Absorbing Random Walks and the NAE2SAT Problem

K. Subramani*

LDCSEE,
West Virginia University,
Morgantown, WV
ksmani@csee.wvu.edu

Abstract. In this paper, we propose a simple, randomized algorithm for the
NAE2SAT problem; the analysis of the algorithm uses the theory of symmet-
ric, absorbing random walks. NAESAT (Not-All-Equal SAT) is the variant of the
Satisfiability problem (SAT), in which we are interested in an assignment that sat-
isfies all the clauses, but falsifies at least one literal in each clause. We show that
the NAE2SAT problem admits an extremely simple literal-flipping algorithm, in
precisely the same way that 2SAT does. On a satisfiable instance involving n
variables, our algorithm finds a satisfying assignment using at most an veri-
fication calls with probability at least 2 The randomized algorithm takes O(1)
extra space, in the presence of a verifier and provides an interesting insight into
checking whether a graph is bipartite. It must be noted that the bounds we derive
are much sharper than the ones in [T

1 Introduction

This paper details a randomized algorithm for the problem of determining whether an
instance of NAE2SAT is satisfiable. To recapitulate, NAESAT is the version of clausal
satisfiability (SAT), in which we seek an assignment that satisfies all the clauses, while
falsifying at least one literal in each clause. NAESAT is known to be NP-complete,
even when there are at most three literals per clause (NAE3SAT) [2]]. The NAE2SAT
problem is the variant of NAESAT in which there are exactly two literals per clause and
is known to be solvable in polynomial time. For instance, one could use each clause
as a partitioning constraint and decide an instance in linear time. From a complexity-
theoretic perspective, 3] established that NAE2SAT is in the complexity class SL; more
recently, [4]] proved that SL=L, from which it follows that NAE2SAT is in L. Our al-
gorithm is based on the literal-flipping algorithm proposed in [1] for the 2SAT problem
and is extremely space-efficient. In particular, on a satisfiable NAE2SAT instance hav-
ing n variables and m clauses, the expected number of literal-flips to find the satisfying
assignment is ’f. Further, if a satisfying assignment is not found within 3n2 literal-
flips, then the probability that the instance is not satisfiable is at least 2.
The principal contributions of this paper are as follows:

(a) Thedesignand analysis of arandomized, literal-flipping algorithm for the NAE2SAT
problem.

* This research was supported in part by a research grant from the Air-Force Office of Scientific
Research under contract FA9550-06-1-0050.

FP. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 89-100] 2008.
(© Springer-Verlag Berlin Heidelberg 2008

90 K. Subramani

(b) Some new observations on the convergence times of absorbing random walks.
(c) Establishing the complexity of NAE2SATPOS, which is the variant of NAE2SAT,
in which all literals are positive.

2 Preliminaries

Letp = Cy A Cy ... A Cy, denote a 2CNF formula on the literal set
L= {Il, T1,29,T2...Tp, .fn}.

Definition 1. The Not-All-Equal satisfiability problem for 2CNF formulas (NAE2SAT),
is concerned with checking whether there exists a satisfying assignment to ¢, such that
at least one literal in each clause is set to false. If such an assignment exists, then ¢ is
said to be nae-satisfiable.

For instance, the 2CNF formula ¢ = (x1,22) A (22, x3) is nae-satisfiable (z1 =
true zo = false x3 = true), while the 2CNF formula ¢ = (a1, x2) A (21, x2))
is not nae-satisfiable.

Without loss of generality, we assume that each clause has exactly two literals, since
¢ cannot be nae-satisfiable, if it has a clause with exactly one literal.

In order to understand our approach for the NAE2SAT problem, we discuss a graph
theoretic approach. Given a 2CNF formula ¢(x), we can construct its nae-graph G ()
as follows:

(a) For each literal x;, create a vertex labeled x;. Note that corresponding to boolean
variable z;, there are two literals, viz., x;, and its complement literal, ;.

(b) Corresponding to each clause (z;, y;) (say), add the undirected edges y; — z; and
Ti — Yj-

The graph that is created is similar but not identical to the implication graph technique
for 2SAT discussed in [3]]. In particular, note that in our case, the graph edges are undi-
rected, whereas in [3], the edges represent implications and are therefore directed. The
implication graph G models the fact that each 2-literal clause (x;, ;) can be thought
of as a pair of implications #; — y; and y; — z; connected conjunctively. In [3], it is
shown that the ¢(x) is unsatisfiable if and only there exists a path from a vertex x; to
its complement vertex z; and vice versa. We now provide a test for the nae-satisfiability

of ¢(x).

Theorem 1. Let ¢(x) denote a CNF formula and G () denote the corresponding nae-
graph built as per the above rules. Then ¢(x) is nae-unsatisfiable if and only there
exists a path from a vertex x; to its complement vertex T; in G ().

Proof: Assume that there exists a path from a vertex z; to its complement vertex z;
denoted by z; — x1 — ... — x — 1. As per the construction of the implication
graph, the following clauses are part of the clause set ¢(x): (&;, x1) (21, x2) - . . (T, Ti)-
Now consider an assignment in which z; is set to true. It follows that x; must be set
to true. Arguing similarly, zo, 23, ..., 2, must all be set to true. However, the last
clause (2, ;) has both literals set to false and is therefore not nae-satisfied. Likewise,

Absorbing Random Walks and the NAE2SAT Problem 91

consider an assignment in which x; is set to false. This forces x; to be false; arguing
similarly, x2, x3, ..., x; must all be set to false. However, this forces both literals in
the last clause to be true, thereby falsifying it from a nae-sat perspective.

The converse can be argued similarly, albeit with some effort involving case-based
analysis. m|
The above theorem immediately establishes that NAE2SAT can be solved in linear time
using a variant of the connected components approach discussed in [3]]. All that we need
to ensure that is that no literal is reachable from its complement.

2.1 Assignment Verification for NAE2SAT

Consider an instance F' of NAE2SAT, i.e., a 2CNF formula on the = variables only. Let
a represent a {true, false} assignment to the variables of F'. It is straightforward to
verify whether a nae-satisfies I, by substituting the value of literals in each clause, as
specified by a and checking that all clauses evaluate to true, with at least one literal
set to false in each clause. We now present an implication graph interpretation of a
nae-satisfying assignment. Let G represent the implication graph of F" and consider the
labeling of the vertices of G, as per a.

Theorem 2. An assignment & nae-satisfies a 2CNF formula ¢(x), if and only if there
is no arc, with tail vertex assigned true and head vertex assigned to false, i.e., a
(true—false) arc or a (false—true) arc, in the implication graph G4(x) of ¢(z).

Proof: Let (z;, x;) denote an arbitrary clause of ¢(x); this clause contributes the two
arcs [y : &; — xj and lp : ©; — x; to the implication graph G. If this clause is satisfied
by the assignment &, either z; is set to true and x; is set to false or x; is set to true and
x; is set to false. If x; is set to true and x; is set to false, the tail of arc /; is set to false
and so is its head, while the head of arc [, is set to true and so is its head. We thus see
that there is no (true—false) arc or (false—true) arc. The case when z; is assigned to
true and z; is assigned to false can be argued symmetrically.

Now consider the case in which both z; and x; are set to false in &. Both the arcs
Iy and [, are (true—false) arcs. Similarly, the case in which x; and x; are both set to
true, results in /; and l» both becoming (false—true) arcs. O

From Theorem [2] it follows that given an assignment to a NAE2SAT instance ¢(z),
the verification process consists of scanning through the implication graph G, (z) and
ensuring that there does not exist a (true—false) or (false—true) arc. If the instance
¢(x) has m clauses and n variables, then as per the implication graph construction,
Gy(x) has 2 - m arcs. Hence, the verification process can be accomplished in O(m)
time.

2.2 Complexity Classes

Definition 2. A language L is said to be in RL, if there exists a randomized algorithm
which recognizes it in logarithmic space.

92 K. Subramani

Definition 3. The undirected s — t connectivity problem (USTCON) is defined as fol-
lows: Given an undirected graph G = (V, E) and two vertices, s,t € V, is t reachable
from s?

Definition 4. A language L is said to be in SL, if it can be log-space reduced to UST-
CON.

3 Markov Chains and Random Walks

This section contains preliminaries on Markov Chains and Random Walks that may not
be familiar to non-experts in Probability Theory. I have included this material so that the
paper as a whole is accessible to researchers in both Computer Science and Statistics. If
the reviewers feel that this section does not add value to the paper, it will be removed.

There are two types of theorems that are described here; the first type are known
results for which appropriate references are provided and the second type are results
which are proved here for the first time, to the best of our knowledge. The latter theo-
rems are marked as O for original.

Let R denote a stochastic process which can assume one of the following values:
S =1{0,1,2,....n}.If R assumes the value 7 at a particular time, then it is said to be in
state 7 at that time. Further, suppose that when it is in state ¢, the probability that it will
move to state j, at the next instant is a fixed constant p;;, independent of the history of
the process. R is said to be a Finite Markov Chain over the state space S.

Definition 5. A Finite Markov Chain over the state space S = {0,1,...,n} is said to
be a Random Walk, if for some fixed constants p € (0,1), pg € [0, 1], p, € [0, 1],

Pii+1 :p:].—pn;l,i:].,27...7TL—1,
Po1 = Po
Pnn—1 = Pn

Definition 6. A random walk R is said to be absorbing, if po1 = pn,n—1 = 0.
States 0 and n are said to be absorbing barriers of the random walk.
Definition 7. An absorbing random walk is said to be symmetric, if p = ;

The rest of this paper will be concerned with absorbing, symmetric random walks (ASR
walks) only. An ASR walk has the following game-theoretic interpretation: Imagine a
drunkard on a straight road, with his house on one end and a bar on the other. Assume
that the drunkard is at some point 7, in between the house and the bar. Point 7 is the
initial position of the game. In each state the drunkard is currently in, he takes one step
towards the bar with probability one-half or one step towards his house with probability
one-half. The game is over when the drunkard reaches either his home or the bar.

Definition 8. The absorption time of state i, 0 < 1 < n, in an ASR walk R, is the
expected number of steps for R to reach an absorbing state, given that it is currently in
state 1.

Absorbing Random Walks and the NAE2SAT Problem 93

The absorption time of state 4, is denoted by ¢(4); we thus have,

t(i) = E[ASR walk R to reach 0 or n| R is currently in state i

Definition 9. The absorption time of an ASR walk R is defined as the maximum ab-
sorption time over all the states in R.

The absorption time of R is denoted by R;; we thus have,

R: = max t(i)
0<i<n
The literature has shown that every state in an absorbing, symmetric random walk is
recurrent, i.e., the probability that a state is ever reached is 1 [6]. From the perspective
of algorithmic efficiency, mere recurrence is not sufficient; it is important that the ab-
sorption time of a state is s a small number, preferably a polynomial function of the
total number of states.

We now proceed to compute the absorption time of various states in an ASR walk R;
in order to carry out this computation, we need the following technical lemma that helps
us to compute the expectation of a random variable by conditioning it on a different
random variable. This lemma has been proved in [7].

Lemma 1. Let X and Y denote two random variables; let E[X | Y| denote that func-
tion of the random variable Y, whose value atY =y is E[X | Y = y|. Then,

E[X] = E[E[X | Y]]. (1)
In other words,

E[X] =) E[X|Y =y] Pr[Y =y)

We use t(¢) to denote the absorption time of state ¢ and R to denote the absorption
time of the ASR walk R. Observe that if the ASR walk is currently in state ¢, where ¢
is a non-absorbing state, then at the next step, it will be in state (¢ + 1) with probability
one-half and it will be in state (¢ — 1), with probability one-half. In the former case, the
absorption time for state 7 is (1 4 ¢(¢ + 1)), while in the latter case, it is (1 +¢(i — 1)).
Noting that ¢(0) = ¢(n) = 0, we apply Lemma (0 to derive the following set of
equations for computing the absorption times of states in the ASR walk.

£(0)
t(4)
)

0
1 . 1 .)
2-(15(2—1)—&-1)—&-2~(t(z—&-l)—|—1)7 0<i<n

t(n) =0

Note that System (@) contains (n+1) equations and (n+ 1) unknowns and can be repre-

sented as: A - X = b, where, X is an (n+1)-vector representing the expected absorption

3

94 K. Subramani

times of the states ([t(0), t(1), ..., t(n)]?), b is an (n+1)-vector [0, 1, 1, ..., 1, 0]7,
and A is the (n 4+ 1) x (n + 1) matrix represented by:

Row i (0 < ¢ < n), of A has 1 in the diagonal entry and a negative one-half in the entry
preceding and succeeding it. All other entries in this row are zero. Row 0 and Row n
are unit vectors with the unit entry occupying the diagonal entry. It is not hard to see
that A is non-singular and therefore, System (@) has a unique solution.

We need the following lemma to aid us in solving System ().

Lemma 2
t(i)=t(n—1), Vi=0,1, ...,n
Proof: By symmetry of the random walk. a

The technique to solve System (@) (which is a non-trivial contribution) appears in the

journal version of the paper. We show that in the worst case, the absorption time of a

state (i.e., the expected number of steps for the random walk to reach an absorbing state,
. . 2 . . 2

from a state) in an ASR walk is 7, , i.e., maxo<i<n t(i) < ") .

Theorem 3. Let Var[t(i)] denote the variance of the absorption time of state i, in the
ASR walk R. Then,

2
NS
[nax Var[t(i)] < 3"
Proof: Will provide in revised version. a

The following theorem is known as Chebyshev’s inequality and is proved in [[7] among
other places.

Theorem 4. Let X denote a random variable, with mean E[X | and variance o2. Then,
for any k > 0, we have,

o2

Pr(|X ~E[X]|> K <7,

Theorem 5. (O) Given an ASR walk R, which is initially in an arbitrary state i, 0 <
t < n, the probability that R does not reach an absorbing state in 3712 steps is at
1
most .
6

Absorbing Random Walks and the NAE2SAT Problem 95

Proof: Let X denote the worst-case number of steps taken by the ASR walk R to reach
an absorbing state. We are interested in the quantity Pr[X > ZnQ].
Note that,

9 4 n? 9
Pr(X > 4n]—Pr[X— 4 >2-n7
n2
<Pr(x - | > 277
=Pr[X — E[X]| > 2-n?|
2,4

< (23n2)2’ using Chebyshev’s inequality

1

G

3.1 The Convergence Numbers

Let G(n, k) denote the expected number of steps taken by an ASR walk to reach an
absorbing state, assuming that it is currently in state k, 0 < k < n, i.e., G(n, k) is the
absorption time of state k.

Table () represents the computed values of G(n, k) for small values of n. For each
value of n, the corresponding row stores the absorption time for all n+-1 initial positions
of the random walk.

Table 1. Convergence Numbers

Number of variables = Starting Point of Walk

n=20 0

n=1 00
n=2 010
n=3 0220
n=4 03430
n=>5 046640
n==~6 0589850
n="7 06 10 12 12 10 6 0

Each of the following theorems (which do not appear in the literature, to the best of
our knowledge) can be proved using induction.

Theorem 6. Foralln > 2, G(n,1) =G(n —1,1) +

Theorem 7. Foralln >3, G(n,2) = G(n —2,2) + 2.

Theorem 8. Foralln >k, G(n, k) = G(n — k, k) + k.
)

Theorem 9. Foralln, G(n, k) = G(n,n — k).

n,

96

K. Subramani

4 Algorithm and Analysis

Algorithm [T]is our strategy to solve the NAE2SAT problem.

Algorithm 4.1. Randomized algorithm for the NAE2SAT problem

Function NAE2SAT-SOLVE(G4(x))

1:
2:

[

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:

4.1

{The 2CNF formula ¢(z) is input through its implication graph G (z).}
{We assume that ¢(x) has n variables and m clauses, so G4(x) has 2 - n vertices and 2 - m
arcs. }

: Let T be an arbitrary truth assignment to the variables of ¢(x).
: Update Gy () with T'.
: {We say that an arc in Gy, is broken, if under the current assignment it is a true—false arc

or a false—true arc.}

6: count = 0;
7.
8

if (there does not exist a broken arc in G4 (x)) then
return (“¢(x) is nae-satisfiable™)
end if
while (there exists at least one broken arc in G (x)) and (count < ZnQ) do
Select any broken arc in Gy (x), say z1 — 2.
Flip a fair coin to pick one of z; and x2.
if (21 is selected) then
Flip x1; i.e., complement its assignment.
else
Flip x2.
end if
Adjust T and G4 () to reflect the changed assignments.

if (T now satisfies ¢(z). i.e., there is no broken arc in G (x)) then
return (“¢(x) is nae-satisfiable.”)
else
count = count + 1.
end if
end while

return (“¢(x) is probably nae-unsatisfiable.”)

Analysis

Observe that if Algorithm] claims that ¢(x) is nae-satisfiable, then ¢(z) definitely
has a nae-satisfying assignment, i.e, the assignment 7', which causes the algorithm to
terminate. On the other hand, if Algorithm [£1] claims that ¢(z) is not nae-satisfiable,
then it is possible that ¢(x) is still nae-satisfiable; we now show that the probability of
this occurrence is less than ;.

Lemma 3. Let ¢(x) denote a 2CNF formula; if assignment x nae-satisfies ¢(x), then
so does assignment x°, where x€ is derived from x, by complementing the assignment
to each variable in x. The tuple (x, x°) is called a complementary pair.

Absorbing Random Walks and the NAE2SAT Problem 97

Proof: Since, x nae-satisfies ¢(), it sets one literal to true and one literal to false in
each clause. Under x€, the literals which are set to true become false and vice versa. It
follows that each clause is still nae-satisfied and therefore, so is ¢(x). a

Assume that ¢(x) is nae-satisfiable and let us focus on a particular nae-satisfying com-
plementary pair of assignments T and T. Let T denote the current assignment to the
variables of ¢(x). If T' is a nae-satisfying assignment, we are done. If it is not, then there
is a clause, say (z;, z;) that is not nae-satisfied by T". There are two cases to consider:

(i) Both z; and x; are set to false in 7" - In T, at least one of these two literals is set to
true; likewise, in TC, at least one of these literals is set to false. Hence choosing
one of them uniformly and at random, moves 7' closer to T, with probability at
least one-half and closer to 7¢ with probability one-half. In other words, after the
literal flip, with probability one-half, T" agrees with T in one more variable and
with probability one-half, T" agrees with T in one more variable.

(ii) Both z; and x; are set to true in 7" - In T, at least one of the two literals is set
to false and in 7°¢, at least one of the two literals is set to true. Hence choosing
one of the two literals uniformly and at random and flipping it, moves 7' closer
(by one variable) to T with probability at least one-half and closer to Te (by one
variable) with probability at least one-half.

Let (i) denote the expected number of literal-flips for AlgorithmH.Tlto take the current
assignment 7 to the nae-satisfying assignment T or its complement Te, assuming that
T differs from 7' on exactly ¢ variables. By our previous arguments, it is clear that T’
differs 7 in exactly (n—i) variables. Note that r(0) = 0, since if the current assignment
differs from 7" on 0 variables, then it is a nae-satisfying assignment. Likewise, r(n) = 0,
since if the current assignment differs from T onalln variables, then it must differ from
T on exactly 0 variables, i.e., 7' must coincide with the nae-satisfying assignment Te.
Applying Lemma () to the discussion above, for each 7, 0 < ¢ < n, we must have

ri) =, (i = 1)+ 1)+ (i + 1)+ 1)
. 1
= rli=1+ ri+1)+1 4)

But System (@) in conjunction with the boundary conditions is precisely the defining
system of an ASR walk R. We therefore conclude that:

Theorem 10
2
n
<
qpax r(i) <)
Var[r(i)] = on',
o%lzagxn ar|r(i 3

Corollary 1. AlgorithmEdlis a Monte-Carlo algorithm for the NAE2SAT problem; on
a nae-satisfiable instance, the probability that it does not find a nae-satisfying assign-
ment is at most é

98 K. Subramani

5 Graph Bipartiteness

In this section, we apply the techniques of Algorithm[.1]to derive a Monte Carlo algo-
rithm for the problems of checking whether an undirected graph is 2-colorable. Without
loss of generality, we assume that the vertices of the graph need to be colored from the
set {red, blue}. A particular coloring c for the vertices of G, is inconsistent if there
exists at least one edge e such that both its endpoints are colored blue or red. If no such
edge exists, c is said to be a consistent (valid) coloring.

Algorithm 5.1. Randomized algorithm for the Undirected Graph 2-coloring problem.

Function GRAPH-2-COLOR(G)

1: {We assume that G has n variables and m edges.}

2: Let c be an arbitrary color assignment of red and blue to the vertices of G.

3: count = 0;

4: if (c is a valid coloring) then

5: return (“G is 2-colorable.”)

6: end if

7: while ((c is an inconsistent coloring)and (count < 2 . nz)) do

8: Pickanedge e = (x4, x;) € E such that c[z;] = c[z;] = red or c[z;] = c[z;] = blue
9: Flip a fair coin to pick one of x; and ;.

10: if (x; is selected) then

11: Change its color to blue, if it was red and to red, if it was blue.

12: else

13: Change the color of z; to blue, if it was red and to red, if it was blue.
14: end if

15: Update c accordingly.
16: if (the current color assignment is valid) then

17: “@ is 2-colorable™)
18: else

19: count = count + 1.
20: end if

21: end while
22: return (“G is probably not 2-colorable.)

Algorithm[3.Jlis a Monte Carlo algorithm for checking whether a graph is bipartite.

5.1 Analysis

The graph bipartiteness problem shares an important property with the NAE2SAT prob-
lem, in that if a particular coloring c is a valid 2-coloring of a graph, then so is its
complement coloring €. Clearly if Algorithm[3.1]returns “yes”, then the input instance
G is bipartite. However, if the algorithm claims that G is not 2-colorable, then it could
be incorrect. The error bound analysis is identical to the one for NAE2SAT, since at
each step, Algorithm[3.Ilmoves one step closer to a valid coloring or one step closer to
the complement of that valid coloring. Algorithm[3.1] can therefore also be modeled as

Absorbing Random Walks and the NAE2SAT Problem 99

a one dimensional random walk with one reflecting barrier and one absorbing barrier.
Accordingly, we get,

Theorem 11. Algorithm[31lis a Monte Carlo algorithm for the problem of checking
whether an undirected graph is 2-colorable. If the input graph is not 2-colorable, the
algorithm always returns the correct answer; if the input graph is 2-colorable, the prob-
ability that the algorithm returns the incorrect answer is at most é.

An interesting offshoot of the above work is the following theorem.

Theorem 12. Let NAE2SATPOS denote the class of NA2SAT problems in which every
literal is positive. NAE2SATPOS is L-complete.

Proof: First observe that NAE2SATPOS is trivially in L, since it is a special case of
NAE2SAT. Likewise, it has already been established that Undirected Graph 2-coloring
(UG2COL) is in SL and therefore in L [3I8/4]. Now, consider the following AC, reduc-
tion from UG2COL to NAE2SATPOS.

Let G = (V, E) denote an instance of the UG2COL problem, where, V' = {v;, va,
..., Up} and E = {e;; : there is an undirected edge between vertices v; and v, } .

We construct the following instance of NAESATPOS:

(a) Corresponding to vertex v;, the variable x; is created.
(b) Corresponding to edge e;; = (v;, v;), the clause (z;, z;) is created.
(c) The conjunction of all the clauses gives us the 2CNF formula ¢(x).

It is not hard to see that the graph G has a 2-coloring if and only if ¢(z) is NAE-
satisfiable. |

This result can be seen as an addition to the collection of results in [9].

6 Conclusion

In this paper, we designed and analyzed a randomized, literal-flipping algorithm for
the NAE2SAT problem. As mentioned before, the existence of a polynomial time ran-
domized algorithm for this problem is not surprising, since NAE2SAT belongs to the
complexity class SL C P C RP. The interesting aspect of our work is the simplicity of
the randomized algorithm and its analysis. We extended the algorithm to check for bi-
partiteness in undirected graphs.

References

1. Papadimitriou, C.H.: On selecting a satisfying truth assignment. In: IEEE (ed.) Proceedings:
32nd annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico, Octo-
ber 1-4, pp. 163-169. IEEE Computer Society Press, USA (1991)

2. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman Company, San Francisco (1979)

3. Reif, J.H.: Symmetric complementation. J. ACM 31(2), 401-421 (1984)

100 K. Subramani

4. Reingold, O.: Undirected st-connectivity in log-space. In: STOC, pp. 376-385 (2005)

5. Aspvall, B., Plass, M.E,, Tarjan, R.: A linear-time algorithm for testing the truth of certain
quantified boolean formulas. Information Processing Letters 8(3), 121-123 (1979)

6. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge
(1995)

7. Ross, S.M.: Probability Models, 7th edn. Academic Press, Inc., London (2000)

8. Alvarez, C., Greenlaw, R.: A compendium of problems complete for symmetric logarithmic
space. Electronic Colloquium on Computational Complexity (ECCC) 3(39) (1996)

9. Johannsen, J.: Satisfiability problems complete for deterministic logarithmic space. In:
STACS, pp. 317-325 (2004)

	Absorbing Random Walks and the NAE2SAT Problem
	Introduction
	Preliminaries
	Assignment Verification for NAE2SAT
	Complexity Classes

	Markov Chains and Random Walks
	The Convergence Numbers

	Algorithm and Analysis
	Analysis

	Graph Bipartiteness
	Analysis

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

