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Abstract. We consider a new pursuit-evasion problem on trees where a
subset of vertices, called sources, are initially occupied by searchers. We
also consider the scenario where some of the searchers must end their
search at certain vertices called targets. We incrementally consider such
problems, first considering only sources, then only targets, and finally
we consider the case where there are both sources and targets. For each
case we provide a polynomial-time algorithm for computing the search
number, i.e. the minimum number of searchers required to clear the tree,
and an optimal search strategy. We also demonstrate that each search
model is monotonic, i.e. for each case their exists an optimal search
strategy such that the set of cleared edges grows monotonically as the
search progresses.

1 Introduction

Imagine a scenario where a group of police officers is attempting to capture a
fugitive who is hiding in a building. The police officers could enter the building
and hope to capture the fugitive by exploring the building in an ad hoc manner.
A better approach is to systematically explore the building to ensure the fugitive
is captured. If we can guarantee that we can capture the fugitive by carefully
choosing our search strategy, the following question becomes relevant: “What is
the minimum number of police officers required to capture the fugitive?” This
question motivates so-called graph searching problems, which are pursuit-evasion
problems that take place on graphs.

In a typical graph searching problem introduced by Megiddo et al. [4], a group
of searchers must capture an exceedingly fast and clever fugitive that is hiding
on a graph. The graph is meant to represent some real-world domain, such as the
hallways and rooms in a building. The searchers proceed by clearing edges, i.e. vis-
iting edges to guarantee that the fugitive is not on the edge; initially all edges are
dirty. Three searcher actions are allowed: (1) place a searcher on a vertex in the
graph, (2) remove a searcher from a vertex, and (3) slide a searcher along an edge
from one end vertex to the other. An edge uv is cleared when either (1) at least
two searchers are located on a vertex u, and one of them slides along uv, or (2) a
searcher is located on u, and all edges incident on u, except uv, are clear and the
searcher slides along uv. A search strategy is a sequence of searcher actions that
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result in every edge in the graph being cleared. Researchers are often interested
in computing the search number of a graph G, denoted s(G), which is the mini-
mum number of searchers required to clear G. A search strategy is called optimal
if at each step it uses at most s(G) searchers. Another important consideration
for searching problems is that of monotonicity. Define Ai to be the set of edges
that are clear after the ith action of some searching strategy. We define A0 = ∅.
A search strategy S = {m1, m2, . . . , mr} is called monotonic if Ai−1 ⊆ Ai, for
all 1 ≤ i ≤ r. A searching problem is in turn called monotonic if there exists
an optimal monotonic search strategy for each instance of the searching problem.
For non-monotonic search strategies, if a searcher is removed or slides from a ver-
tex such that the resulting graph contains a path, which is not occupied by any
searchers, connecting a dirty edge to a clear edge then the clear edge becomes re-
contaminated instantaneously because the fugitive moves exceedingly fast.

Graph searching was first studied by Parsons [5], who studied a continuous
version of the graph searching problem. This model was subsequently discretized
by Megiddo et al. [4], who showed that deciding the search number of a graph is
NP-hard [4]. The monotonicity result of LaPaugh [3] demonstrates that deciding
the search number is in NP, and hence deciding the search number of a graph
is NP-complete. Megiddo et al. [4] also provided an O(n) time algorithm for
computing the search number of a tree that can be extended to compute an
optimal search strategy in O(n log n) time. Subsequently, Peng et al. [6] improved
this result by giving an O(n) time algorithm for computing an optimal search
strategy of a tree. The search number of a graph has been shown to be related
to some important graph parameters, such as vertex separation number and
pathwidth. Other graph searching models have been studied; see [1,2] for surveys.

All the searching problems discussed in this paper take place on trees. In
the problems that we study, two disjoint subsets of vertices of a tree T have
been identified: the sources, denoted Vs, and the targets, denoted Vt. We use
Vs and Vt to define a constrained graph searching problem as follows. At the
beginning of the search, each source vertex is occupied by exactly one searcher.
Furthermore, for the entire duration of the search strategy, each source vertex
remains clear, i.e. is occupied by a searcher or all incident edges are clear. Also,
once a searcher occupies a vertex v ∈ Vt, v must be occupied by at least one
searcher for the remainder of the search strategy. We refer to such searching
problems as Source Target Searching (STS) problems. In an STS problem, we call
the searchers that were initially on sources starting searchers. All other searchers
are called additional searchers. During the progression of a search strategy, a
starting searcher may be removed. A starting searcher is called free when it is
not currently occupying a vertex on T .

One of our primary motivations for studying STS problems comes from an
algorithm development point of view: our algorithms for STS problems can be
used as subroutines for searching algorithms for other classes of graphs, such
as cycle-disjoint graphs [7], in which lots of induced subgraphs are trees. In this
application, the starting searchers are placed as a result of some other algorithm.
The algorithms presented herein can then be used to complete the search while
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still ensuring that the already cleared portions of the graph remain clear. Target
vertices represent vertices where certain searchers must terminate. In this appli-
cation, the target vertices represent portals to other parts of the graph that are
contaminated, but that we are not willing to visit at this point in the search.
Thus a target searching algorithm can be used as a subroutine for searching
algorithms for other classes of graphs that first clear an induced subgraph that
is a tree, and then clear the remaining parts of the graph.

Another motivation for studying STS problems comes from scenarios where
the graph contains vertices that are portals to uncontaminated or already cleared
areas of the graph. For example, consider the scenario where the graph models a
network of city streets where a fugitive is hiding. In this case, we may be able to
restrict our search to a particular neighborhood. We can place starting searchers
at intersections connecting the neighborhood with the rest of the city. These
intersections are modeled by the source vertices in our searching model. The
source vertices are initially protected by the starting searchers, and remain pro-
tected throughout the search, ensuring the fugitive remains in the neighborhood
that we are searching. Extending this example to target vertices, we may wish
to search for the fugitive “neighborhood by neighborhood.” In this scenario, we
first search a particular neighborhood, ensuring that when a searcher encounters
an intersection leading another neighborhood, this searcher stays at the intersec-
tion until the original neighborhood is cleared. These intersections are modeled
by the target vertices in an instance of the STS problem. Thus STS problems
can be seen as a particular type of subgraph searching.

In Section 2 we describe an O(|Vs|n) time algorithm for computing the search
number of a tree when the tree contains sources, but does not contain any
targets. In Section 3 we demonstrate an inverse relationship between searching
with sources and searching with targets. We exploit this relationship in order to
use the algorithm from Section 2 to compute the search number of a tree that
contains only targets in O(|Vt|n) time. In Section 4 we combine these results and
extend the algorithm from Section 2 so that we can compute the search number
of a tree with both sources and targets in O(|Vs||Vt|n) time. In all cases, we show
that the algorithms only output monotonic search strategies, thus establishing
the monotonicity of each search model. Due to space constraints, some details
have been omitted.

2 Searching Trees with Sources

In this section we consider the STS problem on trees that contain only sources.
We call this type of searching Source Searching, or simply SS. Let T be a tree
and Vs ⊆ V (T ) be a set of source vertices such that each vertex in Vs is initially
occupied by a starting searcher. We define the source search number with respect
to T an Vs, denoted ss(T, Vs), as the minimum number of additional searchers
required to clear T . We deem a vertex v to be clear if all edges incident with v
are clear. A searcher occupying a vertex v in Vs is moveable if all but one edges
incident with v are clear. We can formally state our searching problem as follows:
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Source Searching (SS)
Instance: A tree T and a set of source vertices Vs ⊆ V (T ), such that each
v ∈ Vs is occupied by exactly one searcher.

Question: Is there a search strategy of T using k additional searchers such that
each vertex from Vs remains clear during the entire search strategy?

Recall that in the SS problem, all edges are initially dirty. In order to make
our analysis more simple, we actually describe an algorithm for a more general
searching problem, which we call Partial-Clear Source Searching (PSS), which
allows certain subtrees to be clear at the beginning of the problem. In order to
define this new searching problem, we require some notation. Given a tree T and
a subset of vertices Vs ⊆ V (T ), define T � Vs to be the set of maximal induced
subtrees {T1, T2, ..., Tk} of T such that if v ∈ Vs and v ∈ Ti, then v is a leaf in
Ti, and

⋃
{Ti} = T , 1 ≤ i ≤ k.

Partial-Clear Source Searching (PSS)
Instance: A tree T with a set of cleared edges Ec ⊆ E(T ), and a set of source
vertices Vs ⊆ V (T ), such that each v ∈ Vs is occupied by exactly one searcher
and each subtree in T � Vs is either completely clear or completely dirty.

Question: Is there a search strategy of T using k additional searchers such that
each vertex from Vs remains clear during the entire search strategy?

The associated search number for this searching problem is denoted pss(T , Vs,
Ec). One can see that an instance of the SS problem is a valid instance of the
PSS problem with Ec = ∅. Moreover, since the two search problems have the
same objective, any algorithm for the PSS problem can be used to solve the SS
problem. Thus, for the remainder of this section we focus on the PSS problem,
keeping in mind that the results also hold for the SS problem.

Our algorithm for computing pss(T, Vs, Ec) recursively performs two ma-
jor steps in order to clear T : firstly, the algorithm calls a subroutine called
Reposition, which moves some of the searchers occupying sources, and secondly
the algorithm clears a specially chosen subtree of T . Specifically, the algorithm
will clear the dirty subtree from T � Vs with the smallest search number. Then
a recursive call is made in order to search the remaining tree. The algorithm is
formally stated in Figures 1 and 2. The algorithm makes use of a global variable
f that records how many of the starting searchers have been removed thus far,
i.e. f is equal to the number of free starting searchers. Thus, f = 0 initially. The
algorithm computes a value smax, which we claim is equal to pss(T, Vs, Ec).

Now we turn our attention to proving the correctness of our algorithm. Intu-
itively, our proof approach is the following. Firstly, Lemma 1 essentially proves
that the actions performed by the Reposition algorithm are part of some opti-
mal strategy. Secondly, Lemma 2 essentially shows that pss(T, Vs, Ec) is at least
as large as the search number of the first subtree that the algorithm clears. Since
our algorithm is recursive, once these two Lemmas are shown, the correctness of
our algorithm follows. We begin with the following observation:
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Algorithm Reposition(T, Vs, Ec)

1. While there exists a moveable searcher λ on vertex v ∈ Vs:
(a) Let vu be the only dirty edge incident with v.
(b) Slide λ from v to u, clearing the edge vu, and Vs ← (Vs−{v})∪{u},

Ec ← Ec ∪ {vu}.
(c) If u contains two searchers then remove λ and f ← f + 1.

2. While there exists a searcher λ on a clear vertex v ∈ Vs:
(a) Remove λ and Vs ← Vs − {v}.
(b) f ← f + 1.

Fig. 1. The algorithm for repositioning the starting searchers

Algorithm ST-S(T, Vs, Ec) (Search Tree with Sources)

1. If T is clear then return 0.
2. Call Reposition(T, Vs, Ec).
3. Compute T �Vs, discarding all clear subtrees, to obtain {T1, T2, ..., Tk}.

Without loss of generality, suppose that s(T1) ≤ s(Ti), for 2 ≤ i ≤ k.
4. Clear all edges of T1 using s(T1) searchers and Ec ← Ec ∪ E(T1).
5. smax ← max{s(T1) − f, ST-S(T, Vs, Ec)}.
6. Return smax.

Fig. 2. The algorithm for computing pss(T, Vs, Ec)

Lemma 1. Let (T, Vs, Ec) be an instance of the PSS problem. If V ′
s and E′

c are
the results of running the Reposition(T, Vs, Ec) algorithm, then pss(T, V ′

s , E′
c)≤

pss(T, Vs, Ec) + f , where f is the number of starting searchers removed by the
Reposition(T, Vs, Ec) algorithm.

Proof. Let S be an optimal PSS strategy for (T, Vs, Ec). We construct a PSS
strategy S′ for (T, V ′

s , E′
c) that does exactly what S does, except in a few

cases. Before describing these cases, we introduce some notation and make
some observations. Let λv be the starting searcher located on vertex v. De-
fine (v, v1, v2, ..., vl) to be the path that λv slides along during the execution of
the Reposition(T, Vs, Ec) algorithm. From the condition of the while loop in
step 1 of the Reposition algorithm, we know that every vi, 1 ≤ i ≤ l − 1, has
degree two. Notice that the path (v, v1, ..., vl) is dirty in (T, Vs, Ec) and has been
cleared in (T, V ′

s , E′
c).

Now we describe the changes made to S in order to obtain S′. The following
change ensures that λv is located on T so that it can mimic the movements of
λv in S.

1. For each λv that was removed by the Reposition algorithm, S′ begins by
placing λv on vl.

The next change ensures that vl ∈ V ′
s does not become incident with a dirty

edge while it is unoccupied in S:
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2. Whenever a searcher λ∗ is placed on or slides to a vertex vi ∈ {v, v1, v2, ...,
vl−1}, in S′ we place λ∗ on vl, unless in S′ λ∗ is already occupying vl, in
which case in S′ we do nothing. If in S λ∗ is subsequently removed from vi

or slides to a vertex not in {v, v1, v2, ..., vl−1, vl}, then λ∗ is removed from
vl, placed on vi, and then λ∗ performs this action.

Let ai ∈ S be the first action that either removes or slides λv. In S′, prior to
performing ai, we do the following:

3. Remove λv from vl, place λv on v, and then perform ai.

Notice that since S clears T , then S′ clears T . In order to complete the
proof we must show that S′ uses at most pss(T, Vs, Ec) + f additional searchers
and that all members of V ′

s remain clear during the progression of S′. Notice
that in S′, the only new searchers that are added are those that were removed
by the Reposition algorithm (see change (1) above), and there are exactly f
searchers removed by the Reposition algorithm. Hence S′ uses pss(T, Vs, Ec)+f
searchers.

All that remains is to demonstrate that all members of V ′
s remain clear during

the progression of S′. We can focus on the actions introduced in the changes given
above since in all other cases, S′ performs the same actions as in S. Specifically,
we must consider the case where λv is removed from vl in change (3), and when
λ∗ is removed from vl (and then placed on vi) in change (2). In either case, we
have that in S there is no searcher occupying a vertex from {v, v1, v2, ..., vl−1}
when λv performs ai, otherwise this searcher would have been placed on vl

in change (2). Thus in S the dirty edge e is connected to v ∈ Vs via a path
containing no searchers, and v is unoccupied, which is a contradiction. ��

In the following lemma, T1 is defined as in step 3 of the ST-S algorithm; that is,
after the call to the Reposition algorithm.

Lemma 2. For any instance (T, Vs, Ec) of the PSS problem, pss(T, Vs) ≥ s(T1)−
f , where T1 is the subtree computed after steps 1-3 of the ST-S(T, Vs, Ec) algo-
rithm, and f is the number of free starting searchers removed during the call to
Reposition(T, Vs, Ec) in step 2 of the ST-S(T, Vs, Ec) algorithm.

Proof. Let V ′
s and E′

c be the results of running the Reposition(T, Vs, Ec) al-
gorithm. By Lemma 1, we have that pss(T, V ′

s , E′
c) − f ≤ pss(T, Vs, Ec), and

hence it suffices to show that pss(T, V ′
s , E′

c) ≥ s(T1). Let S∗ be any optimal
PSS strategy for the instance (T, V ′

s , E′
c). Define T ∗ to be the first subtree from

{T1, T2, ..., Tk} (as defined in the algorithm) that S∗ completely clears1. Recall
that s(T1) ≤ s(Ti), for 2 ≤ i ≤ k. If S∗ only uses additional searchers to clear
T ∗ then pss(T, V ′

s , E′
c) ≥ s(T ∗) ≥ s(T1) and the Lemma holds. Thus we only

need to consider the case where S∗ uses at least one starting searcher to aid
in clearing T ∗. In what follows, we show that this implies a contradiction by
demonstrating that for each starting searcher used to clear T ∗, there exists a
corresponding additional searcher on the tree T .
1 S∗ may have cleared other edges of T prior to completely clearing T ∗.
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We begin by demonstrating a property of S∗ that we will use in the rest of
the proof. Suppose that at some point during S∗, a source vertex v ∈ Vs is
occupied, but is not occupied by the original starting searcher λv that occupied
v in the instance (T, V ′

s , E′
c). We can adjust S∗ as follows: if λv is removed from

v, then either all edges incident with v are clear, in which case no searcher needs
to occupy v for the remainder of S∗, or v is occupied by another searcher, and
we can remove this searcher instead of removing λv. If λv slides off v at some
point, then after it slides off either all incident edges are clear, in which case no
searcher needs to occupy v for the remainder of S∗, or there is another searcher
occupying v, and we can slide this searcher instead of λv. So without loss of
generality, during the progression of S∗, if a source vertex v ∈ Vs is occupied,
then it is occupied by λv, where λv is the starting searcher that occupies v in
the instance (T, V ′

s , E′
c). We use this fact throughout the remainder of the proof.

Define {λ1, λ2, ..., λb} to be the set of starting searchers occupying T ∗ at
some moment during S∗. We define a procedure for associating a unique ad-
ditional searcher with each starting searcher in {λ1, λ2, ..., λb}, but first we re-
quire some definitions. We begin by defining two sets of source vertices V ∗ and
U∗, which form a partition of the currently unoccupied source vertices. Define
V ∗ = {v1, v2, ..., vb} to be the set of source vertices that {λ1, λ2, ..., λb} initially
occupied. Define U∗ = {u1, u2, ..., uk} to be the set of unoccupied source vertices
whose original starting searchers are not currently occupying T ∗. For a subset
of source vertices V ′

s ⊆ Vs, define P (V ′
s ) = {Ti1 , Ti2 , ..., Tik

} to be the subset of
trees from {T1, T2, ..., Tk} such that for each Ti ∈ P (V ′

s ) there exists a v ∈ V ′
s

such that v is a leaf in Ti.
We define two graphs G and H as folllows. Define G = (V (G), E(G)) as

V (G) = V ∗ ∪ P (V ∗) and {v, Ti} ∈ E(G) if v is a leaf in Ti. Define H =
(V (H), E(H)) as V (H) = U∗ ∪ P (U∗), and {u, Ti} ∈ E(G) if u is a leaf in
Ti. One can easily show that both G and H are forests since T is a tree.

Now consider the following procedure for assigned a unique additional searcher,
which is currently occupying T , to each of {λ1, λ2, ..., λb}. Let Ti be a leaf of G
(notice that leaves in G cannot be source vertices since (T, V ′

s , E′
c) is the result of

running the Reposition algorithm). Let vj ∈ V ∗ be the parent of Ti in G. Since
initially each source vertex is adjacent to two or more dirty edges, and since T ∗

is the first tree from {T1, T2, ..., Tk} to be cleared, there must be a searcher, say
λ∗, in Ti which is protecting vi from becoming adjacent with a dirty edge.

If λ∗ is an additional searcher, then we associate λ∗ with λj , and remove vj

and Ti from G. Otherwise, the searcher located in Ti is a starting searcher. By
our assumption about S∗ (i.e. during the progression of S∗, if a source vertex
v ∈ Vs is occupied, then it is occupied by λv, where λv is the starting searcher
that occupies v in the instance (T, V ′

s , E′
c)), this means that λ∗’s original source

vertex v∗ is currently unocuppied, and hence v∗ ∈ V (H). Since (T, V ′
s , E′

c) is
result of running the Reposition algorithm, the vertex v∗ is adjacent to at least
two trees Tk and Tl in H . Since T ∗ is the first tree from {T1, T2, ..., Tk} to be
cleared, there must be a searcher, say λk, in Tk. If λk is an additional searcher,
then associate λk with λj , and we remove Tk and λ∗ from H , and remove vj and
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Ti from G. If λk is not an additional searcher, then we can recursively consider
the trees adjacent to vk in H , and then consider the searcher that must be
located in one of the subtrees incident to vk. Since H is a finite tree, this process
must eventually stop when an additional searcher is found to be located in a
subtree incident with some source vertex in H . When this additional searcher is
found, we remove the appropriate source vertices and subtrees from H , remove
vj and Ti from G, and associate this additional searcher with λj .

We repeat the procedure given above for each leaf in G until G is empty. This
procedure associates a unique additional searcher with each starting searcher
currently occupying a vertex in T ∗, as required. ��

It is clear that the search strategy output by the ST-S algorithm actually clears
T . Thus we can use induction and Lemma 2 to obtain one of our main results:

Theorem 1. The value of smax at the termination of the ST-S algorithm is
equal to pss(T, Vs, Ec).

Theorem 2. Let (T, Vs, Ec) be an instance of the PSS problem with |V (T )| = n.
The source search number and the optimal search strategy of (T, Vs, Ec) can be
computed in O(|Vs|n) time.

Theorem 3. The PSS problem is monotonic.

3 Searching Trees with Targets

In this section we study the problem where instead of having only sources, we
have only targets.

Target Searching (TS)
Instance: A tree T with a set of target vertices Vt ⊆ V (T ).
Question: Is there a search strategy of T using k additional searchers such that
once a searcher occupies a vertex v ∈ Vt, v remains occupied by at least one
searcher for the remainder of the search?

Associated with this problem, we define the target search number, denoted
ts(T, Vt), to be the minimum number of searchers required to clear the tree
T under the TS model. The TS problem can be seen as a kind of inversion of
the SS problem. Given a search strategy S, define the reverse of a action a ∈ S,
denote a−1, as follows:

– If a is “slide λ from v to u”, then a−1 is “slide λ from u to v”.
– If a is “remove λ from v”, then a−1 is “place λ on v”.
– If a is “place λ on v”, then a−1 is “remove λ from v”.

Given a strategy S = (a1, a2, ..., ak), define the inverse of S, denoted S−1, to be
S−1 = (a−1

k , a−1
k−1, . . . , a

−1
1 ).
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Lemma 3. Let (T, Vs) be an instance of the SS problem and (T, Vt) be an in-
stance of the TS problem such that Vs = Vt. Then S is a monotonic SS strategy
for (T, Vs) if and only if S−1 is a monotonic TS strategy for (T, Vt).

Proof. (sketch) Let V ′ = Vs(= Vt). If S is a TS strategy for (T, V ′), then it is
clear that S−1 ends with V ′ occupied by searchers. Conversely, if S−1 is a TS
strategy for (T, V ′), then (S−1)−1 = S begins with V ′ occupied by searchers.
To complete the proof, we must show that S monotonically clears T if and
only if S−1 monotonically clears T . Since S and S−1 are inverses, it suffices to
demonstrate the following property: if S clears T monotonically then S−1 clears
T monotonically. For any sequence of actions (b1, b2, ..., bl), define A(b1, b2, . . . , bl)
to be the set of edges cleared by a sequence of actions (b1, b2, . . . , bl). We want
to show that A(a−1

k , a−1
k−1, . . . , a

−1
1 ) = A(a1, a2, ..., ak).

We proceed by induction on the number of actions completed by S−1. Initially
no edges are cleared in the TS model, and the last action of a TS model is a
remove operation, and hence no edge is cleared by the last action in S. This
provides the base case for induction.

Assume A(a−1
k , a−1

k−1, . . . , a
−1
p ) = A(ap, ap+1, ..., ak), for p ≤ k. By carefully

considering a−1
p−1 in S−1, we can show that no recontamination occurs in S−1

unless it occurs in S, and the Lemma follows. ��

In light of this observation, and Theorem 1, Theorem 3, and Theorem 2 from
the previous section, we have the following two results:

Theorem 4. Let (T, Vt) be an instance of the TS problem with |V (T )| = n. The
target search number and the optimal search strategy of (T, Vt) can be computed
in O(|Vt|n) time.

Theorem 5. The TS problem is monotonic.

4 Searching Trees with Sources and Targets

Now we study the STS problem. Recall that in this problem some searchers start
on sources, and the search ends with some searchers occupying the targets. As
in Section 2, we will actually study a slightly more general problem in order to
make our analysis simpler:

Partial-Clear Source Target Searching (PSTS)
Instance: A tree T with a set of cleared edges Ec ⊆ E(T ), a set of source ver-
tices Vs ⊆ V (T ), and a set of target vertices Vt ⊆ V , such that Vt ∩ Vs = ∅, and
each v ∈ Vs is initially occupied by exactly one searcher.
Question: Is there a search strategy of T using k additional searchers such that
once a searcher occupies a vertex v ∈ Vt, v remains occupied by at least one
searcher for the remainder of the search, and each vertex from Vs remains clear
during the entire search strategy?
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We denote the search number associated with this searching problem as psts(T ,
Vs, Vt, Ec). Our algorithm for the PSTS problem is a modified version of the al-
gorithm presented in Section 2. The modifications take into account the addition
of target vertices. Unlike the algorithm for the PSS problem, our algorithm for
the PSTS problem does not necessarily first clear the subtree from T � Vs with
the smallest search number. Instead, the algorithm first clears the subtree from
T � Vs with the smallest search number that does not contain a target vertex.
If all subtrees in T � Vs contain targets, then these subtrees are searched in in-
creasing order by the number of target vertices they contain. Figure 3 illustrates
why we must do this. In this example, s(T3) = 10. If T1 is cleared first then
an additional searcher must be left behind to occupy v1. To clear the remaining
tree requires at least 10 additional searchers, resulting in a total of 11 additional
searchers. The situation is the same if T2 is cleared first. If T3 is cleared first
using 10 additional searchers, then T1 can then be cleared using 2 of these ad-
ditional searchers, leaving one behind on v1, and then T2 can be cleared using 2
more additional searchers, resulting in a total of 10 additional searchers.

2

v3

3T

2T

1
T

v1

v

Fig. 3. A PSTS problem where v1, v2 ∈ Vt, v3 ∈ Vs, and s(T3) = 10

Now we present the new “reposition” algorithm that takes into account target
vertices. A searcher λ occupying a vertex v ∈ Vt is called frozen if it is the only
searcher occupying v. The Reposition-T algorithm behaves the same as the
Reposition algorithm from Section 2, except that frozen searchers are ignored
(see Figure 4). We claim the following:

Lemma 4. Let (T, Vs, Vt, Ec) be an instance of the PSTS problem. If V ′
s and E′

c

are results of running the Reposition-T algorithm, then psts(T, V ′
s , Vt, E

′
c) ≤

psts(T, Vs, Vt, Ec) + f , where f is the number of starting searchers removed by
the Reposition-T algorithm.

Now we describe the main algorithm for computing psts(T, Vs, Vt, Ec). The main
difference between this algorithm and the one presented in Section 2 is that we
must now take into account the target vertices. This is reflected in the choice
that the algorithm makes with regard to the subtree that it chooses to clear first.
Our algorithm is given in Figure 5.

Intuitively, the following Lemma shows that it is correct for the algorithm to
clear T1 first. In the following, Tsource defined in step 4 of the ST-ST algorithm
for the instance (T, Vs, Vt, Ec).
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Algorithm Reposition-T(T, Vs, Vt, Ec) (Reposition with Targets)

1. While there exists a non-frozen moveable searcher λ on vertex v ∈ Vs:
(a) Let vu be the only dirty edge incident with v.
(b) Slide λ from v to u, clearing the edge vu, and Vs ← (Vs−{v})∪{u},

Ec ← Ec ∪ {u}.
(c) If u contains two searchers then remove λ and f ← f + 1.

2. While there exists a non-frozen searcher λ on a clear vertex v ∈ Vs:
(a) Remove λ and Vs ← Vs − {v}.
(b) f ← f + 1.

Fig. 4. The algorithm for repositioning the starting searchers when the tree contains
targets

Algorithm ST-ST(T, Vs, Vt, Ec) (Search Tree with Sources and Targets)

1. If T is clear then return 0.
2. Call Reposition-T(T, Vs, Vt, Ec).
3. Compute T �Vs, discarding all clear subtrees, to obtain {T1, T2, ..., Tk}.
4. Partition T1, T2, . . . , Tk into two sets Tsource and Ttarget such that

Ti ∈ Ttarget if and only if Ti contains a target vertex. Sort Tsource

in increasing order by search number, and sort Ttarget in increasing
order by the number of target vertices in the subtree. Furthermore,
subtrees in Ttarget that have the same number of target vertices are
sorted by their target search number.

5. If Tsource �= ∅ then,
(a) Mark all edges in the first tree from Tsource, say T1, as clear.

(explicitly clear this subtree if we are computing an actual
search strategy, rather than just computing psts(T,Vs, Vt, Ec).)

(b) s ← s(T1) and go to step 7.
6. Otherwise, do the following:

(a) Clear the first subtree from Ttarget, say T1, using the algorithm
from Section 3.

(b) s ← ts(T1, Vt ∩ V (T1)).
7. smax ← max{s − f + |Vt ∩ V (T1)|, ST-ST(T, Vs, Vt, Ec)}.
8. Return smax.

Fig. 5. The algorithm for computing psts(T,Vs, Vt, Ec)

Lemma 5. Let (T, Vs, Vt, Ec) be an instance of the PSTS problem. If Tsource 
= ∅
then
psts(T, Vs, Vt, Ec) ≥ s(T1)− f . Otherwise psts(T, Vs, Vt, Ec) ≥ ts(T1)− f + |Vt ∩
V (T1)|.

As in Section 2, we can use induction and Lemma 5, along with Lemma 2 and
4 to show the following:

Theorem 6. Let (T, Vs, Vt, Ec) be an instance of the PSTS problem with
|V (T )| = n. The source target search number and the optimal search strategy
of (T, Vs, Vt, Ec) can be computed in O(|Vs||Vt|n) time.
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An analysis of the actions generated by the Reposition-T algorithm and The-
orem 5 implies the following:

Theorem 7. The PSTS problem is monotonic.

5 Conclusion and Future Work

We have introduced and studied a new kind of graph searching problem involving
sources and targets. We showed that each search model studied is monotonic.
We have provided an O(|Vs|n) time algorithm for the problem of searching a
tree with |Vs| sources, an O(|Vt|n) time algorithm for searching a tree with |Vt|
targets, and an O(|Vs||Vt|n) time algorithm for searching a tree with |Vs| sources
and |Vt| targets. We conjecture that algorithms exist for all these problems that
run in O(n log n) time. We are interested in studying source and target search-
ing problems on larger classes of graphs. We are also interested in relating the
source- and target-searching parameters to other graph parameters such as ver-
tex separation and treewidth.
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