Eduard Ayguadé
Gerald Baumgartner
J. Ramanujam

P. Sadayappan (Eds.)

Languages and
Compilers for
Parallel Computing

LNCS 4339

18th International Workshop, LCPC 2005
Hawthorne, NY, USA, October 2005
Revised Selected Papers

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4339

Eduard Ayguadé Gerald Baumgartner
J. Ramanujam P. Sadayappan (Eds.)

Languages and
Compilers for
Parallel Computing

18th International Workshop, LCPC 2005
Hawthorne, NY, USA, October 20-22, 2005
Revised Selected Papers

@ Springer

Volume Editors

Eduard Ayguadé

Computer Architecture Department
Universitat Politécnica de Catalunya
08034 Barcelona, Catalunya, Spain
E-mail: eduard @cepba.upc.es

Gerald Baumgartner

Department of Computer Science
Louisiana State University

Baton Rouge, LA 70803, USA
E-mail: gb@csc.lsu.edu

J. Ramanujam

Department of Electrical and Computer Engineering
Louisiana State University

Baton Rouge, LA 70803, USA

E-mail: jxr@ece.lsu.edu

P. Sadayappan

Department of Computer Science and Engineering
The Ohio State University

Columbus, OH 43210, USA

E-mail: saday @cis.ohio-state.edu

Library of Congress Control Number: 2006939009
CR Subject Classification (1998): D.3, D.1.3,F.1.2,B.2.1,C.24,C2,E.1,D4
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-69329-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-69329-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11967729 06/3142 543210

Preface

The 18th International Workshop on Languages and Compilers for High-
Performance Computing was scheduled to be held in New Orleans, Louisiana,
in October 2005. Unfortunately, because of the devastation caused by Hurricane
Katrina the meeting needed to be moved. It was held in Hawthorne, New York,
thanks to help from IBM. The workshop is an annual forum for leading research
groups to present their current research activities and the latest results, cover-
ing languages, compiler techniques, runtime environments, and compiler-related
performance evaluation for parallel and high-performance computing. Sixty-five
researchers from Canada, France, Japan, Korea, P.R. China, Spain, Switzerland,
Taiwan, UK, and the USA attended the workshop.

Thirty-four research papers (26 regular papers and eight short papers) were
presented at the workshop. These papers were reviewed by the Program Com-
mittee; external reviewers were used as needed. The authors then received ad-
ditional comments during the workshop. The revisions after the workshop are
now assembled into these final proceedings.

We thank Siddhartha Chatterjee from the IBM T.J. Watson Research Center
for his keynote talk titled “The Changing Landscape of Parallel Computing.”
The workshop included a special session titled “High-Productivity Languages
for HPC: Compiler Challenges” consisting of invited talks on the three lan-
guages being developed by the DARPA High-Productivity Computing Systems
(HPCS) vendors. The talks were given by Steve Dietz (from Cray on the language
Chapel), Vivek Sarkar (from IBM on the language X10), and David Chase (from
Sun on the language Fortress). Frederica Darema gave a presentation during the
workshop banquet about the proposed Dynamic Data-Driven Applications Sys-
tems (DDDAS) program at the US National Science Foundation.

The workshop was sponsored by the US National Science Foundation and
by International Business Machines Corporation. Their generous contribution
is greatly appreciated. We appreciate the assistance offered by the staff in the
Department of Computer Science and Engineering at the Ohio State Univer-
sity and thank Alex Ramirez of Universitat Politécnica de Catalunya (Spain)
for generous help with the paper submission and review software. Our special
thanks go to the LCPC 2005 Program Committee and the external reviewers
for their efforts in reviewing the submissions. Advice and suggestions from both
the Steering Committee and the Program Committee are much appreciated. Fi-
nally, we wish to thank all the authors and participants for their contributions
and lively discussions, which made the workshop a success.

November 2006 Eduard Ayguadé, Gerald Baumgartner,
J. (Ram) Ramanujam, P. (Saday) Sadayappan

Committees

General /Program Co-chairs:

Program Committee:

Organization

Eduard Ayguadé
(Universitat Politécnica de Catalunya, Spain)
Gerald Baumgartner
(Louisiana State University, USA)
J. (Ram) Ramanujam
(Louisiana State University, USA)
P. (Saday) Sadayappan
(The Ohio State University, USA)
Nancy Amato
(Texas A&M University, USA)
Gheorghe Almasi
(IBM Thomas J. Watson Research Center,
USA)
Eduard Ayguadé
(Universitat Politecnica de Catalunya, Spain)
Gerald Baumgartner
(Louisiana State University, USA)
Calin Cascaval
(IBM Thomas J. Watson Research Center,
USA)
Rudolf Eigenmann
(Purdue University, USA)
Zhiyuan Li
(Purdue University, USA)
Sam Midkiff
(Purdue University, USA)
J. (Ram) Ramanujam
(Louisiana State University, USA)
Lawrence Rauchwerger
(Texas A&M University, USA)
P. (Saday) Sadayappan
(The Ohio State University, USA)
Bjarne Stoustrup
(Texas A&M University, USA)
Peng Wu
(IBM Thomas J. Watson Research Center,
USA)

VIII Organization

Local Organizing Committee: ~Gheorghe Almasi

(IBM Thomas J. Watson Research Center,
USA)

Calin Cascaval

(IBM Thomas J. Watson Research Center,
USA)

Peng Wu

(IBM Thomas J. Watson Research Center,
USA)

Steering Committee: Utpal Banerjee

(Intel Corporation, USA)

David Gelernter

(Yale University, USA)

Alex Nicolau

(University of California, Irvine, USA)

David Padua

Sponsors

National Science Foundation, USA

(University of Illinois at Urbana-Champaign,
USA)

International Business Machines Corporation

Table of Contents

Revisiting Graph Coloring Register Allocation: A Study of the
Chaitin-Briggs and Callahan-Koblenz Algorithms
Keith D. Cooper, Anshuman Dasgupta, and Jason Eckhardt

Register Pressure in Software-Pipelined Loop Nests: Fast Computation
and Impact on Architecture Design............
Alban Douillet and Guang R. Gao

Manipulating MAXLIVE for Spill-Free Register Allocation
Shashi Deepa Arcot, Henry Gordon Dietz, and
Sarojini Priyadarshini Rajachidambaram

Optimizing Packet Accesses for a Domain Specific Language on
Network Processors i
Tao Liu, Xiao-Feng Li, Lizia Liu, Chengyong Wu, and Roy Ju

Array Replication to Increase Parallelism in Applications Mapped to
Configurable Architectures i
Heidi E. Ziegler, Priyadarshini L. Malusare, and Pedro C. Diniz

Generation of Control and Data Flow Graphs from Scheduled and
Pipelined Assembly Code i
David C. Zaretsky, Gaurav Mittal, Robert Dick, and Prith Banerjee

Applying Data Copy to Improve Memory Performance of General
Array Computationsoun it
Qing Yi

A Cache-Conscious Profitability Model for Empirical Tuning of Loop

Busiono

Apan Qasem and Ken Kennedy

Optimizing Matrix Multiplication with a Classifier Learning System
Xiaoming Li and Maria Jesis Garzardn

A Language for the Compact Representation of Multiple Program

VS5 3 o) o 1=

Sebastien Donadio, James Brodman, Thomas Roeder, Kamen Yotov,
Denis Barthou, Albert Cohen, Maria Jesis Garzardn,
David Padua, and Keshav Pingali

Efficient Computation of May-Happen-in-Parallel Information for

Concurrent Java Programs i

Ragkishore Barik

17

32

47

62

76

91

X Table of Contents

Evaluating the Impact of Thread Escape Analysis on a Memory

Consistency Model-Aware Compiler 170
Chi-Leung Wong, Zehra Sura, Xing Fang, Kyungwoo Lee,
Samuel P. Midkiff, Jaejin Lee, and David Padua

Concurrency Analysis for Parallel Programs with Textually Aligned
Barriers ... e 185
Amir Kamil and Katherine Yelick

Titanium Performance and Potential: An NPB Experimental Study 200
Kaushik Datta, Dan Bonachea, and Katherine Yelick

Efficient Search-Space Pruning for Integrated Fusion and Tiling
Transformations 215
Xiaoyang Gao, Sriram Krishnamoorthy, Swarup Kumar Sahoo,
Chi-Chung Lam, Gerald Baumgartner, J. Ramanujam, and
P. Sadayappan

Automatic Measurement of Instruction Cache Capacity 230
Kamen Yotov, Sandra Jackson, Tyler Steele, Keshav Pingali, and
Paul Stodghill

Combined ILP and Register Tiling: Analytical Model and Optimization
Framework 244
Lakshminarayanan Renganarayana, U. Ramakrishna, and
Sanjay Rajopadhye

Analytic Models and Empirical Search: A Hybrid Approach to Code
Optimization 259
Arkady Epshteyn, Maria Jesis Garzardan, Gerald DeJong,
David Padua, Gang Ren, Xiaoming Li, Kamen Yotov, and
Keshav Pingali

Testing Speculative Work in a Lazy/Eager Parallel Functional
Languageo 274
Alberto de la Encina, Ismael Rodriguez, and Fernando Rubio

Loop Selection for Thread-Level Speculation 289
Shengyue Wang, Xiaoru Dai, Kiran S. Yellajyosula,
Antonia Zhai, and Pen-Chung Yew

Software Thread Level Speculation for the Java Language and Virtual
Machine Environment 304
Christopher J.F. Pickett and Clark Verbrugge

Lightweight Monitoring of the Progress of Remotely Executing
Computationsottt 319
Shuo Yang, Ali R. Butt, Y. Charlie Hu, and Samuel P. Midkiff

Table of Contents

Using Platform-Specific Performance Counters for Dynamic
Compilation
Florian Schneider and Thomas R. Gross

A Domain-Specific Interpreter for Parallelizing a Large Mixed-Language
Visualisation Application i
Karen Osmond, Olav Beckmann, Anthony J. Field, and
Paul H.J. Kelly

Compiler Control Power Saving Scheme for Multi Core Processors
Jun Shirako, Naoto Oshiyama, Yasutaka Wada, Hiroaki Shikano,
Keyi Kimura, and Hironori Kasahara

Code Transformations for One-Pass Analysis
Xiaogang Li and Gagan Agrawal

Scalable Array SSA and Array Data Flow Analysis...................
Silvius Rus, Guobin He, and Lawrence Rauchwerger

Interprocedural Symbolic Range Propagation for Optimizing
ComPILErS . .ttt
Hansang Bae and Rudolf Eigenmann

Parallelization of Utility Programs Based on Behavior Phase
Analysis ...
Xipeng Shen and Chen Ding

A Systematic Approach to Model-Guided Empirical Search for Memory
Hierarchy Optimization
Chun Chen, Jacqueline Chame, Mary Hall, and Kristina Lerman

An Efficient Approach for Self-scheduling Parallel Loops on
Multiprogrammed Parallel Computers
Arun Kejariwal, Alezandru Nicolau, and
Constantine D. Polychronopoulos

Dynamic Compilation for Reducing Energy Consumption of
I/O-Intensive Applicationsuuuuuureiii ..
Seung Woo Son, Guangyu Chen, Mahmut Kandemir, and
Alok Choudhary

Supporting SELL for High-Performance Computing
Bjarne Stroustrup and Gabriel Dos Reis

Compiler Supports and Optimizations for PAC VLIW DSP
Processors
Yung-Chia Lin, Chung-Lin Tang, Chung-Ju Wu, Ming-Yu Hung,

Yi-Ping You, Ya-Chiao Moo, Sheng-Yuan Chen, and Jeng-Kuen Lee

Author Index e

XI

Revisiting Graph Coloring Register Allocation:
A Study of the Chaitin-Briggs and
Callahan-Koblenz Algorithms

Keith D. Cooper, Anshuman Dasgupta, and Jason Eckhardt

Department of Computer Science, Rice University
{keith, anshuman, jle}@cs.rice.edu

Abstract. Techniques for global register allocation via graph coloring
have been extensively studied and widely implemented in compiler frame-
works. This paper examines a particular variant — the Callahan Koblenz
allocator — and compares it to the Chaitin-Briggs graph coloring register
allocator. Both algorithms were published in the 1990’s, yet the academic
literature does not contain an assessment of the Callahan-Koblenz allo-
cator. This paper evaluates and contrasts the allocation decisions made
by both algorithms. In particular, we focus on two key differences be-
tween the allocators:

Spill code: The Callahan-Koblenz allocator attempts to minimize
the effect of spill code by using program structure to guide allocation
and spill code placement. We evaluate the impact of this strategy on
allocated code.

Copy elimination: Effective register-to-register copy removal is im-
portant for producing good code. The allocators use different techniques
to eliminate these copies. We compare the mechanisms and provide in-
sights into the relative performance of the contrasting techniques.

The Callahan-Koblenz allocator may potentially insert extra branches
as part of the allocation process. We also measure the performance over-
head due to these branches.

1 Introduction

While processor speed has increased dramatically in the last 20 years, main
memory speeds have struggled to keep up. To address this disparity, current
computer architectures contain several levels of smaller but faster storage in be-
tween main memory and the processor. Consequently, modern compilers must
ensure that frequently used values in a program are stored in the higher ech-
elons of this memory hierarchy. In particular, registers are the fastest storage
locations and compilers run a register allocation phase to map values in the pro-
gram to registers available on the target architecture. This phase is critical in
producing a speedy program. However, it is prohibitively expensive to optimally
conduct global register allocation since the problem is NP-complete [18]. As a

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 1-16, 2007.
© Springer-Verlag Berlin Heidelberg 2007

2 K.D. Cooper, A. Dasgupta, and J. Eckhardt

result, allocation is usually performed by a heuristic driven algorithm. Our pa-
per will focus on two such algorithms — the Chaitin-Briggs allocator [5] and the
Callahan-Koblenz hierarchical allocator [6] — that map the register allocation
problem to a graph coloring problem. Both algorithms construct and color an
interference graph that represents correctness constraints. As can be expected,
optimal coloring of the interference graph is also NP-complete and the allocators
resort to heuristics to color the graph.

The major difference in the two allocators lies in their consideration of pro-
gram structure. After constructing the interference graph, Chaitin-Briggs does
not consider the control flow of the program. In contrast, the Callahan-Koblenz
algorithm constructs a hierarchy of tiles to capture loops and conditional con-
trol flow in the program. This tile representation of the program is then used to
guide allocation and spill decisions. We shall analyze the impact of these locality-
based decisions on the quality of generated code. Another key difference in the
two allocators lies in their register-to-register copy removal techniques. The re-
moval of unnecessary register copies is an integral part of both algorithms. While
the Chaitin-Briggs algorithm conducts copy coalescing to eliminate redundant
copies, Callahan-Koblenz uses a preferencing technique which is a mechanism
that influences the way certain nodes are colored. We shall compare the effec-
tiveness of the two techniques on various benchmarks.

The Chaitin-Briggs allocator has been investigated extensively, and is imple-
mented in practically every industrial and research compiler. In contrast, while
the original Callahan-Koblenz article presents a fascinating approach and makes
compelling arguments about its functionality, the authors did not present an
experimental evaluation. In particular, they described a relatively high-level de-
scription of the algorithm and did not provide a comparison to a high-quality
baseline allocator. If the Citeseer literature database is any indication, there has
been wide interest in the Callahan-Koblenz article — it has been cited almost as
frequently as the well-known Briggs paper [5]. However, even after more than
a decade since its publication, there still has been no evaluation published in
the literature. This is unfortunate since industrial practitioners, in particular,
are necessarily conservative about implementing unproven or poorly-understood
algorithms in their compilers. This is especially true in the case of the Callahan-
Koblenz algorithm, which, as will be seen in the following sections, is signif-
icantly more complicated than the proven, easy to implement Chaitin-Briggs
allocator. This paper intends to address this gap in the literature and to pro-
vide researchers and practitioners with empirical data about the performance of
this intriguing algorithm. Because Callahan-Koblenz is considered an extension
to graph-coloring techniques, we used Chaitin-Briggs — a well-understood graph
coloring algorithm — as the baseline of comparison.

2 Graph Coloring Register Allocation

Register allocators typically take an intermediate representation of a program
as input. This representation does not impose any architectural limitations on

Revisiting Graph Coloring Register Allocation 3

the number of registers — values are contained in locations known as virtual
registers. It is the allocator’s responsibility to map the theoretically unlimited
virtual registers into a finite number of machine (or physical) registers. More-
over, while conducting this mapping, it needs to maintain the semantics of the
program. Graph coloring register allocators construct an interference graph that
represents these safety constraints. Program values are represented by nodes in
the interference graph and edges between nodes imply that those values cannot
share a physical register. Values that cannot share a physical register are said
to interfere with each other. Both the Chaitin-Briggs and Callahan-Koblenz al-
locators construct such an interference graph for each procedure in the program
and then attempt to color it. However, the two graph coloring algorithms use
significantly different techniques to construct and color their interference graphs
and to spill registers. To understand and highlight the impact of these differences
in allocation decisions, we present a summary of the algorithms in the next two
sections.

2.1 Chaitin-Briggs Allocator

As the name suggests, the Chaitin-Briggs allocator (“CB”) is based on Chaitin’s
classical graph coloring allocator. In describing their algorithm, Briggs et al.
identify several major phases in their allocator. Our implementation faithfully
follows the implementation described in the paper except we do not need to
discover and number live ranges (Briggs et. al call this the “Renumber” phase)
since this information is already available in the static single assignment form
(SSA) based representation we use. The major phases, as depicted in Figure 1
and described in [5] are:

Spill code [#

A
build coalesce calculate simplify select
¢ spill costs P

Fig. 1. Overview of the Chaitin-Briggs allocator

Build the Interference Graph: Identify interferences by constructing live ranges
and marking interferences between these ranges.

Coalesce: Remove register-to-register copies if the source and the destination
registers do not interfere. The build and coalesce phases are repeated until no
more coalescing can be conducted. We will provide a detailed analysis of the
effects of coalescing in Section 4.2.

Calculate Spill costs and Simplify: These phases calculate spill costs for every
node in the interference graph and then order the nodes by pushing them on
a stack after removing these nodes from the graph. The Simplify phase first
removes all trivially colorable nodes — i.e. nodes that have fewer neighbors than

4 K.D. Cooper, A. Dasgupta, and J. Eckhardt

the number of available physical registers. If it reaches the point where no such
node remains in the graph, then this phase consults the spill heuristic, chooses
the node with the lowest spill cost, and pushes that node onto the stack. The
process is repeated until the graph is empty and all nodes have been placed on
the stack.

Select: The allocator tries to color the graph by repeatedly popping a node from
the stack, inserting it into the graph, and attempting to assign it a color. If all
colors have already been exhausted by its neighbors, then the node is marked
for spilling and left uncolored.

Spill code insertion: If any nodes were marked for spilling by the previous phase,
then the graph was not successfully colored. As a result, spill code is inserted for
those nodes and the allocator is restarted on the modified program. The Briggs
allocator marks nodes to be spilled at a later stage than Chaitin’s algorithm.
The authors call this procedure optimistic coloring since the algorithm defers
the spilling of a node in the hope that the node will become colorable.

2.2 Callahan-Koblenz Allocator

The Callahan-Koblenz allocator (“CK”) extends Chaitin’s allocator by directly
incorporating program structure into the allocation process. By doing so, the al-
locator can decide which variables to spill, as well as determine where to place the
spill code. In contrast to the “spill everywhere” approach of Chaitin, Callahan-
Koblenz has the potential to place spills in less frequently executed portions of
the program.

&)

blocks(T0) = {START, STOP}
blocks(T0.1) = {A,C}
blocks(T0.1.2) = {B}
blocks(T03) = {D}

@ ®) ©

Fig. 2. Example tile tree: (a) CFG; (b) tiles overlaid on CFG; (c) the tile tree

Callahan-Koblenz represents the hierarchical program structure with a tile
tree. Roughly, each tile in the tree represents a region of code such as a loop or
conditional and each pair of tiles in the tree must either be disjoint or properly
nested, one within the other. Such a tree structure isolates the high- and low-
frequency code regions and provides a basis for the allocator’s overall operation
and spill placement decisions. Figure 2 shows an example control-flow graph and
its corresponding tile tree, where the set blocks(T') represents all basic blocks

Revisiting Graph Coloring Register Allocation 5

which belong to tile T', but not to any subtiles of T'. Each tile boundary represents
an implicit split-point of all values live at that boundary. One of the strengths
of Callahan-Koblenz lies in the ability to allocate each portion of a live range
between the tile boundaries independently. These split-points also become the
locations where any necessary spill code for global values will be placed. Figure 3
depicts the overall structure of the Callahan-Koblenz allocator. Once a tile tree
has been constructed, two major passes are made over the tile tree.

each tile t in postorder raversal of tile iree

Phase 1 each subtile s

o build for blocks(1) incorporate subtile color summarize
o construct ditetree || [incor [[
prefs for blocks(1) conflicts and prefs (pseudo colors) (for parent)

each tile t in preorder traversal of tile tree

rebuild incorporate parent color summarize sile—boundary J

(from summary) conflicts and prefs | (physical registers) = (for subtile) "1 spill code

-l
Phase 2

Fig. 3. The Callahan-Koblenz Allocator

Phase 1 (bottom-up): Each tile T is visited in postorder and processed in-
dependently with the goal of producing a preliminary allocation. The overall
processing of each tile is similar to a Chaitin-Briggs allocator, but includes extra
bookkeeping between tiles, and does not perform coalescing.

Build and preferences: Build the interference graph much like Chaitin-Briggs,
but restricting attention to blocks(T'). Moreover, unlike the standard builder,
interferences are not constructed for any variable which is live across, but not
referenced in the subtree rooted at T.! Preferences (such as for the source and
destinations of copy instructions) are also setup at this time.

Incorporate subtile summaries: All subtiles of T' will have already been pro-
cessed, and a compact summary of their allocations stored. This information is
incorporated into T’s interference graph.

Color: Coloring operates similarly to the Chaitin-Briggs allocator except that
color choice may be influenced by preferences and that color may potentially
be propagated to other nodes. Except for nodes which must receive a particular
physical register, colors assigned in this phase are “pseudo colors” in the sense
that they will be re-colored with a physical register in the second phase.
Summarize: After T is processed, a compressed representation of its’ interference
graph and allocation is constructed and passed up to the parent tile. Included
in the summary are all tile-global variables allocated to registers, all tile-globals
allocated to memory, and tile summary variables. Each TSV corresponds to a
set of tile-local variables that were allocated the same color, so that the local
allocation is represented in a very compact form.

1 Such live ranges, which we abbreviate “LBNR”, are similar to the “delayed bindings”
of [15], or the “inactive” live ranges of [3].

6 K.D. Cooper, A. Dasgupta, and J. Eckhardt

Phase 2 (top-down): Each tile T is visited in preorder with the goal of pro-
viding the final assignment of physical registers. Spill code is introduced at tile
boundaries to reconcile differences in each tile’s allocation.

Rebuild: Reconstruct the interference graph for T' from its summary information.
Incorporate parent summaries: Conflicts for LBNRs that were excluded in the
first phase are now added to the graph for consideration, if they received a
register in the parent.

Color: A final coloring is performed, binding pseudo-colors to physical registers.
As before, coloring decisions are influenced by any preferences.

Summarize: Save T’s allocation and preference information to be passed down
to its subtiles.

Spill code: Spill code is introduced at the tile boundaries, which may not be the
same tile where a particular spill decision was made.

3 Experimental Setup

For our experimental setup, we used the LLVM compiler infrastructure [14]. We
ran the allocators on an Intel Pentium 4 machine with 1 GB of main memory
running Redhat Linux 9.0. The Pentium 4 processor has 7 allocatable integer
registers and 8 allocatable floating point registers. We selected benchmarks that
performed mostly integer computations, since the current LLVM x86 backend
has limited support for global floating-point register allocation. That is, LLVM
is generally unable to allocate floating-point values across basic blocks due to
complications in handling the stack-based FP register file of x86. As a result, the
allocators were evaluated on programs from the SPEC 2000 integer benchmarks
and one program from the Mediabench suite: epic.

4 Evaluating the Allocators

In evaluating the allocators, we posed and answered two major questions. Since
a critical goal of the CK algorithm is to minimize dynamic memory references
generated by spill code, the primary question that needs to be addressed is to
what extent it improves on the “spill everywhere” approach of Chaitin. Sec-
ond, the CK allocator might place extra operations on tile boundaries while
stitching subtiles back together. We wish to measure this overhead and deter-
mine whether it is tolerable. To this end, our evaluation process consisted of
running both allocators on a number of benchmarks and comparing two key
features of the register-allocated output: the spill instructions emitted and the
register-to-register copies eliminated. We measured both the number of static
spills and copies emitted as well as the number of these instructions executed on
test inputs. We also measured the execution time of the allocated code on these
inputs.

While evaluating the allocators, it is tempting to focus solely on the runtime
of the allocated program. However, this might prove to be misleading on certain
environments due to three issues. First, some architectures (the x86 included)

Revisiting Graph Coloring Register Allocation 7

use sophisticated techniques to minimize memory latency. Thus, even if the
allocation algorithm allocates more virtual registers to physical registers and
reduces the amount of spill code in the program, this improvement might not be
reflected in a decrease in execution time. Second, the effects of cache hits and
misses on spill code is unpredictable and might affect the runtime of the code. In
the degenerate case, code with more spill code might benefit from random cache
effects and execute faster than code with fewer spill instructions. The allocators
we evaluated do not optimize for cache effects while emitting spill code — as a
result, the impact of cache on allocated code is purely accidental and we would
like to factor these effects out. Lastly, the evaluated allocators might produce
starkly different allocations for rarely executed procedures of a benchmark. This
difference might not be reflected in the execution time of the entire program.
However, it is sometimes instructive to examine the contrasting allocations of
these procedures. Keeping these considerations in mind, we decided on spill code
and register copies eliminated as our two major evaluation metrics. An analysis of
the spills and copies in the code will give us a relatively architecture-independent
understanding of both allocators. In our comparisons, we used both the dynamic
as well as the static versions of these metrics.

4.1 Comparing the Spill Code Emitted by Both Allocators

A graph coloring allocator typically uses heuristics to color the interference graph
using the same number of colors as available physical registers, k. However, the
coloring will be unsuccessful if the graph is not k-colorable, or if the heuristics fail
to color a k-colorable graph. At this point, most allocators modify the program
and repeat the coloring process. After an unsuccessful coloring effort, Chaitin-
Briggs and Callahan-Koblenz relegate uncolorable nodes to memory and rebuild
the interference graph. This process of placing a live range in memory instead of
a register, known as spilling, reduces the length of the live range and, in general,
makes the modified graph more colorable. Since the spilled range must now be
fetched from memory, the allocator tries to reduce the number of these memory
accesses (spills) executed at runtime. Callahan-Koblenz and Chaitin-Briggs use
heuristic techniques to identify candidates for spilling . Though their heuristics
share a general goal — to make the graph more colorable and to minimize the
amount of spill code — they differ in their formulations.

Spill code insertion strategy in Chaitin-Briggs: In the Briggs allocator,
the spill heuristic is computed by counting the load and store instructions re-
quired if the live range were to be spilled. Specifically, if d; is the loop depth of
instruction ¢, the spill cost for a node is estimated to be:

SpillCost = LoadsCost + StoresCost where LoadsCost = LoadW eight % ElESpilLLoads 104

StoresCost is calculated in a similar manner. For our experiments, the weights
for load and store costs were set to 1. If a spill is required, the node with the
lowest ratio of spill cost to the number of interference edges is selected for spilling.

8 K.D. Cooper, A. Dasgupta, and J. Eckhardt

Once a live range is spilled in Chaitin-Briggs, it is loaded before a use and stored
after a definition throughout the function.

Spill code insertion strategy in Callahan-Koblenz: A more fine-grained
spill strategy is used by the CK allocator. We give a brief overview here, but
consult [6] for a more detailed discussion. Because live ranges can be split at tile-
boundaries, the allocator may choose to place a variable v in different locations
for each tile that it crosses. For example, v may be allocated to a register within
tile ¢, while being relegated to memory in the parent or a subtile. The following
set of equations forms the cornerstone of this strategy:

LocalWeight:(v) = Z P(b) - Refy(v)

beblocks(t)

where ¢ is a tile, P(z) denotes the probability of executing a block or taking a
control flow edge and Re f;(v) is the number of references to v within b. Assuming
that allocating a register to variable v in ¢ is profitable (see below) during the
bottom-up phase, LocalWeight,(v) is analogous to Chaitin-Briggs’ SpillCost
heuristic and is used, along with the degree of the node corresponding to v, in a
similar fashion. However, this cost is computed based only on blocks that occur
strictly within tile ¢, as opposed to the whole function. Moreover, the reference
count of block b is weighted by the probability of b being executed. Note that
for the purposes of this work, we use a static estimate of P(b) rather than actual
profile data to ensure a fair comparison of the spill heuristics for both allocators.
If b is a block, we set P(b) = 10%P*®)_If ¢ is an edge emanating from a block
b, P(e) is computed as the reciprocal of the number of outgoing edges of b.

Weight(v) = Z (Regs(v) — Mems(v)) + LocalW eight:(v)

s€subtiles(t)

Overall decisions regarding whether or not a variable should be spilled are
based on Weighti(v). It is computed as a combination of LocalW eight;(v) and
various penalty costs that may arise from making certain allocation decisions
with respect to the parent or children of ¢. It may happen that the penalty
outweighs the benefit of allocating v to a register, indicating that the allocator
should force v into memory.

Transferi(v) = Z P(e)- Livee(v), where E(t) = EntryFEdges(t)UExitEdges(t).
e€E(t)

Regi(v) = 0, if InRegi(v) = false
egtiv) = min(Transfer:(v), Weight:(v)), if InReg:(v) = true

_fo, if InRegi(v) = true
Memi(v) = {Transfert(v), if InRegt(v) = false

where InReg:(v) is a boolean predicate which is true if v received a register in
tile ¢, and false otherwise. Live.(v) is a predicate that indicates if variable v is
live along edge e.

Revisiting Graph Coloring Register Allocation 9

Table 1. Dynamic spill operations for SPECInt2000 and epic (billions)

Benchmark CB CK % imp.

M Mrg M + Mt CrB All (W/CTB)
gzip 96.82 51.01 6.09 57.10 0.99 58.09 41.02 40.00
vpr 10.77 8.96 1.12 10.08 0.00 10.08 6.41 6.41
crafty 71.21 55.10 5.07 60.17 0.44 60.61 15.50 14.89
parser 51.54 27.66 1.05 28.71 1.12 29.83 44.30 42.12
eon 36.10 36.30 0.28 36.58 0.00 36.58 -1.33 -1.33
gap 53.02 43.45 4.29 47.74 0.55 48.29 9.96 8.93
bzip2 103.00 72.14 17.80 89.94 2.14 92.08 12.68 10.60
twolf 53.70 31.81 11.96 43.77 1.32 45.09 18.49 16.03
epic 8.78 4.50 6.85 11.35 0.44 11.79 -29.27 -34.23
MEAN IMPROVEMENTS 20.52 19.07

Transfery(v), Reg:(v), and Memy(v) represent the various penalty costs. The
first corresponds to the cost due to tile-boundary spills, while the remaining two
account for any penalties due to a tile and its parent choosing different locations
for the same live range. If v is allocated to a register in tile ¢, Reg;(v) is the
penalty of allocating v to memory in the parent of ¢. Likewise, if v is allocated
to memory in tile ¢, then Mem,(v) is the penalty of allocating v to a register in
the parent of ¢.

Analysis of Spill Code Inserted: Table 1 shows the dynamic spill behav-
ior of each benchmark for CB and CK. The column marked C'B is the number
of dynamic memory operations executed by the CB-compiled version of each
benchmark. The CK results are broken down into the three types of spill opera-
tions that can occur. Column M is the number of dynamic memory operations
executed within tile boundaries (e.g., loops). Column Mrp and Crp are the
number of dynamic memory and register-to-register copy operations executed
on tile boundaries, respectively. The two additional CK columns represent the
sum of all dynamic memory operations (M + Mrp) and the sum of all dynamic
spill operations (memory operations or copies). It is useful to isolate the different
types of spills for CK in order to see the effects of tiling more directly. Finally,
the last two columns show the percent improvement of CK over CB. In the first
case, only memory operations are considered, whereas memory and copy opera-
tions are considered in the second case. This distinction was made to show how
prevalent any remaining tile-boundary register-register copies were (indicating
success or failure of inter-tile preferencing), and what overall impact they had on
the improvements. Overall, the benchmarks allocated with CK executed signifi-
cantly fewer dynamic spill operations than those allocated by CB— up to 44%
fewer on parser. On average, 20.52% fewer spill operations were executed for
CK than for CB. On the other hand, there were two losses for CK. One slight
loss in eon, and one significant 29.27% loss in epic (more on this later).

We examined some of the benchmarks in detail at the assembly language level
to understand choices made by each allocator, and why CK performed relatively
well compared to CB. Consider the code in Figure 4a, which is a typical scenario
present in many of the benchmarks. Here there are two live ranges x and ¢

10 K.D. Cooper, A. Dasgupta, and J. Eckhardt

TMem WMem (TB) DlCopies (T8)

<heavy use of x> <heavy use of x> <heavy use of x>

(a) (b) (©) qgzip vpr crafty parser eon gap bzip2 twolf epic

Fig. 4. Example of CK advantage: (a) Fig. 5. Dynamic Spill Operation Types
original code; (b) CB spills ¢; (¢) CK by Percentage. TB indicates operations
splits x on tile boundaries.

competing for one register, where x is referenced once early, and heavily in some
distant part of the program. There are a only few references to ¢ in a small portion
of the program, but they occur in a loop, making them frequently executed. Let
us assume the total number of references to x exceeds those of ¢. In the standard
CB scheme, since the spill cost is calculated based on the references throughout
the program, then = would get a color and ¢ would be spilled (as in Figure 4b).
But from the perspective of ¢, spilling ¢ is a poor choice, since x is never even
referenced in the loop. On the other hand, the opposite choice (giving ¢ the color)
is bad too as the many references to x will now be through memory. Because
CB must spill a live range entirely, one of two poor choices must be made. As
mentioned earlier, CK can consider each live range in fragments, over regions of
the program. Here CK splits z before and after the loop, so that the loop portion
and non-loop portions are allocated independently. This allows the result seen
in Figure 4c, where t gets the register and x gets the register (but x is allocated
to memory within the loop where it has no references). Notice also that there is
a tradeoff in making such a split. A store and a load operation must be placed
at loop entry and exit to make the split, which is clearly profitable here.
Returning to the loss in the epic benchmark, it is useful to examine the
breakdown of spill operation types for CK. The graph in Figure 5 shows the
percentage of total spill operations represented by each type. Looking at the
epic bar, it is evident that something went wrong with CK’s heuristics. That is,
more than half of all the dynamic spill operations are memory operations on the
tile boundaries. Without looking at the code, this would seem indicate that CK
did not calculate trade-offs between intra- and inter-tile spilling appropriately.
In fact, on examining the assembly code, we found just that behavior. One
routine dominating execution time contains a number of triply-nested loops. In
one such nest, there is heavy register pressure in the inner loop, little pressure
in the middle loop, and medium pressure in the outermost loop and non-loop
code. There are also a number of global values live across the entire loop nest,

Revisiting Graph Coloring Register Allocation 11

with references in some loops and not others. Unfortunately, for some of these
globals, the constituent fragments within each loop were alternately allocated
to registers and memory. That is, the outermost loop allocated g to a register,
the next deeper loop allocated g to memory, and the inner loop allocated it to a
register. Thus, at every tile boundary there are memory operations to transfer
g in and out of memory as appropriate. It turns out that these tile-transfers
dominate the spill operation count, as seen in the graph. It would have been
better to keep g in the same location across more than one tile boundary.

4.2 Inter-register Copy Elimination and Its Impact on Allocation

Prior research has demonstrated that the removal of register-to-register copies
improves code quality [10,11]. Therefore, the efficacy of the copy coalescing phase
is critical to the performance of the allocators. An effective copy removal strategy
becomes even more imperative for register allocation in a SSA-based intermedi-
ate representation such as LLVM. While converting from SSA form to executable
code, ¢-functions are replaced by register-to-register copies [4]. In both imple-
mented allocators, we ran an initial pass that merged the live ranges created by
the ¢-node elimination process. This transformation, specified by Briggs in [3],
ensures that the input to the two allocators remained consistent. The two-address
nature of x86 code and copies generated due to procedure-calling conventions
also present many opportunities for copy removal. Since the two allocators im-
plement different copy-removal mechanisms, we shall compare this feature in
more detail in the next two paragraphs.

Coalescing and Biased Coloring: The Chaitin-Briggs allocator uses two comple-
mentary mechanisms — coalescing and biased coloring — to remove register copies
in the code. After building the graph, if the allocator encounters a register copy,
it coalesces the source and destination live ranges if they do not interfere. This
algorithm is called aggressive coalescing because it combines nodes without ex-
amining the resulting node’s degree. After coalescing, the algorithm rebuilds the
interference graph and repeats the coalesce-rebuild process until no more copies
can be eliminated. In Chaitin-Briggs, coalescing is intentionally constrained — to
retain flexibility during coloring, it only examines copies between two virtual reg-
isters. To eliminate copies between physical and virtual registers, Chaitin-Briggs
adds the color associated with the physical register to a list of colors desired by
the virtual register and attempts to assign this color to the register during the
biased coloring phase. Biased coloring is, in spirit, very similar to preferencing
in the CK allocator. However, unlike in Callahan-Koblenz, biased coloring plays
only a secondary role in Chaitin-Briggs since coalescing is powerful enough to
eliminate most copies.

Preferencing: Preferencing refers to the notion that it may be attractive to assign
the same color to multiple variables By making the coloring algorithm sensitive
to such preferences, the likelihood of choosing the desired color for a node is
increased. Copy removal in the CK allocator is performed by preferencing the
source variable S and destination variable D of a copy together by adding each

12 K.D. Cooper, A. Dasgupta, and J. Eckhardt

to the others preference list. The preference-guided color assignment algorithm
then attempts to give the same color to S and D. If the attempt is successful (the
preference was satisfied), then the resulting copy is redundant and can be trivially
removed. Similarly, if either S or D is a physical register, such as a copy generated
to implement subroutine linkage conventions, we setup a local preference. This
is different than the previous case in that a variable is preferenced to a specific
physical register. During color assignment, when a node receives a color, the color
is propagated to all the nodes on its preference list as their local preference. If
a node has a local preference, then the coloring mechanism will first attempt to
assign that register before resorting to using another register. Furthermore, it
will try to avoid giving a node a color that is preferred by uncolored neighbors.

In addition to copy removal, preferencing is used to influence the colors that
different parts of a global live range receive. Recall that tile boundaries are im-
plicit split-points for variables live at that boundary. Because tiles are processed
independently, it is important to pass around information about these variables
(in the form of preferences) so that each tile attempts to place the same global
into the same register. These preferences, of course, are not generated in response
to copy instructions. However, if they are not satisfied, then copy operations will
be inserted at the boundary to resolve the differing allocations.

Register Copies in Code After Copy-Elimination: Coalescing/Preferencing Normalized Execution Time of Allocated Code

Ratio of Remaining Copies: Coal. / Pref.

Normalized Execution Time (CB=1)

gzip wvpr crafty parser eon gap bzip2 twolf epic MEAN gzip vpr crafty parser eon gap bzip2 twolf epic MEAN

Fig. 6. Aggressive Coalescing & Biased Fig. 7. Runtime of Allocated Code
Coloring vs. Preferencing

Ezxperimental FEvaluation: In comparing the copy-removal mechanisms, we
wanted to ensure that our measurements would not be hampered by the in-
consistent namespaces created by both allocators. Therefore, we modified CB
and CK to operate on the same structure — we constructed a single tile for the
entire program and provided this tile as input to the allocators. The results of
our experiments are displayed in Figure 6 — it shows the number of copies re-
maining in the code after copy-removal was conducted. Our experiments show
that overall, coalescing used in conjunction with biased coloring performs better
and removes 3.6% more copies on average than preferencing. This translates into
a 4.5% decrease in copies executed at runtime. We were, however, surprised by
how closely the two algorithms performed. In stark contrast to coalescing which
is executed each time the interference graph is rebuilt, preferencing can remove
copies only while coloring the graph. We conclude that the careful mechanisms

Revisiting Graph Coloring Register Allocation 13

built into preferencing allow it to be competitive with a much more aggressive
technique.

4.3 Control-Flow Overhead of Tiling and Execution Time
Differences

To maintain the structural properties of the tile tree during construction, the
tile tree builder may have to insert extra blocks at tile boundaries. Typically
these blocks fall through to their successor and, therefore, do not result in any
additional branches in the final program. However, there are cases when inserting
blocks results in unavoidable branches. We measured the control-flow overhead
incurred due to these branches. On average, Callahan-Koblenz inserted 5.8%
more branch instructions in the code. However, the increase in executed branches
was comparatively lower: 1.4% over all benchmarks. This difference between
static and dynamic branches indicates that the branches placed at tile boundaries
are infrequently executed.

We built three versions of each benchmark and compared their execution
times — executables were created by running the Chaitin-Briggs allocator, the
Callahan-Koblenz allocator, and the default linear-scan allocator that shipped
with LLVM. Both CB and CK perform better than the linear-scan allocator,
recording improvements on average of 5.4% and 10.6% respectively. The compar-
ison between Callahan-Koblenz and Chaitin-Briggs is summarized in Figure 7.
As can be seen from the experimental results, CK outperforms CB on most of the
benchmarks — on average, it improved performance by 6.1% over CB. These gains
were mainly a result of the substantial reduction in spill instructions executed,
as described in Section 4.1. However, on epic, as a consequence of the extra
spills inserted by Callahan-Koblenz, it performed worse than Chaitin-Briggs,
increasing program runtime by 10.4%.

5 Conclusion

We have evaluated the Callahan-Koblenz allocator on three major criteria: the
amount of spill code inserted, the register-to-register copies eliminated, and the
overhead incurred due to tile construction. As seen in Section 4.1, CK was able to
significantly reduce the number of spill instructions when compared to Chaitin-
Briggs. This reduction can be attributed, in part, to being able to independently
allocate different parts of one live range. Secondly, tile local variables are given
precedence over LBNRs in that we prefer to spill a LBNR over a tile local.
This strategy is often beneficial, since unreferenced variables are typically long
lived and thus conflict with many variables in the same region. The CK results
emphasize that the spill-everywhere approach of Chaitin-Briggs can potentially
degrade performance. We were initially concerned that copy coalescing, a more
aggressive technique, might significantly outperform preferencing. However, our
results indicate that preferencing is reasonably competitive with coalescing. Our
experiments showed that, on average, Callahan-Koblenz emitted fewer spill in-
structions and produced faster running code than Chaitin-Briggs. However, we

14 K.D. Cooper, A. Dasgupta, and J. Eckhardt

reiterate that these experiments were not designed to determine which allocator
is better. Rather, our primary goal was to provide an understanding of the CK
allocator by using another graph coloring technique as a point of reference. To
that end, we did not consider adding improvements in the Chaitin-Briggs spilling
strategy as suggested in various research publications. Specifically, modifications
proposed by Bergner [1], Simpson [9] and Briggs [3] would reduce the number
of spills produced by the allocator. In future research, we intend to devise tech-
niques for improving the quality of spill code in both allocators.

6 Related Work

Though early computer science literature alludes to graph coloring approaches
to register allocation, Chaitin et al. presented the first paper comprehensively
describing a graph coloring register allocator [8,7]. Subsequently, a number of
improvements have been proposed for Chaitin’s Yorktown allocator: Bernstein
et. al. augmented the allocator’s coloring strategy by choosing the best of three
heuristics [2]. They also presented a technique that attempted to reduce the
amount spill code inserted by Chaitin’s allocator. Bergner and his colleagues
noted that spilling can be improved for live ranges that have a small region of
overlap [1]. They called their technique interference graph spilling. Our paper
focuses on the refinement of Chaitin’s allocator by Briggs et. al [5]. By adding
deferred spilling, Briggs and his colleagues were able to significantly improve
allocation, registering a reduction of spill costs up to 40% in their test suite.

To improve on the Yorktown allocator, some researchers incorporated program
structure into their allocation algorithms. Norris et. al. [17] designed an alloca-
tor that operates on the program dependence graph and attempted to carefully
place spill code. They compared their results to a Chaitin-style allocator and
reported up to a 3.7% decrease in spill code. Knobe and Zadeck [12] describe
a structure-based allocator using the notion of a control tree, which is vaguely
similar to a tile tree. This allocator is similar to Callahan-Koblenz in that it
can split live ranges around control tree nodes, it can spill inside of condition-
als, and its pruning of wedges is not unlike CK’s handling of LBNRs; however,
no empirical evaluation of the technique is presented. Lueh’s “Fusion” alloca-
tor also leverages program structure and appears to improve performance over
Chaitin-style allocation by an average of 8.4% on the SPEC92 benchmarks [16].
A recent article suggests that with a careful relaxation of the ordering of the
coloring stack, more preferences can be satisfied [13]. The hierarchical allocator
evaluated in this paper was designed by Callahan and Koblenz and published
in 1991 [6]. Since then, we know of one other attempt to implement the CK
allocator by Wu [19]. However, the implementation deviates significantly from
the published algorithm. The author reserves registers to accommodate machine
operands for spilling which significantly cripples the algorithm while the pub-
lished Callahan and Koblenz paper clearly states that the hierarchical allocator
does not reserve registers. There are several other major differences from the
published algorithm including ignoring the degree of a node while spilling and
not maintaining information during the bottom-up walk of the tree.

Revisiting Graph Coloring Register Allocation 15

Acknowledgements

This work would have proved much more difficult without the enthusiastic help
of Tim Harvey, Brian Koblenz, David Callahan, Michael Berg, and the LLVM
group at the University of Illinois. Our colleagues in the compiler groups at Rice
provided interesting discussions and helpful criticism. To these people go our
heartfelt thanks. This work has been supported by the Los Alamos Computer
Science Institute, by Texas Instruments, and by the National Science Foundation
through grant number 0331654.

References

10.

11.

12.

13.

. Peter Bergner, Peter Dahl, David Engebretsen, and Matthew T. O’Keefe. Spill

Code Minimization via Interference Region Spilling. In SIGPLAN Conference on
Programming Language Design and Implementation, pages 287-295, 1997.

. David Bernstein, Dina Q. Goldin, Martin C. Golumbic, Hugo Krawczyk, Yishay

Mansour, Itai Nahshon, and Ron Y. Pinter. Spill Code Minimization Techniques
for Optimizing Compilers. In SIGPLAN Conference on Programming Language
Design and Implementation, pages 258263, 1989.

Preston Briggs. Register Allocation via Graph Coloring. Technical Report TR92-
183, Rice University, 24, 1992.

Preston Briggs, Keith D. Cooper, Timothy J. Harvey, and L. Taylor Simpson.
Practical Improvements to the Construction and Destruction of Static Single As-
signment Form. Software — Practice and Ezxperience, 28(8):859-881, 1998.
Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to Graph
Coloring Register Allocation. ACM Transactions on Programming Languages and
Systems, 16(3):428-455, May 1994.

D. Callahan and B. Koblenz. Register Allocation via Hierarchical Graph Coloring.
SIGPLAN, 26(6):192-203, June 1991.

G.J. Chaitin. Register Allocation and Spilling via Graph Coloring. In SIGPLANS2,
1982.

G.J. Chaitin, M.A. Auslander, A.K. Chandra, J. Cocke, M.E. Hopkins, and P.W.
Markstein. Register Allocation via Coloring. Computer Languages, 6:45-57, Jan-
uary 1981.

K. D. Cooper and L.T. Simpson. Live range Splitting in a Graph Coloring Register
Allocator. In Proceedings of the International Compiler Construction Conference,
March 1998.

Lal George and Andrew W. Appel. Iterated register coalescing. ACM Trans.
Program. Lang. Syst., 18(3):300-324, 1996.

Suhyun Kim, Soo-Mook Moon, Jinpyo Park, and Kemal Ebciolu. Unroll-based
register coalescing. In ICS ’00: Proceedings of the 14th international conference on
Supercomputing, pages 296-305, New York, NY, USA, 2000. ACM Press.
Kathleen Knobe and Kenneth Zadeck. Register Allocation Using Control Trees.
Technical Report CS-92-13, Brown University, Department of Computer Science,
March 1992.

Akira Koseki, Hideaki Komatsu, and Toshio Nakatani. Preference-directed graph
coloring. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming
language design and implementation, pages 33—44. ACM Press, 2002.

16

14.

15.

16.

17.

18.

19.

K.D. Cooper, A. Dasgupta, and J. Eckhardt

Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong
Program Analysis and Transformation. In Proceedings of the 2004 International
Symposium on Code Generation and Optimization (CGO’04), Mar 2004.

P. Geoffrey Lowney, Stefan M. Freudenberger, Thomas J. Karzes, W. D. Lichten-
stein, Robert P. Nix, John S. O’Donnell, and John C. Ruttenberg. The Multiflow
Trace Scheduling Compiler. The Journal of Supercomputing, 7(1-2):51-142, 1993.
Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Fusion-based reg-
ister allocation. ACM Transactions on Programming Languages and Systems,
22(3):431-470, 2000.

Cindy Norris and Lori L. Pollock. Register Allocation over the Program Depen-
dence Graph. In SIGPLAN Conference on Programming Language Design and
Implementation, pages 266-277, 1994.

Ravi Sethi. Complete Register Allocation Problems. In Proceedings of the fifth
annual ACM symposium on Theory of computing, pages 182-195. ACM, Apr 1973.
Q. Wu. Register Allocation via Hierarchical Graph Coloring. Master’s thesis,
Michigan Technological University, 1996.

Register Pressure in Software-Pipelined Loop Nests:
Fast Computation and Impact on Architecture Design

Alban Douillet and Guang R. Gao

Department of Electrical and Computer Engineering
University of Delaware, Newark, DE 19716-3130
{douillet,ggao}@capsl.udel.edu

Abstract. Recently the Single-dimension Software Pipelining (SSP) technique
was proposed to software pipeline loop nests at an arbitrary loop level [18,19,20].
However, SSP schedules require a high number of rotating registers, and may
become infeasible if register needs exceed the number of available registers. It is
therefore desirable to design a method to compute the register pressure quickly
(without actually performing the register allocation) as an early measure of the
feasibility of an SSP schedule. Such a method can also be instrumental to provide
a valuable feedback to processor architects in their register files design decision,
as far as the needs of loop nests are concerned.

This paper presents a method that computes quickly the minimum number of
rotating registers required by an SSP schedule. The results have demonstrated
that the method is always accurate and is 3 to 4 orders of magnitude faster on
average than the register allocator. Also, experiments suggest that 64 floating-
point rotating registers are in general enough to accommodate the needs of the
loop nests used in scientific computations.

1 Introduction

Software pipelining [1,4,9,10,13] is an efficient and important method to schedule loops
by overlapping the execution of successive iterations. The most popular technique,
modulo-scheduling (MS) [3,8,10,12,16,21], only addresses single loops or the inner-
most loop of a loop nest. Traditional approaches to schedule loop nests mainly focus on
scheduling the innermost loop and extending the schedule toward the outer levels by hi-
erarchical reduction [10,14]. An alternative way is to perform MS after loop transforma-
tions [2]. A new resource-constrained scheduling technique named Single-dimensional
Software-Pipelining (SSP) [18,19,20] does not restrain itself to the innermost loop and
can software pipeline any given loop in a loop nest. If the innermost level is chosen,
SSP is proven to be equivalent to MS. Experimental results have shown that SSP of-
ten outperforms MS, and is fully compatible with the wide array of loop optimizations
and transformations used for MS. The technique can currently be applied to any source
imperfect loop nests with no conditional statements or function calls and with run-time
constant trip counts.

In the SSP compilation process, shown in Figure 1, registers are allocated after
the one-dimensional (1-D) schedule is computed. However, both phases are time-
consuming (the register allocation problem is NP-complete [18], even for single loops
[16]). Therefore, it is preferable to detect early if the register allocator is bound to fail

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 17-31, 2007.
(© Springer-Verlag Berlin Heidelberg 2007

18 A. Douillet and G.R. Gao

choose different loop level OR increase initiation interval

Loop loop Dependence 1-D Schedule Kkernel Register Pressure
Selection nest Simplification pDG | Construction - Evaluation
Cod register Reaist
ode egister
final schedule --——— . ‘allocated & . no yes
Generation kernel Allocation

Fig. 1. SSP Compilation Flow

because of a too high register pressure. The scheduler can then compute a different, but
more favorable schedule. We propose in this paper a fast evaluation method to measure
the rotating register pressure, named M ax Live, of any kernel computed by the SSP
scheduler. It is defined as the maximum number of lifetimes at any time during the exe-
cution of the loop nest scheduled with SSP. It is a theoretical lower bound that may not
be achievable. Only loop variants, allocated to rotating registers, are considered. Loop
invariants are assumed to be allocated to static registers. When unspecified, 'register’
will always refer to ’rotating register’. Any register spilling technique is assumed to
have been applied earlier to the 1-D schedule and is not the subject of the paper.

Such an evaluation method is important and has many uses. (1) First, it allows the
compiler to avoid running the expensive register allocator when it is bound to fail. A
new 1-D schedule with lower requirements can then be computed by increasing the
initiation interval or choosing another loop level, for instance. (2) Second, because the
register pressure is a direct function of the 1-D schedule , the method can be used to
compare the register pressure of 1-D schedules computed by different SSP scheduling
methods. (3) Third, the computed register pressure can also be used to measure the
effectiveness of any register allocator. (4) Last, the method provides a valuable feedback
to processor architects in their register files design decision, as far as the needs of loop
nests are concerned. Other questions can then be answered. Is the register pressure the
same for both floating-point (FP) and integer (INT) registers? Are the register files of
the target architectures balanced enough to efficiently handle the register pressure? Can
we anticipate the final register pressure or the number of registers allocated by a specific
register allocator?

Several issues specific to SSP must be handled. First, the final schedule is composed
of more than one repeating pattern. Second, some lifetimes are stretched to honor re-
source constraints. Last, the initiation rate of the lifetimes is irregular. In this paper, we
propose a method to compute the rotating register pressure of any given 1-D schedule.
The method is fast: it approximates M ax Live by skipping the initialization and con-
clusion phases of the final schedule and considers a unique outermost loop iteration, or
outermost iteration for short. A second method, comprehensive, accurate, but very slow,
is used as reference. For clarity and space reasons, the second method is not presented
in the paper, but is accessible in [5] instead. We will refer to them as the fast method
and the comprehensive method, respectively.

Register Pressure in Software-Pipelined Loop Nests 19

It is the first time a method to compute the register pressure of an SSP schedule is
proposed. With single loops, where MS is used, the traditional technique is to count
the number of lifetimes in the kernel, also named M ax Live [17]. Our method can be
seen as its natural extension to handle the more complex issues specific to the multidi-
mensional case, presented in section 3.2. M ax Live was the chosen method to evaluate
the efficiency of register allocators in [6,11]. Other work [15] considered the theoret-
ical register pressure during the scheduling phase by counting the number of buffers
required for each functional units. However the number of buffers did not take into ac-
count that some buffers could be reused. The register pressure was also studied for non
software-pipelined schedules, such as the concept of FatCover in [7]. Llosa et al. [11]
used MazLive to measure the register pressure of floating-point benchmarks. Their
results also show that a FP register file of 64 registers would accommodate most of the
register pressure and limit accesses to memory in the case of MS scheduled loops. The
results were later confirmed in [22].

The methods presented in this paper were implemented in the Open64/ORC 2.1
compiler on an Itanium workstation. The experiments were conducted on a set of 125
loop nests of various depths. The experiments lead to several conclusions. (1) The fast
method is at least 3 orders of magnitude faster than the register allocator and could
therefore be used in a compiler framework to quickly determine the feasibility of an
SSP schedule. (2) Most of the loop nests of depth 3 or less require less than 96 INT
registers and about half of the loop nests of depth 4 or higher cannot be scheduled be-
cause of a too high INT register pressure. (3) The FP register pressure never exceeds
47 registers and therefore more than half of the FP register file is never used, showing
an imbalance in the usage of the register files between INT and FP. (4) If half of the FP
register file is used for INT values instead, then 76% of the loop nests of depth 5 could
be software-pipelined with SSP.

The paper is organized as follows. Section 2 briefly introduces the SSP method.
Section 3 defines some notations and conventions used in the paper, formulates the
problem and explains in details the issues to tackle. Our solution is then described in
Section 4. Experiments and results are presented in Section 5 before concluding in
Section 6.

2 Single-Dimension Software Pipelining

2.1 Overview

Single-dimension Software Pipelining (SSP) [18,19,20] is a resource-constrained
scheduling method to software pipeline perfect and imperfect loop nests with con-
stant trip counts at run-time. Unlike traditional innermost-loop-centric approaches
[10,14,16], SSP does not necessarily software pipeline the innermost loop of a loop
nest, but directly software pipelines the loop level estimated to be the most profitable.
The enclosing loops of the selected loop, if any, are untouched. If the innermost loop
level is chosen, SSP is equivalent to MS applied to single loops. SSP retains the sim-
plicity of MS, and yet may achieve significantly higher performance [19].

Figure 2(a) shows an example of a double loop nest. In Figure 2(b), the innermost
loop is modulo scheduled, whereas, in Figure 2(c), the outermost loop is software

20 A. Douillet and G.R. Gao

FOR I=1,2
a
FOR J=1,3
b
®
END FOR

d
END FOR

(a) A double loop nest (b) MS schedule (c) SSP schedule

Fig. 2. Simple SSP software pipelining example

pipelined using SSP. Note that, although the two outermost iterations are running in
parallel, the innermost loop is running sequentially within each outermost iteration. In
our example the SSP schedule is shorter by 2 cycles.

SSP proceeds in several steps to produce the final schedule [18,19,20]. First, the
most profitable loop level is chosen for scheduling based on instruction-level paral-
lelism or other criterion. Second, multi-dimensional dependences are simplified into
a l-dimensional problem from which a 1-D schedule is computed, represented by a
kernel. Registers are then allocated to the loop variants in the kernel. Last, the 1-D
schedule is mapped back to the multi-dimensional iteration space and the final schedule
is generated as an assembly code.

Because the enclosing loops to the selected loop are untouched, they are ignored
from our point of view and we will always see the chosen loop as the outermost loop of
the loop nest. The loops are then referred as L1, Lo, . . ., L,, from the outermost level to
the innermost level where n is the depth of the loop nest.

2.2 From the Kernel to the Final Schedule

The final schedule is exclusively made of multiple copies of the kernel, with sometimes
variations or truncations. As such, one only needs to consider the kernel when counting
the lifetimes in the final schedule. A kernel is composed of S stages. Each stage takes T’
cycles to execute. Zero or more operations are scheduled in each modulo-cycle of each
stage with the restriction that operations from different levels must be scheduled into
different stages.

Figure 3(b) shows the kernel of the triple loop nest from Figure 3(a). There are 5
stages a, b, ¢, d , and e. The outermost loop is made of all the S = S; = 5 stages, the
middle loop of So = 3 stages (b, c, d), and the innermost loop of S,, = 2 stages (c,
d). Each stage is made of T' = 2 modulo-cycles and some stages have empty schedule
slots.

A more generic kernel is shown in Figure 3(c). The indexes of the first and last stage
of loop level ¢ are noted f; and [; respectively. The number of stages at level ¢ is noted
S; = l; — f; + 1. The total number of stages is noted .S and is equal to S;. All the stages
have the same initiation interval 7. In Figure 3(b), f1 = 0, fo = 1, f3 = 2,13 = 3,
l2 23,11 =4,andT:2.

Register Pressure in Software-Pipelined Loop Nests 21

Prolog —<>
b|a
c|bla
d|c
cld
ILP dfc
FOR I=1,N1 cld
opl ILES
d|c .
FOR J=1,N2 DFP ——ofpT4q Push to avoid
op2 resource conflicts
FOR K=1,N3 clb
op3 dic
Op‘; clal stages of the OLP
op
R PR i ngt exeched py
END FOR cld using predication
op6 d[c|b]a
END FOR Tdlc5la
(a) Triple loop nest
S=5 4
Su=
eSh=2 OLP e c a
op6 | op| |opl Tea e|d|c|bla
opS op3 | op2 B
e d c b a
v
(b) Kernel Folded c[d]c|bla
S ILES eld|c|b
| Si |
! | S, | !
Y Y £t £ e
| 0 eld[c
T S S - I Epilog ——— | e |d
R . e T-2
i i B T-1 €
(c) Generic Kernel (d) Final Schedule (N1=8, N2=2, N3=3)

Fig. 3. A More Complex Example

Figure 3(d) shows the final schedule of our example. The stages are symbolized
by their letters for clarity purposes. We assume that the trip counts for each loop are
Np =8, Ny = 2, and N3 = 3 (stage b appears only twice in each column, and stages
¢ and d appear three times after each instance of stage b). A column represents the
execution of a single outermost iteration (8 total). Both inner loops are represented only
for the first two outermost iterations. Afterwards, they are symbolized by a dashed box.
Because of resource constraints, only a group of .S,, = 2 outermost iterations can fully
be executed in parallel [20,19]. The other outermost iterations are delayed and pushed
later in the schedule, as illustrated by the thick vertical arrow.

Because of the delays and the repetitive nature of the schedule, the final schedule
can be decomposed into five different patterns: the prolog, the outermost loop pattern
(OLP), the innermost loop pattern (ILP), the draining and filling pattern! (DFP), and
the epilog. The ILP and DFP form the Inner Loop Execution Segment (ILES). Each
pattern can be fully derived from the kernel. The ILP and DFP are obtained by cyclicly

! Also called transition code in [20].

22 A. Douillet and G.R. Gao

considering S,, consecutive stages among the S; stages of the kernel for loop level
1 [19]. Predication is used in the OLP to truncate unnecessary stages.

3 Problem Formulation and Lifetimes Classification

3.1 Lifetimes Notations and Conventions

The distance in terms of outermost iterations between the definition and the use of a
loop variant is called the omega value of the use. The maximum omega value of all the
uses of a loop variant represents the number of live-in values required for the variant.
Similarly, if live-out values are required from a loop variant, we note alpha the number
of values. Those notations are consistent with Rau’s conventions [17]. A loop variant is
statically defined only once per loop level.

The time period when an instance of a loop variant v is live is called the scalar
lifetime, or lifetime for simplicity, of that instance. In our examples, as shown in Fig-
ure 4(a), a circle represents the start of a lifetime, a cross the end, and a dash a non-
killing use of the variable. At any given cycle c of the final schedule, the number
of lifetimes is called the FatCover at cycle c. MaxLive is the maximum of all the
FatCovers.

In order for the operations to be interruptible and restartable in a VLIW machine
and to avoid dependencies between operations scheduled in the same cycle, a lifetime
is started at the beginning of the cycle of the defining operation and is killed at the
end of the cycle of the killing operation. This convention matches Rau’s convention
about scalar lifetimes in [17]. A register cannot be used and defined in the same cycle,
except if it is by the same operation, as shown in Figure 4(b) and 4(c). We assume
that the intermediate representation follows the same conventions. A loop variant can
be redefined by the same operation like in Figure 4(c). In the latter case, the operation
will be considered only as a use of the variant for the purpose of our algorithms.

3.2 Problem Formulation and Issues

The problem can be formulated as follows: given a loop nest and a SSP schedule for it,
evaluate the rotating register pressure M ax Live of the final schedule.

The problem presents several issues. First, the lifetimes do not exhibit regular pat-
terns like with modulo scheduling. Successive instances of the same lifetime do not
reappear every 1" cycles: because of the push operations, some delays are encountered.
For the same reason, some lifetimes appear to be stretched until the stalled outermost
iterations they belong to resume their execution. Examples can be seen in Figure 5.

Second, the number of lifetimes in the same stage and modulo-cycle may vary, de-
pending on the position of the stage in the final schedule. For instance, Figure 4(d)
shows a part of the final schedule presented in Figure 3(d). The loop variant is defined
in the first instance of stage d and used in stage c. The same loop variant is defined
again in the second instance of d but never used. However, the register required for the
definition must be accounted for during the only cycle where the second instance of
the loop variant is live. Symmetrically, a value may be defined each iteration and never
used until the last iteration, where the value is used in the enclosing loop (Figure 4(e)).

Register Pressure in Software-Pipelined Loop Nests 23

TN3

FatCover N2 live—in
2@ start
2 < stari « .
FatCover FatCover
1 b use 1 .
1| NI _ _ _
2FO) end {y=x+lz=x+2} : (\) (\) {x=x+1} 1 ‘
1
L]
’e*[ive—am ‘ ‘ ‘
y z X
(a) Lifetimes Examples (b) Reuse by Different (c) Reuse by the Same
Operations Operation
d
Rl q O
() {X} b (defined before the
beginning of the loop)
C c FatCover input elobal
3 O)
3 F———— local
d d d 3 X
&l O (9] : <‘>
B € € 3 o) X
cross—iteration F output
(used after the
end of the loop)

(d) Variant 1 (e) Variant 2 (f) Variant 3 (g) Lifetimes Classification

Fig. 4. Lifetimes Notations, Situations, and Classification

Similarly, whether the stage belongs to the last instance of the enclosing loop also
influences the number of local lifetimes. In Figure 4(f), the last instance of the loop
variant is used at the beginning of the enclosing loop. If it is the last iteration of the
enclosing loop, then the value is never used and the local lifetime is reduced to a single
cycle. We refer to those two situations as first and last.

Finally, the method must be fast in order to be used as a tool by the register allocator
and the scheduler to help detect infeasible solutions early.

3.3 Lifetimes Classification

For the purpose of the algorithms described in this paper, lifetimes are classified into
5 categories, illustrated in Figure 4(g). Global lifetimes covers the whole execution of
the loop nest. This is typical of loop invariants and those lifetimes are not considered
by our algorithm. Output lifetimes hold values computed within the loop nest that will
be used outside. The number of parallel live-out values of the same loop variant is
equal to the alpha value of the variant. Input lifetimes start before the beginning of
the loop and terminates before the end. The number of parallel live-in values of the
same loop variant is the maximum of all the omega values of the variant among all its
uses. Cross-iteration lifetimes cross outermost iterations. By construction, a sequence
of cross-iteration lifetimes start with input lifetimes. Every other lifetime is said to be
local to the current outermost iteration.

24 A. Douillet and G.R. Gao

Legend

: lastlocal lifetimes

: firstlocal lifetimes

@00 2

: cross—iteration lifetimes

ILES:

: stretched /astlocal lifetimes

: local lifetimes

: stretched firstlocal lifetimes

0ee®

: stretched cross—iteration
lifetimes

Within one outermost iteration:

[: first instance of the stages
I : /ast instance of the stages

Fig. 5. Register Pressure Computation Overview

4 Register Pressure Computation

This section presents the details of our solution. We make the assumption that the max-
imum register pressure will appear in the steady phase (OLP and ILES) of the final
schedule. Therefore, input and output lifetimes are ignored and only local and cross-
iteration lifetimes are considered. Experiments in Section 5.1 will show that this as-
sumption is always correct.

A snapshot of our final schedule during the steady phase is shown in Figure 5. The
lifetimes can be partitioned into 7 groups, shown in the legend. To compute the maxi-
mum register pressure of the final schedule, we count the number of lifetimes in each of
the seven groups. Cross-iteration lifetimes are counted by analyzing the definition and
uses of each cross-iteration loop variant. Local lifetimes are counted for each single
stage of the kernel for both situations: first or last in the current outermost iteration. The
exact algorithms are available in [5]. An overview is given in the next subsections.

4.1 Cross-Iteration Lifetimes

Because the outermost loop level is the only level actually software pipelined, only vari-
ants defined in the outermost level can have a cross-iteration lifetime. The first step con-
sists of identifying the cross-iteration variants. They are defined in the stages appearing
in the outermost loop only and show at least one use with an omega value greater than
0. Then, for each variant, the stage and modulo-cycle of the definition and of the last use
are computed and noted Sge s, Cgef, Skiu, and crqy, respectively. The definition of each
variant is unique and therefore easily found. Because cross-iteration lifetimes span sev-
eral outermost iterations, the last use of a such lifetimes must be searched among each
of the spanned iterations. The stage index of the last use is computed by adding the
omega value of the use to its stage index.

Afterward, the number of cross-iteration variants lifetimes at modulo-cycle c in the
OLP is then given by LT¢,0ss(c), shown in Figure 8. Sg;i;(v) — Sqef(v) + 1 represents

Register Pressure in Software-Pipelined Loop Nests 25

COMPUTE CROSS ITERATION LT(): COMPUTE LOCAL LT():
civs < () // cross-iteration variants set // Start recursive analysis from the outermost level
ous «— set of the variants defined in the outermost loop Y(s,¢,p) € [f1, 1] X0, T1X{ first,last}

LTca(s,c,p) < —1, Visit Level(1, 0)
// Identify the cross-iteration variants

for each operation op in the schedule // Initialize first with last value if first uninitialized
for each source operand src of op for each stage s from f; to [y
if omega(op, src) > 0 and src € ovs then for each cycle ¢ from 0 to T’
civs — civs U {src} if LTjocar (s, ¢, first) = —1 then
initialize Sgef, Cdess Skints Criu for srcto —1 LTocar(s, ¢, first) « LTpca(s, ¢, last)

// Collect the parameters for each cross-iteration variant VISIT LEVEL(level level, live set live):

for each stage s from /; to f;, backwards // Count the local lifetimes for loop level ’level’
for each cycle ¢ from 7' — 1 to 0, backwards for each stage s from jeye; tO fieper, backwards
for each operation op in s at cycle ¢ for each cycle ¢ from 7" to 0, backwards
for each source operand src of op in civs live «— live U DEF(s,c) UUSE(s, c)
if Sy (sre) = s + omega(op, src) then if LT)peai (s, ¢, last) = —1 then
Skin(src) unchanged LT pca(s, ¢, last) « |live|
criu(sre) «— max(cgy(sre), c) else
else if Sy (src) < s+ omega(op, src) then old — LTipear(s, ¢, first)
Siiu(sre) < s + omega(op, src) LT1ocai(s, ¢, first) < max(old, |live|)

criu(sre) « ¢ live < (live — DEF(s,¢)) UUSE(s, c)
for each result operand res of op in civs // Recursive call for the inner levels
Caef(res) — ¢ if level <nand s = fieper1 then
Saep(res) — s Visit Level(level + 1, live)

Fig. 6. Fast Method Algorithms

the length in stages of the lifetime of v. The two other ¢ terms are adjustment factors
to take into account the exact modulo-cycle the variant is defined or killed in the stage.
Figure 7(a) shows an example of a cross-iteration lifetime. The lifetime starts at Sq.r =
1, corresponding to stage b, and cqey = 2, and stops omega = 3 iterations later in
stage Skiiy = 0+ omega at modulo-cycle cx;;; = 0. Then the number of cross-iteration
lifetimes for that variant is equal to 2, 1, and 2 at modulo-cycle 0, 1, and 2 respectively.

4.2 Local Lifetimes

The computation of the local lifetimes is done by using traditional backwards data-flow
liveness analysis on the control-flow graph (CFG) of the loop nest where each loop
level is executed only once. A generic example for a loop nest of depth 3 is shown in
Figure 7(b). The final schedule is partitioned into 2 x n — 1 blocks of stages. For each
level but the innermost, there are two blocks. The first is made of the stages exclusively
belonging to the loop level and executed before the ILP, and the second of the stages
exclusively belonging to the same level but executed after. The innermost level has
only one block made of the S;, innermost stages. The separations correspond to the
separations between stages of different levels in the kernel and the order in which the
stages are visited is the order of the stages in the kernel. The figure shows the stage
indexes for each block. Stages visited as first are represented in light gray whereas
stages visited as last are in dark gray.

4.3 Register Pressure

The OLP is composed of S,, kernels, each made of all the S stages. The register pres-
sure is the sum of the cross-iteration and local lifetimes for each stage. The distinction

26 A. Douillet and G.R. Gao

a Sier =1 fo— first
Caer=2

b B S =0

= g
c b a

O LTCFOBS
d b g 2
1 S 8 —
P
omega=3 level 1 level 2 level 3
(a) Cross-iteration Lifetimes Example (b) Local Lifetime Computation Order

Fig.7. Lifetimes Computation

between first and last instance of the local lifetimes must be made, leading to S — n
different cases. We then obtain the formula for LT, shown in Figure 8. The first term
counts all the cross-iteration lifetimes. The second is the maximum number of local
lifetimes among the S,, possible instances of kernel in the OLP.

The formula for the ILP and DFP is LR;;.,. The first three terms correspond to the
three types of stretched lifetimes shown in Figure 5: 7, 4, and 6 in that order. Their num-
ber is fixed for the entire execution of the ILES and equal to the number of lifetimes
live at the exit of the OLP. The fourth term of the formula corresponds to the local life-
times of the ILES (5). M ax Live is then the maximum between between the maximum
register pressure of the OLP and the maximum register pressure of the ILES patterns.

Although it is possible to modify the algorithms and formulas to make the M ax Live
computation incremental, it is not believed that our method is fast enough to help guide
the instruction scheduler.

5 Experiments

The algorithms were implemented in the ORC 2.1 compiler and tested on an 1.4GHz
Itanium?2 machine with 1GB RAM running Linux. The benchmarks are SSP-amenable
loop nests extracted from the Livermore Loops, the NPB 2.2 benchmarks and the
SPEC2000 FP benchmark suite. A total of 127 loop nests were considered. When all
the different depths are tested, 328 different test cases were available. There were 127,
102, 60, 30, and 9 loop nests of depth 1, 2, 3, 4, and 5, respectively.

The main results are summarized here and explained in details in the next subsec-
tions. (1) The fast method is 1 to 2 orders of magnitude faster than the comprehen-
sive method, and 3 to 4 orders of magnitude faster than the register allocator. (2) De-
spite the approximations made by the fast method, its computed M ax Live is identi-
cal to MaxLive computed by the comprehensive method. No rule of thumb could be

Register Pressure in Software-Pipelined Loop Nests 27

LT, 0s5(c) = Z ((Skiu(v) — Sdef(v) +1)+ 6def(c; v) + O (e, v))
VECIVS
daef(c,v) = —1if ¢ < cqep(v), 0 otherwise
where { (5;“;”(6., ’U) =—1lifec> C]W;”(’U>, 0 otherwise
I fn—2
Lﬂles(c) = LTcross(T) + Z Lﬂocul(57 T7 lCLSt) + Z LRlocal(Sa T7 fiTSt)

s=ln s=f1

Sp—1
+ max (max (Z LT pear(fi + (ig + 0)%S), ¢, first) > >
i=0

le[2,n] \ i0€[0,9,—1]

A ln—1—i
LT,,(c) = LT ess(c)+ éﬁagz] (; .LTloml(s,c., last) + zf: LT}pear(s, ¢, first))
s=ln—i s=/1

FatCovery, = VCET,[;L)?Tr—l] (LTop(c))
FatC “iles — g LT1 es
atCoverg, w?ﬁ%_u (LTes(c))
MazxLive = max(FatCover;es, FatCoverqyy)

Fig. 8. Register Pressure Computation Formulas

deduced to predict M ax Live by only considering the 1-D schedule parameters such as
kernel length, number of loop variants, and others. Rotating Register pressure increases
quickly for integer values as the loop nest gets deeper and about half of the loop nests
of depth 4 or 5 show a M ax Live higher than the size of the INT register file. (3) The
floating-point rotating register pressure remains about constant as the depth of the loop
nests increases, and never exceeds 47 registers. Consequently, the floating-point rotat-
ing register file could be reduced from 96 to 64 registers. The extra 32 registers could
be added to the integer register file instead.

5.1 Compilation Time

The time measurements are presented in Figure 9(a) where the loop nests have been
sorted first by increasing depth, delimited by tics on the horizontal axis, then by increas-
ing kernel length. Note the logarithmic scale for the vertical axis. The comprehensive
and fast methods take up to 3.18 and 0.04 seconds respectively, with an average of 0.16
and 0.005 seconds. The running time of each method is directly related to the kernel
length. The shape of the graph confirms the quadratic running time of the fast method
and the influence of the depth of the loop nest. The fast method is 22.9 times faster than
the comprehensive method, with a maximum of 217.8. As the loop nest gets deeper, the
speedup becomes exponentially more significant.

The running time of the fast method and the register allocator from [18] are compared
in Figure 9(d). On average, the fast method is 3 orders of magnitude faster than the
register allocator with a maximum of 20000. As the loop nest gets deeper, i.e. as the
M azx Live increases and the need for a quick method to evaluate the register pressure a
priori becomes stronger, the speedup increases, making the fast method a valid tool to
detect infeasible schedules before the register allocator.

28

Time (sec,log scale)

Total Register Pressure (FP+INT)

MaxLive

A. Douillet and G.R. Gao

Comprehensive
EEm Fast

depth 3

depth 2
0.1
depth 1
0.01
0.001
le-04
Benchmarks
(a) Running Time
224
| —Integer
192 Floating-Point
160 | depth 3
128 l
96
64 depth 2
depth 1
32 F
0
Benchmarks
(b) MaxLive
256 s
Total Register Pressure —-----
FP/INT Ratio
24 | J
12
192 b
160 ’(-)
J 1.5
128
q1
9%
|
64 | ‘ ‘
I] 405
i
2| ‘ Al
0
Benchmarks

(c) Total Pressure & FP/INT Ratio

FP/INT Ratio

Speedup (log scale)

100000

10000

1000

100

Benchmarks

(d) Fast Method vs. the Reg. Allocator

o 08
<
% 06
z
2 04
H
2
< 02
0
12 3 4 s
Depth

(e) Ratio of Loop Nests Amenable to SSP

Extra FP Register Pressure per Level

50 -

Level 3 or higher mmm
Level 2
Level |

Benchmarks

(f) FP MaxLive Progression

Fig. 9. Experimental Results

Although the fast method does not take into account live-in and live-out lifetimes,
the computed M ax Live was identical for the two other methods in all the benchmarks
tested. M ax Live is indeed less likely to appear in the prolog and epilog.

5.2 MaxLive

The computed M ax Live is a optimistic lower bound on the actual register pressure.
It does not take into account that a value held in one register at cycle ¢ must remain
in the same register at cycle ¢ + 1 or that the use of rotating registers reserves a group
of consecutive registers at each cycle, even if some of them are not currently used.

Register Pressure in Software-Pipelined Loop Nests 29

The actual register allocation solution computed by an optimal register allocator may
allocate more registers than M ax Live. However, with the addition of register copy
instructions, M ax Live registers can always be reached

The computed M ax Live is shown in Figure 9(b) for INT and FP loop variants. The
benchmarks have been sorted by increasing depth, indicated by small tics on the hori-
zontal axis, and by increasing M ax Live. The average M ax Live for INT and FP are
47.2 and 15.0 respectively with a maximum of 213 and 47. If we only consider rotat-
ing registers, the 96 hard limit on the number of available FP registers in the Itanium
architecture is never reached. However the 96 limit for INT registers is reached more
often as the depth of the loop nests increases, up to 56% for the loop nests software
pipelined at level 4 as shown in Figure 9(e).

INT M az Live increases faster than FP M ax Live. INT M azx Live indeed increases
as the nest gets deeper because more inner iterations are running in parallel. It is par-
ticularly true for INT values that are used as array indexes. If an array index is defined
in the outermost loop, then there is one instance of the index for each concurrent out-
ermost iteration in the final schedule. For FP values however, this is not the case. They
are typically defined in the innermost loop only and have very short lifetimes.

We also tried to approximate M az Live by looking at the 1-D schedule parameters.
However no rule of thumb could be derived by looking at one parameter such as S,
Sp, the length of the kernel or the number of loop variants. The MaxLive was also
compared to the actual number of registers allocated by the register allocator. Unlike
in MS where the number of registers allocated rarely exceeds MaxLive+1 [17], the
difference with SSP varies between 0% and 77%. Such results are explained by the
higher complexity of SSP schedules compared to MS and because M azx Live is not a
tight lower bound.

5.3 Floating-Point Register File Size

Figure 9(c) shows the total register pressure, defined as the sum of M ax Live for INT
and FP registers, and the ratio between M ax Live for FP and INT registers. The bench-
marks are sorted by increasing ratio. The total register pressure rarely exceeds 192
registers, the size of the rotating register file in the Itanium architecture. Although FP
MazxLive can be twice higher than INT MaxLive, the FP/INT ratio remains lower
than 0.5 when the total register pressure is greater than 96.

Figure 9(f) shows FP M ax Live as the same loop nest is scheduled at deeper levels.
FP M az Live does not or barely increases as a same loop nest is scheduled at a deeper
level. The maximum FP M ax Live never exceeds 47 registers.

Several conclusions, that may be useful for future designs of architectures with the
same number of functional units and superscalar degree than the Itanium architecture,
can be drawn from these remarks. First, the INT register file may benefit from a smaller
FP register file with a ratio of 2 for 1. The FP register size can either be decreased to save
important chip real estate, or the INT register file increased to allow more SSP loops
to be register allocated. Second, for the set of benchmarks used in our experiments, the
optimal size for the FP register file would be 64. It would not prevent any other loop
nests from being register allocated while giving extra registers to the INT register file.
If a size of 64 and a INT/FP ratio of 2 are chosen, the feasibility ratio for loop nests

30 A. Douillet and G.R. Gao

of depth 4 and 5 would jump from 43% and 56% to 77% and 67%, respectively. The
FP/INT ratio chosen for the Itanium architecture is not incorrect, but was chosen with
MS loops in mind, which exhibits a lower INT M az Live.

6 Conclusion

Single-dimension Software Pipelining (SSP) software pipelines a loop nest at an arbi-
trary level. However the register pressure is too high for half of the loop nests of depth 4
or more. It is therefore necessary to know the register pressure early in the compilation
process to avoid calling the register allocator when it is bound to fail. The results of the
evaluation could also be used to evaluate the efficiency of any SSP register allocator.
We proposed in this paper a methodology that quickly computes the rotating register
pressure of an SSP schedule

Results showed that our method is accurate and at least 3 orders of magnitude faster
than the register allocator on average, making it a valid tool to detect infeasible sched-
ules early. From a hardware co-design point of view, experimental results suggest that
SSP schedules would benefit from a smaller floating-point rotating register file of 64
registers and a twice as large integer rotating register file.

Acknowledgments

We would like to acknowledge Dr. Hongbo Rong for his enthusiastic moral and technical
support during the course of this work, and Jean-Christophe Beyler and the anonymous
reviewers for their insightful comments. This work was supported in part by the Defense
Advanced Research Projects Agency (DARPA) under contract No.NBCH30904, by NSF
grants No.0103723 and No0.0429781, and by DOE grant No.DE-FC02-OIER25503.

References

1. A. Aiken, A. Nicolau, and S. Novack. Resource-constrained software pipelining. IEEE
Transactions on Parallel and Distributed Systems, 6(12):1248-1270, Dec. 1995.

2. S. Carr, C. Ding, and P. Sweany. Improving software pipelining with unroll-and-jam. In
Proc. 29th Annual Hawaii Int’l Conf. on System Sciences, pages 183—-192, 1996.

3. A. Dani, V. Ramanan, and R. Govindarajan. Register-sensitive software pipelining. In Proc.
of 12th Int’l Par. Processing Symp./9th Int’l Symp. on Par. and Dist. Systems, 1998.

4. A.Darte, R. Schreiber, B. R. Rau, and F. Vivien. Constructing and exploiting linear schedules
with prescribed parallelism. ACM Trans. on Design Automation of Electronic Systems, 2001.

5. A. Douillet and G. R. Gao. Register pressure in software-pipelined loop nests: Fast com-
putation and impact on architecture design. CAPSL TM 58, Univ. of Delaware, Newark,
Delaware, 2005. In ftp://ftp.capsl.udel.edu/pub/doc/memos.

6. A. Eichenberger, E. Davidson, and S. Abraham. Minimum register requirements for a mod-
ulo schedule. In Proc. of the 27th int’l symp. on Microarchitecture, pages 75-84, 1994.

7. L.J. Hendren, G. R. Gao, E. R. Altman, and C. Mukerji. A register allocation framework
based on hierarchical cyclic interval graphs. In Proc. of the 4th Int’l Conf. on Compiler
Construction, pages 176—191. Springer-Verlag, 1992.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Register Pressure in Software-Pipelined Loop Nests 31

. R. Huff. Lifetime-sensitive modulo scheduling. In Proc. of the conf. on Programming lan-

guage design and implementation, pages 258-267. ACM Press, 1993.

. S. Jain. Circular scheduling: A new technique to perform software pipelining. In Proc. of

the Conf, on Programming Language Design and Implementation, pages 219-228, 1991.
M. Lam. Software pipelining: An effective scheduling technique for VLIW machines. In
Proc. of the conf. on Programming language design and implementation, 1988.

J. Llosa, E. Ayguadé;, and M. Valero. Quantitative evaluation of register pressure on software
pipelined loops. International Journal of Parallel Programming, 26(2):121-142, 1998.

J. Llosa, A. Gonzilez, E. Ayguadé, and M. Valero. Swing modulo scheduling: A lifetime
sensitive approach. In Proc. Conf. on Par. Arch. and Compil. Tech., pages 80-86, 1996.
S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with selective scheduling and
software pipelining. ACM Trans. on Prog. Lang. and Systems, 19(6):853-898, 1997.

K. Muthukumar and G. Doshi. Software pipelining of nested loops. In Proc. of the Int’l
Conf. on Compiler Construction, volume 2027, pages 165-181. LNCS, 2001.

Q. Ning and G. R. Gao. A novel framework of register allocation for software pipelining. In
Proc. of the symp. on Principles of programming languages, pages 29-42, 1993.

B. R. Rau. Iterative modulo scheduling: an algorithm for software pipelining loops. In Proc.
of the int’l symp. on Microarchitecture, pages 63—74, 1994.

B. R. Rau, M. Lee, P. P. Tirumalai, and M. S. Schlansker. Register allocation for software
pipelined loops. In Proc. of the conf. on Prog. lang. design and impl., pages 283-299, 1992.
H. Rong, A. Douillet, and G. R. Gao. Register allocation for software pipelined multi-
dimensional loops. In Proc. of the conf. on Prog. lang. design and impl., 2005.

H. Rong, A. Douillet, R. Govindarajan, and G. R. Gao. Code generation for single-dimension
software pipelining of multi-dimensional loops. In Proc. of Int. Symp. on Code Generation
and Optimization, page 175, 2004.

H. Rong, Z. Tang, R. Govindarajan, A. Douillet, and G. R. Gao. Single-dimension software
pipelining for multi-dimensional loops. In Proc. of Int. Symp. on Code Generation and
Optimization, pages 163-174, 2004.

J. Ruttenberg, G. R. Gao, A. Stoutchinin, and W. Lichtenstein. Software pipelining show-
down: optimal vs. heuristic methods in a production compiler. In Proc. of the conf. on Prog.
lang. design and impl., pages 1-11, 1996.

J. Zalamea, J. Llosa, E. Ayguadé, and M. Valero. Two-level hierarchical register file organi-
zation for vliw processors. In Proc. of the symp. on Microarch., pages 137-146, 2000.

Manipulating MAXLIVE for
Spill-Free Register Allocation

Shashi Deepa Arcot, Henry Gordon Dietz,
and Sarojini Priyadarshini Rajachidambaram

Electrical and Computer Engineering Department, University of Kentucky
sarco0@engr.uky.edu, hankd@engr.uky.edu, rspriya@uky.edu

Abstract. This paper explores new compilation methods, including Genetic Al-
gorithms (GAs) and a new adaptation of Sethi-Ullman numbering, to aggressively
restructure basic block code and allocate registers so that the number of registers
used does not exceed the number available. Although the approach applies to a
wide range of target architectures, it is investigated primarily for nanocontrollers,
which have a combination of properties that make avoiding spills particularly dif-
ficult, but mandatory.

1 Introduction

The problem of efficiently allocating registers for temporary values is an old problem,
but also is a topic of ongoing research. In large part, the importance of register allocation
has been increasing because:

— Although both logic and memory speeds have been exponentially improving, the
exponents are different. Main memory was once faster than processor logic for
simple operations such as integer addition, but modern processors can perform
hundreds to thousands of integer additions in the time taken to make one random
address access to main memory.

— Registers play a key role in implementing instruction-level parallelism (ILP). Su-
perscalar (multiple issue) execution logic may require many operands each clock
cycle. As compared to multi-port caches and main memory interfaces, it is rela-
tively straightforward to construct multi-port register files. Registers also facilitate
pipelined execution.

— A variety of automatic coding mechanisms tend to generate much larger basic
blocks with more complex dependence patterns than are commonly found in hand-
written code. For example, many compilers now use loop unrolling or unraveling;
similar code sequences also are generated automatically by tools like ATLAS[14].

While all three of the above increase the importance of register allocation, the first two
primarily increase the benefit in using a good allocation, while the third essentially im-
plements a qualitative change in the register allocation problem itself. In the general
case, optimal allocation of registers is known to require more than polynomial time, but
it is only with the common use of huge basic blocks that the theoretical complexity has

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 3246, 2007.
(© Springer-Verlag Berlin Heidelberg 2007

Manipulating MAXLIVE for Spill-Free Register Allocation 33

become a serious practical constraint on basic block algorithms. Thus, register alloca-
tion has become critical at the same time that the known optimal solutions have become
intractable.

Beyond the needs of conventional computing systems, we have recently become
focused on finding ways to bring programmable intelligence to nanofabricated and
MEMS devices; these very simple computing elements are called nanocontrollers[7].
For the specific problem of allocating registers for nanocontroller programs, the sec-
ond of the above issues does not apply, but first and third are exceptionally severe.
There literally is no main memory in a nanocontroller system; thus, using memory to
hold values that could not be allocated to registers is not an option. Further, because
nanocontrollers provide only a single type of instruction which operates on one bit at a
time, basic blocks often contain thousands of instructions. These basic blocks are not
the result of unrolling, but of bit-level logic optimization using the ternary 1-of-2 mul-
tiplexor operation. The dependence structure within a block is correspondingly more
complex than that generated by unrolling loops involving traditional binary operations.
In summary, nanocontroller register allocation is a much harder problem than conven-
tional register allocation, but a good solution also may be adapted to handle microcon-
trollers and future generations of conventional processors. The two solutions described
in this paper both are very general, and are effective for very large basic blocks using
any combination of unary, binary, and ternary operations.

Section 2 reviews some of the traditional approaches and issues involving register
allocation. Our first and more conservative approach, which uses a Genetic Algorithm
(GA) to reorder instructions, is detailed in Section 3. An extreme, but amazingly effec-
tive, approach combining aspects of Sethi-Ullman numbering with a Genetic Algorithm
is described in Section 4. Brief conclusions are given in Section 5.

2 Traditional Approaches to Register Allocation

The term “register allocation” commonly is applied to a wide range of slightly dif-
ferent problems involving making efficient use of registers. The maximum number of
values (or variables) that must temporally coexist in a program is called MAXLIVE.
If MAXLIVE exceeds the number of registers available, values must be swapped be-
tween temporary memory locations and registers. Methods aimed at reducing the cost
of spill/reload code include algorithms based on shortest path [9,4,10] and various meth-
ods for coloring a live-range interference graph [3,4,8]. However, spill/reload only are
eliminated if MAXLIVE does not exceed the number of available registers, in which case
optimal register assignment is straightforward.

Reordering and other alterations of the computation can change MAXLIVE. Sethi-
Ullman Numbering [13], henceforth referred to as SUN, efficiently determines how to
order evaluation of a binary operation expression tree so that MAXLIVE and the number
of instructions used for the computation both are provably minimal. The SUN algorithm
proceeds in two distinct phases with O(m) complexity for m instructions. First, each
node is labeled with a number, according to a set of rules, such that the label corresponds
to the minimum number of registers required to evaluate the subtree rooted at that point
without any stores (i.e., without register spill/reload). These labels are then used to

34 S.D. Arcot, H.G. Dietz, and S.P. Rajachidambaram

order node evaluation, allocate registers, and emit instructions. Common Subexpression
Elimination (CSE) greatly reduces the number of instructions that need to be executed
and is nearly universally used in modern compilers, but generates Directed Acyclic
Graphs (DAGs) that are incompatible with the original SUN algorithm; a multitude of
attempts to extend SUN to handle DAGs have failed to produce an algorithm that is
both fast and effective[1].

For nanocontrollers and some microcontrollers, even a single spill renders a pro-
gram unusable because there is no place to spill to. Thus, minimizing the number of
instructions only is relevant if the code is spill free. Put another way, even increasing
the number of instructions to be executed is highly desirable if it makes the difference
between being spill-free and being unusable. Although Genetic Algorithm (GA) [8] and
Genetic Programming (GP)[5] have been applied to register allocation problems before,
this paper uses GA technology directly to reduce MAXLIVE so that spill-free code can
be produced.

3 Genetic Algorithm for Reordering to Minimize MAXLIVE

Given that reordering the instruction sequence can significantly change MAXLIVE, it
seems appropriate to investigate methods that can reasonably efficiently find a good
instruction order. Even with good pruning, it is not practical to use exhaustive search
for reordering basic blocks containing thousands of instructions. However, simulated
evolutionary processes are very effective for many conceptually similar problems, so
we created a Genetic Algorithm (GA) for reordering.

3.1 Structure of the GA

The use of a GA to generate code is commonly referred to as Genetic Programming
(GP)[12], however, neither the data structures standardly used with GP nor with tradi-
tional GA systems is efficient in solving the instruction rescheduling problem. Despite
that, the overall structure of the GA used for rescheduling to minimize MAXLIVE, as
shown in Algorithm 1, is relatively conventional. An island model is used in order to
allow subdivisions of the population to converge to different solutions in relative iso-
lation, thus making the system somewhat more robust. A non-generational steady-state
formulation is used primarily to simplify the coding and reduce execution overhead.

Fundamentally, the problem in making the GA efficient is one of maintaining good
adjacency properties through mutation and crossover operations; a new schedule should
have many properties in common with its parent(s). In the particular case of instruction
scheduling, it also is important to consider only valid schedules, e.g., only schedules in
which no instruction is scheduled before an instruction that produces one of its inputs.
Even using simplifications such and earliest and latest slot markings for instructions,
checking validity of a schedule is relatively expensive. Discovering that a schedule
is not valid also wastes the effort of creating and checking that schedule. Thus, the
preferred solution is to generate only valid schedules.

This is done by using an unusual genome representation which we have recently
used for several types of scheduling GAs: rather than representing an instruction sched-
ule directly, a schedule is represented by giving each instruction an integer “scheduling

Manipulating MAXLIVE for Spill-Free Register Allocation 35

Algorithm 1. Steady-State Island GA For Scheduling
Repeat the following until the allotted time or number of trials has elapsed:

1. If the population is not yet full, create a new valid, but randomly-ordered, instruction sched-
ule; goto step 5

2. Pick a number of population members at random and identify the two selected members
with the worst and best metrics (a form of tournament selection); an island model may be
enforced at this stage by biasing selections to stay within the same static subdivision of the
population

3. If random choice selects mutation or if the two schedules selected are duplicates, perform
mutation by replacing the poorest-metric selected member with a new schedule created by
mutation of the other selected member; goto step 5

4. By default perform crossover by picking an additional population member at random, sorting
the three selected members by metric value, and replacing the poorest-metric one with the
crossover product of the other two

5. Evaluate the metric for the newly-created population member

6. Determine if the newly-created population member is a new best and mark it accordingly;
it is the new best if it is the only member of the population or if a symmetric "better than"
comparison function finds its metric to be better than that of the previous best schedule

priority.” The schedule is generated using these priorities to break ties in an otherwise
conventional list scheduling procedure. The schedule is created by starting with the first
instruction slot and working toward the last, at each slot updating the set of schedula-
ble instructions and then inserting the highest priority schedulable instruction in that
slot. Clearly, only valid schedules are produced in this way. Further, most adjacency
properties are inherited from parent(s) even though the actual schedules may differ in
what appear to be complex ways; changes in priorities may rearrange, spread, insert, or
delete subsequences of instructions, but before/after relationships between instructions
with priorities that were not changed by mutation or crossover are most often preserved.
It also is trivial to compute a MAXLIVE-based metric while generating the schedule.

The mutation and crossover operations are straightforward. Mutation replaces some
priorities with random values, whereas crossover mixes priorities from two parents. In-
terestingly, as a schedule is being assembled for evaluation, it is easy to tag each instruc-
tion with the number of live values at its position in the schedule, and hence to know
which instructions are involved in subsequences requiring MAXLIVE registers. Thus,
we can bias the mutation and crossover operations to change priorities for instructions
in those regions, significantly improving the speed of convergence.

3.2 Experimental Procedure

In order to determine just how well the reordering GA works, we constructed a test
framework which we have used for all the data presented in this paper.

A simple program is used to generate pseudo-random BitC programs containing
a single basic block each. BitC is a simple C dialect designed from programming
nanocontrollers[7]; it differs from C primarily in that it allows bit precisions to be
specified for each variable and incorporates some additional operators, such as binary

36 S.D. Arcot, H.G. Dietz, and S.P. Rajachidambaram

minimum and maximum (?< and ?>). The base BitC compiler which we earlier de-
veloped for our research in nanocontrollers, bitcc, converts each variable-precision
word-level operation into a multitude of single-bit operations implemented using the
only operation provided by nanocontrollers, the ITE (If-The-Else) 1-of-2 multiplexor
function. The operations are then optimized by a variant of BDD (Binary Decision Di-
agram) logic minimization methods[2,11], yielding better code than simple bit-slice
formulations would, but producing very complex DAG structures. In the bitcc out-
put used for the current study, storage of final values into registers is done by separate
explicit store operations.

An ITE+store to SITE (Store-If-Then-Else) converter was constructed specially for
this research. This program removes the explicit stores, combining them with ITEs in
an optimal way. Thus, sets of operations like temp=(i?t:e); s=temp; are converted
into s=(i?t:e) ;. The SITE-only DAG, which incorporates a reference sequential or-
der, is then coded as a set of C data structures and output to dag . h. This “pre-cooked”
set of data structures makes it much easier to perform register allocation experiments
by avoiding the need to integrate the algorithm under test with the rest of the compiler.
Using this approach, the GA reordering code is just over 300 lines of C code and the
SUN-based GA described in Section 4is just under 600 lines of C code.

A variety of shell scripts and filters were developed to run tests and collect data. Rel-
atively simple cases occur very often in randomly-generated code, for example, when
a later store into a variable overwrites the value stored by a more complex computation
very little code results. Thus, our methodology includes a filtering step that removes
all cases with MAXLIVE naturally less than 3. Additionally, filters are applied to re-
move statistically redundant cases. Our scripts allow large numbers of test cases to be
executed serially or in parallel on cluster supercomputers.

The results presented in scatter plots in this paper cover 32,912 representative test
cases obtained by filtering millions of random basic blocks as described above. They
were processed using KASYO0 (Kentucky ASYmmetric Zero), a 128-node 2GHz Athlon
XP cluster supercomputer. All the GAs were given the same fast-running parameters:
population size of 50, subdivided among 4 islands, with crossover 3 times more likely
than mutation, and a limit of evaluating only 1,000 individuals.

3.3 Results

At the outset, in early 2004, we had hoped that reordering instructions would be suffi-
cient to dramatically reduce MAXLIVE, but experimental results are mixed.

For relatively modest basic block sizes, such as those commonly arising from hand-
written code in languages like C for targets like IA32, the GA reordering does well.
However, ternary instructions and larger basic blocks tend to yield not just larger, but
also more complex DAG structures. Our preliminary tests showed that, for the large
ternary instruction basic blocks common in nanocontroller code, GA reordering re-
duced MAXLIVE significantly in absolute terms, but not enough to make a qualitative
difference for our nanocontroller compilation problem. These (unpublished) early ob-
servations are echoed in the more extensive data presented here.

The GA reordering of instructions does not change the total number of instructions
which must be executed (assuming no register spill/reload operations are needed), nor

Manipulating MAXLIVE for Spill-Free Register Allocation 37

4096

1024

256

GA-Recrdersd MAXLIVE
@
=
T

1 4 16 64 256 1024 4096
Qriginal MAXLIVE

Fig. 1. GA-Reordered Vs. Original MAXLIVE

does it alter the underlying DAG structure. Thus, the only relevant issue is the reduc-
tion in MAXLIVE, which is shown in the scatter-plot of Figure 1. Note that both axes
in this graph are logarithmically scaled. As observed in preliminary experiments, al-
though MAXLIVE is reduced more in absolute terms for the larger cases, the relative
reduction for relatively small cases is significantly larger than for larger cases. The av-
erage reduction over all 32,912 cases is approximately 18%. Thus, while these results
clearly confirm that GA reordering is well worth applying, it alone is not sufficient for
nanocontroller targets — which are expected to provide only about 64 registers.

4 SUN with GA-Reenabling of CSEs

Given that even GA reordering of instructions is not sufficient to make big blocks spill
free, it is necessary to consider techniques that trade execution of more instructions for
a more dramatic reduction in MAXLIVE.

The approach is based on the SUN algorithm, but makes considerable extensions to
it. The first extension is the generalization of SUN to manage up to three operands per
instruction. This modification is required because the SUN algorithm as originally pre-
sented assumes each single-instruction operation takes precisely two source operands,
yet the only instruction supported by current nanocontroller designs takes three source
operands and different operand counts may be useful for other types of specialized pro-
Cessors.

As suggested earlier, the lack of register-memory instructions requires only a minor
adjustment to the SUN algorithm, but three other issues are more difficult to resolve.
There have been many attempts to extend SUN to handle optimal register allocation
and instruction scheduling for DAGS. Although, under certain restricted conditions,
DAGs can be handled using a modified SUN algorithm, the optimality of the solution
is a casualty in every reasonably efficient scheme. The fact that DAGs for nanocon-
troller programs are exceptionally large and complex makes the algorithm’s execution

38 S.D. Arcot, H.G. Dietz, and S.P. Rajachidambaram

time significant and yields a very small fraction of the DAG for which special-case
extensions of SUN can be applied. Our solution is to convert the DAG to a tree by
logically replicating every common subexpression in every place from which it is refer-
enced. This solution may seem extreme, but the DAG generally has an inherently higher
MAXLIVE than a tree; given the extreme pressure to fit in a limited register file, it is nat-
ural to focus first on minimizing MAXLIVE and only secondarily to attempt to retrieve
some of the benefits of common subexpression elimination.

4.1 Generalization of SUN Labeling for Ternary Instructions

The labeling method used in the original SUN algorithm is focused on binary opera-
tions: instructions with two input operands. Unary operations are trivially labeled us-
ing the rule that any operation node n with only one input operand is labeled with
L(n) = 1. It is not trivial to extend SUN labeling to three or more input operands. How-
ever, digital nanocontrollers as currently proposed have an instruction set consisting
of only a single instruction which happens to take three input operands. Three-input
operations, generally involving multiplexor-like functionality used to simulate enable
masking, also have become common in multimedia instruction set extensions to many
modern processors[6].

The labeling of three-input operation trees is significantly more complex than that of
two-input operation trees because the number of possible relationships between subtree
labels grows exponentially as the number of inputs per operator increases. To each node
n, the label L(n) is assigned as:

1. If nis aleaf, L(n) =0;
2. If n has descendants with labels /7, I, and /3 sorted into order such that [;>= [5>=
I3,
(a) Ifl]>12> 13 , L(n) =l];
(b) Ifl]>12==l3 ==0,L(n)=l];
(c) Ifl]>12== l3 !:Oandl]- 12== l,L(}’l)Zl]+ 1;
(d) Ifl]>12== l3 !:Oandl]- 12> 1,L(n)=l];
(e) Ifl]== 12> 13, L(n) =l]+ 1;
) Ifl]==12== l3!=0, L(n)=l]+2;
(g) Iflj==lr==13==0,L(n)=1;

Rule 1 reflects the now-common simplifying fact that modern processors avoid using
memory operands directly. For example, leaf nanocontroller operations always can be
labeled with L(n) = 0 because there literally is no way for an instruction to reference data
other than making a register reference. Constants are referenced from pre-allocated reg-
isters; given bit-wide data paths and operations, only the constants 0 and 1 are possible,
so hardwiring just two pre-allocated registers suffices. Nanocontrollers have only regis-
ters in which to store data, so in fact all user-defined variables become preallocated reg-
isters. Nanocontrollers even perform input/output (I/O) operations using pre-allocated
registers that are really I/O channels; for example, register 6 might be a “global OR”
output signal and register 7 might be an analog zero-crossing detector input. Data can
be directly used from a pre-allocated register identically to how it would be used from
any other register; no load instruction in needed (or even exists for nanocontrollers).

Manipulating MAXLIVE for Spill-Free Register Allocation 39

BP0 BRI

ar(s12ad)

i,

T BauaTEs))

Fig. 2. Simple ITE DAG

Rule 2 reflects register needs for non-leaf nodes. As complex as this rule is, the
complexity is significantly reduced by the fact that it is expressed in terms of the labels
of the three input subtrees in an order that is sorted by label. Thus, / 12 12, and [zare the
descendant labels in decreasing label order, not subtree position order. The complexity
of this rule is still high primarily because equal labels and labels of O are both special
cases. However, in practice, the complexity of the rule has little impact on the feasibility
of the technique. It also is useful to note that the ternary node case also handles both
binary and unary node labellings by allowing the missing descendants to be treated as
if they had 0 labels.

4.2 Tree Generation

At the time the SUN algorithm was proposed, it was quite natural to use trees as the
intermediate form. However, coding styles have significantly changed, so that various
compiler optimizations yielding DAGs are now essentially mandatory. For nanocon-
troller programs, these DAGs are particularly large and complex thanks to treatment of
each bit position separately and target hardware support for only one type of instruction
(which corresponds to a 1-of-2 multiplexor).

As stated earlier, nanocontroller programs generate optimized DAGs which are large
and complex. Each SITE that is generated is a node in the DAG. The root node(s) of ev-
ery DAG corresponds to a SITE that is a final store into a variable. All the interior nodes
correspond to the temporary SITEs which represent the ITE operations. By convention,
our tools number these starting at 64, the default number of physical nanocontroller reg-
isters available. The leaf nodes are the ITEs 0 and 1 or the ITEs that correspond to the
initially defined user-variables — nodes numbered less than 64. Trees are generated by
conceptually converting all the DAGs to trees in such a way that each node is replicated
at every point that it is referenced.

To demonstrate the treatment of a DAG as a tree, consider the simple example DAG
shown in Figure 2. Ternary nodes tend to yield more complex DAGs than do binary
nodes.

Although the SUN algorithms cannot operate on a DAG, it is easy to treat the DAG
as a tree. Logically, the transformation is simply that, whenever a node has more than
one exit arc, the node is replicated to make one copy per exit arc. As a node is thus
replicated, any entry arcs must also be replicated to point at the copies. This in turn
makes the nodes behind those entry arcs have multiple exit arcs, thus requiring them to
be replicated in the same fashion. The result of this transformation is shown in Figure 3.

40 S.D. Arcot, H.G. Dietz, and S.P. Rajachidambaram

BAE) BAZ0N)

BE(4734.2) BTI372:84)

\

 saianaras)

Fig. 3. Trees Derived From Simple ITE DAG

A subtle point in this transformation is the fact that a single DAG becomes multiple
trees. Even if the original DAG had unconnected components, the default sequential
order (as listed above) can yield a default execution order. For our purposes, the SUN
algorithm will provide the order within each tree, but ordering across trees must be
provided in another way. The solution used in this paper is to order the tree walks in the
same order as the nodes without exit arcs were originally ordered. Thus, in Figure 3,
the tree ending in 65 (right) would be evaluated before the one ending in 68 (left).

Of course, the transformation to create a tree does not merely enable SUN analysis,
but also provides a key relationship between nodes that are the roots of common subex-
pressions in the DAG. We can use the rules of our modified SUN to label tree nodes
for walking, thus implying a walk order, but then not actually duplicate the common
subexpression nodes. This is the core idea behind the SUN-based GA: to use a Genetic
Algorithm (GA) to selectively re-enable CSE (Common Subexpression Elimination);
where MAXLIVE will not be too adversely affected using the walk order determined
using the tree, do not replicate the common subexpression node.

4.3 GA Optimization of Subexpression Instantiation

It should not be surprising that the basic steady-state island GA structure of Algorithm 1
also serves well for the SUN-based GA. The details are surprisingly straightforward, as
outlined in Algorithm 2.

Whereas the GA-reordering algorithm described in Section 3 required a fairly com-
plex data structure, our SUN-based GA for selective reinstantiation of CSEs can effec-
tively use a very conventional bit-sequence genome. Each genome is a bit vector with
one bit for each potential CSE; a 1 means instantiate (i.e., the CSE is enabled), a 0
means duplicate to make a tree.

To evaluate the merit of a genome, the DAG is recursively walked as a sequence of
trees (as per Section 3). The walk uses the labels and ordering of operand evaluation
created by treating the DAG as a tree and applying the rules in Section 4.1. As each
node is visited, it is allocated a register if needed. Nodes representing enabled CSEs
are walked only the first time they are encountered. After the value of a non-CSE node
has been used, the register allocated to it is freed. The register allocated to an enabled
CSE node is freed only after no reference to that CSE remains, which is determined by
decrementing a reference count associated with that node. The value of MAXLIVE and
number of instructions that would be generated by the walk are both tracked during the
evaluation; as noted in Algorithm 2, the recursive walk can be aborted early if MAXLIVE

Manipulating MAXLIVE for Spill-Free Register Allocation 41

Algorithm 2. SUN-Based GA Procedure Overview
1. Use the tree interpretation (Section 4.2) of the DAG to label nodes as described in Section

4.1. Note that interpreting the DAG as a tree does not require literally duplicating nodes; no

node copies are made in our coding. The labeling can even take advantage of the fact that

CSEs need only be traversed once to be labeled, because additional traversals would yield

the same labels.

2. Apply the steady-state island GA (Algorithm 1),with the following adjustments:

(a) The initial population is loaded with both the tree (no CSEs instantiated) and original
DAG (all CSEs instantiated) as members in addition to random members.

(b) As the search progresses, the evaluation of any population member can be truncated
when its value of MAXLIVE reaches a “terrible” level that can be specified as input to
the GA and also can be dynamically updated as better MAXLIVE values are encountered
in the search.

becomes too large. The metric favors generating fewer instructions once the MAXLIVE
constraint has been met.

The mutation and crossover operations are very standard GA bit-genome operations.
The only notable difference is that random choices are made for each bit position in
crossover, rather than using the even more common subsequence interchange. The ran-
domly generated (initial) population members are created using a two-step process
that first selects a random target “loading” and then randomly turns on bit positions
to achieve that loading; this yields a better coverage of the full range of CSE enable
densities.

Overall, the SUN-based GA is a very standard GA that has an unusual merit evalua-
tion process.

4.4 Results

Testing the SUN-based GA for selectively enabling common subexpression elimination
immediately revealed that the concept of allowing some redundant evaluation was able
to dramatically reduce MAXLIVE. In fact, the reduction possible for large blocks is noth-
ing short of shocking, with nearly every nanocontroller test case collapsing to a form
using approximately a dozen temporary registers despite initially having a MAXLIVE of
hundreds or even thousands.

In order to expose the general relationship between enabling CSEs and increasing
MAXLIVE, a series of experiments were conducted using our SUN-based GA to op-
timize a moderately complex nanocontroller basic block for various target MAXLIVE
values. This basic block, with all possible common subexpressions eliminated, consists
of 3,041 ternary SITE instructions and yields a MAXLIVE of 561 in its default ordering.
In this particular case, our GA reordering the instructions is able to reduce MAXLIVE
only slightly, to 553. However, disabling all CSEs results in a pure tree which, using
our modified SUN algorithm requires only 12 registers. Unfortunately, the pure tree
contains 23,819 SITEs — nearly 8 times as many instructions.

Figure 4 shows how the number of enabled CSEs varies with the MAXLIVE target
using our SUN-based GA. All of the CSE counts plotted are for the coding yielding

42 S.D. Arcot, H.G. Dietz, and S.P. Rajachidambaram

1600
1500
1400
1300
1200

1100

CSEs

1000

900

800

700

600 T T T T — —
10 100 1000

MaxLIve

Fig. 4. Enabled CSEs Vs. MAXLIVE For A Nanocontroller Basic Block

the lowest number of SITEs for the given MAXLIVE target. Surprisingly, the SUN-
based GA was able to achieve a MAXLIVE of 12 with 662 CSEs enabled. However,
the impact of enabling these 662 CSEs on reducing the number of SITEs is minimal;
because some CSEs are nested and the subtree sizes saved by enabling a CSE vary
widely, the relationship between the number of CSEs enabled and the total number of
SITEs remaining is not direct.

Figure 5 shows how the total number of SITEs varies with the MAXLIVE target for the
same test case used in Figure 4. Note that in both figures, MAXLIVE is plotted on the X
axis using a log scale. Clearly, although large reductions in MAXLIVE are possible, they
come at a high price in additional instructions to be executed. The decrease in MAXLIVE
is approximately linear with the increase in SITEs. However, the slope is favorable; as
the number of additional instructions increases by nearly an order of magnitude, close
to two orders of magnitude reduction in MAXLIVE is realized.

The search space is sufficiently large so that exhaustive evaluation of any but the
smallest examples is impractical; ignoring the ordering problem, any problem with k
potential CSEs has 2Kdifferent code structures to evaluate. For basic blocks of nanocon-
troller code, k commonly exceeds 1,000 — as it does in this example. Thus, we do not
have known optimal solutions for typical problems and cannot make specific claims
about the absolute quality of the SUN-based GA results. For Figures 4 and 5, the search
was constrained to take approximately one minute to optimize for each target MAXLIVE
(running compiled C code on a 1.4GHz Athlon XP system under Linux), and this re-
striction has no doubt contributed to the noise level visible in the curves for this one test
case.

In addition to the detailed study of how a specific DAG’s processing changes with
different target values for MAXLIVE, it is useful to examine the statistical behavior of
the algorithm over a large set of cases. For this purpose, we used the exact same cases
that we employed to evaluate the GA for reordering instructions (Section 3.3). This

Manipulating MAXLIVE for Spill-Free Register Allocation 43

25000
22500 -
20000 :
17500

15000

SITEs

12500
10000
7500

5000

2500 T T T T T T T —
10 100 1000

MaxLive

Fig. 5. Number Of SITEs Vs. MAXLIVE For A Nanocontroller Basic Block

18 T T T T T
.
16 . s = - -
. - " = . (1]

14 - - "% 8 SEEs e Bew (IR] =
g . TEEEE ® W BEEEEE e W
g 12 b . - e e ooe -|
= . -
o
© 10F - wesm o -
o
o . . .
©
o ar . e -
=
a . ..

6 -e i

“ee .
4 & 8 8 08 SSSISIEE————— b
% 8 * e e seMTEEIN
2 - . I 1 I
1 &4 16 64 256 1024 4096

Original MAXLIVE

Fig. 6. SUN-Based GA Vs. Original MAXLIVE

enables direct comparison of the two approaches, as well as statistical evaluation of
each independently.

Perhaps the most important statistic is how well MAXLIVE can be reduced by the
SUN-based GA. Figure 9 shows that the performance in this respect is nothing short of
amazing; none of the 32,912 test cases needed more than 18 registers — well within our
nominal nanocontroller goal of fitting within 64 registers. Note the logarithmic scale in
the X axis of this graph. Even a DAG having a default-order MAXLIVE of 3,409 still fit
in 18 registers — more precisely, that case fit in just 12 registers!

Of course, there has to be a catch, and there is. As Figure 9 clearly shows, making
MAXLIVE as small as possible often requires executing many more instructions than the

44 S.D. Arcot, H.G. Dietz, and S.P. Rajachidambaram

4,1943e+06 T T T T T

1.04858e+06

262144

T

65536

16384

4096 -

1024

256

64 [

SUN-Based GA Instruction Count (SITEs)

4 I 1 I I L
4 16 &4 256 1024 4096 16384

Criginal Instruction Count {SITEs)

Fig.7. SUN-Based GA Vs. Original Instruction Counts (SITEs)

18 T T T T T T T
.
16 . = am - -
. " mas

14 8 S S MG B Ba - e
= . 08 HONMNE mEE S ¢ Wmess .
; 12 sane TXT] . -
= ® 5 85 ST SIIIITII -
L4
o 104 . s 0sne - -
o
2 » s esne -
™
m e . e q
g
2 . s .

6 LI I) E

- L] ® & ® 8 8000 NNNNMINNNENES
48 . . LI A N R N Ly] L
L] L] L] ® 8 ® 8 8 000NN
2 + " " - L L L
1 2 4 8 16 32 64 128 266

SUN-Based GA CSEz Enablad

Fig. 8. SUN-Based GA MAXLIVE Vs. CSEs Enabled

original DAG would have required. Note that both axes in this graph are logarithmic,
but the largest original block had 15,309 instructions (SITEs) while the largest produced
by SUN-based GA had 1,431,548. On average, there was a factor of 8X expansion in
code size to obtain the lowest possible MAXLIVE. As dramatic as this tradeoff is, such
a code size expansion can be acceptable if it is the difference between being able to use
the code and not being able to; even on desktop processors, the penalty for accessing
main memory may be high enough to occasionally warrant executing 8X more instruc-
tions. Further, recall from Figure 5 that the SUN-based GA is able to efficiently target
a specific MAXLIVE target, so it is not necessary to suffer code expansion beyond that
needed to reach the target MAXLIVE value.

Manipulating MAXLIVE for Spill-Free Register Allocation 45

18 T T T * T
.
16 " s 8 e e
. .e . - . .e

14 - . 8 S IEIIO W mEW » e <
uzJ . frENES S IR ESIITEBESS ®
g 12 F . . cs e -
= -
<€
o q0 F s - B
B

. = we

E
o 8+ . we . -
5
7 e -

6 | L " s ewe . 4

- LI R R L]
4 8 L] & & 8 88NN & -
Ll & 8 58NN
2 é I 1 I
1 4 16 64 256 1024 4096

GA-Reordered MAXLIVE

Fig. 9. SUN-Based GA Vs. GA-Reordered MAXLIVE

Given that the SUN-based GA approach selectively enables CSEs, one might ex-
pect that the number of CSEs enabled is essentially zero in order to achieve the mini-
mum MAXLIVE value, but Figure 8 shows that is not the case. A modest reduction in
the number of instructions generated is generally possible, without adversely affecting
MAXLIVE, by carefully selecting to enable some CSEs.

5 Conclusion

This paper has presented two very aggressive methods for attempting to force an ex-
tremely complex block to meet a very small MAXLIVE constraint. One technique, GA
reordering, clearly works well and should be widely applied; there is no major penalty.
The other technique, SUN-based GA, offers amazing reductions in MAXLIVE, but at
the expense of significant code expansion. Figure 9 shows that the SUN-based GA is
able to handle extremely complex blocks exponentially better than GA reordering.

If the goal is simply to be spill free, the lowest-cost method that results in a viable
MAXLIVE should be used. Often, GA reordering will suffice. When it does not, the
SUN-based GA should be used with an explicit cut-off value equal to the number of
registers available. Adapting these methods to achieve goals more complex than just
freedom from spills, such as simultaneously optimizing pipeline performance or mini-
mizing power consumption, is future work.

References

1. A. V. Aho, S. C. Johnson, and J. D. Ullman. Code generation for expressions with common
subexpressions. J. ACM, 24(1):146-160, 1977.

2. R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers, C35(8), 1986.

46

10.

11.

12.
13.

14.

S.D. Arcot, H.G. Dietz, and S.P. Rajachidambaram

. G.J. Chaitin. Register allocation & spilling via graph coloring. Proceedings of the 1982
SIGPLAN Symposium on Compiler Construction, 1982.

. C-H. Chi and H. G. Dietz. Register allocation for gaas computer systems. IEEE Proceedings
of the 21st Hawaii International Conference on Systems Sciences, Architecture Track, 1,
January 1988.

. Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. Optimizing for reduced code
space using genetic algorithms. In LCTES99: Proceedings of the ACM SIGPLAN 1999 work-
shop on Languages, compilers, and tools for embedded systems, pages 1-9, New York, NY,
USA, 1999. ACM Press.

. H. G. Dietz and R. J. Fisher. Compiling for simd within a register. Languages and Compilers
for Parallel Computing, edited by S. Chatterjee, J,. F. Prins, L. Carter, J. Ferrante, Z. Li, D.
Sehr, and P-C Yew, Springer-Verlag, New York, New York, 1999.

. Henry G. Dietz, Shashi D. Arcot, and Sujana Gorantla. Much ado about almost nothing:
Compilation for nanocontrollers. Languages and Compilers for Parallel Computing, Lecture
Notes in Computer Science, 2958:466—480, January 2004.

. R. Filho and G. Lorena. A constructive genetic algorithm for graph coloring, 1997.

. L. P. Horwitz, R. M. Karp, R. E. Miller, and S. Winograd. Index register allocation. Journal

of the ACM (JACM), http://portal.acm.org/citation.cfim?doid=321, 13, January 1966.

David Padua Jia Guo, Maria Jesus Garzaran. The power of belady’s algorithm in regis-

ter allocation for long basic blocks. Languages and Compilers for Parallel Computing,

http://parasol.tamu.edu/lcpc03/informal-proceedings/Papers/35.pdf, 2003.

K. Karplus. Representing boolean functions with if-then-else dags. Technical Report UCSC-

CRL-88-28, University of California at Santa Cruz, November 1988.

John R. Koza. Genetic Programming. MIT Press, Cambridge, MA, 1992.

R. Sethi and J. D. Ullman. The generation of optimal code for arithmetic expressions. Journal

of the ACM, http://doi.acm.org/10.1145/321607.321620, 17(4), 1970.

R. Whaley and J. Dongarra. Automatically tuned linear algebra software. Technical Report

UT CS-97-366, University of Tenessee, 1997.

Optimizing Packet Accesses for a Domain Specific
Language on Network Processors

Tao Liu'?, Xiao-Feng Li*, Lixia Liu’, Chengyong Wu', and Roy Ju*

! Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
{liutao, cwul}@ict.ac.cn
? Graduate School of Chinese Academy of Sciences, Beijing, China
3 Intel China Research Center Ltd., Beijing, China
{xiao.feng.li, lixia.liu}@intel.com
4 Microprocessor Technology Labs, Intel Corporation, Santa Clara, CA, USA

Abstract. Programming network processors remains a challenging task since
their birth until recently when high-level programming environments for them
are emerging. By employing domain specific languages for packet processing,
the new environments try to hide hardware details from the programmers and
enhance both the programmability of the systems and the portability of the ap-
plications. A frequent issue for the new environments to be widely adopted is
their relatively low achievable performance compared to low-level, hand-tuned
programming. In this paper we present two techniques, Packet Access Combin-
ing (PAC) and Compiler-Generated Packet Caching (CGPC), to optimize
packet accesses, which are shown as the performance bottleneck in such new
environments for packet processing applications. PAC merges multiple packet
accesses into a single wider access; CGPC implements an automatic packet data
caching mechanism without a hardware cache. Both techniques focus on reduc-
ing long memory latency and expensive memory traffic, and they also reduce
instruction counts significantly. We have implemented the proposed techniques
in a high level programming environment for network processor named Shan-
gri-La. Our evaluation with standard NPF benchmarks shows that for the evalu-
ated applications the two techniques can reduce the memory traffic by 90% and
improve the packet throughput by 5.8 times, on average.

1 Introduction

Network processors (NPs) have been proposed as a key building block of modern
network processing systems. To meet the challenging performance and programma-
bility requirements of network applications, network processors typically incorporate
some unconventional, irregular architectural features, e.g. multiple heterogeneous
processing cores with hardware multithreading, exposed multi-level memory hierar-
chy, and banked register files, etc. [9, 11]. Effective utilization of these features is
critical to the performance of NP-based systems. However, the state-of-the-art of
programming with NPs is still at a low level, often assembly language, which requires
extensive knowledge of both the applications and the architectural details of the target
system. A low-level programming task is tedious, time-consuming, and error-prone. It
is difficult to port an application across different network processors even within the

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 47-61, 2007.
© Springer-Verlag Berlin Heidelberg 2007

48 T. Liu et al.

same family. A high-level programming environment is hence desirable to facilitate
the packet processing application development on NPs. The key to the success of such
a programming environment is not only its ease of programming, but also its ability to
deliver high performance.

Packet processing systems typically store packets in a packet buffer in DRAM,
which usually has a large capacity but a long access latency compared to other mem-
ory levels. Since there are a large number of packet accesses in network applications,
DRAM bandwidth needs to be high enough to sustain maximal packet processing
throughput. Although the DRAM access latency can be partially hidden using multi-
threading, the bandwidth problem remains critical. Actually, DRAM bandwidth has
been considered as the bottleneck of network application performance in some prior
studies [1, 8, 12]. Our approach is to optimize the packet accesses automatically in a
compiler, which reduces both the packet access count and the aggregate access size,
so that the total access time and bandwidth requirement are effectively reduced.

In this paper, we present two techniques used for packet access optimizations. The
first one is Packet Access Combining (PAC), which reduces the number of packet
accesses by merging several access requests into one; and the second technique is
Compiler-Generated Packet Caching (CGPC), which implements an automatic
packet data caching mechanism to minimize the number of accesses to the packet
buffer in DRAM as well as reduce the instruction count.

We implemented the proposed optimizations in Shangri-la [3], which is a pro-
gramming environment for network processors, and targets the Intel IXP family [11].
Shangri-La encompasses a domain-specific programming language designed for
packet processing named Baker [2], a compiler that automatically restructures and
optimizes the applications written in Baker, and a runtime system that performs re-
source management and dynamic adaptation at runtime. The compiler consists of
three components: a profiler, a pipeline compiler, and an aggregate compiler. The
profiler extracts runtime characteristics by simulating the application with test packet
traces. The pipeline compiler is responsible for pipeline construction (partition appli-
cation into a sequence of staged aggregates, where an aggregate includes the code
running on one processing element) and data structure mapping. The aggregate com-
piler takes aggregate definitions and memory mappings from the pipeline compiler
and generates optimized code for each of the target processing cores. It also performs
machine dependent and independent optimizations, as well as domain-specific trans-
formations to maximize the throughput of the aggregates. The work presented here is
implemented in the pipeline compiler and the aggregate compiler.

Our experiments are performed on Intel IXP2400, which contains eight Microen-
gines (MEs) for data plane processing and one XScale core for control plane process-
ing. IXP2400 has four types of memory levels: local memory, scratchpad, SRAM and
DRAM. Experimental results show that our approach can reduce the memory traffic
by 90% and improve the throughput by a factor of 5.8X, on average.

The rest of the paper is organized as follows. Section 2 introduces the related fea-
tures of the Baker language. Section 3 and Section 4 describe Packet Access Combin-
ing and Compiler-Generated Packet Caching, respectively. Section 5 presents the
experimental results. Section 6 reviews related work. Section 7 concludes the paper.

Optimizing Packet Accesses for a Domain Specific Language on Network Processors 49

2 Baker Language and Packet Access Characteristics

Baker is a domain-specific programming language for packet processing on highly
concurrent hardware. It presents a data-flow programming model and hides the archi-
tecture details of the target processors. Baker provides domain-specific constructs,
such as Packet Processing Functions (PPFs) and Communication Channels (CCs), to
ease the design and implementation of packet processing applications, as well as en-
able effective and efficient compile-time parallelization and optimizations.

I3_switch_module

.......

Ipm_lookup — i
:) i L .

Fig. 1. The packet flow graph of Layer 3 Switch Baker program (L3-Switch): bridges Ethernet
packets and switches IPv4 packets

Baker programs are organized as data flow graphs (referred to as packet flow
graphs) with the nodes representing Packet Processing Functions and the arcs repre-
senting Communication Channels, as shown in Fig. 1. A PPF can have its private
data, functions and channel endpoints, and performs the actual packet processing.
CCs are logically asynchronous and unidirectional queues, and can be created by
wiring the input and output endpoints of PPFs. Baker also provides module as a way
to encapsulate PPFs, shared data and configuration functions. Rx and 7x are native
modules provided by system vendors which can be used as a device driver to receive
and transmit packets with external interfaces, respectively.

protocol ether { protocol ipvd { void A.process(ether_packet_t* pkt) {
dst : 48; ver : 4; ipv4_packet_t* p;
src : 48; length : 4; mac_addr_t mac;
type : 16; e mac = pkt->dst;
demux{ 14 }; ttl: 8; e
Y prot: 8; if (fwd) {
checksum: 16; p = packet_decap (pkt) ;

. channel_ put (13_fwdr_chnl,p);
demux{length << 2}; }
Y }

Fig. 2. Protocol construct and packet primitives in Baker

The format of the packet header of any protocol can be specified using the protocol
construct, as illustrated in Fig. 2. These definitions introduce new types called
ether_packet_t and ipv4_packet_t, which are processed as built-in types to support
operations on Ethernet and IPv4 packet headers, respectively. To access the packet

50 T. Liu et al.

fields of a particular protocol header, programmers must specify a pointer to packet
and the field name of corresponding protocol construct. The pointers to packets are
referred as packet handles. As illustrated in Fig. 2, pkt is a packet handle to
ether_packet_t, thus pkt->dst represents the dst field of Ethernet header. We called
the reference to a packet field as a packet access.

Baker provides an encapsulation mechanism to layer different packet protocols.
The packet_encap/packet_decap primitive is to add or remove a protocol header to or
from the current packet. As illustrated in Fig. 2, p = packet_decap(pkt) will remove
the Ethernet header from the pk# packet so as to convert it to an IPv4 packet.

Besides packet accesses and packet encapsulations, Baker also provides other
primitives to ease the manipulations of packets. For example, channel_get and chan-
nel_put are for receiving and transmitting packets through a channel, respectively.

These primitives constitute a packet abstraction model which provides a very con-
venient way for programmers to write network applications without concerning the
underlying implementations. To keep the portability, all packet primitives are imple-
mented as intrinsic functions in the runtime system. The Baker primitives imple-
mented in the runtime system are briefly described below.

The packet handle actually points to metadata in SRAM, which is data that is as-
sociated with a packet but does not come directly from an external source. The meta-
data is useful to store the packet-associated information generated by one PPF and
pass it to another PPF to be processed. For example, the output port is likely part of
metadata. The pointers (head pointer and tail pointer) in the metadata point to the
actual packet data in DRAM, as illustrated in Fig. 3.

packet_encap

ethernet mpls mpls ipv4
DRAM header |header header| header
(packet data)‘ >

S~ [<7
packet_decap

SRAM head | tail user-defined
(metadata) | Pr | ptr metadata

packet_handle

Fig. 3. The layout of packet data and metadata

Packet encapsulations are implemented as intrinsic calls: packet_encap/packet_de-
cap(packet_handle, size). The size is the number of bytes to add to or remove from
the head. As the example in Fig. 2, p = packet_decap(pkt) will be converted to
packet_decap(pkt,14). The 14 is the length of Ethernet header, which can be deter-
mined by the demux field in the protocol construct. The implementation of this intrin-
sic simply increases the head pointer in the metadata by 14 bytes.

Packet accesses (packet reads and writes) are implemented as intrinsic calls: pa-
cket_read/packet_write(packet_handle,offset,size,data). For example, data=p->ttl and
p->ttl=data can be converted to packet_read(p,64,8,data) and packet_write
(p,64,8,data), respectively. The size of § means that this packet access will retrieve or
modify a bit field which is 8-bit wide, and the offset of 64 specifies that the distance
to the beginning of the current protocol header is 64 bits. The fourth parameter, data,

Optimizing Packet Accesses for a Domain Specific Language on Network Processors 51

is the input or output data to be read from or written to as specified by programmers.
The two intrinsic calls, referred to as packet access intrinsics will access DRAM to
retrieve or modify packet data. They resolve the DRAM address by the value of head
pointer plus the offset parameter.

In the Intel IXP2xxx network processors, DRAM can only be accessed in multiples
of 8 bytes starting on any 8-byte boundary. Although packet_read and packet_write
intrinsics can specify arbitrary offset and size, the runtime system must take care of
address alignment and access granularity. For example, write accesses smaller than 8-
byte cause read-modify-write operations to merge data, and the runtime system will
generate a mask to select which bytes to be written into DRAM. In a read-modify-
write operation it will cause two DRAM accesses.

3 Packet Access Combining

In general, a packet_read intrinsic has one DRAM access (for packet data) and one
SRAM access (for packet metadata) and dozens of other instructions. A packet_write
doubles the cost. In a Baker program, each of the packet accesses may operate on only
a few bits of the packet header. However, since each DRAM access operates at an §-
byte granularity, a naive code generation that translates a packet access into an intrin-
sic call can cause a significant waste of DRAM bandwidth and incur unnecessary
execution time due to the long DRAM access latency.

The idea of PAC optimization is based on the observation that many packet reads
(writes) access contiguous locations. It is possible for the compiler to automatically
merge several packet reads (writes) into one, so that only one packet_read
(packet_write) intrinsic is issued to load (store) all of the needed data at once. Thus
the DRAM access count can be reduced.

PAC optimization should not change the semantics of the original program, so the
application of PAC must comply with control and data dependence requirements.
When combining two packet reads, there are two requirements that must be satisfied:

1. Dominance: The first read must dominate the second read in flow graph;
2. There are no intervening packet writes along the path from the first read to the
second read altering the packet data that the second read will use.

Correspondingly, the requirements of combing two packet writes are:

1. Control Equivalence: The first packet write dominates the second and the second
post-dominates the first.

2. There are no intervening packet reads (writes) along the path from the first write to
the second write using (altering) the packet data of the second write.

The conditions for combining more than two packet reads (writes) can be derived
from the requirements above since the compiler can always merge the first two packet
reads (writes) into one and then merge this new one with the third read (write). The
compiler can follow this process iteratively till all of the reads (writes) that satisfy the
conditions are combined.

Fig. 4 gives an example of PAC optimization. Fig. 4.a is the flow graph before a
PAC optimization. The packet accesses are represented as packet access intrinsic

52 T. Liu et al.

calls. There are two packet reads and two packet writes accessing nearby but different
fields of IPv4 header. PAC wants to merge the two reads into a single read, and the
two writes into a single write. The flow graph after combining is shown in Fig. 4.b.
The benefit of PAC is clear: two packet access intrinsic calls were removed. To for-
malize the solution of the combining problem, we develop a bit-field dataflow analy-
sis on these packet accesses.

packet_read(p, 64,32,u)
s=(u>>24) &0xff

!

p->ttl = x‘ paket_write(p, 64, 8,x) ‘ ‘ v=(x & 0xff)<<24 ‘

s = pf>ttl‘ packet_read(p, 64,8,s)

t = p->checksum

t=u & Oxffff

packet_read(p,80,16,t)

v=(y & Oxffff)|v
v=(u & 0x00££0000) |v
‘packet_write(p,80,16,y)‘ packet_write(p, 64,32,v)

p->checksum = y

a) Before combining b) After combining

Fig. 4. An example of PAC

3.1 Algorithm

According to the requirements described above, only those packet accesses that sat-
isfy the following conditions can be combined: First, all accesses must be of the same
type (read or write), and operate on the same packet. Second, the offsets and sizes of
all accesses must be known at compile-time. Third, the size of the combined access
must be within the burst size of a single DRAM access. Last, there shouldn’t be any
violation of control and data dependence due to combining these accesses.

Packet access combining can be performed in the following four steps:

1. Collect the candidate packet access information

We first traverse a program function to collect the necessary information for each
packet access, including the packet handle, offset and size. This information will be
used in the succeeding steps.

2. Compute the dominance relations

As discussed above, these packet accesses to be combined must satisfy the dominance
relationship (control dependence). Because one basic block (BB) can only have one
branch or call instruction, these packet access calls must be in different BBs. Hence,
the dominance relationship of packet accesses can be represented as dominate tree of
BBs.

3. Perform a packet field live analysis

We perform a data-flow analysis on packet fields of packet accesses. In the analysis, a
packet read can be considered as a use to a bit-field of packet buffer, and a packet
write can be considered as a definition. To uniquely identify each packet access and
describe the bits information of them, a triplet {bb,ph,pf} was introduced to represent
packet access info during the iterative dataflow analysis. The bb depicts the basic
block that the packet access resides in. The ph (packet handle) indicates which packet
instance it will access. The pf (packet field) is a bit vector each bit of which represents
a bit in the packet buffer. The corresponding bits that the packet access will read or

Optimizing Packet Accesses for a Domain Specific Language on Network Processors 53

modify are set to valid while other bits are set to invalid. If the packet access info is
propagated across a packet_encap or packet_decap call, its pf must shift correspond-
ing bits because the current head pointer has been changed. The dataflow analysis of
packet reads is a backward dataflow problem. Its corresponding flow equations are
specified as Fig. 5. PF__ . (BB,) and PF (BB,) are the sets of reversed input
and output packet accesses information of BB;, respectively. After the bitwise data-
flow analysis, PF__, , of each BB contains all possible packet accesses which can be
propagated to the exit of this BB. We said a packet access s is live at BB, if
SEPF,, .. (BB,) and the valid bits in s . pf has not been changed with respect to its
original BB (s.bb). A packet access live at a given program point indicates that it
can be combined with another packet access resided at this point without violating
any data dependence.

rev_out

PE, (BB)= PE, (BB
’ei() Bﬂ,s_ymms,) N 4 j) Gen(BB,.)={

PF,, ,.\BB)=Cap(BB,Kill(BB,PF,, ,(BB)UGen(BR)))
{(x.bb,x.ph,(~ s.pf) &x.pf) | x.ph=s.phNx € set}U{x | x.ph#s.phNx € set}
Kill(BB, set)= if BB has packetwrite"s"

set otherwise

{@,s.ph,s.pf)} if BB has packetaccess"s"

[otherwise

{(x.bb,x.ph,x.pf >>bits)|Vxe set} if BB has packet_encap(bits)
Cap(BB,set) =4 {(x.bb,x.ph,x.pf <<bits) |Vxe set} if BB has packet_decap(bits)

set otherwise

Fig. 5. Data-flow equations of packet field live analysis for packet reads

4. Finalize the combining

For each packet access, the candidates can be selected by taking a bitwise OR opera-
tion on the current packet access’s pf field and those of all live packet accesses at this
point. If the bit width of combined result does not exceed the width limit of DRAM
instructions, the corresponding live packet access is a candidate. We use the combin-
ing density to describe data reuse characteristics as defined in Eq. (1). In this equation
field_lenl and field_len?2 are the valid bit widths of the pf fields in the current packet
access and candidate packet access, respectively. combined_len is the valid bit width
after the combination. For example, if the two packet accesses are to the same packet
field, the value of combining density equals the width of the packet field. If the packet
fields are adjacent, the value is zero, and so on. We will first combine the packet ac-
cesses whose combining density is higher.

CombiningDensity=field_len1 + field_len2 - combined_len .)

After the combination, the offset and size of current packet access are adjusted to
retrieve all needed packet data and the redundant packet access is eliminated. The
cached packet data can be kept in registers.

The algorithm of PAC can be easily extended to handle more complex cases. For
example, it can combine two packet writes even if they are to non-adjacent fields of a
packet. By using a dominator packet read to cache the data of the gap between two
packet writes, we can combine the two packet writes with the cached gap into a wide

54 T. Liu et al.

write. Furthermore, it can combine packet writes located in basic blocks that are not
control equivalent. It may still be worth combining if we can reduce the number of
packet writes on the critical path. To maintain correctness, compensation packet
writes must be generated in the corresponding exits to cold paths.

4 Compiler-Generated Packet Caching

By default, for each packet access our compiler will generate a packet access intrinsic
call which is implemented in the runtime system. This approach, though allows the
flexibility of changing the implementation of the packet buffer without modifying the
compiler, will incur significant performance overhead. In fact, we may not need to
invoke the intrinsic call to load the packet data for every reference in the program. If
we preload all needed packet data into a cache, the subsequent packet accesses can be
replaced by cache accesses. Actually, packet data accesses exhibit good spatial local-
ity w.r.t. different fields in the same packet [15]. Based on this observation, we pro-
pose a new approach to implement packet accesses, named Compiler-Generated
Packet Caching (CGPC). CGPC tries to identify the critical path of the packet flow in
a network application based on profiling information and optimize all packet accesses
along the path. If there are multiple accesses to the same packet in the critical path,
the related packet data will be buffered in the fastest level of memory (e.g., the local
memory in IXP2400), and those accesses that can be resolved statically will be re-
placed by the accesses to the buffered data. For those accesses that can only be re-
solved at run time, efficient code sequence will be generated to calculate the offset
and alignment and perform the access. Actually, CGPC can be considered as an ex-
treme situation of PAC that it tries to combine all the packet accesses in a thread into
only one packet read at the thread entrance and one packet write at the thread exit.

4.1 Algorithm

CGPC is performed in two steps. First, an inter-procedure analysis, referred to as
Packet Flow Analysis, is to identify the critical path in the packet flow graph and
calculate associated information of each packet access and packet_encap/decap. Sec-
ond, a compiler generates the instructions for each packet access and packet_encap/
decap based on the packet flow analysis information.

4.1.1 Packet Flow Analysis

The information needed by the packet flow analysis is collected by a profiler. By
utilizing user-supplied packet traces, the profiler simulates the execution of network
applications at a high-level Intermediate Representation (IR) in the compiler. After the
simulation, the profiling information, such as execution frequency and access statistics,
is available. The pseudo code of the algorithm for the packet flow analysis is presented
in Fig. 6. Flow_Anaysis is a recursive function which starts the analysis from the
endpoint of the channel coming out of the Rx module. The cached packet data should
be preloaded at the entry of the packet flow, but the preload width can not be deter-
mined until the analysis is finished. During the analysis, the value of the current head
pointer is tracked and updated whenever encountering a packet_ encap/decap.

Optimizing Packet Accesses for a Domain Specific Language on Network Processors 55

However, different intrinsic calls and control structures complicate this process. If a
packet_encap/decap sits inside a loop with an unknown loop count, inside an if-
branch, or inside a circle of the packet flow graph, we may not be able to track a con-
stant value of head pointer statically.

Process_Instrinsic_Call (currCall) { Flow_Analysis (currStmt) {
if (currCall is packet_encap/decap) { switch(currStmt) {
if(is_in_loop) { case Intrinsic_Call:
set unresolved flag; {Process_Intrinsic_Call (Intrinsic_Call);
set currCall dynamic;} break;}
else{ case Call:
Increase/Decrease currOfst; {callee=Get_Callee(Call);
set currCall eliminable;} if (callee has been analysed) break;
} else{
if (currCall is packet_read/write) { Flow_Analysis(callee->first_Stmt);}
if (access offset is variable||unresolved) break;}
set currCall dynamic; case Loop:
else{ {set is_in_loop flag;
set currCall static; estimate loop count by profiler;
calculate absolute offset and size;} Flow_Analysis(Loop body) ;
update preload & writeback range; if (not in outer loop) reset is_in_loop flag;
} break;}
if(currCall is channel_put) { case If:
if (send packet to Tx or Xcale){ {Flow_Analysis(if condition);
set packet_is_over; Flow_Analysis(then branch) ;
if (cache has been written) writeback cache; then_ofst=currOfst;
} Flow_Analysis(else branch);
if (send packet to ME) { else_ofst=currOfst;
if (cache has been written) writeback cache; if (then_ofst==else_ofst) break;
callee=Get_End_Func (currChannel) ; if (packet_is_over in then/else branch)
Flow_Analysis(callee->first_Stmt); set currOfst to else_ofst/then_ofst;
} else
} set unresolved flag; break;}
if(currCall is packet_drop) .. // other cases
set packet_is_over; default:
...... // other cases {Flow_Analysis(kid nodes of currStmt);}

} 1)

Fig. 6. The algorithm of packet flow analysis

For each packet access, if the head pointer is not resolved as a compile-time con-
stant or its offset parameter is a variable, it will be marked as dynamic. They need a
compiler to generate code to compute the offset and alignment at runtime so as to
access the cached data. Other packet accesses will be marked as static and will have
their offsets and alignments calculated at compile-time. Since the offsets of static
packet accesses are known at compile-time, we can use the absolute offset in the
cache to access packet data across different protocol layers. As a result, some
packet_encap/decaps become redundant if they are used only to provide the encapsu-
lation protection for static packet accesses. These packet_encap/decaps are marked as
eliminable, which means they can be removed safely. Other packet_encap/decaps are
marked as dynamic which will be used in generating code for dynamic packet ac-
cesses. When packets flow to the 7x module or heterogeneous cores (e.g., XScale),
the packet flow path is ended and the cached packet data should be written back to
DRAM if it has been modified. If we use a processor-local memory (e.g., local mem-
ory in ME) as a cache and packets flow across different cores (e.g., MEs), the cached
data should be written back to DRAM when it comes out of one processing core and
reloaded when it enters another core.

56 T. Liu et al.

Fig. 7 illustrates the critical packet flow path of L3-Switch. The head pointer can
always be determined statically along this path. All packet accesses are resolved ex-
cept one in the [pm_lookup PPF, which is used to verify the checksum of IPv4 header.
Its offset is a variable and this access is executed ten times for every processed
packet. We need to insert code to compute its offset at runtime.

13_switch_module

Adjust head ptr when meeting
dynamic packet_encap/decap

~

..... ' ~;|.""; Cache ethernet | mpls
[4 (local memory) header [header
"""""" 7y
i eth_encal offset
; module ! Packet

e K access

Fig. 7. The critical path of L3-Switch Fig. 8. Dynamic offset and alignment
resolution

4.1.2 Compiler-Generated Packet Accesses

After the packet flow analysis, the flags (as shown in Fig. 6) and necessary informa-
tion are annotated on each packet access and packet_encap/decap. In the code genera-
tor, the actual code is generated according to the flags and the information. If the
packet access is static, the cache can be accessed directly with a constant offset and
size provided by the packet flow analysis. An unaligned access can be effectively
optimized to a wide access followed by some shift instructions. As for a dynamic
access, the offset and alignment must be calculated at runtime. Our solution is illus-
trated in Fig. 8. We use a variable to track the value of /ead pointer and initialize it
when the compiler preloads the cache. When a packet flows across a dynamic
packet_encap/decap, additional instructions are executed to update its value at run-
time. We can then use the variable of head pointer to generate code for the dynamic
packet access. The absolute offset of a dynamic packet access in cache can be deter-
mined by adding the original offset to the current head pointer. A check is performed
on the absolute offset. If the offset within the cache, it can directly access the cached
data. Otherwise, it will fall through to invoke the original intrinsic call.

After the optimization, a DRAM access is performed only when preloading and
writing back the cache. An unaligned DRAM access will cause a much higher cost
than the aligned one. For example, an unaligned write would need a write-after-read
operation to keep the unwritten section intact, which needs to be implemented in two
DRAM accesses. Instead, our compiler implements all preload and write back opera-
tions at the aligned boundaries. All intermediate packet accesses’ offsets are adjusted
according to the alignment. As a result, our implementation properly aligns all
DRAM accesses. Although this approach may waste some cache space to hold unused
data, it avoids the write-after-read operations on DRAM and reduces the alignment
instructions.

Optimizing Packet Accesses for a Domain Specific Language on Network Processors 57

5 Evaluations

We have evaluated the proposed optimizations with representative workloads on real
network processors. In this section, we will present the hardware evaluation environ-
ment, benchmarks, and experimental results.

5.1 Benchmark Applications

We use three typical network applications, L3-Switch, MPLS and Firewall, for our
evaluation. They are all written in Baker. L3-Switch and MPLS were evaluated using
the NPF standard configurations [16, 17]. Firewall was evaluated using a packet trace
internally developed.

Layer 3 Switch (L3-Switch) [16] implements Ethernet bridging and IPv4 routing.
For each packet received, it performs table lookups to determine the next hop, decre-
ments the Time-To-Live (TTL), and updates the checksum for the packet header.

Multi-Protocol Label Switch (MPLS) [17] attaches one or more labels in the head
of each packet and routes the packet based on the label rather than the destination
address. By using the label as an index into a forwarding table, the routing process
can be accomplished more quickly.

Firewall sits between a private network and its Internet connection, protecting the
internal network against attacks. The firewall takes actions, such as passing or drop-
ping a packet, based on an ordered list of user-defined rules. These rules specify the
actions to take when the fields of incoming packets (e.g. source and destination IPs,
source and destination ports, protocol etc.) match certain patterns.

5.2 Experimental Environment

Our evaluations were conducted on a RadiSys ENP-2611 evaluation board, which
contains an Intel IXP2400 network processor running MontaVista Linux on the
XScale core. IXP2400 consists of eight multi-threaded MicroEngines (MEs) for traf-
fic processing, an Intel XScale core for control plane processing, S8MB SRAM, and
64MB DRAM [10]. An IXIA packet generator with two 1Gbps optical ports was used
to generate packet traffics and collect statistics. When the ports are used in full duplex
mode, the peak input rate is 2Gbps.

The memory hierarchy of IXP2400 consists of four different memory levels: local
memory, Scratchpad, SRAM, and DRAM, with increasing capacities and access la-
tencies. Table 1 lists their access parameters. There is no hardware cache; any access

Table 1. The parameters of different levels of memories in IXP 2400 (Unit B stands for Bytes)

Access time | Start Address| Min Max

Memory Type | = Size (Cycles) Alignment | Length | Length

Local Memory | 2560B 3 4B boundary 4B 4B
Scratchpad 16KB 60 4B boundary 4B 64B
SRAM 256MB 90 4B boundary 4B 64B

DRAM 2GB 120 8B boundary &B 128B

58 T. Liu et al.

to the memory units is carried out explicitly with specific instructions for respective
memory types.

For all configurations in our evaluation, six MEs with each ME having eight thread
contexts all ran the same code from the critical path of an application. The other two
MESs were dedicated to receive (Rx) and transmit (Tx) module, respectively. The cold
path and control plane code of the application were mapped to XScale.

5.3 Packet Access Count and Aggregate Access Size

We compared the number of packet-related DRAM accesses and the packet forward-
ing rates for the three applications, with and without the proposed optimizations. The
BASE configuration enables only typical scalar optimizations. We evaluated these two
optimizations on top of BASE separately. PAC enables the packet access combining.
Procedure inlining was performed to expose more opportunities for combining. CGPC
represents the compiler-generated packet caching. Since CGPC can be considered as
an aggressive version of PAC, we have not evaluated the combined effect.

Table 2. Memory access statistics (per packet) and instruction counts

DRAM Aggregate Instruction
Access Access Size Count'
Count (Bytes)
L3- BASE 29 696 2033
Switch PAC 13 200 1190
CGPC 2 72 770
MPLS BASE 16 384 1851
PAC 9 212 1428
CGPC 2 48 1495
Firewall | BASE 24.2 580 1742
PAC 4.4 140 572
CGPC 1 32 375

Table 2 shows the DRAM access count and aggregate access size per packet and
the instruction count for each benchmark application. We can see that PAC can reduce
the DRAM access dramatically. CGPC has the lowest number of DRAM accesses and
reduces the aggregate access size by 90% on average (L3-Switch: 89.7%, MPLS:
87.5%, Firewall: 94.5%). Taking L3-Switch as an example, its packet accesses are
marked in Fig. 7. There are 9 static packet reads, 5 static unaligned packet writes, and
1 dynamic packet read on the critical path. The dynamic packet read is caused by a
checksum checking, which iterates through the packet header in a unit of 2-byte. PAC
merges the static packet accesses but cannot catch the dynamic one. CGPC can deal
with all of the packet accesses, thus only need DRAM accesses in the preload and

! The instruction count is an approximate number of the instructions actually executed in Mi-
croEngines for one packet processing. It includes critical path code and packet accesses. A
packet read takes about 50 instructions and a packet write takes about 100 instructions.

Optimizing Packet Accesses for a Domain Specific Language on Network Processors 59

write back operations. MPLS presents a challenge to our techniques initially. It
pushes, swaps, and pops MPLS labels dynamically, which may include an arbitrary
number of MPLS headers and our techniques can not determine the cache layout
statically. However, the results demonstrate that CGPC remain effective for this dy-
namic situation. Overall, PAC and CGPC not only reduce the memory traffic, but also
reduce the number of executed instructions.

5.4 Forwarding Rate

The forwarding rates of three applications on the minimum sized 64-byte packets are
presented in Fig. 9. The numbers of MEs to execute the applications are plotted on the
X-axis and the achieved forwarding rates are plotted on the Y-axis. To obtain the full
benefits of PAC, we unrolled the checksum checking loop in L3-Switch before apply-
ing PAC to convert the dynamic packet read to static. PAC reduces the packet proc-
essing time by removing considerable DRAM accesses and instructions. As a result, it
gets a higher forwarding rate. CGPC provides a higher performance impact than PAC
because it has no excessive DRAM accesses and the solution for resolving the offset
and alignment is effective. Compared to BASE, CGPC improves the throughput by 5.8
times on average (L3-Switch: 7.6; MPLS: 3.9; Firewall: 5.9).

100.0 3

= —o— BASE (L3-switch)
8800 -~ S —8 PAC (L3-switch)
5 —a— CGPC (L3-switch)
2 60.0 —— BASE (MPLS)
] —8—PAC (MPLS)

=4 40.0 —#— CGPC (MPLS)
= —+— BASE (Firewall)
§ 20.0 —%—PAC (Firewall)
5 —%— CGPC (Firewall)
= 0.0

1 2 3 ME 4 5 6

Fig. 9. Performance of L3-Switch, MPLS and Firewall

In the BASE configuration, all three applications get their memory bus saturated
when the number of MEs increases. However, PAC provides good scalability by re-
lieving the contention of DRAM bandwidth. Compared to PAC, CGPC generates
fewer instructions and DRAM accesses so that it obtains nearly perfect scalability and
reaches the full line rate quickly. The result shows the system performance is largely
determined by both the instruction count and DRAM bandwidth. We also applied
these optimizations on SRAM accesses without as apparent benefits as DRAM ac-
cesses. It is because IXP2400 has only one DRAM controller but two independent
SRAM controllers.

6 Related Work

Several high-level programming languages, such as microC [11] and picocode [9],
have been introduced with their corresponding NPs. But they are all extended to

60 T. Liu et al.

expose hardware details and their performances heavily rely on the use of such fea-
tures. A number of domain-specific languages, such as Click [13], NesC [7], etc.,
have been developed to ease programming, and they are more hardware-independent
and include special constructs to express the tasks in packet processing applications.
But they do not focus on efficient compilation.

Mudigonda et al. [15] analysed the characteristics of packet data and application
data accesses. They exhibit the spatial locality of packet data accesses and temporal
locality of application data accesses. They use a cache to improve the hit rate of ap-
plication data structures. Iyer et al. [12] studied a cache-based memory hierarchy of
packet buffer. Hasan et al. [8] proposed several techniques to exploit row locality (i.e.
successive accesses falling within the same DRAM rows) of DRAM accesses. But
their techniques needed hardware support and focused on the input- and output-side
of packet processing, which can be implemented in our Rx and 7x modules. Sherwood
et al. [18] designed a pipelined memory subsystem to improving the throughput in
accessing application data structures.

Davidson and Jinturkar [6] described a memory coalescing algorithm for general
purpose processors similar to packet access combining. This algorithm replaced nar-
row array access with double-word accesses in unrolled loops. It performed a profit-
ability and safety analysis on programs, and generated alignment and alias checks at
runtime if necessary. But Packet Access Combining works on a whole procedure and
focuses on packet accesses. It utilizes some domain knowledge and does not need a
complex alias analysis. Thus, PAC is always profitable when it can be applied.

There are several techniques which can be used to improve packet accesses.
McKee et al. [14] designed a separate stream buffer to improve the performance of
stream accesses. Chen et al. [4] described a hardware-based prefetching mechanism to
hide memory latency.

7 Conclusion

Performance and flexibility are two major but sometime conflicting requirements to
packet-processing systems and the programming environments associated with them.
High level programming environments with domain specific languages can satisfy the
flexibility requirement. However, how to utilize hardware features effectively to
achieve high performance with automatic compiler supports in such programming
environments requires more explorations. In this paper, we address one major type of
memory accesses in network applications — accesses to packet data structures, which
constitute a significant portion of the total memory accesses. We propose two compi-
lation techniques to reduce the latencies of packet accesses and the contention of
DRAM bandwidth.

Packet access combining tries to reduce the number of packet accesses by utilizing
wide memory references and code motion. It does not incur extra memory space com-
pared with caching. Furthermore, it is hardware-independent and always beneficial
when applied. Compiler-generated packet caching can be viewed as compiler-
controlled caching. It buffers the packet data to be referenced and replace all of the
packet accesses on the critical path with accesses to a buffer in cache. Through a
profiling-based program analysis, it minimizes the required cache size and the number
of cache misses.

Optimizing Packet Accesses for a Domain Specific Language on Network Processors 61

We performed experiments on a real packet processing platform with three repre-

sentative network applications, L3-Switch, MPLS and Firewall. The experimental
results demonstrate that the efficiency of packet accesses is critical to the system
performance, and our techniques can reduce the number of packet accesses and the
total memory bandwidth requirements significantly.

References

1.

10.
11.

12.

13.

14.

15.

16.

17.

18.

W. Bux, W. E. Denzel, T. Engbersen, A. Herkersdorf, and R. P. Luijten. “Technologies
and building blocks for fast packet forwarding.” IEEE Communications Magazine, pp. 70-
77, January 2001.

. M. Chen, E. Johnson, R. Ju. “Compilation system for throughput-driven multi-core proc-

essors.” In Proc. of Micro-37, Portland, Oregon, December 2004.

M. Chen, X. Li, R. Lian, J. Lin, L. Liu, T. Liu, and R. Ju. “Shangri-la: Achieving high per-
formance from compiled network applications while enabling ease of programming.” In
Proc. of ACM SIGPLAN PLDI, Chicago, Illinois, USA, June 2005.

T. Chen and J. Baer. “Effective Hardware-based Data Prefetching for High-performance
Processors.” IEEE Transactions on Computers, 44(5), May 1995.

. T. Chiueh and P. Pradhan. “High-performance IP routing table lookup using CPU cach-

ing.” In IEEE Infocom’99, New York, NY, March 1999.

J. W. Davidson and S. Jinturkar. “Memory Access Coalescing: A Technique for Eliminating
Redundant Memory Accesses.” In Proc. of ACM SIGPLAN PLDI, pp. 186-195, June 1994.
D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. “The nesC Lan-
guage: A Holistic Approach to Networked Embedded Systems.” In Proc. of ACM
SIGPLAN PLDI, June 2003.

. J. Hasan, S. Chandra, and T. Vijaykumar. “Efficient Use of Memory Bandwidth to Im-

prove Network Processor Throughput.” In ISC4, 2003.

IBM PowerNP Network Processors,
http://www-3.ibm.com/chips/techlib/techlib.nsf/products/IBM_PowerNP_NP4GS3.

Intel Corporation. Intel IXP2400 Network Processor: Hardware Reference Manual. 2002.
Intel IXP family of Network processors,
http://www.intel.com/design/network/products/npfamily/index.htm.

S. Iyer, R. R. Kompella, and N. McKeown. “Analysis of a memory architecture for fast
packet buffers.” In Proc. IEEE Workshop High Performance Switching and Routing
(HPSR), 2001.

E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. “The Click Modular
Router.” Transactions on Computer Systems, 2000.

S. McKee, R. Klenke, K. Wright, W. Wulf, M. Salinas, J. Aylor, and A. Batson. “Smarter
Memory: Improving Bandwidth for Streamed References.” JEEE Computer, July 1998.

J. Mudigonda, H. Vin, and R. Yavatkar. “A Case for Data Caching in Network Proces-
sors.” Under Review. http://www.cs.utexas.edu/users/vin/pub/pdf/mudigonda04case.pdf
Network Processing Forum. “IP Forwarding Application Level Benchmark.”
http://www.npforum.org/techinfo/ipforwarding_bm.pdf.

Network Processing Forum. “MPLS Forwarding Application Level Benchmark and An-
nex.” http://www.npforum.org/techinfo/MPLSBenchmark.pdf.

T. Sherwood, G. Varghese, and B. Calder. “A Pipelined Memory Architecture for High
Throughput Network Processors.” In 30™ International Symposium on Computer Architec-
ture, June 2003.

Array Replication to Increase Parallelism in
Applications Mapped to Configurable
Architectures

Heidi E. Ziegler, Priyadarshini L. Malusare, and Pedro C. Diniz

University of Southern California / Information Sciences Institute
4676 Admiralty Way, Suite 1001
Marina del Rey, California, 90292
{ziegler,priya,pedro}@isi.edu

Abstract. Configurable architectures, with multiple independent on-
chip RAM modules, offer the unique opportunity to exploit inherent
parallel memory accesses in a sequential program by not only tailoring
the number and configuration of the modules in the resulting hardware
design but also the accesses to them. In this paper we explore the possi-
bility of array replication for loop computations that is beyond the reach
of traditional privatization and parallelization analyses. We present a
compiler analysis that identifies portions of array variables that can be
temporarily replicated within the execution of a given loop iteration,
enabling the concurrent execution of statements or even non-perfectly
nested loops. For configurable architectures where array replication is
essentially free in terms of execution time, this replication enables not
only parallel execution but also reduces or even eliminates memory con-
tention. We present preliminary experiments applying the proposed tech-
nique to hardware designs for commercially available FPGA devices.

1 Introduction

Emerging computing architectures now have multiple computing cores and mul-
tiple memory modules such as discrete and programmable register files as well
as RAM blocks. For example, field-programmable gate arrays (FPGAs) allow
designers to define an arbitrary set of registers and customize the topology of
internal RAM blocks [12] to suit the data and computational needs of the com-
putation. Other programmable architectures simply allow for the arrangement
of registers and fine-grain functional units to create tailored pipelined archi-
tectures [5]. Overall these flexible architectures provide ample opportunities to
exploit data parallelism as well as coarse and fine-grain parallelism.
Unfortunately, mapping sequential applications to these architectures is a dif-
ficult task. Programmers must explicitly manage the mapping and organization
of arrays among the rich set of storage resources, configurable register sets and
on and off-chip memories, if they are to fully exploit the architectural benefits
of configurable devices. The wide range of design choices faced by the program-
mer makes it desirable to develop automated analysis and mapping tools that

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 62-75, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Array Replication to Increase Parallelism 63

can navigate certain characteristics of the design space, in particular, the data
dependences found in common sequential imperative programs.

In this paper we focus on array privatization and array replication techniques
to enable compilers to uncover parallelism opportunities in sequential computa-
tions that are traditionally impeded by both anti and output-dependences. We
focus on array privatization not across loop iterations but within the same loop
iteration. It focuses on the analysis of non-perfectly nested loops by determining
anti-dependences between a sequence of nested loops in a control loop.

When two computations, that execute serially, access the same array location,
reading its previous value and then writing a new value into the location, this
gives rise to an anti-dependence between them. Similarly when two computation
use the same location to store consecutive values that are otherwise independent
creates an output-dependence. These dependences can be eliminated by creating
a copy of the array, that each computation freely accesses. Each computation
uses a distinct memory location to write and read a value, and in the absence of
true-dependences between these loops nest, they can execute concurrently within
the same iteration of the control loop.

This concurrent execution, however, raises the issue of memory contention
when two or more concurrently executing loop nests access the same array re-
gion, i.e., the loops exhibit input-dependences. To overcome this memory con-
tention, we take advantage of the flexibility of memory mapping in configurable
architectures by creating copies of shared array variables. By accessing the ar-
ray copies, the parallel loop nests can therefore execute concurrently due to the
absence of anti-dependences but also be contention-free. When the original com-
putation exhibits loop-carried true-dependences (i.e., values written in a given
iteration that are read in a later iteration of a loop), the transformed code must
update the array copies (not necessarily all of them) when the concurrent ex-
ecution terminates to ensure that subsequent computations proceed with the
correct values.

This transformation explores a space-time tradeoff. In order to eliminate anti-,
output- and input-dependences, the implementation requires additional memory
space. In addition, some execution time overhead is incurred in updating the
copies to enforce the original program data dependences. The analysis abstrac-
tions, in cooperation with estimates of memory space usage, allow for an effective
algorithm to manage this tradeoff and adjust, possibly dynamically, the perfor-
mance of the implementation in response to available resources.

In this paper we evaluate the replication and privatization transformations
when mapping a set of computations to a configurable computing device, a
Xilinx Virtex™ FPGA. We simulate the transformed code as a concurrently
executing hardware design, thereby revealing the effects on performance and the
corresponding cost of storage.

This paper makes the following specific contributions:

— Describes the application of array replication and array privatization trans-
formations to take advantage of the flexibility of configurable architectures.

64 H.E. Ziegler, P.L.. Malusare, and P.C. Diniz

— Extends existing array data-flow analysis to identify opportunities for con-
current execution of entire loops when arrays are replicated and temporarily
privatized.

— Presents experimental results of our array replication algorithm when applied
to a sample set of image processing computations for specific mappings to
an FPGA device.

Preliminary results reveal that a modest increase of storage for private and
replicated data leads to hardware designs that exhibit respectable execution time
speedups, making this approach feasible when storage space is not a limiting
factor in the design.

With the increase in VLSI device capacity and the emergence of computing
architectures that have multiple computing units on the same die and a very
rich set of configurable storage structures, the placement and layout of data
will become increasingly important if applications are to fully exploit the true
potential of internal data bandwidth and computational units.

This paper is structured as follows. Section 2 illustrates a motivating exam-
ple for array replication. Section 3 describes the compiler analyses and a data
replication algorithm. In section 4 we present preliminary experimental results
of the application of the proposed analyses to a set of multimedia computations
targeting an FPGA configurable device. We discuss related work in section 5
and then conclude in section 6.

2 Example

We now present an example showing how array replication (or copying) elim-
inates anti- and output-dependences thereby enabling concurrent execution of
loops. This example also illustrates the elimination of input-dependences (i.e.,
when two loops access arrays that are stored in the same memory module) that
reduces memory contention introduced by concurrency. The computation is il-
lustrated in figure 1 and consists of an outer i loop with three loop nests, L1, L2
and L3 nested within. Each of these three loop nests access a two-dimensional
array variable A using affine subexpressions. The first two loop nests L1 and L2
read two consecutive rows of the array whereas the third loop nest L3 writes the
array row read by the first loop nest in the same iteration of i and in iteration
i+1 by the second loop nest.

Within loop i, one cannot execute loops L1 and L2 concurrently with loop
L3, since there is an anti-dependence between L3 and the other loops. Itera-
tions of the i loop also cannot be executed concurrently given the loop-carried
true-dependence between L3 and L2. As such, privatization of A is therefore not
possible either [11].

A way to enable concurrent execution of all loop nests during the execution
of each iteration of the i loop is to create a copy of array A named A 3, which
L3 can update locally while loops L1 and L2 read from the original array A.
We call this transformation where the array is being replicated with respect
to the loop nest that writes it, a partial replication. At the end of concurrent

Array Replication to Increase Parallelism 65

£ LI reads A[i][*] & 5
L2: reads A[i-1][*] 3 s
I L3: writes A[i][*] § 2
/* control loop */ I N ~
for(i = 0; i < M; i++){ I .2 X
I L1: reads A[i+1][*] B 5
/* loop L1 */ vy L2 reads A[i][*] H g
for(j=0; j < N; j+){ L3: writes A[i+1][*] = 2
for(k=0; k < N; k++){
.= A[i] [k]; (a) Sequential execution.
} } © Ll:reads A[i][*] L2:reads A[i-1][*] L3: writes A_3[i][*] §
£ barrier §
/* loop L2 */ update A[i][*] = A_3[i][*] -
for(j=0; j < N; j++){ | -
for(k=0; k < N; k++){ I b
.= Ali-11[k]; | L1:reads A[i+1][*] L2:reads A[i][*] L3: writes A[i+1][*] 8
e barrier -_— §
¥ [update A[i+1][*] = A_3[i+1][*] 2
} v
/* loop L3 */ (b) Concurrent execution without array replication.
for(j=0; j < N; j++){ -
for(k=0; k < N; k++){ 9 5
Alil[k] = ... & Ll:reads A_1[i][*] L2:reads A_2[i-1][*] L3: writes A_3[i][*] &
. barrier §
) } I update A_2[i][*] = A_3[i][*] b
} ! I
I Ll:reads A_1[i+1][*] L2: reads A_2[i][*] L3: writes A[i+1][*] s
I -_— barrier -_— §
v 3

update A_2[i+1][*] = A_3[i+1][*]

(c) Concurrent execution replicating array A.

Fig. 1. Example computation and illustrative sequential and concurrent execution

execution of loops L1 through L3 within one iteration of the i loop, we insert a
synchronization barrier and then update the original array A with the new values
generated by loop L3. This concurrent execution is illustrated in figure 1(b) and
the corresponding parallel code is depicted in figure 2(a).

Due to the concurrent execution of the three loop nests, there is now memory
contention on array A by the loops L1 and L2. In an architecture with memory
modules with a limited number of memory ports and in the absence of care-
ful scheduling of read operations the execution of each loop will possibly stall
for data. To alleviate the memory contention, we further replicate array A and
assign these new arrays A 1 and A 2 to two memories that can be accessed in
parallel by loops L1 and L2. In this extended replication transformation, called
full replication, we create copies that are local to the loops that both read and
write the arrays.! We trade decreased execution time for increased array storage.

! There are additional degrees of replication with respect to the loops that read a
given array. Furthermore, this need to replicate to reduce memory access contention
interacts with other transformations such as custom data-layout enabled by loop
unrolling as described in [9].

66 H.E. Ziegler, P.L.. Malusare, and P.C. Diniz

for(i = 0; i < M; i++){ /* control loop */
begin par

for (j=0; j < N; j++){ /* loop L1 */
for (k=0; k < N; k++){
..o= ALl [k];

for (j=0; j < N; j++){ /* loop L2 */
for (k=0; k < N; k++){
..oo= Ali-1]1[k];

for (j=0; j < N; j++){ /* loop L3 */
for (k=0; k < N; k++){
A3[31k] = ...
}
}
}

end par
/* update original A */
for (k=0; k < N; k++){
Afil[x] = A 3[i][k];
}
}

(a) Transformed code with
partial replication

for(i = 0; 1 < M; i++){ /* control loop */
begin par

for (j=0; j < N; j++){ /* loop L1 x/
for (k=0; k < N; k++){
.= A1 [k

for (j=0; j < N; j++){ /* loop L2 */
for (k=0; k < N; k++){
.= A2[i-1]1[k];

for (j=0; j < N; j++){ /* loop L3 */
for (k=0; k < N; k++){
A3[31k] = ...
}
}
}

end par
/* update A 2 */
for (k=0; k < N; k++){
A 2[i]1[k] = A 3[il[k];
}
}

(b) Transformed code with
full replication

Fig. 2. Transformed example computation

In addition, the implementation must update the arrays to ensure data consis-
tency. While updating complete arrays is a safe and conservative approach, in
actuality, only array elements that correspond to loop-carried true-dependences
need to be updated. In our example and given that the array section written by
L3 is read only by L2 in the next iteration of the i loop, the implementation only
needs to update the array A 2 associated with L2 and not A 1 associated with
L1. In other words the definition of the array row written by L3 reaches L2 but
not L1. Figure 2(b) depicts the transformed code after the replication of these
arrays and the corresponding concurrent execution is illustrated in figure 1(c).

While the inclusion of a copy operation is likely to decrease performance
benefits of such transformations in a classical architecture, in the context of
configurable architectures, it has little if any impact on overall execution time.
When the implementation of the computation in L3 has to issue a write operation
to a specific memory module with a configurable number of read and write ports,
one can specify a multi-port write operation to occur synchronously to many
memory modules without any performance penalty.

Array Replication to Increase Parallelism 67

This example illustrates the kind of computation the array privatization and
replication analysis described in this paper is designed to handle. First, we focus
on non-perfectly nested loops with intra-iteration anti-dependences and true-
dependences to recognize computations that can execute concurrently by the
introduction of one copy to the loop nest that modifies sections of an array.
These values must then be copied back into the original array or other copies
at the end of the execution of the parallel code region. Second, we introduce
array copies to eliminate memory contention during the concurrent execution of
multiple loop nests, thereby eliminating memory contention by exploiting the
memory bandwidth available in architectures with configurable storage units.

3 Compiler Analysis

We now describe the compiler analysis and basic abstractions used to determine
the opportunities for array replication with the goal of executing loop nests con-
currently while reducing memory contention caused by accessing shared arrays.
In this section we focus on imperfectly nested loops that manipulate array refer-
ences. Whereas our analysis can be very precise for arrays that have affine array
access functions, it can also handle, with loss of precision, references that are
very irregular, i.e., array-based indirect accesses.

3.1 Basic Abstractions and Auxiliary Functions

This analysis focuses on imperfectly nested loops where the outermost loops i1
through i in the nest are perfectly nested. The i loop in the nest has a loop
body that consists of a sequence of loop nests, each of which is a perfectly nested
loop as well. We name the iy, as the control loop and build a control-flow-graph
CFG corresponding to its body where each node corresponds to a loop nest. For
the example in section 2, the CFG is a linear sequence of loop nests L1 through
L3, with loop i as the control loop. The corresponding CFG and dependences
between the nodes are illustrated in figure 3.

For each loop nest, corresponding to a node nj in the CFG, we define the
upwards-ezposed read and write regions for a given array A denoted by ER(A, ny)
and WR(A,ny) respectively. The accessed array region is described by a set of
linear inequalities. Given that each loop nest may be enclosed by a control loop,
the corresponding dimension in the linear inequality will consist of symbolic
information. A simple, yet effective implementation restriction is to limit the
analysis to loops with single-induction variable affine subexpressions making the
presence of index variables of the control loop simple. Figure 3 depicts the CFG
of the control loop for the example in section 2, along with the relevant exposed-
read and write region abstractions for the array A.

Using these abstractions, the compiler can compute data dependences be-
tween nodes of the CFG uncovering anti-, input-, output- and true-dependences
by determining if the intersection between ER(A,n;) and WR(A,n;) between nodes
n; and n; corresponding to the same array are non-empty. For instance, an
anti-dependence exists between loops n; and n; due to array variables A iff

68 H.E. Ziegler, P.L.. Malusare, and P.C. Diniz

n3 post dominates {n;, n,}

Fig. 3. Control flow graph and dependence information for the example code

{WR(A,n;) N ER(A,nj) with i > j} # (. In some cases the intersection will
yield symbolic variables corresponding to the loops of the nest and the depen-
dence test must conservatively assume dependence. In addition, we also define
a dependence distance for each dependence type. For the example in section 2,
there is a loop-carried true-dependence on the control loop i with a distance of
1 between the nodes corresponding to the loops L2 and L3 since L3 writes the
it" row of the array A which is read by L2 on the subsequent iteration of i.

3.2 Algorithm for Detecting Replication

Using the abstractions for data accesses, ER and WR, as well as the § data de-
pendence distance information, we now describe a compiler algorithm that de-
termines opportunities for parallel execution of the loop nests that make up the
body of the control loop. The algorithm also determines which arrays can be
replicated to mitigate memory contention resulting from concurrent execution.

The algorithm, shown in figure 4, is structured into 5 main steps. In the first
step the algorithm extracts the control loop i and the CFG corresponding to
the enclosed loops. In the second step, for each node ny, the algorithm computes
ER and WR for each array variable A. In step three, the algorithm computes the
dependence distances between every pair of nodes. In step four, the algorithm
determines the opportunities for concurrent execution of the nodes within the
same iteration of the i loop. The basic idea of this step is to identify a straight-
line sequence of nodes such that the last node of the sequence exhibits an anti-
dependence with the other nodes but there are no true- or output-dependences
for that same iteration.?2 The set of nodes that meet this data dependence and
control dependence criteria are gathered in a parallel region corresponding to
the new node named parallel(ng). The compiler creates an array copy corre-
sponding to this parallel node in order to eliminate anti-dependences and inserts

2 Extending this simple algorithm to regions of the CFG with control-flow leads to
several code generation complications.

Array Replication to Increase Parallelism 69

Step 1. Extract control loops and coarse-grain control flow graph
extract control loops ig,...,%, and CFG;

Step 2. Determine exposed read and write information for each loop
for all nodes n; € CFG
for all arrays A m; manipulates
compute ER(A,n;) and WR(A,n;);

Step 3. Compute dependence types and distances
for all pairs of nodes (ni,nj) € CFG
compute Otype(ni,n;) <,=,> (x) where x is distance

Step 4. Identify parallel regions
for all nodes nj € CFG s.t. WR(A,ny) # 0 do
if (numPreds(ng) > 1) then
parallel(ng) = 0;
continue;
R={n};
n = preds(ng);
while (n # entry OR numdSuccs(n) = 1) do
if ((n; € R) AND (ER(A,n;) # 0) AND (8trye(ni,ng) = (0))) then
R=R+ {n;}
end if;
end while;
parallel(ng) = R;
insert fork before firstNode(parallel(ny));
insert join barrier after lastNode(parallel(ny));
end for;
end for;

Step 5. Reduce contention by replicating arrays
for all parallel regions of CFG do
// Partial Replication case
insert update array variable A for WR(A,ny);
if (FullReplication) then
selectNumberCopies (parallel(ny));
for all n; € parallel(ny) do
update copy of A that has &ipue(nj,ng) > (0);
for all arrays B replicate array for which Oinput(ni,n;) = (0);
end for all;
end if;
end for;

Fig. 4. Parallelism detection and replication algorithm

synchronization code at the beginning and end of the parallel region so that
values in the original array are updated with the value generated by ny.

In step five, the algorithm identifies which array should be replicated for each
parallel region. In this step the algorithm must decide how many copies to in-
sert for each array variable and which copies need to be updated due to true-
dependences across iterations of the control loop. In its simplest form, partial repli-
cation, there is a single copy for each parallel region that corresponds to a single
node writing to an array variable. In the full replication variation, the algorithm
generates one copy per each node that reads the array variable as well. Rather
then updating all array copies, the algorithm only updates copies using the reach-
ing definitions across loop iterations which is captured by loop-carried dependence
information [13]. To this effect the algorithm determines which nodes, and for each
array variable, exhibit a loop-carried true dependence, at the control-loop level.
The particular value of the dependence distance of the control loop indicates the

70 H.E. Ziegler, P.L.. Malusare, and P.C. Diniz

number of iterations across which the values need to be updated in the original ar-
ray location or copies. For the shortest distance of 1, the values must be updated
at the end of the current iteration to be used in the subsequent iteration. How-
ever, if the distance is longer, one can delay the update and overlap it with the
execution of another iteration thereby hiding its cost.

In this description we have statically determined which nodes of the CFG
and therefore which loop nests operate on copies of the array using an external
function, selectCopies(parallel(ny)). We foresee a more sophisticated algo-
rithm, possibly dynamic, in which the need to replicate is selected at run-time
depending on execution conditions.

3.3 Granularity of Replication

The algorithm described above can be augmented to allow the compiler to un-
cover opportunities for fine-grain replication by observing the order (in terms of
array dimensions) in which multiple loop nests access the same array variables.
In the example in figure 1 during parallel execution all loop nests access shared
arrays in the same order, therefore array replication can occur at the finest gran-
ularity of an element.? Then concurrently executing loop nests only require 1
element of replicated data in the array copy. As soon as a loop nest has finished
processing a given element, another element of the array can be copied. In ad-
dition the updates for copies can also proceed at a finer granularity as long as
the iterations of the various concurrent loops execute synchronously. A similar
analysis approach has been developed in the context of choosing the granularity
of multiple communicating computations executing in a pipelined fashion [13].

In addition to requiring less storage space, at an increase in synchronization
cost, this strategy also allows for the updates of copies to be executed concur-
rently with the parallel execution of the loop nests with the proper synchroniza-
tion. This strategy reduces the execution time overhead of copy updating and
substantially reduces the storage overhead.

The presence of irregular data access patterns, i.e., non-affine does not pose
a fundamental problem for the analysis outlined here. Rather then being able
to determine exactly the array sections that need to be replicated in the case
of a finer-grain synchronization, the analysis settles for replication at the next
computational level at which the irregular data access pattern has been absorbed
in a specific array dimension.

4 Experimental Results

We now describe the experimental methodology and results for the manual ap-
plication of the analysis and program transformations to a set of kernels.

3 The finest granularity may not be the best choice as additional execution time over-
head might not be amortized over the small data size.

Array Replication to Increase Parallelism 71

4.1 Methodology

We applied the analysis algorithm described in section 3 and evaluated the ben-
efits and drawbacks using 3 synthetic kernels hist, bic and lcd.

The hist kernel is composed of 3 nested loops inside a single control loop with
a total of 15 lines of C code. Each of the inner loop nests in hist manipulates
3 distinct array variables exhibiting anti-dependences among the last loop nest
and the first two nests. There is a true dependence between the first and second
loop nests preventing them from being executed concurrently even when anti-
dependences are removed by replication. Nevertheless, the second and third loop
nests can be executed concurrently.

The bic kernel is composed of 4 loop nests inside a single control loop with
a total of 50 lines of C code. Each of the inner loop nests manipulates 4 array
variables. This kernel exhibits intra-iteration anti-dependences among the four
loop nests and an output dependence between the last two nests. Replicating a
single array variable, however, will enable the concurrent execution of the first
three loop nests.

The 1cd kernel is composed of 3 loop nests inside a single control loop with
a total of 20 lines of C code. Each of the inner loop nests manipulates 2 array
variables. This kernel exhibits only intra-iteration anti-dependences among the
last loop nest and the first two loop nests allowing the three loop nests to be
executed concurrently via replication of a single array variable.

After we apply the analysis outline in section 3, we manually translate each
of these kernels into behavioral VHDL and simulate the execution of the control
loop using the Monet™ [7] behavioral synthesis tool. From this simulation, we
obtain the execution time of each loop nest, in clock cycles at a given frequency,
assuming each loop nest executes sequentially. Using the number of clock cycles
obtained via the Monet simulation, we then use a simple discrete event simulator
to determine the parallel execution time when one or more of the arrays have
been replicated, thereby allowing for concurrent execution as well as reduced
memory contention. This simulator allows us to determine the waiting time of
each loop nest in the control loop as well as the overall percentage of time
the execution spends stalled for memory operations. In our experiments we did
not consider software pipelining execution techniques as they further increase
the memory contention thereby skewing the replication results to be even more
favorable to the application of the technique presented here. In these results we
assume that every RAM is dual ported, with a one read and one write port
that can be accessed in parallel and assigned the latency of every read and write
operation to be 3 clock cycles.

4.2 Results

We now describe the results in terms of execution time reduction due to par-
allelism and the impact on memory space usage for each kernel. The original
version is simply the kernel executing in a sequential fashion without any repli-
cation or parallel execution. The partial replication version corresponds to the
introduction of array copies for eliminating anti-dependences. In this version

72 H.E. Ziegler, P.L.. Malusare, and P.C. Diniz

parallel loops may still access shared data. Finally, the full replication version
includes copies of the array variables to decrease memory contention.

Table 1 summarizes the results in terms of execution time for each kernel
and each analysis variation. For the partial and full replication versions, we
have included the cost of performing the update operations after the parallel
regions execute. The table indicates the amount of time each transformed kernel
spends doing computation (comp. columns), updating the copies if any (update
columns), stalling for memory (stall columns) and the overall percentage reduc-
tion (red. columns) of the total execution time taking into account the copy
operations which execute sequentially after the parallel region executes.

Table 1. Execution time results (cycles in thousands)

Kernel Original Code Partial Replication Full Replication
comp. update total stall red. comp. update total stall red. comp. update total stall red.
% % %
hist 1.86 0 1.86 0 — 1.29 0.07 1.36 0 26.9 1.29 0.07 1.36 0 26.9
bic 131.1 0 131.1 0 - 77.8 411 81.9 36.9 37.5 65.55 4.11 69.66 0 46.8
lcd 61.44 0 61.44 0 — 49.15 4.10 53.25 24.58 13.3 24.57 4.10 28.68 0 53.3

As can be seen, there is a sharp decrease in the execution time in the partial
replication code versions due to parallel execution ranging from 13% to 37%.
This reduction simply reflects the concurrent execution of loop nests as revealed
by comparing the values in the comp. columns for the original and partial repli-
cation versions. The results for the partial replication versions also reveal the
opportunity to reduce execution time since the stall time values are substantial
in the case of bic and lcd. For hist there is no stall time in the partial repli-
cation version given that only two loop nests execute concurrently and one of
them updates a local copy. By aggressively replicating data in the full replication
versions, the execution time is subsequently reduced leading to overall speedups
between 1.37 and 2.1 over the original code version.

Table 2 depicts the space requirements for each code version. For each ker-
nel and respective code version, we describe the number and size (in terms of
number of array elements) the code uses along with the total space in bytes and
percentage increase over the original code version.

Reflecting the opportunity for replication, the space requirements increase
monotonically between the partial and full replication code versions. In the case
of the 1cd and hist kernels there is a substantial increase in memory usage close
to 100%. While this increase may seem extreme, we note that these figures are
biased by the fact that we do not take into account other kernel data structures.
This effect is apparent in the bic kernel where due to the fact that this kernel
manipulates a larger number of arrays that are not replicated, the percentage
increase of space requirements is much smaller.

Array Replication to Increase Parallelism 73

Table 2. Space requirements results

Kernel Original Code Partial Replication Full Replication
Array Total Size Incr. Array Total Size Incr. Array Total Size Incr.
Info (KBytes) (%) Info (KBytes) (%) Info (KBytes) (%)
hist 1 x (64 by 64) 17.15 — 2x(64by64) 33.56 95.5 2 x (64 by 64) 33.56 95.5
3 x (64) 3 x (64) 3 x (64)
bic 6 x (64 by 64) 98,30 — T7x(64by64) 114.7 16.7 10 x (64 by 64) 163.8 66.7
led 2 X (64 by 64) 32.77 — 3x (64by64) 49.15 50.0 4 X (64 by 64) 65.54 100.0

4.3 Discussion

These preliminary results indicate that the execution overhead of updating array
copies can be negligible, allowing full exploitation of the concurrent execution
performance benefits. The results also reveal that memory contention, even with
a small number of concurrent tasks can be substantial. In this scenario, the fully
replicated variation allows for the elimination of memory contention, and further
improve execution performance. Overall fully replicated code versions achieve
speedups between 1.4 and 2.1 with a maximum increase in memory usage by a
factor of 2.

Although there are other execution techniques, such as pipelining, these results
reveal that using replication techniques a compiler can eliminate anti-dependences
enabling substantial increases in execution speed at modest increases in mem-
ory space requirements. This experience reveals that replication can be a valuable
technique for parallel performance when memory space is not at a premium.

5 Related Work

In this section we discuss related work in the areas of array data-flow analysis,
privatization, storage reuse and replication.

Array Privatization/Renaming and Data-flow Analysis. Array privati-
zation determines that a variable assigned within the loop is used only in the
same iteration in which it is assigned [4,6]. Renaming is designed to allow for
concurrent operations that have output and anti-dependences but where there
is no flow of values between statements of a loop nest. It has been used mainly
for scalar variables as for arrays the additional memory costs make it very un-
profitable for traditional high-end architectures. Array data-flow analysis [3,10]
focuses on data dependence analysis that is used to determine the privatization
requirements as well as the conditions for parallelization.

Replication for Shared Memory Multiprocessor Systems. Many compil-
ers targeting shared memory systems replicate data to enable concurrent read
accesses [1] and further [8] investigates adaptive replication in order to reduce
synchronization overheads that may ultimately degrade performance.

74 H.E. Ziegler, P.L.. Malusare, and P.C. Diniz

Memory Parallelism. There have been many approaches to improve memory
parallelism. In particular, for FPGAs, [9] introduces a novel data and code trans-
formation called custom data layout. After applying scalar replacement to reduce
the number of memory accesses, this transformation is applied to partition the
remaining array accesses across available memories.

The approach described in this paper differs from these efforts in many re-
spects. First, and unlike traditional privatization analyses, we relax the condi-
tions for privatization allowing anti-dependences both within the same iteration
as well as across iterations of the control loop. Array renaming is the tech-
nique used in our first transformation to expose concurrency across multiple
loop nests[2]. We augment this transformation with replication (or copying) to
increase the memory bandwidth and hence eliminate contention. Despite the
similarities our combined renaming and replication transformations allow for
values to flow across iterations of the control loop whereas simple renaming has
been used within the same loop nest. Second, data layout techniques typically
work in combination with loop-based transformations such as loop unrolling to
expose more parallel accesses when the unrolled body reveals references with
data access patterns that are disjoint in space. The transformations described
here are clearly orthogonal to these two approaches. Lastly, the approach de-
scribed here is geared towards non-perfectly nested loops where an outermost
control loop or loops need to be executed sequentially due to true loop-carried
dependences but each loop nested within can execute concurrently.

The approach described here takes advantage of the fact that configurable
architectures can mitigate several sources of replication overhead typically not
possible in traditional computing architectures. First, the number and connec-
tivity of memory units can be tailored to the exact number of array copies.
Second, the spatial nature of the execution in configurable architecture allows
the execution of the copy/update operations without substantially instruction
overhead. Furthermore it is possible to perform a single write operation to mul-
tiple memories simultaneously thereby updating more than one array copy.

6 Conclusion

Configurable architectures offer the potential for customized storage structures.
This flexibility enables the application of low overhead data replication and pri-
vatization techniques to mitigate or even eliminate memory contention issues in
concurrent loop execution where shared data are accessed. In this paper we have
presented a simple array data-flow analysis algorithm to uncover the opportuni-
ties for array replication and temporary privatization in computations expressed
as non-perfectly nested loops. The experimental results, for a set of kernels tar-
geted to commercially available FPGA devices, reveal that a modest increase in
storage for private and replicated data leads to hardware designs that exhibit
small speedups. These results make this approach feasible when chip capacity
for data storage is available.

Array Replication to Increase Parallelism 75

References

1.

10.

11.

12.

13.

F. Allen, M. Burke, R. Cytron, J. Ferrante, W. Hsieh, and V. Sarkar. A Framework
for Determining Useful Parallelism. In Proc. Intl. Conf. Supercomputing, ACM,
pages 207-215, 1988.

. R. Allen and K. Kennedy. Automatic Translation of Fortran Programs to Vector

Form. 9(4):491-542, 1987.

. V. Balasundaram and K. Kennedy. A technique for summarizing data access and

its use in parallelism enhancing transformations. In Proc. ACM Conf. Programming
Languages Design and Implementation, pages 41-53, 1989.

. R. Eigenmann, J. Hoeflinger, Z. Li, and D. Padua. Experience in the Automat-

icParallelization of four Perfect Benchmark Programs. In Proc. 4th Workshop
Languages and Compilers for Parallel Computing, LNCS. Springer-Verlag, 1991.

. S. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. Taylor, and R. Laufer.

PipeRench: a coprocessor for streaming multimedia acceleration. In Proc. 26th Intl.
Symp. Comp. Arch., pages 28-39, 1999.

. Z. Li. Array privatization for parallel execution of loops. In Proc. ACM Intl. Conf.

Supercomputing, 1992.

Mentor Graphics Inc. MonetTM, 1999.

M. Rinard and P. Diniz. Eliminating Synchronization Bottlenecks in object-based
Programs using Adaptive Replication. In Proc. Intl. Conf. Supercomputing, ACM,
pages 83-92, 1999.

B. So, M. Hall, and H. Ziegler. Custom Data Layout for Memory Parallelism. In
Proc. Intl. Symp. Code Gen. Opt., pages 291-302, March 2004.

C.-W. Tseng. Compiler optimizations for eliminating barrier synchronization. In
Proc. Fifth Symp. Principles and Practice of Parallel Programming, volume 30(8)
of ACM SIGPLAN Notices, pages 144-155, 1995.

P. Tu and D. Padua. Automatic Array Privatization. In Proc. 6th Workshop
Languages and Compilers for Parallel Computing, LNCS. Springer-Verlag, 1993.
Xilinx Inc. Virtez-IT Prol™ Platform FPGAs: introduction and overview, DS083-
1(v2.4.1) edition, March 2003.

H. Ziegler, M. Hall, and P. Diniz. Compiler-generated Communication for Pipelined
FPGA applications. In Proc. 40th Design Automation Conference, June 2003.

Generation of Control and Data Flow Graphs from
Scheduled and Pipelined Assembly Code

David C. Zaretskyl, Gaurav Mittal', Robert Dick', and Prith Banerj ee’

! Department of Electrical Engineering and Computer Science, Northwestern University
2145 N. Sheridan Road, Evanston, IL 60208-3118
{dcz, mittal, dickrp}@ece.northwestern.edu
% College of Engineering, University of Illinois at Chicago
851 South Morgan Street, Chicago, IL 60607-7043
prith@uic.edu

Abstract. High-level synthesis tools generally convert abstract designs
described in a high-level language into a control and data flow graph (CDFG),
which is then optimized and mapped to hardware. However, there has been
little work on generating CDFGs from highly pipelined software binaries,
which complicate the problem of determining data flow propagation and
dependencies. This paper presents a methodology for generating CDFGs from
highly pipelined and scheduled assembly code that correctly represents the data
dependencies and propagation of data through the program control flow. This
process consists of three stages: generating a control flow graph, linearizing the
assembly code, and generating the data flow graph. The proposed methodology
was implemented in the FREEDOM compiler and tested on 8 highly pipelined
software binaries. Results indicate that data dependencies were correctly
identified in the designs, allowing the compiler to perform complex
optimizations to reduce clock cycles.

1 Introduction

Traditionally, the high-level synthesis problem is one of transforming an abstract,
timing-independent specification of an application into a detailed hardware design.
High-level synthesis tools generally convert the abstract design into a control and data
flow graph (CDFG) that is composed of nodes representing inputs, outputs, and
operations. The CDFG is a fundamental component of most compilers, where most
optimizations and design decisions are performed to improve frequency, power,
timing, and area. Building a CDFG consists of a two-step process: building the
control flow graph (CFG), which represents the path of control in the design, and
building the data flow graph (DFG), which represents the data dependencies in the
design. However, when high-level language constructs are not readily available, such
as in the case where legacy code for an application on an older processor is to be
migrated to a new processor architecture, a more interesting problem presents itself,
known as binary translation. Much research has been performed on CDFG generation
from software binaries and assembly code. However, there has been very little work
on generating complete CDFGs from scheduled or pipelined software binaries. Data

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 76—90, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Generation of CDFGs from Scheduled and Pipelined Assembly Code 77

dependency analysis of such binaries is more challenging than that of sequential
binaries or high-level language applications.

When translating assembly codes from digital signal processors (DSPs), it is
common to encounter highly pipelined software binaries that have been optimized
manually or by a compiler. Consider the Texas Instrument C6000 DSP assembly code
for the vectorsum function in Figure 1. In this architecture, branch operations contain
5 delay slots and loads contain 4 delay slots. The || symbol indicates the instruction is
executed in parallel with the previous instruction and the [] symbol indicates the
operation is predicated on an operand. Clearly, the vectorsum code is highly
pipelined; each branch instruction is executed in consecutive iterations of the loop.
Moreover, the dependencies of the ADD instruction in the loop body change with
each iteration of the loop: A6 is dependent on the load at instruction 0x0004 in the
first iteration of the loop, A6 is dependent on the load at instruction 0x000C in the
second iteration of the loop, etc. Generating a CDFG to represent this pipelined
structure is very challenging. In doing so, one must consider the varying data
dependencies and also ensure that each branch is executed at its proper time and
place. Branch instructions that fall within the delay slots of other branch instructions
complicate the structure of the control flow graph. For instance, when the predicate
condition, A1, on the branch instruction in the loop body is false, the previous branch
instructions that were encountered during the execution sequence will continue to
propagate and execute. This may occur within the loop, or possibly after exiting the
loop. More complex software pipelines may contain branch instructions with various
targets, producing multiple exit points in a CDFG block.

0x0000 VECTORSUM: ZERO A7

0x0004 LDW *Ad++, A6 ; 4 delay slots
0x0008 | B LOOP ; 5 delay slots
0x000C LDW *Ad++, A6

0x0010 | B LOOP

0x0014 LDW *Ad++, A6

0x0018 | B LOOP

0x001C LDW *Ad++, A6

0x0020 | B LOOP

0x0024 LDW *Ad++, A6

0x0028 | B LOOP

0x002C | SuB Al, 4, Al

0x0030 LOOP: ADD A6, A7, A7

0x0034 || [Al] LDW *Ad++, A6

0x0038 || [a1] suB aAl, 1, Al

0x003C || [a1] B LOOP ; branches executes here
0x0040 STW A7, *AS5

0x0044 NOP 4

Fig. 1. TI C6000 assembly code for a pipelined vectorsum procedure

78 D.C. Zaretsky et al.

In this paper, we present a methodology for generating CDFGs from scheduled and
pipelined assembly code. This process consists of three stages: generating a control
flow graph, linearizing the assembly code, and generating the data flow graph. We use
the methods described by Cooper et al. [6] for generating a CFG from scheduled
assembly code. In addition, we extend their work to support more complex
architectures that employ parallel instruction sets and dynamic branching. We also
present a linearization process, in which pipelined structures are serialized into linear
assembly. This allows for proper data dependency analysis when constructing data
flow graphs. This methodology was incorporated in the FREEDOM compiler, which
translates DSP assembly code into hardware descriptions for FPGAs. The techniques
described in this paper were briefly discussed in previous work [11,19]; here we
present a more refined and elegant approach in greater detail.

The remainder of this paper is structured as follows: Section 2 discusses related
work in the area of CDFG generation from assembly code. Section 3 provides an
overview of the FREEDOM compiler infrastructure and its intermediate language
architecture. Section 4 describes our method of generating a CDFG from scheduled
and pipelined assembly code in detail. Finally, Sections 5 and 6 present experimental
results and conclusions, respectively.

2 Related Work

There has been a great deal of fundamental research and study of binary translation
and decompilation. Cifuentes et al. [3,4,5] described methods for converting assembly
or binary code from one processor’s instruction set architecture (ISA) to another, as
well as decompilation of software binaries to high-level languages. Kruegel et al. [9]
described a technique for decompilation of obfuscated binaries. Stitt and Vahid
[16,17] reported work on hardware-software partitioning of software binaries. Levine
and Schmidt [10] proposed a hybrid architecture called HASTE, in which instructions
from an embedded processor are dynamically compiled onto a reconfigurable
computational fabric using a hardware compilation unit. Ye et al. [18] developed a
similar compiler system for the CHIMAERA architecture.

Control and data flow analysis is essential to binary translation. Cifuentes et al. [5]
described methods of control and data flow analysis in translating assembly to a high-
level language. Kastner and Wilhelm [8] reported work on generating CFGs from
assembly code. Decker and Kastner [7] described a method of reconstructing a CFG
from predicated assembly code. Amme et al. [1] presented work on a memory aliasing
technique, in which data dependency analysis is computed on memory operations
using a value-based analysis and modified version of the GCD test [2].

There has been very little work on generating CDFGs from highly pipelined
software binaries in which branch instructions appear in the delay slots of other
branch instructions. The most comprehensive work on building CFGs from pipelined
assembly code was reported by Cooper et al. [6]. However, their method does not
consider the complexities of modern processor architectures that utilize instruction-
level parallelism and dynamic branching techniques. In this paper, we address these
issues and present methods to handle CDFG generation from software binaries that
feature these sophisticated scheduling techniques.

Generation of CDFGs from Scheduled and Pipelined Assembly Code 79

3 Overview of the FREEDOM Compiler

This section provides a brief overview of the FREEDOM compiler infrastructure, as
shown in Figure 2. The compiler was designed to have a common entry point for all
assembly languages. Towards this effort, the front-end uses a description of the source
processor’s ISA in order to configure the assembly language parser. The ISA
specifications are written in SLED from the New Jersey Machine-Code toolkit
[14,15]. The parser generates a virtual assembly representation called the Machine
Language Syntax Tree (MST), which has a syntax similar to the MIPS ISA. The MST
is generic enough to encapsulate most ISAs, including those that support predicated
and parallel instruction sets. All MST instructions are three-operand, predicated
instructions in the format: /pred] op srcl src2 dst. A CDFG is generated from the
MST, where optimizations, scheduling, and resource binding are preformed. The
CDFG is then translated into a high-level Hardware Description Language (HDL) that
models processes, concurrency, and finite state machines. Additional optimizations
and customizations are performed on the HDL for the target architecture. This
information is acquired via the Architecture Description Language (ADL) files. The
HDL is translated directly to RTL VHDL and Verilog to be mapped onto FPGAs, and
a testbench is generated to verify that the output is correct.

DSP Assembly DSP DSP
Language Semantics Assembly Code Binary Code

Optimizations, Linearization,
and Procedure Extraction
Optimizations,
Loop Unrolling, Scheduling, _ ,
P e € CDFG Architecture

and Resource Binding D .
escrlptlon

Optimizations, Language
Customizations HDL

v v v

‘ RTL VHDL ‘ ‘ RTL Verilog ‘ ‘ Testbench ‘

Fig. 2. Overview of the FREEDOM compiler infrastructure

The fixed number of physical registers on a processor necessitates advanced
register reuse algorithms in compilers. These optimizations often introduce false
dependencies based on register names, resulting in difficulties when determining data
dependencies for scheduled or pipelined binaries and parallel instruction sets. To
resolve these discrepancies, each MST instruction is assigned a timestep, specifying a
linear instruction order, and an operation delay, equivalent to the number of execution
cycles. Each cycle begins with an integer-based timestep, T. Each instruction » in a
parallel instruction set is assigned the timestep 7, = T + (0.0/ * n). Assembly
instructions may be translated into more than one MST instruction. Each instruction m

80 D.C. Zaretsky et al.

in an expanded instruction set is assigned the timestep 7,, = 7, + (0.0001 * m). The
write-back time for the instruction, or the cycle in which the result is valid, is defined
as wb = timestep + delay. If an operation delay is zero, the resulting data is valid
instantaneously. However, an operation with delay greater than zero has its write-back
time rounded down to the nearest whole number, or floor(timestep), resulting in valid
data at the beginning of the write-back cycle.

Figure 3 illustrates how the instruction timestep and delay are used to determine
data dependencies in the MST. In the first instruction, the MULT operation has one
delay slot, and the resulting value in register A4 is not valid until the beginning of
cycle 3. In cycle 2, the result of the LD instruction is not valid until the beginning of
cycle 7, and the result of the ADD instruction is not valid until the beginning of cycle
3. Consequently, the ADD instruction in cycle 3 is dependant upon the result of the
MULT operation in cycle 1 and the result of the ADD operation in cycle 2. Likewise,
the first three instructions are dependant upon the same source register, A4.

TIMESTEP PC oP DELAY SRC1l SRC2 DST
1.0000 0xX0020 MULT (2) SA4, 2, SA4L
2.0000 0X0024 LD (5) *($a4), SA2
2.0100 0x0028 ADD (1) SA4, 4, SA2
3.0000 0X002c ADD (1) SA4, SA2, S$SA3

Fig. 3. MST instructions containing timesteps and delays for determining data dependencies

4 Building a Control and Data Flow Graph

This section presents our methodology for generating a CDFG from scheduled and
pipelined assembly code. This process consists of three stages: generating a control
flow graph, linearizing the assembly code, and generating a data flow graph.

4.1 Generating a Control Flow Graph

Cooper et al. [6] presented a three-step process for building a CFG from scheduled
assembly code, which was used as the first stage in the proposed work. The first step
of their algorithm partitions the code at labels (entry points) into a set of basic blocks.
During this process, they assume all entry points are complete, and no branch targets
an instruction without a label. The second step adds edges between basic blocks in the
CFG to represent the normal flow of control. Here, they only consider non-pipelined
branch instructions, or those that do not appear within the delay slots of other branch
instructions. Pipelined branches are handled in the third step using an iterative
algorithm that simulates the flow of control for the program by propagating branch
and counter information from block to block. Their method is shown to terminate in
linear time for CFGs containing only branches with explicit targets. Figure 4
illustrates the CFG generated for the vectorsum procedure in Figure 1.

Generation of CDFGs from Scheduled and Pipelined Assembly Code 81

v

0x0000 VECTORSUM: ZERO A7
0x0004 LDW *Ad++, A6
0x0008 | B LOOP
0x000C LDW *Ad++, A6
0x0010 | B LOOP
0x0014 LDW *Ad++, A6
0x0018 | B LOOP
0x001C LDW *Ad++, A6
0x0020 | B LOOP
0x0024 LDW *Ad++, A6
0x0028 | B LOOP
0x002C | SUB Al, 4, Al
[&
+‘
0x0030 LOOP: ADD A6, A7, A7
0x0034 || [Al] LDW *Ad++, A6
0x0038 || [a1] suB a1, 1, Al
0x003C || [a11 B LOOP
I »
+ »
l 0x0040 STW A7, *AS ‘
I >
v >
l 0x0044 NOP 1 ‘
[>
v >
l 0x0044 NOP 1 ‘
| >
* Ll
l 0x0044 NOP 1 ‘
[>
+ >
l 0x0044 NOP 1 ‘
I

Fig. 4. Control flow graph for vectorsum

In practice, the assumptions made in their work pose some difficulties in
generating CFGs for some modern processor architectures. For instance, they assume
all labels and branch targets are well defined. However, some disassemblers limit the
labels to a procedure level only and refrain from including them locally within
procedure bounds. In some architectures, registers may be used in branch targets, as in
the case of a long jump where a static PC value is loaded into the register prior to the
branch instruction. To handle these situations, we introduce a pre-processing step that
determines all static branch targets and adds the respective labels to the instructions.
Some architectures may also support dynamic branch targets, in which the destination
value may be passed to a register as a function parameter, such as with procedure
prologues and epilogues. In these situations, we take an optimistic approach by
assuming the dynamic branch operation is a procedure call. The branch is temporarily
treated as a NOP instruction when building the initial CFG to allow the control flow
to propagate through. We rely on post-processing steps, such as alias analysis and
procedure extraction to determine the possible destinations [12]. The CFG is then
regenerated with the newly identified destination values.

Many of today’s processor architectures utilize instruction-level parallelism to
achieve higher performances, which complicates generation of CFGs. For instance, a
branch destination may have a target within a parallel set of instructions. This would

82 D.C. Zaretsky et al.

break up the control flow at intermediate points within a basic block, creating
erroneous data dependencies. In Figure 5, the ADD, SUB, and SRL instructions are
scheduled in parallel. However, if the predicated branch is taken, the ADD instruction
is not executed. Consequently, the entry label on the SUB instruction partitions the
control flow in the middle of the parallel set, placing the latter two instructions in a
separate basic block. This forces the A7 operand in the SRL instruction to use the
resulting value from the ADD instruction in the previous block. To account for such
discrepancies, we introduce a procedure that checks for entry points (labels) within a
parallel set of instructions. If such an entry point exists, the instructions falling below
the entry point are replicated and added to the top portion of the parallel set. Figure 6
shows the MST code after instruction replication. The SUB and SRL instructions
have been replicated and a branch operation has been added to jump over the
replicated code segment. We rely on subsequent optimizations in the CDFG, such as
code-hoisting [13], to eliminate superfluous operations.

0x0800 [Al] B Ll

0x0804 NOP 5

0x0808 ADD A4, A7, A7
0x080C Ll: |[] SUB A4, 1, ad
0x0810 | SRL A4, A7, A8
0x0814 L2:

Fig. 5. Branch target inside a parallel instruction set

10.0000 0x0800 [Al] GOTO (6) L1

11.0000 0x0804 NOP (5) 5

16.0000 0x0808 ADD (1) $A4, $A7, S$SA7

16.0100 0x080C SUB (1) $A4, 1, $A4 ; replicated SUB
16.0200 0x0810 SRL (1) $A4, $A7, SA8 ; replicated SRL
16.0300 0x0810 GOTO (0) L2 ; added ‘branch-over’

17.0000 0x080C ©L1: SUB (1) sa4, 1, $a4
17.0100 0x0810 SRL (1) $A4, SA7, SA8

18.0000 0x0814 L2:

Fig. 6. MST representation with instruction replication

4.2 Event-Triggered Operations

In the previous section, a methodology for generating a CFG from pipelined assembly
code was presented. The CFG represents the flow of control in the program via edges
connecting basic blocks in the graph. However, the CFG does not inherently contain
any information regarding propagation delay. In translating pipelined or scheduled
assembly code from one architecture to another, it is essential that the compiler
capture the propagation delay and data dependencies correctly. Failure to do so may
result in false data dependencies, incorrect data value propagation, and possibly an ill-
terminated or non-terminating program. Referring back to the vectorsum procedure in

Generation of CDFGs from Scheduled and Pipelined Assembly Code 83

Figure 1, we find that the main loop body will execute an unknown number of times
until the predicate condition on the branch instruction is false, namely, when 41 = 0.
At that point, the loop will continue to iterate for 5 more cycles until the branches
within the pipeline have completed. During this time, data is still computed and
propagated through the loop. Should the compiler not consider the propagation delay
on the branch instructions, the loop may terminate early, producing erroneous data.
Similarly, failure to consider the propagation delay in the pipelined load instructions
will also result in erroneous data.

As a solution, we introduce the concept of an event-triggered operation, composed
of a trigger and an execute stage. An event trigger is analogous to the read stage in a
pipelined architecture, where the instruction is fetched and register values are read; an
event execute is analogous to the write-back stage in the pipeline, during which the
values are written to the destination register or memory. The event triggering and
execution stages are offset by the delay of the operation.

An operation event is encapsulated in the MST language using a virtual shift
register with a precision d, corresponding to the number of delay cycles for the
operation. Virtual registers are temporary operands created by the compiler that do
not exist within the framework of the source architecture’s physical registers. In
practice, this results in the addition of a very small shift register since most ISAs
generally have no more than 4-6 delay slots in any given multi-cycle instruction.
When a pipelined instruction is encountered during the normal flow of the program,
an event is triggered by assigning a ‘1’ to the highest bit (d-1) in the shift register. In
each successive cycle, a shift-right logical operation is performed on the register. The
event is executed after d cycles, when a ‘1° appears in the zero bit of the shift register.

SRL ———» Bit 0

Iteration 1 | | 0 ‘ 0 ‘ 0 ‘ 0 ‘ (| Event 1 Triggered
Iteration2 |] 1 ‘ 0 ‘ 0 ‘ 0 ‘ (Q | Event 2 Triggered
Iteration3 |] 1 ‘ 1 ‘ 0 ‘ 0 ‘ () | Event3 Triggered
Iteration 4 ‘ 1 ‘ 1 ‘ 0 ‘ (| Event4 Triggered

Tteration 5 1 ‘ 1 ‘ 1 ‘ 1 ‘ 0 |Evem5Triggered

Tteration 6 1 ‘ 1 ‘ 1 ‘ 1 ‘ 1 |EvemlExecuted

1

Iteration 7

(=

1 ‘ 1 ‘ 1 |EvemZExecuted

Tteration 10| 0 ‘ 0 ‘ 0

0 ‘ 0 ‘ 1 |EvemSExecuted

Fig. 7. Event-triggering for a pipelined branch operation in a loop body

Figure 7 illustrates the event triggering for the branch operation in the loop body of
the vectorsum procedure, which has an operation delay of 6 cycles. In the first
iteration of the loop, an event is triggered when the branch instruction is encountered
by setting the high bit of shift register. In each subsequent cycle, the register is shifted
right while a new event is triggered. After six iterations, event 1 is executed and the

84 D.C. Zaretsky et al.

branch to LOOP is taken. This is followed by subsequent event executions through
the tenth iteration of the loop, until the pipeline in the shift register has been cleared.

The technique described here is utilized in the linearization process for pipelined
operations as discussed in the following sections.

4.3 Linearizing Pipelined Operations

This section describes the linearization process for pipelined operations. The concept
of this process is to serialize the pipelined assembly instructions into linear assembly,
such that the each pipelined instruction has a well-defined data flow path. The process
for linearizing computational operations (arithmetic, logical, memory, etc.) and
branch operations are described independently, as they function differently in pipeline
architectures. The linearization process assumes that the CFG is complete, i.e., no
edges will be inserted between blocks in the future. Consequently, if new edges are
added in the future, data propagation and data dependencies are not guaranteed to be
correct. To ensure its completeness, we force the algorithm to cover all possible
control paths when generating the CFG. This is accomplished in a preprocessing pass
that ensures all branch instructions in the program are predicated. A constant
predicate of ‘1°, whose condition always resolves to true, is added to all non-
predicated branch instructions. This forces the branch to be treated as a conditional,
and allows the control flow to propagate to the fall-through block. Subsequent
optimizations, such as dead-code elimination [13], will remove any resulting
extraneous operations.

4.3.1 Linearizing Computational Operations

In the linearization process for computational operations, multi-cycle instructions are
serialized into a well-defined data flow path along the pipeline. In order to accomplish
this task, virtual registers are introduced to break multi-cycle instructions into a
sequence of multiple single-cycle instructions. Each instruction in the sequence is
guarded by a predicate on an event-triggering register, as described above. Should the
program encounter the instruction through a path outside the normal pipeline data
flow path, the predicate will prevent the operation from executing.

The linearization process works as follows: For an instruction with » delay slots,
the original instruction is modified to write to a temporary virtual register R,, and the
delay of the instruction is changed to a single cycle. In each of the subsequent n-1
cycles, the value is propagated through virtual registers along the pipelined data flow
path by assigning R, ;<R,, R,,<R,; ..., Ry€R; in sequence, where R, is the
original register name. Each of these instructions is predicated on its respective cycle
bit of the shift register: P/n-1] through P/0]. If the end of a basic block is reached, the
linearization is propagated to the successor blocks. This approach assumes that no two
instructions are scheduled such that both have the same destination register and write-
back stages in the same cycle. This is a fair assumption, since compilers generally do
not produce code resulting in race conditions. If two or more identical instructions
have intersecting pipeline paths, redundant instructions may be avoided by tracking
the timesteps to which they have been written. We rely on optimizations, such as copy
and constant propagation [13], to remove any extraneous operations.

Generation of CDFGs from Scheduled and Pipelined Assembly Code 85

12.000 o0x000C MOVE (0) 1, $P1[4] ; LD event cycle 1
12.001 0x000C SRL(1) $P1, 1, $P1

12.002 0x000C [$P1[4]] LD(1l) *mem($A4), $SA6_4

13.000 O0x000C SRL(1) $P1, 1, $P1 ; LD event cycle 2

13.001 0x000C [$P1[3]] MOVE(1l) $A6_4, S$A6_3

14.000 0x000C SRL(1) $P1, 1, S$P1 ; LD event cycle 3
14.001 0x000C [$SP1[2]] MOVE(l) SA6_3, $A6_2
15.000 0x000C SRL(1) $P1, 1, $P1 ; LD event cycle 4

15.001 0x000C [$P1[1]] MOVE(1l) $A6_2, S$A6_1

16.000 0x000C LOOP: SRL(1) $P1, 1, $P1 ; LD event cycle 5
16.001 0x0014 OR(0) $P1[0], $P2[0], $MPO

16.002 0x001C OR(0) $MPO, $P3[0], $MP1

16.003 0x0024 OR(0) $MP1, $P4[0], S$MP2

16.004 0x0034 OR(0) $MP2, $P5[0], S$MP3

16.005 0x000C [$MP3] MOVE (1) $A6_1, $A6 ; intersecting LDs 1-5

Fig. 8. Linearization of pipelined load (LD) instruction in the vectorsum procedure

Figure 8 illustrates the linearization process in the MST for the first pipelined LD
instruction in the vectorsum example of Figure 1. In timestep 12, an event is triggered
for the LD instruction by posting a ‘1’ to the high bit in the virtual shift register P/.
Additionally, the LD instruction is modified to write to virtual register A6_4, and the
operation delay is changed from 5 cycles to 1 cycle. In the subsequent cycles, A6_4 is
written to A6_3, A6_3 is written to A6_2, and A6_2 is written to A6_1, at which point
the linearization is propagated to the LOOP block. A6_1 is finally written to the
physical register A6 in timestep 16. Each of these move instructions is guarded by a
predicate on a P/ bit, which is right-shifted in each cycle along the same control path.
The same methodology is applied to each LD instruction in program. Although the
propagation instructions may read and write to the same register in parallel, the one-
cycle delay on each instruction enforces the correct data dependencies.

It is interesting to note that the pipelined LD instructions have intersecting paths.
As an example, all five LD instructions will have their 5™ cycles intersect in the same
timestep (16), where 46 € A6_1. To avoid extraneous instructions, the propagation
instructions are merged by OR-ing their predicates, as shown in the figure.

4.3.2 Linearizing Branch Operations

Unlike computational instructions, branch instructions do not propagate data. Rather,
they trigger a change in control flow after a certain number of delay cycles. In
linearizing branch operations, only the event is propagated through the CFG, as

86 D.C. Zaretsky et al.

described above. At each branch execution point in the CFG, which can only be the
end of a basic block, a copy of the branch instruction is inserted. The branch
instruction is predicated on the event shift-register. Similar to the process above, if
two or more of the same branch instruction have intersecting paths, redundant
instructions may be eliminated by tracking the timesteps to which the instructions
have been written. Two or more of the same branch instruction that execute at the
same point can be merged by OR-ing their predicates. The original branch
instructions are replaced with NOP instructions in order to maintain the correct
instruction flow. Figure 10 illustrates the linearization process for pipelined branch
operations.

11.000 0x0008 MOVE (0) 1, $P1[5] ; branch event cycle 1
11.001 0x0008 SRL (1) $pl, 1, spl

11.002 0x0008 NOP (1) 1 ; branch replaced with NOP
12.000 0x0008 SRL(1) $P1, 1, $P1 ; branch event cycle 2
13.000 0x0008 SRL(1) $P1, 1, S$P1 ; branch event cycle 3
14.000 0x0008 SRL(1) $P1, 1, S$P1 ; branch event cycle 4
15.000 0x0008 SRL(1) $P1, 1, $P1 ; branch event cycle 5
16.000 0x0008 LOOP: SRL(1) $P1, 1, $P1 ; branch event cycle 6
16.008 0x0008 OR(0) $P1[0]1, $P2[0], $MPO

16.009 0x0010 OR(0) $MPO, $P3[0], $MP1

16.010 0x0018 OR(0) $MP1, $P4[0], $MP2

16.011 0x0020 OR(0) $MP2, $P5[0], S$SMP3

16.012 0x0028 OR(0) $MP3, $P6[0], S$MP4

16.013 0x003C [SMP4] GOTO(0) LOOP ; intersection branches 1-6

Fig. 9. Linearization of a pipelined branch instruction in the vectorsum procedure

4.3.3 The Linearization Algorithm

Figure 9 presents our algorithm for linearizing pipelined operations. The procedure
has the same general organization as the algorithm presented by Cooper et al. [6] for
generating CFGs. The algorithm initially creates a worklist of instruction counters for
each basic block in the CFG in lines 1-3, and then iterates through the worklist in
lines 4-25. An instruction counter is particular to a block, and holds a list of pending
instructions and a counter representing the remaining clock cycles before each
instruction is executed. To prevent redundant iterations over blocks, in lines 8-9, the
algorithm checks that the block has not seen any of the pending instruction counters
before continuing. The algorithm then iterates over the block by whole timesteps in

Generation of CDFGs from Scheduled and Pipelined Assembly Code 87

lines 10-20. The instructions in each timestep are iterated through in lines 11-17, as
the algorithm searches in line 12 for previously unvisited pipelined instructions to add
to the instruction counter. Lines 13-15 add a counter for the branch instructions with
cycle delays greater than zero; the original branch instruction is replaced with a NOP
instruction to maintain the correct program flow. Lines 16-17 add counters for all
multi-cycle instructions whose write-back time falls outside the block. Unique event
instructions are inserted for each pending instruction in lines 18-20, as described
above; those that have completed are removed from the instruction counter list. After
iterating over the instructions within each timestep, the pending instruction counters
are decremented in line 21. At the conclusion of the iteration over timesteps in the
block, lines 22-26 propagate all pending counters to new instruction counters for each
successor block edge; the new instruction counters are added to the worklist. The
algorithm terminates once no new instruction counters are encountered by any block
and the worklist is empty. The algorithm runs in O(n) time, where » is the number of
instructions in the program, assuming a small, constant number of outgoing edges
between blocks.

Linearize Pipelined Operations(CFG)
1 worklist = empty list of InstrCounters
2 for each basic block in CFG do
3 add InstrCounter (block) to worklist
4 while worklist->size() > 0 do
5 instr_counter = worklist->front ()
6 remove instr_counter from worklist
7 block = instr_counter->block
8 if block has seen all live counters in instr_counter then
9 continue
10 for each whole timestep ts in block do
11 for each instruction i in timestep ts do
12 if i has not been seen by instr_counter then
13 if 1 is a branch instruction and i->delay > 0 then
14 add {i:i->delay} to instr_counter
15 replace branch instruction i with NOP instruction
16 else if (i->timestep + i->delay) > block->max_time
17 add {i:i->delay} to instr_counter
18 for each counter c in instr_counter do
19 insert a unique event instruction for ¢ in timestep ts
20 if ¢ = 0 then remove c¢ from instr_counter
21 instr_counter->DecrementCounters ()
22 if instr_counter has live counters
23 for each successor s of block do
24 target_instr_counter = InstrCounter (s)
25 add unique live counters to target_instr_counter
26 add target_instr_counter to worklist

Fig. 10. Linearization algorithm for pipelined operations

4.4 Generating the Control and Data Flow Graph

In the previous sections we described how to build a CFG and break data
dependencies in pipelined and scheduled assembly code. In this section we combine
the two techniques to generate the complete CDFG. The procedure is described in
Figure 12, which takes a list of assembly instructions as input and returns a CDFG.
The procedure begins with a preprocessing step to ensure that all branch instructions

88 D.C. Zaretsky et al.

in the program are predicated as described in the previous section. The algorithm
constructs the CFG using Cooper’s algorithm, and then linearizes the pipelined
operations as described above. The data flow graph is then generated from the newly
serialized instructions, based on the data dependency analysis technique described in
Section 3. The procedure concludes by implementing single static-variable
assignment (SSA) [13], which is a method of breaking data dependencies by ensuring
that every assignment in the CDFG has a unique variable name.

Traditionally, a @-function is used in SSA to join multiple assignments to a
variable, stemming from different paths in the CFG. The number of arguments to the
D-function is equal to the number of definitions of the variable from each point in the
CFG. This method often causes a significant bottleneck when handling numerous data
paths. Interestingly, once the pipelined operations in the CDFG have been linearized,
the @-function becomes superfluous, as only the latest definition of a variable will
reach the end of the block and propagate through the control flow. Those instructions
with multi-cycle delays that originally crossed basic block boundaries have since been
serialized into multiple single-cycle instructions. As a result, the latest definition of
each SSA variable may be assigned back to its original variable name at the end of the
block, thus eliminating the need for the @-function. Optimizations, such as copy
propagation and dead-code elimination [13], will remove extraneous assignment
operations created by this process.

Generate CDFG(instr_ list)
Predicate_Pipelined_Instrs(CFG)

CFG = Generate_Ctrl_ Flow Graph(instr_list)
Linearize_Pipelined_Operations(CFG)

CDFG = Generate_Data_Flow_Graph(CFG)
Generate_SSA(CDFG)

return CDFG

o Ul i W N

Fig. 11. Procedure for generating a CDFG

S Experimental Results

The correctness of the methodology presented in this paper was verified using the
FREEDOM compiler [11,19] on 8 highly pipelined benchmarks in the Texas
Instruments C6000 DSP assembly language. The FREEDOM compiler generated
CDFGs and RTL code targeting the Xilinx Virtex II FPGA. Each benchmark was
simulated using Mentor Graphic’s ModelSim to verify bit-true accuracy and obtain
cycle counts.

There has been little work reported on translating highly pipelined software
binaries to RTL code for FPGAs. This makes comparison with other approaches
difficult. However, it is interesting to consider the impact and effectiveness of this
algorithm in a high-level synthesis tool. Table 1 shows comparisons in cycle counts
for the TT C6000 DSP and the Virtex II FPGA, generated by the FREEDOM
compiler. Also shown is the number of pipelined operations in each benchmark and

Generation of CDFGs from Scheduled and Pipelined Assembly Code 89

the number of instructions inserted during the linearization process to demonstrate the
impact on code size when using this approach.

Results indicate the FREEDOM compiler successfully generated the correct
CDFGs from the pipelined assembly code, allowing complex optimizations and
scheduling to significantly reduce clock cycles in the FPGA design. On average,
approximately 9 instructions were added for each pipelined operation and there was a
27% increase in code size during the linearization process. Please note that these
values reflect the size of the design before CDFG optimizations, which will further
reduce implementation complexity. A detailed evaluation of the performance and

optimizations of the FREEDOM compiler has been presented in other work [11,19].

Table 1. Experimental results on pipelined benchmarks using the FREEDOM compiler

Pipelined # Added

Benchmark DSP Cycles | FPGA Cycles | Instructions Instructions
memmove 125747 2516 33 352 (24.7%)
memcpy 69615 2004 14 136 (52.3%)
divi 282301 16127 17 141 (27.3%)
mpyd 1329176 39669 26 269 (14.0%)
remi 260148 16888 13 130 (34.6%)
dsp_fir_gen 30851 685 49 683 (43.1%)
Ims_filter 33537580 773288 147 967 (13.7%)
noise_canceller_fir 8239397 163778 21 105 (5.3%)

6 Conclusions

This paper presents a methodology for correctly representing the data dependencies
and data propagation when generating CDFGs from highly pipelined and scheduled
assembly code. This process consists of three stages: generating a control flow graph,
linearizing the assembly code, and generating the data flow graph. We use a known
method for generating the control flow graph from scheduled assembly code and
describe further techniques for handling more complex architectures that employ
parallel instruction sets and dynamic branching. We present a linearization process, in
which pipelined structures are serialized into linear assembly. This allows for proper
data dependency analysis when generating the data flow graph.

The work was verified in the FREEDOM compiler on 8 highly pipelined software
binaries for the TI C6000 DSP, targeting the Xilinx Virtex II FPGA. Results indicate
that data dependencies were correctly identified, enabling the compiler to perform
complex optimizations and scheduling to reduce clock cycles in the designs.

References

1. Amme W, Braun P, Thomasset F, and Zehendner E (2000) Data Dependence Analysis of
Assembly Code. International Journal of Parallel Programming, vol. 28, issue 5.

2. Banerjee U (1988) Dependence Analysis for Supercomputers. Kluwer Academic
Publishers, Norwell, MA.

90

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

D.C. Zaretsky et al.

Cifuentes C and Gough K (1993) A Methodology for Decomposition. Proceedings for
XIX Conferencia Latinoamericana de Informatica. Buenos Aires, Argentina, pp 257-266.
Cifuentas C and Malhotra V (1996) Binary Translation: Static, Dynamic, Retargetable?
Proceedings for the International Conference On Software Maintenance (ICSM).
Monterey, CA, pp 340-349.

. Cifuentes C, Simon D, and Fraboulet A (1998) Assembly to High-Level Language

Translation. Proceedings of the International Conference on Software Maintenance
(ICSM). Washington, DC, pp 228-237.

Cooper K, Harvey T, and Waterman T (2002) Building a Control-Flow Graph from
Scheduled Assembly Code. Technical Report 02-399. Department of Computer Science,
Rice University, Houston, TX.

Decker B and Késtner D (2003) Reconstructing Control Flow from Predicated Assembly
Code. Proceedings of the 7th International Workshop on Software and Compilers for
Embedded Systems (SCOPES). Vienna, Austria, pp 81-100.

Késtner D and Wilhelm S (2002) Generic Control Flow Reconstruction from Assembly
Code. Proceedings of the Joint Conference on Languages, Compilers and Tools for
Embedded Systems (LCTES), vol. 37, issue 7, pp 46-55.

Kruegel C, Robertson W, Valeur F, and Vigna G (2004) Static Disassembly of Obfuscated
Binaries. Proceedings of USENIX Security 2004. San Diego, CA, pp 255-270.

Levine B and Schmidt H (2003) Efficient Application Representation for HASTE: Hybrid
Architectures with a Single Executable. Proceedings of the 11th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines. Napa, CA, pp 101-107.

Mittal G, Zaretsky D, Tang X, and Banerjee P (2004) Automatic Translation of Software
Binaries onto FPGAs. Proceedings of the 41st Annual Conference on Design Automation.
San Diego, CA, pp 389-394.

Mittal G, Zaretsky D, Memik G, and Banerjee P (2005) Automatic Extraction of Function
Bodies from Software Binaries. Proceedings for the IEEE/ACM Asia and South Pacific
Design Automation Conference (ASPDAC). Beijing, China.

Muchnick S (1997) Advanced Compiler Design Implementation. Morgan Kaufmann
Publishers, San Francisco, CA.

Ramsey N and Fernandez M (1995) New Jersey Machine-Code Toolkit. Proceedings of
the 1995 USENIX Technical Conference. New Orleans, LA, pp 289-302.

Ramsey N and Fernandez M (1997) Specifying Representations of Machine Instructions.
ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 19, issue 3.
New York, NY, pp 492-524.

Stitt G and Vahid F (2003) Dynamic Hardware/Software Partitioning: A First Approach.
Proceedings of the Design Automation Conference. Anaheim, CA, pp 250-255.

Stitt G and Vahid F (2002) Hardware/Software Partitioning of Software Binaries.
Proceedings of the International Conference of Computer Aided Design (ICCAD). Santa
Clara, CA, pp 164-170.

Ye Z, Moshovos A, Hauck S, and Banerjee P (2000) CHIMAERA: A High-Performance
Architecture with a Tightly-Coupled Reconfigurable Functional Unit. Proceedings of the
27th International Symposium on Computer Architecture. Vancouver, Canada pp 225-235.
Zaretsky D, Mittal G, Tang X, and Banerjee P (2004) Overview of the FREEDOM
Compiler for Mapping DSP Software to FPGAs. Proceedings of the 12th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines. Napa, CA, pp 37-46.

Applying Data Copy to Improve Memory
Performance of General Array Computations

Qing Yi

Department of Computer Science, University of Texas at San Antonio™

Abstract. Data copy is an important compiler optimization which dy-
namically rearranges the layout of arrays by copying their elements into
local buffers. Traditionally, array copy is considered expensive and has
been applied only to the working sets of fully blocked computations. This
paper presents an algorithm which automatically applies data copy to
optimize the performance of general computations independent of block-
ing. The algorithm automatically decides where to insert copy operations
and which regions of arrays to copy. In addition, when specialized, it is
equivalent to a general scalar replacement algorithm on arbitrary array
computations. The algorithm is fully implemented and has been applied
to optimize several scientific kernels. The results show that the algorithm
is highly effective and that data copy can significantly improve the per-
formance of scientific computations, both when combined with blocking
and when applied alone without blocking.

1 Introduction

Most scientific applications operate on large multi-dimensional arrays that can-
not fit in the caches of modern computers. Such computations typically include
sequences of loop nests, with each loop selectively accessing elements of arrays.
When a loop accesses a non-continuous collection of array elements, that is, when
the array elements accessed together close in time are far from each other in the
memory, the loop demonstrates poor spatial locality and additionally could incur
conflict misses in the cache.

Data copy is an important compiler optimization that can dynamically re-
arrange the layout of arrays. At the beginning of each computation phase, the
transformation can choose to copy a subset of array elements into local buffers.
All the relevant array accesses within the computation phase can then be changed
to instead operate on the local buffers. At the end of the computation phase,
if the selected elements are modified, the local buffers are copied back to the
original arrays. Because the local buffers store working sets of computations
continuously, data copy optimization can significantly improve the spatial local-
ity of computations.

Data copy was first proposed by Lam, Rothberg and Wolf [9] to reduce cache
conflict misses for blocked computations. As an example, Figure 1(a) shows a

* The work was developed when the author was under employment by Lawrence Liv-
ermore National Laboratory, Livermore, CA, 94550.

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 91-105, 2007.
© Springer-Verlag Berlin Heidelberg 2007

92 Q. Yi

int j, k, i,j,k,i, _bi, bk, v0, v1;
double alpha, *A, *B, *C;
for ((j=0; j<n; j+=16)

for (k=0; k<l; _k+=16)
l_i:for (Li=0; d<m; -i+=16) {

int _j,.k,,j,k,i; _bi = min(m-_,16); _bk = min(l-_k,16);
double alpha, *A, *B, *C; ~v0 = 0;
...... for (_vl=_k; v1<_k+_bk; ++4_v1)
for (_j=0; _j<n; _j+=16) for (_v2=_i; -v2<_i+_bi; ++_v2)
for (k=0; k<l; k+=16) A buf[vO++] = Alv1*m+ _v2];
l_j:for (Li=0; _Li<m; _-i+=16) lj: for (j=4j; j<min(n,j + 15); ++j) {
lj: for (j=1j; j<min(n, j+15); ++j) V0 = 0;
le: for (k=k; k<min(l, k+15); ++k) for (_vl=_i; -vl<_i+_bi; ++_v1)
li for (i=_; i<min(m,-i+15); ++i) C_buf[-v0++] = C[j*m+_v1];
le: for (k=Xk; k<_k+_bk; ++k) {
s: Cli+j*m] = c[i+j*m] + B_buf = BJ[j*1+k];
alpha * A[i+k*m]*B[k+j*l]; I;: for (i=_i; i<min(m,i+15); +-+i)
} s: C_buf[i-_i] = c_buffi-_i] +
alpha*B_buf*A_buf[(k-_k)*_bi+i-_i];
}
v0 = 0;

for (_vl=j*m+_i; -vl<min(m,_i+16); ++_v1)
C[-vl] = C_buf[.v0++];

(a) without array copy (b) with array copy

Fig. 1. Example: blocked matrix multiplication

code fragment (written in C) that performs matrix multiplication, C = C +
alpha x A x B, where alpha is a scaling factor, and A,B,C' are m x [, [x n and
m+n matrices respectively (each stored in a linearized single-dimensional array).
The computation in Figure 1(a) is fully blocked in all loop dimensions, where
A,B and C' are each partitioned into 16 * 16 sub-matrices, and each computation
phase (enumerated by the inner loops [, Iy and [;) multiplies a pair of sub-
matrices. Because the working set of each computation phase is small enough to
fit in the cache of most memory systems, the loop structure in (a) is likely to
perform well on modern computers.

The computation in Figure 1(a), however, is not guaranteed to have good
memory performance. Because the working set of each computation block is not
stored continuously in the memory, each memory access may bring useless ele-
ments into cache, resulting in poor spatial locality. Further, when non-continuous
array elements are brought into cache, their addresses may conflict with each
other, resulting in premature evictions of useful elements. To resolve such prob-
lems, compilers could apply data copy transformation, which copies all elements
accessed within the computation phase into continuous buffers.

This paper presents a new data copy algorithm for optimizing the performance
of general array computations. Figure 1(b) shows the result of transformation
after automatically applying our algorithm to the code in (a). Here all elements

Applying Data Copy to Improve Memory Performance 93

accessed by the inner loops are copied into separate buffers. Specifically, elements
in array B are copied into a scalar variable B buf, elements in C' are copied into
a single-dimensional buffer C buf, and elements in A are copied into a two-
dimensional buffer A buf. The buffer sizes are 1 for B buf, bi for C buf, and
bi % bk for A buf respectively, where bi and bk are the iteration numbers of
loops [; and [respectively. The loop body has been accordingly changed to
access elements from the local buffers. Since elements in C buf are modified,
these elements are copied back to the original matrix C at the end. As shown in
Section 4, the code in (b) can significantly outperform the code in (a) in many
cases.

The algorithm in this paper significantly improves previous research [9,13],
which treats array copy as an auxiliary optimization for blocking. Previous for-
mulations would have optimized Figure 1(a) by performing all copy operations
at the beginning and end of each computation block, i.e., the location that ma-
trix A is copied in Figure 1(b). Our algorithm is much more flexible in that it
treats data copy as a stand-alone optimization. Based on heuristics to reduce
both buffer size and the overall copy cost, our algorithm automatically decides
where to insert copy operations and which regions of the arrays to copy. The
transformed code can use buffers at various levels, corresponding to the differ-
ent levels of caches in modern computers. Our algorithm can also be specialized
to perform scalar replacement optimization, which relocates array elements to
scalar variables.

The algorithm in this paper is fully implemented and has been applied to
optimize several kernels both combined with blocking and without blocking.
Our results show that the algorithm is highly effective and that array copy
can significantly improve the performance of scientific computations, both when
combined with blocking and when applied separately without blocking.

2 Related Work

Lam, Rothberg and Wolf [9] first proposed applying array copy to reduce cache
conflict misses in blocked computations. A few years later, Temam, Granston and
Jalby [13] investigated different strategies for applying array copy after blocking
and presented an effective strategy that selectively copy arrays based on compile-
time cost-benefit analysis. Both Lam et al and Temum et al assumed that the
blocked computations access arrays only through regular affine expression sub-
scripts, where data copy can always be safely applied. They both consider data
copy as an auxiliary optimization for blocking, where copy operations are in-
serted only at the beginning and end of blocked computations. Since then, very
little work has been published to further investigate applying data copy to opti-
mize array computations in scientific applications.

The data copy algorithm in this paper extends previous work in two aspects.
First, our algorithm can optimize computations even if they contain regions
of code that access arrays through non-affine expression subscripts. Second,
our algorithm includes heuristics both to automatically select arrays to copy

94 Q. Yi

and to automatically identify different locations to insert copy operations. Thus
our algorithm can be applied to optimize general computations independent of
blocking.

Besides array copy, many data layout optimizations have been proposed to
improve the memory system performance of regular array operations [11,12,3].
These optimizations statically reorganize the layout of arrays to reduce cache
conflict misses and to improve spatial locality. They are effective when compu-
tations access arrays in a consistent fashion throughout an entire application.
However, when computations include different phases, a single memory layout
may not be sufficient. This paper does not attempt to globally restructure the
layout of data structures. Instead, we dynamically rearrange array elements ac-
cessed in each computation phase when beneficial.

Despite being considered expensive, dynamic data layout transformations
have been widely applied in optimizing irregular applications [6,7,10], where
the structures of the input data are unknown until runtime. Because arrays in
irregular applications are accessed through indirect pointers (or index arrays),
current compiler technology cannot automate the optimization. In contrast, the
data copy transformation in this paper is applied automatically to optimize reg-
ular array computations.

The algorithm presented in this paper is similar to the scalar-replacement al-
gorithm by Carr and Kennedy [5] in many respects. Their algorithm aggressively
promotes array elements into scalar variables so that these elements can later
be allocated to registers. Our algorithm can similarly be configured to perform
scalar replacement through restrictions on the size of array regions being copied.
Our algorithm is more general than the algorithm by Carr and Kennedy in that
we apply data copy to dynamically rearrange the layout of arrays in addition to
performing scalar replacement.

3 Applying Data Copy

Figure 2 presents our algorithm for applying data copy to arbitrary array compu-
tations. This algorithm takes a code fragment C', partitions the array references
in C' into groups where each group can be safely copied into a single buffer, per-
forms profitability analysis on each group of array references, and finally applies
transformations when beneficial. Section 3.1 describes each step of the algorithm.
Section 3.2 then describes the profitability analysis in more detail.

3.1 Data Copy Algorithm

As shown in Figure 2, given an input code fragment C', the algorithm includes
the following steps.

Step (1) Construct a dependence graph R, where each node of R is a memory
reference in the original code C, and each edge from reference 71 to ro indicates
that r1 and ro may access the same memory location (i.e., ro and 1 depend on

Applying Data Copy to Improve Memory Performance 95

Apply-data-copy(C)
(1) R = construct-dependence-graph(C')
nodes(R): memory references in C; edges(R): dependences between references
Ve € edges(R), dep(e): dependence relation; precise(e): whether dep(e) is precise
(2) Construct a DAG R’ from R
order = evaluate-reference-order(C); nodes(R') = nodes(R)
for (each edge e : 71 — 72 in R)
if (order(r1) < order(rz)) then add e:r; — rz to R’
else if (order(r1) > order(r2)) then add reverse(e):res — r1 to R’
(3) groups = apply-typed-fusion(R’)
BadEdges = {e € edges(R’) | not precise(e)}
Vr € nodes(R), type(r) = array-name(r)
(4) Profitability-analysis(R,groups)
for (each refs € groups), compute
init-stmt(refs) and save-stmt(refs): start and ending points of computation
cp-region(refs): elements to be copied to local buffer
shift-buf(refs): offset to shift local buffer
init-region(refs): elements to be copied before starting
(5) For (each refs € groups), perform array copy transformation
(5.1) buf = create-buffer(cp-region(refs))
(5.2) if (cover-modify(init-stmt(refs), save-stmt(refs),refs))
init = copy-init(buf,init-region(refs)); insert-before(init-stmt(refs), init)
if (is-modified(refs) or shift-buf(refs) # 0)
save = copy-save(buf,cp-region(refs),shift-buf(refs));
insert-after(save-stmt(refs), save)
(5.3) for (each r € refs)
r buf = buffer-access(r,buf,cp-region(refs)); replace-ref(r, r buf)

Fig. 2. Algorithm for applying array copy

each other), and r; is evaluated before ro. Each edge e from r; to r2 is anno-
tated with two attributes: dep(e), the dependence relation that must be satisfied
between iterations of loops surrounding r; and ro; and precise(e), whether the
dependence relation dep(e) is precisely determined by the dependence analysis
algorithm (i.e., whether both 1 and r5 contain only affine expression subscripts).
Only when precise(e) is true, r; and r9 are guaranteed to refer to the same mem-
ory location when dep(e) is satisfied, and the elements accessed by r1 and 79 can
be copied into a single buffer.

The dependence graph R can be constructed using well-studied dependence
analysis techniques [1,14,4]. The only difference here is that nodes in R are mem-
ory references rather than statements, and that a pair of references may depend
on each other even if neither modifies the memory (that is, input dependences
are considered together with the true, output and anti dependences).

Step (2) Prepare for Step (3) by converting the dependence graph R into a
DAG (directed acyclic graph) R’. First, define a function order which assigns
a unique integer number to each memory reference and thus imposes a linear
order on all memory references. Specifically, Vri, o € nodes(R), if order(r1) <

96 Q. Yi

order(ry), then r; appears before r5 in C' in static evaluation order; that is, rq is
traversed before ro when we statically interpret the statements in C', assuming all
loop bodies and conditional branches (both true and false branches) are entered
exactly once.

Copy all the nodes and edges from R into R’. Ensure R’ is acyclic by enforcing
that every edge e from 1 to o in R’ satisfies the condition order(r1) < order(rs).
Specifically, Ve : 11 — ro in the original graph R, if order(r1) < order(ry), copy
e into R'. Otherwise, if order(r1) > order(rs), reverse dep(e) and then add the
reversed dependence from rs to 7 into R'. Finally, if 71 == ry, the edge is
simply ignored because it does not affect the partitioning of memory references.

Step (3) Partition the memory references in R’ into separate groups by applying
the typed-fusion algorithm by Kennedy and McKinley [8], originally developed
for performing loop fusion optimizations. The input to the original typed-fusion
algorithm is a loop dependence graph, where each node of the graph is a loop,
and each edge from node x to y indicates that there are dependences from
statements inside loop z to statements inside loop y. An edge from z to y is
annotated as a bad edge if the dependence relations between x and y prevent
them from being legally fused. Additionally, each node in the loop dependence
graph is assigned a type so that loops of different types are never fused. For each
given type of loops (e.g., parallel or serial loops), the typed-fusion algorithm
aggressively clusters nodes of the given type that are not connected by fusion-
preventing bad paths. In order for the algorithm to work correctly, it is required
that the input dependence graph must be acyclic (i.e., a DAG).

To adapt the typed-fusion algorithm for partitioning memory references, we
use the DAG R’ (computed in Step (2)) as input to the algorithm. Here bad
edges are defined to include each edge e € R’ such that precise(e) is false,
so that memory references connected by imprecise dependence paths are never
placed into the same group. The names of arrays are used to represent types of
memory references, and all non-array memory references are assigned a unique
dummy type, which is never used as input to the fusion algorithm. Therefore no
data copy transformation is applied to non-array memory references.

After applying the typed-fusion algorithm to the dependence DAG R’, the
result is a collection of clustered groups, where each group refs includes a col-
lection of array references that can be safely relocated to a single buffer. Based
on the correctness proof of the original typed-fusion algorithm, it is guaranteed
that no references in refs are connected to each other by imprecise dependence
paths.

Step (4) Use profitability analysis (described in Section 3.2) to further filter and
configure the groups of array references to be copied. For each group of memory
references refs, this step computes the following attributes.

— init-stmt(refs) The starting point of a computation phase to apply data
copy. When applying the transformation, the initialization operations should
be inserted before this statement.

Applying Data Copy to Improve Memory Performance 97

— save-stmt(refs) The ending point of the computation phase. If the local
buffer needs to be saved, the necessary operations should be inserted after
this statement.

— cp-region(refs) The region of array elements to be relocated to the local
buffer.

— shift-buf(refs) The offset to shift the local buffer between consecutive it-
erations of the current computation phase. Since accessing the local buffer
is cheaper than operating on the original array, when appropriate, the local
buffer can be shifted to reduce the overhead of copying from the original
array. For more details, see Section 3.2.

— init-region(refs) The region of array elements to be copied into the local
buffer before init-stmt(refs). Specifically, init-region(refs) equals to cp-
region(refs) if the local buffer cannot be shifted (that is, shift-buf(refs)
= 0); otherwise, init-region(refs) contains the elements accessed by refs at
the first iteration of the computation phase.

The above attributes are used by Step (5) to perform data copy transformations.
As example, Figure 3 presents the configuration of these attributes when apply-
ing data copy to the matrix multiplication code in Figure 1(a). The evaluation
of these attributes is described in more detail in Figure 4 and in Section 3.2.

Step (5) For each group of array references refs to be copied, perform the
transformation by allocating a local buffer, inserting operations to copy data
between buffer and the original array, and replacing array references in refs
with the corresponding buffer accesses.

First, step (5.1) invokes function create-buffer to allocate a local buffer from
the heap. The allocation is placed at the outermost location where the size of the
buffer can be correctly evaluated. Deallocation of the buffer is also automatically
inserted if necessary.

Then, step (5.2) inserts operations to copy data between the local buffer and
the original array. Unless each iteration of the computation phase modifies all ele-
ments accessed by refs before reading them (cover-modify(init-stmi(refs),save-
stmt(refs),refs)is true), operations are inserted before init-stmt(refs) to copy
elements from the original array to the local buffer. Similarly, if the computa-
tion phase modifies elements accessed by refs, or if the local buffer needs to be
shifted (shift-buf(refs) # 0) between consecutive iterations of the computation
phase, the necessary operations are inserted after save-stmt(refs).

Finally, step (5.3) replaces each array reference in re fs with the corresponding
buffer access.

3.2 Profitability Analysis

This section describes Step (4) of the data copy algorithm in Figure 2. As shown
in Figure 4, this step uses heuristics to determine whether a data copy trans-
formation is beneficial and how to perform the transformation to ensure prof-
itability. For each group of memory references refs to be copied, it includes the
following sub-steps.

98 Q. Yi

references: {A[i + k x m]}

imit-stmt: 1, references: {B[k + j x|} references: {C[i 4+ j * m]}

init-stmt: [; init-stmt: [x
save-stmt: [;
. .. . save-stmt: [; save-stmt: i
cp-region and init-region
start: i+ kxm cp-region and init-region cp-region and init-region
) : . start: k+ j %1 start: i+ j*xm
copy: (0,min(m — 1,16),1), . .
(Omin(l — &, 16),m) copy: () copy: (0,min(m — 4,16),1)
’ T shift-buf: 0 shift-buf: 0

shift-buf: 0

Fig. 3. Array copy configurations for Figure 1(a)

Step (4.1) To reduce the overhead of performing data copy, make sure that each
array element accessed by refs needs to be copied at most twice: initially copied
from the original array to the local buffer, and finally copied back from local
buffer to original array.

First, invoke function split-disconnected-refs(refs,R) to separate array refer-
ences in refs that are not connected by dependence paths in R. Disconnected
memory references are removed from refs and added into the overall collection
(groups) of array reference groups.

To ensure that each array element is copied at most twice, find inroot =
common-loop(refs), the innermost loop that surrounds all array references in
refs. For each reference ro & refs, if ro is connected with references in refs
by dependence edges, and if Ir; € refs such that [,,,, is the innermost loop
surrounding both 7y and 73, then the required copy operations must be inserted
between r1 and ro and inside loop Iy, y,. If I, is nested at a deeper loop level
within inroot, the copy operations inside [, will be evaluated multiple times at
each iteration of inroot (the current computation phase). To avoid such situation,
split refs so that ry is placed into a separate group. After this step, all copy
operations can be safely inserted immediately inside inroot.

Using Figure 1(a) as example, when applying steps (1)-(3) of the algorithm
in Figure 2, Figure 3 presents the resulting three array reference groups. Since
no splitting is necessary, this step merely set inroot to loop I; for all reference
groups.

Step (4.2) Decide the outermost loop, cproot, where copy operations can be
safely inserted; that is, it is safe to relocate all elements accessed by refs at
each iteration of cproot. A single iteration of cproot therefore comprises the
computation phase of the current copy transformation.

First, invoke function copy-loop(inroot,refs,R) to find the outermost loop,
outroot, that contains all references in refs but does not contain any refer-
ence r such that (i) r is outside inroot, and (ii) r and refs may depend on each
other within outroot. If outroot == inroot, copy operations must be inserted
inside inroot (cproot = inroot). Otherwise, since no reference r & refs can in-
terfere with the memory accessed by refs throughout the execution of outroot,
it is safe to insert copy operations outside outroot. So cproot should be the loop
immediately enclosing outroot.

Applying Data Copy to Improve Memory Performance 99

Profitability-analysis(R,groups)
for (each refs € groups)
(4.1) Ensure each element is copied at most twice:
split-disconnected-refs(refs, R); inroot = common-loop(refs)
cut = {ri€refs | Iragrefs s.t. dep(ra,refs)#0 and common-loop(ry,rs) is
inside inroot }
if (cut # 0) split(refs,cut); groupsU = {cut}; inroot = common-loop(refs)
(4.2) Compute outermost loop level to perform copy:
outroot = copy-loop(inroot,refs,R)
if (outroot == inroot) cproot = inroot
else cproot = loop-immediately-outside(outroot)
(4.3) Impose size limit on the local buffer
split-disconnected-refs(re fs,R(cproot));
cut={rerefs | is-too-big(array-region(r,cproot))}
if (cut == refs) cproot = loop-immediately-inside(cproot); repeat step (4.3)
else split(refs,cut); groupsU = {cut}; go back to step (4.1)
(4.4) Ensure profitability of copy transformation
reuse = {l | | € loops-between(cproot, inroot) and carry-temporal-reuse(refs,l)}
if (reuse # 0) cproot = loop-immediately-outside(outermost-loop(reuse))
else if (|refs| < 3) groups— = {refs}; continue
(4.5) configure copy transformation
cp-region(refs) = array-region(refs,cproot)
shift-buf(refs) = array-region-shift(re fs,cproot)
if (shift-buf(refs) # 0 and cproot # inroot and cproot #loop-immediately-
outside(outroot))
init-stmt(refs) = cproot; init-region(refs)=init-array-region(refs,cproot)
save-stmt(refs)=last-stmt(refs,Joop-body(cproot))
else
init-stmt(re fs)=first-stmt(refs,Joop-body(cproot)); init-region(refs)=
cp-region(refs)
shift-buf(refs)=0; save-stmt(refs)=last-stmt(refs,loop-body(cproot))

Fig. 4. Profitability analysis of array copy

Using Figure 1(a) as example, since no dependence interference exists, we
have outroot = [; for all three array reference groups in Figure 3. Consequently
we would have cproot =1 ; for all reference groups.

Step (4.3) Impose a size limit on the local buffer. The size limit is dependent on
various features of the computer architecture and is given to the data copy algo-
rithm as a configuration parameter. In our prototype implementation, the size
limit is imposed by restricting the dimensionality of local buffers using command-
line options (see Section 4).

First, invoke function split-disconnected-refs(refs,R(cproot)) to separate refer-
ences that are disconnected from each other in the dependence graph of cproot.
Next, find each reference r in refs such that at each iteration of cproot, the
elements accessed by r exceed the buffer size limit. If the collection of refer-
ences that access too many elements includes everything in refs (cut == refs),

100 Q.Yi

lower cproot to be the loop immediately inside and repeat step (4.3). Otherwise,
since only a subset of references in refs are causing the problem, split refs by
removing such references, then restart from step (4.1).

Using Figure 1(a) as example, after Step (4.2), we have cproot = [; for
all reference groups in Figure 3. Since each reference group has a single array
reference, and each array reference accesses at most 16 x 16 elements at each
iteration of loop [;, the local buffer for each reference group has two dimensions.
If only single-dimensional buffers are allowed, this step would reset cproot = I;
for all reference groups. Similarly, if only scalar replacement is allowed, we would
have cproot({Blk + j = 1|}) = li, and cproot({Ali + k xm|}) = cproot({C[i + j *
m]}) = L.

Step (4.4) Evaluate the benefit of applying data copy and refrain from apply-
ing the transformation (by removing refs from groups) if the benefit does not
outweigh the cost.

First, find all the loops between cproot and inroot that carry temporal reuses
of refs; that is, these loops do not increase the overall size of elements accessed
by refs. Collect these loops into a set reuse in Figure 4.

If reuse is not empty, it is profitable to perform array copy because the local
buffer will be reused many times. Find the outermost loop [in reuse such that
all the other loops between cproot and [merely increase the buffer size without
introducing any memory reuse. Reduce buffer size by lowering cproot to be the
loop immediately enclosing .

If reuse is empty, the copied elements are reused at most a few times (< the
number of elements in refs). If the number of elements in refs is less than 3,
the copy overhead is likely to outweigh the benefit of reuse. In this case, remove
refs from the groups of references to be optimized.

Using Figure 1(a) as example, suppose that cproot = [; for all reference
groups in Figure 3 before entering this step. After this step, we would have
reuse = {l;}, {lx} and {l;} for reference groups {A[li + k * m]}, {C[i + j *
m]} and {B[k + j * []} respectively. Consequently, cproot({C[i + j * m]}) and
cproot({B[k + j =]} would be reset to ; and I respectively, resulting in the
data copy transformation shown in Figure 1(b).

Step (4.5) Suppose it is beneficial to apply data copy at each iteration of loop
cproot. Compute necessary configurations to determine where to insert copy
operations and what to copy.

First, invoke function array-region(refs,cproot) to summarize all the array
elements accessed by refs at each iteration of cproot. The result includes the
starting address of the array to be copied and a sequence of tuples, (i1,n1,s1),
(12,n2,82), ...y (im;Mm, Sm), where in each (i;,n;,s;)(j = 1,...,m), i; specifies
the current array dimension to be copied, n; specifies the number of elements to
be copied at dimension ¢;, and s; specifies the incremental stride at dimension
ij. This formulation allows multiple copy specifications for each array dimension,
thus allowing linearized arrays (e.g., the arrays in Figure 1(a)) to be correctly

Applying Data Copy to Improve Memory Performance 101

proctime proctime in thousands proctime

1.01.50.4
0.8
0.6
0.4
0.2

mnnbbbb bbb mnbhbl bbb n
x01x012 xle 01x012 x012 x0
mze(QOOO) size(2048) mze(ZOOO) sme(2048) mze(QOOO) size(2048)

(a) on a Dell PC (b) on a SGI workstation (c) on a IBM machine

bbb b bbbb
0 x012 x0 1x012

Fig. 5. Performance of dgemm (nx:original non-blocked version; n0O:optimized with 0-
dimensional data copy; nl:optimized with 1-dimensional data copy; bx:optimized with
loop blocking; b0:optimized with blocking and 0-dimensional data copy; bl:optimized
with blocking and 1-dimensional data copy; b2:optimized with blocking and 2-
dimensional data copy)

copied. Given the the sequence (i1,n1,51)(i2, n2, 52)...(4m, Mm, Sm), the size of
the buffer is n1 * ng * ... x Ny,

After computing cp-region(refs), invoke function array-region-shift(refs,cproot)
to compute the intersection of ¢p-region between consecutive iterations of cproot.
If the overlapping region is not empty (shift-buf(refs) # 0), it is more efficient to
shift the local buffer rather than re-initiating the entire buffer from the original
array. Shifting the local buffer is safe if cproot does not contain other references
that interfere with refs (cproot # inroot and cproot is not the loop enclosing
outroot).

If shifting the local buffer is necessary, the local buffer should be initial-
ized before entering cproot. Thus init-stmi(refs) = cproot. The initialization
should copy elements accessed by refs at the first iteration of cproot, so init-
region(refs) = init-array-region(refs, cproot). The buffer needs to be shifted
and re-initialized at the end of each iteration of cproot, so save-stmi(refs) is the
last statement in the loop body of cproot.

If shifting of local buffer is not necessary, we configure the transformation
to always initialize the entire buffer in the loop body of cproot before the first
statement that contains a reference in refs. Similarly, if necessary, the entire
buffer should be restored back to the original array after the last statement that
contains a reference in refs.

The configurations for applying array copy to Figure 1(a) is shown in Figure 3.
Based on these configurations, applying Step (5) of Figure 2 to the code in
Figure 1(a) would result in the optimized code in Figure 1(b).

4 Experimental Results

We have implemented our data copy algorithm within the loop transforma-
tion framework by Yi, Kennedy and Adve [15], which has been integrated as a
C/C++ source-to-source translator within ROSE, a C/C++ compiler

102 Q.Yi

proctime proctime in thousands proctime

1.0[- .ol 10.5
0.8
0.6
0.4

0.2

nnnbbb nnnbbb

x01x01
size(1000)

nnn bbb nnn bbb

x01x01 01 01 01 01
size(1024) size(1000) size(1024)
(a) on a Dell PC (b) on a SGI workstation (c) on a IBM machine

x01x01
size(1024)

Fig. 6. Performance of dgetrf (nx:original non-blocked version; n0:optimized with 0-
dimensional data copy; nl:optimized with 1-dimensional data copy; bx:optimized with
loop blocking; b0:optimized with blocking and 0-dimensional data copy; bl:optimized
with blocking and 1-dimensional data copy)

proctime in thousands proctime proctime

1.0(2
0.8
0.6
0.4
0.2

nnn nnn nnn nnn nnn nnn nnn nnn nnn nnn nnn nnn

x01 x01 x01 x01 x01 x01 x01 x01 x01 x01 x01 x01

(1000) (1024) (2000) (2048) (1000) (1024) (2000) (2048) (1000) (1024) (2000) (2048)
(a) on a Dell PC (b) on a SGI workstation (c) on a IBM machine

Fig. 7. Performance of tomcatv using mesh sizes 1000, 1024, 2000 and 2048 (nx:original
version; n0:optimized with O-dimensional data copy; nl:optimized with 1-dimensional
data copy)

infrastructure at LLNL [17]. This section presents the result of applying our
algorithm to optimize three kernels, dgemm (matrix multiplication), dgetr f (ma-
trix LU factorization with partial pivoting), and tomcatv (mesh generation with
Thompson solver). All kernels are written in C. Both dgemm and dgetrf are
transcribed from the corresponding non-blocked Fortran kernels in the LAPACK
library [2], and tomcatv is transcribed from the Fortran kernel in SPEC95. When
applying optimizations to these transcribed C codes, the dependence analysis in
ROSE assumed that no arrays are aliased.

Data copy is applied to optimize all kernels. In addition, blocking is applied
to dgemm and dgetr f to investigate the combination of blocking and data copy
(the result of applying blocking to tomcatv is not shown because it was not
beneficial). For each blocked version, different block sizes were experimented and
the version with the best performance is presented. When performing data copy
transformation, the optimizer is configured by command-line options to restrict
the dimensionality of required buffers — if the buffer dimension is restricted to
be m (denoted as m-dimensional copy), the optimizer would only perform data

Applying Data Copy to Improve Memory Performance 103

copy to arrays that require at most m dimensional buffers. When the buffer
dimension is restricted to be 0, only scalar replacement is performed.

For each kernel, different problem sizes were experimented. The performance
of each version was measured on three different machine architectures: a Dell
PC with two 2.2GHz Intel XEON processors (each with a 512KB cache) and
2GB memory; a SGI workstation with a 195 MHz R10000 processor, 32KB
2-way associative first-level cache, 1IMB 4-way associative second-level cache,
and 256MB memory; and a single 8-way P655+ node (with 16GB memory)
on a IBM terascale machine. The kernels were compiled using gcc on the Dell
PC and vendor-provided compilers on the SGI work station and IBM machine.
All versions were compiled using -O3 option, which instructs the compilers to
perform aggressive backend optimizations. The processor time (proctime) spent
executing each version is presented.

Figure 5 presents the performance of dgemm using two matrix sizes, 20002 and
20482. Seven versions are measured for each matrix size, including the original
non-blocked version (version nx), versions optimized with data copy optimiza-
tions only (versions n0 and nl), the version optimized with only blocking(version
bz, shown in Figure 1(a)) and the versions optimized with both blocking and
data copy (versions b0,b1 and b2, version b2 is shown in Figure 1(b)?!).

From Figure 5, we see that 0-dimensional array copy (i.e., scalar replacement)
is beneficial for dgemm in all cases, and the improvements range from 3%-12%.
When using matrix size 20002, additional copy transformations do not further
improve performance. However, when using matrix size 20482, the additional
data copy, especially the two dimensional copy of array A, significantly improves
the performance (over 40% for the blocked versions on the Dell PC and on the
SGI workstation). Here the 20482 matrices have incurred much more cache con-
flict misses, which are subsequently eliminated when the accessed elements are
copied into local buffers. The optimizations did not improve the performance as
much on the IBM machine due to the heavy integer operation overhead intro-
duced by the optimizations, which will be further investigated.

Figure 6 presents the performance of dgetrf (matrix LU factorization with
partial pivoting) using two matrix sizes, 1000 and 10242. Six versions are mea-
sured for each matrix size, including the original non-blocked version (version
nx), versions optimized with data copy only (versions n0 and nl), the version
optimized with blocking only (version bx), and versions optimized with both
blocking and copy optimizations (versions b0 and bl). Because dgetrf can be
blocked only in the column direction (for details, see Yi et al [16]), at most a
single dimension of the matrix needs to be copied. Thus there is no b2 version
for dgetrf.

From Figure 6, we see that 0-dimensional array copy (scalar replacement)
is not profitable for dgetrf on the Dell PC and incurs a slight overhead on
the IBM machine due to increased register pressure. The 1-dimensional copy
transformation, however, significantly improves performance in most cases by

! The b1 and b0 versions are different from version b2 in that array A is not copied in
b1, and only array B is copied in b0.

104 Q.Yi

20%-40% except when using 1000 matrix on the SGI workstation and when
using 10242 matrix on the IBM machine. Here because the original arrays were
accessed with a large stride, applying data copy have provided much better
spatial locality. Again, the versions using 10242 matrix have performed much
worse than using 1000? matrix due to conflict misses in memory systems.
Figure 7 presents the performance of tomcatv (mesh generation with Thomp-
son solver) using four mesh sizes, 10002, 10242, 2000% and 20482. Because block-
ing is generally not profitable for tomcatv, array copy is the only optimization
applied. Three versions are measured for each mesh size, denoted using nz (the
original version), n0 (optimized with 0-dimensional data copy), and nl (opti-
mized with 1-dimensional data copy). In tomcatv, as each element is accessed
within the inner loop, the four neighboring elements are also accessed. The local
buffer therefore serves as a small shifting window through the entire mesh.
From Figure 7, we see that 0-dimensional array copy (scalar replacement)
is profitable for tomcatv in almost all cases (ranging from 0.5% to 12%). The
1-dimensional copy transformation significantly improves performance by 11%-
19% when using 10242 and 20482 meshes on the SGI workstation and on the
IBM machine, but slightly slows down performance by 0.5%-8% in other cases.
Here again, when using 10242 and 20482 meshes, the extra benefit of applying
array copy comes from the reduction of conflict misses in the memory system.
In summary, the experimental results indicate that selectively applying data
copy to optimize array computations can significantly improve the performance of
scientific applications, especially when array elements are accessed in large strides
and when conflict misses become a factor in the memory performance. The per-
formance measurements also indicate that data copy does not need to be applied
together with blocking to be effective. In fact, data copy optimization was able to
significantly improve performance for all three kernels without blocking. Finally,
even when data copy is not beneficial, the overhead is not overly significant, and
only small slow downs (.5%-8%) in performance are observed for all kernels.

5 Conclusion

This paper presents a general algorithm for applying data copy to optimize ar-
bitrary array computations. The algorithm is fully implemented and has been
applied to automatically optimize several scientific computation kernels on differ-
ent platforms. The results indicate that the algorithm is highly effective and that
array copy can significantly improve the performance of scientific computations,
both when combined with blocking and when applied alone without blocking.

References

1. R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures. Morgan
Kaufmann, San Francisco, October 2001.

2. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’
Guide. The Society for Industrial and Applied Mathematics, 1999.

10.

11.

12.

13.

14.

15.

16.

17.

Applying Data Copy to Improve Memory Performance 105

J. Anderson, S. Amarasinghe, and M. Lam. Data and computation transformation
for multiprocessors. In ACM Symposium on Principles and Practices of Parallel
Programming, Santa Barbara, July 1995.

U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publish-
ers, Boston, 1988.

. S. Carr and K. Kennedy. Scalar replacement in the presence of conditional control

flow. Software — Practice and Experience, 24(1):51-77, Jan. 1994.

C. Ding and K. Kennedy. Improving cache performance in dynamic applications
through data and computation reorganization at run time. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, Gorgia, May
1999.

H. Han and C.-W. Tseng. Improving locality for adaptive irregular scientific codes.
Technical Report CS-TR-4039, Dept. of Computer Science, University of Maryland,
September 1999.

K. Kennedy and K. S. MCKinley. Typed fusion with applications to parallel and se-
quential code generation. Technical Report TR93-208, Dept. of Computer Science,
Rice University, Aug. 1993. (also available as CRPC-TR94370).

M. Lam, E. Rothberg, and M. E. Wolf. The cache performance and optimiza-
tions of blocked algorithms. In Proceedings of the Fourth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-1V), Santa Clara, Apr. 1991.

J. Mellor-Crummy, D. Whalley, and K. Kennedy. Improving Memory Hierar-
chy Performance For Irregular Applications. In Proceedings of the 13th ACM-
SIGARCH International Conference on Supercomputing, Phodes, Greece, 1999.
M. O’Boyle and P. Knijnenburg. Integrating loop and data transformations for
global optimisation. In International Conference on Parallel Architectures and
Compilation Techniques, Paris, France, Oct 1998.

G. Rivera and C.-W. Tseng. Data transformations for eliminating conflict misses.
In ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, Montreal, Canada, June 1998.

O. Temam, E. Granston, and W. Jalby. To copy or not to copy: A compile-
time technique for assessing when data copying should be used to eliminate cache
conflicts. In Proceedings of Supercomputing ’93, Portland, OR, Nov. 1993.

M. J. Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press,
Cambridge, 1989.

Q. Yi, K. Kennedy, and V. Adve. Transforming complex loop nests for locality.
The Journal Of Supercomputing, 27:219-264, 2004.

Q. Yi, K. kennedy, H. You, K. Seymour, and J. Dongarra. Automatic blocking of
qr and lu factorizations for locality. In The Second ACM SIGPLAN Workshop on
Memory System Performance, Washington, DC, USA, June 2004.

Q. Yi and D. Quinlan. Applying loop optimizations to object-oriented abstrac-
tions through general classification of array semantics. In The 17th International
Workshop on Languages and Compilers for Parallel Computing, West Lafayette,
Indiana, USA, Sep 2004.

A Cache-Conscious Profitability Model for
Empirical Tuning of Loop Fusion*

Apan Qasem and Ken Kennedy

Department of Computer Science
Rice University
Houston, TX

{qasem,ken}@cs.rice.edu

Abstract. Loop fusion is recognized as an effective program transfor-
mation for improving memory hierarchy performance. However, uncon-
strained loop fusion can lead to poor performance because of increased
register pressure and cache conflict misses. The complex interaction be-
tween different levels of the memory hierarchy with the input program
makes it very difficult to always make the right choice in fusing loops. In
this paper, we present a cache-conscious analytical model for profitable
loop fusion to be used with a constrained weighted fusion algorithm.
We then extend the model to show its effectiveness in the context of an
empirical tuning framework. A preliminary evaluation of the model is
presented using hand experiments on four applications.

1 Introduction

Loop fusion is recognized as an effective program transformation for improving
memory hierarchy performance of applications. Fusion improves data locality by
merging loops that access the same data. Although fusion is a useful transforma-
tion it is not always profitable. Previous research has shown that unconstrained
application of fusion may sometime lead to performance loss [4,10].

Consider the code in Fig 1. In the first loop nest we compute values for array
b. These same values are then used in the second loop nest. We can exploit
this locality in array b by performing a two-level fusion operation. In the fused
loop nest shown in Fig 1(b) the two references to array b are close enough to
be put into a register. Thus as a result of fusion we can potentially save NM
memory operations. However, there is also an outer loop reuse in array a for the
references to a(i,j-1) and a(i, j-2) in loop nest 1; that we need to consider. In
the unfused version the same memory locations in array a are touched in every
iteration of the outer loop. In the fused version, although we do touch the same
locations in array a, the amount of data that we bring into cache between reuses
has increased. In the fused version, we will be accessing locations in arrays b, c
and d before we get to the reused reference of a. If the intermediate data between

* This material is based on work supported by the Department of Energy under Con-
tract Nos. 03891-001-99-4G, 74837-001-03 49, 86192-001-04 49, and 12783-001-05 49
from the Los Alamos National Laboratory.

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 106-120, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Cache-Conscious Profitability Model for Empirical Tuning of Loop Fusion 107

outer-loop reuse of a()

l;: do j =1, N
doi=1,M

b(i,j) = a(i,j)+a(i,j-1)+a(i,j-2)
enddo
enddo
ross-loop reuse of b()
l,: do j =1, N
doi=1,M
c(i,j) = b(i,J) + d(i,J)
enddo
enddo

(a) code before fusion

lost reuse of a()

lj,: do j =1, N
doi=1, M

b(i,j) = a(i,j)+a(i,j-1)+a(i,j-2)
c(i,j) = b(i,j) + d(i,3)
enddo

enddo
saved loads for b ()

(b) code after two-level fusion

Fig. 1. Example of non-profitable fusion

reuses is larger than the cache capacity then we will incur 2NM cache misses
due to the references to a. Moreover, by bringing in data from different arrays
between reuses we also increase the likelihood of conflict misses. The occurrence
of conflict misses in the loop nest can be even more damaging to performance
because it can lead to lost spatial locality in both arrays ¢ and d. Thus for the
code in Fig 1 fusion will not yield an overall profit. (Many readers will observe
that these issues can be ameliorated by tiling the loop that results after fusion.
Although we do not analyze the interaction of tiling with fusion in the body of
this paper, we discuss the subject in the final section.)

Fusion can also degrade memory performance by increasing register pressure
for the innermost loop. When fusing loops at the innermost level the register
requirements may increase to the point where a large number of register spills
occur. The cost of these spills may offset any benefits gained by improved locality
in the fused loop. The possibility of exceeding the instruction cache capacity is
also a concern when fusing loops with large instruction counts in the innermost
loop bodies.

The problem of finding the optimal fusion solution has been shown to be
NP-complete [2]. For large applications with many fusible loops finding a good
fusion solution involves using good heuristics. In this paper, we present a strategy
that combines an architecture sensitive cost model with empirical tuning to
perform profitable loop fusion. Our cost model considers the size, associativity
and latency of various levels of the cache in determining if it is profitable to

108 A. Qasem and K. Kennedy

fuse a pair of loops. We incorporate this cost model into a constraint-based
fusion algorithm. We formulate two constraints for the fusion algorithm to ensure
that performance does not degrade as a result of increased pressure on system
resources due to fusion. Finally, we use empirical tuning to tune a set of fusion
parameters which cannot be measured accurately through static analysis.

In the sections that follow we discuss related work, present our analytical
model, demonstrate how it can be used in an empirical tuning system, present
a preliminary evaluation of the model and finally discuss our conclusions and
future work.

2 Related Work

Fusion has been studied in the literature both as a tool for improving data
locality and increasing the granularity of parallelism [8]. In this paper we look
at fusion in the context of improving data locality only.

In its general form the task of finding the optimal fusion has been shown to
be NP-complete [2]. Several algorithms have been described that use heuristics
to find good fusion solutions in reasonable time. Lim and Lam use affine trans-
formations to apply fusion [9]. Gao et. al. use a max-flow-min-cut algorithm to
partition loop nests into fusible clusters [5]. Kennedy describes a fast-greedy
weighted fusion algorithm that runs in polynomial time [7]. In our work we do
not look at algorithms for performing loop fusion but rather focus on establishing
suitable profitability constraints for legally fusible loops.

Many researchers have proposed models for performing loop fusion to im-
prove memory performance. Ding and Kennedy have looked at reducing effec-
tive bandwidth through loop fusion [4]. Verdoolaege et. al. [14] describe a greedy
fusion algorithm for incremental loop fusion at multiple levels. However, their
locality models do not consider input dependences or the costs associated with
cache misses. Song et. al. [13] present a model that combines loop fusion, loop
alignment and array contraction. In their model, the primary profitability con-
sideration is reducing bandwidth through reduced-sized arrays. Although they
apply conditions to check for excessive register pressure and cache capacity they
do not address the issue of conflict misses.

There are two main differences between our approach and the previous work
done in this area. Firstly, unlike previous models our approach uses machine
specific information (e.g. cache line size, latency) in combination with reuse
distances in determining if fusion is profitable for a pair of loops. Secondly, we
extend our model to be used in the context of an empirical framework. To our
knowledge fusion has not been applied in this setting.

3 Profitability Model

3.1 Quantifying Reuse in Fusible Loops

Capturing inter-loop nest reuse: To determine if it is profitable to fuse a
pair of loops we first need to compute the amount of reuse that is exploited

A Cache-Conscious Profitability Model for Empirical Tuning of Loop Fusion 109

as a result of fusion. Fusion improves locality by merging loops that access the
same data. Thus any memory location that is accessed in the first loop nest and
then re-accessed in the second loop nest is a candidate for potential reuse. This
inter-loop reuse can be captured in a dependence graph through the use of loop-
crossing dependence edges. A loop-crossing dependence is defined as follows:

Definition 1. Let [; and [s be two fusible loop nests where reference r; accesses
location M in some iteration ¢ in [; and reference 7y accesses location M’ in
some iteration j in ls. Then there is a loop-crossing dependence from rqy to ro if
M =M.

To quantify reuse in fusible loops we start with the dependence graph for sin-
gle loop nests. Then for each pair of adjacent loop nests we add loop-crossing
dependence edges between the two dependence graphs.

Pruning the dependence graph: The extended dependence graph described
above is able to identify points of potential reuse in fusible loops. However, in cases
where there are multiple inter loop dependences with overlapping thresholds the
graph might overestimate the amount of reuse exploited by fusion. To account for
such situations we need to prune the graph so that the sink of each loop-crossing
dependence represents a potential savings in memory operations. We note that if
there are multiple loop-crossing dependences emanating from the same source ref-
erence then all but one of the loop-crossing dependence edges can be eliminated.
The edge that remains is the one that points to the sink reference that has no in-
coming dependence edge from within the loop nest. Similarly, if there are multiple
loop-crossing dependences that have a single reference as their sink we can elim-
inate all but one of the edges. In this case, the edge that remains is the one that
has a source with no dependence edges flowing into it from within the loop nest.

In addition to handling the loop-crossing dependences we also need to prune
the dependence graph for each loop nest so that the pruned graph has at most
one predecessor for each reference and that predecessor refers to the most recent
use of the sink. This pruning is essential for our cost model which assumes one
predecessor per sink in order to avoid double counting of cost on particular
references. We adopt strategies described by Carr [1] to perform this pruning.
The strategy involves eliminating all killed dependences from the graph and in
cases of group temporal reuse keeping only those edges that have the smallest
dependence threshold.

Hierarchical classification of reuse: Once, we have the pruned depen-
dence graph we need to augment it to include information about reuse distances
and memory hierarchy levels. The effects of fusion may not be beneficial across
all levels of the memory hierarchy. Fusing a pair of loops may improve locality
at some level of cache but actually hurt locality at other levels. Hence, to im-
prove overall memory performance we need to be able to quantify reuse that is
exploited at each level of the memory hierarchy.

When considering multiple levels of the memory hierarchy, the reuse classifica-
tion described in [15] is somewhat inadequate. We introduce a new classification
of temporal reuse based on the level at which locality is exploited. We associate

110 A. Qasem and K. Kennedy

with each sink node in the dependence graph a value that expresses the level at
which the reuse is exploited. This term is called the reuse level of a reference
and we define this formally as follows:

Definition 2. Let L; refer to the memory at level i. Then the reuse level of a
reference r involved in temporal reuse is the smallest k& such that

ReuseDistance(r) < Capacity(Ly)

3.2 Accounting for Conflict Misses

Conflict misses can be a big concern for profitable fusion. When fusing loops
we often bring accesses to a number of different arrays within the iterations of
a single loop nest. If the array locations overlap in cache then we would have
to pay the penalty of increased conflict misses. To account for conflict misses
we extend the cache associativity model described by Mark and Hill in [6]. We
compute the probability of a cache line being evicted before it is reused based
on the size and associativity of the cache and the reuse distance.
Let,

r1 and ro = references to the same cache line
m = reuse distance between r1 and 7o

s = number of sets in cache

a = associativity

If we assume, each line from m is equally likely to be mapped to any of the
sets then (this assumption is revisited in Section 5)

Prla lines landing in line occupied by r1] = Pr[conflict miss on r1]

ST
ST

Now, we introduce a tolerance term 7' that expresses how high a probability of
a conflict miss we are willing to accept. We then have,

a—1 i —i
T > Pr[conflict miss on r1] =1 — Z (m) [1] [s - 1}

o\ 5 S
From this inequality we can derive an upper bound on m for a given value of T
m < E(a,s,T)

Here, E(a,s,T) is the maximum integral m such that Prcon flict miss on rl]
<T.

Now, given a tolerance term 7" and the size and associativity of a cache at level
k we can express our formula for effective cache capacity (ECC) in the following
manner:

A Cache-Conscious Profitability Model for Empirical Tuning of Loop Fusion 111

ECC(Lk) :E(ak,sk,T) (1)

where, s and ay, refer to the size and associativity of the cache at level k.
Based on this model of effective cache capacity we now have a new definition
for the reuse level of a reference.

Definition 3. Let L; refer to the memory at level i. Then the reuse level of a
reference r involved in temporal reuse is the smallest k£ such that

ReuseDistance(r) < ECC(Ly)

3.3 Estimating Profitability

With reuse information and the heuristics for conflict miss in place we are now
able to estimate the profitability of fusing a pair of loops. For each loop-crossing
dependence in the pruned graph we want to determine how many memory oper-
ations are saved as a result of placing the source and the sink within the same
iteration of the fused loop.

Let,

l1 and Iy = candidate loops for fusion that have the same nesting depth

D = set of loop-crossing true and input dependences between [; and [,

C = set of dependences carried by either [y or Iy

ReuseLevelfpye posty (d) = reuse level for d before and after fusion

Lj, = cache at the k' level where 0 < k < L, L refers to the register level
and Ly, refers to main memory

cost(Ly) = cost of a miss access to L

Then for each d € D we assign a weight w based on the following condition:
if ReuseLevelyre(d) > ReuseLevelpost(d)

then
ReuseLevelpre (d)—1
w(d) = Z cost(L;)
i=ReuseLevelpost (d)
else
w(d) =0
Then total weight is just
> w(d)
deD

Computing the number of memory operations saved from loop-crossing depen-
dences is not enough to determine if fusion is profitable. As illustrated in the ex-
ample in Fig 1 in some cases fusion may destroy locality within loop nests. When
fusing two loops the reuse distance of any carried dependence increases if that
reuse is also not involved in a loop-crossing dependence. We need to account for
all such cases where fusion might lead to loss of potential reuse.

112 A. Qasem and K. Kennedy

For each ¢ € C' we need to compute the cost based on the following condition:
if ReuseLevel, .(c) < ReuseLevelpost(c)

then
ReuseLevelpost (c)—1
w(c) = Z cost(L;)
i=ReuseLevelpre(c)
else
w(c) =0
Then total cost is
> w(e)
ceC

Hence, the final formula for computing the weight between two fusible loops is:

W(lils) = Z w(d) — Zw(c)

deD ceC

3.4 Resource Constraints

A detailed analysis of the savings in memory operations does not guarantee bene-
ficial fusion. There are several factors that can affect fusion that are not captured
by the model we presented for computing weights. Most of these factors have to do
with the resource requirements of the fused loop. If the requirements for a partic-
ular resource is higher than what is available to the program then the benefits of
improved locality through fusion may not be realized. In this section, we establish
a set of constraints that need to be considered by a constrained weighted fusion
algorithm [3].

(i) Register Pressure: If the number of required registers for the fused loop
body is more than what is available then we have to pay the price for spill
costs. To account for register pressure we enforce the following constraint:

Register Pressure(Looptysed) < Register Set Size

We use the methods presented in [1] to estimate register pressure in a loop
body. Information about the number of registers available to the program is
collected before compilation.

(ii) Instruction Cache Capacity: If the number of instructions in the fused
body is large enough to blow out of the instruction cache then we have to
pay the penalty of fetching those instructions from memory. Again, this phe-
nomenon should be considered when fusing two loops.

Instructions(Loopfusea) < Capacity(I-Cache)

It should be noted that although data cache capacity is another critical resource
requirement for a program we do not include it as a constraint here. When us-
ing our cost model with a weighted fusion algorithm the weights of the individual
edges account for the data cache miss costs. For this reason we do not consider the
total data requirements of the fused loop as a separate constraint.

A Cache-Conscious Profitability Model for Empirical Tuning of Loop Fusion 113

3.5 Using the Model with a Greedy Fusion Algorithm

The fusion model and the resource constraints that we formulated can be incor-
porated into a constrained weighted fusion algorithm. We choose the pair-wise
greedy fusion algorithm as described by Kennedy and Ding in [3]. In this algorithm
fusion is formulated as a graph clustering problem in which the vertices represent
loops in the program and the weights represent the amount of benefit obtained by
fusing the endpoints. At each step the algorithm picks the heaviest prime edge in
the graph and fuses its endpoints. After each fusion operation weights are recom-
puted and the graph is updated with new successor, predecessor and prime edge
information.

The chief issue that needs to be considered in incorporating our model with
the greedy algorithm is the cost associated with recomputing the weights at every
step. Since, we perform a detailed analysis in calculating the benefits of fusing two
loops we need to annotate the graph with more information to make the reweigh-
ing process more efficient.

We construct the pruned dependence graph with reuse information as described
previously. We then group the references within each loop nest and label the sub-
graphs as supernodes. We compute the weights between each pair of fusible loops
according to the procedure described in section 3.3 We connect each pair of su-
pernodes using these weights. Hence, each pair of supernodes has only one node
connecting them that represents the net gain from fusing the two loops.

Now, the pair-wise fusion algorithm can proceed normally on the supernodes
and the edges between them. After fusing a pair of loops, edge weights between
supernodes have to be updated and the loop-crossing dependence edges adjusted.
For this step, we need to examine each loop-crossing dependence coming into and
out of the fused loop nest. The edges within the supernodes representing outer
loop reuse also have to be examined. We note however, that the number of edges
in both cases is bounded above by the number of arrays in the loop. Hence, the
complexity of a reweighing operation will be O(A) where A is the number of arrays
in the program. Having the complexity of the update operation bounded by the
number of arrays ensures that the fast greedy algorithm will be able to maintain its
original asymptotic time bound inspite of the more detailed profitability analysis.

3.6 Parameterizing the Model

Even the most detailed analytical models may not produce the optimal fusion so-
lution. Profitable fusion depends on a number of architectural features and it is
often difficult to determine a priori how these features will interact with the fu-
sion choices. For example, using the model presented in 3.3 we may be able to
make a prediction about the possibility of conflict misses but we cannot say how
good our prediction is until the program is actually run on the target machine.
Similar uncertainties remain in measuring register pressure and cache footprints.
Our approach to dealing with these uncertainties is the use of empirical tuning.
In this section, we show how the analytical model that we have presented in this
paper can be parameterized and used in an empirical tuning framework.

114 A. Qasem and K. Kennedy

The basic idea behind our algorithm for empirically tuning fusion parameters is
this: we identify system resources (e.g. available registers) that impose constraints
on fusion choices. We then introduce a tolerance factor T' which determines how
much of a given resource we can use in each tuning step. The relationship between
the tolerance factor for a given resource R and the available resource R’ can be
expressed as

R = f(T,R)st. R <R

For example, in the instance of tuning the register pressure parameter, the func-
tion f() is a multiplication of the tolerance factor T' with the register set size fol-
lowed by a ceiling operation on the product. We start off conservatively with a low
tolerance factor and increase the value of T" at each subsequent iteration. We stop
the iterative process either when performance degrades or when we have reached
the availability threshold of a particular resource.

Since, at each step we only relaxz some fusion constraint, it is easy to show that
the set of fused loops grows monotonically during the tuning process. Because of
this property we chose a search strategy that is sequential and orthogonal. For n
resources we have an n-dimensional search space where the size of each dimen-
sion is the range of tolerance factors for a particular resource. For each dimension
we perform a sequential search. When searching in a particular dimension we use
reference values for all other dimensions.

Our current search model includes three resources: data cache capacity, instruc-
tion cache capacity and register pressure. Although, these three resources are some-
what similar they interact with fusion choices in different ways and hence consti-
tute individual search dimensions. We discuss the tolerance factors and feedback
parameters for each of these resources next.

Effective Cache Capacity: We compute the effective cache capacity using
Eq. 1. Intuitively, Eq. 1 tells us what fraction of the cache we can use so that there
is T% probability of a conflict miss between two accesses to the same memory
location. So, in this case we have

Effective D-Cache Capacity = E(a, s, T)

where E(a, s, T) is obtained from Eq. 1.

We start of with a low value for T' (T < 0.02) and at each step we increment T'
by 0.05 and measure the number of data cache misses at different levels. We stop
the search in this dimension when we reach a T' for which the number of cache
misses increases.

Register Pressure: For the register pressure constraint we have the following
equation for 7'

Effective Registers = [T x Register Set Size| where 0 < T <1

Feedback parameters we use here are total loads and cycle count. Both parameters
serve as good indicators about the occurrence of register spills.

A Cache-Conscious Profitability Model for Empirical Tuning of Loop Fusion 115

Table 1. Performance results for advect3d (large) for different fusion strategies

Fusion Cycles L1D Misses L2 Misses L1 I Misses Loads Speedup
Strategy (x10%) (x107) (x10%) (x10°) (x10®) over no-fuse

ccfm 8.41 4.48 5.13 6.14 3.66 1.17
simple 12.30 3.78 5.08 4.31 4.26 0.80
mips-pro 9.86 3.76 9.18 6.16 3.06 1.00
no-fuse 9.87 3.76 9.19 6.26 3.06 1.00

Table 2. Performance results for advect3d (small) for different fusion strategies

Fusion Cycle L1D Misses L2 Misses L1 I Misses Loads Speedup
Strategy (x10%) (x107) (x10%) (x10%) (x10%) over no-fuse

ccfm 4.22 1.38 2.29 6.98 1.19 1.08
simple 5.70 1.68 2.79 7.80 1.61 0.80
mips-pro 5.73 1.68 2.80 7.80 1.61 0.80
no-fuse 4.58 1.46 2.49 6.98 1.30 1.00

Instruction Cache Capacity: The instruction cache constraint is dealt sep-
arately since we do not compute reuse distances for instruction and we are mainly
concerned with capacity misses. So, in this case we have:

Effective I-Cache Capacity = [T x Capacity(I-Cache)] where 0 < T <1

For feedback we measure instruction cache misses directly.

4 Preliminary Evaluation

We are currently in the process of implementing our profitability model in a
performance-based empirical tuning framework[12]. The system includes a source-
to-source code transformer (LoopTool) that is capable of performing a collection
of loop optimizations including multi-level fusion. In this section, we present an
evaluation of our model using the empirical tuning framework.

We applied our model by hand to a set of benchmarks. We then annotated the
source with directives to tell LoopTool which loops to fuse. The transformed code
was then compiled using the native compiler on the target platform.' In order to
avoid conflicts with the fusion strategies of the native compiler, programs trans-
formed by LoopTool were compiled with the fusion option turned off. All experi-
ments were performed on an SGI R12K machine with a two-level cache hierarchy.
Experiments were run on four different programs: advect3d an advection kernel
for weather modeling, erlebacher a differential equation solver, 1iv18 a hydro-
dynamics kernel from Livermore loops and mgrid, a multi grid solver from SPEC

! Since, we applied the model by hand we do not have numbers for the total tuning time.
The measured time for the source-to-source transformation was never more than 15
seconds.

116 A. Qasem and K. Kennedy

Table 3. Performance results for erlebacher for different fusion strategies

Fusion Cycle L1D Misses L2 Misses L1 I Misses Loads Speedup
Strategy (x10%) (x10%) (x107) (x10%) (x10%) over no-fuse

ccfm 5.23 2.00 2.72 6.57 4.02 1.08
simple 5.68 1.85 3.09 6.77 3.90 0.99
mips-pro 5.23 1.70 2.74 9.85 4.52 1.08
no-fuse 5.65 2.34 2.92 5.95 4.34 1.00

Table 4. Performance results for 1iv18 for different fusion strategies

Fusion Cycle L1D Misses L2 Misses L1 I Misses Loads Speedup
Strategy (x10%) (x10%) (x107) (x10%) (x10°) over no-fuse

ccfm 3.77 2.14 2.33 4.52 1.55 1.46
simple 3.77 2.14 2.33 4.52 1.55 1.46
mips-pro 5.06 2.32 3.33 5.54 0.98 1.09
no-fuse 5.51 2.62 4.08 5.13 1.18 1.00

2000. We compare results from applying our strategy (ccfm) with three different
strategies: the simple strategy always fuses loops that share some common data,
mips-pro is the fusion strategy chosen by the MIPSPro 7.3 compiler and no-fuse
is the option of applying no fusion at all.

Results from advect3d using a 256 x 256 x 256 data set is presented in Table 1.
The results show that our strategy is able to achieve a 17% speedup over both
mips-pro and no-fuse. Performance improvement of ccfm over simple is even
more dramatic (46%). For advect3d, ccfm fuses all loops at the two outer levels
but refrains from fusing all the innermost loops because it estimates the register
pressure will exceed available resources on the target machine. simple fuses all
loops at each nesting level and creates a large fused body for the inner loop. As
a result, this version of the code incurs many register spills as indicated by the
large number of issued loads in column 6 of Table 1. Although simple is able to
achieve some locality in L1 and L2 cache and also the L1 instruction cache, the
cost of register spills for this strategy outweighs its benefits. The peformance of
mips-pro and no-fuse is almost identical in this case. Closer inspection of the
generated code revealed that MIPSPro chose not to fuse any loops for advect3d
because the data set was too large for the stack frame size for the target machine.
For this reason, we ran another set of experiments with advect3d using a smaller
(128 x 128 x 128) data set. Results from the second set of experiments are shown in
Table 2. Again, ccfm performs significantly better than both no-fuse and simple.
Although, the performance gains have somewhat diminished due to the smaller
data set. The more interesting result from this set of experiments is the perfor-
mance of the mips-pro strategy. mips-pro performs as poorly as simple in this
case. We inspected the code generated by mips-pro and discovered that it cre-
ated two separate fully fused loop nests from the 27 fusible loops in the program.
In addition, it performed tiling on each fused loop nest. As it turned out the combi-
nation of fusion and tiling was not able to improve locality in the program. This is

A Cache-Conscious Profitability Model for Empirical Tuning of Loop Fusion 117

Table 5. Performance results for mgrid for different fusion strategies

Fusion Cycle L1D Misses L2 Misses L1 I Misses Loads Speedup
Strategy (x10'%) (x10%) (x107) (x10%) (x10°) over no-fuse

ccfm 1.05 4.63 6.37 3.39 3.64 1.07
simple 1.02 4.53 6.27 3.31 3.59 1.11
mips-pro 1.02 4.53 6.27 3.26 3.59 1.11
no-fuse 1.13 5.14 6.86 3.74 3.74 1.00

indicated by the increased number of misses at all levels of the cache. These results
demonstrate that indiscriminate fusion can indeed lead to performance degrada-
tion. Our fusion strategy, although less aggressive, achieves locality at both cache
levels while keeping the register spill cost at a moderate level. Hence, we are able
to achieve an overall performance improvement across all levels of the memory
hierarchy.

Results from our experiments with erlebacher are presented in Table 3. Again
ccfm is able to outperform both simple and no-fuse through improved local-
ity in the L2 cache. However, in this case mips-pro does as well as ccfm. For
erlebacher, mips-pro fuses loops that our fusion strategy rejects because of lost
reuse in the outer loops. However, as was the case with advect3d, the MIPSPro
compiler applies tiling to these fused loops and in this case tiling is able to recover
some of the lost reuse due to over fusion. Thus there is no significant increase in
the number of L2 cache misses for mips-pro.

In Table 4 we present results from 1iv18. We observe the most significant per-
formance improvement for this kernel. This is not surprising since all the work in
1iv18 is spent in three fusible loop nests. For 1iv18, our fusion strategy chooses
to fuse all three loops all the way through which is equivalent to the simple strat-
egy. Thus in Table 4 the rows corresponding to ccfm and simple are identical. We
notice that fusing all the way through does cause some extra loads. However, this
loss is more than offset by the benefits obtained from reduced L2 cache misses.
mips-pro does not do too well on 1iv18. It decided to fuse only two of the three
fusible loops in the kernel leaving some unexploited reuse in the third loop nest. It
was not totally clear as to why mips-pro decided not to fuse the third loop nest.
We speculate that it may have been due to loop alignment issues. The loop nests
in 1iv18 need to be aligned before they can be fused. For LoopTool we use the
Omega code generator which inserts guards within fused loop nests after align-
ment. On the other hand, it appears that MIPSPro prefers to peel off iterations
of the loop nest that fall outside the alignment range. It is possible that because
of this approach the third loop nest was left unfused. Thus the performance im-
provement we observe over mips-pro may not be due to an improved profitabil-
ity model but rather due to a limitation in their implementation of the fusion
algorithm.

The final benchmark we look at is mgrid. The experimental results from mgrid
are presented in Table 5. In this case, although ccfm achieves better performance
than no-fuse it is beaten by both mips-pro and simple. mgrid poses a similar
situation as advect3d for our fusion strategy. Because ccfm expects lost reuse in

118 A. Qasem and K. Kennedy

1.50

=
N
=)

=
w
=]

=
Y]
=]

M ccfm
Osimple

Hl mips-pro
M no-fuse

an

4
©
o

Speedup over no-fuse
5 &
o o

o
o
o

e
N
=]

advect3d erlebacher livlg mgrid
Benchmarks

Fig. 2. Performance improvement for different fusion strategies

outer levels it chooses to perform only a two level fusion leaving the innermost
loops alone. On the other hand, mips-pro decided to fuse all the way through
and then apply both tiling and outer loop unrolling to the fused loop nests. This
combined transformation strategy improved locality for L2 cache and also reduced
the number of loads for the program.

We summarize the results of our experiments in Fig 2. The experimental re-
sults presented in this section expose several key aspects for profitable loop fusion.
The results show that overly aggressive fusion can indeed lead to performance loss
through increased register pressure and lost reuse at outer levels of loop nests. In
some cases, this loss can be mitigated by applying transformations such as tiling
and unroll-and-jam. However, there are cases when these additional transforma-
tions are unable to help improve the overall performance. Thus the interaction
between fusion and other transformations, particularly tiling is critical in improv-
ing memory performance. To address this issue, we have begun work on a more
complex model discussed in the concluding section.

5 Accuracy of the Cache Miss Prediction Model and Its
Implications

The cache miss model presented in Section 3.1 makes the assumption that memory
accesses between any two reused references are essentially random. Although, this
scheme works well when integrated with the rest of our framework it is important
to evaluate the accuracy of the model on its own. To validate our model, we per-
formed a series of experiments with a set of synthetic benchmarks and real-world
applications [11]. In this section, we provide a brief summary of the experimental
results and discuss their implications.

Experimental results from [11] revealed that our model is able to predict an
upper bound for the conflict miss rate with reasonable accuracy. However, the pre-
dicted upper bound for the miss rate can sometimes be significantly greater than
the actual miss rate of the program. Although a conservative estimate suffices for
profitability estimates of loop fusion it is important to consider its implications on
other transformations. A key transformation for improving memory performance

A Cache-Conscious Profitability Model for Empirical Tuning of Loop Fusion 119

in numerical applications is tiling. If we use our conflict miss model with tiling then
the effective cache capacity would directly determine the tile size for a given loop
nest. In that case, a conservative estimate would imply choosing a smaller tile size
which in turn may lead to lost reuse in inner loops. Therefore, in such situations
we need a cache miss model that is able to predict the cache miss rate more ac-
curately. We are currently working on such a model. Our new model incorporates
the effects of tiling and also considers the layout of arrays in memory.

6 Conclusions and Future Work

In this paper, we have presented a model for estimating the profitability of loop
fusion and a strategy for parameterizing the model for use in an empirical tuning
framework. Preliminary experiments in Section 4 suggest that our strategy can
help make the right fusion choices on a set of applications. However, to make a
stronger statement about the effectiveness of our approach the model has to be
evaluated on a large class of benchmarks and a variety of platforms. Our future
plans include a complete implementation of the model in our empirical tuning
framework and a more thorough evaluation on a large benchmark suite.

Experimental results from Section 4 also emphasize the need for considering
interactions between optimizations for overall improvement in memory perfor-
mance. In particular, there are complex interactions between tiling and fusion that
need to be considered to make fusion profitable. By merging loop bodies fusion can
increase the working set size of a loop nest and force the selection of a smaller tile
size. A smaller tile size might result in lost reuse in the inner loops. If arrays are
not aligned at cache line boundaries (generally the case) then a smaller tile size
may result in lost reuse in outer loops as well. In such cases, it may be profitable
to tile the two loop nests separately. We are currently working on a profitability
model that considers these complex interactions between tiling and fusion to im-
prove overall memory performance. In addition, this model employs a more accu-
rate estimator for effective cache capacity that takes the effects of tiling and array
allocation strategies into account.

References

1. S. Carr. Memory-Hierarchy Management. PhD thesis, Dept. of Computer Science,
Rice University, Sept. 1992.

2. A. Darte. On the complexity of loop fusion. In PACT ’99: Proceedings of the 1999 In-
ternational Conference on Parallel Architectures and Compilation Techniques, 1999.

3. C. Ding and K. Kennedy. Resource-constrained loop fusion. Technical report, Dept.
of Computer Science, Rice University, Oct. 2000.

4. C. Ding and K. Kennedy. Improving effective bandwidth through compiler enhance-
ment of global cache reuse. In International Parallel and Distributed Processing
Symposium, San Francisco, CA, Apr. 2001. (Best Paper Award.).

5. G. Gao, R. Olsen, V. Sarkar, and R. Thekkath. Collective loop fusion for array
contraction. In Proceedings of the Fifth Workshop on Languages and Compilers for
Parallel Computing, New Haven, CT, Aug. 1992.

120

6.

7.

10.

11.

12.

13.

14.

15.

A. Qasem and K. Kennedy

M. D. Hill and A. J. Smith. Evaluating associativity in cpu caches. IEEFE Trans.
Comput., 38(12), 1989.

K. Kennedy. Fast greedy weighted fusion. In ICS ’00: Proceedings of the 14th in-
ternational conference on Supercomputing, 2000.

. K. Kennedy and K. S. MC¢Kinley. Maximizing loop parallelism and improving data

locality via loop fusion and distribution. In Proceedings of the Sizth Workshop on
Languages and Compilers for Parallel Computing, Portland, OR, Aug. 1993.

. A. Lim and M. Lam. Cache optimizations with affine partitioning. In Proceed-

ings of the Tenth SIAM Conference on Parallel Processing for Scientific Computing,
Portsmouth, Virginia, Mar. 2001.

K. S. McKinley, S. Carr, and C.-W. Tseng. Improving data locality with loop trans-
formations. ACM Transactions on Programming Languages and Systems, 18(4):424—
453, July 1996.

A. Qasem and K. Kennedy. Evaluating a model for cache conflict miss prediction.
Technical report, Dept. of Computer Science, Rice University, Oct. 2005.

A. Qasem, K. Kennedy, and J. Mellor-Crummey. Automatic tuning of whole ap-
plications using direct search and a performance-based transformation system. In
Proceedings of the Los Alamos Computer Science Institute Second Annual Sympo-
stum, Santa Fe, NM, Oct. 2004.

Y. Song, R. Xu, C. Wang, and Z. Li. Data locality enhancement by memory reduc-
tion. In Proceedings of the 15th ACM International Conference on Supercomputing,
Sorrento, Italy, June 2001.

S. Verdoolaege, M. Bruynooghe, G. Jenssens, and F. Catthoor. Multi-dimensional
incremental loop fusion for data locality. In Proceedings of the IEEE International
Conference on Application Specific Systems, Architectures, and Processors, June
2003.

M. E. Wolf and M. Lam. A data locality optimizing algorithm. In Proceedings of the
SIGPLAN °91 Conference on Programming Language Design and Implementation,
Toronto, Canada, June 1991.

Optimizing Matrix Multiplication with a Classifier
Learning System*

Xiaoming Li and Maria Jestus Garzaran

Department of Computer Science
University of Illinois at Urbana-Champaign
{x1115, garzaran}@cs.uiuc.edu

http://polaris.cs.uiuc.edu

Abstract. Compilers have been very successful on automating the process of
program optimization, but there is still a significant difference in performance
between the code generated by the compiler and the hand-optimized code. Li-
brary generators such as ATLAS, SPIRAL, and FFTW address this problem by
using empirical search to find the parameter values of certain optimization such
as degree of unroll. We have recently developed a generator of sorting routines.
Sorting differs from the algorithms implemented by other library generators in
that performance of sorting depends not only on the target platform but also on
the characteristics of the input data. In our work we used a classifier learning sys-
tem to generate sorting routines that are capable of adapting to the input data. In
this paper we follow a similar approach and use a classifier learning system to
generate high performance libraries for matrix-matrix multiplication. Our library
generator produces matrix multiplication routines that use recursive layouts and
several levels of tiling. Our approach is to use a classifier learning system to
search in the space of the different ways to partition the input matrices the one
that performs the best. As a result, our system will determine the number of lev-
els of tiling and tile size for each level depending on the target platform and the
dimensions of the input matrices.

1 Introduction

Compilers have been very successful on automating the process of program optimiza-
tion, but there is still a significant difference in performance between the code generated
by the compiler and the hand-optimized code. The growing complexity of the architec-
tural features of modern processors makes it very difficult to optimize performance. An
approach that some researchers have followed is to use library generators to generate
high performance code for some specific problem domains.

Examples of well-known library generators are ATLAS [30], PHiPAC [4], FFTW
[11] and SPIRAL [33]. ATLAS and PHiPAC generate linear algebra routines and fo-
cus the optimization process on the matrix multiplication routine. During installation,
the parameter values of a matrix multiplication implementation, such as tile size and

* This work was supported in part by the National Science Foundation under grant CCR 01-21401
ITR; by DARPA under contract NBCH30390004; and by gifts from INTEL and IBM. This work
is not necessarily representative of the positions or policies of the Army or Government.

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 121-135, 2007.
(© Springer-Verlag Berlin Heidelberg 2007

122 X. Li and M.J. Garzaran

amount of loop unrolling, that deliver the best performance are identified using
empirical search. This search proceeds by generating different versions of matrix multi-
plication that only differ in the parameter value that is being sought. An almost exhaus-
tive search is used to find the best parameter values. The other two systems mentioned
above, SPIRAL and FFTW, generate signal processing libraries.

Recently we have built a library generator for sorting [17,18]. Sorting is different
from the algorithms implemented by the previous library generators in that performance
of sorting depends not only on the target platform but also on characteristics of the input
data, which are only known at runtime. In the work presented in [18] we used a classifier
learning system to generate algorithms capable of adapting to the input data. In the work
discussed herein, we follow a similar approach and use a classifier learning system
to generate high performance libraries for matrix-matrix multiplication (MMM). Our
library generator generates MMM routines that use recursive layouts [7,8] and several
levels of tiling. Our approach is to use a classifier learning system to search among
all the different ways to partition the input matrices, the one that performs the best.
The MMM routine generated with our classifier learning system uses different levels
of tiling and tile sizes based on the dimensions of the matrices and the architectural
features of the target machine.

ATLAS is a library generator that also produces a MMM routine. The difference
between our approach and the one followed by ATLAS is that we use recursive layouts
to place the blocks in consecutive memory locations and focus the search on levels of
tiling and size of each tile. ATLAS does not search for the number of levels of tiling. In
fact, ATLAS only searches for the tile size for a single level of tiling, although a second
level of tiling can be implemented [1]. Also, notice that the performance delivered by
ATLAS in some platforms is still far from the one delivered by the vendor provided
libraries [36], mainly because ATLAS does not take into account all the levels of the
memory hierarchy and does not take advantage of some optimizations like prefetching.
Our objective is to reduce the performance gap between the hand-optimized code and
the automatic generated code by extending the search to consider parameters ignored
by ATLAS.

When using a single level of tiling, it has been shown that a model can predict the
best value of the tile size almost as well as the empirical search of ATLAS by simply
taking into account certain cache parameters [35,36]. However, when tiling for the dif-
ferent levels of the memory hierarchy, the size of the matrices becomes important. If
the matrices are not a multiple of the tile sizes, we need to use padding or cleanup code.
With padding, the size of the matrices is increased with additional rows or columns of
zeros. Arithmetic operations are usually blindly performed on them. With cleanup, ad-
ditional code (which is usually suboptimal) is executed to multiply the remainder rows
or columns. With recursive layouts, padding is the method usually preferred. Given the
large sizes of the second and third level of caches of current machines (6 to 8 MB),
padding can represent a significant overhead if the tile sizes are computed without tak-
ing into account the matrix sizes. On the other hand, choosing the tile sizes based on
the matrix sizes and disregarding the cache sizes will result in poor cache utilization.
In addition, choosing the number of levels of tiling based on the number of caches of
the machine may result in slow-downs. In some platforms it is better to use a single

Optimizing Matrix Multiplication with a Classifier Learning System 123

level of tiling because additional levels of tiling introduce additional instructions such
as branches that may execute slowly.

We compared the MMM routine generated using a classifier learning system with the
MMM routine generated by ATLAS when multiplying matrices of sizes 1000 to 5000.
Our preliminary results show that the MMM routine generated using the approach we
follow in this paper runs always faster than ATLAS in a Sun UltraSparc III by an av-
erage 18%. In the case of Intel Pentium Xeon, our routine is almost always faster than
ATLAS by an average 5%. However, ATLAS runs on average 14% faster than our rou-
tine in Intel Itanium II. Our experiments also show that padding is important to obtain
high performance, and we plan to implement more sophisticated padding strategies to
improve the performance of the generated library.

The paper is organized as follows. Section 2 revises some of the compiler optimiza-
tions that are applied to MMM. Section 3 presents the partition primitives that will
be used by the classifier learning system, which is presented in Section 4. Section 5
presents our experimental setup and preliminary results. Section 6 presents related
work, and finally, Section 7 concludes.

2 Matrix-Matrix Multiplication

In this Section we present an overview of an automatic tiling and discuss copying and
recursive layouts in the context of matrix-matrix multiplication.

A naive implementation of matrix-matrix multiplication is shown in Figure 1-(a).
Usually this code runs slowly because of the poor utilization of cache memories. A
transformation used to increase cache locality is loop tiling. This transformation was
first introduced by McKellar and Coffman [19] and discussed in the context of compil-
ers by Abu-Sufah [3] and later by Wolfe [32]. Figure 1-(b) shows the code for a tiled
matrix-matrix multiplication using a square tile of size NB x N B. This tile size is a
parameter that must be chosen to minimize capacity misses. However, when the ma-
trices are large each row (in a row major layout) can be in a different physical page
and then TLB misses can occur. This problem can be avoided if the tile selection con-
siders the number of entries in the TLB in conjunction with the cache size [20]. In
any case, to reduce conflict and TLB misses, tiling is usually used in combination with
copying [16,28] where the elements of each N B x N B submatrix are copied into con-
tiguous memory locations.

Tiling has been extensively considered in the literature when applied to a single cache
level [9,16,21,25,35]. However, when tiling for a single level of cache, we do not exploit
all the cache levels. For example, Figure 2-(a), shows the order in which the submatrices
of A, B and C are accessed when executing the code of Figure 1-(b). Each iteration of
the outermost loop (j) will traverse the 16 blocks of matrix A. Unfortunately, if matrix
A is large, it will not fit in the second level cache. Therefore each j iteration will have
to bring all the A blocks back to the second and first cache level. A solution to this
problem is to apply another level of tiling [25,34].

Suppose that we apply another level of tiling to the code in Figure 1-(b) by adding
three additional loops with the same order JI/K. The outer loops would operate on
blocks consisting of 2 x 2 tiles so that the blocks of matrix A will be traversed in the

124 X. Li and M.J. Garzaran

for (j=0;j < M;j+ = NB)
for (i=0;i < N;i+ = NB)
for (k=0;k < K;k=+NB)

for (j=0;5 < M;5++) for (jj=0;j5<j+ NB;jj++)
for (1=0;i < N;i++) for (11 =0;4 <i+ NB;ii+ +)
for (k=0;k < K;k++) for (kk =0;kk < k+ NB;kk++)
Cla][j]+=Al][k] = B[K][j Cléd][jj]+=Alid] [kk] = B[kE][j]
(a) Naive implementation (b) Tiled implementation

Fig. 1. Matrix Multiplication Code

matrix C matrix A matrix B matrix C matrix A matrix B
[) — [
i
| | 7 7 7 1 7
el B .
| = =
-] Uyy % A 24 A 24 AN =
(a) One level of Tiling (b) Two levels of tiling. Recursive layouts

Fig. 2. Memory layouts for tiled matrix-matrix multiplication. (a)- One level of tiling and block
data layout. (b)- Two levels of tiling and recursive layout.

order shown in Figure 2-(b). The blocks of the second level of tiling are no longer con-
secutive in memory and, as a result, these accesses can result in cache conflicts and
TLB misses [22]. To avoid this problem, nonlinear array layout or recursive layouts
together with tiling have been used [7,8]. The idea is to copy these blocks into consecu-
tive memory locations. These array layouts are described as based on quadtrees [10] or
on space-filling-curves[15,23,27]. Instances of this family are familiar in parallel com-
puting under the names Morton ordering and Hilbert Ordering. The layout shown in
Figure 2-(b) for matrix A is known as Z-Morton. These recursive layouts were shown
to deliver high performance [7,8], but some considerations need to be taken into account
in their implementation:

e These nonlinear layouts can be applied recursively down to the level of individual
matrix elements [10]. However, Chatterjee et al. [8] showed that this was counter-
productive, and that it is better to follow a recursive layout only until the tile fits in
the cache.

e These recursive layouts require that for a matrix of size M X N and a tile of size
tm x tn, the following equations be satisfied: tj\fn = t]\va = 29, Sometimes it is

necessary to add padding to the matrix in order to satisfy this equation. The general

idea is to select the appropriate tile ¢m x tn for the cache of the machine, insert a

zero padding and perform the arithmetic operations on the zero padding.

3 Partition Primitives

The library generator used in this study produces a matrix-matrix multiplication
(MMM) routine that computes C' = aAB + SC, where A, B and C' are matrices

Optimizing Matrix Multiplication with a Classifier Learning System 125

of dimensions M x K, K x N and M x N respectively. The generated MMM routine
uses multilevel tiling and recursive layouts as discussed above. The routine first copies
the original matrices from row or column major layout to the recursive layout. Then, it
multiplies the matrices and transforms the resulting C matrix back to the row or column
major layout. The copy and multiplication procedures are determined by the number
of levels of tiling and tile sizes. These values will be selected using empirical search
as discussed below. This Section describes the partition primitives which will be used
by the search procedure to determine the best number of levels of tiles and tile sizes
for the dimensions of the input matrices and target architecture. Before explaining the
primitive partitions, we briefly describe the procedures for copying and padding.

We denote the matrix dimensions at level ¢ as M;, N; and K;, where 4 ranges from
1 to the number of levels of tiling. If the matrices at level ¢ are partitioned with
factors pm;, pn; and pk;, the dimensions of each submatrix in the next recursion level
will be M;_1 = %, N;,_1 =]\:L and K;_1 = Ii respectively. The partition factors
determine how the sub-blocks must be copied from row (or column) major layout to the
recursive layout. An example of these recursive layouts has been shown in Figure 2-(b).

2004

500
1000 (I | T

1
————r——-——

1

T

1

1

paddin£g

first level padding

second level

Fig. 3. Example of padding

When the factors in the partition vector are not a divisor of the matrix dimensions we
need to use padding. For example suppose A is a matrix of 2000 x 1000, and we divide
it first by (3,2) and then (4,1). Since 3 is not a divisor of 2000, we need to add padding
so that we can divide the matrix in exactly 3 pieces. Each resulting submatrix will be
of size 667 x 500. Now, the 667 elements of the X dimension need to be divided by 4.
Since 4 is not a divisor of 667, we need to pad each submatrix, and make them to be
668. Thus, we end up with a matrix of size 2004 x 500. We have 4 additional columns
of zeroes which will be blindly multiplied. The example is shown in Figure 3.

Next, we describe the partition primitives that we use in this work.

1. Partition by Block(PB)
This primitive specifies the tile or block size. It has three parameters, which are the
block size for each M, N and K dimension. So, consider M = 100, N = 100, K =
40. If we want tiles of sizes 50, 50, and 20 for the dimensions M, N, and K, respec-
tively, we would specify this as follows Partition By Block (50,50,20).

126 X. Li and M.J. Garzaran

The Partition By Block primitive will compute the partition factors (pm,pn,
pk) as follows:

k
pm = b%Japn = LbTTLLJ’pk = Lka
The Partition by Block primitive allows to specify tiles of any size, not
only square tiles.

2. Partition by Size(PS)

This partition primitive specifies the size of a block and partitions the different di-
mensions of the matrix until the resulting submatrices are equal or smaller than the
size of the specified block. The primitive guarantees that the ratio between the di-
mensions is kept constant. The primitive allows the specification of the dimensions
to be partitioned. It has four parameters. The first three parameters specify if a given
dimension M, N and K needs to be partitioned. The fourth parameter specifies the
block size. The algorithm used by this primitive is shown below.

Input Parameters:
m,n,k: input matrix dimensions
muse, nuse, kuse: boolean variables indicating the
dimensions to be partitioned
size: the block size

begin
. _ MIN(m,n,k)
maxratio = 9

for (ratio=maxratio; ratio > 2;ratio--) {

if (muse) tmpm=[™.

if (nuse) tmpn=[.

if (kuse) tmpk=[k.

tmpsize=tmpm * tmpk + tmpk * tmpn + tmpm * tmpn
if (tmpsize < size)
break;

}

if (muse) pm ratio;

if (nuse) pn ratio;

if (kuse) pk = ratio;
end

Notice that most of the previous research on recursive layouts works by divid-
ing each dimension by half. The Partition by Size primitive is a general-
ization of the divide by half strategy which can be implemented by setting
muse = nuse = kuse = true and size = MrEtEsntmEn 1h gome studies, the
recursion is carried down all the way to the individual elements [10,12]. The work
in [12] showed that this strategy resulted in minimum number of cache misses. Un-
fortunately in this case minimizing the number of misses does not necessarily results
in better performance, because of the additional instructions that need to be exe-
cuted. In fact, the work by Chaterjee et al. [7,8] showed that stopping the recursion

Optimizing Matrix Multiplication with a Classifier Learning System 127

at tiles of the appropriate size returned better performance. In this paper, when gen-
erating the kernel routine for the MMM we will follow the approach of Chatterjee et
al.(Section 5).

4 Classifier Learning System

To build a high performance library we need to determine how the input matrices should
be partitioned along the M, N and K dimensions. The best partitioning is a function of
architectural features such as number of caches and size of each cache and the dimen-
sions of the input matrices. Choosing the correct partition is hard. For some machines,
we need to apply a single level of tiling, since the overhead of the additional instruc-
tions executed when more levels of tiling are applied results in lower performance.
Even when tiling for a single level of cache we need to decide whether to tile for L1 or
L2 [2,35]. When tiling for L2 and L3, it is important to take into account the dimen-
sions of the matrices. Since L2 and L3 tend to be large (sometimes 6 or 8 MB), when a
dimension of the matrix is not a multiple of the tile size, the amount of padding can be
substantial.

We plan to use the partition primitives described in the previous Section as the build-
ing blocks to generate a MMM library. By combining the different primitives and se-
lecting different parameter values, the space of the different algorithms that we can
generate is very large. As a result, exhaustive search is unfeasible. Our approach is to
use a classifier learning system [6,24,31] to search the space of possible algorithms.
The main reason to use a classifier learning system is that with this mechanism input
characteristics can be used to create a table with the best partitioning parameters. This
table can be used at runtime to enable dynamic adaptation.

A classifier system consists of a set of rules. Each rule has two parts, a condition and
an action. A condition is a string that encodes certain characteristics of the input, where
each element of the string can have three possible values: “0”, “1”, and “*” (don’t care).
Similarly, the input characteristics are encoded with a bit string of the same length. If
1 and c are the input bit string and the condition string respectively, we can define the
function match(i, c) as follows:

true, ¥(j)i; = ¢; V¢; =" ', wherej = length of the bit string
false, otherwise

match(i, c) = {

If there is only one match(i, ¢) which is true, the action corresponding to the con-
dition bit string c is selected. However, for a given input several matches are possible.
In this case, we will choose one action among all the rules that match. The mechanism
for the selection is explained below (in Section 4.3).

Next we explain how the classifier learning system is tuned for each platform and
input

4.1 Representation

Encoding of the Rule Condition. The input characteristic that will determine the pa-
rameter values of the partition primitives is the dimension of the matrices. Thus, we will
encode possible values of the dimensions of the matrices A, B and C in the condition
of the rules.

128 X. Li and M.J. Garzaran

Action of the Rule. The action part will be a list of the partition primitives partition
by size (PS) or partition by block (PB) with their corresponding pa-
rameter values. For example, an action will have the shape (PS param-list (PB
param-1list)), where param-1ist is the list of parameters. This action will re-
turn a single function that will decompose the input matrices of size M x N x K into
submatrices of size M’ x N’ x K, that result from applying first the PS primitive and
them the PB primitive.

Notice that each action, even if it contains several partition primitives correspond to
a single level of tiling. To apply several levels of tiling, we can recursively invoke the
rule set of the classifier system with the size of the resulting submatrices. The recursion
will finish when the number of levels of tiling has already reach the maximum number
of levels allowed, or when the size of the submatrices is within a predefined range.

4.2 Training

During the training process we generate matrices of different sizes. Given a training in-
put, we have a match rule set, which are the set of rules where the condition matches the
bit string that encodes the input characteristics. We use a XCS classifier learning system
as the one in [6,31]. In this type of classifier systems, each rule has two attributes. The
first attribute is the fitness. The fitness is an estimation of the performance of this rule
on the inputs that match the associated condition. The second attribute is the accuracy.
The accuracy measures the confidence of the fitness attribute in predicting the correct
performance.

In our approach we use a multi-step classifier system, since the output of an invo-
cation can be used as the input for the next invocation. This system works as follows.
The first time we invoke the rule set with a training input we have a match rule set. All
the actions in the matching rules are the set of strategies that can be used to partition
the input matrices. During the training process, all the actions in the matching rules are
applied. Thus, given an input of size M x IN x K, the result will be submatrices of sizes
M! x N} x K/, where i = 1..number of matching rules. Each of the M/ x IN} x K/
generated outputs can be used as the input to the next invocation to the learning classi-
fier system. The system, as explained above, will stop when the maximum level of calls
is reached or when the size of the submatrices is within a specified range. At the end,
we have many different partition strategies, each of them blocking the matrices with
tiles of different sizes, and possibly different levels of tiling. We generate the MMM
routine for each partition strategy and measure the execution time. Based on the results
obtained, we update the fitness and accuracy of all matching rules used to generate each
of the MMM routines. The algorithm is shown in Figure 4.

To generate new conditions and actions, transformations such as mutation and
crossover applied in genetic algorithms [13,18] are also used here. MOre details about
the XCS classifier learning system that we use in this work can be found in [6,31].

4.3 Runtime

At the end of the training phase we have a tuned rule set. At runtime, the bit string
encoding the input characteristics will be used to extract all the rules whose condition
matches the input. Among all these rules, the one selected will depend on a function that

Optimizing Matrix Multiplication with a Classifier Learning System 129

rewards low execution time and penalizes low accuracy. The runtime overhead includes
the computation of the input bit string, and the scan of the rule set to select the best one.
We train the classifier system to learn a set of rules that cover the space of the possible
input parameter values, discover the conditions that better divide the input space and
tune the actions to learn the best partition scheme based on the input characteristics.

Multi Step Classifier Learning
Inputs:
M,N,K: dimensions of the input matrices
1: current level of recursion
Outputs:
pmi, pni, pks, i=[0..max-num-levels]: partition factors
exec: execution time
begin
P= variable that contains the partition factors —pm;, pn;, pki, i=[0..max-num-levels]
Encode M,N,K into the bit string in
mset = &
for each rule r
_
rcond = condition of r
—
if match(in, rcond)
add r to mset
while (mset # @)
extract r from mset
act= action part in r
pmi, pni, pk;= result of applying act on M, N, K
Update P with the new pm, pn, pk;
M', N', K'=result of applying pm, pni, pk; on M, N, K
if notend then
call Multi Step Classifier Learning (M',N', Kl + 1)
else
Run matrix multiply with M, N, K using P
Measure execution time exec
Use exec to update fitness and accuracy of r
return exec
end

Fig. 4. Classifier learning algorithm

5 Experiments

In this section we evaluate our approach of using a classifier learning system to optimize
a MMM routine. In Section 5.1 we discuss the environmental setup that we use for the
evaluation and in Section 5.2 we present performance results.

5.1 Environmental Setup

We evaluated our approach on three different platforms: Sun UltraSparc 111, Intel Ita-
nium 2, and Intel Xeon. Table 1 lists for each platform the main architectural

130 X. Li and M.J. Garzaran

Table 1. Test Platforms. (1) Intel Xeon has a 8KB trace cache instead of a L1 instruction cache.
(2) Intel Itanium?2 has a L3 cache of 6MB.

Sun Intel Intel
CPU UltraSparcIll ~ Itanium 2 P4 Intel Xeon
Frequency 750MHz 1.5GHz 3GHz
L1d/Lli Cache 64KB/32KB 16KB/16KB 8KB/12KB (1)
L2 Cache 1MB 256KB (2) 512KB
Memory 4GB 8GB 2GB
oS Sun0OS5.8 RedHat7.2 RedHat3.2.3
Compiler Workshop cc 5.0 gcc3.3.2 gee3.4.1
Options -native -xO5 -03 -03

parameters, the operating system, the compiler and the compiler options used for the
experiments.

To generate the MMM library we used the classifier learning system. We trained the
classifier with the algorithm of Figure 4. The classifier determines the number of levels
of tiling and the tile size for each matrix size. For the implementation of the MMM
at the last level of tiling we used the kernel generated by ATLAS. ATLAS generates
a MMM routine and uses empirical search to look for the best parameter values of
certain compiler transformations such as tile size, loop unrolling and software pipelin-
ing [30,35,36]. The kernel in ATLAS produces code for a MMM routine with a single
level of tiling and square tiles. Thus, in our MMM library the submatrices in the last
level of tiling must also be square. We allow these submatrices to be in the range of 40
- 120, since this range cover most of the different values that ATLAS finds for current
platforms [36]. ATLAS generates a single MMM routine and searches for the tile size
that obtains the best performance results. In our system, the tile size of the last level is
determined by the classifier learning system, but we use ATLAS to search for the rest of
the other parameters for each tile size in the range 40 - 120. We limited the maximum
number of levels of tiling to be 3, since current architectures have three or less caches,
and our experiments showed that increasing the level of tiling beyond 3 resulted in less
performance. Apart from this, after we determine the partitioning strategy, we need to
copy the tiles to the corresponding recursive layout. In this work we use the Z-Morton
layout, although in a longer study we could also search for the best layout. When the
matrix is not a multiple of the tiling we insert padding, as shown in Figure 3. Padding
can also be necessary to obtain a square tile at the last level of tiling.

To encode the size of the matrices, we used 13 bits per dimension. Since we have
3 dimensions M x N x K, we used a total of 39 bits. Initially we generated 1000
rules, and we randomly generated the condition and the action part of each rule. For the
training we randomly generated matrices whose sizes were between 1000 and 5000.
We did not specify any condition to end the training process. Instead, we let the training
run for a certain amount of time. In the experiments reported here, we let it run for
1 week.

Optimizing Matrix Multiplication with a Classifier Learning System 131

We compare the MMM routine generated by our classifier learning system with three
different approaches:

— L1, where the MMM routine has a single level of tiling.
— L2, where the MMM routine has two levels of tiling.
- ATLAS.

To make a fair comparison with L1 and L2 approaches we used ATLAS to generate
the kernel of the MMM routine. In both cases we used the same copying strategy and
padding as the one used in the MMM routine generated using the classifier. For the L1
approach we used the tile size that ATLAS found to be the best. For the L2 approach
we used the value found by ATLAS for the first level of tiling. For the second level of
tiling we chose the size so that Tile2 = K x Tilel. We selected K so that T'ile2 is
multiple of T'ilel, and smaller than the value that results from resolving the inequality
3xTile2? < CacheSize. The exception is Sun UltraSparc III. This machine has a large
L2 cache (1 MB) and selecting the T2le2 using the previous formula resulted in low
performance, since padding represented a large overhead in some cases. We decided to
select for the Sun UltraSparc a tile of size 1/3 of the computed value using the previous
formulas. Table 2 shows the values used for each T"ilel and T'ile2. In both L1 and L2
we allowed the T'ilel to vary within the value reported in the Table and +/ — 10. We
varied the size of the T'ilel based on the matrix size to minimize the amount of padding.

Table 2. Tile Sizes

UltraSparcllI Itanium 2 P4 Intel Xeon

LI Tile 68 120 60
L2 Tile 380 240 240

For ATLAS we used the code produced by the ATLAS Code Generator using empir-
ical search. ATLAS can also use hand tuned BLAS routines. When ATLAS is installed
these hand-coded routines are also executed and evaluated. However, since in this work
we are only interested on the comparison on the MMM routine generated by ATLAS,
we only used the code generator, without hand-coded code. Notice, that ATLAS can
have a L2 Cache Blocking parameter by setting a variable called CacheEdge. For the
ATLAS experiments, we set this variable to the appropriate value as reported in [1].

5.2 Experimental Results

Figure 5 presents the performance results of the four MMM routines described in the
previous Section: L1, L2, Classifier and ATLAS. For the experiments we multiplied
square matrices whose sizes vary from 1000 to 5000, in steps of 100.

The results vary from platform to platform. In the case of the Sun UltraSparc, Clas-
sifier is always the best. For this platform L2 is also better than ATLAS and L1. For
Itanium 2, the code generated by ATLAS performs better than any of the other routines.
Only in a few points the code generated by the Classifier is equal or better. For Intel

132 X. Li and M.J. Garzaran

Sun UltraSparclIl Intel Itanium 2
1000 T T T T T T T 5000 T T T T

900 -

()¢} g D 4500

w0 o8 A 02%30%03 o Og%;
L 50R 8, A B, ARAE PV i adBa A8 00
J A~ YA AAAA sasiafansas ‘.A“.A...éu adadsard

6009%%13!

500

700 |- 4000

3500

400 - 3000

Performance (MFLOPS)

300 -

Performance (MFLOPS)

2500
200 - :

100 LI . . .
1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1500 2000 2500 3000 3500 4000 4500 5000
Matrix Size Matrix Size

Classifier MMM =@+~ L2 e Classifier MMM =-)-- L2 ol
L1 ATLAS --die L1 ATLAS --din

Intel Xeon

Performance (MFLOPS)

1000 1500 2000 2500 3000 3500 4000 4500 5000
Matrix Size

Classifier MMM =@~ L2 e
(R = ATLAS ==

Fig. 5. Performance Results

Xeon, the code generated by the Classifier is usually the fastest, followed by that of
ATLAS.

It has been stated [26] that tiling for L1 was enough and that multi-level tiling was
not necessary. However, our results for Sun UltraSparc III show that multi-level tiling
can improve performance over one level of tiling, since L2 and Classifier are always the
best approaches for this platform. For the other two platforms it is not clear if multilevel
tiling is better.

The performance results for the Intel platforms Itanium 2 and Xeon shows high vari-
ability in performance for the code generated by Classifier, L1 and L2. Since these 3
approaches use padding when the dimensions of the matrices are not multiple of the tile
sizes, while ATLAS (whose performance is very stable) uses cleanup code, we think
that the variability is due to the fact that the amount of padding changes for the differ-
ent matrices being multiplied. We need to conduct further experiments to verify this.
Also, in the future we plan to study different strategies to pad the matrices more effi-
ciently. For example, we can concentrate all the padding at the end of the matrix, instead
of distribute it in each tile, as we have done in the routine in this paper. We will also
study the possibility of combining cleanup code with recursive layouts. If we find out
that performance is highly dependent on the padding or clean up strategies, we can also
search in this space.

Overall, our results, still preliminary, show that the MMM routine generated us-
ing the approach we follow in this paper runs always faster than the code generated by

Optimizing Matrix Multiplication with a Classifier Learning System 133

ATLAS in a Sun UltraSparc III by an average of 18%. In the case of an Intel Pentium
Xeon, our routine runs almost always faster than ATLAS by an average of 5%. However,
ATLAS runs 14% faster than our routine in Intel Itanium II. In the future, we will also
add more platforms to this study.

6 Related Work

As mentioned in Section 2 the use of loop tiling to increase cache locality has been
extensively studied in the literature. Lam et al. [16], Coleman and McKinley [9] and
others have developed algorithms to compute the optimal tile sizes when a single level
of tiling is applied. Lam et al. [16] present an algorithm that selects the largest square
tile that does not cause self interference misses. Coleman and McKinley [9]’s technique
uses the Euclidean G.C.D. to generate a set of tiles without self-interference misses and
from those tiles select the one that maximizes cache utilization and minimizes cross-
interference misses.

Recursive matrix multiplication has been studied by Frens and Wise [10], Gus-
tavson [14], Chatterjee et al. [8] and Frigo et al [12]. Chaterjee et al [8] shows that
recursive layouts can significantly outperform traditional layouts for standard matrix-
matrix multiplication. They also show that stopping the recursion when the tile fits into
the cache results in better performance because it avoid some of the overheads due to
recursive calls. Our approach is different than that of Chaterjee et al. [8]. We use ma-
chine learning techniques to search for the appropriate number of levels of tiling and
tile sizes based on the dimensions of the input matrices and the architectural platform.

The ATLAS [30] generator uses empirical search to find the optimal tile size for a
single level of tiling. However, the ATLAS’ search problem is simpler than that of our
system because ATLAS only considers the case where the same tile size is used for all
the matrix sizes.

Finally, the approach that we present in this paper is also related to the problem of
selecting from a set of candidate algorithms the one that performs best for a particular
input and system. Systems that follow this approach are described by Li et al. [17,18],
Brewer [5] and Thomas et al. [29]. In [17] we used the Winnow algorithm to select from
three sequential sorting algorithms the one that performs best for a target system based
on the entropy and number of keys of the input data, while in [18] we used a learning
classifier system to generate composite sorting algorithms. Brewer [5] and Thomas et
al. [29] use a framework for algorithm selection to generate parallel operations that
adapt to the input and platform. In particular Thomas et al. [29] describe a general
framework that can be easily extended with new operations and different empirical
learning approaches.

7 Conclusions

In this paper we have generated a MMM routine using a classifier learning system.
The MMM routine generated with our classifier learning system uses different levels
of tiling and tile sizes based on the dimensions of the matrices and the architectural
features of the machine where it is installed.

134 X. Li and M.J. Garzaran

We compared the MMM routine generated using a classifier learning system with the
MMM routine generated by ATLAS when multiplying matrices of sizes 1000 to 5000.
Our preliminary results show that the MMM routine generated using the classifier runs
always faster than ATLAS in a Sun UltraSparc III by an average of 18%. In the case of
an Intel Pentium Xeon, our routine runs almost always faster than ATLAS by an average
of 5%. However, ATLAS runs on average 14% faster than our routine in Intel Itanium II.
Our experiments also show that padding is important to obtain high performance, and
we plan to implement more sophisticated padding strategies to improve the performance
of the generated library.

References

1. ATLAS home page. [Online]. http://math-atlas.sourceforge.net/errata.html#tuneCE.

2. ATLAS home page. [Online]. http://math-atlas.sourceforge.net/faq.html#NB80.

3. W. Abu-Sufah, D. Kuck, and D. Lawrie. On the Performance Enhancememt of Paging Sys-
tems through Program Analysis and Transformations. IEEE Transactions on Computers,
30(5):341-356, May 1981.

4. J. Bilmes, K. Asanovic, C. Chin, and J. Demmel. Optimizing Matrix Multiply using PHiPAC:
A Portable, High-Performance, ANSI C Coding Methodology. In Proc.of the 11th ACM
International Conference on Supercomputing (ICS), July 1997.

5. E. A. Brewer. High-level Optimization via Automated Statistical Modeling. In Proc. of
the Symposium on Principles and Practice of Parallel Programming (PPoPP), pages 80-91,
New York, NY, USA, 1995. ACM Press.

6. M. V. Butz and S. W. Wilson. An Algorithmic Description of XCS. Lecture Notes in Com-
puter Science, 1996:253-272, 2001.

7. S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and M. Thottethodi. Nonlinear Array
Layouts for Hierarchical Memory Systems. In International Conference on Supercomputing,
pages 444-453, 1999.

8. S. Chatterjee, A. R. Lebeck, P. K. Patnala, and M. Thotterhodi. Recursive array layouts and
fast matrix multiplication. IEEE Transactions on Parallel and Distributed Systems, 13:1105—
1123, 2002.

9. S. Coleman and K. s. McKinley. Tile Selection Using Cache Organization and Data Layout.
In Proc. of Int. Conference Programming Language Design and Implementation, pages 279—
290, June 1995.

10. J. Frens and D. Wise. Auto-blocking Matrix-Multiplication or Tracking BLAS3 Performance
with Source Code. In Proc. of the Intenational Symp. on Principles and Practice of Parallel
programming (PPoPP), pages 206-216, June 1997.

11. M. Frigo. A Fast Fourier Transform Compiler. In Proc. of Programing Language Design
and Implementation, 1999.

12. M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-Oblivious Algorithms.
In Proc. of the Intenational Symp. on Foundations of Computer Science (FOCS), October
1999.

13. D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-
Wesley, Reading, MA, 1989.

14. F. G. Gustavson. Recursion Leads to Automatic Variable Blocking for Dense Linear-Algebra
Algorithms. IBM Journal of Research and Development, 41(6):737-755, November 1997.

15. D. Hilbert. Uber Stetige Abbildung einer Linie auf ein Flichenstriick. Mathematische An-
nalen, 38:459-60, 1891.

16

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Optimizing Matrix Multiplication with a Classifier Learning System 135

. M. Lam, E. Rothberg, and M. E. Wolf. The Cache Performance and Optimizations of
Blocked Algorithms. In Proc. of the Int. conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 63—74, October 1991.

X. Li, M. J. Garzaran, and D. Padua. A Dynamically Tuned Sorting Library. In In Proc. of
the Int. Symp. on Code Generation and Optimization, pages 111-124, 2004.

X. Li, M. J. Garzardn, and D. Padua. Optimizing Sorting with Genetic Algorithms. In In
Proc. of the Int. Symp. on Code Generation and Optimization, pages 99—110, March 2005.
A. McKellar and E. Coffman. Organizing Matrices and Matrix Operations for Paged Memory
Systems. In Communications of the ACM, 12(3):153-165, March 1969.

N. Mitchell, K. Hogstedt, L. Carter, and J. Ferrante. Quantifying the Multi-Level Nature of
Tiling Interactions. Int. Journal of Parallel Programming, 26(6):641-670, June 1998.

P. Panda, H. Nakamura, N. Dutt, and A. Nicolau. Augmenting Loop Tiling with Data Align-
ment for Improved Cache Performance. IEEE Trans. on Computers, 48(2):142—-149, Febru-
ary 1999.

N. Park, B. Hong, and V. Prasanna. Tiling, Block Data Layout, and Memory Hierarchy
Performance. IEEE Trans. on Parallel and Distributed Systems, 14(7):640-654, July 2003.
G. Peano. Sur Une Curbe qui Remplit Toute une Aire Plaine. Mathematische Annalen,
36:157-160, 1890.

W. S. Pier Luca Lanzi and S. W. Wilson. Learning Classifier Systems, From Foundations to
Applications. Springer-Verlag, 2000.

G. Rivera and C. Tseng. Data Transformations for Eliminating conflict Misses. In Proc.
of Int. Conference Programming Language Design and Implementation, pages 38—49, June
1998.

G. Rivera and C. Tseng. Locality Optimizations for Multi-Level Caches. In Proc. of IEEE
Supercomputing, November 1999.

H. Sagan. Space-Filling Curves. Springer-Verlag, 1994.

O. Temam, E. Granston, and W. Jalby. To Copy or Not to Copy: A Compile-Time Technique
for Assessing When Data Copying Should be Used to Eliminate Cache Conflicts. In Proc. of
the ACM/IEEE Supercomputing Conference, November 1993.

N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N. M. Amato, and L. Rauchwerger. A
Framework for Adaptive Algorithm Selection in STAPL. In Proc. of Symposium on Princi-
ples and Practice of Parallel Programming (PPoPP), pages 277-288, New York, NY, USA,
2005. ACM Press.

R. Whaley, A. Petitet, and J. Dongarra. Automated Empirical Optimizations of Sofware and
the ATLAS Project. Parallel Computing, 27(1-2):3-35, 2001.

S. W. Wilson. Classifier Fitness Based on Accuracy. Evolutionary Computation, 3(2):149—
175, 1995.

M. Wolfe. Iteration Space Tiling for Memory Hierarchies. In Third SIAM Conference on
Parallel Processing for Scientific Computing, December 1987.

J. Xiong, J. Johnson, R. Johnson, and D. Padua. SPL: A Language and a Compiler for DSP
Algorithms. In Proc. of the International Conference on Programming Language Design
and Implementation, pages 298-308, 2001.

Q. Yi, V. Adve, and K. Kennedy. Transforming Loops To Recursion for Multi-Level Memory
Hierarchies. In Proc. of the Int. Conf. on Programming Language Design and Implementa-
tion (PLDI), pages 169-181, June 2000.

K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzardn, D. Padua, K. Pingali,
P. Stodghill, and P. Wu. A Comparison of Empirical and Model-driven Optimization. In
Proc. of Programing Language Design and Implementation, pages 63—76, June 2003.

K. Yotov, X. Li, G. Ren, M. J. Garzardn, D. Padua, K. Pingali, and P. Stodghill. Is Search Re-
ally Necessary to Generate a High Performance Blas? In Proc. of the IEEE, special issue on
Program Generation, Optimization, and Platform Adaptation, 23:358-386, February 2005.

A Language for the Compact Representation of Multiple
Program Versions

Sebastien Donadio!’2, James Brodman*, Thomas Roeder®, Kamen Yotov®,
Denis Barthou?, Albert Cohen®, Maria Jesds Garzardn?, David Padua?,
and Keshav Pingali®

! BULL SA
2 University of Versailles St-Quentin-en-Yvelines
% INRIA Futurs
4 University of Illinois at Urbana-Champaign
5 Cornell University

Abstract. As processor complexity increases compilers tend to deliver subop-
timal performance. Library generators such as ATLAS, FFTW and SPIRALz
overcome this issue by empirically searching in the space of possible program
versions for the one that performs the best. Empirical search can also be applied
by programmers, but because they lack a tool to automate the process, program-
mers need to manually re-write the application in terms of several parameters
whose best value will be determined by the empirical search in the target ma-
chine.

In this paper, we present the design of an annotation language, meant to be
used either as an intermediate representation within library generators or directly
by the programmer. This language that we call X represents parameterized pro-
grams in a compact and natural way. It provides an powerful optimization frame-
work for high performance computing.

1 Introduction

Processors and machines in general are becoming increasingly complex and it has be-
come extremely difficult even for experts to identify the fastest code sequences and the
sequence of transformations that would optimize a given code sequence [6,7,29,30].
Furthermore, the best code for a particular machine is not necessarily the best for other
machines, even when architectural differences are minute. Because of this complexity,
compilers tend to deliver suboptimal performance and programmers make limited at-
tempts at manual optimization. The result is that, in many cases, applications only use
a small fraction of the target machine’s power.

Clearly, an optimization methodology must be developed to improve the current sit-
uation. Recent studies have shown that a conceptually simple strategy, known as empir-
ical search, can be a very effective optimization strategy. Empirical search consists of
searching the space of possible program versions, executing each of them on the target
machine, and selecting the fastest version.

Empirical search has been studied in the context of compiler transformations [14]
and library generators. Thus, ATLAS [27], a linear algebra library generator, searches
the space of possible forms of matrix-matrix multiplication routines. The different

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 136-151, 2007.
(© Springer-Verlag Berlin Heidelberg 2007

A Language for the Compact Representation of Multiple Program Versions 137

forms vary in the size of tiles, degree of unrolling, and schedule of operations. The SPI-
RAL [20] and FFTW [10] signal processing library generators search a space consisting
of implementations of different formulas representing the transform to be implemented.
In the case of library generators, empirical search leads to performance improvements
of an order of magnitude over good generic libraries that have not been tuned for a
particular machine.

Empirical search can also be applied manually by a programmer. The idea would
be for the programmer to write the application in terms of several parameters whose
best value for a particular target machine is to be determined by empirical search. The
parameters could specify values such as degree of unrolling of a given loop, tile size,
etc. Parameters could also be used to represent completely different ways of carrying
out a computation or part of a computation by numbering the different strategies and
making this number one of the parameters whose value is to be identified.

In this paper we describe an ongoing effort to design and implement a new language,
X, that could be used by programmers and also serve as an intermediate representa-
tion within of library generators. X is a language to represent parameterized programs
naturally and compactly. Programmers would be able to program in X directly. Library
generators could be organized as depicted in Figure 1 where it is assumed that func-
tions of the library are designed in a very high level domain specific language which
is analyzed, parameterized and translated into X programs. The availability of X would
enable the reuse of a search engine across library generators.

< X program H DSL Translator
o
Hgh | | Machine Execution
Level ¢eeeppl HLL Translator ¢ anguage and
language . | ; measurement

= —

Search engine

‘ X Translator {'H

Fig. 1. Programming adaptive library generators

Our objective is to design X so that it is easy for the programmer to specify which
transformations to apply, and change the order or the values of the transformations. The
value of the parameters can be determined using empirical search orchestrated by a
search engine which could use the target machine to evaluate the performance of each
version of the program or rely on analytical models.

Since many programs spend most of their time executing loops, loop-based opti-
mizations are the main focus of attention of the transformations we propose in this
initial version of X, although non-loop transformations are also possible.

The output of processing X could be machine code, which would give programmers
access to low-level optimizations. However, this approach would force the development
of an X translator for each machine. To make X portable, high level language code could

138 S. Donadio et al.

be generated so that each version of the code, that is, each point in the search space,
would have to be fed to the native compiler. This compiler is in charge of the low-
level optimizations such as register allocation and code generation of the executable
code. In many occasions, we would like to disable many of the optimizations of the
native compiler, but this is not always possible, because disabling all optimizations (-
00) could lead to poor performance. As a result, the transformations represented in X
may or may not be preserved by the native compiler. The only solution to this problem
is the search of the best combination of transformation at the source level that interacts
with the low level compiler.

The rest of the paper is organized as follows: Section 2 lists the language require-
ments to ease the design of multiversion programs; Section 3 analyzes the multiver-
sionning capabilities of macro or multistage languages with respect to these require-
ments; Section 4 presents the X language which combines multistage evaluation with
reification and transformation pragmas; Section 5 details the design of the X language
source-to-source compiler; Section 6 presents promising results on mimicking the code
generator for DGEMM (matrix-matrix multiplication) in ATLAS [27]; and Section 7
compares the X language with related work and results, before we conclude and sketch
future work.

2 Necessary Features of the Language

In this section, we discuss the features that must be exhibited by any language designed
specifically for the compact representation of multiple code versions.

1. Elementary transformations. The first features that come to mind are constructs to
generate multiple versions of a statement by applying elementary transformations to
a statement. Elementary transformations are widely used transformations that cannot
be conveniently cast in terms of other, simpler transformations. For program opti-
mization, the targets of the transformations are usually compound statements and the
transformations typically manipulate the order of execution and the control struc-
ture of the components. For sequences of assignment statements, typical elemen-
tary transformations are statement reordering, replication, and deletion. Loop trans-
formations include unrolling, interchanging, stripmining, fusion, fission, and scalar
replacement. We also consider loop tiling an elementary transformation although
in theory it can be represented as a combination of stripmining and interchanging.
Some loop scheduling transformations, such as software pipelining, are be consid-
ered to be elementary transformations. The reason is that, although scheduling can
be represented as a sequence of simpler transformations, it is usually difficult to do
SO.

Many of elementary transformations require input parameters, such as the degree
of unrolling, tile size, and locations where the loop is to be split in the case of fission.
Multiple versions of the initial statement are obtained by varying the values of these
parameters.

Elementary transformations are used in library generators during empirical search.
Thus, ATLAS makes use of tiling, unrolling, and loop scheduling; FFTW makes use
of scheduling; and SPIRAL applies loop unrolling.

A Language for the Compact Representation of Multiple Program Versions 139

2. Composition of transformations. Usually, the best version of a statement is the re-
sult of applying several elementary transformations. Thus, for example, ATLAS
applies interchanging, tiling, unrolling and scheduling to the triply nested matrix-
matrix multiplication loop during its empirical search for an optimal form of the
loop. Therefore, our language should allow the application of multiple transforma-
tions to a single statement. An example of composite transformation is unroll&jam
shown in Figure 2. This transformation can be implemented by applying an outer
unroll followed by fusion of the two inner loops. Alternatively, unroll&jam can be
implemented by first stripmining the outer loop, then interchanging the inner loop
with the newly generated loop, and finally unrolling the innermost loop.

for (i=0; i<n*2; i++)

outer unroll for (j=0; j<m; m#++) \ stripmine
a(i) = a(i) + b(j)

for (i=0; i<n*2; i+=2)

for (ii=i; ii<i+2; ii++)
for (i=0; i<n*2; i++) for (j=0; j<m; j++)
for (j=0; j<m; j++) a(ii) = a(ii) + b(j)
a(i) = ai) + b(j)
for (j=0; j<m; j++) l interchange
ai+1) = a(i+1) + b(j)

for (i=0; i<n*2;

for i 1
for (1=0; i<n*2; i+4) 200 = a(ib + bG)
. for (j=0; j<m; j++) / .
fusion inner unroll

a(i) = a(i) + b()
a(i+1) = a(i+1) + b(j)

Fig. 2. Unroll & Jam

An important form of transformation composition is conditional composition,
where a condition is used to select the transformation or the parameter value of a
transformation. For example, consider a loop that is to be first stripmined and then
the resulting inner loop unrolled. We may want to fully unroll the inner loop but only
when the size of the strip is less than a certain threshold and partially unroll otherwise.

3. Procedural Abstraction. For composite transformations, it is convenient to have pro-
cedural abstractions to encapsulate new transformations and to avoid having to rewrite
sequences of transformations that are applied more than once.

4. A mechanism to define new transformations. This extension mechanism enables the
user to add new transformations that cannot be represented as composition of el-
ementary transformations. In particular, programmers should be able to generate
application-dependent transformations that take into account the semantics of the
computation. The simplest way to represent a transformation is using transforma-
tion rules which are adequate to represent many transformations. The transformation
rules consist of a code template followed by the form resulting after modification by
the transformation. For instance, a stripmine transformation with a tile of size 4
could be defined as follows:

for (i = 0; i < N; i++) { <body> }
for (ii = O;izi < (N/4)%4; ii += 4)
for (i = ii; i < ii+4; i++) { <body> ¥

for (i = (N/4)#4; i < N; i++) { <body> };

Transforming the top code template into the bottom code is the stripmine transfor-
mation, where variable <body> represents the body of the loop to be stripmined.

140 S. Donadio et al.

As the example illustrates, transformation rules are quite convenient. However,
since transformations rules are not universal, some transformations must be repre-
sented as a program written in, for example, a conventional programming language.
In this case, the interface between the source language and the transformation rou-
tines must be clearly specified. This interface should contain the abstract syntax tree
of the code to be transformed and perhaps other related information such as depen-
dence graphs.

5. A mechanism to name statements. When applying a sequence of transformations,
it is often necessary to apply one of the transformations to one of the components
of the resulting code. For example, to implement unroll&jam unrolling is applied to
the innermost loop resulting from stripmining. Therefore, the ability to name com-
ponents and subcomponents of statements is necessary to enable the composition of
transformations.

3 Macro Language

Perhaps the simplest approach to implement X would be to use a macro language.
Assuming that the macro language statements are C-like statements preceded by the
character % and that references to macro language variables are also preceded by %,
Figure 3 shows an example where the % for statement produces the body of a loop un-
rolled $d times. That is, when the $foxr loop is executed, it produces the sequence of
assignments: s=s+a[1i+0]; s=s+al[i+1l]; ...;s=s+a[i+%d-1].In this this
example we assumed that $d is a sub-multiple of 256 and, for that reason did not in-
clude the clean-up code needed to correctly handle the remainder of the 256 iterations
of the original loop. Notice that %d in Figure 3 will be assigned a value at compile-
time, and will usually be assigned several values in successive compilations during an
empirical search for the best version of the program.

sum=0;
for (1=0;i<256;1i+=%d) {
$for (k=i; k<=i+(%d-1); k++)
s = s + al[i+%k];
}

Fig. 3. Loop unroll using macro statements

An implementation based on macro language would produce a system that relies on
generation rather than transformation. Thus, the construct of Figure 3 does not trans-
form an initial loop but generates a loop with the body unrolled $d times. If the macro
language includes procedures, it would be possible to write generation routines that
accomplish the same objectives as any transformation. For example, we could conceiv-
ably develop an $unroll-1oop routine that accepts the body of the loop, the index
variable, and the degree of unrolling as parameters. These generation routines could be
a convenient way to extend the base language with new parameterized statements.

In some cases it is preferable to use the generation approach so that the programmer
can produce exactly the transformed code that he desires. For this reason, X

A Language for the Compact Representation of Multiple Program Versions 141

includes a macro language. However, we have found that the generation approach has
two disadvantages:

e The generative approach leads to code that is difficult to develop and understand. If
we want to optimize an existing program it will be necessary to modify the origi-
nal code which may introduce errors. Furthermore, code containing generative state-
ments is difficult to write and read. Therefore, the generative approach has disadvan-
tage even when the parameterized code is to be written from scratch.

e Complexity when composing transformations. Since the programmer is directly ma-
nipulating source text, when two or more transformations are applied to a statement,
the macro statements can become complicated. For instance, tiling the three loops of
the matrix-matrix multiplication code in Figure 4-(a) with square tiles of size tile
results in the code shown in Figure 4-(b). The variable $tile will be instantiated
at compile time, so that versions of matrix-matrix multiplication with different tile
sizes can be generated by just changing the value of the $tile variable. The code in
Figure 4-(b) shows the remainder loops when $tile is not divisible by X, and out-
lines the additional code that should be written to generate the remainders of M and
N. A programmer who needs to write all this additional code is likely to make mis-
takes. This problem will be less severe if the macro language contains procedures,
but then there would be the need to develop a procedure for each combination of
transformations or procedures with a cumbersome parameter list. In any case, tiling
can be obtained by composing loop stripmine and loop interchange. Unfortunately,
the programmer using macro statements cannot take advantage of this.

for (i=0;i<N;i++) { for (i=0;i<(N/%tile)«%tile;i+=%tile) {
for (3=0;j<M;j++) { for (j= <(M/%tile)*%tile;j+=%tile) {

for (k=0;k<K;k++) { for (k (K/%tile) *stile;k+=%tile) {
clil[j] += alillk] * blk][j]; for (ii=i;ii<i+3tile;i++) {
33 for (jj=j;ji<j+stile;j++) {
for (kk=k;kk<k+%tile;kk++) {
(a) c[ii][3]] += aliil[kk] * blkk][3]];

333>
$if ((K/%tile)=x%tile)!=K) {
for (k=(K/%tile)s3tile;k<K;k++) {
for (ii=i;ii<i+®tile;i++) {
for (jj=j;jj<j+stile;j++) {
for (kk=k;kk<k+%tile;kk++) {

cliil[33] += aliillkk] * blkk]l[jjl;
33333
sif (((M/%tile)«stile) !=M) {

%if (((N/%tile)xstile) != N) {
,
(b)
Fig. 4. (a)-Matrix-matrix multiplication code. (b)-Tiled matrix-matrix multiplication code using
macro statements.

4 X Language Using Pragmas

In this Section, we describe the X language that we have designed taking into account
the features described in Section 2. X uses #pragmas to name loops or portions of
code and to specify the transformations to apply. The syntax of the #pragmas used to
name loops or code sections has the form:

#pragma xlang name <id> { ... }

142 S. Donadio et al.

The {} are only necessary when naming a set of statements, but they are not required
to name a single statement. These pragmas need to be placed right before the code sec-
tion to be named. The syntax of the #pragmas to specify transformations has the form:

#pragma xlang transform keyword <list-input-par> <list-output-par>
The original source code only needs to be modified with the name #pragmas. The

transform #pragmas can be in the same file that the source code or in a different one.

sum=0;
#pragma xlang name 11

sum=0;
#pragma xlang name 11

for (i=0;i<256;i++) { for (i=0;i<256;1i+=4) {
s = s + alil; s = s + alil;
¥ s = s + ali+l];
#pragma xlang transform unroll 11 4 s = s + ali+2];
s = s + ali+3];
¥
(a) (b)

Fig. 5. Example in X of loop unroll. (a)- Pragmas to name the loop and specify the unroll 4 (b)-
Generated code.

In X, the loop unrolling transformation in Figure 3 is specified as shown in
Figure 5. #pragma xlang name 11 is used to name the loop right after it, while
#pragma xlang transform unroll 11 4 specifies the transformation
unroll 11 4 times.

The stripmine transformation is specified in X with #pragma xlang transform
stripmine 11 4 13 llrem as shown in Figure 6-(a). This transformation will
stripmine the 11 loop using a tile size of 4. The generated code is shown in Fig-
ure 6-(b). The new loop that results of the stripmine transformation is named 13.
To name the remainder loop, the example uses 11rem. Using this postfix notation we
can apply the same transformationto 11 and 1lrem by simply using 11x

#pragma xlang name 11
for (i=0;i<(N/4)x4;i+=4) {

#pragma xlang name 11
for (i=0;i<N;i++) {

#pragma xlang name 12
for (3=0;3<M;j++) {

#pragma xlang name 13
for (ii=i;ii<i+d;ii++) {

cli]l = alil[3] » bI3]; #pragma xlang name 12
3> for (3=0;3<M;j++) {
#pragma xlang transform stripmine 11 4 13 llrem clii] = aliil[3] * b[]];
33

#pragma xlang name llrem
for (i=(N/4)#4;i<N;i++) {
#pragma xlang name 12
for (3=0;j<11;j++) {
clii] = aliil[j] » b[]];

3

(a) (b)

Fig. 6. Example in X of stripmine.(a)-Pragmas to name loops and specify the stripmine transfor-
mation. (b)-Generated code.

Another transformation that X includes is array scalarization. The syntax for this
transformation is #pragma xlang transform scalarize-func <array-
name> in [<id>], where func can be in, out, -in&out or none. scalarize
-1in is used when copy-in is needed, that is, when the initial values in the array have to

A Language for the Compact Representation of Multiple Program Versions 143

sum=0; double a0,al;
#pragma xlang name 11 sum=0;
for (i=0; i<256; i+=2){ #pragma xlang name 11
s = s + alil; for (i=0; i<256; i+=2){
s = s + ali+l]; #pragma xlang name 11.loads
¥ { a0 = alil;
#pragma xlang transform scalarize-in a in 11 al = ali+l]; }

#pragma xlang name 11.body
{s=s+a0;
s=s+al; }

H

(a) (b)

Fig.7. Example in X of the scalarize-in transformation. (a)-Pragmas for scalarize-in. (b)-
Code after scalarize-inarray ain 11.

be loaded into the scalar variables. scalarize-out is used when copy-outis needed,
that is, when the scalar values need to be written back to memory to the correspond-
ing array locations. scalarize-in&out is used when both both in and out are
required. scalarize is used when nor in or out are necessary. The programmer
must determine which is the appropriate scalarize transformation to apply so that the
generated code is correct.

Figure 7-(a) shows an example where the scalarize-in transformation is used
to scalarize the array a in 11. The generated code is shown in Figure 7-(b). The
generated code contains the declaration of the new scalar variables a0 and al, and
two new pragmas that name certain statements of the generated code. #pragma
xlang name 11.loads name the statements that load the array values into the
scalars. #pragma xlang name 11.body name the statements where the array
references have been replaced with scalars. Notice that these #pragmas are auto-
matically generated after a scalarize transformation is applied, without the program-
mer specifying anything. In the case of a scalarize-out transformation an addi-
tional #pragma naming 11 . stores would have been generated. Naming these loop
sections allows the programmer to apply new transformations on the generated code.
For example, Figure 8-(a) shows an example where the load statements of the copy-in
phase have been moved before 11 and the store statements of the copy-out phase have
been moved outside 11 as shown in Figure 8-(b). In this new example, we have used
#pragma xlang transform lift 11.loads before 11 and #pragma

for (i=0;i<N;i++) { double c0,cl;
for (3=0;3<M;j++) { for (i=0; i<N; i++) {
#pragma xlang name 11 for (3=0; j<M; j++) {
for (k=0;k<K;k+=2){ #pragma xlang name 11.loads
cl[i][3] += alillk] * blkI[3]; { cO=clil[3]; ¥
cl[i][3] += alil[k+1] * blk+1][3]; #pragma xlang name 11
1353 for (k=0; k<K; k+=2) {
#pragma xlang transform scalarize-out c in 11 #pragma xlang name 11.body

#pragma xlang transform lift 11.loads before 11 { c0 += alil [k]*b[k][3];
#pragma xlang transform lift 11.stores after 11 c0 += a[i] [k+1]1«b[k+1]1(3]1; }
3
#pragma xlang name 1ll.stores
{ clil (3l = co; ¥
3

(a) (b)

Fig.8. Example in X of scalarize-out and lift transformation. (a)-Pragmas for
scalarize-out and 11ift. (b)-Generated code.

144 S. Donadio et al.

xlang transform 1lift 11.stores after 11, where the syntax of this
transformation is

#pragma xlang transform lift <statement-id><before |after>
<loop-id>.

X also includes transformations for software pipelining. One difference between the
software pipelining and the loop transformations is that software pipelining operates on
statements instead of loops. The lower granularity of software pipelining transforma-
tions makes them more complex, since the programmer needs to deal with movement of
individual statements. The two transformations used for software pipelining are split
and shift. The split transformation is not necessarily a software pipelining trans-
formation. It is used to separate atomic instructions. Figure 9 shows how an instruction
combining a load and an operation is breaking assignment statements into two state-
ments, one to compute the right hand side and the other to assign the computed value
to the left hand side.

for (i=0; i<N; i++) { double temp[0..K];
for (3=0; j<M; j++) { for (i=0; i<N; i++){
for (k=0; k<K; k++) { for (3=0; j<M; j++){
#pragma xlang name statement stl for (k=0; k<K; k++){
c[il[3] += alil(k] * blkI[]]; #pragma xlang name statement stl
33 temp(k] = alil[k] * blkI[j];
#pragma xlang split stl st2 temp #pragma xlang name statement st2
cl[il[3] = c[il[]] + templ[k];
33
(a) (b)

Fig. 9. Example split. (a)-Pragmas for split. (b)-Generated code.

Figure 10 shows how to software pipeline a loop with the shi ft transformation. We
have used #pragma xlang transform shift 11.1 2. The first argument
11 .1 corresponds to the first statement of loop 11 and in general, the 1oop . <n> nota-
tion is used to designate the sequence of the first n statements in the body of loop loop.
In the example, the first statement is shifted with respect to the remaining statements
with a latency of 2, given by the second argument. Application of the shift transforma-
tion creates a pipeline with multiple stages. The example shows the resulting code, with

for (i=0; i<N; i++) { for (i=0; i<N; i++) {
for (3=0; j<i; j++) { for (3=0; j<M; j++) {
#pragma xlang name 11 #pragma xlang name 1ll.prolog
for (k=0; k<K; k++) { for (k=0; k<2; k++) {
temp(k] = alil[k] = blkl[]]; temp[k] = alil[k] » b[(k][]];
c[i][j] += temp[k];
I3 #pragma xlang name 11
#pragma shift 11.1 2 for (k=2; k<K; k++) {

temp[k] = alil[k] = b(k][]];
c[i][§] += temp[k-2];

#pragma xlang name ll.epilog
for (k=N-1; k<K; k++) {
c[i1[3] += temp[k];
33
#pragma xlang transform fullunroll 1ll.prolog
#pragma xlang transform fullunroll 11.epilog

(a) (b)

Fig.10. Example shift for software pipeline. (a)-Pragmas for shift. (b)-Generated code,
including fullunroll.

A Language for the Compact Representation of Multiple Program Versions 145

a prolog and a epilog loop. Notice that these loops can be unrolled using the pragma
fullunroll as shown in Figure 10-(b).

Defining transformations with respect to existing ones provides a procedural abstrac-
tion to the X language. We describe them in Section 5.

5 Implementation

In this section, we describe the implementation of the X language translator and present
how transformations are encoded.

5.1 X Translation

The X language is translated in two steps. The frontend performs several tasks before
passing the result to the backend. First, the frontend parses the annotated C program
and builds the associated abstract syntax tree. Next, a tree-walk identifies the loops
and transformations specified by the X language directives. The marked loops are then
rewritten as series of library calls that represent the loops inside the backend. Also,
transformation directives are translated into library calls for performing the appropriate
transformations on the annotated loops. After all the annotations of the C program have
been translated, the remaining code is transformed using a multistage language similar
to the language described in Section 3. Our multistage language also resembles ‘C [19]
which is a generalization of a macro language with arbitrary recursion and where a
program may generate another program and execute it, having multiple program levels
cooperate and share data possibly at run-time. The final translated program is then ready
to be processed by the backend.

In the second step, this program is executed: it reads a separate file describing the
optimizations, performs the optimizations and produces the final optimized C code. The
macro language is used to manipulate code expressions and to write some optimizations
(such as unroll) in a compact way. Partial evaluation of expressions that contain only %
variables and constants is done in this step: as presented in Section 3, variable names
such as ¢ %1 are then expandedintoc 0, ¢ 1, ... in the resulting code.

Finally, all unoptimized code (not prefixed by pragmas) is printed out without any
modification in the final code.

5.2 Defining New Transformations

The definition of transformations in X can use pattern rewriting rules and macro code.
A pattern rewriting rule contains two patterns: the first pattern is for matching and the
second one is for rewriting. When an input code matches the first pattern, the code is
rewritten as indicated by the second pattern. If the pattern rewriting rule is not expres-
sive enough, the user has the possibility to define the code using macro code directly.
Thus an X program could contain both pragmas and macro statements. In fact, it is
possible to define a code generator associated with a pattern of code.

In the current implementation, no dependence analysis is integrated yet, so no valid-
ity check is performed for the transformation. We envision that, contrary to the com-
piler, validity checks in X only raise warnings to the user, since the user is assumed to
know what he is doing and validity checks may be too conservative.

146 S. Donadio et al.

Procedural abstraction enables the writing of complex transformations from simpler
ones. It is an important feature in the definition of transformations. The destination
pattern can contain some transform pragmas. For instance, a line such as #pragma
xlang transform fullunroll llrem could be added to the destination pat-
tern of stripmine and would fully unroll the remainder loop.

6 Experimental Results

We study in this section a matrix-matrix multiplication and its optimization with X lan-
guage. Starting from a very simple implementation, the goal is to mimic ATLAS by
performing the same transformations with the X. For this preliminary experiment, the
platform used is a NovaScale 4020 server from Bull featuring two 1.3Ghz Itanium 2
(Madison) processors, with a 256KB level 2 cache and a 1.5MB level 3 cache. Quality
of compiled code is the key to performance on Itanium because of its explicit paral-
lel assembly and its in-order execution. Scheduling problems cannot be smoothed by
hardware mechanisms. All codes (including ATLAS) are compiled using the Intel C
compiler (icc) version 8.1 with -03 -fno-aliases flags.

6.1 Pragmas for MMM

The initial code for matrix-matrix multiply is a triple-nested loop where the inner loop
contains one floating point multiply-add operation. Blocking the code for L2 and L3
cache is key to obtaining high performance. Therefore each loop is tiled three times
using X pragmas in order to perform the multiplication with blocks fitting into registers

#pragma xlang name iloop #pragma xlang name iloop

for (i = 0; 1 < NB; i++) for(i = 0; i < NB; i++){
#pragma xlang name jloop #pragma xlang name jloop
for (j = 0; j < NB; j++) for(j = 0; j < NB; j += 4){
#pragma xlang name kloop #pragma xlang name kloop.loads
for (k = 0; k < NB; ke+) { {c_0_0 = c[i+0][3+0];
cli][3l=c[il [F]1+ali] [k]*b[k][]; c_0_1 = c[i+0][3+1];
c 0.2 = c[i+0][3+2];
#pragma xlang transform stripmine iloop NU NUloop c_0_3 = c[i+0][j+3];
#pragma xlang transform stripmine jloop MU MUloop
#pragma xlang transform interchange kloop MUloop #pragma xlang name kloop
#pragma xlang transform interchange jloop NUloop for(k = 0; k < NB; k++){
#pragma xlang transform interchange kloop NUloop {a_0 = ali+0] [k];
#pragma xlang transform fullunroll NUloop a1l = a[i+0][k];
#pragma xlang transform fullunroll MUloop a2 = a[i+0][k]
#pragma xlang transform scalarize_in b in kloop a3 = ali+0][k];}
#pragma xlang transform scalarize_in a in kloop {b_0 = b[k][3+0]
#pragma xlang transform scalarize_in&out c in kloop b_1 = blk][j+1]
#pragma xlang transform lift kloop.loads before kloop b2 = blk][j+2];
#pragma xlang transform lift kloop.stores after kloop b_3 = blkl[j+3];}

(a) {c_0_0=c_0_0+a_0*b_0;
c_0_1=c_0_l+a_1*b_1;
c_0_2=c_0_2+a_2*b_2;
©_0_3=c_0_3+a_3*b_3; }

}

#pragma xlang name kloop.stores

{cli+0][3+0] = c_0_0;

c[i+0][j+1] ;

cl[i+0] [3+2]

c[i+0] [3+3]
I

. // Remainder code

(b)

Fig. 11. (a) mini-mmm code in X. (b) Code after transformation with MU = 4, NU = 1.

A Language for the Compact Representation of Multiple Program Versions 147

and the L2 and L3 caches. Figure 11-(a) shows the mini-MMM code tailored for L2
cache, with the pragmas to generate register-blocking.

Note that we do not perform software pipelining because the compiler handles this
optimization better than we can at the source level in this case. Likewise, basic block
scheduling is correctly handled by the compiler. We have used two stripmine and
three interchange transformations to tile the two nested loops 11oop and jloop.
Fig.11-(b) shows a fragment of the resulting code when the values of blocking are 1 for
iloop and 4 for jloop.

For the L2 and L3 tilings, copies of a, b and ¢ are made in order to have all the
elements of the submatrices in a contiguous memory block.

6.2 Optimization Tuning

Expressing the optimization is only one step towards high performance code. The other
important step consists of finding the right values for the parameters. Many search
strategies can be applied, such as the search employed by ATLAS.

For DGEMM, we performed an exhaustive search for the appropriate tile sizes around
the expected values.Comparison with the naive code shows a speed-up of 80 (for ma-
trices of size 600 x 600). Figure 12 shows that code optimized with the X language
outperforms ATLAS for all matrix sizes when coupling it with a custom memory copy
routine called dcopy. This routine was automatically produced by a specialized as-
sembly generator, the Xemsys Library Generator [28], using hardware performance
counters and static analysis of the assembly code [9].

Coupling our code with the less specialized copy routine of the Intel Math Kernel
Library (MKL) yields performance on par with ATLAS on average, and using the plain
memcopy subroutine of the C library degrades performance slightly. These results are

Dgemm
07

0,68

0,65

0,63
A i EEe= =

0,58

| Atlas

A | A XLanguage+Dcopy
@ Xlanguage+Memcpy
» Xlanguage+MKLcpy
M Dgemm MKL

0,55 m Peak (0.5)

Iy

CyclesiFMA

0,53

0,5
128 25 384 512 640 768 896 1024 1152 1280 1408 1536 1664 1792 1920 2048

Matrix Size

Fig. 12. Preliminary results comparing ATLAS to naive code with pragmas for DGEMM

very encouraging. Yet the peak architectural performance for matrix-matrix product on
Itanium is 0.5 cycle per fma operation, and the MKL implementation of dgemm does
achieve 0.55 cycle per fma on average, which is 10% to 15% faster than ATLAS and
the X-language implementation. Our future work includes the continuation of our X-
language experiment to fully reproduce or outperform the MKL, showing that the added

148 S. Donadio et al.

productivity in adaptive library development can translate into added performance as
well (with respect to manual designs like ATLAS).

7 Related Work

It is well known that manual optimizations degrade portability: the performance of a
C or Fortran code on a given platform does not say much about its performance on
different architectures. Several works have successfully addressed this issue, not by im-
proving the compiler, but through the design of application-specific program generators,
a.k.a. active libraries [26]. Such generators often rely on feedback-directed optimization
to select the best generation strategy [23], but not exclusively [29]. The most popular ex-
amples are ATLAS [27] for dense matrix operations and FFTW [10] for the fast Fourier
transform. Such generators follow an iterative optimization scheme. Most optimizations
performed by these generators are classical loop transformations; some of them involve
domain knowledge, from the specialization and interprocedural optimization of library
functions [3,8], to application-specific optimizations such as algorithm selection [17].
Recently, the SPIRAL project [21] pioneered the extension of this application-specific
approach to a whole domain of programs: digital signal processing. This project is
one step forward to bridge the gap between application-specific generators and generic
compiler-based approaches, and to improve the portability of application performance.

Beyond application specific generators, iterative optimization techniques prove use-
ful to drive complex transformations in traditional compilers. They use the feedback
from real executions of the optimized program to explore the optimization search space
using operations research algorithms [15], machine learning [17], and empirical experi-
ence [18]. In theory, iterative optimization is fully disconnected from the technical im-
plementation of program optimizations. Yet generative approaches such as multistage
evaluation avoid the pattern-matching limitations of syntactic transformation systems,
which improves the structure of the search space and the applicability of empirical tech-
niques. Indeed, systematic exploration techniques require a higher degree of flexibility
in program manipulation than traditional compiler frameworks [5].

We thus advocate a framework that would allow the domain expert to design and
express his own transformations, and to meta-program the search for optimal perfor-
mance through iterative optimization [4]. This goal is similar to the one of felescoping
languages [3,13], a compiler approach to reduce the overhead of calling generic li-
brary functions and to enable aggressive interprocedural optimizations, by making the
semantical information about these libraries available to the compiler. Beyond libraries,
similar ideas have been proposed for domain-specific optimizations [16]. These works
highlight the increased need for researchers and developers in the field of high-
performance computing to meta-program their optimizations in a portable fashion.

Another alternative is multistage evaluation. Most programming languages support
macro expansion, where the macro language allows a limited amount of control (not
recursive, in general) on code parts. Yet multistage evaluation denotes the syntactic and
semantic support allowing a program to generate another program and execute it, having
multiple program levels cooperate and share data. String-based multistage languages
support true recursion and cooperation between levels, but offer no syntactic guarantees
on the generated code; the most widely used are the various shell interpreters, and the

A Language for the Compact Representation of Multiple Program Versions 149

current version of the X language is also of this kind. To increase productivity, struc-
tured multistage languages enforce syntactic correctness of the generated code: e.g.,
C++ expression templates [25], ‘C [19] and Jumbo [12]. To further increase productiv-
ity and ease debugging, a few multistage languages guarantee that the generated code
will not produce any compilation error (syntax, definition and initialization errors, type
checking): e.g., MetaML and its successor MetaOCaml [2,24]. The added safety is very
valuable to increase the productivity of program generator designers, but the associated
constraints may also complicate the meta-programming of specific optimizations [4].
Up to now, the multistage language and meta-programming community has mostly fo-
cused on general-purpose transformations like in partial evaluation, specialization and
simplification. These transformations are useful, in particular to lower the abstraction
penalty, but far from sufficient to adapt a compute-intensive application to a complex
architecture. As a matter of fact, research on generative programming and multistage
evaluation has not greatly influenced the design of high-performance applications and
compilers, most application-specific adaptive libraries being ad-hoc string-based pro-
gram generators.

The TaskGraph library [1] is closely related with the X language. It combines a struc-
tured multistage evaluation layer built on top of C++ expression templates, with run-
time generation and compilation, and with a transformation toolkit based on SUIF (1.3)
[11] and/or ROSE [22]. It is not a language per se, but a set of C++ templates and classes
associated with customizable source-to-source transformation capabilities. As such, it
should be understood like the underlying infrastructure to build a general-purpose mul-
tiversioning language such as X. We preferred to redesign our own infrastructure for
multistage evaluation and source-to-source transformation, for the sake of simplicity,
to avoid the memory and code overhead of C++ templates, and because we do not cur-
rently aim for run-time code generation.

8 Conclusions

We presented the design of the X language, aimed for application experts who wish to
implement adaptive programs without knowledge of compiler internals. The language
is designed so that it is easy for the programmer to generate multiversion programs, to
specify which transformations to apply on each program part, and to tune the order or
the parameters of the transformations. The parameters driving the generation of a spe-
cific program version and the application of program transformations can be determined
using empirical search orchestrated by a search engine which could use the target ma-
chine to evaluate the performance of each version of the program or rely on analytical
models.

The X language combines the expressive power of multistage languages with a flex-
ible pattern-matching and rewriting language to implement and compose custom pro-
gram transformations. Also the language is still in its infancy, we presented promising
results on mimicking the code generator for DGEMM (matrix-matrix multiplication)
in ATLAS [27]. This experiment demonstrates vast amounts of productivity improve-
ments, compared to the manual implementation of an ad-hoc code generator in C, as
well as good performance results.

150 S. Donadio et al.

Our future work will include a more thorough experiment with the ongoing design
of an active library for adaptive, block-recursive linear algebra computations. For in-
creased productivity, we also plan to provide a more structured multistage sub-language,
and to integrate the results of pointer and dependence analyses as indicative feedback to
the programmer. Such static analyses should also enable the design of smarter (higher-
level) transformation primitives. In the longer term, we also wish to invest in a more
robust implementation of the X language, based on a run-time compilation framework,
like ROSE [22] or TaskGraph [1], and/or using a more abstract code representation in
the polytope model [5]. Our main long-term goal is the adoption by application experts
with little interest in compiler design and implementation.

References

1. O. Beckmann, A. Houghton, P. H. J. Kelly, and M. Mellor. Run-time code generation in
c++ as a foundation for domain-specific optimisation. In Proceedings of the 2003 Dagstuhl
Workshop on Domain-Specific Program Generation, 2003.

2. C. Calcagno, W. Taha, L. Huang, and X. Leroy. Implementing multi-stage languages using
ASTs, Gensym, and reflection. In ACM SIGPLAN/SIGSOFT Intl. Conf. Generative Pro-
gramming and Component Engineering (GPCE’03), pages 57-76, 2003.

3. A. Chauhan and K. Kennedy. Optimizing strategies for telescoping languages: procedure
strength reduction and procedure vectorization. In ACM Int. Conf. on Supercomputing
(ICS’°04), pages 92-101, June 2001.

4. A. Cohen, S. Donadio, M.-J. Garzaran, D. Padua, and C. Herrmann. In search for a pro-
gram generator to implement generic transformations for high-performance computing. In
1" MetaOCaml Workshop (associated with GPCE), Vancouver, British Columbia, October
2004.

5. A. Cohen, S. Girbal, D. Parello, M. Sigler, O. Temam, and N. Vasilache. Facilitating the
search for compositions of program transformations. In ACM Int. Conf. on Supercomputing
(ICS’05), Boston, Massachusetts, June 2005. To appear.

6. K. D. Cooper, D. Subramanian, and L. Torczon. Adaptive Optimizing Compilers for the 21st
Century. Journal of Supercomputing, 23(1):7-22, 2002.

7. K. D. Cooper and T. Waterman. Investigating Adaptive Compilation using the MIPSPro
Compiler. In Proc. of the Symp. of the Los Alamos Computer Science Institute, October
2003.

8. L. De Rose and D. Padua. Techniques for the translation of matlab programs into fortran 90.
ACM Trans. on Programming Languages and Systems, 21(2):286-323, 1999.

9. L. Djoudi, D. Barthou, P. Carribault, C. Lemuet, J.-T. Acquaviva, and W. Jalby. A new tool
for assembler analysis and optimization on epic architecture. In Proc. of the Epic Workshop
(in conjunction with CGO’05), 2005.

10. M. Frigo and S. G. Johnson. FFTW: An adaptive software architecture for the FFT. In Proc.
of the ICASSP Conf., volume 3, pages 1381-1384, 1998.

11. M. Hall et al. Maximizing multiprocessor performance with the SUIF compiler. IEEE Com-
puter, 29(12):84-89, December 1996.

12. Sam Kamin, Lars Clausen, and Ava Jarvis. Jumbo: run-time code generation for java and its
applications. In ACM Conf. on Code Generation and Optimization (CGO’03), pages 48-56,
2003.

13. K. Kennedy. Telescoping languages: A compiler strategy for implementation of high-level
domain-specific programming systems. In Proc. Intl. Parallel and Distributed Processing
Symposium (IPIPS’00), pages 297-304, 2000.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

A Language for the Compact Representation of Multiple Program Versions 151

P. Kisubi, PM.W. Knijnenburg, and M.E.P. O’Boyle. The Effect of Cache Models on Iterative
Compilation for Combined Tiling and Unrolling. In Proc. of the International Conference
on Parallel Architectures and Compilation Techniques, pages 237-246, 2000.

T. Kisuki, P. Knijnenburg, M. O’Boyle, and H. Wijshoff. Iterative compilation in program
optimization. In Proc. CPC’10 (Compilers for Parallel Computers), pages 35-44, 2000.

C. Lengauer, D. Batory, C. Consel, and M. Odersky, editors. Domain-Specific Program
Generation. Number 3016 in LNCS. Springer-Verlag, 2003.

X. Li, M.-J. Garzaran, and D. Padua. A dynamically tuned sorting library. In ACM Conf. on
Code Generation and Optimization (CGO’04), pages 111-124, San Jose, CA, March 2004.
D. Parello, O. Temam, A. Cohen, and J.-M. Verdun. Towards a systematic, pragmatic and
architecture-aware program optimization process for complex processors. In ACM Super-
computing’04, page 15, Pittsburgh, Pennsylvania, November 2004.

M. Poletto, W. C. Hsieh, D. R. Engler, and M. F. Kaashoek. ‘C and tcc: A language and com-
piler for dynamic code generation. ACM Trans. on Programming Languages and Systems,
21(2):324-369, March 1999.

M. Puschel, J. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong, F. Franchetti,
A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo. SPIRAL: Code Generation
for DSP Transforms. Proceedings of the IEEE, To appear 2005. Special issue on ‘“Program
Generation, Optimization, and Adaptation”.

M. Puschel, B. Singer, J. Xiong, J. M .F. Moura, J. Johnson, D. Padua, M. M. Veloso, , and
R. W. Johnson. SPIRAL: A Generator for Platform-Adapted Libraries of Signal Processing
Algorithms. Journal of High Performance Computing and Applications, special issue on
Automatic Performance Tuning, 18(1):21-45, 2004.

Markus Schordan and Daniel J. Quinlan. A source-to-source architecture for user-defined
optimizations. In Joint Modular Languages Conference (JMLC’03), volume 2789 of LNCS,
pages 214-223. Springer-Verlag, August 2003.

M. D. Smith. Overcoming the challenges to feedback-directed optimization. In ACM SIG-
PLAN Workshop on Dynamic and Adaptive Compilation and Optimization, pages 1-11,
2000. (Keynote Talk).

W. Taha. Multi-Stage Programming: Its Theory and Applications. PhD thesis, Oregon Grad-
uate Institute of Science and Technology, November 1999.

T. Veldhuizen. Using C++ template metaprograms. C++ Report, 7(4):36—43, 1995.

T. Veldhuizen and D. Gannon. Active libraries: Rethinking the roles of compilers and li-
braries. In SIAM Workshop on Object Oriented Methods for Inter-operable Scientific and
Engineering Computing, pages 21-23, October 1998.

R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated Empirical Optimiza-
tion of Software and the ATLAS Project. Parallel Computing, 27(1-2):3-35, 2001. Also
available as University of Tennessee LAPACK Working Note #147, UT-CS-00-448, 2000
(www.netlib.org/lapack/lawns/lawnld7.ps)”.

Caps entreprise. http://www.caps-entreprise.com

K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzaran, D. Padua, K. Pingali,
P. Stodghill, and P. Wu. A Comparison of Empirical and Model-driven Optimization. In
Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design
and Implementation, pages 63—76. ACM Press, 2003.

K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, and P. Stodghill. Is Search Really
Necessary to Generate High-Performance BLASs? Proceedings of the IEEE, 93(2):358-386,
February 2005. Special issue on “Program Generation, Optimization, and Adaptation”.

Efficient Computation of
May-Happen-in-Parallel Information for
Concurrent Java Programs

Rajkishore Barik

IBM India Research Lab
rajbarik@in.ibm.com

Abstract. Modeling of runtime threads in static analysis of concur-
rent programs plays an important role in both reducing the complexity
and improving the precision of the analysis. Modeling based on type
based techniques merges all runtime instances of a particular type and
thereby introduces inaccuracy in the analysis. Other approaches model
individual runtime threads explicitly in the analysis and are of high com-
plexity. In this paper we introduce a thread model that is both context
and flow sensitive. Individual thread abstractions are identified based on
the context and multiplicity of the creation site. The interaction among
these abstract threads are depicted in a tree structure known as Thread
Creation Tree (TCT). The TCT structure is subsequently exploited to
efficiently compute May-Happen-in-Parallel (MHP) information for the
analysis of multi-threaded programs. For concurrent Java programs, our
MHP computation algorithm runs 1.77x (on an average) faster than pre-
viously reported MHP computation algorithm.

1 Introduction

As concurrent programming is embraced by more and more users, there are
several on-going research activities for the last few years in the area of static
analysis of concurrent programs. To name a few of these activities: computation
of May Happen in Parallel (MHP) information, detection of synchronization
anomalies like data races and deadlock, hiding the effect of weak memory models
at the programming level, improving the accuracy of data flow analysis, and
optimization of concurrent programs.

May Happen in Parallel (MHP) analysis computes pairs of statements that
may be executed concurrently in a multi-threaded program. This information can
be used in program optimization [9], debugging, program understanding tools,
improving the accuracy of data flow approaches, and detecting synchronization
anomalies like data races.

Several approaches for computing MHP information for programs have been
suggested in the past: B4 analysis by Callahan et al. [3], inter-procedural B4
analysis by Duesterwald et al. [6], non-concurrency analysis by Masticola et
al. [14], and data flow analysis based MHP computation for programs with a
rendezvous model of concurrency by Naumovich et al. [16]. Most recently [15]

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 152-169, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Efficient Computation of MHP Information for Concurrent Java Programs 153

developed an efficient algorithm for computing MHP information for concur-
rent Java programs. Their algorithm uses a data flow framework to compute
a conservative estimate of MHP information and is shown to be more efficient
than reachability analysis based algorithms that determines 'ideal’ static MHP
information. However, the underlying thread model used in the data flow frame-
work explicitly enumerates all runtime threads during compilation time leading
to the complexity of the algorithm bounded by number of runtime threads, i.e.,
O((pN)3) complexity, where p is the number of runtime threads and N is the
maximum number of statements per runtime thread. Such an explicit enumer-
ation of threads makes the algorithm time consuming, and it is inapplicable to
programs with unbounded or large number of runtime threads.

Subsequently, there has been work [13] on aiding a feasible implementation
of the MHP algorithm presented by Naumovich et al. [16]. Their main focus is
to reduce the size of the program execution graph (PEG) which is the core of
MHP algorithm.

1.1 Our Contribution
The main contribution of this paper are:

— We introduce a static model of threads that is flow sensitive and context
sensitive; this model is more precise than type based thread disambiguation
used in previous approaches [20,18]; yet our model is capable of handling an
indefinite number of runtime threads.

— We introduce a thread structure analysis and the concept of the thread
creation tree (TCT), which captures the start and join interactions among
threads.

— We present an efficient algorithm that computes the MHP information at
two levels: first at the thread level, then at the node level. The complexity
of our algorithm is ©((kN)?) where k is the number of thread abstractions
and N is the maximum number of inter-procedural control flow graph nodes
per thread abstraction.

Our results show that our MHP algorithm runs 1.77x faster than MHP algo-
rithm presented by naumovich et al. [16] using our context and flow sensitive
thread model.

1.2 Example

Figure 1 shows a sample program that updates a shared object of class Shared
concurrently. Main thread creates two Taskl threads. These Taskl threads in
turn create various Task2 threads. Note that modifications of the shared object
in Task2 threads are synchronized. In addition, Task2 threads join back to Task1
threads without causing any exception.

For this example, the thread model presented by [15] considers 43 runtime
threads explicitly during the static analysis: initial thread starting at main
method, 2 Taskl threads, and each Taskl thread creating 20 Task2 threads.

154 R. Barik

Management of such a huge number of runtime threads in the static analysis
requires a lot of space and is computationally expensive.

However, the type based thread disambiguation model described in [20,18]
considers only 3 thread abstractions during the analysis: initial thread starting
at main method, one for Taskl thread and one for Task2 thread. This kind of
modeling seems very efficient but does not produce precise results. To elaborate
this: Let us consider the MHP information computation problem. The type based
thread modeling concludes that the shared object access in Line 9 of Main thread
may execute in parallel with the access in Line 24 of Task1. This is not always
true as the same access in Line 24 for t2 instance of Taskl never executes in
parallel with Line 9 of Main thread (as t2 is started after Line 9 has finished
execution). Additional machinery has to be built into these type based techniques
to obtain such precise results.

2 Flow and Context Sensitive Thread Model

2.1 Abstract Thread

An abstract thread is a compile time entity that corresponds to a call of the
Thread: :start method in a certain context. Contexts are determined along a
symbolic execution of the whole program [18]. In this paper, we use the terms
thread and abstract thread interchangeably; if we refer to runtime threads, we
note that explicitly.

An abstract thread ¢; might correspond to one or multiple runtime threads.
In cases where the static analysis can determine that an abstract thread ¢; is not
started in a loop or recursion (and the creator thread is itself unique), ¢; has a
unique runtime correspondence, and the predicate isUnique[t;] holds.

1 class Shared { int field=0; } 22 class Taskl extends Thread {
2 class Main { 23 public void run() {
3 static Shared s; 24 Main.s.field++;
4 public static void main(String[] args){ 25 Thread[] ta = new Thread[10];
5 s = new Shared(); 26 for(int i=0;i<10;i++) {
6 s.field++; 27 tal[i] = new Task2();
7 Thread t1 = new Task1(); 28 tal[il.startQ); // t3, t5
8 tl.startQ; // t1 29 }
9 s.field++; 30 for(int i=0;i<10;i++) {
10 Thread t2 = new Task1(); 31 talil.join();
11 t2.start(); // t2 32 b
12 s.field++; 33 Main.s.field++;
13} 34 Thread tb= new Thread[10];
14 } 35 for(int i=0;i<10;i++) {
15 class Task2 extends Thread { 36 tb[i] = new Task2();
16 public void run() { 37 tb[i].start(); // t4, té
17 synchronized(Main.s){ 38 }
18 Main.s.field++; 39 for(int i=0;i<10;i++) {
19 ¥ 40 tb[il.join(Q);
20 } 41 }
21 } 42 ¥
43 '}

Fig. 1. Example program

Efficient Computation of MHP Information for Concurrent Java Programs 155

In the example of Figure 1, our thread model computes 7 different abstract
threads: thread corresponding to the main method denoted as ty , Taskl thread
in Line 8 denoted as t1, Task2 thread started in Line 28 of £; denoted as t3, Task2
thread started in Line 37 of t; denoted as t4, Taskl thread started in Line 11
denoted as to, Task2 thread started in Line 28 of t5 denoted as t5, and Task2
thread started in Line 37 of t5 denoted as tg. The abstract thread ¢; started in
line 8 is unique because the creator thread (main) is unique, and the start site
is not executed in a loop/recursion. The abstract thread ¢3 created in line 28, in
contrast is not unique, because it is started inside a loop.

3 Program Representation

In this section, we describe other data structures that are necessary for perform-
ing MHP analysis on concurrent programs. The thread creation graph (TCG)
data structure depicts various start-join interactions among abstract threads and
is used to develop an efficient algorithm for MHP.

3.1 Intra-thread Control Flow Graph

The control-flow structure of an abstract thread ¢; is represented in an intra-
thread control flow graph (ICFG), i.e., ICFG(t;). ICFG(t;) = (V(t;), E(t:))
where E(t;) denotes the intra-procedural and inter-procedural control flow edges
of abstract thread ¢;, and V' (¢;) comprises of the following types of nodes:

— USE(t;) refers to the set of shared read access (get/load of shared refer-
ence/field/array) nodes in ¢;.

— ASS(t;) refers to the set of shared write access (put/store of shared refer-
ence/field/array) nodes in ¢;.

— NEW (t;) refers to the set of allocation nodes in t;.

— BEGIN (t;) refers to the set of method entry nodes in ¢;.

— END(t;) refers to the set of method exit nodes in t;.

— ENTRY (t;) refers to the unique thread entry node for ¢;.

— EXIT(t;) refers to the unique thread exit node for ¢;.

— CSTART(t;) refers to the set of abstract thread start nodes in ;.

— CJOIN (t;) refers to the set of abstract thread join nodes in ¢;.

— CALL(t;) refers to the set of method call nodes in ;.

— ACQUIRE(t;) refers to the set of monitor enter nodes in ¢;.

— RELEASE(t;) refers to the set of monitor exit nodes in ;.

V(t;) contains two special nodes: ENTRY (t;) and EXIT (¢;). There is an edge
from ENTRY (t;) to any node at which the thread can be entered, and there is
an edge to EXIT(t;) from any node that can exit the thread.

E(t;) contains intra-procedural and inter-procedural control flow edges in ¢;.
The inter-procedural control flow edges do not comprise of subsequent thread
creation edges from ¢;.

156 R. Barik

Certain statements need not be represented in the ICFG, e.g., statements
that only have a thread-local effect. This includes access nodes (USE, ASS)
that operate on thread local objects (the underlying object model and analysis
for determining thread locality is presented in [5,18]

Figure 2 shows the inter-procedural control flow graph for the main abstract
thread of the example program. Each node in the figure is annotated with
the object/field it accesses. CSTART[t;] and CSTART[t2] nodes represent the

)

BEGIN[main]
NEW/[Shared]

(3) |CALL[Shared::init]

BEGIN[Shared::init]
ASS[Shared::field]
END[Shared::init]

a7

2)

(18)

19)

@) ASS[s]

5)

USE[s::field]
ASS[s::field]
CSTART[t1]

) USE[s]

Fig. 2. Inter-procedural control flow graph (ICFG)

(6)

(7

@®)

Efficient Computation of MHP Information for Concurrent Java Programs 157

invocation of abstract threads ¢; and ¢ respectively. Note that there is no inter-
procedural control flow edge connecting the node CSTART[t1] to ICFG(t1).

Let the creation node of an abstract thread ¢; in ¢, is denoted as CSTART (t;,¢;),
ie., CSTART(t;,t;) € CSTART(t;). There is no inter-procedural control flow
edge from t; to t; in ICFG(t;). Similarly, the join node of an abstract thread ¢; in
t; is denoted as CJOIN (t;,t;).

3.2 Must-Join

A common pattern in parallel programs is that some threads create subsidiary
threads and later join those. We capture this information using the concept of
a must-join abstract thread. Let CSTART(t;,t;) be the node where abstract
thread ¢; is created in t;. Let CJOIN (t,t;) € V(t) be the node where abstract
thread t; is joined. t; is then termed as a must-join abstract thread if ¢; = t
and CJOIN (t;,t;) postdom CSTART(t;,t;).

3.3 Thread Creation Tree (TCT)

Threads can be structured according to their start-relationships. The thread
creation tree (TCT) encodes this information: Abstract threads are represented
as nodes, edges encode the start relation. The main thread constitutes the root,
threads started by the main thread are found at the first hierarchy level etc..

The must-join information for each node in the TCT is encoded using a pred-
icate mjoin, i.e., mjoin[t;] = true if ¢; is a must-join abstract thread.

3 t4 5 te

Fig. 3. Thread Creation Tree

The TCT for the program in Figure 1 is given in Figure 3. t; and t, are
colored black as they do not join the main abstract thread to, i.e., mjoin[t;] =
mjoin[te] = false.

The specific case of a mutual thread creation inside a recursion, might lead
to an unbounded TCT. We detect this case and resolve it by combining the
involved abstract threads. For example, abstract thread ¢; creates t;: Both ¢;
and t; have the same static thread type. Since there is recursion involved in the
static types of ¢; and t;, the TCT will be unbounded. To handle this, we add
only one node to the TCT with ICFG as the ICFG of ¢;. The number of runtime
instances of the added node in the TCT is not unique. The must-join information
of the added node is set based on must-join information of ¢; or ¢;. In general, if a
set of static types are involved in mutual recursion, we create a single node for the

158 R. Barik

same in TCT. The ICFG of this node is created by combining ICFG of all the
involved static types (details described in Appendix A).

4 MHP Computation

Given all abstract threads of a program, their ICFGs and the TCT, we com-
pute nodes which may potentially execute in parallel, i.e., MHP information.
This computation is performed at two levels: first at the abstract thread level
and then at node level. At the abstract thread level, MHP computes pairs of
abstract threads that may potentially execute in parallel. This is coarse-grained
MHP information. Node level MHP refines this information by considering the
individual statements and control-flow structure of threads that are identified as
MHP at the thread-level. Since we are doing a compile time approximation of
MHP (considering every control flow path), the MHP information we compute
is a conservative superset of what actually happens at runtime.

Apart from ordering criteria among threads due to thread start and join, locks
are also commonly used to order the execution among threads. We conservatively
compute the locks statically using the following manner: In Java, locks are used
in a scoped manner. Locks held during an access statement are recorded during
the creation of the ICFG and associated with the corresponding node. We define
locks[v"] as the set of objects that are locked while executing any node v™ €
V (t;). Nodes that execute in the context of a common unique lock cannot execute
concurrently.

Our MHP analysis is based on graph algorithms like reachability and dom-
inance. We write z = y to indicate a directed path from start node z to end
node y. A null path is a path whose start node and end node are the same,
i.e., a single node. A non-null path from x to y is written as x & y. This path
definition applies to both ICFG and TCT.

A directed path t; = t,, in the TCT is called a must-join path if all the nodes
that lie on the path from ¢; to ¢, are must-join abstract threads, i.e., mjoin|t;]
= true, Vi = 1,---,n. For example, the path %, % t1 % ts in Figure 3 is not a
must-join path as mjoin[t;] = false.

The dominance relation between two nodes in the ICFG is represented by dom.
Further, we denote node dominance as dom.,» [v]'] that consists of all nodes that
lie on all possible directed paths from v]” € V(t;) to v € V(t;) in ICFG(t;).

4.1 Thread Level MHP

Thread level MHP computes pairs of abstract threads that may execute in
parallel. It exploits the rooted tree structure of the TCT to determine such
information.

Let ||; denote the MHP relation between two abstract threads. The ancestors
of an abstract thread ¢; in the TCT are represented in a set anc(t;). child and
parent represent the child and parent relationship in the TCT. Let yca(t;,t;)
denote the youngest common ancestor of t; and t; in TCT. Let canc(t;,t;) be

Efficient Computation of MHP Information for Concurrent Java Programs

canc(t t:) J canc(t,ti)
P . O Must-join thread

. Not must-join thread
ti O O i ——TCTpath

(c) (d)

Fig. 4. Thread level MHP

159

the child of the abstract thread ¢; that is either ¢; itself or an ancestor of ;.

Mathematically,

yea(t;, tj) = {tk |

ti is the youngest common
ancestor of ¢; and t;

tj, if tj = Cthd(tZ)
canc(t;, t;) = § child(t;), if child(t;) € anc(t;)
nil otherwise

Computation of thread level MHP is conservative. If an abstract thread t; is
an ancestor of another abstract thread ¢;, then we conservatively assume that
t; and ¢; run in parallel with each other, i.e., t;||+¢;. Further refinement to this
MHP information is done in node level MHP in which we consider fine-grained

statement level parallelism.

til|¢t; = true ift; € anc(t;) ort; € anc(t;)

Apart from the above conservative case, all other possible cases to determine
if any two TCT nodes ¢; and t; may execute in parallel are presented below. For
compact representation of the cases we denote the youngest common ancestor

of t; and t; as tyeq, 1.€., tyea = yea(ti, t;).

— Case 1: Let us consider the case where neither the TCT path canc(tycq, ;) —

t; nor the TCT path canc(tycq,t;) = t; is a must-join path. The TCT for
this case is shown in Figure 4(a). t; and t; may execute in parallel, if at least

160

tille

tille

R. Barik

one of the following conditions holds: (1) their common parent ¢, is not
unique, or (2) both threads canc(tycq,t;) and canc(tycq,t;) may be started
in some control-flow in ICFG (tyc,). This case is mathematically presented
in Table 1.

Table 1. Thread Level MHP:Case 1

true, if isUnique[tyc.] = false
t; = CSTART (tyca, canc(tyca, ti)) & CSTART (tyca, canc(tyca,t;))
\Y otherwise
CSTART (tyeq, canc(tyea, t;)) = CSTART (tyea, canc(tyc, t:))

Case 2: Let us consider the case where the TCT path canc(tyca, ti) 5, s
a must-join path and the TCT path canc(tycq,t;) — t; is not a must-join
path. This case is shown in Figure 4(b). t; may execute in parallel with ¢; if
at least one of the following conditions holds: (1) ¢y., has multiple runtime
instances, (2) there is a control-flow path from CSTART (tycq, canc(tyca,t;))
to CSTART (tyca, canc(tyca,ti)) in ICFG(tyeq), or (3) there is a control-
flow path from CSTART (tyca, canc(tycq,t;)) to CSTART (tyeq, canc(tyca,t;))
without CJOIN (tycq, canc(tyeq,t;)) in ICFG(tyeq). This case is mathemat-
ically presented in Table 2.

Table 2. Thread Level MHP:Case 2
true, if isUnique[tyc.] = false

CSTART (tyea, canc(tyea, t;)) - CSTART (tyea, canc(tyea, t:))

tj = V
CSTART (tyeq, canc(tyea, ti)) = CSTART (tyea, canc(tyeas t;)) otherwise
A
CJOIN (tyea, canc(tyca,ti)) ¢ dOMoSTART(t,cqsconc(tyeasti)) [CSTART (tyea, canc(tyca, t;))]

Case 3: Let us the consider the case where the TCT paths canc(tyca, ti) St
and canc(tyeq,t;) — t; are must-join paths. This case is shown in Figure 4(c).
t; may execute in parallel with ¢; if at least one of the following conditions
holds: (1) tycq has multiple runtime instances, (2) there is a control-flow path
from the CSTART (tyca, canc(tyca,t;)) to CSTART (tyca, canc(tyca,ti)) with-
out the CJOIN (tycq, canc(tycq,t;)) in ICFG(tyeq), or (3) there is a control-
flow path from CSTART (tyca, canc(tycq,t;)) to CSTART (tycq, canc(tyca,t;))
without the CJOIN (tycq, canc(tyca,ti)) in ICFG(tycq). This case is mathe-
matically presented in Table 3.

Consider our example program and its corresponding TCT in Figure 3. t3

cannot execute in parallel with ¢4 because abstract thread ts joins t; before
abstract thread t4 is started. Similarly ¢5 can never run in parallel with tg.
However, all other pairs of abstract threads may run in parallel with each other.

Efficient Computation of MHP Information for Concurrent Java Programs 161

Table 3. Thread Level MHP:Case 3

true, if isUnique[tye.] = false
(CSTART (tyca, canc(tyca, ti)) 5 CSTART (tyca, canc(tyca, t;)))
A
til|et; = CJOIN (tyca, canc(tyca, ti)) ¢ domcgmRTUW,“,7,,(.,(“,”“1,0)[CSTART(I,,,M,canc(l,ym,Lj))]
vV otherwise

A
(CJOIN (tyea, canc(tyca; t5)) § dOMOSTART (800, canc(tyen,t;)) [CSTART (tyca, canc(tyca, ti))]

CQO ti
canc(t.{;) canc(tt j)

CSTART (tyea, canc(tyea, t;)) - CSTART (tyea, canc(tyca, t:)))

Fig. 5. Node level MHP

4.2 Node Level MHP

Thread level MHP ||; is a coarse grained approximation of MHP information,
because all statements of a thread are subsumed and given the same MHP
information. MHP information among statements from threads ¢; and t; can
be refined further at the node level in the case where either ¢; is an ancestor of
t; or t; is ancestor of ¢; in TCT.

Consider our example program and its corresponding TCT in Figure 3. Thread
level MHP computation computes that ¢1||:t5. This suggests that all statements
of threads t; occur in parallel with statements in thread ts, i.e., t1 ||+ t3. How-
ever, the ICFG nodes corresponding to statement 33 in t; will never run in
parallel with ICFG nodes corresponding to statement 18 of t5. This is because
the abstract thread t3 terminates before thread ¢; executes statement 33.

We use the symbol ||, to denote node level MHP information between two
ICFG nodes. Let t; and t; be two abstract threads such that ¢; € anc[t;]. All
possible cases to determine if any two ICFG nodes v;" and v} may execute in
parallel are presented below:

— Case 1: Let us the consider the case where the TCT path canc(t;, ;) 5 t;
is not a must-join path. This case is shown in Figure 5(a). v]* may exe-
cute in parallel with o7 if at least one of the following conditions holds: (1)
t; has multiple runtime instances, or (2) there is a control-flow path from
CSTART(t;, canc(t;, t;)) to v in ICFG(t;). This case is mathematically

presented in Table 4.

162 R. Barik

Table 4. Node Level MHP:Case 1

mi n { true, if isUnique[t;] = false
;" |lnv

7 =\ CSTART (ti, canc(ts, t;)) — v* otherwise

— Case 2: Let us the consider the case where the TCT path canc(t;, ;) 5 t;

is a must-join path. This case is shown in Figure 5(b). v/ may execute
in parallel with v} if at least one of the following conditions holds: (1)
t; has multiple runtime instances, or (2) there is a control-flow path from
CSTART(t;, canc(t;, t;)) to v without the CJOIN (t;, canc(t;,t;) in ICFG

(t;). This case is mathematically presented in Table 5.

Table 5. Node Level MHP:Case 2

true, if isUniquelt;] = false
Yt = CSTART (ts, canc(ti, tj)) — vi"
Vi ety = A otherwise
CJOIN (ts, canc(ti, ;) & domesTart(s;,canc(ts b)) Vi)
Table 6. Final MHP computation formula
(locks[v"] N locks[v}]) = 0, ift; =t; and isUnique(t;) = false
myn = (locks[vi"] N locks[v}]) = 0
vl = A otherwise

(tillets) A (0" [[nvg)

To summarize the MHP information based on thread level and node level,
let || denote the generic MHP information between any two nodes v € V(t;)
and v} € V(t;). Then the condition under which v]* may execute in parallel
with v7 is given in Table 6. Besides the thread and node level MHP relations,
the condition also accounts for ordering through common lock protection and
concurrency among nodes of abstract threads that are not unique.

The skeleton of the MHP algorithm is provided in Algorithm 1. Step 1 com-
putes the abstract threads and their ICFGs along a symbolic program execu-
tion [18]. Step 3 computes postdom relation which is necessary to determine if
the abstract thread is a must-join abstract thread or not. Step 4 finds out all
possible execution paths in the ICFG. Step 5-7 compute node dominance with
respect to various CSTART nodes in the abstract thread. Step 8 adds a TCT
node along with its must-join information. Step 10 computes all possible must-
join chains and also computes youngest common ancestor information for each
pair of nodes in TCT. This can be obtained by performing a bottom-up traver-
sal of the TCT. Steps 11-20 compute MHP information between every pair of
nodes across all abstract threads using the equation given in Table 6. Since MHP
information between a pair of nodes is symmetric, we carefully choose ¢; in step
12 so as to reduce the number of comparisons.

Efficient Computation of MHP Information for Concurrent Java Programs 163

Algorithm 1. MHP computation.

1: Perform a symbolic execution over the whole program to identify various abstract

threads and their ICFGs.

2: for every abstract thread ¢; in the program do

3 Compute postdom (vi*) for each v;* € V;.

4 Compute reachability information (—) for every pair of nodes in V;.

5 for every child abstract thread t; created by t; do

6: Compute domCSTART(ti,tj)[Uzm] for each v]"* € V;.

7 end for

8 Add appropriate node to TCT.

9: end for
0: Compute must-join chains and gather youngest common ancestor information for
every pair of nodes in TCT.
11: for all abstract thread ¢; do
12: for all abstract thread ¢; do

13: for all v;" € V; do

14: for all v} € V; do

15: Determine v;" ||vf using Table 6.
16: end for

17: end for

18: end for

19: end for

4.3 Complexity Analysis

Let k£ be the total number of abstract threads. Let N be the total number of
ICFG nodes per abstract thread. Step 3 can be computed in ©@(N?) time using
the algorithm suggested by Alstrup et al. [2]. Reachability information in Step
4 can be computed in ©O(N?) time using standard depth first search algorithm.
Since dominance with respect to a single node is computed in ©(N?) time, steps
2-9 can be executed in a worst case complexity of O((kN)?). Computation of
must-join chain and common parent information in step 10 can be obtained
in ©(k?) complexity using a bottom up traversal of TCT. Careful selection of
t; will yield a time complexity of O((k + (5))N?) for steps 11-21. Hence, the
overall worst case time complexity of the algorithm is ©((kN)?). Note that the
complexity analysis does not include the cost of computation of abstract threads
and their ICFGs.

5 Implementation Details

The abstract threads and their ICFGs are computed by performing a symbolic
ezxecution over the whole program. The focus of the description here is on the
MHP analysis and details of the symbolic execution are discussed in [18].

5.1 Intra-procedural Analysis

During intra-procedural analysis, we obtain a flow-sensitive control flow graph
for a method. Each node in this graph corresponds to instructions in the original

164 R. Barik

program/byte-code sequence: BEGIN and END nodes to indicate begin and
end of methods, USE and ASS nodes for accessing and modifying shared data,
CSTART and CJOIN nodes to indicate child abstract thread start and joins,
ACQUIRE and RELEASE nodes to represent monitor regions, NEW nodes to
indicate object/array allocations, CALL nodes to denote method invocations,
and ENTRY and EXIT nodes to indicate thread entry and exit points (these
two nodes can be maintained separately or merged with BEGIN and END nodes
of the run method of the thread). While creating CSTART nodes, we create
new abstract threads. For the main thread in Java, we create a special abstract
thread.

5.2 Inter-procedural Analysis

The CALL nodes of various methods are linked to their polymorphic callee’s
BEGIN nodes. The END nodes of the callee’s are connected back to the suc-
cessors of the caller’s CALL node. In case a method is involved in recursion, we
reuse the already computed intra-thread control flow graph nodes and hence do
not descend into its call again. This approach can lead to artifact paths in the
ICFG that cannot execute in real program execution. However, this does not
affect the conservative results of the analysis. In case the target of a CALL node
is not involved in any shared data access (leads to side effect free calls), we do
not descend into it.

The nodes in ICFG are properly annotated with current set of locks. The lock
sets are propagated as a stack in a flow sensitive manner along with the symbolic
execution. Since the symbolic execution in every method is performed in a depth
first order, the lock set of a successor depends both on the lock set of one of the
predecessors and on the current node. Lock sets are modified appropriately for
ACQUIRE and RELEASE nodes.

Along with the symbolic execution we gradually update the TCT. Initially
TCT contains one node for the abstract thread corresponding to the main thread.
Then as and when we encounter new CSTART nodes at various contexts, we
create new abstract threads and add them to TCT.

5.3 Barriers

A barrier synchronization point has the effect of causing all threads to wait
at the barrier until every thread has reached it. Barriers can be implemented in
various ways in Java [12]. Since it is hard to detect barrier synchronization points
using program analysis, we annotate programs at barrier synchronization points.
This annotation helps us reduce the MHP pairs as the following way: statements
above a barrier point never execute concurrently with the ones below the barrier.

5.4 Limitation

The 2-level MHP algorithm computes MHP information for programs with no
synchronization constructs like wait, notify and notifyAll. The presence of
such constructs may require the MHP algorithm to enumerate every runtime

Efficient Computation of MHP Information for Concurrent Java Programs 165

threads explicitly in the compilation time and thereby making the analysis ex-
pensive and inapplicable to unbounded number of threads.

6 Experience

In this section, we report our experience in a Java-IA32 way-ahead compilation
environment on a Pentium IV CPU at 2.66GHz running Redhat Linux. Our run-
time system is based on GNU libgcj version 2.96 [7]. The numbers we present
refer to the overall program including library classes, and excluding native code.
The effect of native code for aliasing and object access has been modeled explic-
itly in the compiler.

We use several multi-threaded benchmark programs [10,24] to evaluate the
precision of our analysis. JGFCrypt, JGFSeries, JGFSor, JGFLUFact,
JGFSparsematmult, JGFMoldyn, JGFRaytracer, and JGFRaytracer are multi-
threaded benchmarks from Java Grande Forum [10]. Other benchmarks philo,
elevator, sor and tsp are described in [18].

We compare the running time of our analysis with that of [16] et al. We
modified their MHP algorithm to use our context and flow sensitive thread
model. We also use the interprocedural control flow graph structure (ICFG)
described in Section 3.1 instead of the Program Execution Graph (PEG) that
they proposed. To model PEG interactions at thread start and join in ICFG, we
keep additional information in ICFG nodes regarding threads started and joined
at that node; this helps us propagate the OUT and M information in their MHP
algorithm. Abstract threads which do not represent multiple instances of the
runtime threads are handled easily by their MHP algorithm. For a non-unique
abstract thread, we add additional explicit MHP computation among the nodes
of the abstract thread (similar to the way our MHP algorithm computes MHP
information for non-unique abstract threads).

Table 7. Running time of our MHP algorithm vs Naumovich et al.

Benchmarks Naumovich et al. MHP [16] Our 2-level MHP Speedup

in millisecond in milliseconds
JGFSor 51 27 1.89
JGFSparsematmult 34 9 3.78
JGFSeries 33 11 3.00
JGFLUFact 50 29 1.72
JGFCrypt 163 83 1.96
JGFMoldyn 13415 13119 1.02
JGFMontecarlo 3242 3193 1.02
JGFRaytracer 2176 2034 1.07
philo 34 15 2.43
elevator 248 183 1.36
sor 338 210 1.61
tsp 696 696 1.00

mtrt 4217 3823 1.10

166 R. Barik

Table 8 reports number of abstract threads and their corresponding number
of ICFG nodes. In all the benchmarks, except the main thread which is unique,
other abstract threads have multiple instances. Table 7 compares the running
time of our MHP algorithm as opposed to Naumovich et al. On an average, we
show 1.77x speedup on the running time of MHP algorithm.

For larger benchmarks like JGFMoldyn, JGFMontecarlo, JGFRayTracer, and
tsp, the abstract thread(s) except the main thread have higher number of ICFG
nodes (Column 2 in Table 8). Since the computation of MHP information for ab-
stract threads having multiple instances is same for both our algorithm and Nau-
movich et al. algorithm (Note that Naumovich et al. modeled runtime threads
and hence did not have multiple instances of a thread; we added extra code
to adapt to our thread model), the improvements are not significant. However,
for other benchmarks like JGFSeries and JGFSparsematmult, we obtain large
running time benefits.

Table 8. Details about benchmarks

Benchmarks Num of abstract threads Num of ICFG nodes
in abstract threads

JGFSor 2 48469
JGFSparsematmult 2 68420
JGFSeries 2 53421
JGFLUFact 2 57T+57
JGFCrypt 3 52461461
JGFMoldyn 2 2804758
JGFMontecarlo 2 5204316
JGFRaytracer 2 387+221
philo 2 17493
elevator 2 834142
sor 3 83+T7T7+77
tsp 2 181+398
mtrt 3 8541022+1022

7 Conclusion

In this paper, we present a new thread model where individual thread abstrac-
tions are obtained in a flow and context sensitive manner from the program. The
new thread abstraction models runtime threads precisely and yet efficiently dur-
ing compile time. This thread model can be used in various concurrent program
analysis and optimizations to improve the precision of results.

The thread model is subsequently used to compute MHP information effi-
ciently. Splitting the MHP computation based on thread structure level (TCT)
and individual thread abstraction’s control flow structure level reduces the com-
plexity of the algorithm as opposed to data flow based approach proposed by
Naumovich et al. [15]. The TCT structure depicts interaction among threads
and can be used to perform various thread structure analysis.

Efficient Computation of MHP Information for Concurrent Java Programs 167

As concurrent programming is embraced by more users (and finds its way into
future processor architectures), there will be increased demand on the compiler
to produce precise static analysis results. Context and flow sensitive thread ab-
stractions and thread structure analysis described in this paper can provide a
solid back-bone for concurrency -aware compilation systems.

Acknowledgments

We thank Christoph v. Praun, Vivek Sarkar and Prof. Thomas Gross for their in-
valuable comments during early version of the paper. We also thank Matteo Corti
and Florian Schneider for their contributions to the compiler infrastructure.

References

1. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers Principles, Tech-
niques, and Tools. Addison-Wesley publishing company, 1986.

2. Stephen Alstrup, Peter W. Lauridsen, and Mikkel Thorup. Dominators in linear
time. DIKU technical report, (35), 1996.

3. David Callahan and Jaspal Subhlok. Static analysis of low-level synchronization.
In Workshop on parallel and distributed debugging, pages 100-111, 1989.

4. Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano, Vugranam C. Sreedhar, and
Samuel P. Midkiff. Escape analysis for java. In Proceedings of the Conference on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA),
pages 1-19, 1999.

5. JongDeok. Choi, K. Lee, A. Loginov, R. O. Callahan, V. Sarkar, and M. Srid-
haran. Efficient and precise datarace detection for multithreaded object-oriented
programs. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 258-269, 2002.

6. Evelyn Duesterwald and Mary Lou Soffa. Concurrency analysis in the presence
of procedures using a data-flow framework. In Proceedings of the Symposium on
Testing, Analysis, and Verification, pages 36-48, 1991.

7. Gnu software, gcj - the gnu compiler for the java programming language.
http://gce.gnu.org/java.

8. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Spec-
ification. Sun Microsystems, second edition, 2000.

9. Krinke J. Static slicing of threaded programs. Proceedings of the ACM SIG-
PLAN/SIGSOFT Workshop on Program Analysis for Software Tools and Engi-
neering, pages 35-41, June 1998.

10. Java grande forum, multi-threaded benchmark suite.
http://www.epcc.ed.ac.uk/javagrande.

11. Leslie Lamport. How to make a correct multiprocess program execute correctly on
a multiprocessor. IEEE Transactions on Computers, 46(7):779-782, July 1997.

12. D. Lea. Concurrent Programming in Java. Addison-Wesley, second edition, 2000.

13. Lin Li and Clark Verbrugge. A practical mhp information analysis for concurrent
java programs. In The 17th International Workshop on Languages and Compilers
for Parallel Computing (LCPC’04), 2004.

168 R. Barik

14. S. P. Masticola and B. G. Ryder. Non-concurrency analysis. In Proceedings of the
Fourth Symposium on on Principles and Practices of Parallel Programming, pages
129-138, May 1993.

15. G. Naumovich, G. S. Avunin, and L. A. Clarke. An efficient algorithm for com-
puting mhp information for concurrent java programs. In Proceedings of the 7th
FEuropean Software Engineering Conference and 7th International Symposium on
Foundations of Software Engineering, pages 338-354, September 1999.

16. Gleb Naumovich and George S. Avrunin. A conservative data flow algorithm
for detecting all pairs of statements that may happen in parallel. In Proceedings
of the 6th ACM SIGSOFT international symposium on Foundations of software
engineering, pages 24-34, 1998.

17. Christoph von Praun and Thomas R. Gross. Object race detection. In Proceedings
of Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA’01), pages 70-82, October 2001.

18. Christoph von Praun and Thomas R. Gross. Static conflict analysis for multi-
threaded object-oriented programs. In In Proceedings of the ACM SIGPLAN 2003
conference on Programming language design and implementation, pages 115-128,
2003.

19. Martin Rinard. Analysis of multithreaded programs. In Proceedings of Static
Analysis Symposium (SAS’01), July 2001.

20. Erik Ruf. Effective synchronization removal for java. In Proceedings of the ACM
SIGPLAN 2000 conference on Programming language design and implementation
(PLDI’00), pages 208-218, 2000.

21. V. Sarkar. Analysis and optimization of explicitly parallel programs using the
parallel program graph representation. In The 10th International Workshop on
Languages and Compilers for Parallel Computing (LCPC’04), 1997.

22. V. Sarkar and Simons B. Parallel program graphs and their classification. In
The Proceedings of ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering, 1998.

23. Dennis Shasha and Marc Snir. Efficient and correct execution of parallel programs
that share memory. ACM Transactions on Programming Languages and Systems,
10(2):282-312, April 1988.

24. Spec jvm98 benchmarks, the standard performance evaluation corporation.
http://www.spec.org/osg/jvm98.

25. Zehra Sura, Xing Fang, Chi-Leung Wong, Samuel P. Midkiff, Jaejin Lee, and David
Padua. Compiler techniques for high performance sequentially consistent java pro-
grams. In PPoPP ’05: Proceedings of the tenth ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages 2—13, New York, NY, USA,
2005. ACM Press.

26. Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146-160, June 1972.

27. R. N. Taylor. Complexity of analyzing the synchronization structure of concurrent
programs. Acta Informatica, 19:57-84, 1983.

A Appendix — Thread Creation Tree

The thread creation tree described in Section 3.3 precisely depicts the start-
join ordering semantics among abstract threads in a program. Since the tree
is computed in a context and flow sensitive manner, presence of cyclic thread

Efficient Computation of MHP Information for Concurrent Java Programs 169

class A extends Thread { class B extends Thread {
void run() { void run() {
Thread b=new B(); Thread c=new C();
b.start(); c.start();
} }
} }

class C extends Thread {
void run() {
Thread a=new A();
a.start();

Fig. 6. Recursive program

creation might make the TCT unbounded. Consider the code fragment given
Figure 6: Thread A creates Thread B; Thread B creates Thread C; Thread
C subsequently creates Thread A. Clearly there is a recursion involved in the
creation of various threads. This requires special handling to avoid the recursive
invocation of start methods.

To handle the above scenario, we perform a strongly connected component
search algorithm over the call graph of the whole program to detect all those
start methods of static thread types that are involved in a recursion. Let
{81, 82, +, $n} be the set of all such strongly connected components, where each
$; = {xi1,Ti2, -+, Tim }. Each x;; denote a static thread type. Subsequently, we
compute a conservative inter-procedural control flow graph for each s; by com-
bining the inter-procedural control flow graph of all x;;. While combining the
inter-procedural control flow graphs, start method invocations for static thread
types in s; are treated as normal method invocations and are connected via con-
trol flow edges.

While performing symbolic execution (described in Section 5), if we encounter
a start method invocation of a static thread type which belongs to any of the
above computed s; then we create a node in the TCT corresponding to s;.
tsUnique and mjoin predicates for the created TCT node are conservatively set
to false. ICFG of the created TCT node is set to the inter-procedural control
flow graph of s;.

Evaluating the Impact of Thread Escape
Analysis on a Memory Consistency
Model-Aware Compiler

Chi-Leung Wong!, Zehra Sura?, Xing Fang?, Kyungwoo Lee3,
Samuel P. Midkiff?, Jaejin Lee?, and David Padua®

! KAI Software Lab, Intel Americas, Inc., Champaign, IL, USA
chi.leung.david.wong@intel.com
2 IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA

zsuraQus.ibm.com

3 Purdue University, West Lafayette, IN, USA

{xfang,kwlee,smidkiff }@ecn.purdue.edu

4 Seoul National University, Seoul, Korea
jlee@cse.snu.ac.kr
5 Dept. of Computer Science, University of Illinois at Urbana-Champaign, USA

padua@cs.uiuc.edu

Abstract. The widespread popularity of languages allowing explicitly
parallel, multi-threaded programming, e.g. Java and C#, have focused
attention on the issue of memory model design. The Pensieve Project
is building a compiler that will enable both language designers to pro-
totype different memory models, and optimizing compilers to adapt to
different memory models. Among the key analyses required to implement
this system are thread escape analysis, i.e. detecting when a referenced
object is accessible by more than one thread, delay set analysis, and
synchronization analysis.

In this paper, we evaluate the impact of different escape analysis al-
gorithms on the effectiveness of the Pensieve system when both delay set
analysis and synchronization analysis are used. Since both analyses make
use of results of escape analyses, their precison and cost is dependent on
the precision of the escape analysis algorithm. It is the goal of this paper
to provide a quantitative evalution of this impact.

1 Introduction

In shared memory parallel programs, different threads of the program commu-
nicate with each other by reading from and writing to shared memory locations.
Experience shows that to achieve high performance without extensive analyses,
it is necessary to allow memory accesses to follow an order of execution that is
non-intuitive one[13]. Memory system behavior observed by different processors
constitute the memory model. It is difficult to define a memory model that is
both easy to use and implement efficiently. The goal of the Pensieve compiler
system is to provide a testbed to evaluate memory models by creating “virtual”

E. Ayguadé et al. (Eds.): LCPC 2005, LNCS 4339, pp. 170-184, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Evaluating the Impact of Thread Escape Analysis 171

memory models and to evaluate the overhead of these models in the presence of
aggressive compiler analyses and optimizations. Given a program and a mem-
ory model specification, the Pensieve compiler will ultimately be able to generate
different versions of machine code corresponding to the specified memory model.
However, the current version of the Pensieve system only creates a sequentially
consistent “virtual” memory model and implements it on the Intel IA32 and
PowerPC processors, so the virtual memory model and the target memory mod-
els are currently hardwired inside the system. An important issue in the system
design is performance — both the compilation time and application time should
be minimized. In this paper, we investigate the impact of escape analysis on
our Pensieve system. We study how escape analysis affects the cost and pre-
cision of other analysis algorithms, which in turn affects both the compilation
cost and application performance. In particular, this paper makes the following
contributions:

— it describes the Pensieve compilation system:;

— it describes the interaction between escape analysis and synchronization/
delay set analyses.

— it presents a quantitative study on the impact of escape analysis on the
Pensieve system.

1.1 Memory Models

A memory model® specifies the memory system behavior, and can be specified
for programming languages as well as hardware. Memory models are necessary
because they define the allowable set of outcomes of a parallel program and, as
a result, they allow programmers to reason about their programs and compilers
to generate valid code. Until recently, memory models were of concern only
to expert systems programmers, and computer architects. With the advent of
languages like Java and C#, many programmers write multi-threaded programs
targeting Internet, database, and GUI applications, in addition to traditional
high performance computing applications. Because of this, memory models have
become an issue for much of the programmer community and for language and
compiler designers. The trade-offs between ease-of-use and performance have
become increasingly important.

Sequential Consistency. A well-known memory model is sequential consis-
tency (SC), defined by Lamport[15]. It is often considered to be the simplest
and most intuitive memory consistency model [13]. Scheurich and Dubois[19]
described a sufficient condition for SC and Gharachorloo et. al.[8] presented the
condition in a slightly difference way. The idea of these sufficient conditions is to
delay a memory access until all previous ones within the same thread are com-
pleted. These conditions impose constraints so that some performance improv-
ing optimizations cannot be applied in the hardware . In addition, it constrains

! Memory models are often called consistency models in the context of hardware.

172 C.-L. Wong et al.

compiler optimizations that may reorder memory accesses. The issue of mem-
ory models can be illustrated by the busy-wait synchronization example shown
in Figure 1(a). Both x and a are shared variables accessible by two concurrent
threads. Thread 1 does some computation and stores the result in a, and then
uses x to inform Thread 2 that a new value of a is ready to be read. Thread
2 waits for the data by executing a while loop that reads x and waits for the
value to become non-zero, at which time the thread will read the value from a.
The program shown in Figure 1(a), if executed in a SC environment, achieves
the described intention.

Relaxed Consistency Models. Most multiprocessor systems implement con-
sistency models, such as weak ordering and release consistency [4], which impose
fewer constraints than SC on the order of shared memory accesses. Where clear,
we will refer to these more relaxed models by the acronym RC. RC models al-
low more instruction reordering, increasing the potential for instruction level
parallelism and as a result can potentially deliver better performance. Synchro-
nization primitives, such as fences, are used in these systems to force an order
on memory operations that is more constrained than that implied by the default
consistency model.

The program shown in Figure 1(a), if executed in a RC environment, is not
guaranteed to achieve the programmer’s intention. This is because, for perfor-
mance reasons, the compiler or hardware may reorder the two memory operations
performed by Thread 1 such that the update of x reaches Thread 2 before the
update of a. If this happens, T2 could read the updated value of x (i.e. 1), exit
the loop, and then read an old value (i.e. 0) of a. Therefore, the intention of
the programmer is not achieved. In the presence of the fence instruction, the
memory reording does not happen. Figure 1(b) shows a correct implementation
of the busy-wait construct using fences.

Both x and a are zero initially.

// Thread 1 // Thread 2

. . Ul: a=1; Vi: while (x==0) wait;
Si: a=1; Ti: while (x==0) wait; U2: fence V2: fence

S2: x = 1; T2: print a; U3: x = 1; V3: print a;
(a) Busy-wait synchronization (b) Fence instruction inserted to avoid
reordering

Fig. 1. Memory model issues example

1.2 Enforcing Memory Models

Enforcing a memory model implies enforcing some memory access orders. How-
ever, not all orderings specified by the memory model need to be enforced. In
fact, only those orderings that may affect the outcome of the program must
be enforced. To generate efficient and correct code, a compiler must determine

Evaluating the Impact of Thread Escape Analysis 173

which memory accesses may not be reordered and enforce only those orderings.
The orderings that must be enforced are called delays. In [20], Shasha and Snir
give minimal criteria for which orders must be enforced in order to have a se-
quential consistent execution of a program. Both [20] and this paper assume that
the hardware provides primitives, such as fences, powerful enough to enforce the
required orderings. Moreover, some compiler optimizations must be constrained
if applying them may violate a delay. In [20], the authors present a delay set
analysis (DSA) algorithm to determine the required orderings. DSA requires the
thread structure of the programs to determine the delay information.

In Section 2, we describe the Pensieve system design. In Section 3, we describe
the escape analysis proposed in [23]. In Section 4 and Section 5, we describe
how the escape analysis impact delay set analysis and synchronization analyses
respectively. In Section 6, experimental results are presented to evaluate the
impact of escape analysis quantitatively. This paper concludes in Section 7.

2 Pensieve Compiler System Design

Our Pensieve Compiler System supports SC on top of two hardware platforms
that support more relaxed memory models — the Intel platform and the Pow-
erPC platform, which is an extension of the Jikes RVM infrastructure [7,9].
Figure 2 gives an overview of the Pensieve system.It shows three phases:

1. In the analysis phase, a set of delays is computed. The delays are the ordering
constraints to be enforced both by the compiler and the hardware.

2. In the modified code optimization phase, the set of delays identified by the
analysis phase is checked before performing an optimization transformation.
If a transformation would violate a delay, it is not applied.

3. In the fence insertion and optimization phase, fences are inserted into the
program to force the delays to be enforced by the hardware. This phase
looks for opportunities to synchronize multiple delays with a single fence
instruction. The details of this phase are described in [10,11].

Program Analyses
Thread Escape
Anaysis

Alias Analysis |——|

Fence Insertion
and Optimizati

Hardware Memory
Consistency Model

Synchronization
Analysis

Target Program

Ordering
Constraints
to Enforce

Delay Set
Analysis

Fig. 2. Overview of the Pensieve system

3 Thread Escape Analysis

Thread escape analysis aims at identifying objects which may be accessed by
two or more threads. In the Pensieve System environment, the analysis is per-
formed as the application programs are running, so the time to perform escape

174 C.-L. Wong et al.

analysis is a part of the overall execution time. Therefore, an inexpensive and
moderately accurate analysis algorithm will be a good choice in our approach.
In this project, we balance analysis algorithm performance and accuracy. While
we are not aiming at having an escape analysis that is precise for the whole pro-
gram, the analysis should be precise enough that fences are not unnecessarily
inserted into frequently executed methods. In light of this, we chose to design the
simplest possible algorithm to minimize the cost of the analysis. In the Pensieve
compiler system, we have implemented four escape analysis algorithms:

— a connectivity based analysis described in [23]
— a field based analysis described in [22]

— Bogda’s analysis described in [6]

Ruf’s analysis described in [18]

3.1 Connectivity Based Analysis
The basic characteristics of the algorithm[23] are:

— Analysis of most memory accesses is field insensitive, with accesses in Runnable
objects being field sensitive.

— More precise context information is constructed for the run() method of a
Runnable class (i.e. this is not assumed to escape) than for other methods.

— Objects assumed to be reachable by multiple threads, are marked as escaping
only if they are accessed by multiple threads.

The analysis is a two-phase analysis. The bottom-up phase computes the
effect of methods and computes how the methods make arguments escaping.
The top-down phase computes the context of methods and determines how
the caller makes arguments escaping before passing them to their callees. Both
phases are done by visiting the strongly connected component (SCC) graph
induced by the call graph in (reverse) topological order. The analysis makes use
of the union-find data structure to avoid fixed point computations for recursive
methods within an SCC.

3.2 Field Based Analysis
The basic characteristics of the algorithm[22] are:

— Analysis of all objects is field sensitive. To avoid an expensive analysis, unlike
[18], it merges escaping properties of fields of all objects of the same type.
For example, if O;.f = Oz and Os is found to be escaping, then for any
object O, if O is referened by a field £, it is assumed to be escaping.

— Analysis of the run() method of a Runnable, looks for conditions implying
this is not escaping, instead of assuming this is escaping. .

The analysis is an iterative analysis — the analysis is performed until no es-
caping properties of variables and fields change. It is a partially context sensitive
analysis.

Evaluating the Impact of Thread Escape Analysis 175

3.3 Bogda’s Analysis

Bogda’s analysis[6] is a two phase and iterative analysis. The basic characteristics
of the algorithm are:

— an object is escaping if any of the following conditions is fulfilled
e it is reachable via more than one field reference;
e it is reachable by a static field; or
e it is reachable by a Runnable object.

3.4 Ruf’s Analysis

Ruf’s analysis[18] is a three phase analysis. Like our connectivity based analysis,
it makes use of the union-find data structure to avoid fixed point computations for
recursive methods inside an SCC. The basic characteristics of the algorithm are:

— an object is escaping if it is both
e reachable from static fields or Runnable objects;
e synchronized by more than one thread.

Since the analysis is designed for synchronization removal, we have adapted it for
fence insertion. Instead of using the second condition “synchronized by more than
one thread”, the adapted analysis checks whether an object is “accessed by more
than one thread”. After the adaptation, the cost of analysis could be increased
because there are more object accesses than synchronization operations.

4 Impact of Escape Analysis on Delay Set Analysis

Delay set analysis computes a delay set, i.e. a set of ordered pairs of memory ac-
cess (x,y) such that y must be delayed until = has completed. In [20], Shasha and
Snir present an accurate method to find the minimal delay set. In the Pensieve
compiler system, we use a much simpler approximate method described in[21].
The analysis in [20] finds cycles in a graph where nodes are shared variable ac-
cesses from two or more threads. In our simplified escape analysis, we look for
pairs of shared memory accesses (x,y) such that z precedes y; y is aliased to y’
in another thread; x is aliased to z’ in another thread; and y’ precedes z’.

Escape analysis affects both the precision and cost of delay set analysis. The
fewer the number of escaping variables, the fewer pairs (x,y) that need to be
checked, and the fewer the number of ' and 3’ accesses. This increases both the
speed and the precison of delay set analysis.

5 Impact of Escape Analysis on Synchronization Analysis

Synchronization information helps reduce the number of conflict edges in the
graph considered for delay set analysis, and thus improves the precision of delay
set analysis[14].

176 C.-L. Wong et al.

In our analysis, we consider the following Java synchronization primitives:

— synchronized blocks, used for lock-based synchronization
— thread start() and join() calls, used to determine the program thread
structure.

Our lock-based synchronization analysis has been described in [22]. It improves
the accuracy of our approximate delay set analysis. In essence, we can ignore
pairs of nodes (z,y) and (z',y’), as described above, when both are synchronized
with the same lock. See [22] for details.

A detailed description of our start-join-based synchronization analysis is given
in [21]. The idea is to make use of the Java language semantics of start () and
join(). When a thread is spawned via a thread start (), all memory accesses of
the creator thread that are initiated before start (), complete before the point
where the new thead starts. Also, if a thread T invokes a join() call to wait
for another thread to terminate, then all memory accesses performed by the
terminating thread complete before T' continues execution after the join().

Escape analysis affects the precision of synchronization analysis. When doing
synchronization analysis, we consider only join() calls that are matched with
some start () call. A join() is matched with a start () only if the objects that
they are invoked on do not escape. Matched join () calls can reduce the number of
pairs (z,y) to be considered. Therefore, when escape information is more precise,
more join() calls can be matched, so more pairs (z,y) can be ignored.

6 Experimental Results

In this section we present the results of executing benchmark programs compiled
with our Pensieve compiler using the four escape analyses described in Section 3.
Our goal is to quantitatively evaluate the impact of different escape analysis
algorithms.

6.1 Benchmark Programs

Table 1 shows the benchmark programs used in the experiments. These are stan-
dard benchmarks from the SPECjvm98, SPECjbb2000 and the Java Grande
benchmark suite. There are also some programs taken from the literature, in-
cluding the concurrent implementation of two data structures, hashmaps and

Table 1. Benchmark Characteristics

Benchmark |Description Source # bytecodes
moldyn Molecular dynamics application Java Grande Forum Multithreaded Benchmarks|3] 26,913
montecarlo |MonteCarlo simulation Java Grande Forum Multithreaded Benchmarks|3] 63,452
raytracer Ray tracing application Java Grande Forum Multithreaded Benchmarks|3] 33,198
mtrt Ray tracing application From the SPECjvm98 benchmark suite[2] 290,260
boundedbuf|Producer-consumer application Uses Doug Lea’s Blocking Queue class[16] 12,050
geneticalgo |Parallel genetic algorithm Adapted from the sequential version version in [16] 30,147
hashmap Microbenchmark for concurrent hashmaps |Uses Doug Lea’s ConcurrenthashMap class[16] 24,989
seive Sieve of Erastothenes From an example in [12] 10,811
disksched |Disk scheduler using an elevator algorithm|From an example in [17] 21,186
jbb Middle-layer database server application |SPECjbb2000[1] 521,021

Evaluating the Impact of Thread Escape Analysis 177

queues. These concurrent data structures are expected to be widely used and
have been incorporated in the Java standard libraries.

6.2 Target Architectures

The experiments are performed on two platforms — the Intel IA32 platform and
the PowerPC platform:

— The Intel platform is a Dell PowerEdge 6600 SMP with 4 Intel 1.5Ghz Xeon
processors with 1MB cache each, and 6G system memory.

— The PowerPC platform is an IBM SP 9076-550 with 8 375Mhz processors
with 8GB system memory.

6.3 Software Settings

Our compiler system is implemented on top of the Jikes Research Virtual Ma-
chine [7,5,9] version 2.3.4. We use the Fast AdaptiveSemiSpace configuration with
no fences inserted within the virtual machine code. For the experiments reported
below, we force the system to use the optimizing compiler. To evaluate the im-
pact of escape analyses, we compare the analysis times of delay set analysis
and synchronization analysis. In addition, we compare the precision of delay set
analysis and synchronization analysis w.r.t. different escape analyses by com-
paring the application execution time and the number of fences inserted. In all
the graphical plots, the geometrical means are included to summarize data for
all the benchmark programs.
There are six escape analyses compared:

— empty assumes all memory accesses are escaping accesses.

— argEscape assumes all memory locations reachable from some arguments
are escaping.

— connect is the connectivity based escape analysis algorithm described in
Section 3.

— field-based is the field based escape analysis algorithm described in
Section 3.

— bogda is Bogda’s escape analysis algorithm described in Section 3.

— rufb is Ruf’s escape analysis algorithm described in Section 3.

6.4 Cost of Escape Analysis

Figure 3 presents the time taken using a log scale for performing escape analy-
sis. The times for empty and argEscape are small because they are very simple.
Other than these two trivial analyses, the connectivity based analysis is the
fastest because it does not require a fixed-point computation. It takes longer
than empty and argEscape because it is an interprocedural analysis. The analy-
sis times of field-based and bogda are longer because they are interprocedural
iterative analyses that requires a fixed-point computation. On average, the anal-
ysis time of ruf5 is between those of connect and field-based.

178 C.-L. Wong et al.

Escape Analysis Time in ms

[@ empty B argEscape O connect O ruf5 @ field-base B bogda

1000000

100000

10000

1000

100

10

1

mirt

boundedouf

AVG

Fig. 3. Escape analysis time in msec

connect ruf5| bogdal|field-based|argEscape| empty
mtrt 62371| 54240(200307 207529 243376| 247371
moldyn 11782|297740(297782 298239 308673| 309121
montecarlo 22132 3583 4101 7095 31766 31847
raytracer 17768 | 46960| 48967 49116 63153 63539
boundedbuf 2599 4498 4733 4778 6163 6163
disksched 4855 5394 5425 5791 7748 7748
geneticalgo 9574| 17126| 18282 16877 26952 26952
hashmap 4030 4134 4274 4274 4972 4972
seive 2668 4925 4925 5139 5525 5525
jbb 1872250[916591|832800 836559| 1847126|1852503

Number of Delay Check Performed

B connect & ruf5 B bogda M field-base O argEscape O empty

10000000

1000000

100000

10000

1000

100

=
£

moldyn

montecarlo

raytracer

boundedouf

disksched

geneticalgo

seive
Jbob
AVG

6.5 Impact on the Cost of Delay Set Analysis

Analysis

Fig. 4. Number of delay checks

and Synchronization

We evaluate the impact of escape analysis on delay set analysis and synchroniza-
tion analysis separately. In both cases, we measure the time taken to perform
these two analyses. In case of delay set analysis, we also measure the number of
memory access pairs checked for delays.

Figure 4 shows the number of delay checks for different escape analysis al-
gorithms. Since the value range is huge, it is plotted using a log scale. We
can see connect analysis lead to fewer checks than other escape analyses for
most benchmarks except mtrt, montecarlo and jbb. By comparing connect
and field-based for benchmarks montecarlo and jbb, we can see that in these
benchmarks, being field sensitive is important. On average, connect leads to

Evaluating the Impact of Thread Escape Analysis

connect| ruf5| bogda|ficld-based |argEscape| empty
mtrt 58.41] 56.25| 93.52 90.38 104.20|108.35
moldyn 1.90| 46.26| 47.04 47.26 49.53| 49.61
montecarlo 9.53| 1.77| 1.88 2.27 11.13| 10.48
raytracer 2.80| 8.14| 8.53 8.70 11.05| 11.07
boundedbuf| 0.42| 0.70| 0.71 0.69 0.89 1.83
disksched 0.85| 1.03| 1.03 1.09 1.46| 1.46
geneticalgo 1.93| 3.59| 3.68 3.41 5.25| 4.76
hashmap 0.59| 0.69| 0.72 0.71 0.79| 0.83
seive 0.87| 1.16] 1.19 1.19 1.48) 1.30
jbb 304.09|144.76|127.21 127.43 297.69295.74

Delay Set Analysis Time in ms

O connect @ ruf5 M bogda M field-base O argEscape O empty

350

300

250

200

150
100
50—
oM
E s 2 g 3 B =3 g 2 a8 4
E k) s S 3 £ = £ 1 = =
g - £ = & =
Fig. 5. The time spent on delay set analysis in msec
field-based bogda| empty|argEscape| connect rufb
mtrt 478.30[829.88| 873.38 905.41 841.13 839.60
moldyn 73.85| 122.74| 133.15 132.14| 130.63 132.87
montecarlo 270.28| 343.19| 359.99 362.02| 358.69 349.72
raytracer 134.14| 188.00| 198.61 200.09| 200.85 190.60
boundedbuf 67.57| 118.79| 117.81 117.04| 125.85 123.36
disksched 103.17| 160.92| 180.60 182.97| 165.02 161.78
geneticalgo 159.78| 228.40| 248.58 247.21| 248.88 251.44
hashmap 139.50| 237.22| 251.10 251.19| 252.38 247.33
seive 38.18 74.56 76.94 76.75 76.04 75.48
jbb 56070.55|74231.65|59977.42| 58466.61|72130.53|133368.70

Synchronization Time in ms

W fiold-base @ bogda @ empty B argEscape O connect O rufs

1000000

100000

10000

1000 =

100

10

1

mirt
moldyn
montecarlo

rayiracer
boundedbuf

disksched

geneticalgo
hashmap

seive
jbb

AVG

Fig. 6. The time spent on synchronization

analysis time in msec

179

180 C.-L. Wong et al.

Total Compilation Time in ms

[@ connect O ruf5 @ argEscape B empty O field-base M bogda

Fig. 7. Total Compilation Time