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Abstract. constraint bipartite vertex cover is a graph-theoretical
formalization of the spare allocation problem for reconfigurable arrays. We
report on an implementation of a parameterized algorithm for this prob-
lem. This has led to considerable simplifications of the published, quite
sophisticated algorithm. Moreover, we can prove that the mentioned al-
gorithm could be quite efficient in practial situations.

1 Introduction

Problem Definition. In this paper, we are considering the following problem:
An instance of constraint bipartite vertex cover (CBVC) is given by

a bipartite graph G = (V1, V2, E), and the parameter(s), positive integers k1, k2.
The task is: Is there a vertex cover C ⊆ V1 ∪ V2 with |C ∩ Vi| ≤ ki for i = 1, 2?

This graph-theoretic problem can be easily seen to be equivalent to the fol-
lowing problem, namely via the adjacency matrix of a bipartite graph:

An instance of spare allocation (SAP) is given by a n ×m binary matrix
A representing an erroneous chip with A[r, c] = 1 iff the chip is faulty at posi-
tion [r, c], and the parameter(s), positive integers k1, k2. The task is: Is there a
reconfiguration strategy that repairs all faults and uses at most k1 spare rows
and at most k2 spare columns?

Motivation and Previous Work. Kuo and Fuchs [13] provide a fundamental
study of that problem. Put concisely, this “most widely used approach to recon-
figurable VLSI” uses spare rows and columns to tolerate failures in rectangular
arrays of identical computational elements, which may be as simple as memory
cells or as complex as processor units. If a faulty cell is detected, the entire row
or column is replaced by a spare one. The tacit (but unrealistic) assumption
that spare rows and columns are never faulty can be easily circumvented by
a parameter-preserving reduction, as exhibited by Handa and Haruki [11]. For
technological reasons (avoiding superfluous redundancy [12] as well as too much
expensive laser repair surgery), the number of spare rows and columns is very
limited (rarely more than fourty), making this problem a natural candidate for
a “fixed parameter approach” [5].

However, due to the NP-hardness of the problem (shown in [13]), no poly-
time algorithms can be expected. In [9], it is shown that constraint bipartite
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vertex cover can be solved slightly faster than O∗(1.4k). However, that par-
ticular algorithm is derived via a very sophisticated analysis of local situations,
quite typical for search-tree algorithms that were developed ten years ago. This
means that a naive implementation would have to test all these local cases, which
is quite a challenging and error-prone task by the sheer number of cases (more
than 30). Since many of these cases are quite special, these cases would show up
rarely, and therefore programming errors would be hard to detect. Our approach
presented here means nearly a complete re-design of the published algorithm:
as it is often the case now with “modern” exact algorithms, most of the burden
is taken from the algorithm implementor and shifted on the shoulders of the
algorithm analyzer.

Contributions. Our main contribution is to present within Sec. 2 implementable
algorithm variants of the algorithm given in [9]; to the most refined variant, basi-
cally the same run time analysis applies. These variants have been implemented
and tested, which will be described in Sec. 3. We observe that in practical instances
(generated according to previously described schemes), the algorithms perform
much better than it could be expected from theory. This shows that exact algo-
rithms could be useful even in circumstances where real-time performance is im-
portant, as it is the case in industrial processes.

Notations. We need some non-standard notation: If S = (C1, C2) is a CBVC

solution of G = (V1, V2, E), then (|C1|, |C2|) is called the signature σ(S) of that
solution. We call a solution (C1, C2) signature-minimal if there is no solution S′

with σ(S′) < σ(S); we will also call σ(S) a minimal signature in this case. Here,
we compare two vectors of numbers componentwisely. The signature spectrum
of a CBVC instance (G, k1, k2) is the set of all minimal signatures (i1, i2) (that
obey (i1, i2) ≤ (k1, k2)). If the parameter is not given, we ignore the latter
restriction. As can be seen, all our algorithms (written as decision algorithms
for convenience) can be easily converted into algorithms that produce (solutions
to) all minimal signatures.

2 Algorithm Variants

We are going to describe three algorithm variants that will be compared later in
Sec. 3.

2.1 The Simplest Algorithm A1

It should be noted here that people developing algorithms for VLSI design actually
discovered the FPT concept in the analysis of their algorithms, coming up with
O(2k1+k2k1k2 +(k1 +k2)|G|) algorithms in [10,15]. They observed that “if k1 and
k2 are small, for instance O(log(|G|)), then this may be adequate.” [10, p. 157]. It
was in the context of this problem that Evans [6] basically discovered Buss’ rule
to prove a problem kernel for constraint bipartite vertex cover. Kuo and
Fuchs called this step quite illustratively the must-repair-analysis: Whenever a
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row contains more than k2 faulty elements (or a column contains more than k1
faulty elements, resp.), then that row (column, resp.) must be exchanged.

Lemma 1. constraint bipartite vertex cover has a problem kernel of
size 2k1k2.

The search-tree part (leading to the O∗(2k1+k2) is also easy to explain: any edge
must be covered (i.e., any failure must be repaired), and there are two ways to
do it. This leads to the simplest algorithm variant A1.

Heuristic improvements. From a heuristic viewpoint, it is always good to branch
at vertices of high degree (not just at edges) for vertex cover problems, since in
the branch when that vertex is not taken into the cover, all its neighbors must
go into the cover. A further very important technique is early abort. Namely,
observe that for the minimum vertex cover C∗ of G = (V1, V2, E), we have
|C∗| ≤ k1 + k2 for any constraint bipartite cover C with σ(C) ≤ (k1, k2). Since
those overall minimum vertex covers can be computed in polynomial time using
matching techniques (on bipartite graphs), we can stop computing the search-
tree whenever the remaining current parameter budget (k1, k2) has dropped (in
sum) below the overall minimum vertex cover cardinality. Notice that sometimes
also the variant that requires a minimum vertex cover as constraint vertex cover
is considered, e.g., in [4,18] from a parameterized complexity. However, it is not
quite clear from a practical perspective why one should insist on overall cover
minimality: to the contrary, repairable arrays should be repaired, irrespectively
of whether they yield an overall minimum cover or not.

2.2 Triviality Last: Algorithm A2

There are two simple strategies to improve on quite simplistic search-tree algo-
rithms: either (1) there are simple reduction rules that allow one to deduce that
(in our case) branching at high-degree vertices is always possible or (2) one can
simply avoid “bad branches” by deferring those branches to a later phase of the
algorithm that can be performed in polynomial time. We have called the first
strategy triviality first and the second one triviality last in [8]. Notice that both
strategies can be used within a mathematical run time analysis for the search
tree heuristic sketched in the previous subsection.

We will explain how to employ the triviality last principle based on the fol-
lowing observations.

Lemma 2. Let G = (V1, V2, E) be a connected undirected bipartite graph with
maximum vertex degree 2 and let � = |E| be the number of edges in G.

1. If G is a cycle, then for �′ := �/2 we have the minimal signatures (0, �′),
(�′, 0) as well as (2, �′ − 1), (3, �′ − 2), . . . , (�′ − 1, 2) if � > 4.

2. Let G be a path.
(a) If � is odd, then for �′ := (� + 1)/2 we have the minimal signatures

(0, �′), (1, �′ − 1), . . . , (�′ − 1, 1), (�′, 0).
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(b) If � is even, then for �′ := �/2 + 1 we have the minimal signatures
(0, �′ − 1), (2, �′ − 2), . . . , (�′ − 1, 1), (�′, 0) if |V1| > |V2| and
(0, �′), (1, �′ − 1), . . . , (�′ − 2, 2), (�′ − 1, 0) if |V1| < |V2|.

Lemma 3. If the signature spectra of all components of a graph are known, then
the signature spectrum of the overall graph can be computed in polynomial time.

Algorithm 1. CBVC-TL: a still simple search tree algorithm for CBVC

Input(s): a bipartite graph G = (V1, V2; E), positive integers k1 and k2

Output(s): YES iff there is a vertex cover (C1, C2) ⊆ V1 ×V2, |C1| ≤ k1 and |C2| ≤ k2

if k1 + k2 ≤ 0 and E �= ∅ then
return NO

else if k1 + k2 ≥ 0 and E = ∅ then
return YES

5: else if possible then
Choose vertex x ∈ V1 ∪ V2 such that deg(x) ≥ 3.
if x ∈ V1 then

d = (1, 0)
else

10: d = (0, 1)
if CBVC-TL(G − x, (k1, k2) − d) then

return YES
else

return CBVC-TL(G − N(x), (k1, k2) − deg(x)((1, 1) − d))
15: else

{vertex selection not possible � maximum degree is 2}
resolve deterministically according to Lemma 4

Proof. The most straight-forward way to see this is via dynamic programming:
If (k1, k2) is the parameter bound, then use a k1 × k2 table that is originally
filled by zeros, except the entry at (0, 0) that contains a one. Let c loop from
1 to the number of components plus one. In that loop, for each entry (i, j) of
that table that equals c and for each element (r, s) of the signature spectrum,
we write c + 1 as entry into place (i + r, j + s). Finally, the signature spectrum
of the overall graph can be read off as those (i, j) whose table entry contains
the number of components plus one. This procedure can be further sped up by
noting that there could be at most k1 +k2 +1 minimal signatures for any graph;
so with some additional bookkeeping one can avoid looping through the whole
table of size k1 × k2.

Lemma 4. constraint bipartite vertex cover can be solved in time
O(k log k) on forests of cycle and path components with budget k1, k2 (where
k = k1 + k2), i.e., on graphs of maximum degree of two.

We want to point out that Lemma 4 could be seen by a more efficient algorithm
than indicated in the proof of Lemma 3. The strategy is the following one:
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—First, solve paths of even length.
—Secondly, solve cycles.
—Finally, solve paths of odd length.

Within each of these three categories of components of a graph of maximum de-
gree two, we basically solve small components first (except for cycles as discussed
below).

The intuition behind this strategy is that solving paths of even length by an
overall minimum cover is the most challenging task, while it is close to trivial
for paths of odd length.

– (A) Namely, from Lemma 2, we can easily deduce that a cover is signature-
minimal iff it is overall minimum in the case of paths of odd length. Therefore,
we can defer the selection of the specific cover vertices to the very end, and
this decision could be then taken in a greedy fashion.

– (B) The only difficulty that can show up with covering cycles is that both
parameter budgets k1 and k2 might be smaller than the length of that cycle.
So, when left with cycle components C1,. . . , Cr (of length �1, . . . , �r) and
paths of odd length, we first test if there are xi ∈ {0, 1} with

∑r
i=1 xi�i ∈

{k1, k2}. If
∑r

i=1 xi�i = kj for some xi ∈ {0, 1}, we solve those Ci with xi = 1
by covering them with vertices from Vj . More generally, if

∑r
i=1 xi�i ≤ k1

and
∑r

i=1(1 − xi)�i ≤ k2 for some xi ∈ {0, 1}, we solve those Ci with xi = 1
by covering them with vertices from V1, and the remaining cycles by vertices
from V2. If such xi cannot be found but the overall minimum for solving the
cycle components is less than k1 + k2, our general greedy strategy (working
from small length cycles onwards) will produce one cycle (and only one) that
is not solved matching the overall minimum cover, by covering it both with
vertices from V1 and with vertices from V2.

– (C) The greedy strategy used at the beginning on paths of even length might
also lead to a point that some path cannot be solved matching the overall
minimum. In that particular case (*), we will deliberately first empty the
critical parameter budget. Similar to (A), one can see that this choice is arbi-
trary for that particular component: any other feasible minimal choice would
have served alike. However, since we are working from smaller to larger com-
ponents, we will never later see a path of even length that cannot be solved
to optimum for the reason that we might have “stolen” the optimum solution
through step (*). Moreover, the preference of solving small components first
is justified by the fact that this way, the smallest distance from the overall
minimum is guaranteed. A further justification for the choice of (*) is that
this guarantees that (later on) all cycle components will be solved matching
the overall minimum.

2.3 More Sophistication: Algorithm A3

The main part of [9] was struggling with improving the branching on vertices
up to degree three. Here, we are going to display a much simpler branching
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1. If possible: branch at a vertex of degree four or higher.
2. If the graph is polynomially solvable: do so and terminate.
3. if the graph is 3-regular: branch at an arbitrary vertex of degree three.

// In the following, let c be a component of the graph that is not polynomially
solvable and that is not 3-regular.
4. Let A be the vertex in c with the largest number of attached tails.
4a. If A has three tails, then we branch at A. (Notice that c is no S3.)
4b. If A has only two tails, then consider the neighbor D of A that is not on a tail. Let
E be the first vertex of degree three on the path p starting with A, D (E must exist,
since p is no tail) and branch at E, with possibly E = D.
4c. If A has only one tail p, then branch at A if p is not a microtail.

// The only tails in c are microtails attached to vertices A with no other tail.
4d. Let A be a vertex with microtail. Let B �= A be one of the two vertices of degree
three that can be reached from A (with possible intermediate vertices of degree two),
preferring the closer one, ties broken arbitrarily. Then, branch at B.

// This way, all microtails are deleted from c.
// Let A be a vertex of degree two, with the largest number of neighbors that also

have degree two. Let B and C be the two vertices of degree three that can be reached
from A in either direction, s.t. B is not farther away from A than C.
5. If C is not neighbor of A, then we branch at B.
6. // Now, the vertices B and C of degree three are neighbors of the degree-2-vertex A.
6a. If B and C have three common neighbors A,D, E, either take B, C or A,D, E
together into the cover.
6b. If B and C have two common neighbors A,D of degree two, then branch at B.
6c. If B and C have two common neighbors A, D, with D of degree three, then branch
at D.
7. // Now, the degree-3-vertices B and C have only one common neighbor, namely the
degree-2-vertex A.
7a. If C has three neighbors of degree two, branch at B, and vice versa.
7b. If B or C has exactly one neighbor E of degree three, branch at E.
8. // Now, B and C possess only one neighbor of degree two, namely A.

// Let N(B) = {B1, B2, A} and N(C) = {C1, C2, A}.
8a. If (N(B1) ∩ N(B2)) = {B, B′}, then branch by either taking B and B′ into the
cover or taking B1, B2 into the cover. The case |N(C1) ∩ N(C2)| > 1 is symmetric.
8b. If N(B1) = {B, B′, B′′} with deg(B′′) = 2, then branch at B′. (There are three
possible symmetric cases to be considered.)
8c. Branch at some X ∈ (N(B1) ∪ N(B2) ∪ N(C1) ∪ N(C2)) \ {B, C}.

Fig. 1. List of heuristic priorities

strategy (that was actually implemented) to obtain basically the same run time
estimate improvements. We describe the adopted branching strategy in what
follows. Here, S3 denotes a star graph with four vertices, one center connected
to the three other vertices (and these are all edges of the graph). Notice that we
can easily adapt our polynomial-time algorithms described above to cope with
S3-components, as well. So, we term a graph that contains only components of
maximum degree two or S3-components polynomially solvable. We also need two
further notions from [9]: a tail consists of a degree-3-vertex A, followed by a
(possibly empty) sequence of degree-two-vertices, ended by a degree-1-vertex. If
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case branching vector branching number
1. (1, 4) 1.3803
2. — no branching
3. (1, 3) happens only once per search tree path
4a. − 4c. (2, 3) 1.3248
4d. − 5. (3, 3, 4) 1.3954
6a. (2, 3) 1.3248
6b. (3, 3, 4) 1.3954
6c.; 7b. (3, 4, 6, 6, 7) 1.3954
7a. (3, 4, 6, 6, 8) 1.3867
8a. (2, 4, 5) 1.3803
8b. (4, 5, 7, 9, 7, 6, 7, 9) 1.3905
8c. (4, 5, 7, 7, 8, 6, 6, 7) 1.4154

Fig. 2. Branching vectors and numbers for different heuristic priorities

A is neighbor of a degree-1-vertex, we speak of a micro-tail. In Fig. 1, we give a
list of priorities according to which branching should be done.

Notice that there are further variations of the algorithm that are easily at
hand. For example, one can observe that step 4a. can be avoided, since then the
component c is a tree for which a list of all minimal signatures can be obtained
by dynamic programming. However, this does not affect our worst-case running
time analysis that is sketched in the following.

Some Further Comments on the Run-Time Analysis
4d: Recall that there is a micro-tail A′ attached to A. The worst case is when
B ∈ N(A), and when C ∈ N(A) is also of degree three. If B is taken into the
cover, then in the next recursive call of the procedure, in the worst case C would
be selected for branching, since a (non micro-)tail is attached to C, giving it the
highest heuristic priority. If C is put into the cover, then the edge A′A must be
covered by an additional vertex. Hence, we obtain the claimed branching vector.
5: In the worst case, B ∈ N(A) and C ∈ N(N(A)). Since the graph is bipartite,
C �= B. If B goes into the cover, then we obtain a (non micro-)tail at C as in
case 4d. The case when B = C, i.e., B and C are (at least) at distance four, is
even better, yielding a branching vector of at least (2, 3).
6: Here, we consider the remaining cases that the degree-2-vertex A is part of a
4-cycle. Notice that the analysis of small cycles was one of the cornerstones of
the analysis in [9].
6a: If one out of A, D, E is not going into the cover, then B and C must go there.
Conversely, if B or C does not go into the cover, then all of A, D, E are there.
6b: If B goes into the cover, we produce a situation with C having two microtails
(case 4b).
6c: There are three subcases to be considered for the run-time analysis, depend-
ing on j = |N(N(C) \ {A, D}) ∩ N(N(B) \ {A, D})| ∈ {0, 1, 2}. Notice that
N(B) ∩ N(C) = {A, D}, since otherwise case 6 would have applied. Details of
the tedious but straight-forward analysis are omitted for reasons of space.
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7: Observe that now |(N(B)∪N(C))\{A}| = 4; otherwise, A is part of a 4-cycle
or B and C do not have degree three; all these cases were treated above.
7a: If B is taken into the cover, we find a microtail at C. Since both neighbors
of C are of degree two, we will branch at their neighbors C1 and C2 (not equal
to C) at worst. Due to case 6b, we can assume that N(C1)∩N(C2) = ∅. Taking
the branches at C1 and C2 alone, we arrive at a branching vector of (3, 5, 5, 7)
in the case when B goes into the cover. Altogether, we get a branching vector
of (3, 4, 6, 6, 8) which yields a branching number of 1.3867.
7b: If E goes into the cover, we produce a chain of three consecutive degree-2
vertices. Assuming that we have no cycles of length four or six, such a chain can
be resolved through a branching vector of (3, 5, 5, 6). Altogether, we arrive at a
branching vector of (3, 4, 6, 6, 7), yielding a branching number of 1.3956.
8a: Notice that A, B form a tail after branching at B1 and B2. So, the analysis
from [9, Table 15] applies.
8b: If B′ is taken into the cover, this will be followed by branching at the hitherto
unnamed neighbor B̂ of B′′ by priority 5. We consider the cases that the neigh-
bors of B′ or B′ and the neighbors of B̂ go into the cover. In both cases, we have
the possibility to isolate small components (by observing tails) with branching
at C and at B2. Overall, this gives a branching vector of (4, 5, 7, 9, 7, 6, 7, 9) and
hence the claimed branching number.
8c: Consider B′ ∈ N(B1) selected for branching. If B′ goes into the cover, then
B is neighbor of two vertices of degree two, so that B2 will be selected for
branching, following the analysis of case 7b. If N(B′) is put into the cover, A
and B are two neighbored vertices of degree two; so, priority 5 applies. Com-
bining the branching vectors yields the claim. Notice that this is by far the
worst case branching. The analysis from [9] shows that this particular case can
be improved, basically by consequently branching at all vertices from (N(B1) ∪
N(B2) ∪ N(C1) ∪ N(C2)) \ {B, C} in parallel. To actually and fully mimic the
case distinctions from [9], cycles of length 6 should be treated in a separate way.
However, as it turned out, this case (in fact, all subcases of case 8) showed up
very rarely in the experiments, so that we could safely omit it. More precisely,
less than 0.001% of all branches were due to these “isolated vertices of degree
two.” So, our implementation is deliberately omitting some of the details from [9]
without sacrificing speed in practice. However, it would need only three special
cases to be implemented to completely cover case 8c. according to the analysis
from [9], namely those depicted in Tables 6, 22 and 23 in [9].

3 The Tests

Blough [2,3] discussed how to model failures in memory arrays. He suggested
the so-called center-satellite model, based on earlier work of Meyer and Prad-
han [16]. In that model, it is assumed that memory cells could spontaneously
and independently fail with a certain probability p1. However, once a cell failed,
its neighbors also fail with a certain probability p2, and this affects a whole re-
gion of radius r around a central element. So, we are dealing with compound
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Fig. 3. The graphical interface of the implementation; to the right, the bipartite graph
model is shown

probabilities. This leads to a two-stage model to simulate such kind of failures:
in a first phase, with probability p1, memory cells are assumed to be faulty; in a
second phase, within a neighborhood of radius r, cells are assumed to be faulty
with probability p2. Fig. 3 shows a failure pattern obtained in this way.

Notice that we assume both underlying distributions to be uniform. This
differs a bit from the original model of Meyer and Pradhan [16] who assumed a
Poisson distribution for the satellites; however, since we are focussing on rather
small radii in our experimental studies, this distinction is not essential. Also
Blough and Pelc adopted this simpler approach. However, we deviate from the
approach of Blough and Pelc insofar as we are considering cycles around the
center with the usual meaning, while they considered cycles in the Manhattan
metric, i.e., square-shaped failure regions.

All tests were run on a PC with Athlon XP 2000+ processor (2 GHz with
512 KB Cache) and with 256 MB main memory. We used Microsoft Windows
XP Professional, Visual Studio 2003 and LEDA 3.0. All the running times were
obtained by testing 100 independently generated instances within a given setup
as described in the first columns of the tables, describing the dimensions of the
array, the number of spare lines, the chosen probabilities and the chosen radius r
(for the satellites). The run times are given in seconds per instance (on average).
Fig. 4 tries to simulate the settings described by Blough and Pelc in [3]. We list
the measurements separately for the case that a solution was found (or not).

At first glance, the corresponding figures seem to be surprising, since the run-
ning times for finding a solution are consistently larger than the ones for rejecting
the instance. This phenomenon is partly explained when looking at the average
number of branchings (# br) encountered. Obviously, the early abort method
(based on maximum matching) allows to early reject most instances nearly with-
out branching in polynomial time. We validated this hypothesis by testing our
algorithms without that heuristic, which led to a tremendous slow-down, in par-
ticular in the case when no solution was to be found. We also separately list the
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Fig. 4. The run times of Blough’s setup

Fig. 5. The run times for larger numbers

running times for the (quite sophisticated) Alg. 3 in comparison with the much
simpler Alg. 2. In practice, it does not necessarily pay off to invest much more
time in implementing the more complicated algorithm.

In Fig. 5, we take a more radical approach: while we always restricted the
radius of the defective region to one, we explored quite large parameter values.
Even with values as high as k1 = k2 = 512, which gives an astronomic constant of
about 2500 in our run-time worst case estimates, we still obtain (non-)solutions in
only a few seconds. In this sense, our algorithm displays quite a robust behaviour.
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It is also seen that the savings of branches of the more complicated Alg.3 are
more visible in more complicated instances.

In fact, we also tested on usual random graph models and found similar ob-
servations as those reported for Blough’s model, see [1]. In another set of experi-
ments (again explicitly reported in [1]), we observed that good run times seem to
depend on the fact that, in the experiments displayed so far, k1 = k2: whenever
k1 and k2 are much different, the early abort method strikes only occasionally,
and therefore the running times do considerably increase.

We can read our experimental results also as a validation of earlier probability-
theoretic results indicating that it is unlikely to find hard instances for CBVC

under various probability models, including the center-satellite model described
above [3,17]. This also explains why the probabilities p1 and p2 listed in our
figures look quite special: indeed they were searched for in order to display any
non-trivial behaviour of our algorithms.

4 Conclusions: Lessons Learned and Future Work

We have shown that FPT methodology is quite useful at various stages when
designing algorithms for NP-hard problems:

– One could validate heuristics against known optimal solutions; this sort of
application is useful even when the exact algorithm turns out to be too slow
for actual applications within the industrial process at hand;

– At least in some circumstances, one could actually use those algorithms, even
when dealing with a (pipelined, but still real-time) industrial application (as
in chip manufacturing processes in our concrete application), at least with an
additional time limit that might sometimes stop the search tree and output
the current (sub-optimum) solution.

In particular, modern exact algorithms are very neat to implement since their
overall structure tends to be quite simple: in our case, we could first implement
Algorithm A1 as search tree backbone. A1 can be safely implemented in two
weeks by one programmer. The integration of the polynomial phase, leading to
A2, may take another week including validation. The details of the heuristic
priority list may take more time than previously invested, but tests could and
should always accompany this phase to see if the special cases considered with
those priorities will actually occur. This consideration brought us to the decision
to omit some of the special cases (that should have been implemented to fully
match the analysis given in [9]), because those cases will not show up very often.

It remains as future work to compare our approach with existing published
heuristics and also with some other exact approaches, a recent example be-
ing [14]. Even more interesting would be to test our algorithms on “real data”,
not only on simulated data. Since this particular problem is connected with many
production secrets, these real data are not available.

Furthermore, there are alternative yield enhancement strategies employed in
modern chip fabrication processes, as sketched in [7]. As detailed in [1], some
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of these enhancements can actually be solved with (a slight variant of) the
algorithms described in this paper. However, others seem to be more costly
within the parameterized algorithm framework. So, the development of efficient
parameterized algorithms for these variants is a further challenge for the future.
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