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Abstract. The problem of optimal surface flattening in 3-D finds many
applications in engineering and manufacturing. However, previous algo-
rithms for this problem are all heuristics without any quality guarantee
and the computational complexity of the problem was not well under-
stood. In this paper, we prove that the optimal surface flattening problem
is NP-hard. Further, we show that the problem admits a PTAS and can
be solved by a (1 + ε)-approximation algorithm in O(n log n) time for
any constant ε > 0, where n is the input size of the problem.

1 Introduction

We consider the problem of “flattening” a surface S in IR3. Surface flattening is
an important problem that finds applications in computer graphics and surface
reconstruction as well as in engineering and manufacturing [3] (particularly in
aircraft, vehicle, or garment design). In the latter applications, the surface of a
3-D object must be assembled from a flat piece of material. To find the shape
of the flat piece of material for the assembly of the surface, we start with a 3-D
model of the surface S and search for an optimal way to flatten it by cutting S.
The cutting must start from the boundary and continue toward the interior of S
in such a way that (1) the total length of the cutting paths is minimized and (2)
if the flat equivalent S′ of S in IR2 is glued back along the cuts, the reconstructed
surface requires a minimum “stretch” to achieve the original shape of S. The
amount of needed stretch, or the deviation of S around a point p from being flat,
is measured by the Gaussian curvature at p. The Gaussian curvature at a point
p of S is the product of the principal curvatures of S at p, i.e., roughly speaking,
the product of the maximum and minimum curvatures at the point p among all
the curves on the surface passing through p. The larger the absolute value of the
Gaussian curvature at p is, the farther S is from being flat at p. Thus, to reduce
the stretch, we cut the surface S along points at which the absolute values of the
Gaussian curvatures are too large (e.g., with respect to a given threshold value).
On the other hand, if the Gaussian curvatures at all points on S are 0, then the
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surface is flat and requires no cuts to flatten it (and no stretch to “reconstruct”
the original shape from the flat version).

From the application view point, the surface to be flattened is represented
by a triangular mesh S = (N, M), where N is a given set of n points and
M is a set of m = O(n) segments connecting the points in N . We assume
that the Gaussian curvature at each of the n points is given. (Note that the
computation of Gaussian curvature using a discrete representation of the surface
is not possible, but it can be approximated, for example, by using a discrete
method [9,12].) Each point at which the absolute value of the Gaussian curvature
is greater than a given threshold value is required to lie on a cutting path.
Clearly, we can use an undirected graph G = (V, E) to represent the mesh
surface S = (N, M), by letting V = N and E = M . We assume in this paper
that such a graph G for S is planar and G admits a planar embedding such
that the boundary of S corresponds to the border of the outer face of the planar
embedding of G.

Given this setting, the optimal surface flattening problem is defined as follows.

Surface Flattening Problem (SF). Given a triangular mesh S = (N, M)
representing a surface in IR3, NA ⊆ N , which is the set of points with the
absolute values of the Gaussian curvatures above a threshold value, and NB ⊆ N ,
NB �= ∅, which is the set of points on the boundary of the surface S, find a set of
cutting paths of the shortest total length along the edges of S that connect every
point in NA to at least one point in NB.

Without loss of generality, we assume NA �= ∅ (otherwise, the solution is trivial).
Note that in the above definition of the SF problem, the essential requirement is
that in the solution, there is a path connecting each point in NA to some point
in NB. The paths for two different points in NA can cross or (partially) overlap.
Therefore, the union of the paths in a solution should form a certain subgraph
in the graph G defined by (N, M), such that the total sum of the edge lengths
in this subgraph is minimized.

Since surface flattening is a very important problem in a number of industrial
applications, the literature on surface flattening is vast. However, to the best of
our knowledge, all previous algorithms for this problem are heuristics without
any quality guarantee of their solutions, and no thorough analysis of the com-
putational complexity of the problem has been given. In most cases, the known
algorithms seek to find a solution based on an application-specific metric. The
various approaches for solving the problem include greedy algorithms that search
for seemingly best possible insertions of cuts or darts; for example, Parida and
Mudur [11] found cuts during successive flattenings of the mesh triangles, and
Aono et al. [1,2] inserted darts into a flat cloth to adjust the shape to the surface.
Other methods include optimization of various energy functions [8,10,13] and,
more recently, algorithms searching for individual shortest cuts passing through
points with high absolute values of Gaussian curvatures [12,14]. Sheffer’s algo-
rithm [12] finds shortest paths that connect nodes with high absolute values of
Gaussian curvatures with the nodes on the boundary of the surface using a min-
imal spanning tree. Unfortunately, this method does not work well for surfaces
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with widely distributed curvatures. Wang et al. [14] avoided this problem by first
computing a boundary geodesic map and then repeatedly finding a shortest path
from a selected node to the surface boundary using this map. Neither of these
algorithms guarantees an optimal quality solution. Azariadis et al. [3], recogniz-
ing the large number of optimization criteria and methods for surface flattening,
considered the problem of quality control from the view point of applications.
They evaluated many existing surface flattening methods by using “intuitively-
acceptable” visualization techniques (they also gave a brief overview of the many
surface flattening algorithms). To the best of our knowledge, there are no pre-
vious results providing theoretical analysis of the computational complexity of
the problem or quality guarantee of the solutions.

In this paper, we prove that the optimal surface flattening problem as spec-
ified in [12,14], i.e., the problem of computing cutting paths of the minimum
total length along the mesh edges that pass through points with high absolute
values of Gaussian curvatures, is NP-hard. This implies that finding an optimal
solution for the problem in deterministic polynomial time is unlikely unless P =
NP. Furthermore, we show that the surface flattening problem admits a PTAS
(polynomial-time approximation scheme), that is, it can be reduced to the prob-
lem of computing an optimal Steiner tree on a planar graph, and, as such, can
be solved by a (1 + ε)-approximation algorithm due to Borradaile, Klein, and
Mathieu [5] in O(n log n) time, where ε > 0 is any constant. This appears to be
a theoretically “best possible” solution for the problem unless P = NP.

2 The NP-Hardness of the Optimal Surface Flattening
Problem

In order to show that the optimal SF problem is NP-hard, we first prove the
NP-completeness of the following decision version of the problem.

Surface Flattening Decision Problem (SF-D). Given a triangular mesh
S = (N, M) representing a surface in IR3, NA ⊆ N which is a set of points on
S with the absolute values of the Gaussian curvatures above a threshold value,
NB ⊆ N which is a set of points on the boundary of S, and an integer k, does
there exist a set of cutting paths along the edges of S that connect every point in
NA to at least one point in NB whose total length is less than or equal to k?

To show that the SF-D problem is NP-complete, we must show that (1) the
problem is in NP, i.e., it can be solved in polynomial time by a nondeterministic
Turing machine (or a given solution can be verified in polynomial time), and
(2) the problem is NP-hard (a known NP-complete problem can be transformed
in polynomial time to the SF-D problem). Since verifying the first condition is
easy, we omit it here. The second part will involve a two-step reduction from a
well-known NP-complete problem, the Rectilinear Steiner Tree Problem [6].

Given a set A of points in the plane, a rectilinear Steiner tree (RST) for A is a
tree connecting all points in A using line segments that are either horizontal or
vertical. As opposed to a spanning tree, the nodes of an RST (i.e., the endpoints
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of the segments of the RST) may include some Steiner points, that is, points in
the plane that do not belong to A but are needed for the desired connection of the
RST. A minimum RST is a tree whose total length of line segments is minimized.
The RST problem, stated as follows, has been proved to be NP-complete [6].

Rectilinear Steiner Tree Problem (RSTP). Given a finite set A of points
in the plane and an integer k > 0, does there exist a rectilinear Steiner tree for
A with a total length no bigger than k?

In fact, even the special case of the RST problem in which the coordinates of the
points in A are all integers was shown to be NP-complete in [6]. In the rest of
this paper, whenever we refer to any variations of the (geometric) RST problem,
we assume that the coordinates of the points in A are all integers.

For our proof, we start with transforming the RSTP to a slightly different
problem, called the boxed rectilinear Steiner tree problem (or the boxed RSTP),
and proving that the boxed RSTP is also NP-complete. In the boxed RSTP, we
choose a certain “box” BA containing all the points in the set A (as shown below),
and require that the sought rectilinear Steiner tree connect all the points of A
as well as at least one point on the box BA. Note that for the sought rectilinear
Steiner tree to connect all the points in A and at least one point of the box BA,
it is sufficient to consider only a finite set of points on the box BA, denoted by
B. The box BA and the point set B on BA are constructed as follows. Create a
rectilinear grid RA using the vertical and horizontal lines on the plane passing
through all the points in A. Note that the coordinates of all vertices of RA are
integers. Let d = 1+max{dh, dv}, where dh is the distance between the leftmost
and the rightmost vertical lines of the grid RA, x = xl and x = xr, and dv is
the distance between the top and the bottom horizontal lines of RA, y = yt and
y = yb. Clearly, d is an integer value. Further, note that the rectilinear (or L1)
distance between any two points in A is strictly less than 2d. The box BA is
defined by the two vertical lines x = x1 = xl − 2d and x = x2 = xr + 2d and the
two horizontal lines y = y1 = yb−2d and y = y2 = yt+2d. That is, BA consists of
four line segments ((x1, y1), (x2, y1)), ((x2, y1), (x2, y2)), ((x1, y2), (x2, y2)), and
((x1, y1), (x1, y2)). The points in the set B are those on the intersection of the
grid RA and the four segments of BA. See Fig. 1 for an example. Let RB denote
the finite portion of the grid RA contained inside the box BA, together with the
box BA as its boundary. Clearly, the coordinates of all vertices of RB are also
integers; furthermore, the lengths of edges of RB are all integers as well.

Boxed Rectilinear Steiner Tree Problem (BRSTP). Given a finite set A
of points in the plane and an integer k > 0, and suppose the box BA containing
A and the point set B on BA have been determined as above, does there exist
a rectilinear Steiner tree for A that also includes at least one point in B with a
total length less than or equal to k?

Note that we can restrict a rectilinear Steiner tree T , as a solution to RSTP
or BRSTP, to the grid RA or RB in the sense that any Steiner point of the
tree T not on a grid vertex can be moved to a grid vertex without changing the
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Fig. 1. The points in A are marked as solid dots, and the points in B are marked as
empty dots

total length of the resulting rectilinear Steiner tree T ′. We have the following
statement on A and the grid RB whose vertices all have integer coordinates only.

Lemma 1. The boxed rectilinear Steiner tree problem (BRSTP) is NP-complete.

Proof. Our transformation is from the rectilinear Steiner tree problem (RSTP)
(with the points in A all having integer coordinates) to the boxed rectilinear
Steiner tree problem (BRSTP). The ideas of the proof are not complicated but
the details are a little tedious. Due to the space limit, the detailed proof is
omitted here and can be found in the full version of the paper. ��

We now show the NP-completeness of the surface flattening decision prob-
lem (SF-D) by using a transformation from the NP-complete boxed rectilinear
Steiner tree problem on RB whose vertices all have integer coordinates only.
The instance of the SF-D problem produced by the transformation, however,
may have nodes with non-integer coordinates.

Theorem 2. The surface flattening decision problem (SF-D) is NP-complete.

Proof. Our idea for the proof, based on a transformation from the integer version
of BRSTP to SF-D, is fairly straightforward, yet the details of the transformation
are a little tedious.

Using the grid RB on the plane (i.e., the box BA together with the portion
of RA enclosed in and bounded by BA), we construct, in polynomial time, a
triangular mesh surface S = (N, M) in IR3 such that the solutions to BRSTP
on RB and to SF-D on S are equivalent.

To define S in IR3, we need to specify the x-, y-, and z-coordinates of all the
points in N as well as the set M of segments (including their lengths) connect-
ing the points of N . To begin, we include in S all vertices and segments of RB,
initially setting the z-coordinates of all these vertices to 0. This creates a rectan-
gular mesh on the xy-plane (with z = 0). To obtain from this planar rectangular
mesh a triangular mesh in IR3, we add to the rectangular mesh more vertices and
edges: Each of the newly added vertices lies at the intersection of the two diago-
nals of every cell of the rectangular mesh, and the new edges are the “diagonal”
segments connecting each of these diagonal intersection points with its four cell
vertices. We denote the set of points thus added by ND (ND ⊂ N). Also, we let
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(a) (b) (c)

Fig. 2. Illustrating the steps for constructing the mesh surface S (S is vertically pro-
jected onto the xy-plane in these figures). (a) S = RB (the points of NA are marked by
solid dots). (b) The addition of points in ND lying at the intersections of the diagonals
of all the cells of RB and the addition of the diagonal segments. (c) The addition of
points in NK and the addition of segments between the points in ND and the neigh-
boring points in NK .

NA and NB denote the subsets of points in N that correspond to the points of
A and B on RB, respectively. Figure 2(a) shows the initial rectangular mesh of
S (= RB) in which the points of NA are marked by large solid dots; Figure 2(b)
shows the modified mesh with the points of ND and the “diagonal” segments.

The next step is to elevate (i.e., increase the z-coordinates of) all points of
NA and ND in IR3. The necessity of elevating the points of NA is obvious: To
ensure their absolute Gaussian curvatures to be sufficiently large. We elevate the
points of ND to ensure that no points of ND belong to any shortest path along
the edges of S between any two points of S that correspond to two arbitrary
vertices of the initial grid RB (so that any “good” cutting path on S will follow
only the edges of S that correspond to those of RB). Without loss of generality,
we assume that the length of the shortest edge of the original grid RB is one
unit. Let l be the length of the longest edge of RB, and c be the number of edges
of RB . Then we set the z-coordinates of all points in ND to be 2l + 1 and the
z-coordinates of all points in NA to be 1/(9c).

Let g0 be the absolute value of the Gaussian curvature at the intersection
point p of the diagonals of a 1 × 1 square such that the z-coordinate of p is
2l + 1 and all the vertices of the square are on the xy-plane. Since the length
of the shortest edge of RB is 1, the absolute value of the Gaussian curvature
at any point of ND is no bigger than g0. We set the threshold curvature value
for the SF-D problem on S to be g0. To ensure a high absolute value of the
Gaussian curvature at each point pa ∈ NA on S, we build a “steep” structure
around pa on S, as follows. We create four points around every point pa ∈ NA,
and denote the set of all the points thus created by NK . Specifically, for each
pa ∈ NA, we place points pa

i ∈ NK , i = 1, 2, 3, 4, on each of the four segments of
the original rectangular mesh RB adjacent to pa, such that the z-coordinate of
each pa

i is 0 and pa
i is at a distance d0 from the vertical projection point of pa

on the xy-plane. The fixed value d0 is chosen to be sufficiently small to satisfy
the following two conditions: (1) d0 ≤ 1/(9c), and (2) the absolute value of the
Gaussian curvature at any pa ∈ NA is larger than the threshold value g0. (The
value d0 can be calculated from the fixed values g0, l, and c.) The points in
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NK , all on the xy-plane, are added to the set N to make their corresponding
points pa ∈ NA locally “steep” (thus attaining high absolute values of Gaussian
curvatures at pa), and they split each edge of RB adjacent to every pa ∈ NA

into two segments in M . Lastly, we add to M the segments connecting each
point pd ∈ ND with any point pa

i ∈ NK lying on the boundary of the cell of RB

containing pd.
This completes the construction of S. See Fig. 2(c) for an example of the

resulting mesh surface S (as projected vertically onto the xy-plane). Clearly, the
construction of S takes polynomial time since S consists of O(|A|2) vertices and
O(|A|2) segments.

It remains to show that BRSTP has a solution TBP of a total length less than
or equal to k on RB if and only if SF-D has a solution CSF of a total length less
than or equal to k + 1/2 on S, for any given integer k > 0.

Before we show the equivalence of these two solutions, recall that the reason
for adding the points of ND to N is to create a triangular mesh for the surface
flattening problem. However, we need to prevent any “good” cutting paths of
S from going through any points of ND so that the cutting paths on S follow
only those segments of S corresponding to the edges of RB (as required by a
BRSTP solution on RB). By elevating the points of ND high enough to make
their adjacent segments longer than any of the edges of RB and by making
the heights of all the points of NA very small, we make sure that no points of
ND belong to any shortest path along the segments of S connecting any two
points in N − ND. This is because a path between any two points in N − ND

through a “diagonal peak point” pd ∈ ND of any cell of RB is longer than a path
along the border of that cell. Thus, “good” cutting paths connecting points in
N − ND and along the segments of S use only segments that correspond to the
edges of RB. Without loss of generality, we assume that any solution CSF for
the SF-D problem on S, that is, the union of a set of cutting paths for NA on
S, uses only segments of S that correspond to the edges of RB (otherwise, we
can always replace any cutting path in CSF passing through a point in ND by
another cutting path using only the segments along the borders of the cells of
RB without increasing the total length of the resulting SF-D solution).

Now, suppose TBP is a solution to BRSTP on RB of a total length less than
or equal to k. Note that since the lengths of all edges of RB are integers, the
total length |TBP | of TBP must be an integer as well. Let CSF consist of all the
segments of S whose vertical projections onto the xy-plane lie entirely on the
edges of TBP . Then CSF is a feasible solution to SF-D since every point in NA is
connected to a point in NB along the segments of S ∩CSF (this follows from the
fact that TBP is an RST for A and connects to at least one point of B). Note that
the segments of CSF correspond to the edges of TBP on RB, plus connections
to a little “tip” at each point pa ∈ NA. Every such little tip at pa ∈ NA adds a
total length less than 4×1/(9c) < 1/(2c) to the total length of TBP for the SF-D
solution CSF . Thus, a total length less than |A|× 1/(2c) ≤ c× 1/(2c) = 1/2 due
to the “tips” over all the points of NA is added to the total length of TBP for
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the SF-D solution CSF , implying that the total length |CSF | of CSF is no bigger
than |TBP | + 1/2 ≤ k + 1/2.

Conversely, suppose CSF is a solution to SF-D on S of a total length less
than or equal to k + 1/2. Let TBP be the set of edges on RB corresponding to
the segments of CSF . Since, unlike CSF , TBP does not contain the “tips” at the
points of NA, its total length |TBP | is strictly smaller than |CSF | ≤ k + 1/2.
Further, since the total length of TBP must be an integer, the largest possible
integer value for |TBP | that is less than k + 1/2 is k. Besides, as argued in the
previous paragraph, the total contribution of all the “tips” to the total length
of CSF is strictly less that 1/2. Thus, |TBP | ≤ k holds. If TBP forms a tree,
then we are done, since it contains all the points of A and at least one point
of B. However, note that CSF is the union of cutting paths along the segments
of S corresponding to the edges of RB, and such a cutting solution, although
connecting each point of NA to some point of NB, need not form a tree structure.
That is, TBP may not be a desired RST for BRSTP on RB. Actually, TBP may
consist of multiple connected components, and each such component may contain
some cycles. Hence, our remaining task is to convert TBP to an RST for A on
RB that touches at least one point in B, without increasing the total length of
the resulting TBP .

Observe that since CSF is a feasible cutting solution to SF-D on S, every
connected component of TBP must contain at least one point of B and some
points of A (those components containing no points of A can be safely removed
from any further consideration). We first remove from TBP all edges that lie
entirely on the boundary of the box BA (this removal does not yet remove the
end vertices of those edges). If any point of B∩TBP becomes an isolated vertex of
TBP after this edge-removal, then remove that point from TBP as well. Clearly,
this removal process does not affect the feasibility of the corresponding cutting
solution to SF-D on S (i.e., if the corresponding segments and endpoints are
removed from CSF ), and can only decrease the total length of TBP . But, it can
create more connected components of TBP , each of which still contains at least
one point of B (but, each such point of B is now of degree exactly one in TBP ).
Note that for any two points of A, the rectilinear (or L1) distance between them
is strictly less than 2d. We “merge” any two distinct connected components
C1 and C2 of TBP into one component, as follows: Remove from TBP all the
points of B and their adjacent edges that are contained in C1 (this decreases
the total length of TBP by at least 2d), and connect an arbitrary remaining
vertex of C1 with an arbitrary vertex of C2 by a shortest path lying on RB

(this increases the total length of TBP by less than 2d). The resulting TBP ,
with at least one less connected component, has a smaller total length than its
previous version. Further, TBP still contains all the points of A, and each of its
connected components contains at least one point of B. We continue this merge
process until TBP has exactly one connected component. At this point, TBP is
a connected subgraph on RB that contains all the points of A and at least one
point of B. But, TBP may not yet be a tree. Thus, we remove from TBP any
edge (but not its end vertices) without disconnecting TBP (this can only further
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decrease the total length of TBP ). We continue this edge-removal process until
TBP becomes a tree, which is a sought RST for A touching at least one point of
B on RB , and its total length is no bigger than k. Hence, the resulting TBP is a
solution to BRSTP for A on RB with |TBP | ≤ k.

Finally, it is easy to see that given a solution CSF to SF-D on S, a corre-
sponding solution TBP to BRSTP on RB can be obtained in polynomial time in
terms of the input size |A|. ��

Because the decision version of the surface flattening problem is NP-complete,
the optimization version of this problem is NP-hard.

3 A (1 + ε)-Approximation SF Algorithm

Since the optimal surface flattening problem (SF) is NP-hard, it is unlikely that
a deterministic polynomial time algorithm for optimally solving this problem
is possible unless P = NP. Thus, we present an efficient method for finding a
provably good approximate solution for the problem.

Our approach is to solve the SF problem using a graph representation. We
model the mesh surface S = (N, M) using an undirected weighted graph G =
(V, E), where V = N and E = M , i.e., the vertices of G correspond to the point
set of S and the edges of G correspond to the line segments of S. We let VA ⊆ V
be the subset of vertices corresponding to the points of NA whose absolute values
of the Gaussian curvatures are greater than the threshold value. The weight of
an edge e = (v, w) in E is equal to the length of the segment between the mesh
points represented by vertices v and w. Since S is a bounded surface in IR3,
the graph G is planar and a planar embedding of G can be easily specified by
S such that the boundary of S corresponds to the border of the outer face of
the planar embedding of G. Clearly, the one-to-one correspondence between the
mesh points on the boundary of S and the vertices on the outer face of G defines
the vertex subset VB ⊆ V as corresponding to NB ⊆ N .

Given the graph representation G of the surface S, observe that the union of
the optimal cutting paths connecting some boundary points of S with all the
points of NA along the segments of S corresponds to a set of trees, or a forest, F ,
in G whose roots all lie on the outer face. It is required that the total length of
these optimal cutting paths (or trees) be minimized. The reason that the union
of the optimal cutting paths for S must form a forest is as follows. Suppose the
union, F , in G contains a cycle. Then we can remove from F any edge (but
not its end vertices) on the cycle, still retaining a feasible cutting solution for
S; but, the solution thus obtained has a smaller total length than that of F , a
contradiction to the assumption that F corresponds to the union of the optimal
cutting paths for S.

The optimal surface flattening problem defined on the graph model G is as
follows.

Terminal Cutting Problem on a Planar Graph (TCPG). Given an em-
bedded undirected weighted planar graph G = (V, E) representing a mesh surface
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(a) (b)

v0

Fig. 3. (a) A planar graph G representing the surface S (the vertices of VA are denoted
by solid dots, and the vertices of VB are on the outer face of G). (b) The planar graph
G′ augmented by adding the supernode v0 and the edges connecting v0 with all the
vertices of VB .

S in IR3, VA ⊆ V , which is a set of terminals (corresponding to the points of A on
S whose absolute values of the Gaussian curvatures are above a threshold value),
and VB ⊆ V , which is the set of vertices on the outer face of G (corresponding to
the boundary nodes of S), find a subgraph F of G with the minimum total sum of
edge weights connecting every vertex of VA to at least one vertex of VB .

We solve the TCPG problem by transforming it to the optimal Steiner tree
problem on planar graphs, which is known to be NP-hard [6], and applying an
O(n log n) time (1 + ε)-approximation algorithm for the optimal Steiner tree
problem on planar graphs [5] to finish the job.

Optimal Steiner Tree Problem on a Planar Graph (OSTPG). Given an
undirected planar graph H = (VH , EH) with nonnegative edge weights and a set
T ⊆ VH of terminals, find a tree F ′ in G with the minimum total sum of edge
weights that contains all terminals of T .

The key to the transformation from TCPG to OSTPG is to make certain changes
to the graph G while preserving the planarity of the resulting graph G′ and to
specify which of the vertices in G′ are to be terminals in T for OSTPG. Clearly, T
should include all the vertices of VA. But, since TCPG requires that each vertex
of VA be connected with some vertex on the outer face of G, a feasible solution to
OSTPG needed by TCPG must include connections to some vertices of VB . To
satisfy this requirement, we add to G a new vertex v0, which is also a terminal in
T and is called a supernode, and add edges that connect v0 with all the vertices
of VB such that the weights of these added edges are all zero. To preserve the
planarity of the resulting embedded graph, v0 and its edges are all placed in the
interior of the outer face of G. Let G′ be the new graph thus obtained from G.
Figure 3 illustrates the transformation from G to G′. Clearly, G′ is planar and
has a set of terminals that includes v0. Furthermore, G′ has O(|V |) vertices and
O(|E|) = O(|V |) edges. The next lemma shows the equivalence of a solution to
TCPG on G and a corresponding solution to OSTPG on G′.

Before we proceed to the next lemma, observe that a non-optimal solution to
TCPG is a subgraph of G that may consist of one or more connected components,
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each of which contains some vertices of VA and at least one vertex of VB and may
even contain some cycles (i.e., it may not be a tree). However, when this case
occurs, we can, easily in linear time (say, based on depth-first search), remove
any edges (but not their end vertices) from each non-tree component without
disconnecting it until the component becomes a tree. This edge-removal process
does not affect the feasibility of the resulting TCPG solution for G, and the total
sum of edge weights of the resulting TCPG solution can only decrease. Thus,
without loss of generality, we assume for the rest of this paper that any solution
to TCPG consists of l ≥ 1 connected components in G, each of which is a tree.

Lemma 3. Let G = (V, E) be an undirected, weighted embedded planar graph
representing a mesh surface S, VA ⊆ V be the subset of vertices represent-
ing the set A of points on S whose absolute Gaussian curvatures are above a
threshold value, and VB = {vb1 , . . . , vbk

} ⊆ V be the subset of vertices on the
outer face of G representing the nodes on the boundary of S. Furthermore, let
G′ = (V ∪ {v0}, E ∪ {(v0, vb1), . . . , (v0, vbk

)}), and T = VA ∪ {v0} be a set of
terminals in G′. Then a solution to TCPG on G can be obtained from a solution
to OSTPG on G′ (with the same sum of edge weights), and vice versa. Moreover,
the transformation takes O(n) time, where n = |V |.

Proof. The proof of the equivalence of the solutions to OSTPG and TCPG is
not difficult to show. Due to the space limit, the detailed proof is omitted here
and can be found in the full version of the paper. ��

Using the algorithm for OSTPG by Borradaile, Klein, and Mathieu [5], we obtain
a (1+ ε)-approximate solution to TCPG (and thus to SF) in O(2poly(1/ε)n log n)
time, for any constant ε > 0. Note that for any constant ε > 0, 2poly(1/ε) is a (pos-
sibly large) constant as well. Hence the running time of our (1+ε)-approximation
SF algorithm is O(n log n).

Theorem 4. The surface flattening problem can be solved by a (1 + ε)- approx-
imation algorithm in O(2poly(1/ε)n log n) time, for any constant ε > 0.

Proof. This follows immediately from Lemma 3 and the PTAS result in [5]. ��

For any constant ε > 0, we have obtained in O(n log n) time an approximate solu-
tion (i.e., a cutting of the surface S) whose total length is no more than 1+ε times
the total length of the optimal solution. Due to its NP-hardness, this appears to
be a theoretically “best possible” approximation solution for the SF problem.
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