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Abstract. In this paper, a novel supervised information feature extraction algo-
rithm is set up. Firstly, according to the information theories, we carried out 
analysis for the concept and its properties of the cross entropy, then put forward 
a kind of lately concept of symmetry cross entropy (SCE), and point out that the 
SCE is a kind of distance measure, which can be used to measure the difference 
of two random variables. Secondly, Based on the SCE, the average symmetry 
cross entropy (ASCE) is set up, and it can be used to measure the difference de-
gree of a multi-class problem. Regarding the ASCE separability criterion of the 
multi-class for information feature extraction, a novel algorithm for information 
feature extraction is constructed. At last, the experimental results demonstrate 
that the algorithm here is valid and reliable, and provides a new research ap-
proach for feature extraction, data mining and pattern recognition. 

1   Introduction 

Feature extraction is one of the most importmant steps in pattern recognition, data 
mining, machine learning and so on[1,2]. In order to choose a subset of the original 
features by reducing irrelevant and redundant, many feature selection algorithms have 
been studied. The literature contains several studies on feature selection for unsuper-
vised learning in which he objective is to search for a subset of features that best  
uncovers “natural” groupings (clusters) from data according to some criterion. For 
example, principal components analysis (PCA) is an unsupervised feature extraction 
method that has been successfully applied in the area of face recognition, feature 
extraction and feature analysis[3-5]. But the method of PCA is effective to deal with 
the small size and low-dimensional problems, and gets the extensive application in 
Eigenface and feature extraction. In high-dimensional cases, it is very difficult to 
compute the principal components directly[6]. Fortunately, the algorithm of Eigen-
faces artfully avoids this difficulty by virtue of the singular decomposition technique. 
Thus, the problem of calculating the eigenvectors of the total covariance matrix, a 
high-dimensional matrix, is transformed into a problem of calculating the eigenvec-
tors of a much lower dimensional matrix[7]. 
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Now an important question is how to deal with supervised information feature ex-
traction. For supervised feature extraction problem, some authors have studied by 
discriminate analysis, bayes decision theory et al. But these methods depend on prob-
ability distributions of some classifications. In this paper, the authors have studied this 
field on the basis of these aspects. Firstly, we study and discuss the information the-
ory, cross entropy theory, and point out its shortage. Secondly, a new concept of 
symmetry cross entropy (SCE) is put forward, and proved that the SCE is a kind of 
distance measure. At the same time, based on the SCE, we give the average SCE, i.e. 
ASCE. Which is regarded multi-class separability criterion. Thirdly, according to 
ASCE, a new information feature extraction algorithm is constructed. At last, the 
proposed algorithm here is tested in practice, and the experimental results indicate 
that it is efficient and reliable. 

2   Feature Extraction Algorithm 

In order to set up information feature extraction algorithm, we firstly discuss the fol-
lowing new concept of symmetry cross entropy and feature extraction theorem. 

2.1   Symmetry Cross Entropy 

Shannon[8] put forward the concept of information entropy for the very first time in 
1948. The cross entropy (CE), or the relative entropy, is used for measuring differ-
ence information between the two probability distributions. But the CE satisfies only 
nonnegativity, normalization and dissatisfies symmetry and triangle inequation. For 
this reason, we carry out the improvement, and give the following definition. 

Definition 1. Let X  be a discrete random variable with two probability distribution 
vectors P  and Q , where ),,,( 21 npppP = , ),,,( 21 nqqqQ = , the CE between 

P  and Q  is defined as 
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In the above definition denoted by formula (1), we show that the CE is always non-
negative and is zero if and only if ii qp = . However, it is not a true distance between 

distributions since it is not symmetric and does not satisfy the triangle inequality. In 
order to make it true distance between distributions, we improve the CE as follows. 

Definition 2. Suppose that the )||( QPH and )||( PQH are CEs of P  to Q  and Q  

to P  respectively, the symmetric cross entropy (SCE) between P  and Q , denoted by 

),( QPD , defined as 
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It is called Symmetric Cross Entropy (SCE) of P  and Q . 
 

According to the definition of the SCE, we have the following theorem. 

Theorem 1. Suppose that the SCE is defined by formula (2), then the SCE is a kind of 
distance measure, i.e. ),( QPD satisfies basic properties as follows. 

(Ⅰ) Non-negativity: 0),( ≥QPD , and QPQPD =⇔= 0),( ; 

(Ⅱ) Symmetry: ),(),( PQDQPD = ; 

(Ⅲ) Triangle inequation: Suppose that ),,,( 21 nwwwW = is another probability 

distribution vector of the discrete random variable X , then 

  ),(),(),( QWDWPDQPD +≤  (3) 

Therefore, the SCE is a distance measure, which can be used to measure the degree 
of variation between two random variables. The SCE is considered as separability crite-
rion of the two-class for information feature extraction. It can be seen that the smaller 
the SCE is, the smaller the difference of two-class. In particular, when the SCE=0, the 
two-class are same completely. For information feature extraction, under the condition 
of the given reduction dimensionality denoted by d , we should select such d  charac-
teristics that make the value of the SCE approach maximum. For convenience, we use 
the following function, denoted by ),( QPH , in instead of above the SCE. 
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For a multi-class problem, based on the formula (4), the SCE is computed for every 
class i  and j , where i  and j  denote number of class 
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The average symmetric cross entropy (ASCE) can be expressed as follows 
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being equivalent to the SCE, we should select such d characteristics that make the 
value of H  approach maximum. In fact, H  approaching maximum is equivalent to 

ijH  approaching maximum, so information feature extraction for a multi-class prob-

lem is also equivalent to a two-class problem. 
In order to set up the information feature extraction algorithm, we first give the fol-

lowing theorem. 
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Theorem 2. Suppose }{ )1(
jx ),,2,1( 1Nj = and }{ )2(

jx ),,2,1( 2Nj = with covari-

ance matrices )1(G and )2(G  are squared normalization feature vectors, so-called 
squared normalization indicates 
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where )2,1()( =ix i
jk denotes the kth feature component of the feature vector )(i

jx . Then 

the SCE, i.e. the ),( QPH =maximum if and only if the coordinate system is composed 

of d eigenvectors corresponding to the first d eigenvalues of the ma-
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2.2   Feature Extraction Algorithm 

Suppose three classes C1, C2, and C3 with covariance matrices )1(G , )2(G  and )3(G  
are squared normalization feature vectors. According to the discussion above, an 
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algorithm of information feature extraction based on the ASCE is derived and is as 
follows.  

Step 1. Data pretreatment. Perform square normalization transformation for two 

classes original data according to the formula (7), and get data matrix )3()2()1( ,, xxx  
respectively. 

Step 2. Compute symmetric matrix CBA ,, . Calculate the covariance matrixes 
)3()2()1( ,, GGG and then get symmetric matrix as follows. 

)2()1( GGA −=  , )3()1( GGB −= , )3()2( GGC −=  (10) 

Step 3. Calculate all eigenvalues and corresponding eigenvectors of the matrix A  
according to Jacobi method. 

Step 4. Construct extraction index. The total sum of variance square is denoted by 
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and then the variance square ratio (VSR) is VSR= 0sVVV dnd = . The VSR value 

can be used to measure the degree of information extraction. Generally speaking, so 
long as %80≥iV , the purpose of feature extraction is reached. 

Step 5. Construct extraction matrix. When %80≥iV , we select d eigenvectors 

corresponding to the first d eigenvalues, and construct the information extraction 
matrix ),,,( 21 duuuT = .  

Step 6. Feature extraction. The data matrixes )3()2()1( ,, xxx  is transformed by 

  )3,2,1()()( =′= ixTy ii  (12) 

and the purpose to compress the data information is attained. 

2.3   Experimental Results 

The original data sets come from reference[9], they are divided into three classes C1, 
C2, and C3, and denote light occurrence, middle occurrence, and heavy occurrence 
about the occurrence degree of the pests respectively.  

According to the algorithm set up above, and applying the DPS data processing 
system, the compressed results for three classes are expressed in Fig. 1. 

Fig.1. shows that the distribution of feature vectors after compressed for the class 
C1 denoted by “+”, the class C2 denoted “*” and the class C3 denoted “^”, is obviously 
concentrated relatively, meanwhile for these three classes, the within-class distance is 
small, the between-class distance is big, and the ASCE is maximum. Therefore, 2-
dimensional pattern vector loaded above 99% information contents of the original 5-
dimensional pattern vector. The experimental results demonstrate that the algorithm 
presented here is valid and reliable, and takes full advantage of the class-label infor-
mation of the training samples. 
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Fig. 1. The compressed results for three classes 

3   Conclusions 

From the information theory, studied and discussed the compression problem of the 
information feature in this paper, and come to a conclusion. According to the defini-
tion of the CE, a new concept of the SCE is proposed, and proved that the SCE is a 
distance measure which can be used to measure the degree of two-class random vari-
ables. The average SCE (ASCE) is given based on SCE, and it is to measure the dif-
ference degree for the multi-class problem. Regarding the ASCE separability criterion 
of the multi-class for information feature compression, we design a novel information 
feature compression algorithm. The experimental results show that algorithm pre-
sented here is valid, and compression effect is significant.  
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