
Mixed Search Number of Permutation Graphs

Pinar Heggernes and Rodica Mihai

Department of Informatics, University of Bergen, N-5020 Bergen, Norway
pinar@ii.uib.no, rodica@ii.uib.no

Abstract. Search games in graphs have attracted significant attention
in recent years, and they have applications in securing computer net-
works against viruses and intruders. Since graph searching is an NP-hard
problem, polynomial-time algorithms have been given for solving it on
various graph classes. Most of these algorithms concern computing the
node search number of a graph, and only few such algorithms are known
for computing the mixed search or edge search numbers of specific graph
classes. In this paper we show that the mixed search number of permuta-
tion graphs can be computed in linear time, and we describe an algorithm
for this purpose. In addition, we give a complete characterization of the
edge search number of complete bipartite graphs.

1 Introduction

The graph searching problem concerns a team of searchers who are trying to
capture a fugitive moving along the edges of the graph. The fugitive is assumed
to be very fast and invisible, and he knows the search strategy of the searchers.
The minimum number of searchers that can guarantee the capture of the fugitive
under this worst case scenario for the searchers is the search number of the
graph, and the problem is to compute this number. The study of the graph
searching problem started in 1970s when it was independently introduced by
Parsons [25] and Petrov [28], and since that time it has been studied extensively
[3,2,21,22,18,26]. It fits into the broader class of pursuit-evasion, search, and
rendezvous problems on which a large number of results have appeared [1].

In a computer network setting, the graph searching problem serves as a math-
ematical model for protecting networks against viruses and other unwanted
agents, like spyware or eavesdroppers [2,13]. A practical example is the problem
of finding a successful strategy for a group of collaborating software programs
that are designed to clean the network from a virus [11].

In the above mentioned original version of graph searching by Parsons and
Petrov, later called edge searching [19], a search step consists of placing a searcher
on a vertex or removing a searcher from a vertex or sliding a searcher along an
edge. An edge is cleared by sliding a searcher from one of its endpoints to the
other endpoint. Kirousis and Papadimitriou [19] introduced a variant of graph
searching called node searching. In this version an edge is cleared if both its
endpoints contain searchers. A new version of the graph searching was introduced
by Bienstock and Seymour in [3]. This version, called mixed searching, combines

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 196–207, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Mixed Search Number of Permutation Graphs 197

features of both edge searching and node searching. An edge is cleared either by
sliding or by placing searchers at each endpoint. In the mixed searching game,
a contaminated edge of the graph is cleared if either both its two endpoints
contain searchers or a searcher is slided along it. The allowable moves are placing
a searcher on a vertex, removing a searcher from a vertex and sliding a searcher
along an edge.

The minimum number of the searchers sufficient to perform searching and
ensure the capture of the fugitive for each of the models are respectively the
edge, node, and mixed search numbers, and computations of these are all NP-
hard [3,22,18]. The node search number of a graph is known to be equal to its
pathwidth plus one; the mixed search number of a graph is equal to its proper
pathwidth [31].

Polynomial-time algorithms are known for computing the node search number
of trees [27,29], interval graphs [7], cographs [6], k-starlike graphs for fixed k [26],
d-trapezoid graphs [5], block graphs [9], split graphs [17], circular-arc graphs
[30], and permutation graphs [4,23]. However, only for a few of these graph
classes polynomial-time algorithms are known for computing mixed search or
edge search numbers. Edge search number of trees [22,27], interval graphs and
split graphs [26,15] can be computed in polynomial time. For computing the
mixed search number, polynomial-time algorithms exist so far only for interval
graphs and split graphs [12].

In this paper we show that the mixed search number of permutation graphs
can be computed in linear time, thereby resolving the computational complexity
of this problem on this graph class. Permutation graphs are a well-studied graph
class with significant theoretical importance [16,8]. In addition, we show how to
compute the edge search number for a subclass of permutation graphs, namely
complete bipartite graphs. In fact we give a complete characterization of both
edge and mixed search numbers on complete bipartite graphs.

2 Preliminaries

We work with simple and undirected graphs G = (V, E), with vertex set V (G) =
V and edge set E(G) = E, and we let n = |V |, m = |E|. The set of neighbors
of a vertex x is denoted by N(x) = {y | xy ∈ E}. A vertex set C is a clique if
every two vertices in C are adjacent, and a maximal clique if no superset of C is
a clique. The subgraph of G induced by a vertex set A ⊆ V is denoted by G[A].

A path is a sequence v1, v2, ..., vp of distinct vertices of G, where vivi+1 ∈ E
for 1 ≤ i < p, in which case we say that this is a path between v1 and vp. A path
v1, v2, ..., vp is called a cycle if v1vp ∈ E. A chord of a cycle (path) is an edge
connecting two non-consecutive vertices of the cycle (path).

A vertex set S ⊂ V is a separator if G[V \ S] is disconnected. Given two
vertices u and v, S is a u, v-separator if u and v belong to different connected
components of G[V \ S], and S is then said to separate u and v. Two separators
S and T are said to be crossing if S is a u, v-separator for a pair of vertices
u, v ∈ T , in which case T is an x, y-separator for a pair of vertices x, y ∈ S

198 P. Heggernes and R. Mihai

[20,24]. A u, v-separator S is minimal if no proper subset of S separates u and
v. In general, S is a minimal separator of G if there exist two vertices u and v
in G such that S is a minimal u, v-separator. It can be easily verified that S is a
minimal separator if and only if G[V \S] has two distinct connected components
C1 and C2 such that NG(C1) = NG(C2) = S. In this case, C1 and C2 are called
full components.

2.1 Chordal Graphs, Interval Graphs, and Pathwidth

Permutation graphs and complete bipartite graphs will be introduced in the
sections in which they are studied. In this subsection we mention the graph
classes and graph parameters that are central in graph searching.

A graph is chordal if every cycle of length at least 4 has a chord. A triangulation
of a graph G is a chordal graph H on the same vertex set as G such that G is
a subgraph of H . If there is no proper subgraph of H that is a triangulation
of G then H is said to be a minimal triangulation of G. The following central
characterization of minimal triangulations is useful for understanding our results
on permutation graphs. A triangulation of G is minimal if and only if it is
obtained by adding edges to make into cliques a maximal set of non-crossing
minimal separators of G [24]. A set C of vertices of G is a potential maximal
clique if there is a minimal triangulation of G in which C is a maximal clique.

A path-decomposition of a graph G = (V, E) is a linearly ordered sequence of
subsets of V , called bags, such that the following three conditions are satisfied:
1. Every vertex x ∈ V appears in some bag. 2. For every edge xy ∈ E there is
a bag containing both x and y. 3. For every vertex x ∈ V , the bags containing
x appear consecutively. The width of a decomposition is the size of the largest
bag minus one, and the pathwidth of a graph G, pw(G), is the minimum width
over all possible path decompositions. A path decomposition of width pw(G) is
called an optimal path decomposition of G.

A graph is an interval graph if intervals of the real line can be associated to
its vertices such that two vertices are adjacent if and only if their corresponding
intervals overlap. An important characterization of interval graphs is that a graph
G is an interval graph if and only if it has an optimal path decomposition where
every bag is a maximal clique of G [14]. Such an optimal path decomposition is
called a clique-path. It is well known that the pathwidth of an interval graph is
one less than the size of its largest clique. Clique-paths of interval graphs can be
computed in linear time [7]. For an arbitrary graph G, every path decomposition
of G corresponds to an interval graph obtained by adding edges to G until each
bag of the path decomposition is a clique. The mentioned path decomposition
is then a clique path of this interval graph.

2.2 Search Games

The mixed search game can be formally defined as follows. Let G = (V, E) be a
graph to be searched. A search program consists of a sequence of discrete steps
which involves searchers. Initially there is no searcher on the graph. Every step
is one of the following three types

Mixed Search Number of Permutation Graphs 199

– Some searchers are placed on some vertices of G (there can be several
searchers located in one vertex);

– Some searchers are removed from G;
– A searcher slides from a vertex u to a vertex v along edge uv.

At every step of the search program the edge set of G is partitioned into
two sets: cleared and contaminated edges. Intuitively, the agile and omniscient
fugitive with unbounded speed who is invisible for the searchers, is located some-
where on a contaminated territory, and cannot be on cleared edges. Initially all
edges of G are contaminated, i.e., the fugitive can be anywhere. A contaminated
edge uv becomes cleared at some step of the search program either if both its
endpoints contain searchers, or if at this step a searcher located in u slides to v
along uv.

A cleared edge e is (re)contaminated at some step if at this step there exists
a path P containing e and a contaminated edge and no internal vertex of P
contains a searcher. For example, if a vertex u is incident to a contaminated
edge e, there is only one searcher at u and this searcher slides from u to v along
edge uv �= e, then after this step the edge uv, which is cleared by sliding, is
immediately recontaminated.

A search program is winning if after its termination all edges are cleared.
The mixed search number of a graph G, denoted by ms(G), is the minimum
number of searchers required for a winning program of mixed searching on G.
The differences between mixed, edge, and node searching are in the way the edges
can be cleared. In node searching an edge is cleared only if both its endpoints are
occupied (no clearing by sliding). In edge searching an edge can be cleared only
by sliding. So mixed searching can be seen as a combination of node and edge
searching. The edge and node search numbers of a graph G are defined similarly
to the mixed search number, and are denoted by es(G) and ns(G), respectively.
A winning mixed search program using ms(G) steps (analogously, a winning
edge search program using es(G) steps) is called optimal. The following result is
central and gives the relation between the three graph searching parameters.

Lemma 1 ([31]). Let G be an arbitrary graph.

– ns(G) = pw(G) + 1.
– pw(G) ≤ ms(G) ≤ pw(G) + 1.
– pw(G) ≤ es(G) ≤ pw(G) + 2.

Note that, although the node search number of a graph is known, it might
be difficult to decide its mixed search number or edge search number. Hence
although pw(G) of a graph G can be computed easily, it might be difficult to
decide whether ms(G) = pw(G) or ms(G) = pw(G) + 1.

A search program is called monotone if at any step of this program no re-
contamination occurs. For all three versions of graph searching, recontamination
does not help to search the graph with fewer searchers [3,21], i.e., on any graph
with {edge, mixed, node} search number k there exists a winning monotone
{edge, mixed, node} search program using k searchers. Thus in this paper we
consider only monotone search programs.

200 P. Heggernes and R. Mihai

3 Mixed Search Number of Permutation Graphs

Let π be a permutation of {1, ..., n}. We define G(π) to be the graph with vertex
set {1, ..., n} and edge set {ij | (i−j)·(π−1(i)−π−1(j)) < 0}. Hence, two vertices
i, j of G(π) are adjacent if and only if the permutation π changes their natural
order. An undirected graph G is called a permutation graph if there exists a
permutation π such that G is isomorphic to G(π).

In this section we give a linear-time algorithm to compute the mixed search
number of permutation graphs. Permutation graphs are a well studied graph class
with subject to many theoretical results, and they have many characterizations
[16]. If G is a permutation graph then all minimal triangulations of G are interval
graphs [4]. In addition, permutation graphs have a linear number of minimal
separators [23]. Pathwidth of permutation graphs, and hence their node search
number, can be computed in linear time [4,23]. No polynomial-time algorithm
has been known for computing their mixed search number.

We start by relating mixed search number to proper pathwidth, and then
giving a new general result, before we move to permutation graphs. A path
decomposition is called proper if no three bags of the same size s all intersect in
the same s − 1 vertices. The proper pathwidth of a graph G, denoted by ppw(G)
is the minimum width over all proper path decompositions of G.

Theorem 1 ([31]). For any graph G, ms(G) = ppw(G).

Thus computing the mixed search number and the proper pathwidth are equiv-
alent problems. This, in combination with the following result, is the main tool
that we use to compute the mixed search number of permutation graphs.

Theorem 2 ([12]). For an interval graph G, ms(G) = pw(G) if and only if no
three maximum cliques intersect in pw(G) vertices.

We define a good path decomposition to be an optimal path decomposition that
does not contain three consecutive bags intersecting in the same pw(G) ver-
tices. We now add the following new result for general graphs that strengthens
Theorem 1.

Theorem 3. For any graph G, ms(G) = pw(G) if and only if G has a good
path decomposition. (Otherwise ms(G) = pw(G) + 1.)

Proof. First we show that in any optimal path decomposition P , if there are
three bags of maximum size intersecting in the same pw(G) vertices then there
are three consecutive bags intersecting in the same pw(G) vertices. Let Bi, Bj , Bk

be three bags from left to right (not necessarily consecutive) in P such that
|S = Bi ∩ Bj ∩ Bk| = pw(G). Then by the definition of a path decomposition,
S is a subset of every bag of P between Bi and Bk. Since no bag is a subset of
another bag, it means that all bags between Bi and Bk must be of maximum
size and contain S. Hence any three consecutive bags between Bi and Bk are of
size pw(G) + 1 and contain the same pw(G) vertices.

Mixed Search Number of Permutation Graphs 201

If ms(G) = pw(G) then by Theorem 1, pw(G) = ppw(G), and by the above
argument there exists a good path decomposition of G.

If G has a good path decomposition P then let H be the interval graph obtained
by making each bag of P into a clique by adding edges. Since P is an optimal
path decomposition of G, pw(H) = pw(G). Since G is a subgraph of H , ms(G) ≤
ms(H). No three bags of P of maximum size overlap in the same pw(G) vertices,
and since there is a one-to-one correspondence between the bags of P and the
maximal cliques of H , no three maximum cliques of H overlap on the same pw(G)
vertices. Hence ms(H) = pw(H) by Theorem 2. Combining all of the above, we
obtain that ms(G) ≤ pw(G), and the result follows from Lemma 1. �	

With this general result, we are now ready to move to permutation graphs, and
the computation of their mixed search number.

Lemma 2. Let G be a permutation graph. If ms(G) = pw(G) then G has a good
path decomposition that corresponds to a minimal triangulation of G.

Proof. Since ms(G) = pw(G), by Theorem 3 G has a good path decomposition
P . Assume that the interval graph H that has P as a clique path is not a mini-
mal triangulation of G. Then H has a chordal subgraph H ′ which is a minimal
triangulation of G. Since all minimal triangulations of permutation graphs are
interval graphs, H ′ is an interval graph and has a clique path P ′ which is a path
decomposition of G. We argue that P ′ is a good path decomposition of G. Ob-
serve that the size of the largest bag in P ′ cannot be larger than the size of the
largest bag in P since H ′ is a subgraph of H , and thus P ′ is an optimal path de-
composition. Removal of edges from H might create three new bags of size s that
intersect at the same s − 1 vertices. However, if this happens then s cannot be
equal to pw(G)+1 because if the removal of an edge splits a maximal clique into
two new maximal cliques, then the new maximal cliques will be of size at least 1
less than the size of the old maximal clique. Hence, P ′ is a good path decompo-
sition of G that corresponds to the minimal triangulation H ′, and the proof is
complete. �	

In the remaining of this section, let G = G(π) be a permutation graph for
a permutation π of {1, ..., n}. A permutation diagram of G is obtained in the
following way. Take two copies of the real line between 0.5 and n + 0.5; place
one of them below the other; put consecutive labels from 1 to n on the integer
points of the above one; put consecutive labels from π(1) to π(n) on the integer
points of the other; draw lines between a point on the upper line and a point
on the lower line if and only if the two points have the same labels. Each line
(i, π−1(i)) will be called the line of vertex i. It is easy to see that two vertices
i and j are adjacent in G if and only if their lines intersect in the permutation
diagram for G.

A scanline of G is a pair (a, e) where a, e ∈ {0.5, 1.5, ..., n + 0.5}. We also
define the following two scanlines s0 = (0.5, 0.5) and sn

e = (n+0.5, n+0.5). Each
scanline si is associated with a set of vertices Si of G such that Si consists of
exactly those vertices whose lines cross si. For each scanline si, the corresponding

202 P. Heggernes and R. Mihai

vertex set Si is a separator of G [4]. A special scanline is a scanline si such that
Si is a minimal separator of G and si is between two full components of G[V \Si]
in the permutation diagram [23].

Meister defined the potential maximal clique graph of a permutation graph,
and used this to compute the pathwidth of permutation graphs in linear time
[23]. We will heavily rely on this algorithm. The potential maximal clique graph
of a permutation graph G(π) is a directed graph PC(π) defined as follows: PC(π)
has a vertex for every special scanline of G, and there is an arc from vertex si

to vertex sj if and only if the corresponding special scanline si is on the left
side of the special scanline sj and there is no other special scanline strictly
between them (non-intersecting with any of them). Hence the set of vertices of
PC(π) correspond exactly to the set of minimal separators of G(π), and arcs
go between non-crossing minimal separators. For each arch sisj of PC(π) we
define Cij to be the set of vertices whose lines cross si or sj and vertices whose
lines are between si and sj in the permutation diagram of G. For each arc sisj in
PC(π), Cij is a potential maximal clique of G, and each potential maximal clique
of G corresponds to an edge in PC(π). Furthermore, the number of vertices of
PC(π) is O(n + m), PC(π) is acyclic and can be generated in linear time [23]. A
source-sink path in PC(π) is any directed path from s0 to sn

e .

Theorem 4 ([23]). Let G = G(π) be a permutation graph. An interval graph
H is a minimal triangulation of G if and only if there is a source-sink path
s0, ..., sk−1, s

n
e in PC(π) such that C01, ..., Ck−1,k is a clique path of H.

We will call a source-sink path s0, ..., sk−1, s
n
e a good path if |Ci−1,i| ≤ pw(G)+1,

and Si−1 �= Si whenever |Si−1| = |Si| = pw(G), for all i ∈ {1, 2, . . . , k}. We can
now give the following main structural result.

Theorem 5. Let G = G(π) be a permutation graph. Then ms(G) = pw(G) if
and only if there exists a good path in PC(π). (Otherwise ms(G) = pw(G) + 1.)

Proof. If there exists a good path in PC(π) then by Theorem 4 there exists
a good path decomposition of G. Hence by Theorem 3, ms(G) = pw(G). If
ms(G) = pw(G) then by Lemma 2 there exists a good path decomposition P of
G that corresponds to a minimal triangulation. Observe that the condition that
no three consecutive bags of P intersect in the same pw(G) vertices is equivalent
to the condition that no two consecutive minimal separators of size pw(G) of P
are equal. Hence by Theorem 4, there exists a good path in PC(π) corresponding
to this minimal triangulation. �	

Thus we will search for good paths in PC(π) to decide whether ms(G) = pw(G)
or ms(G) = pw(G) + 1. The algorithm is described in the proof of the following
theorem.

Theorem 6. The mixed search number of a permutation graph can be computed
in linear time.

Proof. We describe such an algorithm. By the results of [23], PC(π) can be com-
puted, a topological search on it can be performed, and pw(G) can be computed

Mixed Search Number of Permutation Graphs 203

in linear time. In fact, the algorithm of Meister [23] computes the size of each
minimal separator corresponding to a vertex and each potential maximal clique
corresponding to an arc of PC(π) within the linear time bound, and the data
structure on which this algorithm is based allows checking the equivalence of two
minimal separators in constant time. During the construction of PC(π), minimal
separators that are equal are detected and only one copy of the list of vertices
in these minimal separators is kept, whereas all minimal separators that contain
exactly these vertices are set to point to the same location, all within the linear
time bound. Hence to check whether two vertices of PC(π) correspond to two
minimal separators that are equal, can be done in constant time by comparing
the pointers, after the preprocessing during the construction of PC(π).

We now describe our algorithm, based on the above. First we run the algorithm
of [23] to construct PC(π) as described above and to compute pw(G). After this,
we delete all arcs corresponding to potential maximal cliques of size larger than
pw(G)+1, and all vertices corresponding to minimal separators of size larger than
pw(G) from PC(π), since these can never be involved in paths corresponding to op-
timal path decompositions. After this we traverse the graph in a topological order,
and delete every arc sisj such that |Si| = |Sj | = pw(G) and Si = Sj . Such arcs
can never be part of a good path, and can thus be deleted safely. Let us call PC′(π)
the potential maximal cliques graph that we obtain after the described deletions
from PC(π). We claim that there is a good path in PC(π) if and only if there is a
source-sink path in PC′(π). Clearly, if there is a source-sink path P in PC′(π) then
P is a good path in PC(π) since P is a path in PC(π) that does not contain any
of the forbidden substructures of a good path. If there is a good path P in PC(π)
then this path survives all the deletions described above since it does not contain
any of the deleted substructures. Hence P is a source-sink path in PC′(π).

The algorithm, after the deletions, is to simply search for a source-sink path
in PC′(π). The algorithm returns such a path if it is found and outputs ms(G) =
pw(G). If no such path is found, then the algorithm returns ms(G) = pw(G)+1.
The correctness of the algorithm follows from the proof of the claim in the
previous paragraph and Theorem 5.

For the running time, after computing PC(π) and pw(G) in linear time with
Meister’s algorithm [23], deletion of arcs and vertices that correspond to too big
potential maximal cliques and minimal separators can be done in linear time,
too, since we only check sizes. For each arc sisj , whether |Si| = |Sj | = pw(G)
can be checked in constant time by the same arguments, and checking whether
Si = Sj can be done in constant time, too, as explained in the first paragraph,
comparing the pointers from si and sj . Looking for source-sink paths in PC′(π)
takes also clearly linear-time, since this is just simple graph traversal. Hence the
total running time is O(n+m). �	

4 Edge Search Number of Complete Bipartite Graphs

A bipartite graph is a graph whose vertex set can be partitioned into two inde-
pendent sets. We denote such a graph by G = (A, B, E) where A∪B is the vertex

204 P. Heggernes and R. Mihai

set of G, and A and B are independent sets. If G is a connected bipartite graph,
then the partition of the vertex set into the two independent sets is unique. A
bipartite graph G = (A, B, E) is a complete bipartite graph if every vertex of A
is adjacent to every vertex of B. Such a graph is denoted by Ka,b, where a = |A|
and b = |b|.

It is known that pw(Ka,b) = min{a, b} [6], hence the node search number
of complete bipartite graphs is completely characterized. By the results of the
previous section, their mixed search number can be computed in linear time,
since complete bipartite graphs are a subset of permutation graphs. Here, we
give a complete characterization of their edge search number, hence completing
the knowledge of searching in complete bipartite graphs.

Lemma 3. If min{a, b} ≥ 3 then es(Ka,b) = min{a, b} + 2.

Proof. Let A and B be the two independent sets of G = Ka,b with |A| = a and
|B| = b. Assume without loss of generality that a ≤ b. By the result mentioned
above, pw(G) = a. Thus by Lemma 1 we have a ≤ es(G) ≤ a + 2. We will show
that es(G) = a + 2. Hence we have to show that es(G) ≥ a + 2.

For this lower bound, assume for a contradiction that there is an edge search
program that clears the graph with a + 1 searchers without recontamination. If
all vertices of A are occupied by searchers initially, then one searcher is left to
clear all edges, and since all vertices of B are uncleared and without searchers,
there is no way to continue without recontamination. Hence initially at least one
vertex v of B is occupied with a searcher. This searcher can only be removed after
the clearance of all edges incident to B but one, so the first move cannot be to
slide the searcher on v. The same is true for the vertices of A as well, so at most
a − 1 vertices of A are occupied with searchers initially, and the first move must
be to use the last searcher to clear an edge whose both endpoints are occupied
by searchers. When all edges incident to v are cleared except one, the searcher
on v can be slided to the other endpoint of this remaining edge, and all edges
incident to v will be cleared. This can be done only if at most one vertex of A
was without searcher. After this, all vertices of A are occupied with searchers, we
have one idle searcher, and at least two vertices of B remain without searchers.
Hence each vertex of A has at least two uncleared edges incident to it. We can
slide the idle searcher from a vertex u of A to a vertex of B different from v and
leave it there, and if b = 3 we can even slide the searcher on u to the last vertex
of B and leave it there, without recontamination. These are the only possible
allowed moves at this stage. But after that still we are left with at least two
vertices from each side that each have at least two uncleared edges incident to
it, and we have no idle searcher available to slide between them. Since none
of the searchers can be moved without recontamination, we obtain the desired
contradiction, and conclude that the search cannot be completed with at most
a + 1 searchers. �	

For the cases not covered by the above lemma, it can be easily verified that
es(K1,1) = es(K1,2) = 1, es(K1,b) = 2 for b ≥ 3, es(K2,2) = 2, and es(K2,b) = 3
for b ≥ 3.

Mixed Search Number of Permutation Graphs 205

Hence we can conclude that if a complete bipartite graph is given as a pair
of integers, representing the sizes of the two independent sets, its edge search
number can be computed in constant time. This is also true for its node search
number by the results of [6], and its mixed search number by our next result,
which we include for completeness.

Lemma 4. If max{a, b} ≥ 3 then ms(Ka,b) = min{a, b} + 1.

Proof. Let A and B be the two independent sets of G = Ka,b with |A| = a and
|B| = b. Assume without loss of generality that a ≤ b. By the result mentioned
above, pw(G) = a. Thus by Lemma 1 we have a ≤ ms(G) ≤ a+1. We will show
that ms(G) = a + 1. Hence we have to show that ms(G) ≥ a + 1.

Assume for a contradiction that there is a mixed search program to clear
the graph using a searchers without allowing recontamination. If initially all
searchers are placed on the vertices of A, each of the vertices is adjacent to at
least two uncleared edges. Therefore none of the searchers can be removed or
slided without allowing recontamination. Hence initially at least one searcher is
placed on a vertex v of B so that at most a−1 are placed on the vertices of A. Let
u ∈ A be a vertex without a searcher. All the edges between v and the vertices of
A\{u} are thus cleared. Note that there are at least two uncleared vertices in B
without searchers. (If a = b and all searchers are placed on B the same argument
above on A applies on B.) Hence the next step of this search program cannot
be to move a searcher from a vertex of A to a vertex of B, because this would
recontaminate that vertex of A since every vertex of A is adjacent to at least two
uncleared vertices in B. Hence the next move is to move the searcher on v. If it
is moved to another vertex of B, v will be recontaminated because of u, which
is still uncleared. So to avoid recontamination, the search has to continue by
sliding the searcher on v to u along the edge vu. At this moment v and all edges
incident to it are cleared, all vertices of A are occupied by searchers, but each
vertex of A is adjacent to at least two uncleared edges. Therefore no searcher can
be slided or removed without allowing recontamination, which contradicts the
existence of the assumed search program. Thus, ms(G) ≥ a+1. �	

For the cases not covered by this lemma, it can be easily verified that ms(K1,1) =
ms(K1,2) = 1 and ms(K2,2) = 2.

5 Concluding Remarks

We have shown that the mixed search number of permutation graphs can be
computed in linear time. An interesting further research direction is to study
the edge search number of permutation graphs. A result in this direction would
complete the knowledge about all three graph searching parameters on this graph
class.

206 P. Heggernes and R. Mihai

References

1. Alpern, S., Gal, S.: The theory of search games and rendezvous. In: International
Series in Operations Research & Management Science, vol. 55. Kluwer Academic
Publishers, Boston (2003)

2. Bienstock, D.: Graph searching, path-width, tree-width and related problems (a
survey). In: DIMACS Ser. in Discrete Mathematics and Theoretical Computer
Science, vol. 5, pp. 33–49 (1991)

3. Bienstock, D., Seymour, P.: Monotonicity in graph searching. J. Algorithms 12,
239–245 (1991)

4. Bodlaender, H.L., Kloks, T., Kratsch, D.: Treewidth and pathwidth of permutation
graphs. SIAM J. Disc. Math. 8, 606–616 (1995)

5. Bodlaender, H.L., Kloks, T., Kratsch, D., Möhring, R.H.: Treewidth and Minimum
Fill-in on d-Trapezoid Graphs. J. Graph Algorithms Appl. 2 (1998)

6. Bodlaender, H.L., Möhring, R.H.: The pathwidth and treewidth of cographs. In:
Gilbert, J.R., Karlsson, R. (eds.) SWAT 1990. LNCS, vol. 447, pp. 301–310.
Springer, Heidelberg (1990)

7. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and graph planarity using pq-tree algorithms. J. Comp. Syst. Sc. 13, 335–
379 (1976)

8. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph classes: a survey, Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, USA (1999)

9. Chou, H., Ko, M., Ho, C., Chen, G.: Node-searching problem on block graphs.
Disc. Appl. Math. 156, 55–75 (2008)

10. Corneil, D.G., Lerchs, H., Stewart Burlingham, L.: Complement reducible graphs.
Annals Discrete Math 1, 145–162 (1981)

11. Flocchini, P., Huang, M.J., Luccio, F.L.: Contiguous search in the hypercube for
capturing an intruder. In: Proceedings of IPDPS 2005. IEEE Computer Society
Press, Los Alamitos (2005)

12. Fomin, F., Heggernes, P., Mihai, R.: Mixed search number and linear-width of
interval and split graphs. In: Proceedings of WG 2007. LNCS, vol. 4769, pp. 304–
315 (2007)

13. Franklin, M., Galil, Z., Yung, M.: Eavesdropping games: a graph-theoretic approach
to privacy in distributed systems. J. ACM 47, 225–243 (2000)

14. Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and of
interval graphs. Canad. J. Math. 16, 539–548 (1964)

15. Golovach, P.A., Petrov, N.N.: Some generalizations of the problem on the search
number of a graph. Vestn. St. Petersbg. Univ., Math. 28(3), 18–22 (1995); trans-
lation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 3, 21–27 (1995)

16. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Dis-
crete Mathematics, vol. 57. North-Holland, Amsterdam (2004)

17. Gustedt, J.: On the pathwidth of chordal graphs. Disc. Appl. Math. 45, 233–248
(1993)

18. Kirousis, L.M., Papadimitriou, C.H.: Interval graphs and searching. Disc. Math. 55,
181–184 (1985)

19. Kirousis, M., Papadimitriou, C.H.: Searching and pebbling. Theor. Comput.
Sci. 47, 205–218 (1986)

20. Kloks, T., Kratsch, D., Spinrad, J.: On treewidth and minimum fill-in of asteroidal
triple-free graphs. Theor. Comp. Sc. 175, 309–335 (1997)

Mixed Search Number of Permutation Graphs 207

21. LaPaugh, A.S.: Recontamination does not help to search a graph. J. ACM 40,
224–245 (1993)

22. Megiddo, N., Hakimi, S.L., Garey, M.R., Johnson, D.S., Papadimitriou, C.H.: The
complexity of searching a graph. J. ACM 35, 18–44 (1988)

23. Meister, D.: Computing Treewidth and Minimum Fill-In for Permutation Graphs
in Linear Time. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 91–102.
Springer, Heidelberg (2005)

24. Parra, A., Scheffler, P.: Characterizations and algorithmic applications of chordal
graph embeddings. Disc. Appl. Math. 79, 171–188 (1997)

25. Parsons, T.: Pursuit-evasion in a graph. In: Theory and Applications of Graphs,
Springer, Heidelberg (1976)

26. Peng, S.-L., Ko, M.-T., Ho, C.-W., Hsu, T.-s., Tang, C.Y.: Graph searching on
some subclasses of chordal graphs. Algorithmica 27, 395–426 (2000)

27. Peng, S.-L., Ho, C.-W., Hsu, T.-s., Ko, M.-T., Tang, C.Y.: Edge and node searching
problems on trees. Theor. Comput. Sci. 240, 429–446 (2000)

28. Petrov, N.N.: A problem of pursuit in the absence of information on the pursued.
Differentsialnye Uravneniya 18, 1345–1352, 1468 (1982)

29. Skodinis, K.: Construction of linear tree-layouts which are optimal with respect to
vertex separation in linear time. J. Algorithms 47, 40–59 (2003)

30. Suchan, K., Todinca, I.: Pathwidth of circular-arc graphs. In: Proceedings of WG
2007. LNCS, vol. 4769, pp. 258–269. Springer, Heidelberg (2007)

31. Takahashi, A., Ueno, S., Kajitani, Y.: Mixed searching and proper-path-width.
Theor. Comput. Sci. 137, 253–268 (1995)

	Mixed Search Number of Permutation Graphs
	Introduction
	Preliminaries
	Chordal Graphs, Interval Graphs, and Pathwidth
	Search Games

	Mixed Search Number of Permutation Graphs
	Edge Search Number of Complete Bipartite Graphs
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

