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Abstract. The generalized second price auction has recently become a
much studied model for sponsored keyword auctions for Internet adver-
tisement. Though it is known not to be incentive compatible, properties
of its pure Nash equilibria have been well characterized under the single
bidding strategy of each bidder.

In this paper, we study the properties of pure Nash equilibria of the
generalized second price auction when each bidder is allowed to submit
more than one bid. This multi-bidding strategy is noted to have been
adopted by companies for keyword advertisements on search engines.
In consideration of the pure Nash equilibria, we completely characterize
conditions on the number of selling slots for a pure Nash equilibrium
to exist, assuming all the advertisers are allowed to use multi-bidding
strategies or only one advertiser will use a multi-bidding strategy.

Our findings reveal interesting properties of limitation and potentials
of the market place of online advertisement.

1 Introduction

Sponsored keyword auction is a brand new type of market models adopted by
major search engine companies such as Google and Yahoo. It has become a
principal source of revenue for those companies. As its name indicates, such
kind of auctions mostly sells the advertising positions for web links displayed
along with the search results when a user places a related keyword or a few
related keywords to find information on those search engines.

Different advertising positions have different click-through-rates, the ratio of
the number of clicks on the advertising to the number of appearances of the
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advertising web links. Some advertising position draws more attentions from
users and generates more clicks than others. For this reason, it is named the
position auction by Varian [1], which is equivalent to the generalized second
price auction (GSP for short), a term used by Edelman, Ostrovsky and Schwarz
[2]. It is the primary protocol for sponsored link auctions to sell the advertising
positions.

Under GSP, each advertiser bid for a price per each click and each winning
advertiser is allocated exclusively for a position to place its web-link. The posi-
tions are sorted in their click-through-rates (commonly assumed to be the same).
For K positions to sell, the K highest bidders win them in the corresponding
decreasing order of their bidding prices. A winner pays a price per click, which
is equal to the bidding per-click-price of the next highest bidder, i.e., the highest
bidding price that is lower than its own bidding price.

If there is only one advertising position to sell, GSP is equal to the popular
second price auction/Vickrey auction [3] which is a special case of the more
general VCG [3,4,5] mechanisms. Therefore, no bidder can gain any advantage by
not bidding its own private value for each click. Any protocol with the property
that every agent has a dominant optimal strategy to reveal its own private value
is called a truthful one. It is also often called an incentive compatible protocol.

The GSP allocation method seems simple, intuitive and, arguably, fair. How-
ever, if there are more than one position to sell, it will no longer be incentive
compatible [2,6]. This observation has inspired further studies of GSP, mostly
its pure Nash equilibria in a single bidding strategy.

Fig. 1. The sponsor results when keyword “laptop” is typed into the search engine of
Yahoo. Both “Dell” and “Hp” adopt the multi-bidding strategy.

In the practice of sponsored keyword auctions, however, bidders may submit
multiple bids. For example, when the keyword “laptop” is typed into Yahoo, the
sponsor results shown along with the search results page will be similar to the
sponsor results shown in Figure 1. In Figure 1, Dell gets two adjacent advertising
positions by multiply bids. Although one of the link points to Dell’s homepage
and the other link points to Dell’s sub-homepage, it opens up a possibility for
Dell to manipulate these bids to decrease the company’s total advertising costs.
Similarly, HP also gets two advertising positions in the figure. So this case shows
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that i) multi-bidding strategy exists in current online advertisement market,
ii) usually only the big companies have the competence and the need for the
multi-bidding strategy.

We are particularly interested in the GSP auctions with multi-bidding strat-
egy. We aim at studying the pure Nash equilibrium behavior of the bidders in
such market conditions.

1.1 Related Work

The considered model for sponsored search auctions were formalized in [2,1]. In
[2], Edelman, Ostrovsky and Schwarz name it generalized second price auction,
while Varian names it position auction in [1]. They all discovered that the auc-
tion model is not incentive compatible. Then [2,1,7,8] refined the concept of Nash
equilibrium of the position auction and study the related properties. Regarding
the auction as a static one-shot complete information game, in [2], Edelman,
Ostrovsky and Schwarz introduced the concept of locally envy-free equilibrium.
In [1], Varian proposed symmetric Nash equilibrium due to mathematic consid-
erations. In [7], Zhou and Lukose argued for a certain type of pure strategy Nash
equilibrium, as a result of some anti-social behavior, called vindictive bidding
strategy.

In [8], Bu, Deng and Qi presented the concept of forward looking Nash equi-
librium as a result of the auction’s dynamics and the bidders’ strategic manip-
ulations, based on an important property called the forward looking attribute.
Furthermore, in [9] they analyzed the convergence of this dynamic system. Co-
incidentally, convergence is also studied based on the same bidding strategy by
Cary, Das, Edelman, Giotis, Heimerl, Karlin, Mathieu and Schwarz in [10] where
it is called the greedy bidding strategy.

The concept of false-name bid (multiple bids by the same agent under differ-
ent false names) was firstly introduced by [11] in 1999. In [11], Sakurai, Yokoo
and Matsubara observed that generalized Vickrey auction mechanism, the gen-
eralized version of Vickrey auction, is not robust enough against false-name bid
behavior in combinatorial auctions. Then they showed that the concavity of a
surplus function over bidders is the sufficient condition where the VCG mecha-
nism is false-name-proof in [12].

Note that the multiple biddings we discuss here are related but not exactly
the same as the false name biddings. The agents are submitting their bids under
their own true identities where false name biddings are the bids under assumed
different identities by the same agent.

1.2 Our Contributions

We study the next technical issue when multiple biddings are allowed. Note that
this is different from false name bids in that multiple bidding bidders reveal their
true identities but false name bidders do not.

We completely characterize conditions on the number of selling slots for a pure
Nash equilibrium to exist, if the advertisers are allowed to use multiple-bidding
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strategies. We find that there always exists a pure Nash equilibrium when the
maximum allowed number of submitted bids is not less than the number of
slots. Otherwise, a pure Nash equilibrium need not exist. Even there is only one
advertiser using the multi-bidding strategy, the property of non-existence of pure
Nash equilibria still be discovered when the number of multiple bids is greater
than 2.

As commented above, when the number of positions to bid for is one, the
GSP auction is the same as Vickrey auction which is known to be incentive
compatible. When the number of positions is at least two, the GSP auction is
no longer incentive compatible even if everyone is allowed for at most one bid.
Furthermore, we prove that no other auction protocols selling two or more slots
can have the properties of incentive compatibility, social efficiency and individual
rationality if multiple biddings are allowed.

Furthermore, we study the most general case when a single bidder may have
several advertisements to bid with different private values for each of them. We
develop a complete characterization of the existence conditions of equilibrium in
this model.

Therefore, in general, we have the existence of Nash equilibrium and the
impossibility result in the multiple-bidding market.

The paper is organized as follows. In Section 2 we present the standard GSP
model and the extended version with multi-bidding strategy. Section 3 com-
pletely characterize conditions on the number of selling slots for a pure Nash
equilibrium to exist, if the advertisers are allowed to use multi-bidding strate-
gies. Section 4 discusses the existence of pure Nash equilibria when only one
bidder is allowed to use multi-bidding strategy. We present the impossible result
in section 5. In Section 6, we discuss the issue of biddings of agents each with
multiple advertisement needs of different values.

2 Model and Notation

We follow the GSP auction model presented in [2,1]. For some keyword, there
are N = {1, 2, . . . , N} advertisers who bid K = {1, 2, . . . , K} advertisement slots
(K < N). If the indexes of slots satisfy k1 < k2, then slot k1’s expected click-
through-rate (CTR for short) ck1 is larger than ck2 . Namely, c1 > c2 > · · · >
cK > 0. Moreover, each bidder i ∈ N has a privately known information, v(i),
which represents the maximum price he is willing to pay for per-click of his
advertisement.

According to each bidder i’s submitted bid b(i) ≥ 0, the auctioneer decides
how to distribute the advertisement slots among the bidders and how much they
should pay for per-click. In particular, the auctioneer firstly sorts the bidders in
decreasing order according to their submitted bids. Then the slot with smaller
index will be allocated to the bidder with higher bidding value. The last N − K
bidders would lose and get nothing. Finally, each winner would be charged for
per-click the next bid to his in the descending bid queue. The losers would
pay nothing. In the case of ties, we assume that the auctioneer would break
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ties according to a prior notice he declares. For example, ties could be broken
randomly. Another method of breaking ties is to allocate the higher slot to the
bidder with a prior time stamp.

Let bk denote kth highest bid in the descending bid queue and vk the true value
of the kth bidder in the descending queue. So if bidder i got slot k, i’s payment
would be bk+1 · ck. Otherwise, his payment would be zero. Hence, for any bidder
i ∈ N , if i were on slot k ∈ K, his utility (payoff) could be represented as

ui
k = (v(i) − bk+1) · ck .

2.1 Multi-bidding Model

We consider the extended GSP model associated with the multiple bidding strat-
egy. In other words, each bidder is allowed to submit several bids instead of only
one bid. We refer to the extended GSP model as M -GSP if each bidder is allowed
to submit at most M bids.

In M -GSP, every bidder i submits at most M non-negative bidding prices to
the auctioneer, despite having a unique v(i). We denote bidder i’s jth bidding
price by b(i,j). Without loss of generality, if the number of submitted bids of i
is less than M , the extra dummy bids will be added to make sure that bidder i
submits exactly M bids. So for any bidder i, his bidding vector could be written
as b(i) = {b(i,1), . . . , b(i,M)}.

Similarly, if bidder i’s jth bidding price is the kth highest among all the bids of
bidders, i would be on slot k and the utility of bidding b(i,j) could be represented
as

ui,j
k = (v(i) − bk+1) · ck .

As a result, the total utility of bidder i submitting b(i) is

u(i) =
M∑

j=1

u(i,j) .

Additionally, the following lemma states that each bidder would never overbid
his true value in the sponsored keyword auctions. Let b(−i) = (b(1), . . . ,b(i−1),
b(i+1), . . . ,b(N)). u(i)(b) represents the total utility of bidder i given all the
bidders’ bidding vector b.

Lemma 2.1. In M -GSP, ∀i ∈ N , for any fixed b(−i), if

b̄(i) ∈ arg max
{b(i)|b(i,j)≤v(i),∀j∈{1,...,M}}

u(i)(b(−i),b(i)) ,

then
b̄(i) ∈ argmax

b(i)
u(i)(b(−i),b(i)) .

As a result, our model adopts the similar assumption in [13].

Assumption 2.2. (Non-overbidding strategy) In M -GSP, ∀i ∈ N , ∀j ∈
{1, . . . , M}, b(i,j) ≤ v(i).
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At last, we give the formal definition of pure Nash equilibrium in M -GSP.

Definition 2.3. (Pure Nash equilibrium) In M -GSP, the pure Nash Equi-
librium is a set of biddings b̂ = (b̂(1), b̂(2), . . . , b̂(N)), in which ∀i, b̂(i) ∈
argmaxb(i) u(i)(b̂(−i),b(i)).

In other words, no bidder can benefit from changing any of his or her bids
unilaterally. It should be note that since the bidder could decrease one of his
bids from some value to 0 or increase one of his bids from 0 to some value, no
bidder could benefit even from adding or removing any bids unilaterally in any
pure Nash equilibrium.

3 The Existence of Nash Equilibrium

In this section, we focus on the existence of pure Nash equilibrium in GSP
auction with multiple bidding strategy.

3.1 Preliminaries

Firstly, The following lemma gives some necessary conditions for the existence
of Nash equilibrium, which is helpful to verify the (non)existence of Nash equi-
librium later.

Lemma 3.1. (Necessary conditions) If there exists a pure Nash equilibrium
b̂ in M -GSP, then the following propositions must be true.

1. If v(i) �= v(j) for any i, j ∈ N , then bidder i gets at least one slot except slot
K (the last slot) in b̂ ⇒ bidder i gets exactly M slots in b̂;

2. ∀i ∈ N , bidder i gets slot k, k + 1, . . . , k + l (l < m) in b̂ ⇒ bk+1 = bk+2 =
· · · = bk+l+1 + ε for arbitrarily small ε > 0;

3. (Winner monotone) [14] ∀i, j ∈ N , v(i) < v(j) and bidder i gets at least
one slot in b̂ ⇒ bidder j must also gets at least one slot in b̂;

4. If the owner of slot K is bidder i, and v̄ = max{v(j)|j �= i and j gets less
than M slots in b̂}, then bK ≥ v̄.

3.2 Simple Setting

We first consider a simple setting where K = 3, M = 2. I.e, there are totally 3
slots and each bidder can submit 2 bids. Let the three slots be slot 1, 2, and 3
with CTR c1 > c2 > c3. Assume N bidders compete for these three slots and
v(1) > v(2) > · · · > v(N). According to Condition 1 and 3 of Lemma 3.1, in the
equilibrium, the winners must be bidder 1 and bidder 2. Either bidder 1 gets
slot 1, 2 and bidder 2 gets slot 3 or bidder 2 gets slot 1, 2 and bidder 1 gets slot
3. By Condition 2 and 4 of Lemma 3.1, in equilibrium, bidder 3 bids b4 ≤ v(3),
and b2 = b3 ≥ v(3). Now assume b2 = b3 = x.

Case I: Bidder 1 gets slot 1, 2 and bidder 2 gets slot 3.
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This allocation is an equilibrium if and only if for some fixed c1 > c2 > c3,
v(1) > v(2) > v(3), all the following inequalities are satisfied.

(v(1) − x)c2 ≥ (v(1) − b4)c3

(v(1) − x)(c1 + c2) ≥ (v(1) − b4)(c2 + c3)

(v(2) − b4)c3 ≥ (v(2) − x)(c2 + c3)

b4 ≤ v(3)

v(2) ≥ x ≥ v(3)

(3.1)

Case II: Bidder 2 gets slot 1, 2 and bidder 1 gets slot 3.
Similarly, it is an equilibrium if and only if all the following inequalities are

satisfied.

(v(2) − x)c2 ≥ (v(2) − b4)c3

(v(2) − x)(c1 + c2) ≥ (v(2) − b4)(c2 + c3)

(v(1) − b4)c3 ≥ (v(1) − x)(c2 + c3)

(v(1) − b4)c3 ≥ (v(1) − v(2))(c1 + c2)

b4 ≤ v(3)

v(2) ≥ x ≥ v(3)

(3.2)

Thus, an equilibrium exists in this setting if and only if one of the above
inequality set is satisfied.

Let A = {x|x is a feasible solution to inequality set (3.1)}, B = {x|x is a fea-
sible solution to inequality set (3.2)}. We observe that B ⊂ A. Thus the case
K = 3, M = 2 has an equilibrium if and only if the inequality set (3.1) has a
solution. By solving the inequality set (3.1), we obtain the following proposition.

Proposition 3.2. For K = 3, 2-GSP has equilibria if and only if one of the
following inequality satisfies,

1. v(1)−v(2)

v(1)−v(3) ≥ c2
3

c2
2
, c1c3 ≥ c2

2;

2. c1−c3
c1+c2

v(1) + c2+c3
c1+c2

v(3) ≥ c2
c2+c3

v(2) + c3
c2+c3

v(3), c1c3 ≤ c2
2,

where c1 > c2 > c3 are CTRs of the three slots and v(1) > v(2) > v(3) are the
three highest private values among all the bidders.

When some bidders share a same value, it could be verified similarly that the
above proposition is still true.

3.3 Existence of Pure Nash Equilibria

When the number of submitted bids of each bidder is unlimited, the following
theorem shows that there always exist a pure Nash equilibrium.
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Theorem 3.3. M -GSP always has pure Nash equilibria when M ≥ K.

Theorem 3.4. (Revenue in M -GSP) In M -GSP, the auctioneer’s revenue is
R = v(2) ∑K

j=1 cj in any equilibrium when M ≥ K.

Obviously, the revenue under this situation is trivially equal to the revenue under
VCG mechanism.

3.4 Non-existence of Nash Equilibria

Now, we explore the case where the maximum number of allowed submitted bids
of each bidder is less than the number of advertising positions. We first fix M = 2
and study the relationship between the number of slots and the (non)existence
of Nash equilibrium. The important lemmas obtained are as follows.

Lemma 3.5. (The (non)Existence of Nash Equilibrium when M = 2)
2-GSP always has Nash equilibria for any K ≤ 2; 2-GSP doesn’t always have a
Nash equilibrium for any K ≥ 3.

After studying the case of M = 2, we try to generalize our observation to any
M and we get some interesting results as follows.

Algorithm 1. Counter Example Generator (K, M)
1: if (K ≤ M) then
2: exit
3: end if
4: if (K/M == 2) then
5: Let a = 0
6: else
7: Let a = �K/M� − 1
8: end if
9: Let the click through rates of K slots be c = (c1, c2, · · · , cK)

10: for i = 1 : aM + M − 2 do
11: Let ci = 200 + aM + M − 2 − i
12: end for
13: Let caM+M−1 = 20, caM+M = 11 and caM+M+1 = 10
14: for i = aM + M + 2 : K do
15: Let ci = 10−i

16: end for
17: Let the true values of a + 3 bidders be v = (v(1), v(2), · · · , v(a+3))
18: for i = 1 : a do
19: Let v(i) = 6 + a − i
20: end for
21: Let v(a+1) = 5, v(a+2) = 4, v(a+3) = 1
22: Output c, v

Algorithm 1 is a counter example generator. For any input K > M , the
algorithm will output K slots with click through rates c1 > c2 > · · · > cK and
	K/M
+2 bidders with true values v(1) > v(2) > · · · > v(�K/M�+2) . And in fact,
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there doesn’t exist a Nash equilibrium for multiple-bidding position auctions
with input c,v generated by the above algorithm. So we called the algorithm
Counter Example Generator. The idea of the algorithm comes from the proof of
lemma 3.5. In order to prove there may not exist a Nash equilibrium for the case:
K = 4 in lemma 3.5, we add one more slot with very small click through rate
based on the counter example for K = 3. And later, to prove the nonexistence
of Nash equilibrium for K > 4, we add some more slots with very large click
through rates. Similarly, here we add K − 3 more slots with very large or very
small click through rates based on ci = 20, ci+1 = 11, ci+2 = 10 for some i and
add 	K/M
−1 more bidders with high true values to v(�K/M�) = 5, v(�K/M�+1) =
4, v(�K/M�+2) = 1. It’s easy to verify the correctness of the algorithm. And from
the above algorithm, we obtain the following lemma.

Lemma 3.6. M -GSP doesn’t always have a Nash equilibrium when M < K.

From the above two lemmas, we obtain the theorem of (non)existence of Nash
equilibrium as follows.

Theorem 3.7. (The (non)Existence of Nash Equilibrium) M -GSP al-
ways has Nash equilibria when M ≥ K; It doesn’t always have a Nash equilibrium
when M < K.

4 Only One Bidder Multi-bidding

In the above sections, we study the M -GSP model in which every bidder can
submit at most M bids in the auction. We prove that when the number of slots
K > M , there doesn’t always exist a Nash equilibrium in that model. Now
consider the case that only one bidder can submit at most M bids and each of
the other bidders can only submit one bid, i.e., only one bidder multi-bidding.
Does there always exist a Nash equilibrium in this situation? In this section,
we try to find the solution to this question. We use M (i)-GSP to represent the
extended GSP model in which only bidder i is allowed submitting at most M
bids, and each of the other bidders can only submit one bid. In the following
part, without loss of generality, we always assume v(1) ≥ v(2) ≥ · · · ≥ v(N).

Lemma 4.1. (The (non)Existence of Nash Equilibrium when M = 2)

1. ∀ i > K, 2(i)-GSP always has Nash equilibria;
2. ∀ i ≤ K, 2(i)-GSP always has Nash equilibria for any K ≤ 2; 2(i)-GSP

doesn’t always have a Nash equilibrium for any K ≥ 3.

Next, we relax the constraint M = 2 and study the existence of Nash equilibrium
in M (i)-GSP model for any given M .

Theorem 4.2. (The (non)Existence of Nash Equilibrium in M (i)-GSP)

1. ∀ i > K, M (i)-GSP always has Nash equilibria;
2. ∀ i ≤ K, M (i)-GSP always has Nash equilibria for any K ≤ 2; M (i)-GSP

doesn’t always have a Nash equilibrium for any K ≥ 3.
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5 An Impossibility Result

As we mentioned, the sponsored keyword auction is not incentive compatible.
However, if we replace the allocation method and pricing method in the position
auction by other methods, does there exist a mechanism satisfying not only
truthful but also multiple-bidding proof? The following theorem answers the
question.

Theorem 5.1. There exists no mechanism (with allocation method and pricing
method) which is truthful, multiple-bidding proof, social efficiency and individual
rationality.

6 Multiple Biddings of Players with Multiple Private
Values

Up to this point, we have regarded that each bidder’s value per-click is the same
for all the submitted bids. It may more adequately called the single value multi-
bidding model. In general, there could be a multi-value multi-bidding model. In
the multi-value multi-bidding model, a bidder submits more than one bid and his
value per-click is not unique. For example, a computer company sells both business
laptops and home laptops. The company wants to buy two slots for the keyword
’laptop’, one for his business laptops and the other for his home laptops. The value
per click for the advertise of the business laptops may be different from that of the
home laptops. The company cares about his total profit and in the auction he can
always cooperate with himself. And indeed it is often the case as in the examples
of the multiple advertisement displays of Dell and HP in Figure 1.

Proposition 6.1. (Individual Efficiency Property) At any Nash equilibrium, an
agent’s winning biddings are ordered in their privates values for the correspond-
ing advertisements. That is, the higher is the private value, the higher is the
bid.

In the single-value multi-bidding GSP auction, there may not always exist a Nash
equilibrium. Unfortunately, there may not exist a Nash equilibrium in the multi-
value multi-bidding GSP auction neither. This can be shown by the following
counter example.

Business Laptop Home Laptop
Merchant A 10 8
Merchant B 9 6

For the same keyword both Merchant A and B bid for two slots, one for
business laptop and the other for home laptop. Their values per-click are shown
in the above table. However, there are totally three slots with c1 = 12, c2 =
11, c3 = 10. In this setting, there doesn’t exist a Nash equilibrium.
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