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Abstract. The subset sum problem (SSP) can be briefly stated as: given
a target integer E and a set A containing n positive integer aj , find a
subset of A summing to E. The density d of an SSP instance is defined by
the ratio of n to m, where m is the logarithm of the largest integer within
A. Based on the structural and statistical properties of subset sums,
we present an improved enumeration scheme for SSP, and implement it
as a complete and exact algorithm (EnumPlus). The algorithm always
equivalently reduces an instance to be low-density, and then solve it by
enumeration. Through this approach, we show the possibility to design
a sole algorithm that can efficiently solve arbitrary density instance in a
uniform way. Furthermore, our algorithm has considerable performance
advantage over previous algorithms. Firstly, it extends the density scope,
in which SSP can be solved in expected polynomial time. Specifically, It
solves SSP in expected O(n log n) time when density d ≥ c ·

√
n/ log n,

while the previously best density scope is d ≥ c · n/(log n)2. In addition,
the overall expected time and space requirement in the average case are
proven to be O(n5 log n) and O(n5) respectively. Secondly, in the worst
case, it slightly improves the previously best time complexity of exact
algorithms for SSP. The worst-case time complexity of our algorithm is
proved to be O(n · 2n/2 − c · 2n/2 + n), while the previously best result is
O(n · 2n/2).

1 Introduction

Let us denote N+ as the set of positive integers. The subset sum problem is a
classical NP-complete problem, in which one asks, given a set A = {a1, a2, ..., an}
with aj ∈ N+ (1 ≤ j ≤ n) and E ∈ N+, if there exists a subset A′ ⊆ A such that
the sum of all elements of A′ is E. More formally, the subset sum problem can
be formulated as an integer programming problem:

Maximize z =
n∑

j=1
ajxj

Subject to
n∑

j=1
ajxj ≤ E; ∀j, xj = 0 or 1.
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Extensive study has been conducted on SSP and its related problems: knapsack
problem [1] and integer partition problem [2]. Many noticeable results have been
achieved. For example, the hardness distribution of those problems are carefully
investigated in [2] [3] [4] [5] et al., and it is now known that the hardness of SSP
varies greatly with density d (see [6]).

Low-density: an instance with density 0 < d < c, for some constant c, can be
efficiently solved by lattice reduction based algorithms, e.g., [7] [8] [9]. However,
these algorithms have two main limits. Firstly, they cannot solve instance with
d ≥ c efficiently, though the bound of constant c is recently extended from 0.6463
to 0.9408. Secondly, they are not complete, i.e., they may fail to find any solution
of an instance when the instance actually has solution.

High-density: an instance with density d > c ·n/ log n can be efficiently solved
by various techniques such as branch-and-bound, dynamic programming, and
number theory analysis. Specifically, the algorithm YS87 [10] adopts branch-
and-bound technique; NU69 [11] and HS74 [12] adopt dynamic programming
technique; ST02 [13] adopts both branch-and-bound and dynamic program-
ming; CFG89 [14] and GM91 [15] utilize number theory analysis. However,
these algorithms have two main limits. Firstly, they cannot solve instance with
d ≤ c · n/ logn efficiently. Secondly, their average-case complexity is expected to
increase with n, thus they have difficulty in handling large size instance.

Medium-density: an instance with density c ≤ d and d ≤ c ·n/ logn is usually
hard to solve. As far as we know, the algorithm DenseSSP [6] is the only previous
algorithm that works efficiently in part of this density scope. It solves uniformly
random instances with density d ≥ 16n/(logn)2 in expected polynomial time
O(n3/2).

Other than exact algorithms, it is worth to mention that highly efficient ap-
proximation methods (e.g., [16] [17]) can solve SSP at polynomial time and space
cost. However, they cannot guarantee the exactness of their solutions. In this pa-
per, we concentrate on solving SSP through exact methods, and we propose a
complete and exact algorithm, which we call EnumPlus. The two main ingre-
dients of EnumPlus are a new pruning mechanism and a new heuristic. Based
on the structural property of subset sums, the pruning mechanism allows to
dynamically partition the integer set into two parts and to prune branches in
the search tree. Based on the statistical property of subset sums, the heuristic
predicts which branch of the tree is more likely to contain the solution (and this
branch is explored first by the algorithm).

1.1 Contributions

The main contribution of this work is two-fold. First, by equivalently reducing
an instance to be low-density in linear time (see Section 4 and 6.2), we show the
possibility to design a sole algorithm that can efficiently solve arbitrary density
instance in a uniform way. Second, we propose a complete and exact algorithm
that has considerable advantage over previous exact algorithms. Specifically, it
extends the density scope, in which SSP can be solved in expected polynomial
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time, and it slightly improves the previously best worst-case time complexity of
exact algorithms for SSP.

1.2 Notation and Conventions

If it is not specifically mentioned, we assume that the elements of A are sorted in
decreasing order (a1 > a2 > .. > an), and use S to denote the sum of A. Following
the notation and description style of [1], we denote some basic notations that
are used for the algorithm description as follows:

Ak denotes the subset {ak, ak+1, .., an} of A;
Sk denotes the sum value of Ak

(
=

∑n
j=k aj

)
;

dk denotes the density of Ak

(
= n−k+1

log max{aj|aj∈Ak}
)
;

W (E) denotes the number of solutions for a given target E and integer set A;
x̂k denotes current partial solution {xj = 0, 1|1 ≤ j ≤ k};
ẑk denotes current partial solution value

(
=

∑k
j=1 ajxj

)
;

ĉk denotes current residual capacity (= E − ẑk);
¬ĉk denotes current residual opposite capacity (= Sk+1 − ĉk);
bMAX | (Ak, ĉk) denotes the maximum subset sum of Ak while bMAX ≤ ĉk;
bMIN | (Ak, ĉk) denotes the minimum subset sum of Ak while bMIN ≥ ĉk.

2 Motivation

There are two main causes of performance discrepancy of different enumeration
(searching) scheme. In the first place, the efficiency to prune infeasible solutions
contributes to the performance both in the worst case and in the average case. In
the second place, proper search strategy contributes to the performance in the av-
erage case. Specifically, algorithm HS74 has the best time complexity O(n · 2n/2)
in the worst case. It enumerates all possible solutions following breadth first strat-
egy; it prunes redundant branches by dividing the original problem into two sub-
problems and considering all equal subset sums as one state. However, HS74 does
not work well in two situations. Firstly, when processing low-density instance, al-
most all subset sums are different to each other, thus few pruning can be made.
Secondly, because of its breadth-first search strategy, HS74 is slow to approach
solutions when the size, i.e. breadth, of an instance is considerable large.

The central idea of our approach is dynamically partitioning the original in-
stance A[1..n] to two sub-instances A[1..k] and A[k + 1..n], 1 < k < n. We treat
the whole enumeration space as a binary tree (like the route colored by red in
Figure 1) that is stemmed from A[1] and ended by A[n]. During the enumera-
tion of A[1..n], all enumerated subset sums of A[k+1..n] are organized as “block
bounds”, which serve as block barriers that can prevent further expending of the
k-th level nodes. Therefore, for any partition point k, both A[1..k] and A[k+1..n]
are incrementally and simultaneously enumerated by enumerating A[1..n] as a
binary tree. In addition, a heuristic is utilized to accelerate the searching for
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global solution. The heuristic predicts which branch of the tree is more likely
to contain the answer. Therefore, a large problem is recursively reduced into a
smaller one in linear time, and it has high possibility that the two problems have
at least one common solution. To clarify the description of our algorithm, we
present the main phases separately.

3 Branch and Prune

The pruning mechanism is inspired by the partition operation of HS74. In HS74,
the original instance is divided into two sub-instances, and their subset sums are
separately computed and stored in two lists. For any subset sum si in a list, if
a subset sum sj can be found in the other list such that si + sj = E, a feasible
solution is located. While HS74 explicitly partitions the the oriental instance
only one time before enumeration, our algorithm implicitly performs partition
multiple times during enumeration.

A “block bound” of an integer set A is defined as a two elements structure
[bMAX , bMIN ], in which bMAX and bMIN are subset sums of A. Furthermore, a
block bound must conform two constraints: (1) bMAX < bMIN ; (2) no subset
sum of A falls between bMAX and bMIN . Block bounds are recursively calculated
as follows:

If ĉk ≥ Sk, bMIN |(Ak, ĉk) = S, bMAX |(Ak, ĉk) = Sk.
If ĉk ≤ 0, bMIN |(Ak, ĉk) = 0, bMAX |(Ak, ĉk) = −ak+1.

If Sk > ĉk > 0, bMIN |(Ak, ĉk) = min

{
bMIN |(Ak+1, ĉk),
ak + bMIN |(Ak+1, ĉk − ak)

}

,

bMAX |(Ak, ĉk) = max

{
bMAX |(Ak+1, ĉk),
ak + bMAX |(Ak+1, ĉk − ak)

}

.

Let us consider a sorted integer array A[1..n], we create an n elements list V [1..n].
Each element V [k] of V [1..n] is a collection of block bounds of the integer set Ak.
Therefore, if there is an integer s = bMAX (or bMIN ), [bMAX , bMIN ] ∈ V [k + 1],
and s + ẑk = E, a feasible solution for target integer E is located. If there is
a block bound [bMAX , bMIN ] ∈ V [k + 1] such that bMAX < ĉk < bMIN , we
can determine that there is no subset sum s of Ak+1 such that s + ẑk = E.
In this way, a block bound [bMAX , bMIN ] of Ak acts as a bounded block that
prevents all attempts to find target E in Ak when bMAX ≤ E ≤ bMIN . To
describe the mechanism of block bound, a case that has an integer set A[1..4] =
{52, 40, 30, 16} and the target value E = 69 is illustrated in Figure 1.

As we can see in Figure 1, the first node ĉ1 = 69 is expended to two nodes ĉ2 =
{69, 17}, i.e., finding E = 69 and 17 in subset A[2..4]. Suppose the node having
larger E is always expended first, the first block bound [16, 138] is generated
when finding E = 69 in subset A[4..4]. Therefore, later finding of E = 39, 29
in subset A[4..4] is blocked by the block bound [16, 138] . In the same way, let
us observe the case of k = 3, the searching for ĉ3 = 29 is finished with the
generation of a block bound [16, 30], and the later searching for ĉ3 = 17 will be
blocked by the block bound [16, 30]. When the enumeration is finished, 6 block
bounds {[68, 70], [16, 30], [56, 70], [16, 30], [46, 138], [16, 138]} are generated.
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Fig. 1. The generation of block bounds for target value E = 69 and integer set A[1..4] =
{52, 40, 30, 16}

4 Heuristic Search Strategy

Instead of pure depth-first or breadth-first search strategy, we introduce a new
heuristic to accelerate the approach to feasible solution. At each state of enumer-
ation, the expanding branch that has larger possibility to find feasible solution
will be explored first. The heuristic is inspired by a previous study result of [3]
in the context of canonical ensemble, which is usually studied in the physics
literature. The main purpose of [3] is to study the property of the number
of solutions in SSP, and then explain the experiential asymptotic behavior of
W (E). As [3] suggested, given uniformly random input integer set A and target
value E, the number of solutions W (E) is a central symmetric function with
central point at E = S/2. Moreover, W (E) monotonically increases with the
increase of E in [0, S/2]. If we denote Pr[E] as the possibility of that there ex-
ists at least one solution of E, given two target value E1 and E2, we have that
Pr[E1] > Pr[E2] iff |S/2− E2| > |S/2− E1|. Suppose current partial solution is
x̂k, weather xk+1 = 1 (i.e. ĉk+1 = ĉk − ak+1) or xk+1 = 0 (i.e. ĉk+1 = ĉk) should
be tried first is decided by the inequation:

|(¬ĉk + ĉk)/2 − (ĉk − ak+1)| > |(¬ĉk + ĉk)/2 − ĉk| . (1)

Thus, we obtain the new heuristic: if inequation (1) holds, try xk+1 = 0 first,
otherwise, try xk+1 = 1 first.

5 The New Algorithm

Based on the “block bound” and “heuristic search” techniques, we propose a
complete and exact algorithm EnumPlus for SSP. In this algorithm, the whole
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search space is enumerated as a binary tree T . For any given target value v at a
branch node, the algorithm try to find both bMAX | (Ak, v) and bMIN | (Ak, v) in
the sub-tree Tk that has xk as root node. If the block bound is already existed
in the block bound list V [k], the existed block bound will be returned. Oth-
erwise, Tk is expended to find the block bound [bMAX | (Ak, v) , bMIN | (Ak, v)],
and the newly found block bound is inserted into V [k] as a new element. The
enumeration procedure terminates in 2 cases: 1) a feasible solution is found, 2)
it is backtracked to the root of T . At each branch node (xk) of T , if the target
value v is more possible to be found when xk = 0, then the branch xk = 0 is
enumerated first, otherwise the branch xk = 1 is enumerated first.

The pseudo-code of EnumPlus and SetSum are given in Algorithm 1 and
Algorithm 2 respectively, while the concrete implements of sub-algorithms QBB
and UBB are not given since they can be implemented by simply adopting
some classic data structures/algorithms (e.g., AVL-balance tree and Red-Black-
balance tree).

Algorithm 1. EnumPlus(A[1..N ], E)
Input: an integer set A[1..N ]; target value E.
Output: the maximum subset sum b1 ≤ E; the minimum subset sum b2 ≥ E.
1: allocate the vector of block bound sets V [1..N ];
2: S ⇐ sum value of A[1..N ];
3: [b1, b2] ⇐ SetSum(1, E);
4: destroy the vector of block bound sets V [1..N ];
5: return [b1, b2];

6 Performance Analysis

Before analyzing the complexity of our algorithm, we assume that the require-
ment of time and space of our algorithm is maximized when target value E =
S/2. The assumption is reasonable because our algorithm simultaneously search
both E and S − E in the answer space. Moreover, E = S/2 is the hardest case
for the dynamic programming algorithm (see [15]). Therefore, all our following
analysis will be provided in case of that S/2 is chosen as target value E.

6.1 Worst-Case Complexity

Before the presentation of our results about the worst-case complexity of
EnumPlus, we first introduce a lemma as follows:

Lemma 1. For a certain subset A[k..n] of A, the number of block bounds gen-
erated by SetSum is less than min{2k−1, 2n−k+1}.

Proof. In case of 2k−1 ≥ 2n−k+1, the number of all possible subset sums of
A[k..n] is less than

(
2n−k+1 − 1

)
, therefore the number of all possible block

bounds of A[k..n] is less than 2n−k+1, i.e. min{2k−1, 2n−k+1}. In case of 2k−1 <
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Algorithm 2. SetSum(k, v)
Input: k = start position of residual subset A[k..n];

v = residential capacity ĉ.
Output: [bMAX , bMIN ] = block bound of A[k..N ] for ĉ = v.
1: if v ≥ Sk return [Sk, S];
2: if v ≤ 0 return [−ak+1, 0];
3: [bMAX , bMIN ] ⇐ QBB(V [k], v); // query block bound [bMAX , bMIN ] in V [k] such

that bMAX ≤ v ≤ bMIN .
4: if bMAX ≤ v ≤ bMIN then
5: if v = bMAX or v = bMIN then
6: identify solution; halt; // found solution
7: else
8: return [bMAX , bMIN ];
9: end if

10: else if inequation 1 holds then
11: [b3, b4] ⇐ SetSum(k + 1, v);
12: [b1, b2] ⇐ SetSum(k + 1, v − A[k]); b1+ = A[k]; b2+ = A[k];
13: else
14: [b1, b2] ⇐ SetSum(k + 1, v − A[k], v2); b1+ = A[k]; b2+ = A[k];
15: [b3, b4] ⇐ SetSum(k + 1, v);
16: end if
17: bMAX ⇐ max{b1, b3}; bMIN ⇐ min{b2, b4};
18: UBB(V [k], bMAX , bMIN ); // insert [bMAX , bMIN ] into V [k]
19: return [bMAX , bMIN ];

2n−k+1, the search tree has at most 2k−1 nodes at level k. Because each node
generates at most one block bound, the number of all possible block bounds of
A[k..n] is less than 2k−1, i.e. min{2k−1, 2n−k+1}.

About the worst-case complexity of EnumPlus, there are 2 propositions given as
follows:

Proposition 2. The worst-case space complexity of EnumPlus is O(2n/2).

Proof. For a subset Ak, the number of block bounds generated by SetSum is less
than min{2k−1, 2n−k+1}, therefore the total number Num(n) of generated block
bounds is

Num(n) ≤
n∑

k=1

min{2k−1, 2n−k+1} ≤ 2 ×
n/2∑

k=1

2k−1 ≤ 2n/2+1.

Thus the worst-case space complexity of EnumPlus is O(2n/2).

Proposition 3. The worst-case time complexity of EnumPlus is O(n · 2n/2 − c ·
2n/2 + n).

Proof. As we proved in the proposition 2, there are at most 2n/2+1 block bounds
are generated, and each recursive call for SetSum generates one block bound. The
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main time cost of each block bound is to search and insert it in a collection V [k].
There are some classic data structures/algorithms, such as AVL-balance tree and
Red-Black-balance tree, can efficiently manage the search and insert operations
on storable data collection. The worst-case time cost of these algorithms to search
or insert in the n elements collection is log n. Therefore we have the worst-case
time cost Time(n) of EnumPlus as follows:

Time(n) = 2 ×
n/2∑

k=1

2k−1∑

i=1
�log i� = 2 ×

n/2∑

k=1

k∑

i=1
((i − 1) × 2i−2)

= 2 ×
n/2∑

k=1
((k − 2) × 2k−1 + 1)

≤ (n − 6) × 2n/2 + n + 8

Thus the worst-case time complexity of algorithm EnumPlus is O(n · 2n/2 − c ·
2n/2 + n).

6.2 Average-Case Complexity

Before analyzing the average-case complexity of our algorithm, 2 lemmas are
introduced as follows:

Lemma 4. EnumPlus always reduces an instance A1 with ĉ1 = S1/2 to Ak with
ĉk, |ĉk − Sk/2| ≤ ak−1/2, in linear time.

Proof. [Induction] We first consider k = 2. Because of the heuristic search
strategy, EnumPlus first expends the branch that leads to a sub-problem, in
which |ĉk − Sk/2| is smaller. Then we have

ĉ2 =
{

S1/2, if |S1 − S2| ≤ |S1 − 2a1 − S2|
S1/2 − a1, if |S1 − S2| > |S1 − 2a1 − S2| .

Therefore,

ĉ2 − S2/2 =
{

a1/2, if |S1 − S2| ≤ |S1 − 2a1 − S2|
−a1/2, if |S1 − S2| > |S1 − 2a1 − S2| .

Thus EnumPlus reduces A1 with ĉ1 = S1/2 to A2 with ĉ2, |ĉ2 − S2/2| ≤ a1/2,
in 1 step.

Then we assume that EnumPlus reduces A1 with ĉ1 = S1/2 to Ak with ĉk,
|ĉk − Sk/2| ≤ ak−1/2, in k − 1 steps.

Consider Ak+1 and ĉk+1, we have

ĉk+1 =
{

ĉk, if |ĉk − Sk+1| ≤ |ĉk − 2ak+1 − Sk+1|
ĉk − ak, if |ĉk − Sk+1| > |ĉk − 2ak+1 − Sk+1| .

Combine the above definition of ĉk+1 and the assumption that |ĉk − Sk/2| ≤
ak−1/2, we have that |ĉk+1 − Sk+1/2| ≤ ak/2. Thus EnumPlus reduces A1 with
ĉ1 = S1/2 to Ak+1 with ĉk+1, |ĉk+1 − Sk+1/2| ≤ ak/2, in k steps.
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Lemma 5. Let M = 2m and the n elements of A is uniformly random in [1..M ],
the number of distinct subset sums of A is expected to be O(n4).

Proof. We use S1, ..., SM to denote the sequence of all subsets of A listed in
non-decreasing order of their sums. Let the sum of subset Su be Pu =

∑
j∈Su

aj .
For any 2 ≤ u ≤ M , define Δu = Pu − Pu−1 ≥ 0, then Pu is a distinct subset
sum if Δu > 0, and P1 is always a distinct subset sum. Let every element aj of
A be a non-negative random variable with density function fj : [1..M ] → [0, 1],
i.e., fj(t) = Pr(aj = t), t ∈ [1..M ]. We notice that there is a theorem, which is
proved by [18] for general discrete distributions, shows that:

Suppose π = maxj∈[1..n](maxx∈[1..M ](fj(x)) and μ ≥ maxj∈[1..n](E[aj ]).
Then the expected number of dominating sets is E[q] = O(μn2(1 − e−πn2

)) =
O(μπn4).

Because a distinct subset sum is a special case of dominating set on condition
that weight wj and profit pj are both equal to aj , the number of distinct subset
sums is equal to the number of dominating sets on this condition. Since aj is
uniformly random in [1..M ], we have π = 1/M , μ = M/2. Therefore, the number
of distinct subset sums is expected to be

E[q] = O(
M

2
· 1
M

· n4) = O(n4).

Assume that the elements of A is uniformly random in [1..M ], we have 2
propositions about the complexity of EnumPlus in the average case:

Proposition 6. Given an integer set A whose elements are uniformly distributed,
the overall expected time and space requirement of EnumPlus in the average case
are O(n5 log n) and O(n5).

Proof. According to Lemma 5, the number of distinct subset sums of A is ex-
pected to be O(n4). Therefore the expected space cost is O(n ·n4) = O(n5), and
the expected time cost is O(n ·n4 · log (n4)) = O(n5 log n). Thus the overall time
and space complexity of EnumPlus are expected to be O(n5 log n) and O(n5)
respectively.

Proposition 7. EnumPlus solves SSP in O(n log n) time when density d ≥
c ·

√
n/ logn.

Proof. Consider an integer set A[1..n] whose elements are uniformly random in
[1..2m]. As the previous result shown by [3] and [2], if density d > 1, there is a
high possibility that the instance with target value S/2 has many solutions. Thus
it is expected that the sub-instance An−m+1 with Sk−m+1/2 has many solutions,
and it takes at most O(m2m/2) time to locate these solutions. Furthermore, as
we proved in Lemma 4, EnumPlus reduces instance A[1..n] with S/2 to sub-
instance Ak with Sk/2 in linear time. Thus the expected time complexity for
the problem A with S/2 is O(m2m/2) + O(n). If n = O(2m/2l), m

2 log m > l ≥ 1,
then the expected time complexity for instance A[1..n] with S/2 is O(nl log n),
and d = O( 2l

√
2m/m) = O( 2l

√
n/ logn). Thus EnumPlus solves SSP in O(n log n)

time when density d ≥ c ·
√

n/ logn.
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6.3 Comparison of Related Works

Among the previously exact algorithms for SSP, HS74 has the best time complex-
ity O(n · 2n/2) in the worst case. EnumPlus is an overall improvement of HS74,
its worst-case time complexity is O(n · 2n/2 − c · 2n/2 + n). As we described in
Section 2, HS74 always reduce the original instance to 2 half size sub-instances.
As we know, if the density of sub-instance is larger than 1, a solution is expected
to be found by solving one sub-instance whose size is half of the original instance.
However, by using a new heuristic, EnumPlus reduce the original instance to a
smaller sub-instance, in which the solution can be found (see the proof of Propo-
sition 7). Thus the performance of EnumPlus is better than HS74 in average case,
especially when handling large size instance. Specifically, EnumPlus solves SSP
in O(n log n) time when density d ≥ c ·

√
n/ log n. This density bound is better

than the density bound d ≥ c · n/(logn)2 of DenseSSP, which is the only pre-
vious algorithm working efficiently beyond the magnitude bound of O(n/ log n).
However, it must be noticed that the performance of EnumPlus is still not good
enough when handling low-density instance. When density d < 0.9408, some
incomplete algorithms, which are based on lattice reduction, are expected to
outperform EnumPlus.

7 Conclusions and Future Work

In this work, we proposed a new enumeration scheme that utilizes both structural
property and statistical property of subset sums to improve the efficiency of
enumeration. The improved enumeration scheme is implemented as a complete
and exact algorithm (EnumPlus). The algorithm always equivalently reduces
an instance to be low-density, and then solve it by enumeration. Through this
approach, we show the possibility to design a sole algorithm that can efficiently
solve arbitrary density instance in a uniform way. Furthermore, our algorithm has
considerable performance advantage over previous exact algorithms. It slightly
improves the previously best time complexity of exact algorithms for SSP in the
worst case; it extends the density scope to d ≥ c ·

√
n/ logn, in which SSP can

be solved in polynomial time. In addition, the overall expected time and space
requirements are proved to be O(n5 log n) and O(n5) respectively in the average
case.

As we previously described, arbitrary density SSP instance can be equiva-
lently reduced to and solved as low density instance by our approach. Thus the
efficiency of EnumPlus mainly relies on efficiently solving low density problem.
Since the lattice reduction approach shows particular efficiency when dealing low
density instance, the integration of the two approaches may be a potential way
to further improve the performance of our algorithm. Therefore, the relationship
between lattice reduction and enumeration scheme is an important issue in our
future work.
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