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Abstract. The fundamental issue in sensor networks is providing a certain degree 
of coverage and maintaining connectivity under the energy constraint. In this 
paper, the connected k-coverage problem is investigated under the probabilistic 
sensing and communication models, which are more realistic than deterministic 
models. Furthermore, different weights for nodes are added in order to estimate 
the real power consumption. Because the problem is NP-hard, a distributed prob-
abilistic coverage and connectivity maintenance algorithm (DPCCM) for dense 
sensor networks is proposed. DPCCM converts task requirement into two parame-
ters by using the consequence of Chebyshev’s inequality, then activate sensors 
based on the properties of weighted ε-net. It is proved that the sensors chosen by 
DPCCM have (θ,k)-coverage and α-connectivity. And the time and communica-
tion complexities are theoretically analyzed. Simulation results show that com-
pared with the distributed randomized k-coverage algorithm, DPCCM signifi-
cantly maintain coverage in probabilistic model and prolong the network lifetime 
in some sense. 

Keywords: probabilistic model; (θ,k)-coverage; α-connectivity; dense sensor 
networks. 

1   Introduction 

Generally speaking, a wireless sensor network (WSN) is composed of a large number 
of small, autonomous sensors scattered in the hazardous or inaccessible environment. 
Applications of WSN include forest fire detection, vehicle traffic monitoring, battle-
field surveillance, and so on [1-3]. 

The main goal of WSN is to provide information about a sensing field for an  
extended period of time. The quality of monitoring provided by WSN is usually 
measured by coverage. k-Coverage ( k ≥ 1) means that each point in the target area is 
monitored by at least k sensors. How to select appropriate active sensors to preserve 
required coverage as well as prolong the network lifetime at the same time is the cov-
erage control problem, which is one of the most fundamental problems in WSN. Con-
nectivity is closely-related to coverage, which ensures that there is at least one  
communication path between any pair of active sensors. The connected k-coverage 
problem has been studied extensively for more practical [4]. 
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However, there are some shortcomings in the traditional connected k-coverage pro-
tocols. First, some connectivity maintenance protocols assume the deterministic 
communication models for convenience, where node i successfully sends messages to 
j if j is in the communication range of i. Though they are accurate in wired networks, 
previous works have shown that communications of sensors are not deterministic but 
probabilistic [5]. Second, similarly to above, probabilistic sensing models are more 
practical than the deterministic ones assumed by some k-coverage protocols [6]. 
Third, traditional connected k-coverage protocols ignore the difference in power 
available (PA). They activate as few sensors as possible. Although they cost possibly 
little energy in one task, the protocols are not optimal in a series of tasks because of 
unbalanced energy. This also results in hotspots of energy consumption, which may 
cause premature death of sensors and even premature death of entire network.  

In order to solve the problems, we propose a new connected k-coverage problem 
called α-Connected (θ, k )-Coverage Set ((α,θ, k )-CCS ) problem, where α (0 < α < 1) 
shows the connectivity metric, and (θ, k ) (0 < θ < 1, *k ∈ )  represents the coverage. 
α-Connectivity means that any pair of active sensors communicate successfully with 
probability at least α. And (θ, k )-coverage means that each target point is monitored 
by at least k sensors with probability at least θ . It is worth of pointing out that θ and k 

aren’t combined into expectation θ k. This is because that θ k-coverage may infeasible 
for (θ, k )-coverage. The result is obvious on the supposition that sensors have enough 
good sensing performance. To the best of our knowledge, this work is the first to 
address the connected k-overage problem under the probabilistic communication 
model as well as probabilistic sensing model. Moreover, we take the PA of each sen-
sor into account to activate nodes for energy-consuming balance.  

On the other hand, the densely deployment is a common method to avoid blind ar-
eas of coverage. In dense sensor networks, the (α,θ,k)-CCS is reduced to a generaliza-
tion of the connected minimum dominating problem [3]. So we propose a distributed 
probabilistic coverage and connectivity maintenance algorithm (DPCCM) for the 
node-weighted (α,θ, k )-CCS problem in dense WSN because the problem is NP-hard. 
DPCCM utilizes the properties of weighted ε-net to find “good positions”, then ex-
pands (θ, k )-flower with α-connectivity by two parameters which can be calculated 
according to probabilistic model and the request, i.e. (α,θ, k ). Comparing with the 
randomized k-coverage algorithm [7], DPCCM significantly maintain coverage and 
connectivity in probabilistic model and prolong the network lifetime. 

The remainder of the paper is organized as follows: Section II reviews the related 
work in the field. Section III introduces some necessary notations and preliminaries, 
including the formalization of (α,θ, k )-CCS and our approach. The pseudo code and 
the analysis of the proposed DPCCM are presented in Sections IV. Section V presents 
the simulation results. The paper concludes in Section VI. 

2   Related Work 

Because of its importance, the connected k-coverage problem has received significant 
research attention. Several protocols have been proposed in the literatures. Some of 
them assume the deterministic models and others assume the probabilistic models. 
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To the deterministic model, some protocols consider mainly coverage under the 
condition “the communication range is at least twice the sensing range” [7-9], and 
others study both coverage and connectivity [4,10,11]. Chakrabarty [8] formulates the 
k-coverage problem of a set of grid points as an integer linear programming. How-
ever, it is known well that localized algorithms (in which simple local node behavior 
achieves a desired global objective) may be necessary for sensor network coordina-
tion. Huang [9] presents a distributed node-scheduling algorithm to turn off redundant 
sensors. A node decides whether it is redundant only by checking the coverage state 
of its sensing perimeter. The authors in [7] propose an efficient approximation algo-
rithm to achieve k-coverage in dense sensor networks. They model the problem as a 
set system for which an optimal hitting set corresponds to an optimal solution for k-
coverage. For the connected k-coverage problem, Zhou [10] presents a distributed 
algorithm, DPA, which works by pruning unnecessary nodes. Wu [11] proposes sev-
eral local algorithms to construct a k-connected k-dominating set. Yang [4] also pre-
sents two distributed algorithms. The first one uses a cluster-based approach to select 
backbone nodes to form the active node set. The second uses the pruning algorithm 
based on only 2-hop neighborhood information. 

To the probabilistic model, new challenges are introduced in connected k-coverage 
protocols in sensor networks though they are more realistic. It is the first to address 
the k-coverage problem under the probabilistic sensing model in [12]. The authors 
address the problem to activate sensors one by one in a greedy fashion, in which the 
“contribution” or the “coverage merit” is computed based on the probability of detec-
tion of an event by that sensor within its sensing area. The authors in [6] propose a 
new probabilistic coverage protocol that is fairly general and can be used with differ-
ent sensing models. However, how to maintain network connectivity is not consid-
ered. Hefeeda [13] designs a distributed probabilistic connectivity maintenance proto-
col that can employ different probabilistic models. 

The closest works to ours are [6], [7] and [13]. Unlike DPCCM, node weight, i.e. 
power available is not considered. The algorithms for unweighted case can not be 
directly applied in weighted one. In addition, associating PCP [6] with PCMP [13] 
will provide probabilistic coverage and connectivity at the same time, but it only 
ensures (with probability at least required parameter) that each point in the target area 
is monitored by at least one sensor. In other words, it is only an approximate algo-
rithm for (α,θ, 1)-CCS. Therefore, DPCCM for (α,θ, k )-CCS is more general. 

3   The Node-Weighted (α,θ, k )-CCS Problem and Our Approach 

In this section, we formulate the α-connected (θ, k)-coverage set ( (α,θ, k )-CCS ) 
problem in WSN. Then an overview of our solution is stated with the assumption that 
sensors are deployed densely and have the same sensing radius Rs and communication 
radius Rc. Furthermore, localization and time synchronization have been finished, 
which can be done by many efficient schemes [14,15]. 

To study connectivity under probabilistic communication model, we represent the 
network with an undirected weighted simple graph G = (V,E,c) called communication 
graph, where c is a communication probability function c: V ×V→[0,1]. There exists 
an edge (i, j) if the distance between i and j is not more than Rc. For an edge (i, j), c (i, 
j) is the probability of communication between i and j. For a path p: i→ j, c (i, j), 
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called c( p), equals to ∏c(e), where e is an arbitrary edge in p. Thus, for arbitrary i, 
j∈V, c(i, j) is 1− ∏(1− c( p)), where p is an arbitrary path between i and j in graph G. 

To study coverage under probabilistic sensing model, a sensing probability func-
tion s: V×T→[0,1] is defined, where T is the target set: if the distance between i and j 
is not more than Rs, i senses j with probability s(i, j), otherwise s(i, j) = 0. 

Definition 1 (α-Connectivity and (θ, k )-Coverage). Given a communication graph G 

= (V,E,c) and a sensing probability function s as above, and the target set T. G is said 
to have α-connectivity if c(i, j) ≥ α for arbitrary i, j∈V, where 0 <α <1. G is said to 
have (θ, k )-coverage on T if each element of T is sensed by at least k nodes in V with 
probability at least θ, where 0 <θ <1. 

Then the α-connected (θ, k )-coverage set problem is formally stated as follows. 

Problem 1 (α-Connected (θ, k)-Coverage Set problem, (α,θ,k)-CCS). Given a com-
munication graph G = (V,E,c), a target set T, 0<α <1, 0<θ <1, *k ∈ . Is there a mini-

mum subset *V of V whose induced subgraph *[ ]G V  has α-connectivity and (θ, k )-

coverage on T. 

The above (α,θ, k )-CCS is NP-hard, because (1,1,1)-CCS, i.e. connected cover set 
problem, as a special case of (α,θ, k )-CCS is NP-hard [16].  

PA is considered also by node weight in this paper. Generally speaking, the less its 
PA is, the larger its weight will be, and the smaller the activated probability will be. In 

this paper, as an example, the weight of node i is defined as W(i) =
( )

2
PA i

b

a λ
⎡ ⎤− ⎢ ⎥⎢ ⎥

⎡ ⎤
⎢ ⎥
⎢ ⎥⎢ ⎥
i , 

where W reflects the relation between PA and activated probability, and the 
(a,b,λ )  are constant parameters based on the type of sensor and environment. 

When the target value is continuous variable and deployed sensors are sufficiently 
dense, area coverage can be approximated by point coverage [4]. That is, it is feasible 
to select a subset of sensors to cover the rest of sensors. Even now, the problem is still 
NP-hard because it is reduced to the minimum dominating set problem. We present an 
approach in dense sensor networks: first find out “good positions” where only a few 
nodes can cover as many nodes as possible, then activate sensors with small weight 
around good positions to achieve (θ, k )-coverage and α-connectivity. 

The “good positions” problem can be stated that given some weighted disks with 
the same radius, how to select disks with the minimum total weight to cover all the 
centers, as shown in Figure 1. In order to reduce the total weight of the nodes around 
good positions, the weight of disk is defined as follows. According to the theory of 
geometric disk cover, we adopt a method based on VC-dimension and ε-net to find 
out “good positions”. Differing from [7], the weight of node is considered.  

Let ω: 2
V→ , where ω (∅) = 0, ω (i) = 

( )
( ) ( )

( ) 1
j N i

W i W j

N i
∈

⎢ ⎥+
⎢ ⎥

+⎢ ⎥⎣ ⎦

∑
, N(i) = { j: (i, j)∈E } 

for i∈V and ( ) ( )
i V

V iω ω
′∈

′ =∑  for V ′ ⊆V. Let F ⊆ 2
V, | F | = |V |. Each of F states the 

nodes covered by the center. Together, the trine (V, F,ω) is a weighted set system. 



 Approximate Node-Weighted Minimum α-Connected (θ,k)-Coverage 225 

1

7

1 2

1

2

4

2 2
2

2

3

1

1

7

3

4

3

2

3
2

sensor node good position shattered node  

v0

v1v2

vmv3

v4

v5

 

Fig. 1. An example of “good positions” and 
set shattering: the points are good positions, 
and the foursquare points are shattered by the 
four disks with fatter borderlines 

Fig. 2. An example of (θ, k)-flower: vi senses 
v0 with the same probability p(r) 
 

 
Definition 2 (Weighted ε-Net). Given a weighted set system (V, F,ω), N ⊆ F is called 
a weighted ε-net for (V,F,ω) if N L∩ ≠ ∅ for all L∈ F with ω (L) ≥ ε ω (V ). 

The weighted ε-net is more general than uniform ε-net, because it is a special case of 
the former if ω (L) = | L |. We interest in finding small weighted ε-nets. Typically, ε-net 
finder algorithms are designed for the uniform case. Thus we reduce the weighted 
case to unweighted one by taking ⎣ω (v) + 1⎦ copies for v∈V, as outlined by [17]. In 
this paper, we adopt randomly selecting strategy to find ε-nets due to limited comput-
ing power and storage space of sensors. 

The VC-dimension quantifies how “well behaved” of a set system. VC-dim�ψψψ� �is 
the size of the largest subset of ψψthat is shattered by ψψψFigure 1 shows an example 
of the concept of shattering. The authors in [7] prove the set system composed of the 
set of points in R2 and all disks with the same radius for each point has a VC-
dimension of 3. From Corollary 3.8 in [� 8], a distributed weighted ε-net finder is 
designed by randomly selecting biased based on the weight in this paper. 

After finding out a weighted ε-net, we simply verify whether it can hit all disks. If 
it can not, we try another weighted ε-net by the modified doubling process. The main 
idea is to put another weight ψ (i) (initially uniformly) on the node i, and let ζ (i)= 
a2−bω(i) +ψ (i), where a2−bω(i) reflects the relation between node weight and the prob-
ability of being the node of a weighted ε-net. If a weighted ε-net doesn’t hit some 
element L of F, we double ψ (i) for all i in L. Then find another weighted ε-net. 

With the concept of weighted ε-net, the repeat can be proved only finite times be-
fore finding out a hitting set. 

Lemma 1. Given a weighted set system (V, F,ω). If there is a hitting set of size c, the 
modified doubling process as above iterate not more than 6c log[(n−c)/cqψ0− 1] times 
for ε =1/(2c), where n = |V

 | and q = min{ω (i): i∈V } and ψ0 is initially ψ. 

Proof. Let H be a hitting set of size c. Let Lj be the element of F that doesn’t be hit by 
a weighted ε-net at the j th iteration, and the weight with subscript j be the one after j 
iterations. From Definition 2 ζj-1(Lj) < εζj-1(V ). So ζj (V ) = ζj (Lj) + ζj(V−Lj) = ζj-1(V ) 

+ψj-1(Lj). Because ω (i)
 > 0, we have ζj (V ) < ζj-1(V ) + ζj-1(Lj) < (1+ε )ζj-1(V ) < (1+ε) 

jζ0(V ) < ζ0(V ) e 
j/2c. Moreover, since jH L∩ ≠ ∅, there is at least one node in H whose 
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Fig. 3. The triangular mesh expansion 

ψ (i) has been doubled. That is, if each h∈H has been doubled d(h) times, then ∑d(h) 

≥ j. We have ψj (H ) = ψ0 ∑2d(h)
 ≥ cψ0 2

 j/c. Note that ψj (H ) < ζj (V ), we conclude that 
cψ0 e

 2j/3c< cψ0 2
 j/c< ζ0(V )e

 j/2c<[cψ0+(n−c)/q]e j/2c from which the proof follows.       □ 

The following is how to achieve (θ, k )-coverage and α-connectivity. The authors in 
[7] introduce the concept of k-flower to guarantee the coverage. Similarly, in order to 
select (θ, k )-flower which is a set of k sensors that all intersect at the center point with 
probability p, our approach is to choose m center nodes with minimal weight at dis-
tance r (r < Rs) at m sectors [ 2πi/m, 2π(i+1) /m ] for 0 ≤ i ≤ m − 1. Note that the m sen-
sors sense the center with the same probability p(r) for given r. Differing from [7], the 
m and r are alterable parameters, and how to choose is shown as follows.  

Theorem 1. Given r and p(r). Selecting mmin= min{m: mp(r)/(mp(r)−k)2 ≤1−θ  and m 

≥ k} nodes as the above strategy yield a (θ, k )-flower. 
 

Proof. Assume that {v1,v2,…,vm} is a (θ, k )-flower with radius r, whose center is v0, 
as shown in Figure 2. Let Xi be independent random variable��attaining the value 1 
when vi�senses v0 and otherwise the value 0. Let�X�= ∑ Xi, then E[X] = mp(r), 
σ2= mp(r). We have P[X ≥ k] = 1− P[X < k] = 1− P[X −mp(r) < k−mp(r)] ≥ 1− P[ |X − E[X 

]| ≥ mp(r)−k] = 1− P[ |X −E[X ]| ≥ (σ − k/σ) σ] ≥ 1 − mp(r)/(mp(r) − k)2. The last inequal-
ity is derived from a consequence of Chebyshev’s inequality that states P[ |X − E[X ]| 
≥ kσ ] ≤ 1/k2.  
 

According to the definition of (θ, k )-flower, we have 1 − mp(r)/(mp(r) − k)2 ≥ θ.        □ 
 

For example, let θ  = 0.8, k = 10 and p(r) = 0.6, we find mmin = 34. For convenience the 
following m means mmin. 

The guarantee of α-connectivity is shown as follows. 

Lemma 2. Given a triangular mesh grid. If any pair of neighbors can directly commu-
nicate with probability at least max{ α, 1/ [1+ (1−α)0.5] }, the triangular mesh has a α-
connectivity. 

Proof. Statements proven by math induction. 
First, the proposition is true if |V | = 3. Assume 
it is also true when |V |=K for K ≥ 3. Let G ′ with 
|V(G ′)| = K + 1 is a triangular mesh expanded 
from G, as shown in Figure 3. By Definition 1, 
we have c(i, j) ≥ α for arbitrary j∈V(G). There 
exist two i→j paths, where c(x,i) ≥ α and 
c(y,i)≥α by the assumption, so we have 
c(i, j) = 1− [1−c( j,x)c(x,i)] [1−c( j,y)c( y,i)] ≥α.□ 

From Theorem 1 and Lemma 2, a sensor can gain appropriate r and m according to 
its probability model and given (α,θ, k ). And the (θ, k )-flower based on min{r, Rs} 
(for convenience, still named r) and m has α-connectivity and (θ, k )-coverage. 

In the following and the simulations, we leave out the communication link with 
probability less than α for the communication efficiency. This is because that infor-
mation exchanges between neighbors are very frequent in practical application. Any 
pair of neighbors should firstly attempt to communicate directly.  
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4   Distributed Algorithm for Node-Weighted (α,θ, k )-CCS 

In the previous section, we propose an approach to node-weighted (α,θ, k )-CCS, 
where the cost of computation is a little, and activating nodes does not rely heavily on 
global information. Therefore, a distributed algorithm called DPCCM for node-
weighted (α,θ, k )-CCS is proposed. Its pseudo code is shown in Figure 4. 

 

 
 
DPCCM SENDER 
(1)  Initialize parameters 
ψ =1; state=TEMP; coverage=0; netSize=1; T= −1; calculate the W; broadcast W to 
neighbors and wait for B time units; calculate the ω, ζ, r, m; totalWeight = n*ζ ; 
(2)  Find out “good positions”: 
while (netSize < n) { 
 if (state = = TEMP and netSize ×ζ / totalWeight > rand()) { 
  state = ACTIVE; 
  broadcast OK message containing location to neighbors; break;  } 
 wait for a constant S time units; 
 if (state = = TEMP and 1 / (n − netSize) > rand()) { 
  ψ = 2ψ ; totalWeight = totalWeight + totalWeight / n; calculate ζ ;  } 
 netSize = 2*netSize;  } 
(3)  Verify the coverage and form (θ, k )-flower with α-connectivity: 
while (true) { 

if (state = = ACTIVE) { 
  broadcast VERIFY message containing location to neighbors; 
  wait for YES message;   % for a constant R time units 

if (coverage > = m) {break;} 
if (coverage < m) { 

broadcast FLOWER message containing coverage and location  
to neighbors; coverage = m; break; } } 

DPCCM RECEIVER 
if (msg.type = = OK and state = = TEMP and 

space(msg.source) < min{Rc, Rs})  {break;} 
if (msg.type = = VERIFY and space(msg.source) < r) { 
 coverage = coverage + 1; 
 if (state = = ACTIVE) {send YES message to msg.source;} 
 if (state = = TEMP & coverage > = m) { state = = SLEEP;}  } 
if (msg.type = = YES and state = = ACTIVE) { coverage = coverage + 1;} 
if (msg.type = = FLOWER and state = = TEMP and space(msg.source) < r) { 

calculate back-off timer T ;   % construction steps as follows 
 if (T > 0) { wait until T = = 0; state = ACTIVE; 

broadcast TURNOFF message containing l to its neighbors; }  } 
if (msg.type = = TURNOFF and T > 0 and l = = l.source) { T = −1;} 
 

Fig. 4. A distributed algorithm for the node weighted (α,θ,k)-CCS (DPCCM) 
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DPCCM works upon receiving a task from the base station. In initialization, node i 
calculates and broadcasts W(i) to its neighbors. After B time units ω (i) is calculated, 
where B is chosen beforehand to receive W of neighbors. Note that the weighted ε-net 
finder as above randomly selects nodes biased based on the weight. In order to locally 
estimate the total initial weight, we regard ζ (i) as the average weight. The estimation 
is practical since ω (i) is average and ψ (i) is the same initially. Finally, it calculates 
the r and m based on Lemma 2 and Theorem 1. 

In the process of finding out the “good positions”, DPCCM works in  rounds of 
equal S time units, where S is chosen beforehand according to the environment and 
the task requirement. In each round, some nodes switch randomly to be in ACTIVE 
state biased based on the weight ζ (i) , and others uniformly double ψ (i) with prob-
ability 1/(n − netSize). The reason is an under-covered node double ψ (i) in the modi-
fied doubling process, the number of which is less than n − netSize. From the proof of 
Lemma 1, it is feasible to estimate the number by n − netSize because it only increases 
iteration times. Every node with ACTIVE state broadcasts an OK message to its 
neighbors. When a neighbor is covered by an active node, it breaks the process of 
finding “good positions”. At the end of each round, double netSize. 

After S⋅ ⎡logn⎤ time units, every node with ACTIVE state begins to verify its cov-
erage and connectivity. It broadcasts a VERIFY message containing location to 
neighbors and waits for R time units, where R is sufficient to reduce collision and 
guarantee that all neighbors can finish the response work. When a node receives a 
VERIFY message, it firstly compares r with the distance between itself and the mes-
sage source. If the distance is more than r it rejects the VERIFY message, or else it 
checks its state. If its state = ACTIVE, it replies a YES message to the message 
source, otherwise it self-increases coverage and judges whether its coverage reaches 
k. As soon as a node achieves (θ, k )-coverage, it will change to be in SLEEP state. In 
R time units, coverage of node i self-increase every time receiving a YES message. If 
its coverage is less than k, it will activate some neighbors by broadcasting a 
FLOWER message to gain (θ, k )-coverage. 

The FLOWER message contains location of source and its coverage. We prove 
that, as shown in Theorem 1 and Lemma 2, the centre node of (θ, k )-flower with α-
connectivity has at least m active neighbors within radius r. In order to form (θ, k )-
flower with α-connectivity, DPCCM chooses nodes with the minimum weight at 
distance r at M(i) sectors [ 2πl /M(i), 2π(l+1) /M(i)] for 0 ≤ l ≤ M(i)−1, where M(i) = 
m−coverage. To make this decision locally, a back-off timer is adopted. The back-off 
timer T( j) of the receiver j is determined according to its location, r(i) and M(i). The 
following steps are used in turn to decide T( j): (1) if d(i,j) < r(i)−δ, let T( j) = −1, 
where δ  is a small positive constant; (2) if j is in the sector [ 2πl /M(i), 2π(l+1) /M(i) ], 
let T( j) = l⋅C + C⋅W( j) /E, where C is a constant and E > W( j) for arbitrary j. When a 
sensor times out, the sensor changes its state = ACTIVE and broadcasts a TURNOFF 
message containing l to its neighbors. When a sensor receives a TURNOFF message 
before the timer expires, it compares l with own: if they are the same, it lets T( j) =  −1, 
or else rejects the message. 

The algorithm terminates when all sensors are in ACTIVE state or SLEEP state. 
As the following, some analyses of DPCCM are shown. First, we prove the cor-

rectness of the proposed DPCCM. 
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Theorem 2. Given a node-weighted sensor network G as above. The active sensors 
chosen by DPCCM can (θ, k)-cover all nodes in G and have α-connectivity. 

Proof: Firstly, we show that the active sensors are guaranteed to hit every sensing 
disk. In the process of finding out the “good positions”, node i doubles ψ (i) with 
probability 1 / (n − netSize) until it is activate node or the neighbor of an activated one. 
Doubling ψ (i) increases the probability to be activated. From Lemma 1, the active 
node set is a hitting set, otherwise node density is not enough to achieve a hitting set. 
Then DPCCM activates some nodes to guarantee every active node has m active 
neighbors within less than radius r. Since the algorithm terminates when all sensors 
are in ACTIVE state or SLEEP state, both of them satisfy the condition coverage ≥ m. 
According to Theorem 1 and Lemma 2, the (θ, k)-flower based on the above r and m 
has α-connectivity and (θ, k)-coverage.                                    □ 

The next theorem provides time complexity of DPCCM. We carry out our analysis in 
terms of the input parameters B, C, R and S, which are discussed in Figure 4. We 
assume that a message transferred between two neighbors takes one time unit, and so 
does continuous local computation. And we reduce the communication collision by 
waiting for some time.  

Theorem 3. DPCCM terminates in at most (m⋅C + R + 5)n + S⋅ ⎡logn⎤ + B + 2, i.e. O(n) 
time units, where m is determined by (α,θ, k ) based on Lemma 2 and Theorem 1. 

Proof. According to hypothesis, every node completes the initialization in B + 2 time 
units. In the process of finding “good positions”, the algorithm iterates for  ⎡logn⎤ steps. 
Since each iteration works in rounds of S time units, the algorithm costs S⋅ ⎡logn⎤ time 
units. Within the following processes till the termination of algorithm, there exist three 
types of state change: ACTIVE→break, TEMP→ACTIVE→break, and TEMP 
→SLEEP. To the first, an active node broadcasts a VERIFY message to its neighbors 
and waits for R time units. Within R time units, either a TEMP node increases its cover-
age or an ACTIVE node replies a YES message. So it costs R+3 time units. To the sec-
ond, it is certain that the node receives a FLOWER message from an active node. After 
it receives the message it will wait for T time units to be activated. From the construc-
tion of T, we have T ≤ C(l + 1) ≤ CM ≤ Cm. So it costs at most mC + 2 time units. Then it 
costs R + 3 time units from ACTIVE to break. To the last, the node receives at least k 
VERIFY messages and it costs k time units. On the other hand, the above three types of 
state change are repeated continuously until the algorithm terminates. Since every node 
is corresponding to one type and only, the total time is B + 2 + S⋅ ⎡logn⎤ + (R + 3)τ1 + (mC 

+ R + 5)τ2 + kτ3, where τi is the number of the i th case as above. Note that m ≥ k and τ1 

+ τ2 + τ3 = n, the proof can be concluded.                                                                          □ 

In the following theorem, we provide the communication complexity of DPCCM 
algorithm. 

Theorem 4. The number of messages broadcasted or sent in the DPCCM is at most 
6n, i.e. O(n). 

Proof. In the initialization, every node broadcasts its W to its neighbors, so the num-
ber of messages is n. In the process of finding “good positions”, every active node 
broadcasts an OK message. The number of active node is less than n, so is the number 
of OK messages. From the following processes till the termination of algorithm, 
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analysis is similar to the proof of Theorem 3. One “ACTIVE→break” node broad-
casts at most two messages: VERIFY and FLOWER. And one “TEMP →AC-
TIVE→break” node broadcasts at most three messages: TURNOFF, VERIFY and 
FLOWER. And one “TEMP→SLEEP” node does not broadcast. On the other hand, 
the YES messages are only sent by active but not break nodes, the number of which is 
less than n. So the proof can be concluded.                                                                 □ 
 

The approximation factor of DPCCM algorithm is underway. Because it is difficult to 
analyze theoretically the approximation factor, we test experimentally the perform-
ance of DPCCM. The result is shown in Fig.7. In fact, it is exactly our aim to prolong 
the network lifetime on the requirement of connectivity and coverage. So the experi-
ment result can support the performance of DPCCM in some sense. 

5   Simulation 

This section presents results from our simulation. The proposed DPCCM algorithm 
and the randomized k-coverage algorithm, named DRKC [7], were simulated in 
Prowler, a probabilistic sensor network simulator [19]. To assure the network is dense 
without coverage hole, 300 sensors are deployed as a grid of points and 300 sensors 
are randomly placed in a restricted 10×10 area. Some simulation parameters are 
shown here: sensing range is 1 and so is communication, the initial energy of each 
sensor is 5000, transmission, reception and idle are 5, 1, and 1, completeness a task 
consumes 300. The sensing mode is adapted from the exponential model, and the 
communication model is set to the log-normal shadowing model. The evaluation 
metrics include the percentage of active sensors with various (α,θ, k), coverage, and 
the network lifetime. 

First we analyze the percentage of active sensors when (α,θ, k) is changed. We 
vary the requested coverage k between 1 and 8, sensing probability between 50% and 
90%, connected probability between 50% and 90%.  When one of them is varied, all 
other parameters are fixed, as shown in Figure 5. The Figure 5(a) and 5(c) shows that 
the percentage of active sensors increases fast while required sensing probability or 
required coverage increase. We think that it may be caused by r and m from Theorem 
1 and Lemma 2, especially m increases rapidly. However, as is shown in Figure 5(b), 
the percentage increases slowly with higher connected probability. The result indi-
cates that a triangle mesh is sufficient to ensure probabilistic connectivity. 
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Fig. 5. Analyzing effect on percentage of active sensors when ( α, θ, k ) is changed:  
(a) vary α∈[0.5,0.9] while fix θ = 0.75, k = 3; (b) vary θ ∈[0.5,0.9] while fix α = 0.75, k = 3; 
(c) vary k ∈[1,8] while fix α = 0.75, θ = 0.75 
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Fig. 6. Comparing the percentage of points 
k-covered with DRKC 

Fig. 7. The MTTFF under DPCCM and 
DRKC 

The coverage by DPCCM and DRKC are compared. The achieved coverage at 
some random sampling points in the target area has been collected statistically. We 
fix θ  = 0.70 and α = 0.80. As shown in Figure 6, DPCCM is significantly better than 
DRKC. This is important because, under the probabilistic sensing model, the active 
sensors chosen for deterministic model are not k-covered really. 

Finally, we study the MTTFF (mean time to first failure) of any given task under 
DPCCM and DRKC, which can indicate the network lifetime in some application. We 
randomly gain k from 1 to 8 in each task. As soon as a task can not been completed, 
we calculate the MTTFF in this experiment. After repeating 50 times, the result is 
shown in Figure 7. Compared with DRKC the MTTFF under DPCCM has been pro-
longed about 21%. This is because that DRKC activate as few sensors as possible 
based on required coverage and isn’t always optimal in a series of tasks because of 
unbalanced energy-consuming among nodes.  

6   Conclusion 

In this paper, we consider connected k-coverage problems under probabilistic sensing 
models and probabilistic communication models, which are more realistic than determi-
nistic models. We represent the problems with the α-connected (θ,k)-coverage set prob-
lem and formulize it as (α,θ,k)-CCS. Moreover, in order to satisfy various coverages 
and realize energy-consuming balance, we also take power available into consideration 
with node weight. Because node-weighted (α,θ, k )-CCS is NP-hard, a distributed ap-
proximate algorithm, named DPCCM, is proposed for dense sensor networks. DPCCM 
utilizes the properties of VC-dimension and weighted ε-net to find “good positions”, 
then expands (θ, k )-flower with α-connectivity by r and m. The two parameters can be 
calculated according to the tasks and performance indexes of sensors. We prove the 
correctness of DPCCM and theoretically analyze the time complexity and communica-
tion complexity. We also implement our algorithm in Prowler and compare it against 
the randomized k-coverage algorithms. 
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