computation of count and sum can be
carried out in a single traversal of stream/pixel.

To fuse multiple traversals together, we first generate a new node representing their
common prefix. Then, for each original sequence node representing the traversal, the
label will be changed to the subexpression obtained by removing the common prefix. A
new edge will be added linking this node to the new node. If the subexpression obtained
after removing the common prefix is empty, the corresponding node is deleted, and its
children have an edge from the parent node.

The stream data flow graph for the Query 2 after horizontal fusion is shown in
Figure 6. In this example, a new sequence node S0 is generated corresponding to the
common prefix /stream/pixel. The label of the two original sequence node are
changed to the remaining XPath expressions, which are [x > 0] and /y, respectively.
Each new node is linked to S0.

Sometimes horizontal fusion in a query may lead to incorrect results, because of inter-
dependence among the traversal of sequences. As an example, consider the Query 1.
The data flow graph after horizontal fusion is shown in Figure 7. When we combine the
traversal to compute count and the final output together, in each iteration, the output
will be computed using partial result of $b, which is not correct. In our method, we
just apply horizontal fusion irrespective of such inter-dependence. Later, during single
pass analysis, such dependence will be detected and the query will be eliminated from
further processing.

For nested queries with pre-defined iteration space, which are common in many sci-
entific data processing applications, horizontal fusion can be applied after unrolling.
Unrolling is a commonly used technique in traditional compilers. Consider the follow-
ing simple query:

unordered(
for $i in (1 to 2)
let $b: =//stream/pixel[x=$i]

return count($b))

By unrolling the first for expression, we can generate the following intermediate
query:

388 X. Li and G. Agrawal

unordered(
let $b1: =//stream/pixel[x=1]
let $b2: =//stream/pixel[x=2]

return count($b1), count($b2)

Since the XPath expressions generated after unrolling share the same common prefix,
horizontal fusion can be applied to all the sequence node corresponding to the different
iterations.

v1

 b

i

S0: Stream/pixel

S0

v1 : count()

 Query 1 After Horizonal Fusion

S0

S0: Stream/pixel
v1 : count()

i

v1

 b

Dependence Graph after Vertical Fusion(b)(a)

Fig. 7. Horizontal and Vertical Fusion for Query 1

Graph Pruning with Vertical Fusion. The stream data flow graph can be further
pruned using a technique called vertical fusion. Vertical fusion exploits the benefits of
the pipelined processing, which can remove unnecessary buffering and simplify the data
flow graph.

Consider the following example.

Query 3:
let $b: = for $i in stream/pixel[x>0]

return $i
for $j in $b/y

return $j
where $j = count($b)

In this query, b contains all tuples from the original stream with a positive value of the
x coordinate. In a pipelined fashion, we can further process each tuple in b as soon as it
is available without buffering the entire sequence of b, which is required for unbounded
streams.

As described in 3.2, we only need to check dependence between a progressive block-
ing operator and a pipeline operator, while dependence among pipeline operators can be
ignored. In vertical fusion, we try to merge multiple pipeline operations on each traver-
sal path into a single cluster in the stream data flow graph. The cluster obtained after
fusion is referred to as a super-node. A super-node is represented in the data flow graph
with a dashed box enclosing all the merged nodes. By doing so, the pipeline operation
and the progressive blocking operations can be separated, and the number of isolated
nodes in the data flow graph is reduced. This significantly simplifies later analysis on
their dependence relationships.

Our algorithm does a top-down traversal from each root node, following only the
flow dependence edges. For each node visited during the traversal, it will be fused
with the current super-node, if it is not already in another super-node. Note that not all

Code Transformations for One-Pass Analysis 389

sequence nodes can be merged by vertical fusion. If a sequence B is flow dependent on
both the sequence node A and the sequence node C, which normally occurs when B is
the result of a join between A and C, we will merge B with either A or C, but not both
of them.

The details of the algorithm are shown in Figure 9. R is the set of the nodes in the
graph that do not have an incoming edge. N denotes the set of nodes that have been
inserted in any super-node. N̄ denotes the compliment of N , i.e., the nodes in the graph
that are not in the set N . The algorithm picks a sequence node si. It follows the flow
dependence edges (denoted as →) to find nodes that can be fused into a super-node
with si. These nodes are put in the set M . Any node that has already been fused into a
super-node, (i.e., is not in N̄) is not inserted in M .

The data flow graph for the Query 1 after vertical fusion is shown in Figure 7(b).
The data flow graph for the Query 3 after vertical fusion is shown in Figure 8 (b).

S2: /x
S1: Stream/pixel

v: Avg()
S2: /x
S1: Stream/pixel

v: Avg()

S1

S2

 i

 j

b

 v

S1

S2

b

 i

 j

 v

(a)The Original Dependence Graph (b)Dependence Graph after Pruning

Fig. 8. Example of Vertical Fusion (Query 3)

Vertical fusion simplifies the stream data flow graph for further analysis and opti-
mization. After vertical fusion, most of the queries that can be processed in a single
pass will have only one rectangle node in their data flow graph.

4.4 Single Pass Analysis

After horizontal and vertical fusion, analyzing whether a query can be evaluated in a
single pass becomes simpler. For our discussion here, we treat all nodes in a super-
node after vertical fusion as a single sequence node. With this, any stream data flow
graph that contains more than one sequence node cannot be evaluated in a single pass.
This is because each such node represents one traversal of a sequence of length θ(N).
If two sequence nodes are not fused with vertical fusion to apply pipelined execution,
two traversals must be used. Thus, we have the following theorem.

Theorem 1. If a query Q with dependence graph G = (V, E) contains more than one
sequence node after vertical fusion, Q may not be evaluated correctly in a single pass.

However, for queries whose stream data flow graph contains only one sequence node, a
single pass evaluation may still not be possible. Two types of dependence relationship
may prevent the query from being executed in a single pass. Examples of these two
cases are shown in Figure 10.

390 X. Li and G. Agrawal

Vertical Fusion
Input: 1) data flow graph G =(V ,E)

2) root set R

N = �
foreach node si ∈ R {

if si is a sequence node
M = {si}

do {
N = N ∪ M
Let T = {v|∃x, (x ∈ M) ∧ (x → v)}
M = M ∪ (T ∩ N̄)

} until (T ∩ N̄ == �)
fuse M into super-node

}
end

Fig. 9. Algorithm for Vertical Fusion

(a)

(1...*)

(1..*)

 (b)

Fig. 10. Stream Data Flow Graphs that Require Multiple Traversals

Theorem 2. Let S be the set of atomic nodes that are aggregate dependent on any
sequence node in a stream data flow graph G. For any given two elements s1 ∈ S and
s2 ∈ S, if there is a path between s1 and s2, the query may not be evaluated correctly
in a single pass.

Proof: For each si ∈ S, si can only be computed after the sequence Vi it depends on
is fully scanned. Assume there is a path from s1 to s2, then the value of s2 must be
computed using s1. Thus, the scan of V2 must follow the scan of V2. This implies that
the query cannot be processed with a single pass. �
In addition to the condition associated with the Theorem 2, there is another condition
we need to check for.

Lemma 2. If a stream data flow graph G contains a cycle, it is formed after horizontal
or vertical fusion.

Proof: From lemma 1 there is no cycle in the original stream data flow graph. Therefore,
the cycle must be formed by either horizontal fusion or vertical fusion. �
Theorem 3. If there is a cycle in a stream data flow graph G, the corresponding query
may not be evaluated correctly using a single pass.

Code Transformations for One-Pass Analysis 391

Proof: From the lemma above, the cycle is formed after horizontal or vertical fusion.
If the cycle is formed right after horizontal fusion of s1 and s2, there must be a path
between s1 and s2, which implies dependence of s2 on s1. In this case, horizontal fusion
will generate incorrect results, and single pass evaluation is impossible.

If the cycle is formed after vertical fusion, a super-node must be involved in the
cycle. Assume the cycle is v1, v2, . . . , vk, v1, and vi is a super-node. Then, it is true that
vi+1 is aggregate dependent on the node vi, otherwise, vi+1 will be fused with vi during
vertical fusion. Thus, the value of vi+1 can only be valid after the pipelined execution
of vi is completed. Because a cycle exists, the pipelined execution of vi also requires
the value of vi+1. As a result, pipelined execution of vi is not possible, and the query
cannot be evaluated in a single pass. �
After vertical fusion, stream data flow graphs for both Query 1 and Query 3 contain
cycles, and therefore, these queries cannot be executed with a single pass.

If the conditions corresponding to any of the above three theorems hold true for
a query, we cannot further process the query using a single pass and ensure correct
results. If the original graph has n vertex, the conditions corresponding to Theorems 1,
2, and 3 can be applied in O(n), O(n2), and O(n) time, respectively.

The next theorem shows that if the conditions corresponding to the Theorems 1, 2,
and 3 all hold false, the query can be processed correctly in a single pass.

Theorem 4. If the results of a progressive blocking operator with an unbounded in-
put are referred to by a pipeline operator or a progressive blocking operator with un-
bounded input, then for the stream data flow graph G = (V, E), at least one of the
following three conditions holds true:

1. There are multiple sequence nodes.
2. There is a cycle involved.
3. ∃ sequence node s ∈ V , ∃ atomic nodes a1 ∈ V ,a2 ∈ V , a1 and a2 are aggregate

dependent on s, and there is a path from a1 to a2.

Proof: Assume that the progressive blocking operation is represented in G with a se-
quence node s and an atomic node a, such that a is aggregate dependent on s. Assume
that there is no other sequence node in G, otherwise the first condition holds true.

If the value of a is referred to by another progressive blocking operator to compute a′,
since s is the only sequence node in V , a′ must be aggregate dependent on s. Because
a′ uses the value of a, there must be a path a, v1, . . . , vk, a′, a → v1, . . . , vk → a′.
Therefore, the third condition holds true.

Now, suppose the value of a is referred by a pipeline operator. Then, there must be a
super-node in the graph, and there is a path a, v1, . . . , vk, s, such that a → v1, . . . , vk →
s. Since a is aggregate dependent on s, there will be a cycle a, v1, . . . , vk, s, a in the
graph. Then, the second condition holds true. �
Finally, it should be noted that like all static analyses, our analysis is conservative in
nature. There could be cases where a query can be processed in a single pass, but our
analysis will determine that it cannot be. We consider the following example:

392 X. Li and G. Agrawal

let $p: = stream/pixel/x
for $i in $p
where $i <= max($p)
return $i

This query has a redundant predicate [3]. Though the predicate always returns true
and does not impact the results from the query, it introduces a cycle in our graph, and
disallows processing with a single pass. Our analysis can be extended to recognize and
remove such redundant predicates, but we do not expect them to arise frequently in real
situations.

XMark Query 1
Size Ours Qizx Saxon Galax

1.16M 0.76 1.03 2.46 4.65
5.75M 2.26 3.2 5.57 24.59
30M 9.98 11.23 MO 173.85
120M 13.97 MO MO *
240M 27.59 MO MO *

XMark Query 5
Size Ours Qizx Saxon Galax

1.16M 0.74 1.09 2.46 4.93
5.75M 2.30 3.35 5.55 25.26
30M 10.02 13.9 MO 174.08

120M 13.95 MO MO *
240M 27.87 MO MO *

XMark Query 6
Size Ours Qizx Saxon Galax

1.16M 0.73 1.07 2.42 4.75
5.75M 2.26 3.21 5.39 24.96
30M 9.94 13.68 MO 215.64

120M 13.87 MO MO *
240M 27.81 MO MO *

XMark Query 7
Size Ours Qizx Saxon Galax

1.16M 0.74 1.13 2.44 6.6
5.75M 2.28 3.45 5.53 47.79
30M 9.95 13.96 MO MO

120M 13.70 MO MO MO
240M 27.44 MO MO MO

XMark Query 20
Size Ours Qizx Saxon Galax

1.16M 0.78 1.32 2.57 5.15
5.75M 2.31 3.59 5.93 26.38
30M 10.00 15.77 MO 190.22

120M 14.16 MO MO *
240M 27.81 MO MO *

Satellite Processing
Size Ours Qizx Saxon Galax

0.05M 0.28 5.88 3.08 72.03
0.10M 0.33 20.48 4.45 136.7
0.66M 0.48 945.5 18.76 944.4
10.6M 3.47 * MO MO
100M 28.31 MO MO MO

Virtual Microscope
Size Ours Qizx Saxon Galax

0.05M 0.28 47.51 2.01 18.97
0.10M 0.32 * 2.47 38.98
0.66M 0.44 * 7.66 300.18
2.70M 1.54 * 24.56 MO
10.6M 3.29 * MO MO
100M 27.88 * MO MO

Karp Frequent Item
Size Ours Qizx Saxon Galax

0.05M 0.26 * 4.71 25.09
0.10M 0.32 * 10.66 122.63
0.66M 0.61 * 554.07 MO
2.70M 1.80 * 8302.7 MO
10.6M 5.61 * MO MO
100M 29.41 * MO MO

*: Unable to produce result after 24 hours MO: Out of memory

Fig. 11. Experiments Results for XMark Queries and Real Streaming Applications (All Execu-
tion Times in Seconds)

5 Experimental Results

Our transformations have been implemented as part of a XQuery compilation system
that is based on the open source SAX parser1. In this section, we demonstrate that
many XQuery queries can be transformed to achieve single-pass execution, whereas
their naive execution results in much more expensive processing. For this purpose,
we took 8 XQuery queries, and compared our implementation with other well known

1 http://www.saxproject.org

Code Transformations for One-Pass Analysis 393

XQuery processors which are publically available. Specifically, we use Galax (Version
0.3.1) [11], Saxon (Version 8.0) [19] and Qizx/Open (Version 0.4/ p1) [1]. All these
query processors are implemented using a SAX Parser, which we believe makes the
comparison reasonable.

We used two sets of queries for our experiments. The first set comprised the queries
1, 5, 6, 7, and 20 from the XMark benchmark set [25]. These five queries were cho-
sen because each of them could be processed in a single pass either directly, or after
our transformations. We use datasets of different sizes, which were generated by the
XMark data generator using factors 0.01, 0.05, 0.25, 1, and 2, respectively. The sec-
ond set comprised three real applications which involve streaming data. Satellite data
processing was described earlier in Section 2. Virtual microscope is an application to
support interactive viewing and processing of digitized data arising from tissue spec-
imens [12]. Frequent element counting is a well known data mining problem, here
we use the one-pass algorithm by Karp et al. to find a superset of frequent items in
a data stream [18]. Each of these three applications uses recursive functions to per-
form aggregations. After applying our techniques and optimizations, including analysis
of recursive functions, aggregate rewriting, and horizontal and vertical fusion, each of
these could be processed correctly using only a single pass on the entire data stream.
We generated synthetic datasets of varying sizes to evaluate performance on these
applications.

The results of our experiments are shown in Figure 11. Our experiments were con-
ducted on a 933 MHz Pentium III workstation, with 256 MB of RAM, and running
Linux version 7.1, with JDK V1.4.0. Each of the systems we compared was executed
on this same environment. In the tables in Figure 11, Ours denotes our basic frame-
work. Because we use compiled Java byte code, the running time shown in the tables
excludes the compilation time for other XQuery systems. All available options for fast
execution and optimization are turned on for each system. Specifically, for Galax, we
disable sorting and duplicate removal on Path expressions, and set the option of projec-
tion to be on.

The results show that we consistently outperform other systems. For XMark queries
with small datasets, Qizx is often quite close, but our system is at least 25% faster.
There are at least two reasons for this. First, our static analysis based technique pro-
duced operations only on elements that are referred in the query. Second, we generate
imperative code directly, which is more efficient compared with interpreted execution
used by other engines.

For XMark queries with larger datasets, either our system was significantly faster,
or other systems had a memory overflow. It should be noted that none of the other
systems have been designed to deal with large datasets and/or streaming data. They
often require in-memory processing. For example, Saxon builds a DOM tree after re-
trieving all data in memory, and therefore, cannot process large datasets or streaming
data.

For the three real streaming applications, our implementation outperforms other sys-
tems by at least one order of magnitude, and often, much more. None of the other sys-
tems was able to execute these applications with only a single pass on the data, whereas,
our techniques and transformations enabled such execution.

394 X. Li and G. Agrawal

6 Related Work

Our work is related to the large body of research in the area of loop transformations.
Many loop transformations, such as loop fusion [27] or data-centric transformations
[21] can often help in executing a code with a single-pass or fewer passes on the input
data. However, we are not aware of any previous work on systematically transforming
and analyzing code for single pass analysis on streaming data.

Language and compiler support for streaming data has been considered by the
StreamIt effort at MIT [26]. There work also does not consider analysis and transfor-
mation to enable single-pass analysis.

There have been many research efforts on efficient evaluation of XPath expressions
over streaming data. Because of the regularity of XPath expressions, automaton based
approaches are most popular when predicates are not present [2,10,8]. To deal with
predicates and other features, such as closures where buffering of certain elements is
necessary, transducers have been used in XSQ [24] and SPEX [23].

Compared with XPath, XQuery is more expressive, and therefore, involves addi-
tional challenges. Currently, there is limited work on processing XQuery queries over
streaming data. Transducer networks have also been used to handle a subset of XQuery,
in which only join and node creation operations are investigated [22]. Without query
transformations and rewriting, their techniques will not work on streaming data when
the queries are not strictly written to execute on streaming data. In Flux [20], an inter-
mediate representation (IR) extends XQuery with new constructs for event-based pro-
cessing. XQuery is translated into this event-based IR and the buffer size is optimized
by analyzing the DTD as well as the query syntax. Fusion of for expressions has been
discussed in Flux, but algorithms to systemically perform such optimizations are not
provided. In comparison, we present systematic and powerful techniques for optimiz-
ing and transforming queries that are not specifically written for single-pass processing.
For code generation based on SAX events, we use a similar approach to enable efficient
buffering. As we stated earlier, our additional contribution in code generation is han-
dling user-defined aggregations with the use of GNLs. The BEA/XQRL processor [14]
supports pipelined processing of streams by implementing the iterator model at the ex-
pression level. However, query optimizations specially designed for XML streams are
limited in this system, and large documents cannot be processed.

Algebraic approach for deciding whether a SQL-like query can be evaluated with a
single pass on continuous streams has been proposed recently by Babu and Widom [3].
Their approach cannot handle user-defined aggregates and computations described with
binary expressions, which are both frequently used in XQuery. Unlike SQL, developing
an algebra to handle complete XQuery is hard. As an example, user defined functions
allowed as part of XQuery can be very hard to model through such an algebra, and we
are not aware of any existing effort which is able to do this.

7 Conclusions

Our work has been driven by growing popularity of the streaming data model. We have
considered the following two questions. First, how do we transform queries so that

Code Transformations for One-Pass Analysis 395

they can be correctly executed with a single pass on streaming data. Second, how do
we determine when a query, possibly after certain transformations, can be correctly
executed with only a single pass on the dataset.

We have addressed these questions in the context of XML query language, XQuery.
However, we believe our work also forms the basis for addressing these questions for
more general languages.

References

1. Qizx/open: An open source implementation of xml query in java.
http://www.xfra.net/qizxopen/.

2. Mehmet Altinel and Michael J. Franklin. Efficient Filtering of XML Documents for Selective
Dissemination of Information. In Proceedings of the 26th International Conference on Very
Large Data Bases, pages 53–64, 2000.

3. Arvind Arasu, Brian Babcock, Shivnath Babu, Jon McAlister, and Jennifer Widom. Charac-
terizing Memory Requirements for Queries over Continuous Data Streams. ACM Transac-
tions on Database Systems, 29(1):162–194, 2004.

4. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and Issues in Data
Stream Systems. In Proceedings of the 2002 ACM Symposium on Principles of Database
Systems (PODS 2002) (Invited Paper). ACM Press, June 2002.

5. D. Beech, S. Lawrence, M. Maloney, N. Mendelsohn, and H. Thompson. XML Schema part
1: Structures, W3C working draft. Available at http://www.w3.org/TR/1999/xmlschema-1,
May 1999.

6. P. Biron and A. Malhotra. XML Schema part 2: Datatypes, W3C working draft. Available at
http://www.w3.org/TR/1999/xmlschema-2, May 1999.

7. S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie, and J. Simeon.
XQuery 1.0: An XML Query Language. W3C Working Draft, available from
http://www.w3.org/TR/xquery/, November 2002.

8. C. Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Efficient Filtering of XML documents
with XPath Expressions. VLDB Journal: Very Large Data Bases, 11(4):354–379, December
2002.

9. Chialin Chang, Bongki Moon, Anurag Acharya, Carter Shock, Alan Sussman, and Joel Saltz.
Titan: A high performance remote-sensing database. In Proceedings of the 1997 Inter-
national Conference on Data Engineering, pages 375–384. IEEE Computer Society Press,
April 1997.

10. Y. Diao, P. Fischer, and M. J. Franklin. Y. Filter: Efficient and Scalable filtering of XML
Documents. In Proceedings of the 18th International Conference of Data Engineering, 2002.

11. Mary F. Fernandez, Jérôme Siméon, Byron Choi, Amélie Marian, and Gargi Sur. Imple-
menting Xquery 1.0: The Galax experience. In VLDB 2003: Proceedings of 29th Interna-
tional Conference on Very Large Data Bases, September 9–12, 2003, Berlin, Germany, pages
1077–1080, 2003.

12. R. Ferreira, B. Moon, J. Humphries, A. Sussman, J. Saltz, R. Miller, and A. Demarzo. The
Virtual Microscope. In Proceedings of the 1997 AMIA Annual Fall Symposium, pages 449–
453. American Medical Informatics Association, Hanley and Belfus, Inc., October 1997.
Also available as University of Maryland Technical Report CS-TR-3777 and UMIACS-TR-
97-35.

13. Chris Ferris and Joel Farrell. What are Web Services. Communications of the ACM (CACM),
pages 31–35, June 2003.

396 X. Li and G. Agrawal

14. Daniela Florescu, Chris Hillery, Donald Kossmann, Paul Lucas, Fabio Riccardi, Till West-
mann, Michael J. Carey, Arvind Sundararajan, and Geetika Agrawal. The BEA/XQRL
Streaming XQuery Processor. In VLDB 2003: Proceedings of 29th International Confer-
ence on Very Large Data Bases, September 9–12, 2003, Berlin, Germany, pages 997–1008,
2003.

15. Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. The Physiology of the
Grid: An Open Grid Services Architecture for Distributed Systems Integration. In Open
Grid Service Infrastructure Working Group, Global Grid Forum, June 2002.

16. Johannes Gehrke, Flip Korn, and Divesh Srivastava. On Computing Correlated Aggregates
over Continual Data Streams. In Proceedings of the 2001 ACM SIGMOD international
conference on Management of data, pages 13–24, 2001.

17. S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering Data Streams. In Pro-
ceedings of 2000 Annual IEEE Symp. on Foundations of Computer Science (FOCS), pages
359–366. ACM Press, 2000.

18. Richard M. Karp, Scott Shenker, and Christos H. Papadimitriou. A simple algorithm for
finding frequent elements in streams and bags. ACM Trans. Database Syst., 28(1):51–55,
2003.

19. Michael H. Kay. Saxon: The xslt and xquery processor. http://saxon.sourceforge.net/.
20. C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier. Schema-based Scheduling of

Event Processors and Buffer Minimization for Queries on Structured Data Streams. In Pro-
ceedings of the 30th International Conference on Very Large Data Bases, 2004.

21. Induprakas Kodukula, Nawaaz Ahmed, and Keshav Pingali. Data-centric multi-level block-
ing. In Proceedings of the SIGPLAN ’97 Conference on Programming Language Design and
Implementation, pages 346–357, June 1997.

22. B. Ludascher, P. Mukhopadhayn, and Y. Papakonstantinou. A Transducer-Based XML Query
Processor. In Proceedings of the 28th International Conference on Very Large Data Bases,
2002.

23. D. Olteanu, T. Kiesling, and F. Bry. An Evaluation of Regular Path Expressions with Quali-
fiers against XML Streams. In Proceedings of ICDE 2003, Psoter Session, 2003.

24. Feng Peng and Sudarshan S. Chawathe. XPath Queries on Streaming Data. In Proceedings
of the 2003 ACM SIGMOD international conference on on Management of data, pages 431–
442, 2003.

25. A. R. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and R.Busse. Xmark: A
benchmark for xml data management. In Proceedings of the 28th International Conference
on Very Large Data Bases (VLDB), pages 974–985, 2002.

26. William Thies, Michal Karczmarek, and Saman Amarasinghe. StreamIt: A Language for
Streaming Applications. In Proceedings of Conference on Compiler Construction (CC),
April 2002.

27. Michael Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley,
1995.

Scalable Array SSA and Array Data Flow
Analysis�

Silvius Rus, Guobin He, and Lawrence Rauchwerger

Parasol Lab, Department of Computer Science, Texas A&M University
{silviusr,guobinh,rwerger}@cs.tamu.edu

Abstract. Static Single Assignment (SSA) has become the intermedi-
ate program representation of choice in most modern compilers because
it enables efficient data flow analysis of scalars and thus leads to better
scalar optimizations. Unfortunately not much progress has been achieved
in applying the same techniques to array data flow analysis, a very im-
portant and potentially powerful technology. In this paper we propose
to improve the applicability of previous efforts in array SSA through the
use of a symbolic memory access descriptor that can aggregate the ac-
cesses to the elements of an array over large, interprocedural program
contexts. We then show the power of our new representation by using it
to implement a basic data flow algorithm, reaching definitions. Finally we
apply this analysis to array constant propagation and show performance
improvement (speedups) for benchmark codes.

1 Introduction

Important compiler optimization or enabling transformations such as constant
propagation, loop invariant motion, expansion/privatization depend on the
power of data flow analysis. The Static Single Assignment (SSA) [9] program
representation has been widely used to explicitly represent the flow between
definitions and uses in a program.

SSA relies on assigning each definition a unique name and ensuring that any
use may be reached by a single definition. The corresponding unique name ap-
pears at the use site and offers a direct link from the use to its corresponding and
unique definition. When multiple control flow edges carrying different definitions
meet before a use, a special φ node is inserted at the merge point. Merge nodes
are the only statements allowed to be reached directly by multiple definitions.

Classic SSA is limited to scalar variables and ignores control dependence rela-
tions. Gated SSA [1] introduced control dependence information in the φ nodes.
This helps selecting, for a conditional use, its precise definition point when the
condition of the definition is implied by that of the use [26]. The first exten-
sions to array variables ignored array indices and treated each array definition
as possibly killing all previous definitions. This approach was very limited in

� This research supported in part by NSF Grants EIA-0103742, ACR-0081510, ACR-
0113971, CCR-0113974, ACI-0326350, and by the DOE.

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 397–412, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

398 S. Rus, G. He, and L. Rauchwerger

x = 5
x = 7
. . . = x

(a)

x1 = 5
x2 = 7
. . . = x2

(b)

A(3) = 5
A(4) = 7
. . . = A(3)

(c)

A1(3) = 5
A2(4) = 7
. . . = A2(3)

(d)

Fig. 1. (a) Scalar code, (b) scalar SSA form, (c) array code and (d) improper use of
scalar SSA form for arrays

functionality. Array SSA was proposed by [15,23] to match definitions and uses
of partial array regions. However, their approach of representing data flow rela-
tions between individual array elements makes it difficult to complete the data
flow analysis at compile time and requires potentially high overhead run-time
evaluation.

We propose an Array SSA representation of the program that accurately
represents the use-def relations between array regions and accounts for control
dependence relations. We use the USR symbolic representation of array regions
previously introduced as RT LMAD [22] which can represent uniformly and sym-
bolically memory location sets. We present a reaching definition algorithm based
on Array SSA that distinguishes between array subregions and is control accu-
rate. The algorithm is used to implement array constant propagation, for which
we present whole application improvement. Although the Array SSA form that
we present in this paper only applies to structured programs without recursive
calls, it can be generalized to any programs with an acyclic Control Dependence
Graph (except for self-loops).

2 Region Array SSA Form

Static Single Assignment (SSA) is a program representation that presents the
flow of values explicitly. In Fig. 1(a), it is not clear to the compiler which of the
two values, 5 or 7, will be used in the last statement because they are represented
by the same name, x. By numbering each static definition and matching them
with the corresponding uses, the use-def chains become explicit. In Fig. 1(b) it
is clear that the value used is x2 (7) and not x1 (5).

Unfortunately, such a simple construction cannot be built for arrays the same
way as for scalars. Fig. 1(d) shows a failed attempt to apply the same reasoning
to the code in Fig. 1(c). Based on SSA numbers, we would draw the conclusion
that the value used in the last statement is that defined by A2, which would be
wrong. The fundamental reason why we cannot extend scalar SSA form to arrays
directly is that an array definition generally does not kill all previous definitions
to the same array variable, unlike in the case of scalar variables. In Fig. 1(c),
the second definition does not kill the first one. In order to represent the flow
of values stored in arrays, the SSA representation must account for individual
array elements rather than treating the whole array as a scalar.

Element-wise Array SSA was proposed as a solution by [23]. Essentially, for
every array there is a corresponding @ array, which stores, at every program

Scalable Array SSA and Array Data Flow Analysis 399

Do i =1,3
A1 (i)=0

Enddo
Do i =1,3

A2 (i +3)=1
EndDo
@A3 = MAX(@A1, @A2)

(a)

Element−wise Array SSA:
@A3 = [(A1, 1), (A1, 2), (A1, 3), (A2, 1), (A2, 2), (A2, 3)]

S imp l i f i e d ve r s i on (no i t e r a t i o n ve c to r s) :
@A3 = [A1, A1, A1, A2, A2, A2]

Proposed : aggregated array r e g i on s
A3 ← A1 = [1 : 3]
A3 ← A2 = [4 : 6]

(b)

Fig. 2. Illustration of our proposed Array data flow representation based on array
regions. (a) Sample code in the Array SSA form proposed by [15] (not all gates shown for
simplicity). (b) Data flow relations: (top) element wise, with operation level accuracy
as proposed by [15], (center) element wise, with reduced accuracy and (bottom) as
proposed by us: region wise, using aggregated array regions.

point and for every array element, the location of the corresponding reaching
definition under the form of an iteration vector. The computation of @ ar-
rays consists of lexicografic MAX operations on iteration vectors, because they
must contain the reaching definition, or in other words the last (lexicografically
maximum) definition before a given point in the program. Although there are
methods to reduce the number of MAX operation for certain cases, in general
they cannot be eliminated. This led to limited applicability for compile-time
analysis and potentially high overhead for derived run-time analysis, because
the MAX operation must be performed for each element.

We propose a new Region Array SSA representation. Rather than storing the
exact iteration vector of the reaching definition for each array location, we just
store the SSA name of the reaching definition. Although our representation is not
as precise as [23], it did not affect the effectiveness of our associated optimization
techniques. This simplification allowed us to employ a different representation
of @ arrays as aggregated array regions. Fig. 2 depicts the relation between
element-wise Array SSA and our Region Array SSA. Rather than storing for
each array element its reaching definition, we store, for each use-def relation
such as A3 ← A1, the array region on which values defined at A1 reach A3.

We use the USR [22] representation for array regions, which can represent
uniformly arbitrarily complex regions. Our resulting Region Array SSA repre-
sentation has an important advantage over [15]: We can analyze many complex
patterns using symbolic array region analysis (essentially symbolic set opera-
tions), whereas the previous Array SSA representation often fails to compute
element-wise MAX operations symbolically because it lacks a symbolic aggre-
gated representation.

We will now present the USR representation for array regions, describe the
structure of Region Array SSA, and then illustrate its use in an algorithm that
computes reaching definitions for arrays.

400 S. Rus, G. He, and L. Rauchwerger

1 Do i = 1 , 10
2 A(i) = 0
3 EndDo
4 Do i = 1 , 5
5 . . . = A(i)
6 EndDo

.

1 Do i = 1 , 10
2 I f (C(i)>0)
3 A(i) = 0
4 EndIf
5 EndDo
6 Do i = 1 , 5
7 I f (C(i)>0)
8 . . . = A(i)
9 EndIf

10 EndDo

1 Do i = 1 , 10
2 I f (C(i)>0)
3 A(i) = 0
4 EndIf
5 EndDo
6 Do i = 1 , 5
7 . . . = A(i)
8 EndDo

.

1:10 1:5

Definition Use
xU

i=1,10#

{i} C(i)>0

xU

i=1,5#

{i} C(i)>0

Definition Use

xU

i=1,10#

{i} C(i)>0

1:5

Definition Use

(a) (b) (c)

Fig. 3. Constant propagation scenarios: (a) symbolically comparable linear reference
pattern, (b) symbolically comparable nonlinear reference pattern and (c) nonlinear
reference pattern that require a run time test

2.1 Array Region Representation: The USR

In the example in Fig. 3(a), we can safely propagate constant value 0 from the
definition at site 2 to the use at site 5 because the array region used, [1:5], is
included in the array region defined above, [1:10]. In the example in Fig. 3(b), we
could not represent the array regions as intervals because the memory references
are guarded by an array of conditionals. However, we can represent the array
regions as expressions on intervals, in which the operators represent predication
and union⊗∪ across an iteration space. This symbolic representation allows us
to compare the defined and used regions even though their shapes are not linear.
In the example in Fig. 3(c), a static decision cannot be made. The needed values
of the predicate array C(:) may only be known at run time. We can still perform
constant propagation on array A optimistically and validate the transformation
dynamically, in the presence of the actual values of the predicate array. Although
the profitability of such a transformation in this particular example is debatable
due to the possibly high cost of checking the values of C(:) at run time, in many
cases such costs can be reduced by partial aggregation and amortized through
hoisting and memoization.

The Uniform Set of References (USR) previously introduced in [22] formal-
izes the expressions on intervals shown in Fig. 3. It is a general, symbolic and
analytical representation for memory reference sets in a program. It can repre-
sent the aggregation of scalar and array memory references at any hierarchical
level (on the loop and subprogram call graph) in a program. It can represent
the control flow (predicates), inter-procedural issues (call sites, array reshap-
ing, type overlaps) and recurrences. The simplest form of a USR is the Linear
Memory Access Descriptor (LMAD) [19], a symbolic representation of memory

Scalable Array SSA and Array Data Flow Analysis 401

Σ = {∩, ∪, −, (,), #, ⊗∪, ⊗∩, ��,
LMADs, Gate,Recurrence, CallSite}

N = {USR}, S = USR
P = {USR → LMADs|(USR)

USR → USR ∩ USR
USR → USR ∪ USR
USR → USR − USR
USR → Gate#USR
USR → ⊗∪

RecurrenceUSR
USR → ⊗∩

RecurrenceUSR
USR → USR �� CallSite}

Fig. 4. USR formal definition. ∩, ∪, − are elementary set operations: intersection,
union, difference. Gate#USR represents reference set USR predicated by condition
Gate. ⊗∪

i=1,nUSR(i) represents the union of reference sets USR(i) across the itera-
tion space i = 1 : n. In this paper we also use the equivalent set algebra notation⋃n

i=1 USR(i). USR(formals) �� Call Site represents the image of the generic refer-
ence set USR(formals) instantiated at a particular call site.

reference sets accessed through linear index functions. It may have multiple di-
mensions, and all its components may be symbolic expressions. Throughout this
paper we will use the simpler interval notation for unit-stride single dimensional
LMADs. For the loop in Fig. 3(a), the array subregion defined by the first loop
can be represented as an LMAD, [1:10], and the array subregion used in the
second loop can also be represented as another LMAD, [1:5].

The USR is stored as an abstract syntax tree with respect to the language
presented in Fig. 4 and can be thought of as symbolic expressions on sets of
memory locations. When memory references are expressed as linear functions,
USRs consist of a single leaf, i.e., a list of LMADs. When the analysis process
encounters a nonlinear reference pattern or when it performs an operation (such
as set difference) whose result cannot be represented as a list of LMADs, we add
internal nodes that record accurately the operations that could not be performed.

2.2 Array SSA Definition and Construction

Region Array SSA Nodes
In scalar SSA, pseudo statements φ are inserted at control flow merge points.
These pseudo statements show which scalar definitions are combined. [1] refines
the SSA pseudo statements in three categories, depending on the type of merge
point: γ for merging two forward control flow edges, μ for merging a loop-back arc
with the incoming edge at the loop header, and η to account for the possibility
of zero-trip loops. The array SSA form proposed in [23] presents the need for
additional φ nodes after each assignment that does not kill the whole array.
These extensions, while necessary, are not sufficient to represent array data flow
efficiently because they do not represent array indices.

In order to provide a useful form of Array SSA, it is necessary to incorporate
array region information into the representation. Region Array SSA gates differ

402 S. Rus, G. He, and L. Rauchwerger

1 A(1)=0
2 I f (x > 0)
3 A(2)=1
4 EndIf

5 Do i = 3 , 10
6 A(i)=3
7 · · ·=A(· · ·)
8 A(i +8)=4
9 EndDo

10 · · ·=A(1)
11 · · ·=A(5)
12 I f (x > 0)
13 · · ·=A(2)
14 EndIf

(a)

A0 : [A0, ∅] = Undefined
1 A1 : A1 (1)=0

A2 : [A2, {1}] = δ(A0, [A1, {1}])
2 I f (x>0)

A3 : [A3, ∅] = π([A2, (x > 0)])
3 A4 : A4[2] = 0

A5 : [A5, {2}] = δ(A3, [A4, {2}])
4 EndIf

A6 : [A6, {1} ∪ (x > 0)#{2}] =
γ(A0, [A2, {1}], [A5, (x > 0)#{2})

5 Do i = 3 , 10
A7 : [A7, [3 : i + 2] ∪ [11 : i + 8]] =

μ(A6, (i = 3, 10), [A9, [3 : i − 1]], [A11, [11 : i + 7]])
6 A8 : A8(i) = 1

A9 : [A9, {i}] = δ(A7, [A8, {i}])
7 · · ·=A9 (· · ·)
8 A10 : A10(i + 8) = 1

A11 : [A11, {i, i + 8}] = δ(A7, [A9, {i}], [A10, {i + 8}])
9 EndDo

A12 : [A12, {1} ∪ (x > 0)#{2} ∪ [3 : 18]] =
η(A0, [A6, {1} ∪ (x > 0)#{2}], [A7, [3 : 18]]

10 · · ·=A12 (1)
11 · · ·=A12 (5)
12 I f (x>0)

A13 : [A13, ∅] = π(A12, (x > 0))
13 · · ·=A13 (2)
14 Endif

(b)

Fig. 5. (a) Sample code and (b) Array SSA form

from those in scalar SSA in that they represent, at each merge point, the array
subregion (as a USR) corresponding to every φ function argument.

[An, �n] = φ(A0, [A1, �n
1], [A2, �n

2], . . . , [Am, �n
m]) (1)

where �n =
m⋃

k=1

�n
k and �n

i ∩ �n
j = ∅, ∀ 1 ≤ i, j ≤ m, i �= j (2)

Equation 1 shows the general form of a φ node in Region Array SSA. !n
k is

the array region (as USR) that carries values from definition Ak to the site of
the φ node. Since !n

k are mutually disjoint, they provide a basic way to find the
definition site for the values stored within a specific array region at a particular
program context. Given a set !Use(An) of memory locations read right after An,
equation 1 tells us that !Use(An)∩!n

k was defined by Ak. The free term A0 is used
to report locations undefined within the program block that contains the φ node.
Let us note that two array regions can be disjoint because they represent different
locations but also because they are controlled by contradictory predicates.

Essentially, our φ nodes translate basic data flow relations to USR compar-
isons. These USR comparisons can be performed symbolically at compile time
in many practical cases.

Our node placement scheme is essentially the same as in [23]. In addition to φ
nodes at control flow merge points, we add a φ node after each array definition.
These new nodes are named δ. They merge the effect of the immediately previous
definition with that of all other previous definitions. Each node corresponds to a

Scalable Array SSA and Array Data Flow Analysis 403

structured block of code. In the example in Fig. 5, A2 corresponds to statement 1,
A6 to statements 1 to 4, A11 to statements 6 to 8, and A12 to statements 1 to 9.
In general, a δ node corresponds to the maximal structured block that ends with
the previous statement.

Accounting for Partial Kills: δ Nodes
In the example in Fig. 5, the array use A(1) at statement 10 could only have
been defined at statement 1. Between statement 1 and statement 10 there are
two blocks, an If and a Do. We would like to have a mechanism that could quickly
tell us not to search for a reaching definition in any of those blocks. We need
SSA nodes that can summarize the array definitions in these two blocks. Such
summary nodes could tell us that the range of locations defined from statement
2 to statement 9 does not include A(1).

The function of a δ node is to aggregate the effect of disjoint structured blocks
of code. 1 Fig. 6(a) shows the way we build δ gates for straight line code. Since
the USR representation contains built-in predication, expansion by a recurrence
space and translation across subprogram boundaries, the δ functions become a
powerful mechanism for computing accurate use-def relations.

Returning to our example, the reaching definition of the use at line 10 can
be found by following the use-def chain {A12, A6, A2, A1}. A use of A12(20) is
found undefined using a single USR intersection, by following trace {A12, A0}.
Definitions in Loops: μ Nodes
The semantics of μ for Array SSA is different than those for scalar SSA. Any
scalar assignment kills all previous ones (from a different statement or previous
iteration). In Array SSA, different locations in an array may be defined by various
statements in various iterations, and still be visible at the end of the loop. In
the code in Fig. 5(a), Array A is used at statement 7 in a loop. In case we are
only interested in its reaching definitions from within the same iteration of the
loop (as is the case in array privatization), we can apply the same reasoning as
above, and use the δ gates in the loop body. However, if we are interested in all
the reaching definitions from previous iterations as well as from before the loop,
we need additional information. The μ node serves this purpose.

[An,!n] = μ(A0, (i = 1, p), [A1,!n
1], . . . , [Am,!n

m]) (3)

The arguments in the μ statement at each loop header are all the δ definitions
within the loop that are at the immediately inner block nesting level (Fig. 6(c)),
and in the order in which they appear in the loop body. Sets !n

k are functions of
the loop index i. They represent the sets of memory locations defined in some
iteration j < i by definition Ak and not killed before reaching the beginning
of iteration i. For any array element defined by Ak in some iteration j < i, in
order to reach iteration i, it must not be killed by other definitions to the same

1 A δ function at the end of a Do block is written as η, and at the end of an If block
as γ to preserve the syntax of the conventional GSA form. A δ function after a
subroutine call is marked as θ, and summarizes the effect of the subroutine call on
the array.

404 S. Rus, G. He, and L. Rauchwerger

element. There are two kinds of definitions that will kill it: definitions (Kills)
that will kill it within the same iteration j and definitions (Killa) that will kill
it at iterations from j + 1 to i− 1.

�n
k (i) =

i−1⋃
j=1

⎡⎣�k(j) −
⎛⎝Kills(j) ∪

i−1⋃
l=j+1

Killa(l)

⎞⎠⎤⎦ (4)

where Kills =
m⋃

h=k+1

�h, and Killa =
m⋃

h=1

�h

This representation gives us powerful closed forms for array region definitions
across the loop. We avoid fixed point iteration methods by hiding the complexity
of computing closed forms in USR operations. The USR simplification process
will attempt to reduce these expressions to LMADs. However, even when that is
not possible, the USR can be used in compile-time symbolic comparisons(as in
Fig. 3(b)), or to generate efficient run-time assertions (as in Fig. 3(c)) that can
be used for run-time optimization and speculative execution.

The reaching definition for the array use A12(5) at statement 11 (Fig. 5(b)) is
found inside the loop using δ gates. We use the μ gate to narrow down the block
that defined A(5). We intersect the use region {5} with !7

9(i = 11) = [3 : 10],
and !7

11(i = 11) = [11 : 18]. We substituted i ← 11, because the use happens
after the last iteration. The use-def chain is {A12, A7, A9}.
Representation of Control: π Nodes
Array element A13(2) is conditionally used at statement 13. Based on its range,
it could have been defined only by statement 3. In order to prove that it was
defined at statement 3, we need to have a way to associate the predicate of the
use with the predicate of the definition. We create fake definition nodes π to
guard the entry to control dependence regions associated with Then and Else
branches: [An, ∅] = π(A0, cond). This type of gate does not have a correspondent
in classic scalar SSA, but in the Program Dependence Web [1]. Their advantage
is that they lead to more accurate use-def chains. Their disadvantage is that
they create a new SSA name in a context that may contain no array definitions.
Such a fake definition A13 placed between statement 12 and 13 will force the
reaching definition search to collect the conditional x > 1 on its way to the
possible reaching definition at line 2. This conditional is crucial when the search
reaches the γ statement that defines A6, which contains the same condition. The
use-def chain is {A13, A12, A6, A5, A4}.
Array SSA Construction
Fig. 6 presents the way we create δ, η, γ, μ, and π gates for various program
constructs. The associated array regions are built in a bottom-up traversal of
the Control Dependence Graph intraprocedurally, and the Call Graph interpro-
cedurally. At each block level (loop body, then branch, else branch, subprogram
body), we process sub-blocks in program order.

Scalable Array SSA and Array Data Flow Analysis 405

1 A(R1) = . . .
2 A(R2) = . . .
n A(Rn) = . . .

(a) Straight line code.

[A0, ∅] = Undefined
A1(R1) = . . .
[A2, R1] = δ(A0, [A1, R1])
A3(R2) = . . .
[A4, R1 ∪ R2] = δ(A0, [A2, R1 − R2], [A3, R2])
A2n−1(Rn) = . . .
[A2n,

⋃n
i=1 Ri] =

δ(A0, [A2n−2,
⋃n−1

i=1 Ri − Rn], [A2n−1, Rn])

1 A(Rx) = . . .
2 I f (cond)
3 A(Ry) = . . .
4 EndIf

(b) If block.

[A0, ∅] = Undefined
A1(Rx) = . . .
[A2, Rx] = δ(A0, [A1, Rx])
I f (cond)
[A3, ∅] = π(A2, cond)
A4(Ry) = . . .
[A5, Ry] = δ(A3, [A4, Ry])

EndIf
[A6, Rx ∪ cond#Ry] =

γ(A0, [A2, Rx − cond#Ry], [A5, cond#Ry])

1 Do i =1,n
2 A(Rx(i)) = . . .
3 A(Ry(i)) = . . .
4 EndDo

(c) Do block. �5
k(i) = defini-

tions from Ak not killed upon
entry to iteration i (Equa-
tion 4).

[A0, ∅] = Undefined
Do i =1,n
[A5,�5

2(i) ∪ �5
4(i)] =

μ(A0, (i = 1, n), [A2,�5
2(i)], [A4,�5

4(i)])
A1(Rx(i)) = . . .
[A2, Rx(i)] = δ(A5, [A1, Rx])
A3(Ry(i)) = . . .
[A4, Rx(i) ∪ Ry(i)] =

δ(A5, [A2, Rx(i) − Ry(i)], [A3, Ry(i)])
EndDo
[A6,

⋃n
i=1 �5

2(i) ∪ �5
4(i)] =

η([A0, ∅], [A5,
⋃n

i=1 �5
2(i) ∪ �5

4(i)])

Fig. 6. Region Array SSA transformation: original code on the left, Region Array SSA
code on the right

2.3 Reaching Definitions

Finding the reaching definitions for a given use is required to implement a num-
ber of optimizations: constant propagation, array privatization etc. We present
here a general algorithm based on Array SSA that finds, for a given SSA name
and array region, all the reaching definitions and the corresponding subregions.
These subregions can then be used to implement particular optimizations such as
constant propagation. Any such optimization can be performed either at com-
pile time, when associated USR comparison can be solved symbolically, or at
run-time, when USR comparisons depend on input values.

For each array use !Use(Au) of an SSA name Au, and for a given block, we
want to compute its reaching definition set, {[A1,!RD

1], [A2,!RD
2], . . . , [An,!RD

n],
[⊥,!RD

0]}, in which !RD
k specifies the region of this use defined by Ak and not

killed by any other definition before it reaches Au. !RD
0 is the region undefined

within the given block. Restricting the search to different blocks produces dif-
ferent reaching definition sets. For instance, for a use within a loop, we may be
interested in reaching definitions from the same iteration of the loop (block =
loop body) as is the case in array privatization. We can also be interested in

406 S. Rus, G. He, and L. Rauchwerger

Algorithm Search (Au , �use , GivenBlock)
I f Au �∈ GivenBlock or �use = ∅ Then Return
Switch definition site(Au)
Case original statement :

�RD
u = �u ∩ �use

Case δ , γ , η , θ : [Au,�u] = φ(A0, [A1,�u
1], . . .)

ForEach [Ak,�u
k]

Call Search (Ak , �use ∩ �u
k , GivenBlock)

Call Search (A0 , �use − �n , GivenBlock)
Case μ : [Au,�u(i)] = μ(A0, (i = 1, p), [A1,�u

1 (i)], . . .)
ForEach [Ak,�u

k (i)]
Call Search (Ak , �use(i) ∩ �u

k(i) , Block(Ak))
Call Search (A0 ,⊗∪

i=1,p(�use(i) − �u(i)) ,GivenBlock)
Case π(A0, cond)

Call Search (A0 , cond#�use , GivenBlock)
EndIf

Fig. 7. Recursive algorithm to find reaching definitions. Au is an SSA name and �use

is an array region. Array regions � are represented as USRs. They are built using USR
operations such as ∩, −, #, ⊗∪.

Sub s so r
. . .
Call j a c ld (A)
Call b l t s (A)
. . .
End
.

Sub j a c l d (A)
Do i =1, n , 1
A(1 , i)=0

EndDo
End

.

Sub b l t s (A)
Do i =1, n , 1
Do m=1, 5 , 1
V(1 , i)=V(1 , i)+A(m, i)∗V(1+m, i)

EndDo
EndDo
End

Fig. 8. Example from benchmark code Applu (SPEC)

definitions from all previous iterations of the loop (block = whole loop) or for a
whole subroutine (block = routine body). Fig. 7 presents the algorithm for com-
puting reaching definitions. The algorithm is invoked as Search(Au, !Use(Au),
GivenBlock). !use is the region whose definition sites we are searching for, Au is
the SSA name of array A at the point at which it is used, and GivenBlock is the
block that the search is restricted to. The set of memory locations containing
undefined data is computed as: !use −

⋃n
i=1 !RD

i .
In case the SSA name given as input corresponds to an original statement,

the reaching definition set is computed directly by intersecting the region of the
definition with the region of the use. If the definition is a δ, γ, η, θ, we perform
two operations. First, we find the reaching definitions corresponding to each
argument of the φ function. Second, we continue the search outside the current
block for the region containing undefined values. As shown, the algorithm would
make repeated calls with the same arguments to search for undefined memory
locations. The actual implementation avoids repetitious work, but we omitted
the details here for clarity.

When Au is inside a loop within the given block, the search will eventually
reach the μ node at the loop header. At this point, we first compare !use to the
arguments of the μ function to find reaching definition from previous iterations of
the loop. Second, we continue the search before the loop for the region undefined
within the loop. When the definition site of Au is a π node, we simply predicate

Scalable Array SSA and Array Data Flow Analysis 407

!use and continue the search. The search paths presented in Section 2.2 were
obtained using this algorithm.

3 Application: Array Constant Propagation

3.1 Array Constant Collection

We present an Array Constant Propagation optimization technique based on
our Array SSA form. Often programmers encode constants in array variables to
set invariant or initial arguments to an algorithm. Analogous to scalar constant
propagation, if these constants get propagated, the code may be simplified which
may result in (1) speedup or (2) simplification of control and data flow which
enable other optimizing transformations, such as dependence analysis.

We define a constant region as the array subregion that contains constant
values at a particular use point. We define array constants are either (1) integer
constants, (2) literal floating point constants, or (3) an expression f(v) which is
assigned to an array variable in a loop nest. We name this last class of constants
expression constants. They are parameterized by the iteration vector of their
definition loop nest. Presently, our framework can only propagate expression
constants when (1) their definition indexing formula is a linear combination of
the iteration vector described by a nonsingular matrix with constant terms and
(2) they are used in another loop nest based on linear subscripts (similar to [28]).

In Array SSA, the reaching definitions of an array use can be computed by
calling algorithm Search (Fig. 7). Based on reaching definition set of the use, the
constant regions can be computed by simply uniting the regions of the reaching
definitions corresponding to assignments of the same constant. To do interpro-
cedural constant propagation, we (1) propagate constant regions into routines
at call sites, and (2) compute constant regions for routines and propagate them
out at call sites. We iterate over the call graph until there are no changes.

We define a value tuple [!, V al] as the array subregion ! where each element
stores a copy of V al. ! is expressed as a USR and V al is an array constant. A
value set is a set of value tuples. We define the following operations on value
sets. Filter (Equation 5) restricts the value tuple subregions to a given array
region. Intersection (Equation 6) and union (Equation 7) intersect and unite,
respectively, subregions across tuples with the same value.

Filter(V S, R) =
⋃

V Ti∈V S

[!(V Ti) ∩R, V al(V Ti)] (5)

V S1 ∩ V S2 = {V T | ∃ V Ti ∈ V S1, V Tj ∈ V S2, s.t. (6)
V al(V T) = V al(V Ti) = V al(V Tj) and !(V T) = !(V Ti) ∩ !(V Tj)}

V S1 ∪ V S2 = {V T | ∃ V Ti ∈ V S1, V Tj ∈ V S2, s.t. (7)
V al(V T) = V al(V Ti) = V al(V Tj) and !(V T) = !(V Ti) ∪ !(V Tj)}

Fig. 9 shows the algorithm that collects array constants reaching the definition
point of SSA name Ak. The algorithm collects constants either directly from the

408 S. Rus, G. He, and L. Rauchwerger

Algorithm Collect(An) → V S(An)
VS(An)=∅
Switch (DefinitionSite(An))
Case assignment statement : // An(index) = value

V S(An) = [{index}, value]
Case μ or δ gate : //[An,�n] = φ(Abefore, . . . , [A1,�n

1], . . . , [Am,�n
m])

V S(An) =
⋃n

k=1 Filter(Collect(Ak),�n
k)

I f (DefinitionSite(An) = μ(i = 1, p) gate) Then
VS(An)=

⋃p
i=1 V S(An)(i)

EndIf
EndSwitch
Return VS(An)

End

Fig. 9. Array Constant Collection Algorithm

right hand side of assignment statements, or by merging constant value sets
corresponding to δ arguments. For loops, constant value sets collected within
an iteration are expanded across the whole iteration space. In order to collect
all the constants from a routine (needed for interprocedural propagation), we
invoke this algorithm with the last SSA name in the routine and its body.

3.2 Propagating and Substituting Constants

A subroutine may have multiple value sets for an array at its entry. Suppose
these value sets are V S1, · · · , V Sm, then V S1 ∩ · · · ∩ V Sm is the incoming
value set for the whole subroutine. The incoming value set can be increased
by subroutine cloning. Let us assume that for an array use Au, its reaching
definitions are {[A0,!0], [A1,!1], [A2,!2], . . . [An,!n]}. Its value sets for this
use are Filter(V S(Ai),!i), where V S(A0) is the incoming value set for Au’s
subroutine. In general, V S(Au) =

⋃n
i=0 Filter(V S(Ai),!i).

The whole program is traversed in topological order of its call graph. Within a
subroutine, statements are visited in lexicographic order. We compute the value
set for each use encountered. Interprocedural translation of constant regions and
expression constants is performed at routine boundaries as needed. For exam-
ple, in Fig 8, during the first traversal of the program, the outcoming set of
subroutine jacld is collected and translated into subroutine ssor at call site call
jacld. In the next traversal, the value set of A at callsite call blts is computed
and translated into the incoming value set of subroutine blts.

When multiple value sets reach a single small loop, we unroll the loop com-
pletely if possible, to permit propagation of the various different constants corre-
sponding to the value sets. Constant propagation is followed by aggressive dead
code elimination based on simplified control and data dependences.

4 Implementation and Experimental Results

We implemented (1) Array SSA construction, (2) the reaching definition al-
gorithm and (3) array constant collection in the Polaris research compiler [2].

Scalable Array SSA and Array Data Flow Analysis 409

Table 1. Constant propagation results. (a) Experimental setup and (b) Speedup.

Machine Processor Speed
Intel PC Pentium 4 2.8 GHz
HP9000/R390 PA-8200 200 MHz
SGI Origin 3800 MIPS R14000 500 MHz
IBM Regatta P690 PowerR4 1.3 GHz

(a)

Program Intel HP IBM SGI
QCD2 14.0% 17.4% 12.8% 15.5%
173.applu 20.0% 4.6% 16.4% 10.5%
048.ora 1.5% 22.8% 11.9% 20.6%
107.mgrid 12.5% 8.9% 6.4% 12.8%

(b)

Propagation was done by hand. We applied constant propagation to four bench-
mark codes 173.applu, 048.ora, 107.mgrid (from SPEC) and QCD2 (from PER-
FECT). The speedups were measured on four different machines (Table 1). The
codes were compiled using the native compiler of each machine at O3 optimiza-
tion level (O4 on the Regatta). 107.mgrid and QCD2 were compiled with O2 on
SGI because the codes compiled with O3 did not validate).

In subroutine OBSERV in QCD2, which takes around 22% execution time, the
whole array epsilo is initialized with 0 and then six of its elements are reassigned
with 1 and -1. The array is used in loop nest OBSERV do2, where much of the
loop body is executed only when epsilo takes value 1 or -1. Moreover, the values
of epsilo are used in computation in the innermost loop body. From the value
set, we discover that the use is all defined with constant 0, 1 and -1. We unrolled
the loop OBSERV do2, substituted the array elements with their corresponding
values, eliminated If branches and dead assignments and removed more than
30% of the floating-point multiplications. Additionally, array ptr is used in loops
HIT do1 and HIT do2 after it is initialized with constants in a DATA statement.
In subroutine SYSLOP, called from within these two loops, the iteration count
of a While loop is determined by the values in ptr. After propagation, the loop
we can fully unroll the loop and eliminate several If branches.

In 173.applu, a portion of arrays a, b, c, d is assigned with constant 0.0 in
loop JACLD do1 and JACU do1. These arrays are only used in BLTS do1 and
BUTS do1 (Fig. 8), which account for 40% of the execution time. We find that
the uses in BLTS do1 and BUTS do1 are defined as constant 0.0 in JACLD do1
and JACU do1. Loops BLTS do111* and BUTS do111* are unrolled. After un-
rolling and substitution, 35% of the multiplications are eliminated.

In 048.ora, array i1 is initialized with value 6 and then some of its elements
are reassigned with constant -2 and -4 before it is used in subroutine ABC, which
takes 95% of the execution time. The subroutine body is a While loop, which is
unrolled after propagating i1. Array a1 is used in ABC after a portion of it is
assigned with floating-point constant values.

107.mgrid was used as a motivating example by previous papers on array
constant propagation [29,23]. Array elements A(1) and C(3) are assigned with
constant 0.0 at the beginning of the program. They are used in subroutines
RESID and PSINV, which account for 80% of the execution time. After con-
stant propagation, the uses of A(1) and C(3) in multiplications are eliminated.

410 S. Rus, G. He, and L. Rauchwerger

5 Related Work

Array Data Flow. There has been extensive research on array dataflow, most
of it based on reference set summaries: regular sections (rows, columns or points)
[4] linear constraint sets [25,11,10,3,27,17,20,16,21,14,13,8,18,6,29,22], and triplet
based [12]. Most of these approaches approximate nonlinear references with lin-
ear ones [16,8]. Nonlinear references are handled as uninterpreted function sym-
bols in [21], using symbolic aggregation operators in [22] and based on nonlinear
recurrence analysis in [13]. [7] presents a generic way to find approximative solu-
tions to dataflow problems involving unknowns such as the iteration count of a
while statement, but limited to intraprocedural contexts. Conditionals are han-
dled only by some approaches (most relevant are [27,16,12,18,22]).

Array SSA and its use in constant propagation and parallelization. In
the Array SSA form introduced by [15,23], each array assignment is associated a
reference descriptor that stores, for each array element, the iteration in which the
reaching definition was executed. Since an array definition may not kill all its old
values, a merge function φ is inserted after each array definition to distinguish
between newly defined and old values. This Array SSA form extends data flow
analysis to array element level and treats each array element as a scalar. However,
their representation lacks an aggregated descriptor for memory location sets.
This makes it is generally impossible to to do array data flow analysis when
arrays are defined and used collectively in loops. Constant propagation based on
this Array SSA can only propagate constants from array definitions to uses when
their subscripts are all constant. [6,5] independently introduced Array SSA forms
for explicitly parallel programs. Their focus is on concurrent execution semantics,
e.g. they introduce π gates to account for the out-of-order execution of parallel
sections in the same parallel block. Although [5] mentions the benefits of using
reference aggregation they do not implement it.

Array constant propagation can be done without using Array SSA [29,24].
However, we believe that our Array SSA form makes it easier to formulate and
solve data flow problems in a uniform way.

Table 2. Comparison of our proposed Region SSA against Element-wise Array SSA
[23], Distr. Array SSA [5], Fuzzy Dataflow [7], and Predicated Dataflow [18]. Nonlin-
ear = able to solve problems involving nonlinear references.

Region SSA [23] [5] [7] [18]
SSA Form Yes Yes Yes No No

Aggregated Yes No No Yes Yes

Interprocedural Yes No No No Yes

Accuracy Statement Operation Operation x Thread Operation Statement

Nonlinear Yes No No Yes No

Table 2 presents a comparison of some of the most relevant related work
to Region SSA. The table shows that Region SSA is the only representation

Scalable Array SSA and Array Data Flow Analysis 411

of data flow that is explicit (uses SSA numbering), is aggregated, and can be
computed efficiently at both compile-time and run-time even in the presence
of nonlinear memory reference patterns. The precision of Region SSA is not as
good as that of the other two SSA representations because we lack iteration
vector information. However, iteration vectors would become very complex in
interprocedural contexts (they must include call stack information), whereas
USRs represent arbitrarily large interprocedural program contexts in a scalable
way.

6 Conclusions and Future Work

We introduced a region based Array SSA providing accurate, interprocedural,
control-sensitive use-def information at array region level. Furthermore, when
the data flow problems cannot be completely solved statically we can continue
the process dynamically with minimal overhead. We used Array SSA to write a
compact Reaching Definitions algorithm that breaks up an array use region into
subregions corresponding to the actual definitions that reach it. The implemen-
tation of array constant propagation shows that our representation is powerful
and easy to use.

References

1. R. A. Ballance, A. B. Maccabe, and K. J. Ottenstein. The Program Dependence
Web: A representation supporting control-, data-, and demand-driven interpreta-
tion of imperative languages. In ACM PLDI, White Plains, NY, 1990.

2. W. Blume, et. al. Advanced Program Restructuring for High-Performance Com-
puters with Polaris. IEEE Computer, 29(12):78–82, December 1996.

3. M. Burke. An interval-based approach to exhaustive and incremental interproce-
dural data-flow analysis. ACM TOPLAS., 12(3):341–395, 1990.

4. D. Callahan and K. Kennedy. Analysis of interprocedural side effects in a parallel
programming environment. In Supercomputing: 1st Int. Conf., LNCS 297, pp.
138–171, Athens, Greece, 1987.

5. D. R. Chakrabarti and P. Banerjee. Static single assignment form for message-
passing programs. Int. J. of Parallel Programming, 29(2):139–184, 2001.

6. J.-F. Collard. Array SSA for explicitly parallel programs. In Euro-Par, 1999.
7. J.-F. Collard, D. Barthou, and P. Feautrier. Fuzzy array dataflow analysis. In

PPOPP ’95, pp. 92–101, New York, NY, USA, 1995. ACM Press.
8. B. Creusillet and F. Irigoin. Exact vs. approximate array region analyses. In

LCPC, LNCS 1239, pp. 86–100, San Jose, CA, 1996.
9. R. Cytron, et al An efficient method of computing static single assignment form.

In 16th ACM POPL, pp. 25–35, Austin, TX., Jan. 1989.
10. P. Feautrier. Dataflow analysis of array and scalar references. Int. J. of Parallel

Programming, 20(1):23–54, 1991.
11. T. Gross and P. Steenkiste. Structured dataflow analysis for arrays and its use in

an optimizing compilers. Software: Practice & Experience, 20(2):133–155, 1990.
12. J. Gu, Z. Li, and G. Lee. Symbolic array dataflow analysis for array privatization

and program parallelization. In Supercomputing ’95, pp. 47. ACM Press, 1995.

412 S. Rus, G. He, and L. Rauchwerger

13. M. R. Haghighat and C. D. Polychronopoulos. Symbolic analysis for parallelizing
compilers. ACM TOPLAS, 18(4):477–518, 1996.

14. M. H. Hall, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, and M. S. Lam. De-
tecting coarse-grain parallelism using an interprocedural parallelizing compiler. In
Supercomputing ’95, pp. 49, 1995.

15. K. Knobe and V. Sarkar. Array SSA form and its use in parallelization. In ACM
POPL, pp. 107–120, 1998.

16. V. Maslov. Lazy array data-flow dependence analysis. In ACM POPL, pp. 311–325,
Portland, OR, Jan. 1994.

17. D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. Array data-flow analysis and
its use in array privatization. In ACM POPL, pp. 2–15, Charleston, SC, Jan. 1993.

18. S. Moon, M. W. Hall, and B. R. Murphy. Predicated array data-flow analysis for
run-time parallelization. ACM ICS, pp. 204–211, Melbourne, Australia, 1988.

19. Y. Paek, J. Hoeflinger, and D. Padua. Efficient and precise array access analysis.
ACM TOPLAS, 24(1):65–109, 2002.

20. W. Pugh and D. Wonnacott. An exact method for analysis of value-based array
data dependences. In LCPC 1993, LNCS 768, pp. 546–566, Portland, OR.

21. W. Pugh and D. Wonnacott. Nonlinear array dependence analysis. UMIACS-TR-
94-123, Univ. of Maryland, College Park, MD, USA, 1994.

22. S. Rus, J. Hoeflinger, and L. Rauchwerger. Hybrid analysis: static & dynamic
memory reference analysis. Int. J. of Parallel Programming, 31(3):251–283, 2003.

23. V. Sarkar and K. Knobe. Enabling sparse constant propagation of array elements
via array ssa form. In SAS, pp. 33–56, 1998.

24. N. Schwartz. Sparse constant propagation via memory classification analysis.
TR1999-782, Dept. of Compute Science, Courant Institute, NYU, March, 1999.

25. R. Triolet, F. Irigoin, and P. Feautrier. Direct parallelization of Call statements.
In ACM ’86 Symp. on Comp. Constr., pp. 175–185, Palo Alto, CA., June 1986.

26. P. Tu and D. Padua. Gated SSA–based demand-driven symbolic analysis for par-
allelizing compilers. In 9th ACM ICS, Barcelona, Spain, pp. 414–423, July 1995.

27. P. Tu and D. A. Padua. Automatic array privatization. In LCPC, LNCS 768
Portland, OR, 1993.

28. P. Vanbroekhoven, G. Janssens, M. Bruynooghe, H. Corporaal, and F. Catthoor.
Advanced copy propagation for arrays. In LCTES ’03, pp. 24–33, New York, 2003.

29. D. Wonnacott. Extending scalar optimizations for arrays. In LCPC ’00, LNCS
2017, pp. 97–111.

Interprocedural Symbolic Range Propagation
for Optimizing Compilers�

Hansang Bae and Rudolf Eigenmann

School of Electrical and Computer Engineering
Purdue University, West Lafayette, IN 47907

{baeh,eigenman}@purdue.edu

Abstract. We have designed and implemented an interprocedural al-
gorithm to analyze symbolic value ranges that can be assumed by vari-
ables at any given point in a program. Our algorithm contrasts with
related work on interprocedural value range analysis in that it extends
the ability to handle symbolic range expressions. It builds on our previ-
ous work of intraprocedural symbolic range analysis. We have evaluated
our algorithm using 11 Perfect Benchmarks and 10 SPEC floating-point
benchmarks of the CPU 95 and CPU 2000 suites. We have measured the
ability to perform test elision, dead code elimination, and detect data de-
pendences. We have also evaluated the algorithm’s ability to help detect
zero-trip loops for induction variable substitution and subscript ranges
for array reductions.

1 Introduction

The motivation for the present work is the pursuit of the long-term goal of
developing higher-level programming languages. At the same time, we aim to
increase the power of the present generation of optimizing compilers. One thrust
towards these goals is to strengthen the capabilities of compilers to reason about
and manipulate program sections in symbolic terms. Developing an algorithm
for interprocedural range propagation is a small step in this direction. By know-
ing the value range that a variable may assume at any given program point,
compiler techniques can make more informed optimization decisions. We have
developed and used such techniques in the past for our Polaris parallelizing com-
piler [2,13,4]. Knowing symbolic value ranges has become key to detecting data
dependences, privatizing variables, substituting induction variables, and paral-
lelizing reduction operations. Polaris’ Range Test [5] makes use of advanced
symbolic expression manipulation capabilities, which exploit knowledge about
possible value ranges of program variables. The privatization pass [17] is able to
analyze and comprehend the meaning of certain compute patterns. The induc-
tion variable and reduction recognition passes [15] exploit value range informa-
tion to prove zero-trip loops and to narrow array subscript ranges, respectively.

� This work is supported in part by the National Science Foundation under Grants
No. 0103582-EIA, and 0429535-CCF.

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 413–424, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

414 H. Bae and R. Eigenmann

X = 1 X = [-INF,INF]
IF (X.LE.N) THEN X = [1,1]

X = 2*X X = [1,1]
ELSE X = [2,2]

X = X+2 X = [MAX(1,1+N),1]
ENDIF X = [MAX(3,3+N),3]
... X = [2,3]

Fig. 1. Intraprocedural symbolic range propagation

In all these cases, value range information significantly boosts Polaris’ ability to
detect parallelism. Currently, Polaris uses only intraprocedural range analysis.
It operates in concert with interprocedural expression propagation and forward
substitution, which we consider the best alternative to the new techniques and
reference point for the evaluation section. In Section 4 we will explain why we
have chosen this reference point over other related contributions. Briefly, related
work either focuses on interprocedural expression propagation [11], where no
range representation is used, or restricts the bounds of ranges to simple expres-
sions [14]. A number of approaches have also considered range information in
the context of pointer analysis for C-type languages.

2 Interprocedural Symbolic Range Propagation (ISRP)

Our framework for interprocedural analysis follows the classical fixed-point ap-
proach based on abstract interpretation, and it uses existing intraprocedural
range analysis techniques as the source of range information to propagate. Dur-
ing the analysis, ISRP collects symbolic range information within a subroutine
and generates interprocedural ranges at every important program point – at sub-
routine returns and at call sites. Next, it propagates the collected data towards
the leaves of the call graph. This is similar to the jump function approach [9]; we
use terms in that approach to present our algorithm1. We also apply procedure-
cloning to enhance the accuracy of the analysis in every calling context. Before
introducing our algorithm in detail, we briefly review our existing framework for
intraprocedural symbolic range analysis.

The goal of symbolic range propagation [3] is to collect a valid set of symbolic
value ranges for each variable at every program point. The collected ranges
can be used for advanced compiler analyses such as data dependence testing,
dead code elimination, and program verification – the main application of the
analysis in the current Polaris compiler is a nonlinear symbolic data dependence
test [5]. Figure 1 gives an example of the value ranges for program variable X ,
valid before each statement, as analyzed by the existing intraprocedural analysis
1 In contrast to [9], our jump function is defined for the value ranges of all variables

of a statement, not for a single variable.

Interprocedural Symbolic Range Propagation for Optimizing Compilers 415

technique. To derive this information, ranges defined by individual statements
are intersected along the control flow. At control flow merge points, unions of
ranges are computed. The ranges so analyzed supply the source of candidate
interprocedural symbolic ranges for ISRP.

In presenting the ISRP algorithm, we make use of the following terms.

Definition 1. A symbolic range is a mapping from a variable to its value range,
V = [LB,UB], where LB is the lower bound and the UB is the upper bound. All
variables contained in the expressions {V,LB,UB} belong to the scope of the
subroutine enclosing the program point being analyzed. If either LB or UB is
infinite, we call it an open range, otherwise it is a closed range.

Definition 2. An interprocedural (symbolic) range is a symbolic range that is
gathered from information in one subroutine and inserted at relevant points in
another subroutine – either at the subroutine entry or after a call statement.

Definition 3. For a caller P, a callee Q, and a call site S that calls Q in P,
the jump function at S is the set of known symbolic ranges before S, expressed
in terms of input variables to Q (actual parameters and global variables).

Definition 4. The return jump function at Q is the set of known symbolic
ranges at the end of Q, expressed in terms of return variables to P (return
parameters, reference parameters and global variables).

Without loss of generality we use only integer type and logical type. The existing,
intraprocedural framework did not allow logical type, but we added it to make
our analysis more general. If the type of V is logical, LB should be equal to UB.
Notice, that the jump functions express symbolic ranges in terms of variable
names in the present subroutine. In order to create interprocedural ranges, these
names may need to be changed to those used in the target subroutine. This also
applies for the return jump functions.

Figure 2 gives a high-level description of our algorithm. It uses the following
functions:

Compute Jump Functions()
This routine produces intraprocedural value ranges that are valid at each pro-
gram point in a subroutine. The source of information are ranges as analyzed by
the intraprocedural range analysis algorithms plus the inserted interprocedural
ranges (at the beginning of the subroutine and after each call statement). At each
call statement, the interprocedural ranges collected from Get Backward Inter-
procedural Ranges are intersected with ranges that exist before the call site.
However, when a certain variable is modified in the callee or its descendants in the
call graph, the previous range for that variable is discarded. Note that the result-
ing jump functions, as per Definition 3 are expressed in terms of variables in the
current subroutine. In order to create interprocedural ranges, renaming of actual
to formal parameters will need to be performed (by Get Forward Interprocedu-
ral Ranges()).

416 H. Bae and R. Eigenmann

Propagate_Interprocedural_Ranges()
{

Initialize_Call_Graph()
while (there is any change in interprocedural ranges) {
foreach Subroutine (reverse topologically) {
Get_Backward_Interprocedural_Ranges()
Compute_Jump_Functions()
Compute_Return_Jump_Functions()

}
Get_Forward_Interprocedural_Ranges()

}
}

Fig. 2. Algorithm for interprocedural symbolic range propagation

Compute Return Jump Functions()
This routine generates value ranges as per Definition 4 at the return point of
the current subroutine. Information at multiple return points is merged – for
simplicity, we just take unions.

Get Forward Interprocedural Ranges()
This routine creates the interprocedural symbolic value ranges valid at the entry
point of each subroutine – this is done by applying jump functions to each
subroutine, appropriately converting actual parameters to formal parameters.
In addition, this step performs procedure-cloning for different calling contexts.

Get Backward Interprocedural Ranges()
This routine propagates interprocedural symbolic value ranges backward from
all callees to the current subroutine. It uses information from return jump func-
tions in the callees. If a value range contains a formal parameter of the callee,
it is mapped to the corresponding actual parameter. Note that the algorithm
performs this step reverse topologically. Hence, intraprocedural analysis for each
callee has already been done, including the generation of return jump functions.
For leaves in the call graph, this subroutine performs no action. This reverse
order is for speeding up a single iterative step; in-order traversal would converge
to the same solution, eventually.

In summary, the algorithm computes the interprocedural symbolic ranges
propagated backward from callees’ contexts and ranges propagated forward from
callers’ contexts until it reaches a fixed point. Each iteration performs range
analysis within a subroutine, selects valid symbolic ranges across subroutine
boundaries, and feeds those new data into the intraprocedural range analysis for
the next iterative step.

The example illustrated in Figure 3 shows a simple program with three pro-
gram units and two subroutine calls, and interprocedural symbolic range propa-
gation on that program. The goal of the analysis is to compute Interprocedural

Interprocedural Symbolic Range Propagation for Optimizing Compilers 417

1st iteration
Subroutine Forward ISR Return Jump Callsite Jump Backward ISR

B - V=[W+M,W+M] - - -
A - φ β N=[10,40] T=[U+N,U+N]

MAIN - - α X=[1,1],Y=[2,2] φ
A T=[1,1],U=[2,2] - β - T=[U+N,U+N]
B M=[10,40] - - - -

2nd iteration
B M=[10,40] V=[W+M,W+M],M=[10,40] - - -
A T=[1,1],U=[2,2] U=[2,2] β N=[10,40],U=[2,2] T=[U+N,U+N],N=[10,40]

MAIN - - α X=[1,1],Y=[2,2] Y=[2,2]
A T=[1,1],U=[2,2] - β - T=[U+N,U+N],N=[10,40]
B M=[10,40],W=[2,2] - - - -

3rd iteration
B M=[10,40],W=[2,2] V=[W+M,W+M],M=[10,40] - - -

W=[2,2]
A T=[1,1],U=[2,2] U=[2,2] β N=[10,40],U=[2,2] T=[U+N,U+N],N=[10,40]

U=[2,2]
MAIN - - α X=[1,1],Y=[2,2] Y=[2,2]

A T=[1,1],U=[2,2] - β - T=[U+N,U+N],N=[10,40]
U=[2,2]

B M=[10,40],W=[2,2] - - - -

(b)

Fig. 3. Interprocedural symbolic range propagation on an example code. (a) An ex-
ample program with three program units and two call sites. The goal is to compute
backward/forward Interprocedural Symbolic Ranges (ISRs) at the entry to each sub-
routine and at the call sites. (b) Step-by-step process of ISRP on the code. Each row
is completed in a single step by the algorithm in Figure 2.

Symbolic Ranges (ISR) that are valid at the entry to each subroutine and after
the call sites. In other words, the analysis collects forward ISR at the entry of
each subroutine and backward ISR for each call site as shown in Figure 3(a).
Figure 3(b) presents step-by-step process of ISRP on the code example. Each
column shows the result after performing each step in the algorithm in Figure 2.
For example, during the first iteration, the analysis computes return jump func-
tion for B (V = [W + M, W + M]), backward ISR for β (T = [U + N, U + N]),
jump function for β (N = [10, 40]), return jump function for A (φ), backward
ISR for α (φ), and jump function for α (X = [1, 1], Y = [2, 2]) successively.
Then it finally computes forward ISRs for A and B, which come directly from

418 H. Bae and R. Eigenmann

Table 1. Benchmark suite

Code Size Subroutines Call sites Code Size Subroutines Call sites

ARC2D 4650 36 100 applu 3868 13 26
BDNA 4843 38 162 apsi 7361 66 328
DYFESM 8446 57 204 fpppp 2784 13 52
FLO52Q 2324 27 86 hydro2d 4292 39 200
MDG 1430 12 42 mgrid 484 11 46
MIGRATION 3455 23 110 su2cor 2332 26 242
OCEAN 3198 34 490 swim 429 6 10
QCD2 2816 30 166 tomcatv 190 1 0
SPEC77 4870 39 232 turb3d 2101 19 206
TRACK 4628 29 106 wupwise 2184 22 284
TRFD 580 4 20 Total 67265 545 3112

the jump functions for α and β after converting actual parameters into formal
parameters. The resulting forward ISRs have changed since the start of the it-
eration, which triggers next iteration and the analysis continues with a new set
of initial information. The analysis finally stops after third iteration where the
starting forward ISRs are identical to the resulting forward ISRs.

3 Experiments

We have measured the effectiveness of the presented interprocedural symbolic
range propagation algorithm on several aspects of optimizing compilers – data
dependence analysis, test elision with dead code elimination, and other optimiza-
tions for automatic parallelization. We implemented our analysis in the Polaris
parallelizing compiler and our reference point, to which we refer as Base, is the
performance of the current version of Polaris with full optimization. That in-
cludes intraprocedural symbolic range propagation, interprocedural expression
propagation with forward substitution, automatic partial inlining, and procedure
cloning. The existing constant propagation pass also removes unreachable code
sections due to control flows resolved at compile time. We switched this func-
tion off and implemented a stand-alone pass that can interface with the range
information.

Another feature of our ISRP implementation is a substitution pass that sub-
stitutes a variable with its corresponding symbolic expression. This capability
builds the interface with existing compiler passes that do not have the ability to
query range information. For this substitution, we used simple decision heuristics
to avoid unwanted chains of forward substitutions generating large expressions
(a drawback of the current constant propagation and forward substitution tech-
nique). For example, replacing a variable with a known numeric value is always
preferred, whereas replacing loop variables (indices, bounds) with complex ex-
pressions is not.

Interprocedural Symbolic Range Propagation for Optimizing Compilers 419

Table 2. The number of test elision and dead code elimination

Codes Base ISRP Codes Base ISRP

ARC2D 4 5 applu 4 4
BDNA 15 15 apsi 1 18
DYFESM 18 26 fpppp 12 7
FLO52Q 2 5 hydro2d 9 9
MDG 0 1 mgrid 0 0
MIGRATION 4 6 su2cor 7 8
OCEAN 67 72 swim 0 0
QCD2 0 3 tomcatv 0 0
SPEC77 3 3 turb3d 5 15
TRACK 4 10 wupwise 19 27
TRFD 2 8 Total 176 242

3.1 Benchmark Suite

We selected 21 scientific engineering codes from the Perfect Benchmarks, SPEC
CPU95 floating point, and SPEC CPU2000 floating point suites. This set of
codes includes most of the Fortran 77 codes in each benchmark suite except for
some codes that fail to compile (for reasons other than ISRP). Table 1 shows
the feature of each benchmark, such as code size, number of subroutines or
function calls, and number of call sites. Our algorithm converts all function calls
to subroutine calls as a preliminary step.

3.2 Test Elision and Dead Code Elimination

Test elision and dead code elimination are optimizations that can benefit from
static analysis such as constant propagation and range propagation. As more
information about conditions is known, the compiler may prove that the test
condition is always true or always false and thus eliminate one branch. We
measured how the interprocedural range information affects the compile-time
resolution of branches and corresponding dead code elimination.

Table 2 presents the number of successfully resolved branches with the Base
method and with ISRP. For a fair comparison, we only counted one instance
of cloned procedures. The results show that the number of statically resolved
branches with ISRP is greater than or equal to that with Base for all benchmark
codes except for fpppp. Fpppp contains a pattern that benefits from repeated
information propagation and dead code elimination, which is performed by the
Base technique but not by ISRP. The type of information to be propagated is
simple, however, and done equally well by both techniques.

Overall, Table 2 shows that ISRP provides more accurate static informa-
tion than Base and (except for the minor case in fpppp) subsumes the Base
techniques.

420 H. Bae and R. Eigenmann

Table 3. The number of data dependence arcs

Codes Base ISRP Codes Base ISRP

ARC2D 801 459 applu 677 677
BDNA 1124 1081 apsi 11395 8222
DYFESM 1388 1108 fpppp 22064 20006
FLO52Q 263 279 hydro2d 110 66
MDG 1120 908 mgrid 83 19
MIGRATION 7180 6219 su2cor 10915 8712
OCEAN 433 370 swim 0 0
QCD2 17257 3579 tomcatv 45 45
SPEC77 2392 1652 turb3d 371 342
TRACK 2003 1781 wupwise 2013 1071
TRFD 93 40 Total 81727 56636

3.3 Data Dependence Analysis

Data dependence analysis is of obvious importance in optimizing compilers. We
counted the number of dependence arcs in each benchmark code with Base and
with ISRP to see how effective ISRP is in breaking data dependence arcs.

Table 3 shows the resulting numbers for each benchmark code. ISRP reduced
the number of dependence arcs up to 79% for all benchmark codes except for
FLO52Q. The increased number in FLO52Q is due to limitations of our simple for-
ward substitution heuristics. Those variables were marked as private variables
with Base whereas they carry cross-iteration dependences with ISRP. Another
observation is that the total number of dependence pairs to disprove is increased
for some codes and decreased for other codes – numbers are not presented here.
Limited forward substitution accounts for the former case and better test eli-
sion accounts for the latter case. However, in both cases, the number of data
dependence arcs decreased for most codes. This shows that limited forward sub-
stitution is not a significant factor to achieve accuracy in the data dependence
analysis.

3.4 Detecting Zero-Trip Loops and Array Bounds

Our parallelizing compiler additionally makes use of the collected range informa-
tion when making decisions in several parallelization passes. One such case is the
induction variable substitution pass, which tries to decide if a loop is a zero-trip
loop. Not knowing that a loop is non-zero-trip may prevent the substitution of
an induction variable with its closed form [15]. The Polaris compiler inserts a
runtime test in this case. ISRP can potentially eliminate this runtime overhead.

Another pass benefiting from range analysis is the reduction parallelization
technique. In absence of accurate information about index ranges used by an
array reduction pattern, the compiler must consider the entire array a potential
reduction variable. This conservative measure cost significant runtime overhead.
Again, ISRP has the potential to reduce this cost.

Interprocedural Symbolic Range Propagation for Optimizing Compilers 421

Fig. 4. Compiler’s decisions for relevant questions with ISRP. If a loop is a non-zero-
trip loop, the induction variable substitution pass can safely transform the code. If
there is a closed subscript range for an array reduction, the compiler generates more
efficient code for the reduction.

Figure 4 shows the percentage of preferred compiler’s decisions in those passes
with Base and with ISRP. In the benchmarks not listed here, we did not find any
significant differences. ISRP substantially increased the number of desirable de-
cisions for the codes in Figure 4. The compiler could answer all the questions in
favor of each optimization for TRFD and su2cor. In TRFD, a significant code section
was statically parallelized with ISRP whereas Base relied on a run-time test.

4 Related Work

Range analysis in imperative programming languages has been addressed in
several contexts over the last few decades, most of them stemming from a formal
foundation – Abstract Interpretation[6,7]. One of the major concerns of early
work was how to make the analysis reach a fixed point at reasonable speed in
the presence of loop-like program structures, and widening and narrowing[6] were
then introduced to guarantee termination of the analysis. The demand for whole
program analysis has also emerged and interprocedural analysis has become a
key enabler of compiler optimizations in many contexts. The importance and
effectiveness of range analysis or symbolic analysis have also been addressed in
several contributions.

Havlak’s work[11] served as an infrastructure for interprocedural symbolic anal-
ysis in the Parascopecompilation system[1]. He divided a symbolic interprocedural
analysis problem into four sub-problems, depending on if the analysis propagates
symbolic values for variables or predicates, and if the information is passed to or
returned from the callee. Two of the problems, returned values and passed pred-
icates (linear equalities) were evaluated in his work. Our approach differs in two

422 H. Bae and R. Eigenmann

important regards. First, Havlak’s work focuses on symbolic expression propaga-
tion, as opposed to value ranges. Second, our work is more general in that it can
give solutions to all the four sub-problems. Before and after a call site, each sym-
bolic value range with the same lower bound and the upper bound gives a set of
passed expressions and returned expressions. Symbolic lower bounds and upper
bounds can be used to infer a valid relationship between two expressions or vari-
ables. Including this work, interprocedural symbolic analysis was also applied in
analyzing array accesses [8,10] to be used for interprocedural parallelization and
other optimizations. Although analyzing array subscripts is a major application
of our framework, ISRP has more flexibility that enables many other potential
optimizations.

Patterson[14] adopted value range propagation to statically predict if a cer-
tain branch is taken or not. The range representation used in his work carries
the probability that a variable has a certain lower bound, an upper bound, and
a stride. Because the analysis is intended for a single optimization, static branch
prediction, he limited the complexity of the problem so that the analysis can
trade-off accuracy and efficiency. For example, the interprocedural analysis only
concerns about propagation through parameter mappings, and symbolic expres-
sions for the value ranges can have at most one variable, which greatly simplifies
the problem. Our analysis is intended for general use in several compiler opti-
mizations and considers arbitrary symbolic expressions.

There are also efforts that adopt range analysis in the C language because of its
applicability for non-numerical programs. While tackling issues that arise in C-
type languages (primarily pointer analysis) these approaches have not shown or
claimed progress for high-performance computing applications. The work by Ver-
brugge et. al.[18] expressed range analysis as Generalized Constant Propagation
(GCP) and implemented it in the McCAT optimizing/parallelizing compiler[12].
They used the concept of an invocation graph that maintains context-sensitive
information, and also utilized points-to information and read/write sets to min-
imize the loss of information during interprocedural analysis. They also intro-
duced “stepping”, which is a variation of widening and narrowing, to guarantee
finite fixed-point iterations. The use of the invocation graph is similar to proce-
dure cloning in that it maintains context-sensitive special information for each
invocation of a function. One limitation of their work is that it only handles
non-symbolic ranges.

Rugina’s work[16] on symbolic bounds analysis took a different approach to
achieve a similar goal. He did not adopt conventional concepts such as abstract in-
terpretation and fixed-point algorithm. Instead, he set up a system of constraints
within a region of interest and introduced a way of reducing the constraint system
to a linear program under an assumption that the positivity of each coefficient
is known. A framework for interprocedural analysis was also introduced, which
describes mapping and unmapping actions at call sites. To avoid fixed-point iter-
ation for recursive calls, he introduced a method of building a system of recursive
constraints. The idea of not doing fixed-point iteration is an outstanding feature
compared with other related work. This feature may improve the efficiency of the

Interprocedural Symbolic Range Propagation for Optimizing Compilers 423

analysis but it left unclear how to compare the accuracy of this technique with
that of a conventional fixed-point technique, such as ours.

The most recent work by Yong and Horwitz[19] also adopted range analysis
to compute a safe approximation of the set of memory locations that may be
accessed by each pointer dereference. To simplify the problem, they treated all
memory accesses as pointer dereferences even for a scalar variable. Their work
focused on language-specific challenges such as pointer arithmetic and type mis-
match due to union and casting, introducing advanced range description methods
that embed type information. Like other conventional techniques, they adopted
the concept of widening and narrowing for convergence but their interprocedural
analysis does not handle context-sensitive information and symbolic ranges.

5 Conclusion

We have designed and implemented an interprocedural symbolic range analysis
technique and have shown that the resulting compiler pass substantially en-
hances the accuracy of other optimizations. The reference point we have chosen
in our evaluation of 21 science/engineering benchmarks is the combination of in-
terprocedural expression propagation, intraprocedural symbolic range analysis,
forward substitution, and automatic partial inlining, as currently implemented in
the Polaris parallelizing compiler. We believe this to be the best state-of-the-art
symbolic range analysis framework for high-performance computing applications,
among related contributions.

ISRP is an enabling technique for other optimizations. We can expect sub-
stantial performance improvement once we enhance existing optimization passes
to take advantage of the new information. As is, we have already found 14 more
parallel loops in our benchmark codes.

Advanced program analysis comes at the cost of longer compilation time. We
have measured up to 150% increased compilation time in all but two cases. Such
increase seems acceptable, given the benefits and ever-increasing processor speeds.
It is known that symbolic range analysis has exponential worst-case complexity [3],
which explains substantial increases in compilation time in twoof our codes – OCEAN
and TRACK, which have a large number of call sites. In ongoing work we are consid-
ering optimizations of the algorithm to improve such behavior.

References

1. V. Balasundaram, K. Kennedy, U. Kremer, K. McKinley, and J. Subhlok. The
parascope editor: an interactive parallel programming tool. In Supercomputing ’89:
Proceedings of the 1989 ACM/IEEE conference on Supercomputing, pages 540–550,
New York, NY, USA, 1989. ACM Press.

2. W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger, T. Lawrence, J. Lee,
D. Padua, Y. Paek, B. Pottenger, L. Rauchwerger, and P. Tu. Parallel programming
with Polaris. IEEE Computer, 29(12):78–82, December 1996.

3. William Blume and Rudolf Eigenmann. Symbolic range propagation. In Proceed-
ings of the 9th International Parallel Processing Symposium, pages 357–363, Santa
Barbara, CA, April 1995.

424 H. Bae and R. Eigenmann

4. William Blume and Rudolf Eigenmann. Demand-driven, Symbolic Range Propa-
gation. Lecture Notes in Computer Science, 1033: Languages and Compilers for
Parallel Computing, pages 141–160, 1996.

5. William Blume and Rudolf Eigenmann. Nonlinear and symbolic data dependence
testing. IEEE Transactions on Parallel and Distributed Systems, 9(12):1180–1194,
December 1998.

6. Patrick Cousot and Radhia Cousot. Static determination of dynamic properties
of programs. In Proceedings of the 2nd Internatioal Symposium on Programming,
pages 106–130, April 1976.

7. Patrick Cousot and Rhadia Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Proceedings of 4th ACM Symposium, pages 238–252, 1977.

8. Béatrice Creusillet and Francois Irigoin. Interprocedural Array Region Analyses.
In Eighth International Workshop on Languages and Compilers for Parallel Com-
puting (LCPC’95), pages 4–1 to 4–15, August 1995.

9. Dan Grove and Linda Torczon. Interprocedural constant propagation: A study of
jump function implementations. In SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 90–99, 1993.

10. Mary W. Hall, Brian R. Murphy, Saman P. Amarasinghe, Shih-Wei Liao, and Mon-
ica S. Lam. Interprocedural analysis for parallelization. In LCPC ’95: Proceedings
of the 8th International Workshop on Languages and Compilers for Parallel Com-
puting, pages 61–80, London, UK, 1996. Springer-Verlag.

11. Paul Havlak. Interprocedural Symbolic Analysis. PhD thesis, Dept. of Computer
Science, Rice University, May 1994.

12. Laurie J. Hendren, C. Donawa, Maryam Emami, Guang R. Gao, Justiani, and
B. Sridharan. Designing the mccat compiler based on a family of structured in-
termediate representations. In Proceedings of the 5th International Workshop on
Languages and Compilers for Parallel Computing, pages 406–420, London, UK,
1993. Springer-Verlag.

13. Seuing-Jai Min, Seon Wook Kim, Michael Voss, Sang-Ik Lee, and Rudolf Eigen-
mann. Portable compilers for OpenMP. In OpenMP Shared-Memory Parallel
Programming, Lecture Notes in Computer Science #2104, pages 11–19, Springer
Verlag, Heidelberg, Germany, July 2001.

14. Jason R. C. Patterson. Accurate static branch prediction by value range prop-
agation. In Proceedings of the conference on Programming language design and
implementation, pages 67–78. ACM Press, 1995.

15. William M. Pottenger and Rudolf Eigenmann. Idiom recognition in the polaris
parallelizing compiler. In Proceedings of the 9th International Conference on Su-
percomputing, pages 444–448, 1995.

16. Radu Rugina and Martin C. Rinard. Symbolic bounds analysis of pointers, array
indices, and accessed memory regions. In Proceedings of the SIGPLAN Conference
on Programming Language Design and Implementation, pages 182–195, Vancouver,
Canada, June 2000.

17. Peng Tu and David Padua. Array privatization for shared and distributed memory
machines (extended abstract). SIGPLAN Not., 28(1):64–67, 1993.

18. Clark Verbrugge, Phong Co, and Laurie J. Hendren. Generalized constant prop-
agation: A study in c. In Proceedings of the Internatioal Conference on Compiler
Construction, pages 74–90, April 1996.

19. Suan Hsi Yong and Susan Horwitz. Pointer-range analysis. In Proceedings of the
11th International Static Analysis Symposium (SAS ’04), page 16 pages, August
2004.

Parallelization of Utility Programs Based on Behavior
Phase Analysis

Xipeng Shen and Chen Ding

Computer Science Department, University of Rochester,
Rochester, NY, USA 14627

{xshen,cding}@cs.rochester.edu

Abstract. With the fast development of multi-core processors, automatic paral-
lelization becomes increasingly important. In this work, we focus on the paral-
lelization of utility programs, a class of commonly used applications including
compilers, transcoding utilities, file compressions, and databases. They take a se-
ries of requests as inputs and serve them one by one. Their high input dependence
poses a challenge to parallelization.

We use active profiling to find behavior phase boundaries and then automati-
cally detect run-time dependences through profiling. Using a unified framework,
we manually parallelize programs at phase boundaries. We show that for two pro-
grams, the technique enables parallelization at large granularity, which may span
many loops and subroutines. The parallelized programs show significant speedup
on multi-processor machines.

1 Introduction

Nowadays due to the increasing complexity, it is difficult to improve the speed of high-
performance uniprocessors. Chip multiprocessors is becoming the key of the next gen-
eration personal computers. But many applications, especially those running on past
personal computers, are sequential programs and require parallelization to benefit from
multiple cores.

In this paper, we describe a novel coarse-grain parallelization technique focused on
a class of commonly used programs. Utility programs are a class of dynamic programs
whose behavior strongly depends on their input. The examples include compilers, inter-
preters, compressions, transcoding utilities and databases. The applications all provide
some sort of service: they accept, or can be configured to accept, a sequence of requests,
and each request is processed more-or-less independently of the others. Because their
behavior depend heavily on the input, utility applications display much less regular be-
havior than typical scientific programs. Many of them invoke many recursive function
calls.

Our parallelization is based on behavior-based phase analysis. Here we define be-
havior as the operations of a program, which changes from input to input. A behavior
phase is a unit of the recurring behavior in any execution. It may have plenty of loops
and function calls. We use active profiling and pattern recognition techniques to de-
tect phases [7]. Each instance of the top-level phase is the processing of a request. For
example, the compilation of a function is a phase instance in GCC, and the parsing

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 425–432, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

426 X. Shen and C. Ding

of a sentence is a phase instance in Parser. The key observation is that the phases in
utility programs coincide with program service periods and thus its memory usage pe-
riods. Operations inside a phase instance may have complex dependences but different
phase instances are usually independent or can be made independent. Therefore, phase
boundaries are good places to parallelize utility programs.

Phase-level parallelization has three steps. First, we automatically employ behavior-
based phase analysis to find phases and mark them in the program source code through
debugging tools [7]. Secondly, we discover the run-time data dependences among phase
instances through profiling. Finally, we parallelize the program under a unified frame-
work. The last step is currently semi-automatic, and the correctness requires the veri-
fication of a programmer. The step can potentially be automated with run-time system
support, which automatically detects dependence violations and recovers when neces-
sary. We have applied phase-level parallelization on two programs, Gzip and Parser and
obtained up to 12.6 times speedup on a 16-processor machine.

There have been many efforts on automatic parallelization. Dynamic parallelization
was pioneered more than a decade ago [5,10]. Many recent papers studied thread-level
speculation with hardware support ([2] contains a classification of various schemes).
Most of those methods exploit loop-level parallelism, especially in low-level loops.
Ortega et al. manually find parallelism in coarse loops for SPECInt benchmarks, which
they call distant parallelism [4]. Our technique exploits parallelism at phase granularity
for utility programs with some user support. It is orthogonal to fine-grain parallelism
techniques.

2 Parallelization Techniques

2.1 Phase Detection

Phase detection is to find the boundaries of recurring behavior patterns in a program.
We use a two-step technique to detect phases in utility programs. Active profiling uses
a sequence of identical requests to induce behavior that is both representative of normal
usage and sufficiently regular to identify outermost phases. It then uses different real
requests to capture common sub-phases and to verify the representativeness of the con-
structed input. The phase boundaries are determined through statistic analysis on the
dynamic basic block trace of the execution and are marked in the program code (see [7]
for details.)

Phases have a hierarchical structure. In this study, we make use of the outermost
phases only. We use process-based parallelization, where each phase instance is exe-
cuted by a child process. If phase instances are small, a process can execute a group of
phase instances at a time.

2.2 Phase-Dependence Detection

Phase-dependence detection is to find run-time data dependences between phase in-
stances during profiling runs. Similar to loop-dependence analysis[1], there are three
kinds of phase-dependences: flow dependence, antidependence, and output dependence.

Parallelization of Utility Programs Based on Behavior Phase Analysis 427

A flow dependence happens when a phase instance stores a value into a memory loca-
tion and a later phase instance reads the value. An antidependence happens when a
phase instance reads from and a later one writes to the same location. Finally, an out-
put dependence happens when two phase instances write to the same memory location.
Since process-based parallelization creates a separate address space for different phase
instances, we can ignore anti- and output dependences. In comparison, thread-based
parallelization must deal with them explicitly.

NODE∗ xlevel (NODE ∗ expr) { /∗ function definition ∗/
if (++xltrace < TDEPTH){. . .} /∗ read and write xltrace ∗/
- -xltrace;} /∗ read and write xltrace ∗/

(a) False dependence due to implicit initialization

char∗buf;
. . .
buf[i] = 0; /∗ both load and store operations due to byte operations∗/

(b) Addressing false dependence

∗u = ∗t; /∗ load value of ∗t ∗/
. . .
(“t” is freed and “deletable” is allocated)
deletable[i][j] = FALSE; /∗ store operation∗/
(deletable is freed)
. . .

(c) Allocator false dependence

for (sym = getelement(array,i);. . .){. . . } /∗ load “array” element∗/
setelement (array, i, sym); /∗ store “array” element ∗/

(d) Real phase dependence

Fig. 1. Example code of LI and Parser from the SPEC CPU2000 benchmark suite showing remov-
able flow dependences. Each case contains a load from and a store to the same memory location.
The dependence flows from the store in each phase instance to the load of the next phase instance.

Most flow dependences among phases are removable. Here “removable” means that
the flow dependence can be safely ignored in process-based parallelization. We divide
the removable flow dependences into three classes, give examples for each class, and
describes the detection of these dependences as well as possible run-time support to
guarantee correctness. As examples, Figure 1 shows fragments of the code of LI and
Parser in the SPEC CPU2000 benchmark suite. Figure 1 (a) shows the first class of
removable dependence, which are caused by implicit initialization. In this case, the
variables are reset to their initial value at the end of each phase instance. In the exam-
ple, the global variable xltrace is a stack pointer. It increments by 1 when evaluating
an expression and the evaluation function may call itself to evaluate subexpressions. It
decrements by 1 after the evaluation. It is always equal to -1, its initial value, at the be-
ginning and the end of each phase instance. Such objects can be automatically detected

428 X. Shen and C. Ding

by checking the consistency of their values at the beginning of every phase. If their
values are always the same, the variables are likely to belong to this class. In the run-
time system, the value of those variables may be checked dynamically, and the parallel
process may be rolled back when the value is unexpected.

Figure 1 (b) shows the second class of removable dependences, addressing depen-
dences. In this class, the source code has no loading operations but the binary code
has because of addressing. In the example code, there is a write of a byte. The code is
compiled into the following assembly code on a Digital Alpha machine, which does not
have a byte write operation.

lda s4, -28416(gp) /∗ load array base address ∗/
addq s4, s0, s4 /∗ shift to the target array element ∗/
ldq u v0, 0(s4) /∗ load a quadword from the current element ∗/
mskbl v0, s4, v0 /∗ set the target byte to 0 by masking ∗/
stq u v0, 0(s4) /∗ store the new quadword to the array ∗/

Our dependence detection finds a flow dependence between instruction “stq u v0,
0(s4)” and “ldq u v0,0(s4)” when more than one phase instances execute that statement.
It is removable dependence since the loading operation is purely for the store operation
and the value of the loaded location has no effects on the program’s execution.

Finally, flow dependences may happen when memory is reused across phase in-
stances by a dynamic memory allocator. Figure 1 (c) shows an example. The two objects
∗t and deletable are independent and have exclusive live periods. They are allocated to
the same memory region by the memory allocator. Process-based parallelization can ig-
nore all these three classes of flow dependences because it uses separate address spaces
for processes.

Figure 1 (d) shows a real phase-dependence. An earlier phase instance fills array
with some calculation results, which are loaded in a later phase instance. For cor-
rectness, the parallelization must protect such objects to avoid the violation of the
dependence.

We develop an automatic tool to trace memory accesses in profiling runs, detect
different kinds of dependences, and then find the corresponding source code. The tool
cannot detect all possible dependences in a program but it can help the parallelization
process by finding the likely parallel regions in the program. The tool first instruments
the binary code of a program to monitor memory accesses for dependence detection
through instrumentor ATOM [8] and then finds and displays the source code related to
phase-level flow dependences that are not removable. Trace-level dependence tracking
has been used extensively for studying the limit of parallelism (an early example is give
by Kumar [3]) and for easing the job of debugging.

The effect of profiling depends on the coverage, that is, the portion of phase-level
dependences that we find through profiling. Multiple training runs help to improve the
coverage. Utility programs take a series of requests as an input; thus one execution
contains the process of many different requests. This leads to good coverage even with
a single input.

Parallelization of Utility Programs Based on Behavior Phase Analysis 429

2.3 Program Transformation

Our parallelization is process based. Thread-based parallelization is an alternative. Pro-
cesses have their own address space and are thus more independent than threads. Utility
programs often have just a small number of phase-level flow dependences, since phase
instances coincide with the memory usage period of a program. For example, vari-
able optind is the only flow dependence that is not removable in benchmark Gzip and
requires code movement. There are other global data structures shared by phase in-
stances, but they can be privatized since they introduce no flow dependences. In thread-
based parallelization, multiple threads share the address space and must deal with an-
tidependences and output dependences explicitly. In our study, we use process-based
parallelization.

Many utility programs have a common high level structure; they first read requests
and then process them one by one. We design a unified framework for their paralleliza-
tion, which is shown in our technical report [6] for lack of space.

There are two strategies for parallelization. One is to let programmers know the
phase structure and the detected dependences so the programmer may parallelize the
program when possible. The manual effort is simplified by the automatic tools, which
suggest parallel regions that have good efficiency and scalability. The other strategy is
run-time dependence detection and phase-level speculation. All objects are put into a
protected region so speculation can be canceled when it fails. To improve efficiency and
scalability, we can give special treatment to the dependences detected in the profiling
runs. The operating system can monitor the accesses to those objects and roll back later
processes only when the dependences on those objects are violated or an earlier process
writes to the other objects in the protected region. This strategy requires less manual
work but requires the support of operating system. It has extra overhead. We use the
first strategy in this work and are in the process of developing the second strategy.

3 Evaluation

We apply phase-level parallelization on Parser and Gzip in Spec CPU2000 suite. We
first discuss the issues in the parallelization of each benchmark, then report the perfor-
mance of the parallelized programs.

3.1 Parser

Parser is a natural language (English) parsing program. It takes a series of sentences as
its input and parses them one by one. The detected phase boundary is before the parsing
of a sentence. The dependence detector reports 208 dependences in which 6 are distinct
flow dependences. Figure 2 shows part of the report. Among the six, the first two are
removable addressing dependences. The next two are implicit initialization removable
dependences: the store statement for lookup list traverses the list to free the list elements
and mn free list is freed at the end of each phase instance. The rest two dependences
are not easily removable. They include four global variables as array user variable,
unknown word defined, use unknown word and echo on. The last three variables are

430 X. Shen and C. Ding

elements of array user variable. They are a set of global boolean variables, used to con-
figure the parsing environment. For example, variable echo on determines whether to
output the original sentence or not. As the program comes across a command sentence
like “!echo” in the input file, it turns on the boolean value of echo on. The command
sentences are part of the input file. In our parallelization, we let the root process han-
dle those command sentences first and then create child processes to parse every other
sentence with the corresponding environment configuration.

Dep. type Operation File Line Source code
addressing store analyze-linkage.c 659 patch array[i].used = FALSE;

load analyze-linkage.c 659 patch array[i].used = FALSE;
addressing store and.c 540 if (*s == ’*’) *u = *t;

load and.c 540 if (*s == ’*’) *u = *t;
initialization store read-dict.c 763 lookup list = n;

load read-dict.c 760 while(lookup list != NULL) {
initialization load fast-match.c 59 mn free list = m;

store fast-match.c 44 if (mn free list != NULL) {
real dep. store main.c 620 (∗(user variable[i].p)) =

!!(∗(user variable[i].p));
load main.c 1557 if (!(unknown word defined

&& use unknown word)) {
real dep. store main.c 674 ∗(user variable[j].p) = !(∗(user variable[j].p));

load main.c 1573 if (echo on) printf(“%c ”, mc);

Fig. 2. The partial report of dependences in Parser. Each pair of rows show the two lines of code
causing a phase-level flow dependence.

3.2 Gzip

Gzip is a popular data compression program (the Gzip used in the experiment is config-
ured as the GNU compression program instead of the SPEC CPU2000 default version).
It takes a series of files as the input and compresses them one by one. It has only one
phase-level flow dependence, variable optind, which counts the number of input files.
It increases by one in each phase instance. Automatically our analysis tool finds the
boundary of file processing as the phase boundary. The dependence detection finds the
flow dependence. After applying the unified framework for transformation, the only re-
maining work is to move the counter increment operation from child processes to the
root process to resolve the dependence.

3.3 Methodology

We measure the performance on two multi-processor machines, whose configurations
are shown in Table 1.

We use “gcc -O3” for compilation. The Gzip has only one input file as its test input.
We duplicate the file multiple times as the regular input for profiling. The ref input of
Gzip contains too few files to measure the effectiveness. We create 105 files by du-
plicating all ref inputs 20 times each. The regular input for Parser is a file containing

Parallelization of Utility Programs Based on Behavior Phase Analysis 431

Table 1. Machine configurations

CPU Number 4 16
CPU Type Intel Xeon Sunfire Sparc V9
CPU Speed 2.0GHz 1.2GHz
L1 cache 512K 64K

six identical English sentences. We use the test input for the dependence profiling of
Parser and the ref input for evaluation.

3.4 Speedup

Figure 3 (a) and (b) show the speedup curves of the parallelized programs on Intel Xeon
and Sunfire multi-processor machines. The x-axis is logarithmic. We experiment up to 8
processes on the 4-CPU Intel machine. When the number of process is smaller than the
number of processors, the speedup increases significantly and reaches the peak when
the process number is equal to the processor number. Gzip achieves 1.6 times speedup
and Parser achieves 2.0.

On the 16-CPU Sunfire machine, Parser shows 12.6 times speedup with 16 processes.
Gzip shows 2.4 times speedup. The limited speedup of Gzip is due to the saturation of
file I/O.

(a) Speedup on an Intel Xeon machine (b) Speedup on a Sunfire Sparc V9 machine

Fig. 3. Speedup of parallelized programs on multiple-processor machines

4 Related Work

There have been many efforts on automatic parallelization. The most related work is the
study from software aspects. Those efforts roughly include two classes: task and data
based parallelization.

Previous parallelization techniques are based on static compiler or run-time tech-
niques. The former tries to find the parallelism opportunities in program loops through
static dependence analysis in compilers and then applies privatization and reduction
parallelization [1,9].) Static techniques work well for programs with regular, statically

432 X. Shen and C. Ding

analyzable access patterns. Run-time parallelization can reveal and exploit input de-
pendent and dynamic parallelism in loop nests [5,10]. In comparison, this work uses
profiling to parallelize programs at phase boundaries and exploit parallelism that may
span many loops and subroutines.

Another class of parallelization is based on Thread-level Speculation (TLS) hard-
ware. TLS hardware provides support for speculative threads and dynamical roll back
given the violation of dependences. This work partially relies on programmer knowl-
edge but requires no special hardware support.

5 Conclusions

In this work, we propose a phase-level parallelization technique for parallelizing utility
programs. It finds phase boundaries by active profiling, identifies common phase-level
dependences by training, handles anti- and output dependences through process-based
parallelization, classifies removable flow dependences, and relies on programmer support
to handle remaining flow dependences and ensure the correctness of the transformation.
Unlike previous work, this technique helps to parallelize a program in coarse granularity,
which may span many loops and subroutines. Our preliminary experiments show signif-
icant speedups for two non-trivial utility programs on multi-processor machines.

References

1. R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures: A Dependence-
based Approach. Morgan Kaufmann Publishers, October 2001.

2. M. J. Garzaran, M. Prvulovic, J. M. Llaberia, V. Vinals, L. Rauchwerger, and J. Torrellas.
Tradeoffs in buffering memory state for thread-level speculation in multiprocessors. In Pro-
ceedings of International Symposium on High-Performance Computer Architecture, 2003.

3. M. Kumar. Measuring parallelism in computation-intensive scientific/engineering applica-
tions. IEEE Transactions on Computers, 37, 1988.

4. D. Ortega, Ivan Martel, Eduard Ayguade, Mateo Valero, and Venkata Krishnan. Quantifying
the benefits of specint distant parallelism in simultaneous multi-threading architectures. In
Proceeding of the Eighth International Conference on Parallel Architectures and Compila-
tion Techniques, Newport Beach, California, October 1999.

5. L. Rauchwerger and D. Padua. The LRPD test: Speculative run-time parallelization of loops
with privatization and reduction parallelization. In Proceedings of ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, La Jolla, CA, June 1995.

6. X. Shen and C. Ding. Parallelization of utility programs based on behavior phase analy-
sis. Technical Report TR 876, Department of Computer Science, University of Rochester,
September 2005.

7. X. Shen, C. Ding, S. Dwarkadas, and M. L. Scott. Characterizing phases in service-oriented
applications. Technical Report TR 848, Department of Computer Science, University of
Rochester, November 2004.

8. A. Srivastava and A. Eustace. ATOM: A system for building customized program analysis
tools. In Proceedings of ACM SIGPLAN Conference on Programming Language Design and
Implementation, Orlando, Florida, June 1994.

9. M. Wolfe. Optimizing Compilers for Supercomputers. The MIT Press, 1989.
10. C. Q. Zhu and P. C. Yew. A scheme to enforce data dependence on large multiprocessor

systems. IEEE Transactions on Software Engineering, 13(6), 1987.

A Systematic Approach to Model-Guided
Empirical Search for Memory Hierarchy

Optimization�

Chun Chen, Jacqueline Chame, Mary Hall, and Kristina Lerman

University of Southern California/Information Sciences Institute
4676 Admiralty Way, Suite 1001, Marina del Rey, CA 90292

{chunchen,jchame,mhall,lerman}@isi.edu

Abstract. The goal of this work is a systematic approach to compiler
optimization for simultaneously optimizing across multiple levels of the
memory hierarchy. Our approach combines compiler models and heuris-
tics with guided empirical search to take advantage of their complemen-
tary strengths. The models and heuristics limit the search to a small
number of candidate implementations, and the empirical results provide
accurate feedback information to the compiler. In previous work, we pro-
pose a compiler algorithm for deriving a set of parameterized solutions,
followed by a model-guided empirical search to determine the best in-
teger parameter values and select the best overall solution. This paper
focuses on formalizing the process of deriving parameter values, which
is a multi-variable optimization problem, and considers the role of AI
search techniques in deriving a systematic framework for the search.

1 Introduction

Since the development of the earliest optimizing compilers, it has been well un-
derstood that compiler optimization is a challenging problem with a variety of
tradeoffs. As architectures and applications become increasingly complex, stati-
cally predicting the impact of individual compiler optimizations and the aggre-
gate impact of a collection of optimizations is becoming increasingly difficult.

Currently, optimization of high-end computing applications is done manually
in an ad-hoc manner. A recent strategy to address this complexity and improve
performance employs empirical optimization, to systematically evaluate a collec-
tion of automatically-generated code variants and parameter values [7,3]. Code
variants, in this context, are alternative but equivalent implementations of the
same computation. For a particular variant, there may additionally be optimiza-
tion parameters such as unroll factors and tile sizes. Rather than estimating
performance through analysis, implementation variants are actually executed on
the target architecture with representative input data sets across different pa-
rameter values so that performance can be measured and compared. However a
recent paper [8] showed that the model-driven approach on Matrix Multiply can

� This work has been supported by NSF grants ACI-0204040 and CSR-0509517.

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 433–440, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

434 C. Chen et al.

yield comparable performance with ATLAS [7], suggesting that the compiler-
derived model may be able to limit the search space.

In a previous paper, we demonstrated that combining the strengths of models
with empirical search can yield better performance than either ATLAS or hand-
coded BLAS [1]. For memory hierarchy optimization, finding a set of variants and
parameters that result in high performance is difficult because of the complex
tradeoffs among memory hierarchy levels. In addition, the search space is difficult
to model analytically since performance can vary dramatically with problem size
and optimization parameters. Empirical results can help the compiler tune the
accuracy of its models and select the best candidate implementations. A purely
empirical approach is not practical in general because the search space of possible
variants and their parameters is prohibitively large. A compiler’s understanding
of the impact of code transformations on performance can be used to limit the
search space and rule out the vast majority of inferior implementations.

This paper explores the parameter search in an effort to develop a systematic
and generalizable approach that goes beyond our memory hierarchy optimiza-
tion strategy. Realizing that many compiler optimizations require some sort of
heuristic-based search, we consider the suitability of AI search techniques. Al-
though compiler researchers have begun to apply elements of AI to their work
[2,5,6], no principled methodology yet exists. We believe a formal framework will
enable compiler developers and application programmers to move away from ad-
hoc approaches toward a principled process of design.

The remainder of the paper is organized as follows. Section 2 illustrates the
problem of optimizing for multiple levels of the memory hierarchy and describes
our framework. Section 3 formalizes the search problem as a multi-variable op-
timization problem. Finally, Section 4 concludes the paper.

2 Guided Empirical Search for the Memory Hierarchy

Achieving high performance on today’s architectures with deep memory hier-
archies requires considering the overall performance impact of individual opti-
mizations. In [1] we proposed an approach for simultaneously optimizing across
all levels of the memory hierarchy using a combination of compiler analysis,
architecture models and a guided empirical search for optimization parameters.

Figures 1 (a) and (b) show the original matrix multiply and a parameterized
code variant derived by applying several optimizations (loop interchanging, un-
rolling, tiling, data copying and data prefetching). The optimized code variant
in (b) has a set of parameters {UI , UJ , TI , TJ , TK , PP,K} where UI and UJ

are unroll factors, TI , TJ , TK are tile sizes and PP,K is the prefetch distance of
array P in loop K. We executed this optimized code variant on an SGI Octane
R10000 using five distinct parameter sets (details in [1]). The best performance
was achieved using a set of parameters that did not result in either the lowest
cache miss ratios, or the lowest number of memory accesses or the best TLB
behavior. Instead, the best performance was achieved by exploiting reuse at all

A Systematic Approach to Model-Guided Empirical Search 435

DO K = 1,N
DO J = 1,N

DO I = 1,N
C[I,J] += A[I,K]*B[K,J]

(a) Original Matrix Multiply

new P[TK,TJ]
new Q[TI,TK]
DO KK = 1,N,TK

DO JJ = 1,N,TJ
copy B[KK..KK+TK-1,JJ..JJ+TJ-1] to P
DO II = 1,N,TI

copy A[II..II+TI-1,KK..KK+TK-1] to Q
DO J = JJ,min(JJ+TJ-1,N),UJ
DO I = II,min(II+TI-1,N),UI

load C[I..I+UI-1,J..J+UJ-1] into registers
DO K = KK,min(KK+TK-1,N)

prefetch P’s
multiply Q’s and P’s to registers

store C[I..I+UI-1,J..J+UJ-1]

(b) Optimized Matrix Multiply

Fig. 1. Matrix Multiply

Fig. 2. Optimization framework

levels of the memory hierarchy, trading off best performance at any particular
level for locality at all levels.

The remainder of this section presents a summary of our framework, which
is organized into two main phases (Figure 2). In the first phase the compiler
generates a set of parameterized code variants. The second phase is a search
among parameter values for each code variant, guided by models and heuristics.

Phase 1: Generate Parameterized Variants using Models. The code gen-
eration algorithm systematically applies individual transformations based on
analysis and models (the details of the algorithm can be found in [1]). The
compiler uses dependence analysis to determine the legality of code transforma-
tions, locality analysis to evaluate data reuse and select specific locality opti-
mizations, register reuse analysis to estimate register pressure, etc. The models
include register, cache and TLB models and also incorporate various heuristics
for those optimizations. Along with each code variant, the compiler generates a
set of constraints for the optimization parameters, which are used in the second
phase to guide and prune the search. Table 1 shows the code transformations
and parameters used by the algorithm. The fourth column indicates whether
a transformation results in more than one code variant. For example, for loop
permutation the algorithm may generate multiple code variants, each with a
different loop order, if it cannot decide which order is best statically. Other
transformations, such as loop tiling, do not increase the number of variants, but
result in code variants with unbound parameters, as illustrated in the table’s
last column.

436 C. Chen et al.

Table 1. Transformation variants and parameters

Transformations Definition Goal Variants Parameters
Loop
permutation Change loop order Enable U&J, tiling

Reduce TLB misses
Different loop
orders

-

Unroll and
Jam

Unroll outer loops,
fuse inner loops

Reuse in registers - Unroll
factorsScalar

replacement

Replace array
accesses with
scalar variables

Tiling Divide iteration
space into tiles Reuse in cache - Tile sizes

Data copying
(w/tiling)

Copy subarray
into contiguous
memory space

Avoid conflict
misses and
TLB thrashing

Yes/no on
specific data
structures

-

Prefetching Prefetch data
into cache

Hide memory
latency

- Prefetch
distances

Phase 2: Search for Parameter Values. In this phase, a guided empirical
search performs a series of experiments to derive parameter values for each code
variant. In addition, code transformations that depend on parameter values are
applied during this phase. The resulting code variants are then compiled and
executed on the target machine. The search engine uses metrics collected by
performance monitoring tools to evaluate the quality of a code variant with a
given set of parameter values.

In [1] we use compiler domain knowledge about specific optimizations to
search the parameter space efficiently. In the next section we discuss how to
approach the search for parameter values systematically and explore this problem
in a broader context.

3 Systematically Searching the Parameter Space

The goal of this section is to provide insight into a systematic solution to Phase 2,
searching for integer parameter values of code variants to select the best variant
and parameter set. Before discussing search techniques, we describe aspects of
the search that can be captured by search algorithms to expedite the search
and lead to high-quality solutions. We use the memory hierarchy optimization
problem to make the discussion more concrete. The search for a set of parameter
values leading to the best performance can be expressed as a function of several
features, which are specified by the compiler:

Search = {Parameters, Constraints, Dependence, Ordering, Starting Points}
Set of parameters. In the case of memory hierarchy optimization, let us

assume we are optimizing a single n-deep loop nest.1 Then the following set of
parameters is associated with each variant:

1 Without loss of generality, if the code has multiple loop nests, each nest will have such
a set of parameters associated with them. For simplicity we treat them independently
in this discussion.

A Systematic Approach to Model-Guided Empirical Search 437

– UL1, . . . , ULn: unroll factors for each loop in an n-deep loop nest.
– TL1, . . . , TLn: tile sizes for each loop in an n-deep loop nest.
– PA1,L1, . . . , PA1,Ln, . . . , PAm,Ln: prefetch distances for arrays A1 through

Am within the loop nest.

Set of constraints on integer values. Phase 1 provides a set of con-
straints for each unbound parameter of a code variant.2 For example, when
unroll-and-jam is applied to multiple loops the unroll factors should be such
that reuse is maximized while satisfying the register capacity constraints. In
general, a constraint on unroll factors due to register capacity can be expressed
as

∑M
i=1 ai1 ∗U1 ∗ ai2 ∗U2 ∗ . . . ∗ an ∗Uin ≤ R, where aij are constants, M is the

number of array references in the loop nest and R is register file size. Similarly,
tile sizes should be such that the tile footprint fits in cache, and a constraint on
tile sizes can be expressed as an inequality involving the product of the tile sizes
of each loop. These constraints prune off uninteresting portions of the search
space, and keep the search focused on the area of the search space most likely
to achieve the best results.

Dependence between parameters. Parameters that appear on a same con-
straint are considered interdependent and are evaluated as a set. Unroll factors
of multiple loops may appear in a same constraint due to register capacity, and
are considered interdependent. Similarly, tile sizes of multiple loops may appear
in one or more constraints related to cache capacity. Unroll factors and tile sizes
are considered independent from each other, based on the knowledge that reuse
in registers and caches are complementary as long as the unroll factor of each
loop in the original loop nest does not exceed the tile size of that same loop.

Ordering of parameter selection. In general, optimization parameters
may be inter-related, and the order in which they are evaluated may impact the
search results. Compiler domain knowledge can be used to determine a search
ordering for parameters that are considered independent. In memory hierarchy
optimization the benefits from unroll-and-jam and scalar replacement are typ-
ically much higher than those of tiling and copying: reuse in registers reduces
the number of memory operations, while reuse in cache reduces only the latency
seen by the processor. Similarly, tiling reduces number of accesses to memory,
while prefetching hides the memory latency. Therefore, the search for unroll fac-
tors precedes the search for tile sizes, which in turn precedes selecting prefetch
distances. Since prefetching may displace data from the cache, tiling parameters
may need to be adjusted after prefetch parameters are determined.

3.1 A Systematic Search Space

Given the previous discussion, a systematic approach could search for parame-
ter values using the specified ordering of parameters, and within the specified
constrained range. Although much of the search space has been pruned away,
there still remains a fairly large number of points to search.
2 Parameters that are set to their default values at Phase 1 indicate that an optimiza-

tion should not be performed. The default values for unroll factors, tile sizes and
prefetch distances are 1, 1, and 0, respectively.

438 C. Chen et al.

In the following we discuss how to incorporate domain knowledge in a system-
atic search for parameter values, using the parameter space of the code variant
shown in Figure 1(b) as an example.3

Figure 3 shows a tree representation of the parameter space of the code variant
in Figure 1(b). The parameters of this code variant are the unroll factors UI ,
UJ and UK , the tile sizes TI , TJ and TK , and the prefetch distance of array
P in loop K, PP,K . The evaluation function is measured execution time. Each
tree level, except the root, corresponds to a set of interdependent parameters. In
this example the second level corresponds to unroll factors, the third level to tile
sizes and the fourth level to the prefetch distance PP,K . On a given level, each
node corresponds to a set of integer values for the parameters associated with
that level. For example, each node at the second level corresponds to a set {UI ,
UJ , UK} where 1 ≤ UI , UJ , UK ≤ R, and R is the number of registers available.
Hence each node is a partial set of parameters for the code variant. Selecting a
set of parameters corresponds to finding a path, from root to a leaf node, such
that the performance of the variant with the complete set of parameter values
in this path is maximized.

This tree representation incorporates some of the compiler’s domain knowl-
edge discussed in the previous section.

Dependence: In Figure 3 each node in the second level represents a set of
interdependent unroll factors and each node in the third level represents a set
of tile sizes. Unroll factors and tile sizes are considered independent from each
other and are represented as different levels of the tree.

Ordering: The search tree has three levels, with parameters that have great-
est impact on performance at the highest levels. Thus the compiler’s domain
knowledge about the effect of optimizations on performance is captured by the
order implied by the levels. Therefore the search for unroll factors is performed
before selecting tile sizes, which is performed before selecting prefetch distances.
If prefetching is found to be profitable the tree representation allows the search
to backtrack to a previous solution. For example, the search can explore solutions
with a larger tile size for the loop in which prefetches are inserted, to increase
the amount of latency that can be covered so that prefetches are effective.

Pruning the parameter space: Constraints derived at Phase 1 are used
to prune the search. In Figure 3 all second-level nodes < UI = R, UJ ≥ 2, . . . >
violate the constraint UI ∗ UJ ∗ UK ≤ R. Therefore all subtrees rooted at these
nodes can be pruned. In addition, known properties of optimizations are used
to guide and prune the search. For example, the amount of reuse exposed by
unroll-and-jam increases with the unroll factors, until there are no more registers
available and register spilling occurs. Hence when a set of unroll factors U =<

3 Additional domain knowledge for guiding the search is the subject of future work,
which may include: providing a direction for the search (upward, downward) based
on estimated upper and lower bounds for a parameter; providing a step size for
traversing a given range (such as tile sizes should be a multiple of the cache line size);
exploiting characteristics of transformations (such as reuse increases monotonically
with each unroll factor).

A Systematic Approach to Model-Guided Empirical Search 439

pr
un
ed

by
U I
*U J

*U K
<=
RUI=1

UJ=1
UK=1

UI=1
UJ=1
UK=2

UI=1
UJ=1
UK=R

UI=1
UJ=2
UK=1

TI=1
TJ=1
TK=1

TI=1
TJ=1
TK=C

UI=R
UJ=1
UK=1

TI=1
TJ=1
TK=2

PP,K=1 PP,K=2 PP,K=3

root

pruned by TK>=UK

pr
un
ed

by
P P,

K
<=
T K

UI=1
UJ=2
UK=R/2+1

Fig. 3. Parameter space

U1, U2, . . . , Un > results in a decrease in performance due to register spilling, all
sets V =< V1, V2, . . . , Vn > such that Vi ≥ Ui can be pruned.

Starting points: At present, we use models to suggest a starting point for
parameter values, based on the model’s estimate of the optimal solution, and
provide stopping criteria by estimating bounds for the performance of the opti-
mized code variants.

3.2 AI Search Techniques

A multi-variable optimization problem, such as the one we are considering, can
be cast as a search problem. The field of Artificial Intelligence (AI) has devel-
oped various search techniques for solving complex, multi-parameter optimiza-
tion problems, which are characterized by very large and rough parameter land-
scapes. Search starts at some point in the parameter search space and progresses
until a solution (a maximum in the objective function, such as performance) is
found. Exhaustive algorithms, such as depth-first and breadth-first for searching
trees, that evaluate every point in the parameter search space cannot be applied
in practice due to the size of the search space. Methods such as hill climbing
often fail due to roughness of landscape (that is, the existence of many local
maxima). To address these issues, random and heuristic search algorithms have
been developed [4].

Random search algorithms explore small neighborhoods of the search space
at different points throughout the parameter space, keeping track of the quality
of the solutions found. Typically, the search is terminated after some time when
only a small portion of the search space has been explored. The resulting solution,
while rarely the best, is often a good enough solution. Random algorithms such
as GSAT have been shown to successfully solve hard optimization problems.

Heuristic search introduces a function that evaluates the quality of the so-
lution. The main differences between random and heuristic search techniques
are how the parameter space is explored and how the quality of a solution is
evaluated. Heuristic hill climbing only explores a local neighborhood of current

440 C. Chen et al.

solution for better solution. In effect, the search is guided to a local maximum.
Simulated annealing and genetic algorithms typically choose a new solution at
random, thus avoiding being stuck in local maxima. Simulated annealing in par-
ticular first samples many points in the parameter space randomly, then settles
down for finer local search in the best neighborhood. Best-first search algorithms,
on the other hand, choose a new point in the path to the best solution based
on a heuristic, or an evaluation function. A* algorithm is a best first algorithm
that includes the cost of getting to the current point in the parameter space in
its evaluation function. Backtracking, or returning to a previous best solution,
can be implemented to continue exploration of profitable paths while avoiding
getting stuck in dead ends.

In future work, we plan to evaluate this set of AI search techniques to identify
the contribution of domain knowledge to speeding up the search process, and
compare the resulting code quality when search time is constrained.

4 Conclusion

This paper shows how the problem of optimizing for multiple levels of the mem-
ory hierarchy can be recast as a multi-variable optimization problem. We for-
malized our approach as an AI search problem and identified search algorithms
suitable for our optimization problem. We feel this work is an important first
step in a general strategy for developing a principled approach to solving complex
multi-variable optimization problems in a compiler, such as managing locality
and communication in parallel codes.

References

1. C. Chen, J. Chame, and M. W. Hall. Combining models and guided empirical search
to optimize for multiple levels of the memory hierarchy. In Proc. of the International
Symposium on Code Generation and Optimization, Mar. 2005.

2. K. D. Cooper, P. J. Schielke, and D. Subramanian. Optimizing for reduced code
space using genetic algorithms. In Proc. of the Workshop on Languages, Compilers,
and Tools for Embedded Systems, May 1999.

3. M. Frigo. A fast Fourier transform compiler. In Proc. of the Conference on Pro-
gramming Language Design and Implementation, May 1999.

4. N. J. Nilsson. Artificial Intelligence: A New Synthesis. Morgan Kaufman, San
Francisco, CA, 1998.

5. M. Stephenson, S. Amarasinghe, M. Rinard, and U. O’Reilly. Meta optimization:
Improving compiler heuristics with machine learning. In Proc. of the Conference on
Programming Language Design and Implementation, June 2003.

6. X. Vera, J. Abella, A. González, and J. Llosa. Optimizing program locality through
CMEs and GAs. In Proc. of the International Conference on Parallel Architectures
and Compilation Techniques, Sept. 2003.

7. R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical optimization
of software and the ATLAS project. Parallel Computing, 27(1–2):3–35, Jan. 2001.

8. K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, and P. Stodghill.
Is search really necessary to generate high-performance BLAS? Proceedings of the
IEEE, 93(2):358–386, Feb. 2005.

An Efficient Approach for
Self-scheduling Parallel Loops on

Multiprogrammed Parallel Computers

Arun Kejariwal1, Alexandru Nicolau1, and Constantine D. Polychronopoulos2

1 Center for Embedded Computer Systems
University of California at Irvine

Irvine, CA 92697, USA
arun kejariwal@computer.org, nicolau@cecs.uci.edu

http://www.cecs.uci.edu/
2 Center for Supercomputing Research and Development

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA
cdp@csrd.uiuc.edu

http://www.csrd.uiuc.edu/

Abstract. Clusters and grids have increasingly become standard plat-
forms for high performance computing as they provide extremely high
execution rates with great cost effectiveness. Such systems are designed
to support concurrent execution of multiple jobs. It calls for multipro-
grammed scheduling of the different jobs for effective system utiliza-
tion and for keeping average response times low. Although a significant
amount of work has been done in scheduling parallel jobs on multipro-
cessor systems, the problem of scheduling parallel tasks of an individual
job on a multiprogrammed parallel system has not been given enough
attention so far. In this paper, we present a dynamic scheduling tech-
nique for scheduling iterations of a DOALL loop (of a single application)
to achieve load balance between a given set of processors. Experimental
results show the effectiveness of our approach.

1 Introduction

Although multiprogramming allows to better service multiple users, it also
greatly complicates the scheduling process. This can be attributed to the space-
time sharing of processors by the different jobs and the trade-off between the
different performance metrics. Several techniques have been proposed for job
scheduling with different objectives such as minimizing average mean response
time, minimizing makespan, minimizing the tardiness [1,2]. Similarly, the im-
pact of other parameters such as knowledge of job service demands, variability
of job parallelism, preemption of jobs on performance of scheduling policies has
also been investigated [3]. However, from the standpoint of performance of an
individual job, the impact of the dynamics of a multiprogrammed system on the
scheduling of parallel tasks of a single job has not been given enough attention.

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 441–449, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

442 A. Kejariwal, A. Nicolau, and C.D. Polychronopoulos

One of the critical problems to be addressed in this context is how to efficiently
allocate the parallel tasks amongst a given set of processors so as to distribute
the computational load as evenly as possible, in order to minimize the maximum
completion time.

In this paper, we address the problem of minimizing the maximum comple-
tion time of DOALL [4] loops. We model the problem as a task allocation problem
wherein at any scheduling step, given a set of idle processors, one or more itera-
tions are allocated to each processor. The key consideration in task allocation is
the selection of the task size, i.e., the number of iterations constituting a task.
While a small task size incurs significant scheduling overhead, a large task size
results in load imbalance. Thus, the task allocation problem naturally reduces to
determining the optimal task size in order to minimize the total execution time.
Several static scheduling schemes have been proposed for the above, however,
these do not perform well in a multiprogramming environment. Similarly, sev-
eral dynamic scheduling schemes have been proposed to perform task allocation
on the “on-the-fly” wherein one or more iterations are assigned to a processor
whenever it becomes available. However, run-time scheduling overhead becomes
a critical factor in the context of dynamic scheduling and can potentially account
for a significant portion of the total execution time [5]. Thus, the idea is to avoid
the use of the operating system in order to minimize the scheduling overhead, by
instrumenting the code corresponding to the parallel loop such that the proces-
sors perform scheduling by themselves at run-time. Self-scheduling [6] exemplifies
this philosophy where task size is determined by the processors themselves rather
then by the operating system or a global control unit.

Several self-scheduling techniques have been proposed for scheduling parallel
loops [7]. The computation of the task size (or chunk size) at any scheduling step
(from hereon, we shall use the term chunk size, instead of task size, for literary
consistency) in each is based on the number of remaining iterations. It assumes
the availability of a “fixed” number of processors. However, the latter is not valid
in context of multiprogramming. This can potentially give rise to “gaps” in pro-
cessor availability, i.e., a processor may not be continuously available to the same
job. For example, in Figure 1 processor P2 is not available for t ∈ (750, 850). The
effect of varying number of processors and the presence of gaps on self-scheduling
is not well understood. In this paper, we propose a novel scheduling technique,
referred to as Gap-Aware Self-Scheduling (GAS), to capture the effect of pres-
ence of gaps in processors availability on self-scheduling. At each scheduling step,
GAS computes the chunk size based on the number of remaining iterations and
gaps in processor availability. We show that gap-aware computation of chunk
size helps achieve load balance between the different processors.

The rest of the paper is organized as follows. In the next section, we present the
motivation behind this work. In Section 3, we present our approach for dynamic
scheduling of parallel loops on multiprogrammed parallel processor systems. Ex-
perimental setup and results are presented in Section 4.

An Efficient Approach for Self-scheduling Parallel Loops 443

P1

P2

Gap

P1

P2

Gap

11000 250 750 850 0 250 750 850

b)a)

1000

Others

time

Optimal

time

Fig. 1. a) Schedule obtained from the existing techniques; b) Optimal Schedule

2 Motivation

Though it is fairly intuitive that gaps reduce the degree of parallel execution,
the impact of gaps on load balance between the processors is not obvious. In
this work, we study the latter. From hereon, we shall consider only those gaps
which can potentially result in load imbalance. Conditions for the existence of
such gaps are discussed in detail in [8]. We argue that it is important to account
for such gaps during the scheduling of parallel tasks — iterations of a (nested)
parallel loop in our case.

For example, consider the schedules shown in Figure 1, where the length of a
block represents the size of a chunk allocated to a processor at a given scheduling
step. For simplicity, we assume that each iteration takes a unit amount of time.
In Figure 1(a), we note that 250 iterations are allocated to processor P2 at
t = 850 regardless of the gap for t ∈ (750, 850). Clearly, this results in uneven
finishing times. On the other hand, the optimal schedule is shown in Figure 1(b)
where the 250 iterations are distributed amongst the two processors to yield even
finishing times. From above, we learn that it is critical to modulate the chunk
size in presence of gaps in order to achieve better load balance.

3 The Approach

In this section we present the algorithm for our approach — Gap-Aware Self-
Scheduling (GAS). Although several models have been proposed for work queues,
viz., global, local and hybrid, in context of self-scheduling, we adopt the model
proposed by Polychronopoulos and Kuck in [9] owing to its simplicity. Note that
model selection per se is orthogonal to the concerns we address in this paper.
The algorithm is designed for non-preemptive scheduling, whereby a chunk, once
assigned to a processor may not be removed until it has finished execution. The
design of our approach is guided by the following: a) how to capture the effects of
gaps in processor availability; b) how to select Wmin, i.e., the minimum workload
per chunk; and c) how to minimize the synchronization overhead between the
processors. The rest of the section describes the different phases of our scheduling
algorithm.

444 A. Kejariwal, A. Nicolau, and C.D. Polychronopoulos

3.1 Determining the Gap Factor

As illustrated in Section 2, gaps in processor availability play a critical role in load
balancing and directly relate to the efficiency of a dynamic scheduling scheme.
In order to capture the effects of gaps on the performance of a self-schedule, we
define a displacement factor, denoted by α, for online modulation of the chunk
size. Let tlast denote the finishing time of the most recently completed chunk
(on any processor) and let tfirst denote the earliest finishing time of any chunk
under execution (on any processor). At a given time instant t, the displacement
factor is computed as follows:

α(t) =

{
t−tlast

tfirst−tlast
∃ a gap at time t

0 otherwise
(1)

Intuitively, the displacement factor is a measure of the length of a gap w.r.t.
the earliest finishing time of all the currently active processors. Arguably, one
could potentially use α as the modulation factor. However, from Equation 1 we
observe that when t = tlast, α = 0. Thus, in this case the chunk size is reduced
to zero. Consequently, α in itself cannot be used for chunk size modulation. In
order to alleviate the problem, we define a gap factor as a function of α, denoted
by β(α), and is computed as follows:

β(α) = aα2 + bα + c (2)

Let us now revisit Equation 1 to study the behavior of α as t → tfirst (by
definition, t 	= tfirst) as it is required to derive the boundary conditions for β.

lim
t→tfirst

t− tlast
tfirst − tlast

= 1 ⇒ α(t → tfirst) = 1 (3)

From Equation 2, we deduce that when α = 0, β = 1 and when α → 1 (refer
to Equation 3), β → 1. Note that the above conditions are compliant with the
existence conditions of a gap [8] which form the very basis of online chunk size
modulation. To summarize,

β = 1, when α = 0 and α = 1

Further, we assume that β = 0.5 when α = 0.5. Solving for a, b and c using the
above conditions yields the following:

β = 2α(α− 1) + 1 (4)

3.2 Determining the Chunk Size

Markatos and LeBlanc showed that load imbalance is the prime factor govern-
ing the efficiency of a self-schedule [10]. The extent of load imbalance introduced
depends on the amount of workload allocated relative to the amount of remain-
ing workload. At any point in time, the amount of workload assigned to each

An Efficient Approach for Self-scheduling Parallel Loops 445

processor1 should be chosen such that the remaining workload is “sufficient” to
balance the workload evenly, i.e., the difference in finishing times of the proces-
sors (at the end of the schedule) is minimal. With the above goal, we now derive
the expression for the chunk size, denoted by Λ. In general, at any given time
instant t in a self-schedule, the chunk size is defined as a multivariate function
f , as given below:

Λ(t) = f(WR(t), P, (tfirst − t), β, Wmin) (5)

where WR(t) denotes the number of remaining iterations at time t and Wmin
denotes the minimum chunk size. In the rest of this subsection, we follow a
step-by-step approach to derive the expression for chunk size.

A modified form of Λ (w.r.t. the one proposed in guided self-scheduling by
Polychronopoulos and Kuck [9]) is given by:2

Λ(t) =
⌈

WR(t)
1.5P

⌉
(6)

However, the chunk size as defined above can potentially increase the scheduling
overhead as illustrated by the following example.

Example 1. Consider a (coalesced) parallel loop with 3000 iterations with iden-
tical workloads and a system of two processors P1 and P2, where P1 is available
at t = 0 and P2 is available at t = 200 in case a) and at t = 900 in case b).
For simplicity of exposition, we assume that there do not exist gaps in processor
availability.

P1

P2

time

0 1000200 867

(a)

P1

P2

time0 900 1000

(b)

Fig. 2. Example partial schedules

Consider the partial self-schedule shown in Figure 2(a). From the figure, we
observe that at t = 200, P2 is assigned only 667 iterations. This implies that
P2 would finish before P1 finishes and would result in “early” rescheduling of
P2. Clearly, this incurs additional scheduling overhead without any increase in
parallel execution. In order to alleviate the above, we propose to “delay” the
rescheduling of P2 by allocating 800 iterations at time t = 200. In such cases, we
argue to allocate (tfirst − t) number of iterations. This minimizes the number of
allocation points without loss in parallel execution.

1 Recall that multiple processors may be available at the same time.
2 For derivation of Equation 6, the reader is referred to [8].

446 A. Kejariwal, A. Nicolau, and C.D. Polychronopoulos

However, as t → tfirst the above strategy may result in allocation of small
chunks which adversely affects the performance of a self-schedule [9]. For ex-
ample, consider the partial schedule shown in Figure 2(b), where P2 is avail-
able at time t = 900. In this case, we assign 667 iterations to P2 instead of
100 (= tfirst − t) iterations so as to minimize the number of allocations, thereby
reducing the scheduling overhead.

Based on the discussion of Example 1 we refine the expression for computation
of chunk size (given in Equation 6) to balance the trade-off between maximizing
parallel execution and minimizing scheduling overhead. For this, we introduce a
new parammeter called lag, as defined below:

lag(t) =

{
tfirst − t ∃ a gap at time t

0 otherwise
(7)

The modified expression for chunk size is given as follows:

Λ(t) = max
(

lag(t),
⌈

WR(t)
1.5P

⌉)
(8)

Equation 8 implicitly assumes that for all t in a self-schedule tfirst − t < WR. It
is easy to see that the same is valid for P ≥ 2 as at any scheduling step less than
half of the remaining number of iterations are allocated. Next, we incorporate
the effect of existence of gaps in processor availability in the expression for chunk
size.

Λ(t) = max
(

lag(t),
⌈

β WR(t)
1.5P

⌉)
(9)

The exponential decrease of chunk size during self-scheduling results in
scheduling of individual iterations towards the end of the schedule. The lat-
ter incurs high scheduling overhead. In order to alleviate this the chunk size is
restricted to a pre-defined quantum, denoted by Wmin (for further details the
reader is referred to [9]). We further refine the expression of chunk size to capture
Wmin and is given as follows:

Λ(t) = max
(

Wmin, max
(

lag(t),
⌈

β WR(t)
1.5P

⌉))
(10)

The parameter Wmin is application and input data dependent. The selection of
an appropriate value for Wmin is critical for the existing self-scheduling schemes.
While a small value of Wmin may result in scheduling of individual iterations
(irrespective of their workload) at the end which may incur significant synchro-
nization overhead, whereas a large value of Wmin may lead to load imbalance. A
formal description of the algorithm for GAS is presented as Algorithm 1.

The discussion in this subsection so far has been based on the assumption
that iterations have equal workloads (or execution times). However, the workload

An Efficient Approach for Self-scheduling Parallel Loops 447

Algorithm 1. Gap-Aware Self-Scheduling

Input : A N-dimensional iteration space Γ and P processors. Note that at any given
time instant, all the processors may be available.

Output : A near-optimal dynamic schedule of Γ w.r.t. load balance amongst the
different processors and schedule length.

repeat
/* Self-schedule the remaining iterations at time t */

pf ← 0

Compute lag(t) using Equation 7

Compute the gap factor β(t) using Equation 4

Compute the chunk size Λ(t) using Equation 10

for each available processor do

Compute index range for each processor

Assign the corresponding iterations to the processor

pf ← pf + 1

end for

/* Update the remaining workload */

W ← W − Λ(t) × pf

until W > 0

of individual iterations may differ from each other when there are conditional
statements in the loop; even otherwise, their workloads may differ due to sys-
tem variations such as data access latency, network interference and operating
system. Even in such cases, our gap-driven chunk size modulation approach is
still applicable. A detailed discussion of this beyond the scope of this paper.

4 Experiments

We implemented a simulator to compare the performance of GAS with the “up-
per algorithm” of the adaptive self-tuning scheduling scheme [11] (referred to
as HLS in the rest of the paper). For our experiments, we extracted kernels
(parallel nested loops) from LAMMPS [12] (a classical molecular dynamics code
designed to simulate systems at the atomic and molecular level) and DAKOTA
[13] (a design analysis kit for optimization and terascale applications). The exe-
cution time of the loops was determined via profiling. A random generator was
used for dynamic processor allocation; random numbers are generated using a
uniform distribution. The simulator supports uneven start times of the proces-
sors. Further, it also accounts for the synchronization overhead. Processors are
assumed to access the shared variables, in our case loop indexes, using appro-
priate synchronization primitives. A maximum of 2000 processors was assumed

448 A. Kejariwal, A. Nicolau, and C.D. Polychronopoulos

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

L10L9L8L7L6L5L4L3L2L1

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Loops

HLS
GASS

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

L10L9L8L7L6L5L4L3L2L1

N
or

m
al

iz
ed

 S
yn

ch
ro

ni
za

tio
n

O
ve

rh
ea

d

Loops

HLS
GASS

(b)

Fig. 3. a) Performance comparison; b) Synchronization overhead

as commonly found in clusters and grids. Recall that at any given scheduling
step, the number of processors available is not fixed. The loops were dynamically
scheduled using Algorithm 1.

Figure 3(a) presents a performance comparison between HLS and GAS. The
execution times were computed as an average of execution times of 10 simulation
runs with different processor availability configurations. From the figure, we note
that our approach achieves a speedup of 10–15%. As explained earlier, the speed
up can be attributed to the better load balance between the different processors
which facilitates higher degree of parallel execution. In addition, it enables better
processor utilization.

From Figure 3(b) we observe that the GAS incurs 3% (on an average) synchro-
nization overhead. It can be attributed to the overhead incurred in online update
of the expected workload of the remaining iterations. However, the performance
gain obtained by online chunk size modulation outweighs the synchronization
overhead.

References

1. R. W. Conway, W. L. Maxwell, and L. W. Miller. Theory of scheduling. Addison-
Wesley, Reading, MA, 1967.

2. D. G. Feitelson. A survey of scheduling in multiprogrammed parallel systems.
Technical Report RC 19790(87657), IBM T. J. Watson Research Center, February
1995.

3. S. Majumdar, D. L. Eager, and R. B. Bunt. Scheduling in multiprogrammed
parallel systems. In Proceedings of the 1988 ACM SIGMETRICS conference on
Measurement and modeling of computer systems, pages 104–113, Santa Fe, NM,
1988.

4. S. Lundstrom and G. Barnes. A controllable MIMD architectures. In Proceedings of
the 1980 International Conference on Parallel Processing, St. Charles, IL, August
1980.

5. C. P. Kruskal and A. Weiss. Allocating independent subtasks on parallel processors.
IEEE Transactions on Software Engineering, 11(10):1001–1016, 1985.

An Efficient Approach for Self-scheduling Parallel Loops 449

6. B. J. Smith. Architecture and applications of the HEP multiprocessor computer
system. In Proceedings of SPIE - Real-Time Signal Processing IV, pages 241–248,
1981.

7. A. Kejariwal and A. Nicolau. Reading list of self-scheduling of parallel loops.
http://www.ics.uci.edu/∼akejariw/SelfScheduleReadingList.pdf.

8. A. Kejariwal, A. Nicolau, and C. D. Polychronopoulos. Accounting for “Gaps” in
processor availability during self-scheduling of parallel loops on multiprogrammed
parallel computers. Technical Report TR-05-14, School of Information and Com-
puter Science, University of California at Irvine, October 2005.

9. C. D. Polychronopoulos and D. J. Kuck. Guided self-scheduling: A practical
scheduling scheme for parallel supercomputers. IEEE Transactions on Comput-
ers, 36(12):1425–1439, 1987.

10. E. Markatos and T. LeBlanc. Using processor affinity in loop scheduling on shared-
memory multiprocessors. IEEE Transactions on Parallel and Distributed Systems,
5(4):379–400, April 1994.

11. Y. Zhang, M. Burcea, V. Cheng, R. Ho, and M. Voss. An adaptive OpenMP
loop scheduler for hyperthreaded SMPs. In Proceedings of the 17th International
Conference for Parallel and Distributed Computing Systems, San Francisco, CA,
2004.

12. LAMMPS. http://www.cs.sandia.gov/∼sjplimp/lammps.html.
13. DAKOTA. http://endo.sandia.gov/DAKOTA/software.html .

Dynamic Compilation for Reducing Energy
Consumption of I/O-Intensive Applications�

Seung Woo Son1, Guangyu Chen1, Mahmut Kandemir1, and Alok Choudhary2

1 Pennsylvania State University, University Park PA 16802, USA
{sson,gchen,kandemir}@cse.psu.edu

2 Northwestern University, Evanston IL 60208, USA
choudhar@ece.northwestern.edu

Abstract. Tera-scale high-performance computing has enabled scientists to
tackle very large and computationally challenging scientific problems, making
the advancement of scientific discovery at a faster pace. However, as computing
scales to levels never seen before, it also becomes extremely data intensive, I/O
intensive, and energy consuming. Amongst these, I/O is becoming a major bottle-
neck, impeding the expected pace of scientific discovery and analysis of data. Fur-
thermore, the applications are becoming increasingly dynamic in terms of their
computation patterns as well as data access patterns to cope with larger problems
and data sizes. Due to the complexities of systems and applications and their high
energy consumptions, it is, therefore, very important to address research issues
and develop dynamic techniques at the level of run-time systems and compilers
to scale I/O in the right proportions. This paper presents the details of a dynamic
compilation framework developed specifically for I/O-intensive large-scale ap-
plications. Our dynamic compilation framework includes a set of powerful I/O
optimizations designed to minimize execution cycles and energy consumption,
and generates results that are competitive with hand-optimized codes in terms of
energy consumption.

1 Introduction and Motivation

Tera-scale high-performance computing has enabled scientists to tackle very large and
computationally challenging problems, such as those found in the scientific computing
domain. This in turn helps advancement of scientific discovery at a faster pace. How-
ever, as computing scales to levels never seen before, it also becomes extremely data in-
tensive, I/O intensive, and energy consuming. Thus, I/O is becoming a major bottleneck,
slowing the expected pace of scientific discovery and analysis of data. This high I/O in-
tensiveness also means that a significant portion of the energy consumption during the
execution of high-performance applications occurs in the I/O systems. Furthermore, to
cope with larger problems and data sizes, models and applications are being designed to
be dynamic in nature. That is, the applications are becoming increasingly dynamic [8,9]
in terms of their computation patterns and data access patterns (e.g., changing smaller
structured mesh based designs to dynamic adaptive mesh refinement techniques for al-
gorithm scalability, or dynamically analyzing the data to determine interesting features

� This work is supported by NSF grants #0444158, #0406340, #0093082 and a grant from
GSRC.

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 450–457, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Dynamic Compilation for Reducing Energy Consumption 451

or events to steer computation, etc.). Due to the complexities of systems and applica-
tions, it is, therefore, very important to address research issues and develop techniques
at the level of run-time systems and compilers to scale I/O in the right proportions.
If such techniques are not developed, users will be overwhelmed with I/O bottlenecks
since the complexities of large-scale systems do not lend to manual optimizations.

Consider a typical scientific exploration process that involves large-scale simula-
tions. It usually has several phases including simulation runs, post-processing, and
analysis. The simulation phase consists of intensive computations that generate large
quantities of data. The data need to be saved quickly as they are generated so that the
computation is not slowed down because of I/O bottlenecks. In some cases, the simula-
tion can benefit from dynamic steering (which means dynamically changing I/O access
patterns), by quickly analyzing intermediate results. A subsequent phase usually re-
quires the post-processing of the simulation data. This may include transformation of
the data from one format (storage layout) to another, summarization of the data, reorga-
nization of the data at run-time to facilitate future use efficiently and most effectively.
In this phase, a large volume of data has to be read efficiently, and a large volume of
data may be generated as well. In the next phase, the analysis phase, relevant subsets
of the data need to be selected and analyzed based on the properties of the data (that
is, the processing and access patterns are data dependent and dynamic). The analy-
sis phase may require methods that discover specific patterns and relationships in the
data as well as capturing inter-relationships between the different datasets. Clearly, the
complexities of various phases and steps are tremendous, and all these phases involve
energy-consuming operations. Data read/write, processing, organization and flow are
major components and represent a major bottleneck today and for the future. An impor-
tant impact of this I/O intensiveness of large-scale applications is the increased energy
consumption on the I/O system. Frequent accesses to parallel disks, for example, can
be responsible from a significant fraction of overall power budget, as noted by several
prior studies such as [1,2].

As a result of high-level dynamic changes in the application behavior and/or data
layout, two important entities also change: data access pattern (i.e., how the datasets
are accessed – direction of access, volume of access, frequency of access, etc) and
I/O performance (e.g., the time spent in I/O activities and energy consumption on the
disk subsystem). A data-intensive application can benefit a lot if these changes in its
I/O access pattern and I/O performance can be captured and feedback to a dynamic
compiler that can re-compile the application to take the best advantage of the changing
behavior and to improve the time/energy spent in I/O.

This paper explores dynamic compilation for I/O-intensive applications. Specifically,
we present an infrastructure that contains a dynamic optimizing compiler/linker, a high-
level I/O library (called HLL), a mini database system (a metadata manager), and a
layout manager that together manage a parallel, hierarchical storage system The frame-
work provides I/O-optimized access to datasets regardless of the type of the media
they currently reside on, what their storage layouts are, or where the media is located.
Where/how the datasets are stored and in what type of media they are stored are hid-
den from the user. This allows the user applications to access a dataset the same way
regardless of its current location and storage layout. The compiler, the HLL, the mini

452 S.W. Son et al.

database, and the layout manager cooperate to maintain this uniform storage system
view. While the dynamic compilation framework discussed in this paper can be used
for optimizing both performance and power/energy, in this paper we focus exclusively
on energy reduction on the I/O system.

The rest of this paper is organized as follows. Section 2 discusses the major compo-
nents of our system at a high-level. Since the main focus of this paper is the dynamic
compiler, Section 3 focuses on the compiler alone and discusses the suite of I/O op-
timizations it employs. Finally, Section 4 concludes the paper with a summary of our
major contributions.

2 Dynamic Compilation Infrastructure

Figure 1 illustrates the major components of our dynamic compilation framework for
I/O-intensive parallel applications. The storage system is assumed to be a parallel, hier-
archical storage architecture that has typically a disk-based layer such as NAS (Network
Attached Storage) [10] or SAN (Storage Area Network). We also assume that there is
a tertiary storage (tape system) that serves as the next level in the storage hierarchy. In
this storage architecture, the most critical issue is to schedule and coordinate accesses
to data, and manage the data-flow between the different components. We assume that
this storage system is used by parallel applications.

Fig. 1. High-level view of the dynamic compilation approach

The main goal of the dynamic compilation support discussed in this paper is to iden-
tify and implement various I/O optimizations dynamically using the features provided
in the HLL. The HLL’s capabilities include an interface that facilities the propagation
of I/O access patterns and hints for run-time optimizations. Furthermore, to take ad-
vantage of the past access patterns from the application, the HLL makes use of a mini
database (called the metadata manager) that maintains information about the I/O access
patterns as well as relationships among datasets. This is akin to the locality concept in
memories. For example, spatial locality says that data items that are close in data space
tend to be accessed together and this locality is determined using the addresses of data
items. Our approach identifies and takes advantage of so-called dataset locality, which
indicates which datasets tend to be accessed together. The metadata stored in the mini
database contains such information, and is periodically updated during the course of
execution. The goal of the mini database is to learn and store access patterns at various
levels and maintain I/O performance statistics. It does not perform I/O in our imple-
mentation. Since the proposed analyses for dynamic compilation are oriented towards

Dynamic Compilation for Reducing Energy Consumption 453

exploiting the I/O optimizations supported by the HLL, we first explain the HLL and
briefly discuss its functionality and user interface.

The HLL allows an application to access data located in the storage hierarchy via
a simple interface expressed in terms of datasets (and arbitrary rectilinear regions of
datasets). The main difference between the HLL and the previous array-oriented run-
time I/O libraries (e.g., Passion [5,6] and Panda [12]) is that the HLL maintains the same
abstraction (dataset name) across an entire storage hierarchy, and that it accommodates
storage hierarchy-specific dynamic I/O optimizations.

The routines in the HLL can be divided into four major groups based on their func-
tionality: Initialization/Finalization Routines, Data Access Routines, Data Movement
Routines, and Hint-Related Routines/Queries. Each routine takes a processor id as one
of its input parameters, and is invoked by each participating processor. This enables the
HLL to see the global picture (which includes the I/O access pattern of each proces-
sor) in its entirety. Initialization/finalization routines are used to initialize the library
buffers and metadata structures (in the mini database), and finalize them when all the
work is done. Data access routines manage the data flow between storage devices and
memory. An arbitrary rectilinear portion of a dataset can be read or written using these
routines. Using a read routine, for example, the HLL can bring a rectangular portion of
a dataset from tape (or disk) to memory. Data movement routines are used to transfer
data between storage devices other than memory. These provide a powerful abstraction
by expressing the data movement between any storage device pair as a simple copy op-
eration; moreover, these routines work on arbitrary rectilinear portions of datasets. All
these routines also have their asynchronous counterparts that return the control to the
application code immediately (but perform the specified operation at the background).
Hint-related routines are used to pass specific hints on a given dataset to the HLL (hints
and queries are not discussed in this paper). Queries, on the other hand, are used by the
HLL to extract specific information from the mini database about the datasets such as
their current locations in the storage hierarchy, the sizes of their subfiles, etc.

The HLL contains a large set of I/O optimizations (implemented as library routines)
that can be incorporated into the application in an on-demand fashion using dynamic
linking. However, if a desired I/O optimization (for the best I/O performance and energy
savings) is not available in the HLL, the proposed dynamic compiler (that will be de-
scribed shortly) generates the optimized version by making use of the already available
routines (in the HLL).

3 Details of the Dynamic Compilation Framework

Our dynamic compiler has four major components as depicted in Figure 2: (1) dynamic
compiler; (2) dynamic linker; (3) performance tracer; and (4) steering unit. The per-
formance tracer is responsible from collecting both I/O access pattern information and
performance/energy statistics. The I/O access pattern information includes access di-
rections for data arrays (e.g., row-wise vs. column-wise accesses), whether the dataset
is accessed in the read-write mode or mostly in the read-only mode, which datasets are
accessed with temporal affinity, how frequently the datasets are accessed, and similar
information that indicates how different datasets are manipulated by the application.

454 S.W. Son et al.

Table 1. An illustration of performance optimization rules incorporated for data access strategies
for efficient I/O. The “Invoked if” column lists the conditions under which the corresponding
optimization is invoked by the dynamic compiler.

Optimization Brief Explanation Invoked if
Collective I/O (CIO) Distributing the I/O requests of different processors Access pattern of the data is different

processor among them so that each accesses as from its storage pattern, and multiple
many consecutive data as possible it involves some processors are use to access the data.
extra communication between processors.

Subfiling (SUB) Dividing large array into subarrays to reduce transfer A small subregion of a file is accessed.
latency between different levels of the storage hierarchy with high temporal locality.

The performance statistics include the number of accesses to different storage units
(e.g., tapes, disks), misses in disk/file caches, and the time spent in I/O and the energy
consumption in different storage elements.

After collecting this information from the metadata manager, the performance tracer
passes it to the steering unit (note that the performance analyzer collects only application-
specific data from the metadata manager, which keeps metadata for different entities
and applications). The main responsibility of the steering unit is to decide whether any
dynamic linking and/or compilation needs to be performed, and if so, select the most
appropriate libraries and/or optimizations to be invoked . While different triggering cri-
teria can be used for determining whether dynamic compilation/linking is necessary at
a particular point during execution, in this work we use a data structure centered ap-
proach as explained in rest of this section. As shown in Figure 2, our dynamic compiler
and linker are invoked by the steering unit.

Fig. 2. Components of the dynamic compilation framework

Table 1 lists the I/O optimizations currently supported by our dynamic compilation
framework. The second column briefly describes each optimization, and the third col-
umn gives the condition(s) under which each optimization is to be invoked dynamically
at run-time.

In collective I/O, small disk requests are merged into fewer larger requests to min-
imize the number of times the disks are accessed. While it can be used for both read
and write operations, we describe it here only for the read operations. In two-phase I/O
[6], a client-side collective I/O implementation, the processors first communicate with
each other so that each processor knows the total data that need to be read from the disk
system. In the second step, they decide what data each processor needs to read so that

Dynamic Compilation for Reducing Energy Consumption 455

the number of disk accesses is minimized. In the next step, the processors perform disk
accesses (in parallel). In the last step, they engage in interprocessor communication so
that each data item is transferred to its original requester. It needs to be noted that col-
lective I/O, where applicable, can be beneficial from the energy consumption viewpoint
since it can reduce the number of disk accesses. While it is true that it also causes some
extra interprocessor data communication, the energy incurred by these communications
is normally very small compared to the energy gains achieved on the disk system.

Our dynamic compilation analysis for collective I/O has four components: (1) De-
termining I/O access pattern to the data; (2) Determining storage pattern (layout) of the
data; (3) Comparing access and storage patterns to decide whether to apply collective
I/O or not; and (4) Modifying the code dynamically if necessary. The access pattern
information is obtained from the performance tracer, which keeps track of the dynamic
I/O access patterns. The storage pattern indicates how the data is stored in the stor-
age system, and is maintained by our metadata manager. If these two patterns do not
match collective I/O is expected to be useful and can reduce energy consumption, and
the steering unit either links the appropriate library routine (in the HLL) that imple-
ments collective I/O (if such a library routine is available), or dynamically recompiles
the application code (that is, the application code is compiled to implement collective
I/O using the existing I/O support provided by the HLL). This dynamic compilation is
confined to the relevant part(s) of the code, that is, typically the loop nest (or a set of
related loop nests) that accesses the data in question. Therefore, the energy spent during
dynamic compilation is not expected to be excessive.

It is also possible that the steering unit may decide a “storage layout (pattern) change”
for the dataset in question. This may be required in cases where the desired modifica-
tion to the application code may not preserve the original semantics of the application
(hence, it is not legal). In such cases, the steering unit advises the layout manager (see
Figures 1 and Figure 2) to change the storage layout of the data. It should be noted
that the layout manager can receive such requests from multiple applications running
concurrently on the same storage system, and since a given dataset can be accessed by
multiple applications, its layout should be modified only if it is going to be beneficial
globally (i.e., from multiple applications’ perspective). In other words, the steering unit
of our framework just makes a suggestion (considering only one application), and the
layout manager is free to obey it or not. In this paper, however, we do not evaluate the
behavior of layout optimizer.

It should be emphasized that applying I/O optimizations such as collective I/O in a
dynamic compilation/linking based setting brings some unique benefits. For example,
in many cases, the data access patterns cannot be extracted statically. Consequently, a
static compiler either cannot apply collective I/O (as it does not know the access pat-
tern) or can apply it conservatively, which means reduced energy savings. Also, in some
cases, the same data can be shared by multiple applications. It is possible that, between
two successive accesses by the same application to the same dataset, the layout of data
could be modified. In such a case, we need to change the I/O access strategy of the ap-
plication on-the-fly to take advantage of the new storage layout. Dynamic compilation
and linking allow us adapt the I/O access behavior to the current status (layout, location)
of the data.

456 S.W. Son et al.

The second optimization for which we discuss the necessary dynamic compilation
support in this paper is subfiling [11]. In many I/O-intensive applications such as ter-
rain imaging, document imaging, and visualization, although the datasets manipulated
are very large, at a given time, only small portions (regions of interest) of the datasets
are used. Unfortunately, most current solutions to large-scale data movement across
the storage hierarchies proposed by hierarchical storage management systems [7,3,4]
retrieve the entire file that contains the dataset in question. This increases latency enor-
mously, and also wastes significant bandwidth. In addition, this also increases the en-
ergy consumption significantly. For example, to satisfy a program request of 50 KB
of data, they retrieve, say, an entire 8 GB file from tape to disk. In fact, this limitation
forces the application programmers/users to break their datasets into small, individually
addressable objects, thereby cluttering the storage space and making file management
very difficult. In addition, this process is very time consuming and error-prone. Instead,
subfiling moves a minimum amount of data between storage devices when satisfying a
given program’s I/O requirements. This is achieved by breaking up the large datasets
into uniform, small-sized chunks, each of which is stored as a subfile in the storage
hierarchy. As mentioned above, if we do not employ any subfiling, a large file needs
to be transferred from tape to disk. This increases both access latency and energy con-
sumption. Therefore, subfiling is expected to bring energy benefits in both tape and
disk accesses (though in this paper we focus only on the disk energy benefits). Then,
an important job of the dynamic compilation framework is to determine the optimal
chunk size and restructure the code on-the-fly based on it. Our approach achieves this
by exploiting the data access pattern information. Specifically, the data access pattern
information gives us the type and volume of data reuse. For example, if the accesses
are localized (clustered) in small regions of the dataset, the chunk size should be kept
small; otherwise, we can use a large chunk size. It should also be observed that using
subfiling in conjunction with dynamic compilation brings an important advantage over
the static compilation-directed subfiling. If we do not use dynamic compilation, then
we are forced to select a specific chunk size (most probably based on the profile data),
generate code customized for that size, and use that size throughout the execution. In
comparison, with the dynamic compilation support, we can change the chunk size dur-
ing the course of execution, thus better adapting to the dynamic changes in the I/O
access patterns.

While dynamic compilation has the potential for improving the performance of I/O-
intensive applications and reducing their energy consumptions, it also comes with its
own costs that need to be accounted for. Therefore, our dynamic compilation frame-
work should be selective in applying I/O optimizations. However, an overly selective
compiler will not work well either as it can miss lots of optimization opportunities. Our
approach maintains cost information within the metadata manager. This cost informa-
tion consists of the time/energy overhead incurred for each I/O optimization for the last
couple of invocations. When the next time the same I/O optimization is needed, the
steering unit obtains this cost information from the metadata manager (through the per-
formance tracer) quickly, and uses it in deciding whether the optimization in question
should really be applied. A similar cost-benefit tradeoff is also carried out by the layout
manager with one major difference. Unlike the dynamic compiler (which modifies the

Dynamic Compilation for Reducing Energy Consumption 457

generated code), the layout manager modifies the storage layout of the data. And, since
a given dataset can be manipulated by different applications in different fashions, the
changes to its layout should be performed with extreme care. A further argument for
this is the fact that a typical layout change in the storage system can be much more
expensive (in terms of the number of execution cycles it takes and energy consumption)
than a typical dynamic code restructuring at run-time.

4 Concluding Remarks

This paper has presented the structure and operation of a dynamic compilation infras-
tructure that specifically targets I/O-intensive scientific applications. Focusing on the
energy benefits of dynamic compilation in this application domain, we have described
dynamic compilation framework that employs a suite of I/O optimizations, so that it
allows I/O-intensive applications to optimize energy savings.

References

1. J. Chase, D. Anderson, P. Thackar, A. Vahdat, and R. Boyle, “Managing Energy and Server
Resources in Hosting Centers,” In Proc. of the 18th Symposium on Operating Systems Prin-
ciples, pages 103-116, October 2001.

2. J. Chase and R. Doyle, “Balance of Power: Energy Management for Server Clusters,” In
Proc. of the 8th Workshop on Hot Topics in Operating Systems, page 165, May 2001.

3. L. T. Chen, R. Drach, M. Keating, S. Louis, D. Rotem, and A. Shoshani, “Efficient Organi-
zation and Access of Multi-Dimensional Datasets on Tertiary Storage Systems,” Information
Systems Journal 20(2): 155–183, 1995.

4. L. T. Chen, R. Drach, M. Keating, S. Louis, D. Rotem, and A. Shoshani, “Optimizing Ter-
tiary Storage Organization and Access for Spatio-Temporal Datasets,” In Proc. of the NASA
Goddard Conference on Mass Storage Systems, 1995.

5. A. Choudhary, R. Thakur, R. Bordawekar, S. More, and S. Kutipidi, “PASSION: Optimized
Parallel I/O,” IEEE Computer, June 1996.

6. A. Choudhary, R. Bordawekar, M. Harry, R. Krishnaiyer, R. Ponnusamy, T. Singh, and
R. Thakur, “PASSION: Parallel and Scalable Software for Input-Output,” NPAC Technical
Report SCCS-636, Syracuse, NY, September 1994.

7. R. A. Coyne, H. Hulen, and R. Watson, “The High-Performance Storage System,” In Proc. of
Supercomputing, Portland, OR, November 1993.

8. F. Darema, “Dynamic Data Driven Applications Systems: A New Paradigm for Application
Simulations and Measurements,” In International Conference on Computational Science,
pages 662–669, 2004.

9. F. Darema, “Dynamic Data Driven Applications Systems: New Capabilities for Application
Simulations and Measurements,” In International Conference on Computational Science,
pages 610–615, 2005.

10. G. Gibson and R. Van Meter, “Network Attached Storage Architecture,” Communications of
the ACM, 43(11). November 2000.

11. G. Memik, M. Kandemir, A. Choudhary, “APRIL: A Run-Time Library for Tape Resident
Data,” In Proc. of the NASA Goddard Conference on Mass Storage Systems and Technologies,
Baltimore, MD, April 2000.

12. K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett, “Server-Directed Collective
I/O in Panda,” In Proc. of Supercomputing, San Diego, CA, December 1995.

Supporting SELL for High-Performance
Computing

Bjarne Stroustrup and Gabriel Dos Reis

Department of Computer Science
Texas A&M University

College Station, TX 77843-3112

Abstract. We briefly introduce the notion of Semantically Enhanced
Library Languages, SELL, as a practical and economical alternative to
special-purpose programming languages for high-performance comput-
ing. Then we describe the Pivot infrastructure for program analysis and
transformation that is our main tool for supporting SELL. Finally, we
outline how the IPR (The Pivot’s Internal Program Representation) can
be used to represent central notions of high-performance computing, such
as parallelizable array operations. Our focus is on a broad exposition of
ideas, rather than technical details1.

1 Languages and Libraries

For ease of programming, portability, and acceptable performance, we design and
implement special-purpose programming languages for high-performance com-
puting [15]. Alternatively, we can use a Semantically Enhanced Library Language.
A SELL is a language created by extending a programming language (usually
a popular general-purpose programming language) with a library providing the
desired added functionality and then using a tool to provide the desired seman-
tic guarantees needed to reach a goal (often a higher level semantics, absence of
certain kinds of errors, or library-specific optimizations) [12]. This paper focuses
on a tool, The Pivot, being developed to support SELLs in ISO C++ [11,5] and
its application to High-Performance Computing.

2 A Brief Overview of the Pivot

The Pivot is a general framework for the analysis and transformation of C++
programs. It is designed to handle the complete ISO C++, especially more ad-
vanced uses of templates and including some proposed C++0x features. It is
compiler independent. The central part of the Pivot is a fully typed abstract
syntax tree called IPR (Internal Program Representation).

1 This is the "cut" or "abbreviated" version of this paper. For a full version, see
http://www.research.att.com/~bs/papers.html

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 458–465, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Supporting SELL for High-Performance Computing 459

There are lots of (more than 20) tools for static analysis and transformation of
C++ programs, e.g. [7,2,8,6]. However, few — if any — handle all of ISO Stan-
dard C++, most are specialized to particular forms of analysis or transformation,
and few will work well in combination with other tools. We are particularly in-
terested in advanced uses of templates as used in generic programming, template
meta-programming, and experimental uses of libraries as the basis of language
extension. For that, we need a representation that deals with types as first-class
citizens and allows analysis and transformation based on their properties. In the
C++ community, this is discussed under the heading of concepts and is likely
to receive significant language support in the next ISO C++ standard (C++0x)
[13,9,14,3]. We use the word concept to a designate collection of properties that
describes usage of values and types. From the point of view of support for HPC
— and for the provision of special-purpose facilities in general — a concept can
be seen as a way of specifying new types with associated semantics without the
modification of compilers or new syntax. That done, the SELL approach then
uses the concepts as a hook for semantic properties beyond what C++ offers.

This paper is an overview and will not go into details of concepts, the Pivot,
the IPR, or our initial uses.

2.1 System Organization

To get IPR from a program, we need a compiler. Only a compiler “knows” enough
about a C++ program to represent it completely with syntactic and type in-
formation in a useful form. In particular, a simple parser doesn’t understand
types well enough to do a credible general job. We interface to a compiler in
some appropriate and minimally invasive fashion. A compiler-specific IPR gen-
erator produces IPR on a per-translation-unit basis. Applications interface to
“code” through the IPR interface. So as not to run the compiler all the time
and to be able to store and merge translation units without compiler interven-
tion, we can produce a persistent form of IPR called XPR (eXternal Program
Representation).

C++ source Compiler

IPR generator

Object code

XPR

IPR

IPR Applications

IDL

XML

Information

Fig. 1. An overview of The Pivot infrastructure

460 B. Stroustrup and G. Dos Reis

From a compiler, we generate IPR containing fully typed abstract syntax trees.
In particular, every use of a function name and operator is resolved to its proper
declaration, all scope resolution is done, and all implicit calls of constructors and
destructors are known. We have IPR generators from GCC and EDG, so that the
Pivot is not compiler specific. The reason for preserving compiler independence
is to maximize the portability of IPR-based tools. A tool that is built directly
on a compiler’s internal interface cannot easily be ported to another compiler.
In fact, the interfaces to current C++ compilers’ data structures for syntax
and type information differ dramatically and most are de facto inaccessible for
technical, commercial, or political reasons.

Early versions of this system (and its precursors) have been used to write
pretty printers, generate XML for C++ source, CORBA IDL from C++ classes,
and distributed programs using C++ source augmented with a library defining
modularity.

The XPR is a compact and human readable ASCII representation of IPR.
XPR can be used as a transfer format between two different runs of the Pivot or
two different implementations of the IPR. The library implementing the IPR is
elegant, compact, and efficient. It is just 2,500 lines of C++ to cope with all of
C++, unify types (and literals and anything else we might want to unify), and
manage memory.

2.2 IPR Principles

The IPR is compact, completely typed (every entity has a type, even types),
representation with an interface consisting of abstract classes. The IPR has a
unified representation so that its memory consumption is minimal. For example
there will be only one node representing the type int and only one node rep-
resenting the integer value 42 in a program that uses those two entities. This
minimalism (in time and space) is key to its use for large systems — million line
programs are no longer rare.

The IPR does its own memory management so users do not have to keep track
of created objects. It is arguably optimal in the number of indirections needed
to access a given piece of information. The IPR is minimal in that it holds only
information directly present in the C++ source. IPR can be annotated by the
user and flow graphs can be generated. However, that’s considered jobs for IPR
applications rather than something belonging to the core framework itself. In
particular, traversal of C++ code represented as IPR can be done in several
ways, including “ordinary graph traversal code”, visitors [4], iterators [10,11], or
tools such as Rose [7]. The needs of the application — rather than the IPR —
determines what traversal method is most suitable.

The IPR can represent both correct and incorrect (incomplete) C++ code and
both individual translation units and merged units (such as a complete program).
It is therefore suitable for both analysis of individual separately-compiled units
and whole-program analysis.

The IPR represents ISO C++ code. That implies that it can trivially be
extended to represent C code and common C++ dialects. However, since the

Supporting SELL for High-Performance Computing 461

initial aim of the Pivot is to look into high-level type-based and concept-based
transformation, there is no immediate desire to extend it to cope with other
languages with significantly different semantics, such as Fortran or Java.

User programs can annotate IPR nodes. An annotation is a (name,value) pair
optionally attached to an IPR node by a Pivot application for its own uses. An
annotation does not affect the way the IPR functions. The IPR “remembers” the
C++ source locations of its nodes, so that a tool can refer back to the original
source code.

3 High-Level Program Representation for HPC

Type systems have been introduced in programming primarily for correctness
and efficiency. For example, if we know at translation time that an operation
involving read and write accesses is alias free, we can exploit that for generating
efficient code. Some programming languages, notably FORTRAN, are designed
to allow the compiler to assume the absence of aliases. Other general-purpose
programming languages, such as C or C++, allow only a restricted set of type-
based aliasing. For example a pointer of type void* can be used to access any
kind to data, but a pointer of type int* cannot be effectively used to access
data of type double.

A typeful programming discipline can help make programs both correct and
efficient. Abstract representation of programs naturally enables symbolic ma-
nipulation. Here, we present an approach to correctness and performance based
on IPR. We will use the notion of parallelizable vector operation as a running
example.

Why C++? For the SELL approach we need a widely-used general-purpose
language for our “host language”. For type transformation and high-level work,
we need a language that provides a flexible type system that can be used in
a type-safe manner. For high-performance computing, we need a language that
can efficiently use hardware resources and is available on high-end computers.
For wide use, we need a non-proprietary and operating system neutral language.

3.1 A Notion of Parallelizable

Consider the classic operation

z = a * x + y;

where a is scalar; x, y and z denotes vectors, and the operations * and + are
component-wise. It can be parallelized if we know that the destination z does
not overlap with the sources x and y in a way that displays non-trivial data
dependencies. That happens, for example, if we know no vector element has its
address taken. For exposition purpose, we will simplify the notion of Parallelizable
to a collection of types whose objects support the operation [] (subscription)
but not & (address-of) on its elements. For instance, in the generic function

462 B. Stroustrup and G. Dos Reis

template<Parallelizable T>
void f(const T& v)
{

double a = v[2]; // #1: OK
double* p = &v[2]; // #2: NOT OK.

}

line #1 is valid but line #2 is an error because it uses a forbidden operation.
We generalized the standard notation template<typename T> which reads “for
all T”, to template<Parallelizable T> meaning “for all T such that T is is
Parallelizable”.

Concepts will almost certainly be part of C++0x. However, using IPR we can
handle concepts without waiting for the C++ standards committee to decide on
the technical details, see Section 3.3.

A programmer might use Parallelizable to constrain the use of a vector:

vector<double> v(10000);
// ...
f(v); // f will use v as an Parallelizable (only)

Here we now know that f() will not use & on v even though the standard library
vector actually allows that operation. We can use f() with its no-alias guarantee
for any type that supports subscripting. For example we might use a STAPL [1]
pvector:

pvector<double> vd(100000);
// ...
f(vd);

The concept checking allows no assumptions about types uses beyond what
the concept actually specifies (here, a Paralleizable provides []). In particular,
no hierarchical ordering or run-time mechanisms are required.

Note that when defined in this way, Parallelizable requires no modification
to C++0x or to any compiler. Furthermore, the use of Parallelizable is most
likely to be composable with other facilities introduced as concepts – even if the
facilities were developed in isolation.

Below, we will briefly present a high-level representation of C++ programs
that support concept-based analysis and transformations.

3.2 Concepts in the IPR

A translation unit is represented as a graph with a distinguished root for the
sequence of top-level declarations. In IPR, every entity in a C++ program is
viewed as an expression possessing some type. So, types have types, which are
called concepts. This becomes more useful, and maybe clearer, for a type variable
as we find them in template parameter lists.

In Fig. 2, we have drawn a view of the representation of the declaration
Parallelizable T. The declaration of the template-parameter T has type
Parallelizable. If we knew about the syntax and semantics of Parallelizable,

Supporting SELL for High-Performance Computing 463

Parameter
None

name

type

specifiers��

�� ��

initializer

As_type

��

�� ��

None

type

name

qualifiers ��

�	��

main_variant ��

�	��

expr

Identifier

��

�� ��

"T"

type

string��

�� ��

Identifier

��

�	��
��

����

"Parallelizable"

type

string��

�� ��

Fig. 2. IPR model Parallelizable T

that knowledge would be represented by a node referred to by the type field of
the node with the identifier "Parallelizable".

Note how Parallelizable fits into the IPR framework without modification
or special rules. Parallelizable is simply a (deliberately trivial) example of
what can be done with concepts in general.

Concepts are the basis for checking usage of types in templates, just like
ordinary types serve to check uses of values in functions. Concept checking is
done at two sites: (a) at template use site; and (b) at template definition site.
If concept checking succeeds at both sites, then it is guaranteed that template
arguments are used (only) according to the semantics expressed in the concepts.
In the particular case of Parallelizable, it means that no vector has its address
taken, and consequently parallelization transformations can be safely applied.

3.3 Getting Concepts into the IPR

How do we get concepts into our program? C++0x will most likely provide a
way of specifying and checking concepts. That will provide a convenient handle
for all concepts and for all SELL type-based analysis and transformation. For
example:

concept Parallelizable<typename T> {
// operations required by any Parallelizable type
// only required operations will be accepted
// for an object of a Parallelizable type

};

Once, this concept is part of the program, the Pivot (or similar tool) can
operate based on its understanding of Parallelizable. Note that this “under-
staning” can be extra-linguistic based on the tool builders knowledge of the
semantics of the library of which Parallelizable is part.

However, what do we do if we don’t have a C++0x compiler that directly
supports concepts? After all, C++0x won’t be fully specified for another cou-
ple of years. We could rely on annotations, pragmas, language extensions, etc.,
but that has serious implications and costs. In particular, our programs almost
certainly will not be composable with extensions defined and implemented by

464 B. Stroustrup and G. Dos Reis

another group. The obvious alternative is to rely on convention: Traditionally,
C++ programmers name template parameters to indicate their intended use.
For example:

template<class Parallelizable>
void f(const Parallelizable& v)
{

// operate on v according to Parallelizable rules
}

A Pivot application (tool) can easily recognize the type name Parallelizable and
connect it to the definition of the concept Parallelizable as defined by the tool.
From the point of view SELL and the Pivot, C++0x concepts is a significant
convenience that provides a major advantage in notation and checking. However,
it is only a (major) convenience because a Pivot-based tool can manipulate the
IPR directly. For example, we could take code using the C++ standard library
accumulate

template<class InputIterator, class T>
T accumulate(InputIterator first, InputIterator last,

const T& init);

and transform every use into its equivalent parallel STAPL p-algorithm if (and
only if) the STAPL requirements for its arguments are met. That is, the trans-
formation takes place iff in addition to being an InputIterator the argument
tyoe is a BidirectionalIterator or a RandomAccessIterator. This general
approach to semantics-based transformation applies to all C++ standard algo-
rithms described in terms of “abstract sequences”.

The concept-based techniques rely critically on the use of templates, so that
we can type template paraments with concepts to get a handle on their semantic
properties. So, what do we do with code that doesn’t use templates? Given an
abstract syntax tree that represents a function declaration, we can transform it
into a templated version and concept-check it. Consequently, we can check and
transform a whole program as if it was fully templated.

4 Conclusion

The SELL, Semantically Enhanced Library Language, approach to supporting
special-purpose languages can yield extension that are composable and portable.
We presented our main tool for supporting the “semantic part” of that approach,
The Pivot. The Pivot provides a general framework for analysis and transfor-
mation of C++ programs with an emphasis on high-level and type sensitive
approaches. Our semantics-based analysis and transformation do not require
modification to a host language and is minimally invasive to tool chains. It relies
on a high-level program representation, the IPR, with emphasis on types and
concepts. Using the IPR we can perform analysis and transformation for high-
performance computing (as well as other forms of computing) that traditionally
required special-purpose languages or ownership of a specialized compiler and
related tool chain.

Supporting SELL for High-Performance Computing 465

References

1. Ping An, Alin Jula, Silvius Rus, Steven Saunders, Tim Smith, Gabriel Tanase,
Nathan Thomas, Nancy Amato, and Lawrence Rauchwerger. STAPL: An Adap-
tive, Generic Parallel C++ Library. In Proceeedings of the International Work-
shop on Languages and Compilers for Parallel Computation (LCPC), pp. 193–208,
Cumberland Falls, Kentucky, August 2001.

2. O. Bagge, K. Kalleberg, M. Haveraaen, and E. Visser. Design of the CodeBoost
transformation system for domain-specific optimisation of C++ programs. In Dave
Binkley and Paolo Tonella, editors, Third International Workshop on Source Code
Analysis and Manipulation (SCAM 2003), pp. 65–75, Amsterdam, The Nether-
lands, September 2003. IEEE Computer Society Press.

3. Gabriel Dos Reis and Bjarne Stroustrup. Specifying C++ concepts. Conference
Record of POPL ’06: The 33th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pp. 295–308, Charleston (South Carolina), USA,
January 2006.

4. Erich Gamma, Richard Helm, Ralph Johson, and John Vlissides. Design Patterns.
Addison-Wesley, 1994.

5. International Organization for Standards. International Standard ISO/IEC 14882.
Programming Languages — C++, 2nd edition, 2003.

6. Georges C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer. CIL:
Intermediate Language and Tools for Analysis and Tranformations of C Programs.
In Proceedings of the 11th International Conference on Compiler Construction,
volume 2304 of Lecture Notes in Computer Science, pp. 219–228. Springer-Verlag,
2002. http://manju.cs.berkeley.edu/cil/.

7. M. Schordan and D. Quinlan. A Source-to-Source Architecture for User-Defined
Optimizations. In Proceeding of Joint Modular Languages Conference (JMLC’03),
volume 2789 of Lecture Notes in Computer Science, pp. 214–223. Springer-Verlag,
2003.

8. S. Schupp, D. Gregor, D. Musser, and S.-M. Liu. Semantic and behavioral library
transformations. Information and Software Technology, 44(13):797–810, 2002.

9. Jeremy Siek, Douglas Gregor, Ronald Garcia, Jeremiah Willcock, Jaakko Järvi,
and Andrew Lumsdaine. Concept for C++0x. Technical Report N1758=05-0018,
ISO/IEC SC22/JTC1/WG21, January 2005.

10. Alexander Stepanov and Meng Lee. The Standard Template Library. Technical
Report N0482=94-0095, ISO/IEC SC22/JTC1/WG21, May 1994.

11. Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, special
edition, 2000.

12. Bjarne Stroustrup. A rationale for semantically enhanced library languages. In
Proceedings of LCSD’05, October 2005.

13. Bjarne Stroustrup and Gabriel Dos Reis. Concepts — Design choices for tem-
plate argument checking. Technical Report N1522, ISO/IEC SC22/JTC1/WG21,
September 2003.

14. Bjarne Stroustrup and Gabriel Dos Reis. A Concept Design (rev.1). Technical
Report N1782=05-0042, ISO/IEC SC22/JTC1/WG21, April 2005.

15. Gregory V. Wilson and Paul Lu, editors. Parallel Programming using C++. Sci-
entific and Engineering Computation. MIT Press, 1996.

Compiler Supports and Optimizations for PAC
VLIW DSP Processors

Yung-Chia Lin, Chung-Lin Tang, Chung-Ju Wu, Ming-Yu Hung,
Yi-Ping You, Ya-Chiao Moo, Sheng-Yuan Chen, and Jenq-Kuen Lee

Department of Computer Science
National Tsing-Hua University

Hsinchu 300, Taiwan

Abstract. PAC DSP is a novel VLIW DSP processor exceedingly uti-
lized with port-restricted, distinct partitioned register file structures in
addition to the heterogeneous clustered datapath architecture to attain
low power consumption and reduced die size; however, these architectural
features lend new challenges to the compiler construction. This paper1

describes our employment of the Open Research Compiler (ORC) infras-
tructure on PAC DSP architectures and the specific compilation design.
Preliminary results indicated that our compiler development for PAC
DSP is effective for the architecture and the evaluation is useful for the
refinement of the architecture. Our experiences in designing the compiler
support for heterogeneous VLIW DSP processors with irregular resource
constraints may benefit the similar architectures.

1 Introduction

While high-end embedded processor and DSP design nowadays is moving to-
wards exploiting intensively instruction level parallelism (ILP) and incorporat-
ing many advanced application specific features, the complexity of compilers for
these advanced processors grows into immensity, which demands more long-term
development efforts and extremely larger man power than before. ORC [1] is an
open-source compiler infrastructure released from Intel, which incorporates most
of the optimization techniques of industry strength so far and is capable of gen-
erating codes with good performance on its original IA-64 target by utilizing
numbers of EPIC/VLIW architectural advantages.

In this paper, we study the issue of supporting ORC infrastructures for VLIW
DSP processors. We present our experiences in the development of code genera-
tion support and preliminary register allocator design for a novel 32-bit VLIW
DSP processor designed with several new architectural features, such as distinct
partitioned register files with significant port restriction [2]. The target proces-
sor, named as Parallel Architecture Core (PAC) DSP [3], is being developed from
1 The work was supported in part by NSC under grant no. 94-2220-E-007-019 and 94-

2220-E-007-020, by Ministry of Economic Affairs under grant no. 94-EC-17-A-01-S1-
034, and by MOE research excellent project under grant no. 94-2752-E-007-004-PAE
in Taiwan.

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 466–474, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Compiler Supports and Optimizations for PAC VLIW DSP Processors 467

scratch by SOC Technology Center at Industrial Technology Research Institute
in Taiwan with several joint efforts of academic research works [4, 5]. PAC DSP
is natively designed to meet the high-performance computing requirement of
multimedia and the low power consumption demand of mobile system. Beside
fundamental compilation support, the architecture evaluation with compilers
advantages the development of PAC DSP in the early design stage since sev-
eral tuning iterations may be needed between architecture and software designs
by co-exploration, to attain the finest result with satisfactory in the end. The
preliminary experiments showed that the effectiveness of our developed register
allocation policies in the compiler framework to support the specific register file
organizations in PAC architectures. Our experience may benefit the architecture
designers and compiler developers who are interested in similar heterogeneous
clustered VLIW architectures with port-restricted, distinct partitioned register
file structures.

The remainder of this paper is organized as follows. Section 2 introduces
the PAC DSP architecture and the compilation issues on it. The development
of compilers for PAC DSP, including specific register allocator design for the
architecture, is presented in Section 3. Experimental results of the early stage
evaluation are then showed in Section 4. Finally, Section 5 concludes this paper.

2 An Insight into PAC DSP Architectures

PAC DSP is a 32bit, fixed-point, VLIW digital signal processor, constructed
as a heterogeneous five-way issue VLIW architecture, comprised of two integer
ALUs (I-unit), two memory load/store units (M-unit), and the program sequence
control unit/scalar unit (B-unit). The M- and I- units are organized in pairs,
and each pair contains exactly one M-unit and one I-unit to form a cluster
arrangement with associated register files, logically appropriate for the complete
data stream processing. The scalability of the cluster design in PAC DSP may
allow the processor to easily involve more clusters than the current two. The B-
unit with its own register file is placed separatedly from data stream processing
clusters, capable of simple load/store and address arithmetic in addition to the
operations of control flow instructions. The overall architecture is illustrated in
Fig. 1.

As shown in Fig. 1, registers in PAC DSP are organized into four distinct
partitioned register files and placed as cluster structures, to reduce wire con-
nections between functional units and registers so that chip area and power
consumption may be decreased. The A, AC, and R register files are private
registers, directly attached to and only accessible by the M-, I-, and B-unit,
respectively; D register files are shared within a cluster and can be used to com-
municate across clusters; only the B-unit, being able to access all D registers, is
capable of executing cross-copy operations to move data between clusters. The
internal of the D register file is further designed to utilize the instructional port
switching technology in order that reducing more wire connections between the
shared functional units. The technology, being referred to the name as ‘ping-pong

468 Y.-C. Lin et al.

Load / Store Unit

Private Registers (A)

Arithmetic Unit

Public Registers (D)
Public Registers (D)

Private Registers
(AC)

cluster 2

Memory Interface

Private Registers (A)

Arithmetic Unit

Public Registers (D)
Public Registers (D)

Private Registers
(AC)

cluster 1

Load / Store Unit

Program Sequence
Control Unit

Scalar Unit

Private Registers (R)

Fig. 1. The PAC DSP architecture illustration

register file structure’, means dividing one register file into two banks, and each
bank can only be accessed mutual-exclusively by one functional unit at the same
time. The instruction bundle encoding contains the information of which bank
to be accessed for each functional unit so that the hardware can do port switch-
ing between register file banks and functional units, to attain the purpose of
data sharing within a cluster. The advantage of such a ‘ping-pong register file
structure’ design is believed to consume less power due to its reduced read/write
ports [7] while retaining an effective way of data communication capability.

PAC DSP architectures introduce more interference between valid code gen-
eration, instruction scheduling, and register allocation than typical VLIW archi-
tectures. One of the most significant issues is caused by the ‘ping-pong register
file structure’, given that accesses from two different FUs to the same D register
bank are mutually exclusive in a cycle. In addition, each FU in the PAC DSP has
different set of instructions that could be executed and each instruction has its
own register access constraints. All of these irregular designs make that conven-
tional instruction scheduling policies and register allocation strategies are seldom
applicable to the code generation for the PAC DSP architecture. For example,
the short code sequence in Fig. 2: moves two constants into two virtual registers,
TN1 and TN2 and then takes an arithmetic operation on them. While observing
the first two instructions, these two can be scheduled in parallel only if TN1 and
TN2 are assigned registers from distinct D register bank; if both are assigned to
the same D register bank, they can only be scheduled and issued sequentially.
But ‘ping-pong register file structure’ affects more than limiting the parallelism
in the instruction scheduling. While further observing the third instruction, the
instance becomes complicated. Since the last instruction in the code sequence
refers TN1 and TN2, which are the results of the first two instructions, TN1 and
TN2 must be in the register access range of the last instruction. Referring to
the Fig. 2, without considering other hazards, there must be a copy instruction
insertion before the last instruction if allocating TN1 and TN2 to different D

Compiler Supports and Optimizations for PAC VLIW DSP Processors 469

register banks for parallelizing the first two instruction. Therefore, the advantage
of parallelizing the first two instruction is counteracted by the insertion of the
additional copy instruction and the generated code may be worse because the
code size is larger than the case of allocating both TN1 and TN2 to the same
D register bank. But allocating the same D register bank will always raise the
register pressure of that bank when the compiler process the register allocation,
and spilling from different register file will make different cost in the PAC DSP
architecture, these cause more unpredictability of the combined effects of all
code generation issues.

mov TN1, 1
mov TN2, 2
add TN3, TN1, TN2

TN1, TN2 assigned to
different D register banks

TN1, TN2 both assigned to
one D register bank

M-Unit I-Unit

mov D1, 1

mov D2, 2

M-Unit I-Unit

mov D1, 1 mov D8, 2

add D3, D1, D2

mov A1, D8

add D3, D1, A1

mov TN1, 1
mov TN2, 2
add TN3, TN1, TN2

TN1, TN2 assigned to
different D register banks

TN1, TN2 both assigned to
one D register bank

M-Unit I-Unit

mov D1, 1

mov D2, 2

M-Unit I-Unit

mov D1, 1 mov D8, 2

add D3, D1, D2

mov A1, D8

add D3, D1, A1

2 cycles to execute the first
2 instructions, and 1 cycle to
execute the last instruction

1 cycle to execute the first
2 instructions, but 1

additional instruction
before the last instruction

Fig. 2. The Illustration of interference caused by Ping-Pong register file structures

mov TN1, 6

lw TN8, [TN7]

mov TN2, .A

mov TN4, 7
mul TN5, TN3, TN4

mul TN10, TN8, TN9

lw TN3, [TN2]

mov TN7, .B

add TN11, TN6, TN10

sw TN11, [TN12]
mov TN12, .Z

mov TN9, 8

add TN6, TN1, TN5

(,)

(7,8)

6

X A B

Y

Z X Y

=
=
= + •

Vector Dot Product

mov A0, .A mov A8, .B
lw D17, [A8]

mov AC0, 6 mov AC8, 8
mov AC1, 7

mul D18, D17, AC8
mov A1, .Z

sw D4, [A1]

copy D3, D18
mul D1, D0, AC1
add D2, AC0, D1

add D4, D2, D3

lw D0, [A0]

mov A0, .Amov R0, 6 mov A8, .Bmov AC0, 7

copy D8, D17
mul D9, D8, AC1
mul D2, D0, AC0mov A1, .Z

add A2, D1, D2

sw D10, [A1]

lw D0, [A0] lw D17, [A8]copy D1, R0 mov AC1, 8

add D10, A2, D9

Exploiting Parallelism in Two Clusters as Usual

M-Unit M-UnitI-Unit I-UnitB-Unit

Utilizing Ping-pong Registers (1 more instruction, but
may turn-off 1 I-Unit)

Fig. 3. An example of generating optimal scheduled codes across clusters

Another critical subject of how the register allocation interferences with both
the instruction scheduling and the code generation is issued by the implementa-
tion of data communication across clusters in the PAC DSP architecture. The
current version of PAC DSP require the code to explicitly issue a cross-cluster
copy instruction to complete the data communication between clusters. Although
the cross-cluster copy instruction is designed to be issued by the B-unit without
occupying a slot in the clusters, the additional instruction insertion introduces
additional data-dependency and data available latency for any code which is

470 Y.-C. Lin et al.

scheduled and distributed into two clusters. Fig. 3 gives an illustration of the
two possible scheduling of code distributed on the two clusters (considering only
major constraints for easier understanding), which both have their own benefit.
As a result, it seems that the compiler for PAC DSP needs a well cluster usage to
avoid the penalty of cross-cluster communication disadvantaging the parallelism
of two clusters. The complication and non-determinism with the interference of
all these issues make more challenges to construct a good compiler for the PAC
DSP architecture.

3 Compiler Supports for PAC DSP Processors

In this section, we describe our development works of applying compiler supports
for the PAC DSP architecture based on the ORC infrastructure. The prelimi-
nary employment from original IA-64 to PAC DSP includes the new implemen-
tation of machine description tables and the essential supports for PAC DSP
code generation. Some optimization phases such as LNO (Loop-Nest Optimizer)
and EBO (Extended Block Optimizer) are also initially ported and individually
tested. Till now, our development of compiler support for PAC DSP is still an
on-going effort. In this paper, we focus on the studies of supporting basic ORC
infrastructures for PAC VLIW DSP processors in register allocation as follows.

With PAC’s highly-partitioned register file design, the phase-interaction be-
tween register allocation and instruction scheduling becomes a critical problem,
elevating this classical phase ordering issue in compiler code generation. Our cur-
rent proposed solution to this problem, is to add a new instruction scheduling
phase before register allocation/assignment by simulated annealing (SA). The
design is extended from Leupers’ work [8] and our initial implementation [6],
by using a hybrid instruction scheduling/cluster assignment algorithm to iter-
atively approach the near-optimal result. The algorithm roughly operates by
first generating a random cluster partitioning of instructions; a modified List-
Scheduler (LS) then schedules the partitioned instructions, inserting/managing
cross cluster communications along the way.

The following iterations then make a random change to the partitioning state,
and re-run the LS to schedule again. The LS returns the obtained schedule length
of the instructions as the ‘energy’ value used in an usual simulated annealing
optimization process, representing an evaluation of the current partitioning state.
Depending on that improvement is gained or not, the random change may be
retained or discarded. This process is iterated until the energy/evaluation falls to
be under some thresholds, where we are confident that the obtained optimization
state is of sufficient quality.

Adapting this simulated annealing solution for the PAC DSP involves changes
in the formulation of optimized state: our search is for register file assignments
in the chosen schematic placement (as the search space) for virtual registers,
instead of the original bi-partitioning of the instructions. The above algorithm in
Fig. 4 is the high-level simulated annealing algorithm. It controls the scheduler,
which does fine-grain sequencing of operations, and returns the schedule length

Compiler Supports and Optimizations for PAC VLIW DSP Processors 471

Hybrid Instruction Scheduling/Register File Assignment
by Simulated Annealing

Input: n operations to be scheduled
Output: Schedule of the n instructions and a register file assignment (RFA) map:

V R: set of all virtual registers, RF : set of register files
RFA map = {(v1, f1), (v2, f2), ...} vi ∈ V R, fi ∈ RF

1. Choose a schematic register file placement(e.g. 1 cluster, 2 clusters, ...).
2. Make initial register file assignments: randomly assign each

virtual register to any of the wanted register files, and record in RFA map.
3. Given RFA map, run PAC Scheduler,

and set sched len to the computed total schedule length in cycles.
4. Set initial values for:

threshold: threshold value for the simulated annealing process.
energy: initial energy, larger than threshold.
p test: a probability test value p test (0 < p test < 1).

5. Repeat the following steps while energy > threshold:
5a. Make change in RFA map:

randomly choose a virtual register, and assign it to a different register file.
optionally change the schematic register file placement.

5b. With the new RFA assignment change, run PAC Scheduler again,
and set new sched len to the new count of total schedule length.

5c. Adjust energy, sched len, and RFA map by the following rules:
If new sched len < sched len then

decrease energy, set sched len to new sched len,
and keep the new RFA changes made in step 5a.

If new sched len ≥ sched len, get random number 0 ≤ R ≤ 1:
If R > p test then

decrease energy, set sched len to new sched len,
and keep the changes made in step 5a.

If R ≤ p test then
increase energy and revert changes made in step 5a.

6. Optionally choose another schematic register file placement,
and repeat steps 2–5 to select the better results.

7. Retain the final schedule and RFA map as the output results.

Fig. 4. The high-level simulated annealing algorithm

The PAC Scheduler Algorithm

Input: ReadyList of operations to be scheduled
RFA map, in the form of a function RegisterFile : V R → RF

Output: Schedule of the n instructions, and the schedule length
While ReadyList is not empty:

Select operation Op from ReadyList
Find earliest cycle Cycle we can schedule Op
While Op is not scheduled:

Examine available resources in Cycle, and:
For each register operand oi of Op:

If no resources available to access RegisterFile(oi):
Enumerate possible copy sequences to transfer oi to an accessible register file
For each copy sequence cpseq

If cpseq is schedulable in prior cycles:
Feasible(cpseq) = true

If for each register operand oi of Op we have resources to access RegisterFile(oi),
or we have some c such that Feasible(c):

Schedule Op into Cycle, advance ReadyList
Break from inner loop

else
Increment Cycle

Return length of schedule

Fig. 5. The scheduler/evaluation algorithm

472 Y.-C. Lin et al.

as the evaluation of the current optimization state. The two optional procedures
in the algorithm could let the compiler dynamically control the iterative scale
and limit the register file usage to coordinate with other optimizations; they may
also improve the overall register allocation speed.

Fig. 5 illustrates more details of the scheduler algorithms. In general, the
overall operation of the algorithm is to proceed through the state space, making
changes according to the feedback obtained from the LS. The assignment of reg-
ister files will improve progressively throughout the SA iterations, with respect
to the schedulable length of the instructions. A final register allocator is then
run to allocate and assign hardware registers, which is guided by the register file
assignments (RFA map).

4 Experimental Results

Preliminary experiments were done with the DSPstone benchmarks [9]. Since
the PAC DSP compiler is still in progress, we only evaluated some stable opti-
mization combinations for early stage performance evaluations our designs. All
benchmark programs are compiled with three types of option combinations and
disabling all other optimizations; they are the traditional-approach-based reg-
ister allocation (TRA), the traditional-approach-based register allocation plus
LNO and EBO (LNO+EBO), and the register allocation using the simulated-
annealing approach (SARA), respectively. The TRA, which is a modification of
the original ORC register allocation that assumes PAC DSP has only one unified
register file containing all registers and inserts necessary codes to make register
allocation result executable, is treated as the base reference in the compari-
son. Fig. 6 compares the speedup of DSP benchmarks on the later two options,
LNO+EBO and SARA, with the numbers of -O0 (with the traditional approach
based register allocation). As shown in Fig. 6, the performance gain for PAC
DSP varies widely across different benchmarks with the average 1.78 speedup
for LNO+EBO and the average 1.58 speedup for SARA. Though the integrated
test of LNO+EBO plus SARA has not yet stable enough to exhibit the overall
advantage, the results shows that our approaches in LNO, EBO, and register al-
location could achieve significant performance improvement for code compilation
in most cases. Also, the simulated-annealing approach gives a locally exhaustive
exploration on how the register usage affects PAC DSP and investigate the flaws
of the architecture. Currently, there is a fateful hazard among any data that
has dependency across different functional units and needs 3 cycle delay slots.
This hazard makes a contradictive impact on exploiting ILP on all functional
units because the increase of ILP will often introduce more hazards, causing
some of the benchmark codes, like biquad one section, less affected by our op-
timizations. By our evaluations, several suggestions have also been proposed to
the DSP design team, to enhance the architecture support for better compiler
code generation. The revision process is on-going for the next generation of PAC
DSP.

Compiler Supports and Optimizations for PAC VLIW DSP Processors 473

0

0.5

1

1.5

2

2.5

3

fir

biquad
_o

ne_
se

cti
on

biquad
_N

_s
ec

tio
ns

lm
s

rea
l_u

pdate

co
mplex

_u
pdate

matr
ix1

matr
ix2

n_c
omplex

_u
pdate

s

fir2
dim

mat1
x3

co
mplex

_m
ultip

ly

n_re
al_

update
s

dot_p
roduct

co
nvo

lutio
n

Sp
ee

du
p

Traditional
RA

Traditional
RA + EBO +
LNO

SA RA

Fig. 6. The Speedup comparison while activating various optimization options

5 Conclusion

In this paper we present the compiler development for a novel high-end DSP
processor, PAC DSP, which comes with a clustered architecture design and dis-
tinct partitioned register files. We demonstrated the viability of our approaches
based on ORC infrastructure to PAC DSP via several preliminary experiments
which are done with the PAC DSP prototype. Since some drawbacks of the first
generation of PAC DSP architecture were revealed by the evaluation, we are cur-
rently referring to the experiences and reforming the development of compilers
for the next generation of PAC DSP architecture, which will further extend our
current works.

References

1. Roy Ju, Sun Chan, and Chengyong Wu: Open Research Compiler for the Itanium
Family. Tutorial at the 34th Annual Int’l Symposium on Microarchitecture, Dec.
2001

2. Tay-Jyi Lin, Chen-Chia Lee, Chih-Wei Liu, and Chein-Wei Jen: A Novel Regis-
ter Organization for VLIW Digital Signal Processors. Proceedings of 2005 IEEE
International Symposium on VLSI Design, Automation, and Test, pages 335–338,
2005

3. David Chang and Max Baron: Taiwan’s Roadmap to Leader-
ship in Design. Microprocessor Report, In-Stat/MDR, Dec. 2004.
http://www.mdronline.com/mpr/archive/mpr 2004.html

4. Tay-Jyi Lin, Chin-Chi Chang. Chen-Chia Lee, and Chein-Wei Jen: An Efficient
VLIW DSP Architecture for Baseband Processing. Proceedings of the 21th Inter-
national Conference on Computer Design, 2003

474 Y.-C. Lin et al.

5. Tay-Jyi Lin, Chie-Min Chao, Chia-Hsien Liu, Pi-Chen Hsiao, Shin-Kai Chen, Li-
Chun Lin, Chih-Wei Liu, Chein-Wei Jen: Computer architecture: A unified processor
architecture for RISC & VLIW DSP. Proceedings of the 15th ACM Great Lakes
symposium on VLSI, April 2005

6. Cheng-Wei Chen, Chung-Lin Tang, Yung-Chia Lin, and Jenq-Kuen Lee: ORC2DSP:
Compiler Infrastructure Supports for VLIW DSP Processors. Proceedings of 2005
IEEE International Symposium on VLSI Design, Automation, and Test, pages 224-
227, 2005

7. S. Rixner, W. J. Dally, B. Khailany, P. Mattson, U. J. Kapasi, and J. D. Owens:
Register organization for media processing. International Symposium on High Per-
formance Computer Architecture (HPCA), pp.375-386, 2000

8. R. Leupers: Instruction scheduling for clustered VLIW DSPs. In Proc. Int’l Con-
ference on Parallel Architecture and Compilation Techniques, pages 291–300, Oct.
2000

9. V. Zivojnovic, J. Martinez, C. Schläger and H. Meyr: DSPstone: A DSP-Oriented
Benchmarking Methodology. Proc. of ICSPAT, Dallas, 1994

Author Index

Agrawal, Gagan 377
Arcot, Shashi Deepa 32

Bae, Hansang 413
Banerjee, Prith 76
Barik, Rajkishore 152
Barthou, Denis 136
Baumgartner, Gerald 215
Beckmann, Olav 347
Bonachea, Dan 200
Brodman, James 136
Butt, Ali R. 319

Chame, Jacqueline 433
Chen, Chun 433
Chen, Guangyu 450
Chen, Sheng-Yuan 466
Choudhary, Alok 450
Cohen, Albert 136
Cooper, Keith D. 1

Dai, Xiaoru 289
Dasgupta, Anshuman 1
Datta, Kaushik 200
de la Encina, Alberto 274
DeJong, Gerald 259
Dick, Robert 76
Dietz, Henry Gordon 32
Ding, Chen 425
Diniz, Pedro C. 62
Donadio, Sebastien 136
Dos Reis, Gabriel 458
Douillet, Alban 17

Eckhardt, Jason 1
Eigenmann, Rudolf 413
Epshteyn, Arkady 259

Fang, Xing 170
Field, Anthony J. 347

Gao, Guang R. 17
Gao, Xiaoyang 215
Garzarán, Maŕıa Jesús 121, 136, 259
Gross, Thomas R. 334

Hall, Mary 433
He, Guobin 397
Hu, Y. Charlie 319
Hung, Ming-Yu 466

Jackson, Sandra 230
Ju, Roy 47

Kamil, Amir 185
Kandemir, Mahmut 450
Kasahara, Hironori 362
Kejariwal, Arun 441
Kelly, Paul H.J. 347
Kennedy, Ken 106
Kimura, Keiji 362
Krishnamoorthy, Sriram 215

Lam, Chi-Chung 215
Lee, Jaejin 170
Lee, Jenq-Kuen 466
Lee, Kyungwoo 170
Lerman, Kristina 433
Li, Xiao-Feng 47
Li, Xiaogang 377
Li, Xiaoming 121, 259
Lin, Yung-Chia 466
Liu, Lixia 47
Liu, Tao 47

Malusare, Priyadarshini L. 62
Midkiff, Samuel P. 170, 319
Mittal, Gaurav 76
Moo, Ya-Chiao 466

Nicolau, Alexandru 441

Oshiyama, Naoto 362
Osmond, Karen 347

Padua, David 136, 170, 259
Pickett, Christopher J.F. 304
Pingali, Keshav 136, 230, 259
Polychronopoulos, Constantine D. 441

Qasem, Apan 106

476 Author Index

Rajachidambaram, Sarojini
Priyadarshini 32

Rajopadhye, Sanjay 244
Ramakrishna, U. 244
Ramanujam, J. 215
Rauchwerger, Lawrence 397
Ren, Gang 259
Renganarayana, Lakshminarayanan

244
Rodŕıguez, Ismael 274
Roeder, Thomas 136
Rubio, Fernando 274
Rus, Silvius 397

Sadayappan, P. 215
Sahoo, Swarup Kumar 215
Schneider, Florian 334
Shen, Xipeng 425
Shikano, Hiroaki 362
Shirako, Jun 362
Son, Seung Woo 450
Steele, Tyler 230
Stodghill, Paul 230

Stroustrup, Bjarne 458
Sura, Zehra 170

Tang, Chung-Lin 466

Verbrugge, Clark 304

Wada, Yasutaka 362
Wang, Shengyue 289
Wong, Chi-Leung 170
Wu, Chengyong 47
Wu, Chung-Ju 466

Yang, Shuo 319
Yelick, Katherine 185, 200
Yellajyosula, Kiran S. 289
Yew, Pen-Chung 289
Yi, Qing 91
Yotov, Kamen 136, 230, 259
You, Yi-Ping 466

Zaretsky, David C. 76
Zhai, Antonia 289
Ziegler, Heidi E. 62

	Frontmatter
	Revisiting Graph Coloring Register Allocation: A Study of the Chaitin-Briggs and Callahan-Koblenz Algorithms
	Register Pressure in Software-Pipelined Loop Nests: Fast Computation and Impact on Architecture Design
	Manipulating MAXLIVE for Spill-Free Register Allocation
	Optimizing Packet Accesses for a Domain Specific Language on Network Processors
	Array Replication to Increase Parallelism in Applications Mapped to Configurable Architectures
	Generation of Control and Data Flow Graphs from Scheduled and Pipelined Assembly Code
	Applying Data Copy to Improve Memory Performance of General Array Computations
	A Cache-Conscious Profitability Model for Empirical Tuning of Loop Fusion
	Optimizing Matrix Multiplication with a Classifier Learning System
	A Language for the Compact Representation of Multiple Program Versions
	Efficient Computation of May-Happen-in-Parallel Information for Concurrent Java Programs
	Evaluating the Impact of Thread Escape Analysis on a Memory Consistency Model-Aware Compiler
	Concurrency Analysis for Parallel Programs with Textually Aligned Barriers
	Titanium Performance and Potential: An NPB Experimental Study
	Efficient Search-Space Pruning for Integrated Fusion and Tiling Transformations
	Automatic Measurement of Instruction Cache Capacity
	Combined ILP and Register Tiling: Analytical Model and Optimization Framework
	Analytic Models and Empirical Search: A Hybrid Approach to Code Optimization
	Testing Speculative Work in a Lazy/Eager Parallel Functional Language
	Loop Selection for Thread-Level Speculation
	Software Thread Level Speculation for the Java Language and Virtual Machine Environment
	Lightweight Monitoring of the Progress of Remotely Executing Computations
	Using Platform-Specific Performance Counters for Dynamic Compilation
	A Domain-Specific Interpreter for Parallelizing a Large Mixed-Language Visualisation Application
	Compiler Control Power Saving Scheme for Multi Core Processors
	Code Transformations for One-Pass Analysis
	Scalable Array SSA and Array Data Flow Analysis
	Interprocedural Symbolic Range Propagation for Optimizing Compilers
	Parallelization of Utility Programs Based on Behavior Phase Analysis
	A Systematic Approach to Model-Guided Empirical Search for Memory Hierarchy Optimization
	An Efficient Approach for Self-scheduling Parallel Loops on Multiprogrammed Parallel Computers
	Dynamic Compilation for Reducing Energy Consumption of I/O-Intensive Applications
	Supporting SELL for High-Performance Computing
	Compiler Supports and Optimizations for PAC VLIW DSP Processors
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

