

Lecture Notes in Computer Science 5059
Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Franco P. Preparata Xiaodong Wu
Jianping Yin (Eds.)

Frontiers
in Algorithmics

Second International Workshop, FAW 2008
Changsha, China, June 19-21, 2008
Proceedings

13

Volume Editors

Franco P. Preparata
Brown University, Department of Computer Science
115 Waterman St., Providence, RI 02912-1910, USA
E-mail: franco@cs.brown.edu

Xiaodong Wu
University of Iowa, Department of Electrical and Computer Engineering
4016 Seamans Center for the Engineering Arts and Sciences
Iowa City, IA 52242-1595, USA
E-mail: xiaodong-wu@uiowa.edu

Jianping Yin
National University of Defense Technology, School of Computer Science
Changsha, Hunan 410073, China
E-mail: jpyin@nudt.edu.cn

Library of Congress Control Number: 2008928564

CR Subject Classification (1998): F.2.2, G.2.1-2, G.1.2, G.1.6, C.2.2, I.3.5, E.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-69310-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-69310-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12277209 06/3180 5 4 3 2 1 0

Preface

The Annual International Frontiers in Algorithmics Workshop is a focused fo-
rum on current trends in research on algorithms, discrete structures, and their
applications. It intends to bring together international experts at the research
frontiers in those areas to exchange ideas and to present significant new results.
The mission of the workshop is to stimulate the various fields for which algo-
rithmics can become a crucial enabler, and to strengthen the ties between the
Eastern and Western algorithmics research communities. The Second Interna-
tional Frontiers in Algorithmics Workshop (FAW 2008) took place in Changsha,
China, June 19–21, 2008.

In response to the Call for Papers, 80 papers were submitted from 15 coun-
tries and regions: Canada, China, France, Germany, Greece, Hong Kong, India,
Iran, Japan, Mexico, Norway, Singapore, South Korea, Taiwan, and the USA.
After a six-week period of careful reviewing and discussion, the Program Com-
mittee accepted 32 submissions for presentation at the conference. These papers
were selected for nine special focus tracks in the areas of biomedical informat-
ics, discrete structures, geometric information processing and communication,
games and incentive analysis, graph algorithms, internet algorithms and proto-
cols, parameterized algorithms, design and analysis of heuristics, approximate
and online algorithms, and machine learning. The program of FAW 2008 also
included three keynote talks by Xiaotie Deng, John E. Hopcroft, and Milan
Sonka.

We thank all Program Committee members and the external referees for
their excellent work, especially given the demanding time constraints. It has
been a wonderful experience to work with them. We would like to express our
gratitude to the three invited speakers and all the people who submitted papers
for consideration: They all contributed to the high quality of the conference. We
also thank the members of the Steering Committee, especially Danny Z. Chen
and Xiaotie Deng, for their leadership, advice and assistance on crucial matters
concerning the conference.

Finally, we would like to thank the Organizing Committee, led by Peng Zou
and Hao Li, who worked tirelessly to put in place the logistical arrangements
of FAW 2008 and to make this conference a success. We are also very grateful
to our generous sponsors, the School of Computer Science, National University
of Defense Technology, for kindly offering the financial and clerical support that
made the conference possible and enjoyable.

June 2008 Franco P. Preparata
Xiaodong Wu
Jianping Yin

Organization

FAW 2008 was organized and sponsored by the School of Computer Science,
National University of Defense Technology, China.

Executive Committee

Conference Chair Huowang Chen (National University of Defense
Technology, China)

Program Co-chairs Franco P. Preparata (Brown University, USA)
Xiaodong Wu (University of Iowa, USA)
Jianping Yin (National University of Defense

Technology, China)
Organizing Chair Peng Zou (National University of Defense

Technology, China)
Organizing Co-chair Hao Li (Laboratoire de Recherche en

Informatique, France)

Program Committee

Nancy Amato (Texas A&M University, USA)
Tetsuo Asano (Japan Advanced Institute of Science and Technology, Japan)
Mikhail Atallah (Purdue University, USA)
David A. Bader (Georgia Institute of Technology, USA)
Chandra Chekuri (University of Illinois at Urbana-Champaign, USA)
Jianer Chen (Texas A&M University, USA)
Kyung-Yong Chwa (Korea Advanced Institute of Science Technology, Korea)
Bhaskar DasGupta (University of Illinois at Chicago, USA)
Qizhi Fang (Ocean University of China, China)
Michael R. Fellows (University of Newcastle, Australia)
Michael T. Goodrich (University of California Irvine, USA)
Horst W. Hamacher (University of Kaiserslautern, Germany)
Pinar Heggernes (University of Bergen, Norway)
Kazuo Iwama (Kyoto University, Japan)
Der-Tsai Lee (Institute of Information Science Academia Sinica, Taiwan)
Erricos J. Kontoghiorghes (Birkbeck College, University of London, UK)
Lian Li (Hefei University of Technology, China)
Xiang-Yang Li (Illinois Institute of Technology, USA)
Andy McLennan (University of Queensland, Australia)
Detlef Seese (Universität Karlsruhe, Germany)
Kasturi Varadarajan (University of Iowa, USA)
Guoqing Wu (Wuhan University, China)

VIII Organization

Jinhui Xu (State University of New York at Buffalo, USA)
Jinyun Xue (Jiangxi Normal University, China)
Chee Yap (New York University, USA)
Ramin Zabih (Cornell University, USA)
Louxin Zhang (National University of Singapore, Singapore)

Referees

Virat Agarwal Yun Liu Andreas Wahle
Sang Won Bae Daniel Lokshtanov Hom-Kai Wang
Kung-Sik Chan Jun Long Yajun Wang
Aparna Chandramowlishwaran Kamesh Madduri Xiaobing Wu
Xi Cheng Xufei Mao Yongan Wu
Manisha Gajbe Amrita Mathuriya Ping Xu
Yong Guan Daniel Meister Xiaohua Xu
AnChen Hsiao Jun Ni Lei Xu
Seunghwa Kang Peter Noel Teng-Kai Yu
Mong-jen Kao Bonizzoni Paola Honghai Zhang
Cheng-Chung Li Frank Ruskey Guomin Zhang
Chung-Shou Liao Shaojie Tang Yongding Zhu
Tien-Ching Lin Chung-Hung Tsai

Table of Contents

Fixed Point Computation and Equilibrium (Abstract of
Keynote Talk) . 1

Xiaotie Deng

Computer Science in the Information Age (Abstract of
Keynote Talk) . 2

John Hopcroft

Knowledge-Based Approaches to Quantitative Medical Image Analysis
and Image-Based Decision Making (Abstract of Keynote Talk) 3

Milan Sonka

Optimal Field Splitting, with Applications in Intensity-Modulated
Radiation Therapy . 4

Danny Z. Chen and Chao Wang

A Practical Parameterized Algorithm for Weighted Minimum Letter
Flips Model of the Individual Haplotyping Problem 16

Minzhu Xie, Jianxin Wang, Wei Zhou, and Jianer Chen

SlopeMiner: An Improved Method for Mining Subtle Signals in Time
Course Microarray Data . 28

Kevin McCormick, Roli Shrivastava, and Li Liao

A PTAS for the k-Consensus Structures Problem Under Euclidean
Squared Distance . 35

Shuai Cheng Li, Yen Kaow Ng, and Louxin Zhang

Haplotype Assembly from Weighted SNP Fragments and Related
Genotype Information . 45

Seung-Ho Kang, In-Seon Jeong, Mun-Ho Choi, and Hyeong-Seok Lim

Estimating Hybrid Frequency Moments of Data Streams (Extended
Abstract) . 55

Sumit Ganguly, Mohit Bansal, and Shruti Dube

Constraint Bipartite Vertex Cover: Simpler Exact Algorithms
and Implementations . 67

Guoqiang Bai and Henning Fernau

NP-Completeness of (k-SAT,r-UNk-SAT) and
(LSAT≥k,r-UNLSAT≥k) . 79

Tianyan Deng and Daoyun Xu

X Table of Contents

Absorbing Random Walks and the NAE2SAT Problem 89
K. Subramani

Versioning Tree Structures by Path-Merging . 101
Khaireel A. Mohamed, Tobias Langner, and Thomas Ottmann

A Linear In-situ Algorithm for the Power of Cyclic Permutation 113
Jinyun Xue, Bo Yang, and Zhengkang Zuo

Multi-bidding Strategy in Sponsored Keyword Auction 124
Tian-Ming Bu, Xiaotie Deng, and Qi Qi

A CSP-Based Approach for Solving Parity Game . 135
Min Jiang, Changle Zhou, Guoqing Wu, and Fan Zhang

Characterizing and Computing Minimal Cograph Completions 147
Daniel Lokshtanov, Federico Mancini, and Charis Papadopoulos

Efficient First-Order Model-Checking Using Short Labels 159
Bruno Courcelle, Cyril Gavoille, and Mamadou Moustapha Kanté

Matching for Graphs of Bounded Degree . 171
Yijie Han

Searching Trees with Sources and Targets . 174
Chris Worman and Boting Yang

Ranking of Closeness Centrality for Large-Scale Social Networks 186
Kazuya Okamoto, Wei Chen, and Xiang-Yang Li

Mixed Search Number of Permutation Graphs . 196
Pinar Heggernes and Rodica Mihai

The 2-Terminal-Set Path Cover Problem and Its Polynomial Solution
on Cographs . 208

Katerina Asdre and Stavros D. Nikolopoulos

A Distributed Algorithm to Approximate Node-Weighted Minimum
α-Connected (θ,k)-Coverage in Dense Sensor Networks 221

Yongan Wu, Min Li, Zhiping Cai, and En Zhu

Optimal Surface Flattening . 233
Danny Z. Chen and Ewa Misio�lek

Visiting a Polygon on the Optimal Way to a Query Point 245
Ramtin Khosravi and Mohammad Ghodsi

Constraint Abstraction in Verification of Security Protocols 252
Ti Zhou, Zhoujun Li, Mengjun Li, and Huowang Chen

Table of Contents XI

Fast Convergence of Variable-Structure Congestion Control Protocol
with Explicit Precise Feedback . 264

Huixiang Zhang, Guanzhong Dai, Lei Yao, and Hairui Zhou

Applying a New Grid-Based Elitist-Reserving Strategy to EMO Archive
Algorithms . 276

Jiongliang Xie, Jinhua Zheng, Biao Luo, and Miqing Li

The Parameterized Complexity of the Rectangle Stabbing Problem and
Its Variants . 288

Michael Dom and Somnath Sikdar

Solving Medium-Density Subset Sum Problems in Expected Polynomial
Time: An Enumeration Approach . 300

Changlin Wan and Zhongzhi Shi

A Scalable Algorithm for Graph-Based Active Learning 311
Wentao Zhao, Jun Long, En Zhu, and Yun Liu

A Supervised Feature Extraction Algorithm for Multi-class 323
Shifei Ding, Fengxiang Jin, Xiaofeng Lei, and Zhongzhi Shi

An Incremental Feature Learning Algorithm Based on Least Square
Support Vector Machine . 330

Xinwang Liu, Guomin Zhang, Yubin Zhan, and En Zhu

A Novel Wavelet Image Fusion Algorithm Based on Chaotic Neural
Network . 339

Hong Zhang, Yan Cao, Yan-feng Sun, and Lei Liu

Author Index . 349

Fixed Point Computation and Equilibrium

Abstract of Keynote Talk

Xiaotie Deng

Department of Computer Science
City University of Hong Kong, Hong Kong

deng@cs.cityu.edu.hk

The rise of the Internet has created a surge of human activities that make com-
putation, communication and optimization of participating agents accessible at
micro-economic levels. Fundamental equilibrium problems of games and mar-
kets, including algorithms and complexity as well as applications have become
active topics for complexity studies. Algorithmic Game Theory has emerged as
one of the highly interdisciplinary fields, in response to (and sometimes antici-
pating) the need of this great revolution, intersecting Economics, Mathematics,
Operations Research, Numerical Analysis, and Computer Science.

The mathematical model underlying various forms of equilibrium is the fixed
point concept. The discovery, and applications, of the close relationship between
the fixed point and equilibrium concepts has played a major role in shaping
Mathematical Economics. In computation, it continues to influence our under-
standing of complexity and algorithmic design for equilibrium problems. In this
talk, I will discuss some recent development in fixed point computation, together
with application problems, such as sponsored search auctions and envy-free cake
cuttings.

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, p. 1, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Computer Science in the Information Age

Abstract of Keynote Talk

John Hopcroft

Department of Computer Science
Cornell University, USA
jeh@cs.cornell.edu

The last forty years have seen computer science evolve as a major academic
discipline. Today the field is undergoing a major change. Some of the drivers of
this change are the internet, the world wide web, large sensor networks, large
quantities of information in digital form and the wide spread use of computers for
accessing information. This change is requiring universities to revise the content
of computer science programs. This talk will cover the changes in the theoretical
foundations needed to support information access in the coming years.

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, p. 2, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Knowledge-Based Approaches to Quantitative

Medical Image Analysis and Image-Based
Decision Making

Abstract of Keynote Talk

Milan Sonka

Department of Electrical and Computer Engineering
University of Iowa

Iowa City, IA 52242, USA
milan-sonka@uiowa.edu

Widespread use of three-dimensional tomographic imaging scanners and other
imaging modalities has revolutionized medical care as we know it today. The
ever-increasing sizes of acquired data volumes are making conventional visual
analysis of image data and consequent image-based decision making time con-
suming, tedious, and difficult to perform at the time available in busy clinical
practice. The field of quantitative medical imaging, which has considerably ma-
tured in the past decade, is increasingly promising to solve many current prob-
lems that radiologists, cardiologists, orthopedists, and many other physicians are
facing on a daily basis.

Accurate and reliable segmentation and subsequent quantitative description
of multi-dimensional and/or multi-modality medical image data is one of the
primary pre-requisites to more complex medical image analyses and decision
making. The presentation will give a broad overview of the state of the art of
medical image analysis and will focus on several inter-disciplinary projects re-
quiring a direct and close collaboration between physicians, computer scientists,
biostatisticians, and medical image analysis researchers. In the biomedical re-
search context, spanning from cell images to small and large animals and to
humans, a number of knowledge-based medical image analysis methods and ap-
proaches will be presented and their utility demonstrated. Examples of research
applications as well as commercially available solutions will be presented and
discussed.

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, p. 3, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Optimal Field Splitting, with Applications in

Intensity-Modulated Radiation Therapy�

Danny Z. Chen and Chao Wang��

Department of Computer Science and Engineering
University of Notre Dame

Notre Dame, IN 46556, USA
{chen,cwang1}@cse.nd.edu

Abstract. We consider an interesting geometric partition problem
called field splitting, which arises in intensity-modulated radiation ther-
apy (IMRT). IMRT is a modern cancer treatment technique that delivers
prescribed radiation dose distributions, called intensity maps (IMs) and
defined on uniform grids, to target tumors via the help of a device called
the multileaf collimator (MLC). The delivery of each IM requires a cer-
tain amount of beam-on time, which is the total time when a patient is
exposed to actual irradiation during the delivery. Due to the maximum
leaf spread constraint of the MLCs (i.e., the size and range of an MLC are
constrained by its mechanical design), IMs whose widths exceed a given
threshold value cannot be delivered by the MLC as a whole, and thus
must be split into multiple subfields (i.e., subgrids) so that each sub-
field can be delivered separately by the MLC. In this paper, we present
the first efficient algorithm for computing an optimal field splitting that
guarantees to minimize the total beam-on time of the resulting subfields
subject to a new constraint that the maximum beam-on time of each
individual subfield is no larger than a given a threshold value. Our ba-
sic idea is to formulate this field splitting problem as a special integer
linear programming problem. By considering its dual problem, which
turns out to be a shortest path problem on a directed graph with both
positive and negative edge weights, we are able to handle efficiently the
upper-bound constraint on the allowed beam-on time of each resulting
individual subfield. We implement our new field splitting algorithm and
give some experimental results on comparing our solutions with those
computed by the previous methods.

1 Introduction

In this paper, we consider an interesting geometric partition problem called field
splitting, which arises in intensity-modulated radiation therapy (IMRT). IMRT
is a modern cancer treatment technique that aims to deliver highly conformal

� This research was supported in part by the National Science Foundation under Grant
CCF-0515203.

�� Corresponding author.

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 4–15, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Optimal Field Splitting, with Applications in IMRT 5

2
3

4

0
2

23
3

2

0
1
0
1
2

20

0

0
1
1

2

0
2
3
2
4

3
2
4
6 5

4
3

3

5

2
4 5

4
3
5
3 0

2

2
3

2

0
1
0
1
2

0

(e)(d)(c)

0

0

0
1
1

2

0
2
3
2
4

3
2
4
6 5

4
3

3

5 2
3 2

4

0
2

23
3

2

0
1
0
1
2

0
1
1

2

0
2
3
2
4

3
2
4
6 5

4
3

3

5 2
3 2

4

0
2

23
3

2
0

0
1
0
1
2

0

(b)(a)

0

1
1

2

0
2
3

1

M 1M 1 M 3

M 2

3+

1
2+

2+

1

0+

2M

1

1M M 3 M

M 2

3

0
0+

3
0+

+

1
3+

3
������������������������������������

3+

2

0
2+

1

Fig. 1. (a) An MLC. (b) An IM. (c)-(e) Examples of splitting an IM into three sub-
fields, M1, M2, and M3, using vertical lines, y-monotone paths, and with overlapping,
respectively. The dark cells in (e) show the overlapping regions of the subfields; the
prescribed dose value in each dark cell is divided into two parts and allocated to two
adjacent subfields.

prescribed radiation dose distributions, called intensity maps (IMs), to target
tumors while sparing the surrounding normal tissue and critical structures. An
IM is a dose prescription specified by a set of nonnegative integers on a uniform
2-D grid (see Figure 1(b)). The value in each grid cell indicates the intensity
level of prescribed radiation at the body region corresponding to that IM cell.
The delivery is done by a set of cylindrical radiation beams orthogonal to the
IM grid.

One of the current most advanced tools for IM delivery is the multileaf collima-
tor (MLC) [14,15]. An MLC consists of many pairs of tungsten alloy leaves of the
same rectangular shape and size (see Figure 1(a)). The opposite leaves of each
pair are aligned to each other, and can move left or right to form a y-monotone
rectilinear polygonal beam-shaping region (the cross-section of a cylindrical ra-
diation beam is shaped by such a region). All IM cells exposed under a radiation
beam receive a uniform radiation dose proportional to the exposure time. The
mechanical design of the MLCs restricts what kinds of beam-shaping regions are
allowed [14]. A common constraint is called the maximum leaf spread: No
leaf can move away from the vertical center line of the MLC by more than a
threshold distance (e.g., 12.5 cm for Elekta MLCs). This means that an MLC
cannot enclose any IM whose width exceeds a threshold value.

A key criterion for measuring the quality of IMRT treatment is the beam-on
time, which is the total time while a patient is exposed to actual irradiation.
Minimizing the beam-on time without compromising the prescribed dose distri-
butions is an effective way to enhance the efficiency of the radiation machine,
called the monitor-unit (MU) efficiency in medical literature, and to reduce the

6 D.Z. Chen and C. Wang

patient’s risk under irradiation [2]. The beam-on time also constitutes a good
portion of the total treatment time [1,3,14,15] in IMRT. Thus, minimizing the
beam-on time lowers the treatment cost of each patient, enhances the treatment
quality, and increases the patient throughput of the hospitals.

On one of the most popular MLC systems called Varian, for example, the
maximum leaf spread constraint limits the maximum allowed field width to about
15 cm. Hence, this necessitates a large-width IM field to be split into two or more
adjacent subfields, each of which can be delivered separately by the MLC subject
to the maximum leaf spread constraint [7,9,16]. But, such IM splitting may result
in a prolonged beam-on time and thus adversely affect the treatment quality. The
field splitting problem, roughly speaking, is to split an IM of a large width
into multiple subfields whose widths are all no bigger than a threshold value,
such that the total beam-on time of the resulting subfields is minimized. While
splitting an IM into multiple subfields, it is also clinically desirable to keep the
beam-on time of each resulting individual subfield under some threshold value.
The reason is that, during the delivery of each subfield, the patient body may
move, and the longer the beam-on time of a subfield, the higher the chance of
body motion. Imposing an upper bound onto the beam-on time of each subfield
is helpful to ensuring the accuracy of the IMRT treatment. This upper-bound
constraint on the beam-on time of the resulting subfields has not been considered
by previous field splitting algorithms before, which we will study in this paper.

Based on the MLC beam-shaping features, there are three ways to split an
IM (see Figures 1(c)-1(e)): (1) splitting using vertical lines; (2) splitting using
y-monotone paths; (3) splitting with overlapping. Note that in versions (1) and
(2), an IM cell belongs to exactly one subfield; but in version (3), a cell can
belong to two adjacent subfields, with a nonnegative value in each of these two
subfields, and in the resulting sequence of subfields, each subfield is allowed
to overlap only with the subfield immediately before and the one immediately
after it. Clearly, splitting using y-monotone paths is a generalization of splitting
using vertical lines (and its solution quality can in fact be considerably better),
while splitting with overlapping is in a sense a generalization of splitting using
y-monotone paths.

To characterize the minimum beam-on time (MBT), Engel [8] showed
that for an IM M of size m × n, when n is no larger than the maximum allowed
field width w, the minimum beam-on time (MBT) of M is captured by the
following formula:

MBT (M) =
m

max
i=1

{Mi,1 +
∑n

j=2
max{0, Mi,j − Mi,j−1}} (1)

Engel also described a class of algorithms achieving this minimum value. Geo-
metrically, if we view each row of an IM as representing a directed left-to-right
x-monotone rectilinear curve f , called the dose profile curve (see Figure 2(a)),
then the MBT of an IM row is actually the total sum of lengths of all the upward
edges on f . The meaning of Formula (1) may be explained as follows: Each IM
row is delivered by one pair of MLC leaves; for an upward edge e, say, of length l,
on the dose profile curve of the IM row, the tip of the left MLC leaf for this row
must stay at the x-coordinate of e for at least l time units (assuming one unit

Optimal Field Splitting, with Applications in IMRT 7

a
aa 32

1

f

(c)(b)(a)

f
3

212
1

f
ffff

f

na

Fig. 2. (a) The dose profile curve of one row of an IM. The MBT (minimum beam-on
time) of the IM row is equal to the sum of the lengths of all upward edges on the curve.
(b) Splitting the IM row in (a) into two subfields with overlapping. (c) Splitting the
IM row in (a) into three subfields with overlapping.

of dose is delivered in one unit of time) while the beam is on, so that the dose
difference resulted at the x-coordinate of e is l. The max operator in the above
formula reflects the fact that since all MLC leaf pairs are in use simultaneously
during the delivery of the IM, the overall MBT of a subfield is determined by
the maximum MBT value over all the m rows of the subfield.

A few known field splitting algorithms aim to minimize the total MBT, i.e.,
the sum of the MBTs, of the resulting subfields. Kamath et al. [11] first gave
an O(mn2) time algorithm to split a size m × n IM using vertical lines into at
most three subfields (i.e., n ≤ 3w for their algorithm, where w is the maximum
allowed field width). Wu [17] formulated the problem of splitting an IM of an
arbitrary width into k ≥ 3 subfields using vertical lines as a k-link shortest path
problem, yielding an O(mnw) time algorithm. Kamath et al. [10] studied the
problem of splitting an IM into at most three overlapping subfields, minimizing
the total MBT of the resulting subfields; they proposed a greedy algorithm that
produces optimal solutions in O(mn) time when the overlapping regions of the
subfields are fixed. Chen and Wang [5] gave an O(mn + mΔd−2) time algorithm
for optimally splitting an IM into d overlapping subfields whose overlapping
regions need not be fixed, where Δ = w�n/w� − n + 1 and d = �n/w� ≥ 1 is the
minimum number of subfields required to deliver M subject to the maximum
allowed field width w, and an O(mn + md−2Δd−1 log(mΔ)) time algorithm for
optimally splitting an IM into d subfields with y-monotone paths. Wu et al. [18]
gave an O(mn) time algorithm for the field splitting problem that minimizes
the total complexity (a criterion closely related to the total beam-on time) of the
resulting subfields, and showed how to minimize the maximum complexity of the
resulting subfields in linear time when the overlapping regions of the subfields
are fixed. Chen et al. [4] also considered field splitting problems based on other
clinical criteria.

In this paper, we study the following constrained field splitting with
overlapping (CFSO) problem. Given an IM M of size m×n, a maximum field
width w > 0, and a threshold beam-on time Tth > 0, split M into d = �n/w�
overlapping subfields M1, M2, . . . , Md, each with a width ≤ w, such that (1) the
MBT of each individual subfield Mi is no bigger than Tth, and (2) the total MBT
of the d subfields is minimized (e.g., Figures 2(b)-2(c)). Here, d is the minimum
number of subfields required to deliver M subject to the maximum allowed field
width w.

8 D.Z. Chen and C. Wang

To our best knowledge, no previous algorithms consider computing an optimal
field splitting of IMs with the minimum total MBT subject to the upper-bound
constraint on the MBT of each resulting subfield. The CFSO problem is clinically
useful, as we discussed earlier in this section.

Our results in this paper are summarized as follows.

1. We present the first efficient algorithm for computing an optimal solution
of the constrained field splitting problem (CFSO) defined in this section.
Based on the integer linear programming framework of Chen and Wang
[5] and graph optimization techniques, we extend the approach in [5] to
handling the upper-bound constraint on the beam-on times of the individual
subfields. Our algorithm runs in O(mn +(md2 + d3)Δd−2) time, where Δ =
w�n/w� − n + 1 (= O(w)) and d = �n/w� ≥ 1. It should be pointed out
that in the current clinical settings, the value of d is usually not bigger than
3. Thus our algorithm is an optimal O(mn) time solution for most of the
current practical clinical applications.

2. One special feature of our field splitting algorithm is that it can compute
a trade-off curve between the total MBT of the resulting subfields and the
threshold value Tth for the MBT of each individual subfield. Since the value
of Tth directly affects the treatment quality, this feature actually gives a
trade-off between the treatment efficiency and treatment quality.

3. We implement our new field splitting algorithm and provide some experimen-
tal results on comparing our solutions with those computed by the previous
methods using both clinical IMs and randomly generated IMs.

The basic idea for our CFSO algorithm is to formulate the problem as a special
integer linear programming problem. By considering its dual problem, which
turns out to be a shortest path problem on a directed graph with both positive
and negative edge weights, we are able to handle efficiently the upper-bound
constraint on the allowed beam-on time of each resulting individual subfield.

2 Constrained Field Splitting with Overlapping (CFSO)

In this section, we present our algorithm for solving the constrained field splitting
with overlapping (CFSO) problem.

2.1 Notation and Definitions

We say that intervals [μ1, ν1], [μ2, ν2], . . . , [μd, νd] (d ≥ 2) form an interweaving
list if μ1 < μ2 ≤ ν1 < μ3 ≤ ν2 < μ4 ≤ · · · < μk+1 ≤ νk < · · · < μd ≤ νd−1 < νd.
For a subfield S restricted to begin from column μ + 1 and end at column ν
(μ + 1 ≤ ν), we call [μ, ν] the bounding interval of S. We say that subfields
S1, S2, . . . , Sd form a chain if their corresponding bounding intervals form an
interweaving list (i.e., subfields Sk and Sk+1 are allowed to overlap, for every
k = 1, 2, . . . , d − 1). Further, t = (t1, t2, . . . , td) ∈ Z

d
+ is called the MBT tuple of

a chain of d subfields S1, S2, . . . , Sd if tk is the MBT of Sk (k = 1, 2, . . . , d).
For two tuples t = (t1, t2, . . . , td) and τ = (τ1, τ2, . . . , τd), we say t ≤ τ if

tk ≤ τk for every k = 1, 2, . . . , d.

Optimal Field Splitting, with Applications in IMRT 9

2.2 The General Row Splitting (GRS) Problem

We first review a basic case of the CFSO problem, called the general row
splitting (GRS) problem, which is defined as follows: Given a vector (row)
α ∈ Z

n
+ (n ≥ 3), a d-tuple τ ∈ Z

d
+ (d ≥ 2), and an interweaving interval list IL:

Ik = [μk, νk], k = 1, 2, . . . , d, with μ1 = 0 and νd = n, split α into a chain of d
overlapping subfields S1, S2, . . . , Sd such that the bounding interval of each Sk

is Ik (k = 1, 2, . . . , d) and the MBT d-tuple t = (t1, t2, . . . , td) of the resulting
subfield chain (i.e., tk is the MBT of the subfield Sk) satisfies t ≤ τ . Denote by
GRS(α, τ, IL) the GRS problem on the instance α, τ , and IL.

Chen and Wang [5] gave the following result on the GRS problem, which will
be useful to our CFSO algorithm.

Theorem 1. ([5]) GRS(α, τ, IL) has a solution if and only if τ ∈ P ∩Z
d, where

P =
{

(t1, t2, . . . , td) ∈ R
d

∣∣∣∣
∑k′

q=k
tq ≥ ηk′ − ξk−1, ∀(k, k′) : 1 ≤ k ≤ k′ ≤ d

}

and ηk’s and ξk’s are defined by

ηk =
{

c1 k = 1∑k−1
q=1 ρq +

∑k
q=1 cq 2 ≤ k ≤ d

ξk =

{∑k
q=1 ρq +

∑k
q=1 cq − ανk+1 1 ≤ k ≤ d − 1∑d−1

q=1 ρq +
∑d

q=1 cq k = d

with

ck =

⎧
⎨

⎩

α1 +
∑μ2

j=2 max{0, αj − αj−1} k = 1∑μk+1
j=νk−1+2 max{0, αj − αj−1} 2 ≤ k ≤ d − 1∑n
j=νk−1+2 max{0, αi − αj−1} k = d

ρk = max{ανk+1,
∑νk+1

j=μk+1+1 max{0, αj − αj−1}} 1 ≤ k ≤ d − 1
Moreover, given any τ ∈ P ∩ Z

d, we can solve GRS(α, τ, IL) in O(n) time.

Note that P defined in Theorem 1 is a polytope in R
d specified by a polynomial

number (in terms of d) of linear constraints.

2.3 The Constrained Field Splitting with Fixed Overlapping
(CFSFO) Problem

In this section, we study a special case of the constrained field splitting with
overlapping (CFSO) problem, i.e., the case when the sizes and positions of the d
sought subfields are all fixed. Precisely, the constrained field splitting with
fixed overlapping (CFSFO) problem is: Given an IM M of size m × n, an
interweaving list IL of d intervals I1, I2, . . . , Id, and a threshold beam-on time
Tth > 0, split M into a chain of d overlapping subfields M1, M2, . . . , Md, such
that (1) Ik is the bounding interval of Mk (for each k = 1, 2, . . . , d), (2) the MBT
of every subfield Mk (1 ≤ k ≤ d) is no bigger than Tth, and (3) the total MBT
of the d resulting subfields is minimized.

Denote by CFSFO(M, IL, Tth) the CFSFO problem on the instance M , IL,
and Tth. Recall that the MBT of a subfield Mk is the maximum MBT value

10 D.Z. Chen and C. Wang

over all the m rows of Mk. Therefore, for any feasible solution (M1, M2, . . . , Md)
of CFSFO(M, IL, Tth), let τ := (MBT (M1), MBT (M2), . . . , MBT (Md)) be the
corresponding MBT tuple, and denote by M (i) (resp., M

(i)
k) the i-th row of M

(resp., Mk). For each i = 1, 2, . . . , m, (M (i)
1 , M

(i)
2 , . . . , M

(i)
d) is clearly a solution

of the GRS instance GRS(M (i), τ, IL). By Theorem 1, we have τ ∈ Pi∩Z
d, where

Pi =
{
(t1, t2, . . . , td) ∈ R

d
∣∣∣

∑k′

q=k tq ≥ η
(i)
k′ − ξ

(i)
k−1, ∀(k, k′) : 1 ≤ k ≤ k′ ≤ d

}

(here, η
(i)
k ’s and ξ

(i)
k ’s are defined as in Theorem 1 except that α is substituted

by M (i)). Since the MBT of each individual subfield Mk is no bigger than Tth,
we have τ ≤ (Tth, Tth, . . . , Tth). It is thus easy to show that the CFSFO problem
can be transformed to the following integer linear programming (ILP) problem:

min
∑d

k=1 τk

subject to∑k′

q=k τq ≥ maxm
i=1{η

(i)
k′ − ξ

(i)
k−1}, ∀(k, k′) : 1 ≤ k ≤ k′ ≤ d

τk ≤ Tth, k = 1, 2, . . . , d
τ = (τ1, τ2, . . . , τd) ∈ Z

d

Clearly, the time taken by the transformation process is dominated by the
time for computing the right hand side of the above ILP. For a fixed i, it is easy
to show that all the η

(i)
k ’s and ξ

(i)
k ’s can be computed in O(n) time. Once all the

η
(i)
k ’s and ξ

(i)
k ’s are computed for every i, given (k, k′), maxm

i=1{η
(i)
k′ − ξ

(i)
k−1} can

be computed in O(m) time. Therefore the time complexity of this transformation
is O(mn + md2).

To solve this ILP problem efficiently, note that the constraint matrix of the
ILP is a (0,1) interval matrix (i.e., each row of the constraint matrix is of the
form (0, . . . , 0, 1, . . . , 1, 0, . . . , 0) with the 1’s appearing consecutively) and is thus
totally unimodular [12]. Based on well-known theory of linear programming and
integer linear programming [12], this ILP problem can be solved optimally as the
following linear programming (LP) problem, denoted by LPI , by disregarding
the integer solution constraint of the ILP:

min
∑d

k=1 τk

subject to∑k′

q=k τq ≥ maxm
i=1{η

(i)
k′ − ξ

(i)
k−1}, ∀(k, k′) : 1 ≤ k ≤ k′ ≤ d

τk ≤ Tth, k = 1, 2, . . . , d

We introduce a variable π0, and define πk = π0 +
∑k

q=1 τq, for each k =
1, 2, . . . , d. Then LPI is equivalent to the following LP problem, denoted by LPII :

maxπ0 − πd

subject to
πk − πk′ ≤ − maxm

i=1{η
(i)
k′ − ξ

(i)
k−1}, ∀(k, k′) : 0 ≤ k < k′ ≤ d

πk − πk−1 ≤ Tth, k = 1, 2, . . . , d

As shown in [13], the dual LP of LPII is an s-t shortest path problem on a
weighted directed graph G, that is, seeking a simple shortest path in G from a
vertex s to another vertex t. (A path is simple if it does not contain any cycle.)

Optimal Field Splitting, with Applications in IMRT 11

The weighted directed graph G for LPII is constructed as follows. G has d + 1
vertices v0 (= s), v1, . . . , vd (= t). For each pair (k, k′) with 0 ≤ k < k′ ≤ d, put
a directed edge from vk to vk′ with a weight − maxm

i=1{η
(i)
k′ −ξ

(i)
k−1}; for each pair

(k, k − 1) with 1 ≤ k ≤ d, put a directed edge from vk to vk−1 with a weight
Tth. Clearly, G is a directed graph with O(d) vertices and O(d2) edges. Since the
edges of G may have both positive and negative weights, there are two possible
cases to consider.

Case (1): G has no negative cycles. In this case, a simple s-to-t shortest path
in G can be computed in O(d3) time by the Bellman-Ford algorithm [6]. Further,
an optimal MBT tuple τ∗ for the original ILP problem can be computed also
in O(d3) time. We can then obtain the corresponding optimal splitting of M
for CFSFO(M, IL, Tth) by solving m GRS instances, i.e., GRS(M (i), τ∗, IL), i =
1, 2, . . . , m, which, by Theorem 1, takes a total of O(mn) time.

Case (2): G has negative weight cycles. This case occurs when Tth is too small
to be feasible. For this case, the Bellman-Ford algorithm on G, in O(d3) time,
detects a negative weight cycle and reports the non-existence of a simple s-to-
t shortest path. Correspondingly, the original CFSFO problem has no feasible
solution for this case.

Hence, we have the following result for the CFSFO problem.
Theorem 2. Given an IM M of size m × n, an interweaving list IL of d inter-
vals, and a threshold beam-on time Tth > 0, the problem CFSFO(M, IL, Tth) can
be solved in O(mn + md2 + d3) time.

2.4 The Constrained Field Splitting with Overlapping (CFSO)
Problem

We now solve the general CFSO problem on a size m × n IM M , for which the
sizes and positions of the sought subfields are not fixed. One observation we use
is that we can assume that the size of each resulting subfield is m × w, where
w is the maximum allowed field width. This is because we can always introduce
columns filled with 0’s to the ends of the subfield without changing its MBT.
Also, note that among the d sought subfields, the positions of the leftmost and
rightmost ones are already fixed. Based on these observations, it is sufficient
to consider only O(Δd−2) possible subfield chains, where Δ = dw − n + 1 =
w�n/w� − n + 1. Based on Theorem 2, the CFSO problem can be solved in
O((mn + md2 + d3)Δd−2) time, by solving O(Δd−2) CFSFO problem instances.

We can further improve the time complexity of this CFSO algorithm, by
exploiting the following observations.
(1) For each of the O(Δd−2) CFSFO problem instances (on O(Δd−2) possible

subfield chains), we can stop (and continue with the next CFSFO instance, if
any) once we obtain the corresponding optimal MBT tuple for that CFSFO
instance. We need not find the corresponding actual optimal splitting of M ,
and this saves O(mn) time (for solving the m GRS instances involved). Of
course, we still need O(mn) time to produce the optimal splitting of M for
the CFSO problem once we determine the best subfield chain out of the
O(Δd−2) chains.

12 D.Z. Chen and C. Wang

(2) For each CFSFO problem instance, its ILP transformation can be carried out
in only O(md2) time, instead of O(mn+md2) time, by performing an O(mn)
time preprocess on M . More specifically, for each row M (i) (i = 1, 2, . . . , m)
of M , we compute the prefix sums M

(i)
j of M (i) (j = 1, 2, . . . , n). After this

preprocess, given a subfield chain IL, for a fixed i, all the η
(i)
k ’s and ξ

(i)
k ’s

can be computed in only O(d) time. Hence, the ILP transformation takes
O(md + md2) = O(md2) time.

Hence in this way, in our CFSO algorithm, every CFSFO problem instance
takes only O(md2 + d3) time to solve. Note that it still takes O(d3) time for
solving the ILP. Thus, we have the following result for the CFSFO problem.

Theorem 3. Given an IM M of size m × n, a maximum allowed field width
w > 0, and a threshold beam-on time Tth > 0, the CFSO problem on M , w, and
Tth can be solved in O(mn + (md2 + d3)Δd−2) time, where d = �n/w� ≥ 1 and
Δ = w�n/w� − n + 1.

We should mention that in the current clinical settings, the value of d is normally
not bigger than 3. Thus our above CFSO algorithm is an optimal O(mn) time
solution for most of the current practical clinical applications.

3 Implementation and Experiments

To examine the performance of our new CFSO algorithm, we implement the
algorithm using the C programming language on Linux systems. We experiment
with it using the following kinds of data: (1) 118 IMs of various sizes for 17
clinical cancer cases obtained from the Department of Radiation Oncology, the
University of Maryland School of Medicine, and (2) 500 randomly generated IMs.
The widths of the tested IMs range from 15 to 40, and the maximum intensity
level of each IM is normalized to 100. The maximum allowed subfield widths
(i.e., the maximum leaf spreads of the MLC) we consider are 14 and 17.

Figures 3(a)-3(d) five some of the field splitting results using our CFSO algo-
rithm on four IMs for two clinical cancer cases and two randomly generated IMs,
respectively. A distinct feature of our CFSO algorithm, as shown by Figure 3,
is that it can compute a trade-off between the threshold MBT value and the
total MBT of the resulting subfields. That is, we can find a field splitting which
minimizes the total MBT subject to a given MBT upper bound on each resulting
individual subfield, and vice versa. This trade-off feature is in fact between the
treatment efficiency and treatment quality and can be useful clinically.

We also compare our CFSO algorithm with the following previously known
field splitting software/algorithms:

1. CORVUS 5.0, which is a current most popular commercial radiation treat-
ment planning software (developed by the NOMOS Corporation).

2. The field splitting algorithm by Kamath et al. [11] and Wu [17] (denoted by
FSSL), which splits using vertical lines.

Optimal Field Splitting, with Applications in IMRT 13

1 1.2 1.4 1.6 1.8 2
350

360

370

380

390

400

410

420

430

440

450

T
th

T
ot

al
 M

B
T

w=14
w=17

1 1.2 1.4 1.6 1.8 2
350

360

370

380

390

400

410

420

430

440

450

T
th

T
ot

al
 M

B
T

w=14
w=17

(a) (b)

1 1.2 1.4 1.6 1.8 2
750

760

770

780

790

800

810

820

830

840

850

T
th

T
ot

al
 M

B
T

w=14
w=17

1 1.2 1.4 1.6 1.8 2
750

760

770

780

790

800

810

820

830

840

850

T
th

T
ot

al
 M

B
T

w=14
w=17

(c) (d)

Fig. 3. The trade-off curves between the threshold MBT value Tth and the total MBT
of the resulting subfields on four tested IMs. (a)-(b) illustrate the results on one head-
and-neck cancer case and one prostate cancer case, respectively. (c)-(d) illustrate the
results on two randomly generated IMs. In each figure, the solid and dotted lines show
the trade-off curves for w = 14 and w = 17, respectively, where w is the maximum
allowed subfield width. The threshold MBT Tth shown in these figures is a scaled value
(i.e., the original threshold value Tth divided by a base value, where the base value is
set to be the ideal MBT of the overall input IM calculated by Equation (1) divided by
the number d of the resulting subfields).

3. The field splitting algorithm by Chen and Wang [5] (denoted by FSMP),
which splits using y-monotone paths.

4. The field splitting algorithm by Chen and Wang [5] (denoted by FSO), which
splits with overlapping.

More specifically, we consider the total MBT and the maximum subfield MBT of
the output subfields of all these splitting approaches. For the CFSO algorithm,
we let its maximum subfield MBT value of the resulting subfields be the lowest
threshold MBT value Tth such that the total MBT corresponding to that thresh-
old MBT value Tth on the same IM computed by the CFSO algorithm is the
same as the total MBT achieved by the FSO algorithm. That is, when both the
CFSO and FSO algorithms produce exactly the same total MBTs, we compare
their maximum subfield MBT values of the resulting subfields (or compare the
maximum subfield MBT values of the FSO algorithm with the threshold MBT
values of our CFSO algorithm).

14 D.Z. Chen and C. Wang

Table 1. Comparison results of the total MBT and the maximum subfield MBT on (a)
118 clinical IMs and (b) 500 randomly generated IMs. The maximum leaf spreads we use
are 14 and 17 (the 1st column). The data sets are grouped based on the numbers of the
resulting subfields from the splittings (the 2nd column). The total MBT and maximum
subfield MBT shown are the average values computed for each data sets using the field
splitting algorithms under comparison. The data under subcolumns FSCV are results
produced by CORVUS 5.0. Each threshold MBT value Tth for the CFSO algorithm is
chosen to be the smallest possible maximum subfield MBT value such that the total
MBT corresponding to that maximum subfield MBT value (computed by the CFSO
algorithm) is the same as the total MBT achieved by the FSO algorithm.

Total MBT Maximum Subfield MBT

w d
FSCV FSSL FSMP

FSO

CFSO
FSCV FSSL FSMP FSO CFSO

2 353.4 322.2 301.8 288.2 192.9 252.8 252.4 181.8 148.8

14

3 492.8 419.5 397.8 371.9 197.5 210.9 208.4 167.6 138.6

2 400.1 385.0 376.0 359.4 215.9 319.1 319.4 228.6 179.8

17

3 492.8 451.1 419.3 398.4 197.5 220.0 211.0 157.6 148.9

(a)

Total MBT Maximum Subfield MBT

w d
FSCV FSSL FSMP

FSO

CFSO
FSCV FSSL FSMP FSO CFSO

2 650.5 619.7 593.6 576.1 340.8 321.5 389.8 385.0 294.9

14

3 995.5 939.3 875.4 839.9 355.3 405.1 401.0 325.6 315.4

2 738.8 706.3 676.8 661.0 385.4 449.0 446.5 380.2 337.7

17

3 1064 989.3 901.5 847.3 378.8 457.7 462.1 345.8 316.1

(b)

Table 1 compares the average total MBTs of these algorithms for splitting the
IMs in the data sets into two or three subfields. For all our data sets, the total
MBTs of the four previous methods, CORVUS 5.0 (denoted by FSCV), FSSL,
FSMP, and FSO, are in decreasing order. As shown in Table 1, the maximum
subfield MBTs of the CFSO algorithm are uniformly smaller than the other
four splitting methods for all the data sets, which demonstrates that our CFSO
algorithm can minimize the total MBT while effectively controlling the maxi-
mum subfield MBT. In terms of the maximum subfield MBT values, our CFSO
algorithm shows an average improvement of 13.6% over the FSO algorithm.

Note that when splitting an IM of size m × n into two or three subfields (i.e.,
d = 2, 3), our CFSO algorithm runs in an optimal O(mn) time. Experimentally,
the total execution time of the CFSO algorithm on all the 618 IMs that we
use is only 35.77 seconds (on average, 0.0579 second per IM) on an HP xw6400
Workstation with a 2 GHz Intel Core 2 Duo processor and 2 GB memory running
Redhat Enterprise Linux 4.

Optimal Field Splitting, with Applications in IMRT 15

References

1. Ahuja, R.K., Hamacher, H.W.: A Network Flow Algorithm to Minimize Beam-
on Time for Unconstrained Multileaf Collimator Problems in Cancer Radiation
Therapy. Networks 45, 36–41 (2005)

2. Boland, N., Hamacher, H.W., Lenzen, F.: Minimizing Beam-on Time in Cancer
Radiation Treatment Using Multileaf Collimators. Networks 43(4), 226–240 (2004)

3. Boyer, A.L.: Use of MLC for Intensity Modulation. Med. Phys. 21, 1007 (1994)
4. Chen, D.Z., Healy, M.A., Wang, C., Wu, X.: A New Field Splitting Algorithm for

Intensity-Modulated Radiation Therapy. In: Proc. of 13th Annual International
Computing and Combinatorics Conference, pp. 4–15 (2007)

5. Chen, D.Z., Wang, C.: Field Splitting Problems in Intensity-Modulated Radiation
Therapy. In: Proc. 12th Annual Int. Symp. on Algorithms and Computation, pp.
690–700 (2006)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. McGraw-Hill, New York (2001)

7. Dogan, N., Leybovich, L.B., Sethi, A., Emami, B.: Automatic Feathering of Split
Fields for Step-and-Shoot Intensity Modulated Radiation Therapy. Phys. Med.
Biol. 48, 1133–1140 (2003)

8. Engel, K.: A New Algorithm for Optimal Multileaf Collimator Field Segmentation.
Discrete Applied Mathematics 152(1-3), 35–51 (2005)

9. Hong, L., Kaled, A., Chui, C., Losasso, T., Hunt, M., Spirou, S., Yang, J., Amols,
H., Ling, C., Fuks, Z., Leibel, S.: IMRT of Large Fields: Whole-Abdomen Irradia-
tion. Int. J. Radiat. Oncol. Biol. Phys. 54, 278–289 (2002)

10. Kamath, S., Sahni, S., Li, J., Palta, J., Ranka, S.: A Generalized Field Splitting
Algorithm for Optimal IMRT Delivery Efficiency. In: The 47th Annual Meeting
and Technical Exhibition of the American Association of Physicists in Medicine
(AAPM) (2005) Also, Med. Phys. 32(6), 1890 (2005)

11. Kamath, S., Sahni, S., Ranka, S., Li, J., Palta, J.: Optimal Field Splitting for Large
Intensity-Modulated Fields. Med. Phys. 31(12), 3314–3323 (2004)

12. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. John
Wiley, Chichester (1988)

13. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall, New Jersey (1982)

14. Webb, S.: The Physics of Three-Dimensional Radiation Therapy. Institute of
Physics Publishing, Bristol (1993)

15. Webb, S.: The Physics of Conformal Radiotherapy — Advances in Technology.
Institute of Physics Publishing, Bristol (1997)

16. Wu, Q., Arnfield, M., Tong, S., Wu, Y., Mohan, R.: Dynamic Splitting of Large
Intensity-Modulated Fields. Phys. Med. Biol. 45, 1731–1740 (2000)

17. Wu, X.: Efficient Algorithms for Intensity Map Splitting Problems in Radiation
Therapy. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 504–513.
Springer, Heidelberg (2005)

18. Wu, X., Dou, X., Bayouth, J.E., Buatti, J.M.: New Algorithm for Field Splitting
in Radiation Therapy. In: Proc. 13th Annual Int. Symp. on Algorithms and Com-
putation, pp. 692–703 (2007)

A Practical Parameterized Algorithm for

Weighted Minimum Letter Flips Model of the
Individual Haplotyping Problem�

Minzhu Xie1,2, Jianxin Wang1,��, Wei Zhou1, and Jianer Chen1,3

1 School of Information Science and Engineering,
Central South University, Changsha 410083, P.R. China

jxwang@mail.csu.edu.cn
2 College of Physics and Information Science,

Hunan Normal University, Changsha 410081, P.R. China
3 Department of Computer Science,

Texas A&M University, College Station, TX 77843, USA
http://netlab.csu.edu.cn

Abstract. Given a set of DNA sequence fragments of an individual with
each base of every fragment attached a confidence value, the weighted
minimum letter flips model (WMLF) of the individual haplotyping prob-
lem is to infer a pair of haplotypes by flipping a number of bases such
that the sum of the confidence values corresponding to the flipped bases
is minimized. WMLF is NP-hard. This paper proposes a parameterized
exact algorithm for WMLF of time O(nk22

k2 + mlogm + mk1), where
m is the number of fragments, n is the number of SNP sites, k1 is the
maximum number of SNP sites that a fragment covers, and k2 is the max-
imum number of fragments that cover a SNP site. Since in real biological
experiments, both k1 and k2 are small, the parameterized algorithm is
efficient in practical application.

1 Introduction

A single nucleotide polymorphism (SNP) is a single base mutation of a DNA se-
quence that occurs in at least 1% of the population. SNPs are the predominant
form of human genetic variation and more than 3 million SNPs are distributed
throughout the human genome [1, 2]. Detection of SNPs helps identifying biomed-
ically important genes for diagnosis and therapy, is used in identification of indi-
vidual and descendant, and can also be used in the analysis of genetic relations of
populations.
� This research was supported in part by the National Natural Science Foundation

of China under Grant Nos. 60433020 and 60773111, the National Basic Research
973 Program of China No.2008CB317107, the Program for New Century Excellent
Talents in University No. NCET-05-0683, the Program for Changjiang Scholars and
Innovative Research Team in University No. IRT0661, and the Scientific Research
Fund of Hunan Provincial Education Department under Grant No.06C526.

�� Corresponding author.

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 16–27, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Practical Parameterized Algorithm for WMLF 17

In humans and other diploid organisms, chromosomes are paired up. A hap-
lotype describes the SNP sequence of a chromosome, while a genotype describes
the conflated data of the SNP sequences on a pair of chromosomes. In Fig. 1,
the haplotypes of the individual are (A, T, A, C, G) and (G, C, A, T, G), and
the genotype is (A/G, C/T, A/A, C/T, G/G).

G . . C . . A . . T . . G .

A . . T . . A . . C . . G .

Fig. 1. SNPs

A SNP site where both haplotypes have the same nu-
cleotide is called a homozygous site and a SNP site where
the haplotypes are different is called a heterozygous site. To
reduce the complexity, a haplotype can be represented as a
string over a two-letter alphabet {0, 1} rather than the four-
letter alphabet{A, C, G, T} , where ‘0’ denotes the major
allele and ‘1’ denotes the minor. In Fig. 1, the haplotypes can be represented by
“01011” and “10001”.

Haplotyping, i.e., identification of chromosome haplotypes, plays an impor-
tant role in SNP applications [3]. Stephens et al. [4] identified 3899 SNPs that
were present within 313 genes from 82 unrelated individuals of diverse ancestry.
Their analysis of the pattern of haplotype variation strongly supports the recent
expansion of human populations. Based on linkage studies of SNPs and the as-
sociation analysis between haplotypes and type 2 diabetes, Horikawa et al. [5]
localized the gene NIDDM1 to the distal long arm of chromosome 2 and found
3 SNPs in CAPN10 associated with type 2 diabetes.

Haplotyping has been time-consuming and expensive using biological tech-
niques. Therefore, effective computational techniques have been in demand for
solving the haplotyping problem. A number of combinatorial versions of the hap-
lotyping problem have been proposed, and they generally fall into two classes: the
individual haplotyping and the population haplotyping, i.e., haplotyping based
on SNP fragments or genotype samples [6].

The current paper is focused on the Weighted Minimum Letter Flips (WMLF)
model of the individual haplptyping problem, which is NP-hard [7]. The paper
is organized as follows: Section 2 introduces the individual haplotyping problem;
in Section 3, we propose a practical parameterized algorithm for WMLF; and in
Sections 4 and 5, experiment results and coclusion are presented.

2 Individual Haplotyping Problem

The individual haplotyping problem was first introduced by Lancia et al. [8]:
Given a set of aligned SNP fragments from the two copies of a chromosome, infer
two haplotypes. The aligned SNP fragments come from DNA shotgun sequencing
or other sequencing experiments. The individual haplotyping problem aims to
partition the set of SNP fragments into two subset with each subset determining
a haplotype.

The aligned SNP fragments of an individual can be represented as an m × n
SNP matrix M over the alphabet {0, 1, −}, in which n columns represent a
sequence of SNPs according to the order of sites in a chromosome and m rows
represent m fragments. Fig. 2 shows a 7 × 6 SNP matrix. In the matrix M ,

18 M. Xie et al.

the ith row’s value at the jth column is denoted by Mi,j , which equals the ith
fragment’s value at the jth SNP site. If the value of the ith fragment at the jth
SNP site misses (i.e. there is a hole in the fragment) or the ith fragment doesn’t
cover the jth SNP site, then Mi,j takes the value “−” (the value “−” will be
called the empty value).

SNPs

0
0 1 0

0 1 1 0
1 0 1 0 1

1 0
0 1

Fr
ag

m
en

ts

0 1 0

Fig. 2. SNP Matrix

The following are some definitions related to the SNP
matrix M .

We say that the ith row covers the jth column if there
are two indices k and r such that k ≤ j ≤ r, and both
Mi,k and Mi,r are not empty. In other words, the ith row
covers the jth column if either Mi,j is not empty or there
are a column on the left and another column on the right
such that the ith row takes non-empty values at these
columns.

The set of (ordered) rows covering the jth column is
denoted by rowset(j). The first and the last column that
the ith row covers are denoted by left(i) and right(i) respectively.

For example, as to the SNP matrix in Fig. 2, row 2 covers columns 2, 3, 4, 5
and 6, and rowset(5)={1, 2, 4, 7}.

If Mi,j �= “ − ”, Mk,j �= “ − ” and Mi,j �= Mk,j , then the ith row and the kth
row of M are said to conflict at the column j. If the ith and kth rows of M do
not conflict at any column then they are compatible.

A SNP matrix M is feasible if its rows can be partitioned into two subsets
such that the rows in each subset are all compatible.

Obviously, a SNP matrix M is feasible if and only if there are two haplotypes
such that every row of M is compatible with one of the two haplotypes. And we
claim that M can be derived from the two haplotypes.

Since a row of M comes from one of a pair of chromosomes, if there are no
DNA sequencing errors, we can always derive M from the haplotypes of the pair
of chromosomes. However, DNA sequencing errors are unavoidable and it is hard
to decide which copy of chromosome a SNP fragment comes from, therefore the
individual haplotyping problem is complex.

Based on different optimal criteria, there have been various computational
models of the problem. There are some typical models [8, 9]: Minimum fragment
Removal (MFR), Minimum SNPs Removal (MSR), Minimum Error Correction
(MEC). Among the models above, MEC is considered to have most biological
meaning. MEC is also called as Mininum Letter Flips (MLF) [10] and have been
extended by including different extra information.

Since a DNA sequencer can provide one confidence value for each base [7],
the confidence values corresponding an m × n SNP matrix M can organized
as an m × n weight matrix W . The element of W at row i and column j, the
confidence value of Mi,j , is denoted by Wi,j . If Mi,j=‘-’, Wi,j=0. By including a
weighted matrix, Greenberg et al. [10] introduced the weighted minimum letter
flips model, and Zhao et al. [7] formulated it as follows:

A Practical Parameterized Algorithm for WMLF 19

Weighted Minimum Letter Flips (WMLF): Given a SNP matrix M a
weighted matrix W , flip a number of elements (‘0’ into ‘1’ and vice versa)
of M so that the resulting matrix is feasible and the sum of confidence
values of the elements in W corresponding the flipped elements in M is
minimized.

Let S be a element subset of M . If after flipping the elements in S, M is feasible,
S is a feasible flipped element subset of M . The sum of confidence values of the
elements in S is defined as the flipping cost of S, and is denoted by C(S), i. e.
C(S) = sumMi,j∈SWi,j .

Among all possible feasible flipped element subset of M , if S minimizes
C(S), we call C(S) a solution to WMLF. For briefness, given a SNP matrix
M and a corresponding weight matrix W , we denote a solution to WMLF by
WMLF(M, W).

For the WMLF model, Zhao et al. [7] have proved it to be NP-hard, and
designed a dynamic clustering algorithm. However, to the best of our knowledge,
there has been no practical exact algorithm for it. In the following section, we
will propose a practical parameterized exact algorithm for WMLF.

3 A Parameterized Algorithm for WMLF

By carefully studying related properties of fragment data, we have found the
following fact. In all sequencing centers, due to technical limits, the sequencing
instruments such as ABI 3730 and MageBACE can only sequence DNA frag-
ments whose maximum length is about 1000 nucleotide bases. Since the average
distribution density of SNPs is about 1 SNP per 1kb bases, the maximum num-
ber of SNP sites that a fragment covers is small, and usually smaller than 10
according to the current research results [3, 11].

Moreover, in DNA sequencing experiments, the fragment coverage is also
small. In Celera’s whole-genome shotgun assembly of the human genome, the
fragment average coverage is 5.11 [1], and in the human genome project of the
International Human Genome Sequencing Consortium, the fragment average
coverage is 4.5 [12]. Huson et al. [13] have analyzed the fragment data of the hu-
man genome project of Celera’s, and given a fragment coverage plot. Although
the fragment covering rate is not the same at all sites along the whole genome,
the plot shows that most sites are covered by 5 fragments, and that the maxi-
mum of fragments covering a site is no more than 19. Therefore, for an SNP site,
compared with the total number of fragments, the number of fragments covering
the SNP site is very small.

Based on the observations above, we introduce the following parameterized
condition.

Definition 1. The (k1, k2) parameterized condition: the number of SNP sites
covered by a single fragment is bounded by k1, and each SNP site is covered by
no more than k2 fragments.

20 M. Xie et al.

Accordingly, in a SNP matrix satisfying the (k1, k2) parameterized condition, each
row covers at most k1 columns and each column is covered by at most k2 rows.

For an m × n SNP matrix M , the parameters k1 and k2 can be obtained by
scanning all rows of M . In the worst case, k1 = n and k2 = m. But as to the
fragment data of Celera’s human genome project, k2 is no more than 19 [13].

Before describing our parameterized algorithm, there are some definitions.
For a feasible flipped element subset S of a SNP matrix M , after flipping the

elements in S, all the rows of M can be partitioned into two classes H0 and H1,
such that every two rows in the same class are compatible.

Definition 2. Let R be a subset of rows in a SNP matrix M . A partition func-
tion P on R maps each row in R to one of the values {0, 1}.

Suppose that R contains h > 0 rows, a partition function P on R can be denoted
by an h-digit binary number in {0, 1}, where the i-th digit is the value of P on
the ith row in R. If R = ∅, we also define a unique partition function P , which
is denoted by −1.

For briefness, a partition function defined on rowset(j) is called a partition
function at column j. For a SNP matrix M satisfying the (k1, k2) parameterized
condition, there are at most 2k2 different partition functions at column j.

Let R be a set of rows of the matrix M , and P be a partition function on R.
For a subset R′ of R, the partition function P ′ on R′ obtained by restricting P
on the subset R′ is called the projection of P on R′, and P is called an extension
of P ′ on R.

For briefness, let M [:, j] be the SNP matrix consisting of the first j columns
of M .

Definition 3. Fix a j. Let P be a partition function on a row set R. Defined
VE [P, j] to be any subset S of elements of M [:, j] that satisfies the following
condition: After flipping the elements of S, there is a partition (H0, H1) of all
rows in M such that any two rows in the same class do not conflict at any column
from 1 to j, and for any row i ∈ R, row i is in the class Hq if and only if P (i) = q,
for q ∈ {0, 1}.

Given a partition function P at column j, the rows covering column j can be
partitioned into (H0, H1) by P according to the following rule: for each row
i ∈ rowset(j), i ∈ Hq if P (i) = q. In order to make the rows in the same
class don’t conflict at column j, the values at column j of some rows have to
be flipped to avoid confliction. For q ∈ {0, 1}, let vq = 0 or 1. For any row
i ∈ Hq, if Mi,j = vq, Mi,j is to be flipped. In consequence, we obtain a flipped
elements set Flips, and C(Flips) =

∑
q=0..1 w(P, j, q, vq), where w(P, j, q, vq) =∑

i:i∈rowset(j),P (i)=q,Mi,j=vq
(Wi,j).

Let Minor(P, j, 0) and Minor(P, j, 1) denote the value of v0 and the value of
v1 minimizing w(P, j, 0, v0) + w(P, j, 1, v1), respectively. Let Flips(P, j) denote
the flipped elements set {Mi,j | Mi,j = Minor(P, j, P (i))}.

Fig. 3 gives a function CompFlipsW (j, P,Flips, C) to compute Flips(P, j) and
C(Flips(P, j)), whose time complexity is O(k2) for a SNP matrix M satisfying
the (k1, k2) parameterized condition.

A Practical Parameterized Algorithm for WMLF 21

CompFlipsW(j, P, Flips, C)
//Flips denotes Flips(P, j), and C denotes C(Flips(P, j))
{ for q, v = 0, 1 do wq,v = 0; //wq,v denotes w(P, j, q, vq)

tmp= P ; //tmp is a binary number
for each row i in rowset(j) (according to the order) do
{ q = the least significant bit of tmp; //q = P (i)

tmp right shift 1 bit; v = Mi,j ;
if v �= − then wq,v = wq,v + Wi,j ; }

v0 = v1 = 1; //vq denotes Minor(P, j, q) for q = 0, 1
if w0,0 + w1,0 < w0,v0 + w1,v1 then
{ v0 = v1 = 0; }
if w0,0 + w1,1 < w0,v0 + w1,v1 then
{ v0 = 0; v1 = 1; }
if w0,1 + w1,0 < w0,v0 + w1,v1 then
{ v0 = 1; v1 = 0; }
tmp= P ; Flips = ∅; C = 0;
for each row i in rowset(j) (according to the order) do
{ q = the least significant bit of tmp;

tmp right shift 1 bit;
if vq = Mi,j then { C = C + Wi,j ; Flips = Flips ∪ Mi,j ; } } }

Fig. 3. CompFlipsW

Fix a m×n SNP matrix M , a corresponding weight matrix W , and a partition
function P on the set R of all rows in M . Let the projection on rowset(j) of P
be P j . It is easy to verify that the following theorem is true.

Theorem 1. Fix l (1 ≤ l ≤ n). C(VE [P, l]) is minimized if and only if VE [P, l] =
∪j=1..l(Flips(P l, l)).

Therefore, we have the following equation.

WMLF(M, W) = minP :a partition function on RC(∪j=1..n(Flips(P j , j))),

which means a algorithm of time complexity O(nk22m). To reduce the time
complexity, we consider a partition function P at column j.

Definition 4. Fix a j. Let P be a partition function at column j. Defined SE [P, j]
to be any VE [P, j] that minimizes the flipping cost C(VE [P, j]) of VE [P, j]. And
E[P, j] is defined to be C(SE [P, j]).

Given an m × n SNP matrix M and a corresponding weight matrix W , from
Definitions 3 and 4, it is easy to verify that the following equation holds true:

WMLF(M, W) = min
P : P is a partition function at column n

(E[P, n]) (1)

22 M. Xie et al.

For a partition function P at column 1, according to Theorem 1, the following
equations hold true.

SE [P, 1] = Flips(P, 1) (2)

E[P, 1] = C(Flips(P, 1)) (3)

In order to present our algorithm, we need to extend the above concepts from
one column to two columns as follows. Let the set of all rows that cover both
columns j1 and j2 be Rc(j1, j2).

Definition 5. Fix a j. Let P ′ be a partition function on Rc(j, j + 1). Defined
SB[P ′, j] to be any VE [P ′, j] that minimizes the flipping cost C(VE [P ′, j]) of
VE [P ′, j]. And B[P ′, j] is defined to be C(SB [P ′, j]).

Given a j and a partition function P ′ on Rc(j, j + 1). If E[P, j] and SE [P, j] are
known for each extension P of P ′ on rowset(j), B[P ′, j] and SB[P ′, j] can be
calculated by the following equations:

B[P ′, j] = min
P : P is an extension of P ′ on rowset(j)

(E[P, j]) (4)

SB [P ′, j] = SE [P, j] | P minimizes E[P, j] (5)

Inversely, for any partition function P on rowset(j), because Rc(j − 1, j) is a
subset of rowset(j), the project P ′ of P on rowset(j) is unique. When SB[P ′, j−1]
and B[P ′, j − 1] are known, according to Theorem 1, E[P, j] and SE [P, j] can
be calculated by the following equations:

SE [P, j] = SB[P ′, j − 1] ∪ Flips(P, j) (6)

E[P, j] = B[P ′, j − 1] + C(Flips(P, j)) (7)

Based on the equations above, WMLF(M, W) can be obtained as follows: firstly,
SE [P, 1] and E[P, 1] can be obtained according to Equations (2) and (3) for
all partition functions P at column 1; secondly, B[P ′, 1] and SB[P ′, 1] can be
obtained by using Equations (4) and (5) for all partition functions P ′ on Rc(1, 2);
thirdly, SE [P, 2] and E[P, 2] can be obtained by using Equations (6) and (7) for
all partition functions P on rowset(2); and so on, at last E[P, n] and SE [P, n]
can be obtained for all partition functions P at column n. Once E[P, n] and
SE [P, n] for all possible P are known, a solution to the WMLF problem can be
obtained by using Equation (1). Please see Fig. 4 for the details of our P-WMLF
algorithm.

Theorem 2. If M satisfies the (k1, k2) parameterized condition, the P-WMLF
algorithm solves the WMLF problem in time O(nk22k2 + mlogm + mk1) and
space O(mk12k2 + nk2).

A Practical Parameterized Algorithm for WMLF 23

Algorithm P-WMLF
input: an m × n SNP matrix M , an m × n weight matrix W
output: a solution to WMLF
1. initiation: sort the rows in M in ascending order such that for any
two rows i1 and i2, if i1 < i2, then left(i1) ≤ left(i2); for each column l,
calculate an ordered set rowset(l) and the number H [l] of the rows that cover
column l; j = 1;
2. for P = 0..2H[j] −1 do // partition function is coded by a binary number
2.1. CompFlipsW(j, P,Flips, C);

//E[P] and SE[P] denote E[P, j] and SE [P, j], respectively.
2.2. E[P] = C; SE[P] = F lips; //Eqs. (2), (3),
3. while j < n do //recursion based on Eqs. (4)-(7)

// MAX denotes the maximal integer.
3.1. calculate Nc, the number of rows that cover both columns j and j + 1,
and a vector Bits such that Bits[i]=1 denotes the ith row of rowset(j) covers
column j + 1;
3.2. for P ′ = 0..2Nc − 1 do B[P ′]=MAX;
3.3. for P = 0..2H[j] − 1 do
3.3.1. calculate the project P ′ of P on Rc(j, j + 1) using Bits.
3.3.2. if B[P ′] > E[P] then

B[P ′] = E[P], SB [P ′] = SE[P]; //Eqs. (4), (5)
3.4. j + +; //next column
3.5. for P ′ = 0..2Nc − 1 do
3.5.1. for each extensions P of P ′ on rowset(j) do
3.5.1.1. CompFlipsW(j, P,Flips, C);
3.5.1.2. E[P] = C + B[P ′]; SE[P] = SB [P ′] ∪ Flips; //Eqs. (6), (7)
//Eq. (1)
4. output the minimal E[P] and the corresponding SE [P] (P = 0..2H[n] −1).

Fig. 4. P-WMLF Algorithm

Proof. Given an m × n SNP matrix M satisfying the (k1, k2) parameterized
condition, consider the following storage structure: each row keeps the first and
the last column that the row covers, i.e. its left and right value, and its values at
the columns from its left column to its right column. In such a storage structure,
M takes space O(mk1). It is easy to see that rowset takes space O(nk2), H takes
space O(n), E and B take space O(2k2), and SE and SB take space O(mk12k2).
In summary, the space complexity of the algorithm is O(mk12k2 + nk2).

Now we discuss the time complexity of the algorithm. In Step 1, sorting takes
time O(mlogm). All rowsets can be obtained by scanning the rows only once,
which takes time O(mk1). For any column j, because that no more than k2 row
covers covering it, H [j] ≤ k2, the function CompFlipsW takes time O(k2), and
Step 2 takes time O(k22k2). In Step 3.1, scanning rowset(j) and rowset(j + 1)
simultaneously can obtain Nc and Bits, and takes time O(k2). Step 3.2 takes
time O(2k2), and Step 3.3 takes time O(k22k2). In Step 3.5, for each P ′, there
are 2H[j]−NC extensions of P ′ on rowset(j). Given P ′, an extension of P ′ can be

24 M. Xie et al.

obtained by a bit-or operation in time O(1), because after the sorting in Step
1, the rows that cover column j, but do not cover column j − 1 are all behind
the rows in Rc(j − 1, j). In all, Step 3.5 takes time O(k22Nc2k2−Nc). Then Step
3 is iterated n − 1 times and takes time O(nk22k2). Step 4 takes time O(2k2). In
summary, the time complexity of the algorithm is O(nk22k2 + mlogm + mk1).
This completes the proof. ��

4 Experimental Results

In the experiments, we compare the running time and the reconstruction rate
of haplotypes of P-WMLF and Zhao et al.’s dynamic clustering algorithm DC-
WMLF [7]. The reconstruction rate of haplotypes is defined as the ratio of the
number of the SNP sites that correctly inferred out by an algorithm to the total
number of the SNP sites of the haplotypes [7].

The haplotype data can be obtained by two methods [7]: the first is to get
real haplotypes from public domain, and the second is to generate simulated
haplotypes by computer.In our exeperiments, the real haplotypes was obtained
from the file genotypes chr1 CEU r21 nr fwd phased.gz 1 , which was issued
in July 2006 by the International HapMap Project [2]. The file contains 120
haplotypes on chromosome 1 of 60 individuals of the CEU with each haplotype
containing 193333 SNP sites. From the 60 individuals, select a individual at
random. Then begining with a random SNP site, a pair of haplotypes of a given
length can be obtained from the haplotypes of the selected individual.

The simulated haplotypes can be generated as follows ([14, 15]). At first a hap-
lotype h1 of length n is generated at random, then another haplotype h2 of the
same length is generated by flipping every char of h1 with the probability of d.

As to framgent data, to the best of our knowledge, real DNA fragments data
in the public domain are not available, and references [7] and [15] used computer-
generated simulated fragment data. After obtaining a pair of real or simulated
haplotypes, in order to make the generated fragments have the same statistical
features as the real data, a widely used shotgun assembly simulator Celsim ([16])
is invoked to generate m fragments whose lengths are between lMin and lMax.
At last the output fragments are processed to plant reading errors with proba-
bility e and empty values with probability p. Please refer to [15] and [16] for the
details about how to generate artificial fragment data.

In our experiments, the parameters are set as follows: the probability d used
in generating simulated haplotypes is 20%, fragment coverage rate c = 10, the
minimal length of fragment lMin = 3, the maximal length of fragment lMax = 7
and empty value probability p = 2%.

The weight matrix W corresponding to the fragments is generated by the
method of [7]: the entries of W are normally distributed with mean μ and
variance σ2 = 0.05. For a correct SNP site, μ = 0.9, and for an error SNP
site,μ = 0.8.

1 From http://www.hapmap.org/downloads/phasing/2006-07 phaseII/phased/

A Practical Parameterized Algorithm for WMLF 25

P-WMLF and DC-WMLF are implemented in C++. We ran our experiments
on a Linux server (4 Intel Xeon 3.6GHz CPU and 4GByte RAM) with the length
of haplotype n, the number of fragment m (m = 2 × n × c/(lMax+ lMin)) and
the reading error probability e varied. The data of Table 1 and Fig. 5 are the
average over 100 repeated experiments with the same parameters.

When n = 100, the experiment results on both real haplotype data and simu-
lated haplotype data show that when e increases, the haplotype reconstruction
rates of the algorithms decrease, and though DC-WMLF is faster than P-WMLF,
P-WMLF is more accurate in haplotype reconstruction rate than DC-WMLF.
The results is given in Table 1.

Table 1. Comparison of performances of P-WMLF and DC-WMLF with e varied

Haplotype reconstruction rate (%) Average running time (s)
e (%) P-WMLF DC-WMLF P-WMLF DC-WMLF

1 93.35 (93.25) 80.16 (80.30) 6.48 (5.90) 0.006 (0.006)
3 91.32 (91.32) 80.11 (80.05) 7.22 (6.16) 0.006 (0.006)
5 90.03 (90.60) 79.78 (79.89) 8.22 (7.68) 0.006 (0.006)
7 88.22 (88.97) 79.42 (79.39) 9.26 (7.96) 0.006 (0.006)
The data not enclosed in brackets are the experiment results coming from the
experiments on the real haplotype data, and the data in brackets show the ones on
the simulated haplotypes data. In the experiments, n = 100 and m = 200.

With e = 5%, when n increases, the experiment results show again that
P-WMLF is more accurate in haplotype reconstruction rate than DC-WMLF,
and that though P-WMLF is slower than DC-WMLF, P-WMLF can work out
with an exact solution to WMLF in 10 seconds when n = 120. The results is
illustrated by Fig. 5.

(a) On the real haplotype data (b) On the simulated haplotype data

Fig. 5. The performance comparison of P-WMLF and DC-WMLF when n increases

26 M. Xie et al.

5 Conclusion

Haplotyping plays a more and more important role in some regions of genetics
such as locating of genes, designing of drugs and forensic applications. WMLF is
an important computational model of inferring the haplotypes of an individual
from one’s aligned SNP fragment data with confidence values. Because reading
errors cannot be avoid in the DNA sequencing process, WMLF is a NP-hard
problem. To solve the problem, Zhao et al. [7] proposed a dynamic clustering
algorithm DC-WMLF. Being a heuristic algorithm, it cannot to ensure the accu-
racy in haplotype reconstruction. Based on the fact that the maximum number of
fragments covering a SNP site is small (usually no more than 19 [13]), the current
paper introduced a new practical parameterized exact algorithm P-WMLF to
solve the problem. With the fragments of maximum length k1 and the maximum
number k2 of fragments covering a SNP site, the P-WMLF algorithm can solve
the problem in time O(nk22k2 + mlogm + mk1) and in space O(mk12k2 + nk2).
Extensive experiments show that P-WMLF has higher haplotype reconstruction
rate than DC-WMLF, and it is practical even if it is slower than DC-WMLF.

References

[1] Venter, J.C., Adams, M.D., Myers, E.W., et al.: The sequence of the human
genome. Science 291(5507), 1304–1351 (2001)

[2] The International HapMap Consortium: A haplotype map of the human genome.
Nature 437(7063), 1299–1320 (2005)

[3] Gabriel, S.B., Schaffner, S.F., Nguyen, H., et al.: The structure of haplotype blocks
in the human genome. Science 296(5576), 2225–2229 (2002)

[4] Stephens, J.C., Schneider, J.A., Tanguay, D.A., et al.: Haplotype variation and
linkage disequilibrium in 313 human genes. Science 293(5529), 489–493 (2001)

[5] Horikawa, Y., Oda, N., Cox, N.J., et al.: Genetic variation in the gene encoding
calpain-10 is associated with type 2 diabetes mellitus. Nature Genetics 26(2),
163–175 (2000)

[6] Zhang, X.S., Wang, R.S., Wu, L.Y., Chen, L.: Models and algorithms for haplo-
typing problem. Current Bioinformatics 1(1), 105–114 (2006)

[7] Zhao, Y.Y., Wu, L.Y., Zhang, J.H., Wang, R.S., Zhang, X.S.: Haplotype assem-
bly from aligned weighted snp fragments. Computational Biology and Chem-
istry 29(4), 281–287 (2005)

[8] Lancia, G., Bafna, V., Istrail, S., Lippert, R., Schwartz, R.: SNPs Problems, Com-
plexity, and Algorithms. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS,
vol. 2161, pp. 182–193. Springer, Berlin (2001)

[9] Lippert, R., Schwartz, R., Lancia, G., Istrail, S.: Algorithmic strategies for the sin-
gle nucleotide polymorphism haplotype assembly problem. Brief. Bioinform 3(1),
1–9 (2002)

[10] Greenberg, H.J., Hart, W.E., Lancia, G.: Opportunities for combinatorial opti-
mization in computational biology. INFORMS J. Comput. 16(3), 211–231 (2004)

[11] Hinds, D.A., Stuve, L.L., Nilsen, G.B., Halperin, E., Eskin, E., Ballinger, D.B.,
Frazer, K.A., Cox, D.R.: Whole-genome patterns of common dna variation in
three human populations. Science 307(5712), 1072–1079 (2005)

A Practical Parameterized Algorithm for WMLF 27

[12] International Human Genome Sequencing Consortium: Initial sequencing and
analysis of the human genome. Nature 409(6822), 860–921 (2001)

[13] Huson, D.H., Halpern, A.L., Lai, Z., Myers, E.W., Reinert, K., Sutton, G.G.:
Comparing Assemblies Using Fragments and Mate-Pairs. In: Gascuel, O., Moret,
B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 294–306. Springer, Berlin (2001)

[14] Wang, R.S., Wu, L.Y., Li, Z.P., Zhang, X.S.: Haplotype reconstruction from snp
fragments by minimum error correction. Bioinformatics 21(10), 2456–2462 (2005)

[15] Panconesi, A., Sozio, M.: Fast Hare: A Fast Heuristic for Single Individual SNP
Haplotype Reconstruction. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS
(LNBI), vol. 3240, pp. 266–277. Springer, Heidelberg (2004)

[16] Myers, G.: A dataset generator for whole genome shotgun sequencing. In:
Lengauer, T., Schneider, R., Bork, P., Brutlag, D.L., Glasgow, J.I., Mewes, H.W.,
Zimmer, R. (eds.) Proc. ISMB, pp. 202–210. AAAI Press, California (1999)

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 28 – 34, 2008.
© Springer-Verlag Berlin Heidelberg 2008

SlopeMiner: An Improved Method for Mining Subtle
Signals in Time Course Microarray Data

Kevin McCormick, Roli Shrivastava, and Li Liao*

Computer and Information Sciences, University of Delaware
Newark, DE 19716, USA
lliao@cis.udel.edu

Abstract. This paper presents an improved method, SlopeMiner, for analyzing
time course microarray data by identifying genes that undergo gradual
transitions in expression level. The algorithm calculates the slope for the slow
transition between the expression levels of data, matching the sequence of
expression level for each gene against temporal patterns having one transition
between two expression levels. The method, when used along with StepMiner -
an existing method for extracting binary signals, significantly increases the
annotation accuracy.

Keywords: Data mining, Time Course, DNA Microarray, Regression.

1 Introduction

DNA microarray is a high throughput technology that can measure the expression
levels for a large number of genes simultaneously, and therefore has become a very
useful tool in studying gene regulation [1, 2]. Analyzing the expression data, such as
identifying co-regulated genes and further inferring regulatory networks inside the
cell, has received a lot of attention in the bioinformatics community [3-9]. In order to
enable more sophisticated analyses and to better interpret the results coming out of
these analyses, it is critical to have a sensitive and accurate way to extract signals, as
the gene expression data are typically noisy and prone to misclassification. For
example, a basic question to ask is whether a gene is up- or down-regulated under
different conditions and/or at different time points. The answer may not be always
clear cut, as indicated in Fig. 1. Recently, a statistical method, called StepMiner, has
been developed to cope with this issue in order to assist biologists in understanding
the temporal progression of genetic events and biological processes following a
stimulus, based on gene expression microarray data [10]. At the most basic level,
StepMiner identifies genes which undergo one or more binary transitions over short
time courses. It directly addresses one of the more basic questions one can ask of time
course data: ‘Which genes are up- or down-regulated as a result of the stimulus?’ and
‘When does the gene transition to up- or down-regulated?’ StepMiner utilizes a
procedure called the adaptive regression where every possible placement of the
transition between time points is evaluated and the algorithm chooses the best fit [11].

* Corresponding author.

 SlopeMiner: An Improved Method for Mining Subtle Signals 29

Although StepMiner is shown to be capable of identifying one- and two-step
binary signals, there are limitations to its applications. Firstly, StepMiner is limited to
identifying step changes, i.e., the transitions between up and down regulations are
instantaneous. While this may be a reasonable assumption when the expression data
are collected sparsely, i.e., at large time intervals, the actual transitions of expression
level occur in a finite amount of time, which is determined by many factors including
the kinetics of the processes that are involved in expression regulation. As shown in
the right panel of Fig. 1, the transition from the down regulation to the up regulation
is gradual, and forcing a sharp turn at a midpoint can be misleading about when the
transition really begins to occur. Secondly, StepMiner requires high signal-noise ratio
to perform accurately. In Ref [10], it is reported that the minimum height of step has
to be 3 times the noise in order to achieve 95% accuracy. Besides, the method cannot
handle very short or long time courses effectively.

Fig. 1. Examples of extracting binary signal (solid line) of up/down regulation from noisy time
course microarray data (dots)

Fig. 2. Schematic illustration of expression patterns in microarray data. Panels A and C show
sharp transition for down and up regulation respectively, whereas Panels B and D show the
slow transition in the two respective cases.

30 K. McCormick, R. Shrivastava, and L. Liao

In this paper we try to develop a more refined method to mitigate some of these
problems. Specifically we focused on cases when the transition is a slow one, i.e., a
sharp turning point does not exist, as illustrated in panels B and D of Fig. 2. As shown
in the following sections, our new method not only can more accurately identify the
gradual transitions but also is more sensitive in picking up weak signals by requiring
lower minimum height to noise ratios. The paper is organized as following. In section 2,
we described our refined method in detail. In section 3, we designed experiments to test
the performance of the new methods on a set of simulated data, and made side by side
comparisons between StepMiner and SlopeMiner on the same data sets. Discussions
and conclusions are given in section 4.

2 Method

The main objective of this paper is to develop a new method that is able to overcome
some of the limitations of StepMiner so that more subtle signals can be extracted from
the time-course microarray data. Specifically, we focus on capturing the slow transition
of expression levels between the up and down regulation, and we call this new method
SlopeMiner.

The algorithm and the principle used are similar to those in StepMiner. Given a set
of n time points and values X1, X2, X3, …, Xn, we have to fit a one-slope (analogous
to one-step) function to those time points. Suppose the fitted values are X1

fit, X2
fit X3

fit,
…, Xn

fit. Using these values we calculate the square error (SSE). The algorithm
computes SSE with linear regression for all combinations of slope positions fitting the
time course data. The various statistical parameters remain defined as the same as in
Ref [10]. The total sum of squares is defined as

2

1

)(∑
=

−=
n

i
i XXSSTOT (1)

where X is the mean of data at n original time points. The sum of squares error SSE
is defined as

2

1

)(∑
=

−=
n

i

fit
ii XXSSE . (2)

And the regression sum of squares SSR is given as

SSESSTOTXXSSR
n

i

fit
i −=−=∑

=

2

1

)(. (3)

Let m be the degrees of freedom of one-slope function, the regression mean square is
then given as

MSE = SSE/(n-m), (4)

and the error mean square MSE is given as

 SlopeMiner: An Improved Method for Mining Subtle Signals 31

MSR = SSR/(m-1). (5)

We used the same degree 3 as suggested in Sahoo et al’s work [10]. Regression test

statistic is computed as, F = MSR/MSE. If FF m
mn ≤−

−
1 , then the fit is considered to

be, statistically speaking, a good fit. To compute the F-distribution a P-value of 0.05
was adopted.

The algorithm was implemented with the following four steps.

1. Compute the SSE statistic for all combinations of slope between the time
points.

2. For each slope position compute the SSE statistic.
3. The slope position that results in the minimum SSE is then used to compute

the F statistic.

4. If FF m
mn ≤−

−
1 then we say that the SlopeMiner has successfully fitted the

data to one-slope function and has found a match.

3 Results

The algorithm was evaluated on simulated time course microarray data with 20 time
points. The simulated data has been generated using a subroutine in MATLAB.
Gaussian noise with a 0 mean has also been added with a height to noise ratio varied
between 1 and 5. 100 sets of data were generated with a fixed height to noise ratio and
a fixed starting and ending point of slope. To test the ability of identifying gradual
transitions with varied slopes, 9 combinations of slope positions were used: the
distance between the start point and end point of slope was varied from 4 to 20. The 9
combinations are listed in Table 1. Without loss of generality, all the simulated data
was one-slope with UP-transition. A heat map for the simulated data is shown in
Figure 3 for visualization, where the low values are coded with green and the high
values with red. The data has been written in appropriate formats for analysis by both
StepMiner and SlopeMiner.

In our experiments, the height-to-noise ratio was varied from 1 to 5. The
proportion of correctly identified datasets was plotted as function of the height-to-
noise ratio as shown Fig. 4. For comparison, the results for both StepMiner and
SlopeMiner are shown. It can be seen clearly that the SlopeMiner outperforms
StepMiner when the height-to-noise ratio is less than 3. For height-to-noise ratio
greater than 3 both the tools classify more than 99% of data correctly. Furthermore,
SlopeMiner can classify the data correctly with more than 90% accuracy even when
the height to noise ratio is equal to 2.

As mentioned in Section 1, another limitation of StepMiner was that the method
works best when the constant segments are of at least length 3 even for height-to-
noise ratios of 3 or higher. To test if this is improved with SlopeMiner we analyzed
the proportion of correctly identified data sets as a function of distance between start
and end points of slope. The results are shown in Fig. 5. We see that for height-to-
noise ratio ≥ 3, SlopeMiner can correctly identify slopes even when the distance

32 K. McCormick, R. Shrivastava, and L. Liao

Table 1. Combinational schemes for the simulated expression data

Starting point Ending point
1
2
3
4
5
6
7
8
9

20
19
18
17
16
15
14
13
12

Fig. 3. Heat map for the simulated expression data. Green color for down regulated level and
red color for up regulated level.

between start and end points = 18, i.e. when there is barely any constant segment. As
the height/noise is decreased to 2 a constant part of length 1 is required. And for
height/noise = 1 a constant segment of at least length 5 is needed. This is a significant
improvement over StepMiner because now a transition can be identified even when
the slope is very slow as it spans a large time interval. Therefore, with SlopeMiner,
the limitation of StepMiner for requiring a “sharp-transition” has been mitigated in
most general cases that are practically possible.

 SlopeMiner: An Improved Method for Mining Subtle Signals 33

SLOPE vs STEP MINER RESULTS

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6

Heigt/Noise Ratio

P
ro

p
o

rt
io

n
 o

f
C

o
rr

ec
tl

y
Id

en
ti

fi
ed

 t
im

e
co

u
rs

es

Slope Miner

Step Miner

Fig. 4. Comparison of Performance between StepMiner and SlopeMiner

Spaces vs correctly identified

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8 10 12 14 16 18 20 22

Distance between start and end of slope

P
er

ce
n

ta
g

e
of

 c
o

rr
ec

tl
y

id
en

ti
fi

ed

ti
m

e
co

u
rs

es

Height 1

Height 2

Height 3

Height 4

Height 5

Fig. 5. Performance as affected by the height-to-noise ratio and slope

4 Conclusions

In this paper, we presented an improved method for identifying patterns in gene
expression data with slow gradual transitions between down and up regulations.
Using the adaptive regression technique, the method achieve 90% accuracy for noisy
data (height-to-ratio of 2), which is a significant improvement from the 75% accuracy
by StepMiner. In addition, the method is sensitive to slow transition data, with a
minimum requirement of the constant segments. However, the current implementation
does not handle multi-step transitions, and is limited to two level regulations. To
eliminate these constraints should be the future work.

34 K. McCormick, R. Shrivastava, and L. Liao

Acknowledgements. The authors are grateful to Debashish Sahoo for making
available the StepMiner package.

References

1. Schena, M., Shalon, D., Davis, R.W., Brown, P.O.: Quantitative monitoring of gene
expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995)

2. Lashkari, D.A., DeRisi, J.L., McCusker, J.H., Namath, A.F., Gentile, C., Hwang, S.Y.,
Brown, P.O.: Yeast microarray for genome wide parallel genetic and gene expression
analysis. PNAS 94, 13057–13062 (1997)

3. Aach, J., Church, G.M.: Aligning gene expression time series with time warping
algorithms. Bioinformatics 17, 495–508 (2001)

4. Amato, R., Ciaramella, A., Deniskina, N., Del Mondo, C., di Bernardo, D., Donalek, C.,
Longo, G., Miele, G., et al.: A multi-step approach to time series analysis and gene
expression clustering. Bioinformatics 22, 589–596 (2006)

5. Bar-Joseph, Z.: Analyzing time series gene expression data. Bioinformatics 20, 2493–2503
(2004)

6. Eisen, M.B., Spellman, P.T., Brown, P.O., Bostein, D.: Cluster analysis and display of
genome-wide expression patterns. PNAS 95, 14863–14868 (1998)

7. De Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. J.
Comput. Biol. 9, 67–103 (2002)

8. Martin, S., Zhang, Z., Martino, A., Faulon, J.-L.: Boolean dynamics of genetic regulatory
networks inferred from microarray time series data. Bioinformatics 23, 866–874 (2007)

9. Luan, Y., Li., H.: Clustering of time-course gene expression data using a mixed-effects
model with B-splines. Bioinformatics 19, 474–482 (2003)

10. Sahoo, D., Dill, D.L., Tibshirani, R., Plevritis, S.K.: Extracting binary signals from
microarray time-course data. Nucleic Acids Research 35, 3705–3712 (2007)

11. Owen, A.: Discussion: Multivariate adaptive regression splines. Ann. Stat. 19, 102–112
(1991)

A PTAS for the k-Consensus Structures

Problem Under Euclidean Squared Distance

Shuai Cheng Li, Yen Kaow Ng, and Louxin Zhang

1 David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo ON N2L 3G1 Canada

scli@cs.uwaterloo.ca
2 Department of Computer Science and Communication Engineering,

Kyushu University, Fukuoka 819-0395, Japan
kalngyk@tcslab.csce.kyushu-u.ac.jp

3 Department of Mathematics, National University of Singapore,
Singapore 117543

matzlx@nus.edu.sg

Abstract. In this paper we consider a basic clustering problem that has
uses in bioinformatics. A structural fragment is a sequence of � points in a
3D space, where � is a fixed natural number. Two structural fragments f1

and f2 are equivalent iff f1 = f2 ·R+τ under some rotation R and trans-
lation τ . We consider the distance between two structural fragments to
be the sum of the Euclidean squared distance between all corresponding
points of the structural fragments. Given a set of n structural fragments,
we consider the problem of finding k (or fewer) structural fragments
g1, g2, . . . , gk, so as to minimize the sum of the distances between each of
f1, f2, . . . , fn to its nearest structural fragment in g1, . . . , gk. In this paper
we show a PTAS for the problem through a simple sampling strategy.

1 Introduction

In this paper we consider the problem of clustering similar sequences of 3D
points. Two such sequences are considered the same if they are equivalent under
some rotation and translation. The scenerio which we consider is as follows.
Suppose there is an original sequence of points that gave rise to a few variations
of itself, through slight changes in some or all of its points. Now given these
variations of the sequence, we are to reconstruct the original sequence. A likely
candidate for such an original sequence would be a sequence which is “nearest”
in terms of some distance measure, to the variations.

Now consider a more complicated scenerio where there had been not only
one, but k original sequences of the same length. Given a set of variations of
these original sequences, we are to find the original sequences. We formulate the
problem as follows. Given n sequences of points f1, f2, . . . , fn, we are to find a
set of k sequences g1, . . . , gk, such that the sum of distances

∑

1≤i≤n

min
1≤j≤k

dist(fi, gj)

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 35–44, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

36 S.C. Li, Y.K. Ng, and L. Zhang

is minimized. In this paper we consider the case where dist is the sum of Eu-
clidean squared distances between each of the points in the two sequences fi and
gk. The “square” in the distance measure is necessary to the method given in
this paper (more on this in Discussions). On the other hand, it should be easy
to adapt the method to other distance measures that fulfill this condition.

Such a problem has potential use in clustering protein structures. A protein
structure is typically given as a sequence of points in 3D space, and for various
reasons, there are typically minor variations in their measured structures. Our
problem can be used in the case where we have a set of measurements of a few
protein structures and are to reconstruct the original structures.

In this paper, we show that there is a polynomial-time approximation scheme
(PTAS) for the problem, through a sampling strategy.

2 Preliminaries

Throughout this paper we let � be a fixed non-zero natural number. A structural
fragment is a sequence of � 3D-points. The mean square distance (MS) between
two structural fragments f = (f [1], . . . , f [�]) and g = (g[1], . . . , g[�]), is defined
to be

MS(f, g) = min
R∈R,τ∈T

�∑

i=1

‖ f [i] − (R · g[i] + τ) ‖2

where R is the set of all rotation matrices, T the set of all translation vectors,
and ‖ x − y ‖ is the Euclidean distance between x, y ∈ �3.

The root of the MS measure, RMS(f, g) =
√

MS(f, g) is a measure that
has been extensively studied. Note that R ∈ R, τ ∈ T that minimize

∑�
i=1 ‖

f [i] − (R · g[i] + τ) ‖2 to give us MS(f, g) will also give us RMS(f, g), and vice
versa. Since given any f and g, there are closed form equations [1,5] for finding
R and τ that give RMS(f, g), MS(f, g) can be computed efficiently for any f
and g.

Furthermore, it is known that to minimize
∑�

i=1 ‖ f [i] − (R · g[i] + τ) ‖2, the
centroid of f and g must coincide [1]. Due to this, without loss of generality we
assume that all structural fragments have centroids at the origin. Such transfor-
mations can be done in time O(n�). After such transformations, in computing
MS(f, g), only the parameter R ∈ R need to be considered, that is,

MS(f, g) = min
R∈R

�∑

i=1

‖ f [i] − R · g[i] ‖2

Suppose that given a set of n structural fragments f1, f2, . . . , fn, we are to find k
structural fragments g1, . . . , gk, such that each structural fragment fi is “near”,
in terms of the MS, to at least one of the structural fragments in g1, . . . , gk. We
formulate such a problem as follows:

A PTAS for the k-Consensus Structures Problem 37

k-Consensus Structural Fragments Problem Under MS

Input: n structural fragments f1, . . . fn, and a non-zero natural
number k < n.

Output: k structural fragments g1, . . . gk, minimizing the cost∑n
i=1 min1≤j≤k MS(fi, gj).

In this paper we will demonstrate that there is a PTAS for the problem.
We use the following notations: Cardinality of a set A is written |A|. For a set

A and non-zero natural number n, An denotes the set of all length n sequences
of elements of A. Let elements in a set A be indexed, say A = {f1, f2, . . . , fn},
then Am! denotes the set of all the length m sequences fi1 , fi2 , . . . , fim , where
1 ≤ i1 ≤ i2 ≤ . . . ≤ im ≤ n. For a sequence S, S(i) denotes the i-th element in
S, and |S| denotes its length.

3 PTAS for the k-Consensus Structural Fragments

The following lemma, from [4], is central to the method.

Lemma 1 ([4]). Let a1, a2, . . . , an be a sequence of real numbers and let r ∈ N ,
1 ≤ r ≤ n. Then the following equation holds:

1
nr

∑

1≤i1,i2,...,ir≤n

n∑

i=1

(
ai1 + ai2 + · · · + air

r
−ai)2 =

r + 1
r

n∑

i=1

(
a1 + a2 + · · · + an

n
−ai)2

��
Let P1 = (x1, y1, z1), P2 = (x2, y2, z2), . . . , Pn = (xn, yn, zn) be a sequence of 3D
points.

1
nr

∑

1≤i1,i2,...,ir≤n

n∑

i=1

‖ Pi1 + Pi2 + · · · + Pir

r
− Pi ‖2

=
1
nr

∑

1≤i1,...,ir≤n

n∑

i=1

(
xi1 + . . . + xir

r
− xi)2 + (

yi1 + . . . + yir

r
− yi)2 + (

zi1 + . . . + zir

r
− zi)2

=
r + 1

r

n∑

i=1

(
x1 + . . . + xn

n
− xi)2 + (

y1 + . . . + zn

n
− zi)2 + (

z1 + . . . + zn

n
− zi)2

=
r + 1

r

n∑

i=1

‖ P1 + P2 + · · · + Pn

n
− Pi ‖2

One can similarly extend the equation for structural fragments. Let f1, . . . , fn

be n structural fragments, the equation becomes:

1
nr

∑

1≤i1,...,ir≤n

n∑

i=1

‖ fi1 + · · · + fir

r
− fi ‖2=

r + 1
r

n∑

i=1

‖ f1 + · · · + fn

n
−fi ‖2(1)

38 S.C. Li, Y.K. Ng, and L. Zhang

The equation says that there exists a sequence or r structural fragments fi1 ,
fi2 , . . . , fir such that

n∑

i=1

‖ fi1 + · · · + fir

r
− fi ‖2 ≤ r + 1

r

n∑

i=1

‖ f1 + · · · + fn

n
− fi ‖2

Our strategy uses this fact —in essentially the same way as in [4]— to approx-
imate the optimal solution for the k-consensus structural fragments problem.
That is, by exhaustively sampling every combination of k sequences, each of r
elements from the space R′ × {f1, . . . , fn}, where f1, . . . , fn is the input and R′
is a fixed selected set of rotations, which we next discuss.

3.1 Discretized Rotation Space

Any rotation can be represented by a normalized vector u and a rotation angle
θ, where u is the axis around which an object is rotated by θ. If we apply (u, θ)
to a vector v, we obtain vector v̂, which is:

v̂ = u(v · u) + (v − w(v · w)) cos θ + (v × w) sin θ

where · represents dot product, and × represent cross product.
By the equation, one can verify that a change of ε in u will result in a change

of at most α1ε|v| in |v̂| for some computable α1 ∈ �; and a change of ε in θ will
result in a change of at most α2ε|v| in |v̂| for some computable α2 ∈ �. Now any
rotation along an axis through the origin can be written in the form (θ1, θ2, θ3),
where θ1, θ2, θ3 ∈ [0, 2π] are respectively a rotation along each of the x, y, z axes.
Similarly, changes of ε in θ1, θ2 and θ3 will result in a change of at most αε|v|,
for some computable α ∈ �.

We discretize the values that each θi, 1 ≤ i ≤ 3 may take within the range
[0, 2π] into a series of angles of angular difference ϑ. There are hence at most
O(1/ϑ) of such values for each θi, 1 ≤ i ≤ 3. Let R′ denote the set of all possible
discretized rotations (θ1, θ2, θ3). Note that |R′| is of order O(1/ϑ3).

Let d be the diameter of a ball that is able to encapsulate each of f1, f2, . . . , fn.
Hence any distance between two points among f1, . . . , fn is at most d. In this
paper we assume d to be constant with respect to the input size. Note that for
a protein structure, d is of order O(�) [3]. For any b ∈ �, we can choose ϑ so
small that for any rotation R and any point p ∈ �3, there exists R′ ∈ R′ such
that ‖ R · p − R′ · p ‖ ≤ αϑd ≤ b.

3.2 A Polynomial Time Algorithm with Cost ((1 + ε)Dopt + c)

Consider the number of F1, F2, . . . , Fm in (2.1) that are possible. Let each Fj be
represented by a length r string of n+1 symbols, n of which each represents one
of f1, . . . , fn, while the remaining symbol represents “nothing”. It is clear that
for any Aj , any Fj ∈ Ar!

j , or Fj ∈ A
|Aj |!
j (where |Aj | ≤ r), can be represented by

one such string. Furthermore, any F1, F2, . . . , Fm can be completely represented

A PTAS for the k-Consensus Structures Problem 39

by k such strings — that is, to represent the case where m < k, k − m strings
can be set to “nothing” completely. From this, we can see that there are at most
(n + 1)rk = O(nrk) possible combinations of F1, F2, . . . , Fm.

Approximation Algorithm k-Consensus Structural Fragments
Input: structural fragments f1, . . . fn, natural numbers k < n and r ≥ 1.
Output: up to k structural fragments g1, . . . gk.

(1) Let Dmin = ∞, Consensus= ∅.
(2) For every possible set of m ≤ k disjoint sets A1, . . . , Am ⊆ {f1, . . . , fn}
(2.1) For every possible F1, F2, . . . , Fm, where

Fj ∈ Ar!
j if |Aj | > r, otherwise

Fj is the (unique) sequence in A
|Aj |!
j that contains all the

elements of Aj .
(2.2) For every possible sequence Θ1, Θ2, . . . , Θm, where

Θj ∈ R′|Fj | for 1 ≤ j ≤ m.
(2.3) For j = 1 to m, find uj , the average structural fragment

for Θj(1) · Fj(1),
Θj(2) · Fj(2),

...
Θj(|Fj |) · Fj(|Fj |).

(2.4) For i = 1 to n, find di = min{‖ uj − R · fi ‖2| 1 ≤ j ≤ m, R ∈ R′}.
(2.5) If

∑n
i=1 di < Dmin,
set Dmin to

∑
j dj and Consensus to {u1, . . . , uk}.

(3) Output Consensus.

For each of these combinations, there are |R′|rk possible combinations of
Θ1, Θ2, . . . , Θm at (2.2), hence resulting in O((n|R′|)rk) iterations to run for
(2.3) to (2.5). Since (2.3) can be done in O(rk�), (2.4) in O(nk|R′|�), and (2.5)
in O(n) time, the algorithm completes in O(k�(r + n|R′|)(n|R′|)rk) time.

We argue that Dmin eventually is at most (r + 1)/r of the optimal solution
plus a factor. Suppose the optimal solution results in the m ≤ k disjoint clusters
A1,A2, . . . ,Am ⊆ {f1, . . . , fn}.

For each Aj , 1 ≤ j ≤ m, let uj be a structural fragment which minimizes∑
f∈Aj

MS(uj , f). Furthermore, for each f ∈ Aj , let Rf be a rotation where

Rf ∈ arg min
R∈R

‖ uj − R · f ‖2

and let

Dj =
∑

f∈Aj

‖ uj − Rf · f ‖2 (Hence the optimal cost, D =
∑m

j=1 Dj .)

40 S.C. Li, Y.K. Ng, and L. Zhang

By the property of the MS measure, it can be shown that uj is the average of
{Rf · f | f ∈ Aj}. For each Aj where |Aj | > r, by Equation 1,

1
|Aj |r

∑

Fj∈Ar
j

∑

f∈Aj

‖
RFj(1) · Fj(1) + · · · + RFj(r) · Fj(r)

r
− Rf · f ‖2 =

r + 1
r

Dj

For each such Aj , let Fj ∈ Ar
j be such that

∑

f∈Aj

‖
RFj(1) · Fj(1) + · · · + RFj(r) · Fj(r)

r
− Rf · f ‖2 ≤ r + 1

r
Dj

Without loss of generality assume that each Fj ∈ Ar!
j . Let

μj =

⎧
⎨

⎩

RFj(1)·Fj(1)+···+RFj(r)·Fj(r)
r if |Aj | > r

RFj(1)·Fj(1)+···+RFj(|Aj |)·Fj(|Aj |)
|Aj | otherwise

Then we may write,

m∑

j=1

∑

f∈Aj

‖ μj − Rf · f ‖2 ≤ r + 1
r

D (2)

For each rotation Rf , let Rf be a closest rotation to Rf within R′. Also, let

μj =

⎧
⎨

⎩

RFj(1)·Fj(1)+···+RFj(r)·Fj(r)
r if |Aj | > r

RFj(1)·Fj(1)+···+RFj(|Aj |)·Fj(|Aj |)
|Aj | otherwise

Since we exhaustively sample all possible Fj ∈ Ar!
j for all possible Aj and for all

R ∈ R′, it is clear that:

Dmin ≤
m∑

j=1

∑

f∈Aj

‖ μj − Rf · f ‖2 (3)

A PTAS for the k-Consensus Structures Problem 41

We will now relate the LHS of Equation 2 with the RHS of Equation 3. The
RHS of Equation 3 is

m∑

j=1

∑

f∈Aj

‖ μj − Rf · f ‖2

=
m∑

j=1

∑

f∈Aj

‖ μj + (μj − μj) + (Rf · f − Rf · f) − Rf · f ‖2

≤
m∑

j=1

∑

f∈Aj

(‖ μj − Rf · f ‖ +(‖ μj − μj ‖ + ‖ Rf · f − Rf · f ‖))2

=
m∑

j=1

∑

f∈Aj

‖ μj − Rf · f ‖2 +(‖ μj − μj ‖ + ‖ Rf · f − Rf · f ‖)2

+2 ‖ μj − Rf · f ‖ (‖ μj − μj ‖ + ‖ Rf · f − Rf · f ‖)

≤
m∑

j=1

∑

f∈Aj

‖ μj − Rf · f ‖2 + 8n�b

Hence by Equation 2, Dmin is at most (r+1)/r = 1+1/r of the optimal solution
plus a factor c = 8n�b. Let ε = 1/r,

Theorem 1. For any c, ε ∈ �, a ((1 + ε)Dopt + c)-approximation solution for
the k-consensus structural fragments problem can be computed in

O(k�(
1
ε

+ n|R′|)(n|R′|) k
ε)

time.

The factor c in Theorem 1 is due to error introduced by the use of discretization
in rotations. If we are able to estimate a lowerbound of Dopt, we can scale this
error by refining the discretization such that c is an arbitrarily small factor of
Dopt. To do so, in the next section we show a lowerbound to Dopt.

3.3 A Polynomial Time 4 Approximation Algorithm

We now show a 4-approximation algorithm for the k-consensus structural frag-
ments problem. We first show the case for k = 1, and then generalizes the result
to all k ≥ 2.

Let the input n structural fragments be f1, f2, . . ., fn. Let fa, 1 ≤ a ≤ n be
the structural fragment where

∑

1≤j≤n∧j �=a

MS(fa, fj)

is minimized. Note that fa can be found in time O(n2�), since for any 1 ≤ i, j ≤
n, MS(fi, fj) (more precisely, RMS(fi, fj)) can be computed in time O(�) using
closed form equations from [5].

42 S.C. Li, Y.K. Ng, and L. Zhang

We argue that fa is a 4-approximation. Let the optimal structural fragment
be fopt, the correspoding distance Dopt, and let fb (1 ≤ b ≤ n) be the fragment
where MS(fb, fopt) is minimized.

We first note that the cost of using fa as solution,
∑

i�=a MS(fa, fi) ≤
∑

i�=b

MS(fb, fi). To continue we first establish the following claim.

Claim. MS(f, f ′) ≤ 2(MS(f, f ′′) + MS(f ′′, f ′)).

Proof. In [2], it is shown that

RMS(f, f ′) ≤ RMS(f, f ′′) + RMS(f ′′, f ′)

Squaring both sides gives

MS(f, f ′) ≤ MS(f, f ′′) + MS(f ′′, f ′) + 2RMS(f, f ′′)RMS(f ′′, f ′)

Since
2RMS(f, f ′′)RMS(f ′′, f ′) ≤ MS(f, f ′′) + MS(f ′′, f ′)

we have MS(f, f ′) ≤ 2(MS(f, f ′′)+MS(f ′′, f ′)).

By the above claim,
∑

i�=b

MS(fb, fi) ≤ 2
∑

i�=b

(MS(fb, fopt) + MS(fopt, fi))

= 2
∑

i�=b

MS(fb, fopt) + 2
∑

i�=b

MS(fi, fopt)

≤ 2
∑

i�=b

MS(fb, fopt) + 2Dopt

≤ 2
∑

j �=b

MS(fj, fopt) + 2Dopt

≤ 2Dopt + 2Dopt = 4Dopt

Hence
∑

i�=a MS(fa, fi) ≤ 4Dopt. We now extend this to k structural fragments.

4-Approximation Algorithm k-Consensus Structural Fragments
Input: structural fragments S = {f1, . . . fn}, natural number k < n.
Output: up to k structural fragments A.

(1) For every set A ⊆ S of up to k structural fragments, do
(2) Compute cost(A) =

∑
f∈S−A minf ′∈A MS(f, f ′)

(3) Output A with the least cost(A).

We first pre-compute MS(f, f ′) for every pair of f, f ′ ∈ S, which takes time
O(n2�). Then, at step (1), there are at most O(nk) combinations of A, each
which takes O(nk) time to compute at step (2). Hence in overall, we can perform
the computation within time of O(n2� + knk+1). To see that the solution is

A PTAS for the k-Consensus Structures Problem 43

a 4-approximation, let S1, S2, . . . , Sm where m ≤ k be an optimal clustering.
Then, by our earlier argument, there exists fi1 ∈ S1, fi2 ∈ S2, . . ., fim ∈ Sm

such that each fix is a 4-approximation for Sx, and hence (fi1 , fi2 , . . . , fim) is
a 4-approximation for the k-consensus structural fragments problem. Since the
algorithm exhaustively search for every combination of up to k fragments, it gives
a solution at least as good as (fi1 , fi2 . . . , fim), and hence is a 4-approximation
algorithm.

Theorem 2. A 4-approximation solution for the k-consensus structural frag-
ments problem can be computed in time O(n2� + knk+1).

3.4 A (1 + ε) Polynomial Time Approximation Scheme

Recall that the algorithm in Section 3.2 has cost D ≤ (1 + ε)Dopt + 8n�b where
b = αϑd. From Section 3.3 we have a lowerbound Dopt of Dopt. We want
8n�b ≤ εDopt ≤ εDopt. To do so, it suffices that we set ϑ ≤ εDopt/(8n�αd). This
results in an |R′| of order O(1/ϑ3) = O((n�d)3). Substituting this in Theorem 1,
and combining with Theorem 2, we get the following.

Theorem 3. For any ε ∈ �, a ((1 + ε)Dopt)-approximation solution for the
k-consensus structural fragments problem can be computed in

O(n2� + knk+1 + k�(
2
ε

+ nλ)(nλ)
2k
ε)

time, where λ = (n�d)3.

4 Discussions

The method in this paper depends on Lemma 1. For this reason, the technique
does not extend to the problem under distance measures where Lemma 1 cannot
be applied, for example, the RMS measure. However, should Lemma 1 apply
to a distance measure, it should be easy to adapt the method here to solve the
problem for that distance measure.

One can also formulate variations of the k-consensus structural fragments
problem. For example,

k-Closest Structural Fragments Problem Under MS

Input: n structural fragments f1, . . . fn, and a non-zero natural
number k < n.

Output: k structural fragments g1, . . . gk, minimizing the threshold
max1≤i≤n min1≤j≤k MS(fi, gj).

The cost function of the k-consensus structural fragments problem has some
resemblance to that of the k-means problem, while the cost function of the k-
closest structural fragments resembles the (absolute) k-center problem.

44 S.C. Li, Y.K. Ng, and L. Zhang

References

1. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-d point sets.
IEEE Trans. Pattern Anal. Mach. Intell. 9(5), 698–700 (1987)

2. Boris, S.: A revised proof of the metric properties of optimally superimposed vector
sets. Acta Crystallographica Section A 58(5), 506 (2002)

3. Hao, M., Rackovsky, S., Liwo, A., Pincus, M.R., Scheraga, H.A.: Effects of compact
volume and chain stiffness on the conformations of native proteins 89, 6614–6618
(1992)

4. Qian, J., Li, S.C., Bu, D., Li, M., Xu, J.: Finding Compact Structural Motifs. In: Ma,
B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 142–149. Springer, Heidelberg
(2007)

5. Umeyama, S.: Least-squares estimation of transformation parameters between two
point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 376–380 (1991)

Haplotype Assembly from Weighted SNP

Fragments and Related Genotype Information

Seung-Ho Kang, In-Seon Jeong, Mun-Ho Choi, and Hyeong-Seok Lim

Dept. of Computer Science, Chonnam National University,
Yongbong-dong 300, Buk-gu, Gwangju 500-757, Korea

kinston@gmail.com, isjung0@hotmail.com, howork@paran.com
hslim@chonnam.ac.kr

Abstract. The algorithms that are based on the Weighted Minimum Let-
ter Flips (WMLF) model are more accurate in haplotype reconstruction
than those based on the Minimum Letter Flips (MLF) model, but WMLF
is effective only when the error rate in SNP fragments is low. In this pa-
per, we first establish a new computational model that employs the re-
lated genotype information as an improvement of the WMLF model and
show its NP-hardness, and then we propose an efficient genetic algorithm
to solve for the haplotype assembly problem. The results of experiments
on a real data set indicate that the introduction of genotype information
to the WMLF model is quite effective in improving the reconstruction rate
especially when the error rate in SNP fragments is high.

Keywords: haplotype assembly problem, WMLF model, genetic
algorithm.

1 Introduction

With complete genome sequences for humans now available, the investigation of
genetic differences is one of the main topics in genomics[9]. Complete sequenc-
ing confirms that we all share some 99% identity at the DNA level, so there are
small regions of differences that are responsible for our diversities. It is known
that these few regions of differences in DNA sequences are responsible for the
genetic diseases[7]. The most abundant source of genetic variation in the human
genome is represented by single nucleotide polymorphism (SNP). SNPs are be-
lieved to be the most frequent form of genetic variability, and its understanding
will increase our ability to treat human diseases, design drugs, and create new
medical applications.

A SNP is a variation of a single nucleotide at a fixed point of the DNA sequence
and in a bounded range of possible values, and each variant is called an allele.
In particular, each SNP shows a variability of only two different alleles. We de-
note each allele by 0 (wild type) and 1 (mutant type). The sequence of SNPs in a
specific chromosome is called a haplotype. In diploid organisms such as humans,
genomes are organized into pairs of chromosomes, so there are two copies of the
haplotypes for each of the SNP sequences. A genotype is the conflation of two hap-
lotypes on the homologous chromosomes. For a genotype, when a pair of alleles

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 45–54, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

46 S.-H. Kang et al.

at a SNP site is made of two identical types, this site is called homozygous and
denoted by 0 or 1; otherwise it is called heterozygous and denoted by 2. Haplo-
types play a more important role than genotypes in disease association studies[6].
However, current sequencing techniques can detect the presence of SNP sites, but
they cannot tell which copy of a pair of chromosomes the alleles belong to. Hence,
it is more difficult to determine haplotypes than to determine genotypes. To help
overcome this difficultly, two classes of problems are defined from the viewpoint of
computation. One is the population haplotyping problem and the other is the in-
dividual haplotyping problem. The former, which is called the haplotype inference
problem, is to infer a set of haplotypes from the genotype set of a population. The
latter, which is called the haplotype assembly problem, is to obtain a pair of haplo-
types by assembling the aligned SNP fragments, each of which can contain errors.
This paper focuses on the haplotype assembly problem. The haplotype assembly
problem is concerned with the partitioning of the aligned SNP fragments into two
sets, with each set determining a haplotype. There are several models based on
different error assumptions[10]. Among these models, the Minimum Letter Flips
(MLF) model and its weighted version, the weighted MLF (WMLF) model are
proposed based on the assumption that all SNP fragments are from one organ-
ism, and they involve some sequencing errors. The WMLF model has another as-
sumption that for each SNP site, there is a weight for its flipping, which represents
the confidence level of the sequencer machine’s reading. Both models have been
proven to be NP-hard even if the SNP fragment matrix is gapless[1,12]. Zhao et al.
showed that the WMLF model has a higher accuracy for haplotype reconstruction
than the MLF model[12]. However, both models are effective when the SNP frag-
ments have a low error rate. In order to improve the quality of the MLF model,
the idea that genotype information can be employed has been proposed[9]. Since
genotype data can be much more easily obtained, it is a practical and important
strategy. Several methods that use genotype information in the MLF model have
been proposed[8,9,11], but there has been no method that employs the genotype
information of an individual in the WMLF model, which is known to be more ac-
curate. Here we propose a new WMLF/GI model that adds genotype information
to the existing WMLF model and a genetic algorithm to solve the problem.

The paper is organized as follows. In Section 2, we give the problem definition
and its hardness togetherwith the mathematical model formulation. In Section 3, a
genetic algorithm isdesigned to solve theWMLFmodelwithgenotype information.
Finally, the experimental results and conclusions are shown in Sections 4 and 5,
respectively.

2 Formulation and Problem Definition

In this section, we propose a new computational model as an extension of the
WMLF model. The proposed model employs the genotype information to im-
prove the accuracy and speed of reconstruction of a pair of haplotypes from
sequenced SNP fragments.

Haplotype Assembly from Weighted SNP Fragments 47

Suppose that there are m SNP fragments obtained from the two copies of
a chromosome and the length of each fragment is n, and each SNP can take
either one of the two values 0 (wild type) or 1 (mutant type). These fragment
data are represented by an m × n matrix M over {0, 1, -}, which called the
SNP matrix. The symbol - is used to represent a SNP that is not covered by a
fragment and we say that it is missing or call it a gap. Each row of the matrix
corresponds to a SNP fragment (denoted by fi) and each column corresponds to
a SNP site of fragments. The sequencer machine attaches a confidence level to
each sequenced value in these fragments, which represents the probability that
the value is correctly read. The confidence levels of these vales can be represented
by an m × n weight matrix W . The element of W , wij , denotes the confidence
level of the value at the corresponding SNP site fij of matrix M , and if there
is the symbol - at fij , then we assign it a 0. The confidence level (weight) of a
value is assumed to be between 0 and 1. Since two different sites can have the
same letters by flipping the letter with the smaller weight, the distance between
the SNP sites of two fragments fi and fj is defined by their weights as follows:

d(fik, fjk) =
{

min{wik, wjk}, if fik �= −, fjk �= −, and fik �= fjk

0 , otherwise . (1)

If one site is of a haplotype, then their distance is the weight of the fragment
site i.e. d(fik, hjk) = wik. The distance between fi and fj is then defined as the
weighted sum of letter flips of the two fragments

D(fi, fj) =
n∑

k=1

d(fik, fjk) . (2)

If D(fi, fj) > 0, it means that the two fragments fi and fj come from dif-
ferent copies of a chromosome or there are errors in sequencing. We call them
conflicting, otherwise we call them agreeable. Similarly, the distance between a
haplotype hi and an SNP fragment fj is defined in a similar way:

D(hi, fj) =
n∑

k=1

d(hik, fjk) . (3)

If the SNP fragments can be partitioned into two disjoint sets such that all of
the SNP fragments in the same set are pairwise agreeable, then the SNP matrix
is said to be feasible.

In order to improve the accuracy of the WMLF model, we introduce a new
model that employs the genotype information, which can be obtained easily. For
a genotype g = (g1, g2, ..., gn), we assign 0 to gi when the i-th SNP site is wild
type homozygous, and we assign it a 1 when it is mutant type homozygous. If
the site is heterozygous, we assign it a 2. A pair of haplotypes h1 and h2 is said

48 S.-H. Kang et al.

to be compatible with genotype g if the following conditions hold for each SNP
site k:

{
if gk �= 2, h1k = h2k = gk

if gk = 2, h1k = 0, h2k = 1 or h1k = 1, h2k = 0 . (4)

The new model WMLF/GI is defined as follows:

Definition 1 (WMLF/GI). Given a SNP matrix M with a weight matrix
W and a genotype g, flip some elements (0 into 1 and vice versa) so that the
weighted sum of the flips reaches a minimum and the resulting matrix is both
feasible and g-compatible, i.e. the SNP fragments can be divided into two disjoint
sets of pairwise agreeable fragments that determine a pair of haplotypes that is
compatible with g.

WMLF/GI is to flip some elements (satisfying the condition that the weighted
sum is minimized) under the guidance of the genotype information so that the
modified SNP fragments can be divided into two disjoint sets, and these two sets
are used to determine a pair of haplotypes.

Theorem 1. The WMLF/GI problem is NP-hard.

Proof. The MLF/GI problem was proven to be NP-hard by Zhang et al [11].
To prove that the WMLF/GI problem is NP-hard, we will reduce the MLF/GI
problem to the WMLF/GI problem.

We can transform an arbitrary instance of MLF/GI into an instance of WMLF
/GI just by adding a special weight matrix W ∗. Without loss of generality, we
can map the value 1 to the elements of W ∗ when the corresponding letters are
0 or 1 in the SNP matrix, and if the element is a gap, we assign the value 0.

In the MLF/GI model, the distance between fragments or between a frag-
ment and a haplotype is measured by the hamming distance, i.e. the number of
mismatch characters. Since every element of W ∗ is 1 except for the gaps, the
distance measures of MLF/GI are equal to formulas (2) and (3). Therefore, if a
partition P ∗ has a minimum weighted sum of the flips and the resulting matrix is
both feasible and g-compatible in the MLF/GI model, then it is also an optimal
solution to the WMLF/GI model.

Conversely, an instance of WMLF/GI with weight matrix W ∗ is a special case
of WMLF/GI. Therefore the converse holds also. This reduction can obviously
be performed in polynomial time. ��

3 A Heuristic Method Based on a Genetic Algorithm

In this section, we propose a genetic algorithm for solving the WMLF/GI prob-
lem. Genetic algorithms[4] are useful meta-heuristic algorithms and they have
found successful application in many areas including those of computational
biology.

Haplotype Assembly from Weighted SNP Fragments 49

3.1 The Hypothesis Space

In the genetic algorithm, an individual in a population is expressed by a bit
vector. It represents a partition of SNP fragments in a SNP matrix and a feasible
solution to the WMLF/GI problem. The length of an individual in the hypothesis
space is the number of SNP fragments. The value 0 or 1 at the i-th position of
an individual characterizes the partition membership of the i-th SNP fragment.
Thus, all of the bit vectors having length m constitute the hypothesis space:

H = {(f1, f2, ..., fm)|fi ∈ {0, 1}, i = 1, 2, ..., m} .

Therefore the size of the hypothesis space is 2m .

3.2 Construction of the Initial Population Under the Guidance of
Genotype Information

Each individual in the initial population is generated by randomly giving either
one of the two values 0 or 1 to each element fi, but we can improve the efficiency of
the genetic algorithm by employing genotype information in the construction of
the initial population. If gi is 0 or 1, it means that the i-th SNP site of all fragments
must be 0 or 1 and we can modify the site with this value. If gi = 2, then we
cannot determine the value of the site. Therefore, if we modify only the sites of all
fragments corresponding to the site of the genotype that has the value 0 or 1, then
we will obtain a new SNP fragment matrix M∗. If a pair of fragments fi and fj in
M∗ has D(fi, fj) = 0, we presume that they are generated from the same copy of
a chromosome, so we assign the same value 0 or 1 to all similar fragments. Then
the hypothesis space will be reduced and the speed of the convergence to the best
feasible solution will be increased. We show the effectiveness of the modification
in improving the convergence speed in Section 4.

3.3 Haplotype Assembly Rule from a Partition

We first describe how to generate a pair of haplotypes from a partition P =
(P1, P2) that corresponds to an individual under the guidance of genotype. Let
C0j(Pl), C1j(Pl) denote the weighted sum of letter flips of the wild and mutant
type respectively in column j when we focus on the class Pl, i.e., C0j(Pl) =∑

fi∈Pl,fij=0 wij and C1j(Pl) =
∑

fi∈Pl,fij=1 wij . If gj �= 2, then let h1j = h2j =
gj. If gj = 2, then h1j and h2j are determined by the following formula:

hlj =
{

0, if C0j(Pl) > C1j(Pl)
1, otherwise . (5)

where l = 1, 2 and j = 1, 2, ..., n. If h1j �= h2j , then h1 and h2 are compatible
with g at the j-th SNP site. Otherwise, h1 and h2 are not compatible with g
at the j-th SNP site and we must modify h1j or h2j . For h1j = h2j = 1, if
C1j(P1)−C0j(P1) < C1j(P2)−C0j(P2), then set h1j = 0, otherwise set h2j = 0.
For h1j = h2j = 0, if C0j(P1) − C1j(P1) < C0j(P2) − C1j(P2), then set h1j = 1,

50 S.-H. Kang et al.

otherwise set h2j = 1. After modification, h1 and h2 are compatible with g at
every SNP site. It is also easy to see that for a fixed partition, a pair of haplotypes
compatible with a given genotype generated by this method has a lower weighted
sum of letter flips with the given fragments than haplotypes generated by any
other means. After determining a pair of haplotypes from a partition by the
above method, we need a weight function to compute the total weighted sum of
letter flips needed for the corresponding partition and generated haplotypes. We
define a flip weight function by the following formula:

FW (P) =
2∑

l=1

∑

fi∈Pl

D(hl, fi) . (6)

where h1 and h2 are generated by the above assembly rule from the partition
P . The goal of the WMLF/GI model is again to find a best partition of M by
using the flip weight function.

3.4 Designation of the Fitness Function

In the genetic algorithm, for every individual in a population, we need to perform
an evaluation to determine the goodness of an individual. We can use the flip
weight function defined above as the fitness function, but for the convenience of
evaluation, the following fitness function is used:

Fit((f1, f2, ..., fm)) = mn − FW (P) . (7)

where P denotes the partition that corresponds to an individual (f1, f2, ..., fm)
and 0 < Fit() ≤ mn. The fitness of an individual is reversely proportional to
the corresponding weighted sum of flips needed for error correction. It is easy
to see that a SNP matrix is feasible if and only if there exists an individual
(f1, f2, ..., fm) in the hypothesis space such that Fit((f1, f2, ..., fm)) = mn.

3.5 Genetic Operators

There are several kinds of selection operators. Among them we adopt a tourna-
ment selection to increase the convergence speed and the accuracy. In addition,
in order to yield a more diverse population, we use a roulette wheel selection
operator to select individuals to crossover, and we newly create a crossover tech-
nique that changes only the randomly chosen parts of the heterozygous site
in light of the genotype information. We adopt a single-point mutation in our
genetic algorithm.

The overall scheme of the algorithm is given in Table 1.

4 Analysis of the Experimental Results

The proposed algorithm is implemented in the C language and tested on a single
32-bit system (Pentium 4, 2.8 GHz with 1GB RAM).

Haplotype Assembly from Weighted SNP Fragments 51

Table 1. Genetic algorithm for WMLF/GI

Algorithm GAforHaplotypeAssembly
Input: SNP fragments matrix M , weight matrix W , genotype g

population size PS, crossover rate CR, mutation rate MR,
the maximum number of population generation GN

Output: a pair of haplotypes h1, h2

Begin
Generate a random initial population P0, k = 0;
Modify the initial population under the guidance of a genotype g;
while(k < GN) do

Compute the fitness of each individual in Pk;
Select (1 − CR) × PS individuals in Pk and add them to Pk+1

using the tournament selection operator;
Generate CR × PS offstrings from Pk and add them to Pk+1

using the roulette wheel selection operator and
newly designed crossover operator;

Mutate MR × PS individuals in Pk+1;
k = k + 1;

end do
return a pair of haplotypes assembled by the best individual;

end

We use the correct rate (Rc) as the measure of the performance of our al-
gorithm. The correct rate is universally adopted[8,9,11,12] and it helps to com-
pare the performance of our algorithm with the others. It is defined as follows.
Let h∗ = (h∗1, h

∗
2) be the original haplotypes of the given chromosomes, and

h = (h1, h2) be the haplotypes reconstructed by an algorithm. The Rc is

Rc(h, h∗) = 1 − min{D(h1, h
∗
1) + D(h2, h

∗
2), D(h1, h

∗
2) + D(h2, h

∗
1)}

2n
. (8)

where D(h, h∗) is the hamming distance between the two haplotypes.

4.1 Experiment on Data from Chromosome 5q31

To compare the performance of the WMLF model and the WMLF/GI model, we
use the same data from the public Daly set[2] that is used in [12]. The data consist
of genotypes for 103 SNPs in a 500 kilobase region of chromosome 5q31 from
mother-father-child trios. The haplotype pairs of the 129 children from the trios
can be inferred from the genotypes of their parents through pedigree information
and the non-transmitted chromosomes as an extra 129 haplotype pairs. Markers
for which both alleles could not be inferred are marked as missing. From the
resulting 258 haplotype pairs, the ones with more than 20% missing alleles are
removed, leaving 147 haplotype pairs as the test set.

We also make instances with the same parameter set used in [12]. The SNP
matrix of every example consists of m = 100 SNP fragments, each of which is

52 S.-H. Kang et al.

Table 2. A comparison between the WMLF model and the WMLF/GI model

Re = 0.05 Re = 0.2 Re = 0.3 Re = 0.4
WMLF WMLF WMLF/GI

Rm (wang) (GA) (GA) (wang) (GA) (GA) (wang) (GA) (GA) (wang) (GA) (GA)

0.1 0.978 1.0 1.0 0.978 0.997 0.999 0.995 0.9834 0.994 - 0.912 0.935
0.2 0.975 1.0 1.0 0.988 0.996 0.999 0.993 0.978 0.991 - 0.895 0.934
0.3 0.978 0.999 1.0 0.988 0.993 0.998 0.988 0.975 0.989 - 0.875 0.924
0.4 0.978 0.999 1.0 0.994 0.990 0.998 0.981 0.970 0.982 - 0.854 0.923
0.5 0.978 0.999 1.0 0.997 0.986 0.996 0.972 0.962 0.962 - 0.83 0.919
0.6 0.981 0.997 0.999 0.993 0.979 0.992 0.950 0.952 0.953 - 0.806 0.915
0.7 0.982 0.992 0.999 0.982 0.970 0.984 0.923 0.913 0.933 - 0.777 0.906
0.8 0.990 0.982 0.996 0.963 0.957 0.959 0.864 0.858 0.927 - 0.738 0.905
0.9 0.959 0.960 0.971 0.886 0.927 0.927 0.772 0.785 0.911 - 0.702 0.902

Table 3. The comparison of convergence speed between genetic algorithms
with/without genotype information

Re= 0.05 Re= 0.2 Re= 0.3 Re= 0.4
Rm without GI GI without GI GI without GI GI without GI GI

0.1 31.891 5.578 35.285 4.034 33.897 3.360 33.095 4.231

0.2 30.707 5.163 34.707 2.755 33.829 2.360 34.537 2.755

0.3 30.217 2.952 33.040 3.149 34.108 2.503 34.408 3.612

0.4 30.721 3.489 33.217 2.442 34.659 2.843 33.326 2.761

0.5 31.136 2.993 32.428 3.251 34.918 3.619 33.272 3.435

0.6 31.312 2.836 32.115 3.074 34.530 3.122 32.721 3.156

0.7 31.823 3.612 34.238 3.707 34.217 3.619 32.544 3.285

0.8 30.244 4.442 32.455 4.306 34.115 3.367 32.476 4.585

0.9 28.748 6.217 32.272 7.156 31.979 6.346 31.775 6.503

generated by randomly copying either of the two seed haplotypes. The gaps in
every SNP fragment are also produced randomly at missing rate Rm. The SNP
error in a correct SNP fragment is simulated by turning a 0 into 1 or vice versa
at some SNP error rate Re. The entries of the weight matrix W are normally
distributed and the corresponding parameters are μ(mean) and σ2(variance).
Throughout the simulations, μ = 0.9 for a correct SNP site and μ = 0.8 for
an error SNP site. In both of these cases, σ2 = 0.05. For the parameters of
the designed genetic algorithm, we set PS = 400, CR = 0.8, MR = 0.01, and
GN = 150.

Table 2 compares the WMLF model (which consists of the Dynamic Clustering
Algorithm[12] and genetic algorithm) and the WMLF/GI model with different pa-
rameter settings: Re = 0.05, 0.2, 0.3, 0.4. In each of these three cases, Rm ranges
from 0.1 to 0.9. The value of each entry of this table is the average of the correct
rates over all of the 147 instances at each parameter setting. From Table 2, we
can see that the accuracy of the haplotype assembly of the WMLF/GI model is

Haplotype Assembly from Weighted SNP Fragments 53

generally better than that of the WMLF model. Furthermore, the difference be-
tween them becomes significant as the SNP error rate and the gap rate increase.
This indicates the validity of introducing the genotype information to the WMLF
model to improve the accuracy.

Table 3 illustrates the effectiveness of the genotype information in the con-
vergence speed of the genetic algorithm. We define the convergence generation
number as the last generation number after which there is no more improvement
in the correct rate through 150 generations in each instance. It shows the average
convergence generation number of 147 instances for each parameter setting. It
can be seen that the speed of convergence of our genetic algorithm is greatly
improved by employing the genotype information without loss of accuracy.

5 Conclusion

The haplotype assembly problem is an important problem in computational
biology. In this paper, we first proposed the WMLF/GI model as an improvement
of WMLF and showed its NP-hardness. We also suggested a genetic algorithm
to solve this problem more accurately and efficiently. This algorithm employs
related genotype information not only in inferring a pair of haplotypes but also
in building an initial population that increases the algorithms accuracy and
speed of convergence. The computational results on a real data set show that
the designed algorithm performs well and the WMLF/GI model assembles the
haplotypes more accurately than the WMFL model especially when the SNP
fragments have a high error rate and a high gap rate.

In future works, we will extend our experiments to other data sets and compare
its performance with the MFL model that employs genotype information.

References

1. Cilibrasi, R., Iersel, L.V., Kelk, S., Tromp, J.: On the Complexity of Several Hap-
lotyping Problems. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI),
vol. 3692, pp. 128–139. Springer, Heidelberg (2005)

2. Daly, M.J., Rioux, J.D., Schaffner, S.F., Hudson, T.J., Lander, E.S.: High-resolution
haplotype structure in the human genome. Nature Genetics 29, 229–232 (2001)

3. Greenberg, H.J., Hart, W.E., Lancia, G.: Opportunities for Combinatorial Optimiza-
tion in Computational Biology. INFORMS Journal on Computing 16(3), 211–231
(2004)

4. Goldberg, D.E.: Genetic Algorithms in serarch, Optimization and Machine Learn-
ing. Addison-Wesley, Reading (1989)

5. Rizzi, R., Bafna, V., Istrail, S., Lancia, G.: Practical Algorithms and Fixed-
Parameter Tractability for the Single Individual SNP Haplotyping Problem. In:
Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 29–43. Springer,
Heidelberg (2002)

6. Stephens, J.C., et al.: Haplotype variation and linkage disequilibrium in 313 human
genes. Science 293, 489–493 (2001)

7. Terwilliger, J.D., Weiss, K.M.: Linkage disequilibrium mapping of complex disease:
fantasy or reality? Current Opinion in Biotechnology 9(6), 578–594 (1998)

54 S.-H. Kang et al.

8. Wang, Y., Feng, E., Wang, R., Zhang, D.: The haplotype assembly model with
genotype information and iterative local-exhaustive search algorithm. Computa-
tional Biology and Chemistry 31, 288–293 (2007)

9. Wang, R.S., Wu, L.Y., Li, Z.P., Zhang, X.S.: Haplotype reconstruction from SNP
fragments by minimum error correction. Bioinformatics 21(10), 2456–2462 (2005)

10. Zhang, X.S., Wang, R.S., Wu, L.Y., Chen, L.: Models and Algorithms for Haplo-
typing Problem. Current Bioinformatics 1, 105–114 (2006)

11. Zhang, X.S., Wang, R.S., Wu, L.Y., Zhang, W.: Minimum Conflict Individual Hap-
lotyping from SNP Fragments and Related Genotype. Evolutionary Bioinformatics
Online 2, 271–280 (2006)

12. Zhao, Y.Y., Wu, L.Y., Zhang, J.H., Wang, R.S., Zhang, X.S.: Haplotype assembly
from aligned weighted SNP fragments. Computational Biology and Chemistry 29,
281–287 (2005)

Estimating Hybrid Frequency Moments of Data

Streams

Extended Abstract�

Sumit Ganguly, Mohit Bansal, and Shruti Dube

Indian Institute of Technology, Kanpur

Abstract. A two-dimensional stream is a sequence of coordinate-wise up-
dates to a two-dimensional array (Ai,j)1≤i,j≤n. The hybrid frequency mo-
ments Fp,q(A) is defined as Fp,q(A) =

∑n
j=1(

∑n
i=1|Aij |p)q. For every 0 <

ε < 1 and p, q ∈ [0, 2], we present an O(ε−6poly(log n, log m, log(1/ε)))
space algorithm for the problem of estimating Fp,q, where, m is an upper
bound on maxi,j |Ai,j |.

1 Introduction

The data stream model of computation is an abstraction for a variety of prac-
tical applications arising in network monitoring, sensor networks, RF-id pro-
cessing, database systems, online web-mining, etc.. A problem of basic utility
and relevance in this setting is the following hybrid frequency moments estima-
tion problem. Consider a networking application where a stream of packets with
schema (src-addr, dest-addr,nbytes, time) arrives at a router. The problem is to
warn against the following scenario arising out of a distributed denial of service
attack, where, a few destination addresses receive messages from an unusually
large number of distinct source addresses. This can be quantified as follows: let
A be an n × n matrix where Ai,j is the count of the number of messages from
node i to node j. Then, A0

i,j is 1 if i sends a message to j and is 0 otherwise.
Thus,

∑n
i=1 A0

i,j counts the number of distinct sources that send at least one
message to j. Define the hybrid moment F0,2(A) =

∑n
j=1(

∑n
i=1 A0

i,j)
2. In an

attack scenario, F0,2(A) becomes large compared to its average value. Since n
can be very large (e.g., in the millions), it is not feasible to store and update
the traffic matrix A at network line speeds. We propose instead to use the data
streaming approach to this problem, namely, to design a sub-linear space data
structure that, (a) processes updates to the entries of A, and, (b) provides a
randomized algorithm for approximating the value of F0,2(A).

Given an n-dimensional vector from Z
n or R

n, its pth frequency moment
Fp(a) is defined as Fp(a) =

∑n
j=1|ai|p and its pth norm is defined as ‖a‖p =

(
∑n

j=1|aj |p)1/p. Given an n × n integer matrix A with columns A1, A2, . . . , An,

� Full version may be found at “http://www.cse.iitk.ac.in/users/sganguly/mixed-
full.pdf”

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 55–66, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

56 S. Ganguly, M. Bansal, and S. Dube

the hybrid frequency moment Fp,q(A) is defined as the qth moment of the n-
dimensional vector [Fp(A1), Fp(A2), . . . , Fp(An)] [14]. That is,

Fp,q(A) =
n∑

j=1

(
n∑

i=1

Ap
i,j

)q

=
n∑

j=1

‖Aj‖pq
p p ≥ 0, q ≥ 0, p, q ∈ R .

Data Stream Model. A data stream is an unbounded sequence σ of records of
the form (pos, i, j, Δ), where, i, j ∈ {1, 2, . . . , n} and Δ ∈ Z is the change to the
value of Ai,j . The pos attribute is simply the sequence number of the record.
Each input record (pos, i, j, Δ) changes Ai,j to Ai,j +Δ. In other words, the Ai,j

is the sum of the changes made to the (i, j)th entry since the inception of the
stream:

Ai,j =
∑

(pos,i,j,Δ)∈σ

Δ, 1 ≤ i, j ≤ n .

In this paper, we consider the problems of estimating Fp,q and allow general
matrix streams, that is, matrix entries may be positive, zero or negative.

Prior work. Estimating hybrid frequency moments Fp,q(A) is clearly a gener-
alization of the problem of estimating the frequency moment Fp(a) of an array
a. The problem of estimating Fp(a) has been extensively studied in the data
stream model where the input is a stream of updates to the components of a.
We say that a randomized algorithm computes an ε-approximation to a real
valued quantity L if it returns L̂ such that |L̂ − L| < εL, with probability ≥ 3

4 .
Alon, Matias and Szegedy [1] present a seminal randomized sketch tech-

nique for ε approximation of F2(a) in the data streaming model using space
O(ε−2 log F1(a)) bits. Using the techniques of [1], it is easily shown that deter-
ministically estimating Fp(a) for any real p ≥ 0 requires Ω(n) space. Hence,
work in the area of sub-linear space estimation of moments has considered only
randomized algorithms. Estimation of F0(a) was first considered by Flajolet and
Martin in [7]; the work in [1] presents a modern version of this technique for esti-
mating F0(a) to within a constant multiplicative factor and using space O(log n).
Gibbons and Tirthapura [10] present an ε-approximation algorithm for F0(a) us-
ing space O(ε−2 log F1(a)); this is further improved in [3]. The use of p-stable
sketches was pioneered by Indyk [11] for estimating Fp(a), for 0 < p ≤ 2, using
space O(ε−2(log F1(a))(log ε−1 + log log F1(a) + log n)). Li [13] presents the geo-
metric mean estimator based on stable sketches as an improvement over Indyk’s
median estimator. Indyk and Woodruff [12] present a near optimal space algo-
rithm for estimating Fp, for p > 2. Woodruff [16] presents an Ω(ε−2) space lower
bound for the problem of estimating Fp, for all p ≥ 0, implying that the sta-
ble sketches technique is space optimal up to logarithmic factors. A space lower
bound of Ω(n1−2/p) was shown for the problem Fp in a series of developments
[1,2,5]. Cormode and Muthukrishnan [6] present an algorithm for obtaining an
ε-approximation for F0,2(A) using space Õ(

√
n). This is the only prior work on

estimating hybrid moments of a matrix in the data stream model.

Estimating Hybrid Frequency Moments of Data Streams 57

Contributions. We present a family of randomized algorithms for the problem of
estimating hybrid moments Fp,q(A) of a matrix A in the data stream model. For
every p, q ∈ [0, 2], we present an algorithm for computing an ε-approximation
of Fp,q using space O(ε−6 poly(log n, log m, log(1/ε))) bits. For p ∈ [0, 2] and
q > 2, the algorithm can be extended using the Hss technique [4] to obtain an
ε-approximation for Fp,q using Õ(n1−2/q) bits. The proposed algorithms improve
upon the space requirement for the hybrid moments estimation problem.

Organization. The remainder of the paper is organized as follows. Section 2
presents some preliminaries on stable distributions and its applications to mo-
ment estimation. In Section 3, we present our algorithm for estimating Fp,q for
p, q ∈ [0, 2].

2 Preliminaries

In this section, we review salient properties of stable distributions and briefly
review Indyk’s [11] and Li’s [13] techniques for estimating moments of one-
dimensional vectors in the data streaming model. Notation: Given a random
variable y that follows a distribution D, we use the notation y ∼ D to denote
this fact.

Stable Distributions

We will use random variables drawn from stable distributions. There are two popu-
lar parameterizations of stable distributions, see Nolan [15], namely, S0(q, β, γ, δ)
and S1(q, β, γ, δ), where, q ∈ (0, 2], β ∈ [−1, 1], γ ∈ R

+ and δ ∈ R. In these nota-
tions, q is the index of stability, β is the skew parameter, γ is the scale parameter
and δ is the shift. Suppose that X0 ∼ S0(q, β, γ, δ) and X1 ∼ S1(q, β, γ, δ). Then,
the distributions are related as follows: γ−1(XS1 − δ) ∼ γ−1(XS0 − δ) + tan πq

2 .
A well-known result of Levy shows that the tail of stable distributions is asymp-
totically distributed as Pareto distribution. Let X ∼ S0(q, β, 1, 0) and x > 0.
Then,

Pr {X < −x} ≈ Cq(1 − β)x−q , x → ∞, for q < 2, β > 1. [Levy 1934] (1)

where, Cq = Γ (q)
π sin πq

2 . Indyk [11] proposed the use of stable sketches for es-
timating Fq(a), q ∈ [0, 2], in the streaming model. A stable sketch is a linear
combination X =

∑n
i=1 aisi, where, si ∼ S1(q, 0, 1, 0) and the si’s are indepen-

dent. By property of stable distributions, X ∼ S1(p, 0, ‖a‖q, 0). The problem
now reduces to the estimation of the scale parameter of the distribution of X .
Indyk proposed keeping t = O(1

ε2) independent stable sketches X1, X2, . . . , Xt

and returning F̂q(a) = mediant
r=1|Xr|q. Li [13] uses the geometric means es-

timator F̂q(a) = CL

∏t
r=1|Xr|q/t and shows that this is unbiased for a proper

choice of the constant CL. Both estimators satisfy |F̂q(a) − Fq(a)| ≤ εF̂q(a),
with probability 7

8 . We will refer to Indyk’s median estimator or Li’s geometric
means estimator for Fp(a) as StableEst(q)({X1, X2, . . . , Xt}), where, q ∈ (0, 2] is
the stability index.

58 S. Ganguly, M. Bansal, and S. Dube

Distribution Distances

The distance between distributions D(X) and D(Y) is defined as per standard
convention as follows.

‖D(X) − D(Y)‖ def=
∫ ∞

t=−∞
|fX(t) − fY (t)|dt .

We have the following straightforward consequences. The proofs of Lemmas 1
and 2 are given in Appendix A.

Lemma 1. Suppose that X ∼ D(X), Y ∼ D(Y), ‖D(X) − D(Y)‖ ≤ δ, g :
R → R is differentiable, and g′(x) = 0 at a finite number of points. Then,
‖Dg(X) − Dg(Y)‖ ≤ δ.

Lemma 1 generalizes to the case when X is a vector of random variables X =
(X1, X2, . . . , Xk) and g(X) = g(X1, . . . , Xk) is a real valued function, all of whose
partial derivatives exist, and that is zero on a finite number of points in R

k. Sup-
pose that X1, X2, . . . , Xs are independent and identically distributed. Their joint
distribution is denoted as D(X1, X2, . . . , Xs)(x1, x2, . . . , xs) =

∏s
j=1 fXj (xj).

Lemma 2. Suppose that random variables X1, X2 . . . , Xs are each identically
and independently distributed as D(X) and the random variables Y1, . . . , Ys are
identically and independently distributed as D(Y). Suppose that ‖D(X) − D(Y)‖
≤ δ. Then, ‖D(X1, X2, . . . , Xs) − D(Y1, Y2, . . . , Ys)‖ ≤ sδ.

Hybrid Frequency Moments: Preliminaries

Estimation of hybrid moments generalizes the problem of estimating the regular
moment Fp, in particular Fp,p(A) = Fp(a) where a is the n2-dimensional vector
obtained by stringing out the matrix A row-wise (or column-wise). For brevity,
we will assume that the matrix A is implicit and and refer to Fp,q(A) simply
as Fp,q. We first note that for the estimation of Fp,q where p, q ∈ [0, 2], it is
sufficient to assume that |p − q| ≥ ε

4 log F1,1
, otherwise, one can estimate Fp,q as

the regular moment Fp,p(A) using existing techniques.

Fact 3. Let ε < 1 and p, q ∈ [0, 2]. If |p − p′| ≤ ε
4 log F1,1

, then, |Fp,p − Fp,q| ≤
εFp,q. If |q − q′| ≤ ε

6 log F1,1
, then, |Fq,q − Fp,q| ≤ εFp,q. ��

Proof (Of Fact 3). Let |p − p′| = εp and |q − q′| = εq. By triangle inequality and
Taylor series expansion up to first order term,

|Fp′,q − Fp,q|≤ εpqFmax(p,p′),q log F1,1, and |Fp,q′ − Fp,q| ≤ εqFp,max(q,q′) log F1,1.

If p′ < p, then, |Fp′,q − Fp,q| ≤ εpqFp,q log F1,1. If p′ > p and εpq log F1,1 < 1,

|Fp′,q − Fp,q| ≤ εpqFp′,q log F1,1, that is, |Fp′,q − Fp,q| ≤ εpqFp,q log F1,1

1 − εpq log F1,1
.

Estimating Hybrid Frequency Moments of Data Streams 59

Similarly, if q′ < q, then, |Fp,q′ − Fp,q| ≤ εqFp,q log F1,1 and if q′ > q and
εq log F1,1 < 1 then,

|Fp,q′ − Fp,q| ≤ εqFp,q log F1,1

1 − εq log F1,1
.

��
We will henceforth assume without loss of generality that in the estimation of
Fp,q, |p − q| ≥ ε

4 log F1,1
.

Simple Cases for Hybrid Moments Estimation

In this section, we study some specific combinations of the parameters p and q
for which Fp,q is easily estimated using variations of existing techniques. Consider
estimation of F0,1. This is easily accomplished by keeping a distinct sample [10]
S of capacity s over the set {(i, k) : Ai,k = 0}. By property of distinct sample, if
s = O(1

ε2), then, |S|·2l is an ε-close estimator to |{(i, k) : Ai,k = 0}|. The latter ex-
pression is exactly F0,1. This implies that F0,1 is estimated using space O(1

ε2 log m)
bits. To handle deletions, an updatable distinct sample can be used [8]. An esti-
mate for F0,q for q ∈ [0, 1] can be obtained as follows. Keep a distinct sample S as
above. For a column index k, estimate f̂k as the number of distinct entries in S of
the form (i, k). By distinct sample property, if s = Ω(1

ε3) and F0(Ak) ≥ εF0,1(A),
then, f̂k ≥ 2ε

3 |S| with high probability, that is, columns with high relative F0(Ak)
can be discovered with high probability. One can now use the Hss technique [9]
to estimate F0,p(A) in the same way that F1-based frequent items are used to es-
timate Fp. The space requirement of this technique becomes Ō(1

ε6).

3 Estimating Hybrid Frequency Moments Fp,q,
p, q ∈ [0, 2]

In this section, we present an estimation algorithm for Fp,q, p, q ∈ [0, 2].

3.1 Bi-linear Stable Sketches

Consider two families of fully independent stable variables {xi,j : 1 ≤ i ≤ j ≤
n} and {ξj : 1 ≤ j ≤ n}, where, xi,j ∼ S1(p, 0, 1, 0) and ξj ∼ S1(q, β, γ, δ)
conditional on ξj ≥ 0, for each j ∈ {1, . . . , n}. The parameters, β,γ and δ are
set in the analysis. The conditional property of ξj ’s is implemented as follows: if
any of the ξj is negative, then, the entire family is discarded. The analysis will
show that for the choice of the parameters Pr {ξj ≥ 0} > 1 − 1

n2 . A p, q bi-linear
stable sketch is defined as

X =
n∑

j=1

n∑

i=1

Ai,jxi,jξ
1/p
j .

Corresponding to each stream update (pos, i, j, Δ), the bi-linear sketch is updated
as follows:

X := X + Δ · xi,j · ξ1/p
j .

60 S. Ganguly, M. Bansal, and S. Dube

A collection of s1s2 bi-linear sketches {Xu,v | 1 ≤ u ≤ s1, 1 ≤ v ≤ s2} is kept
such that for each distinct value of v, the family of sketches {Xu,v}u=1,2,...,s1

uses the independent family of stable variables {xi,j(u, v)} but uses the same
family of stable variables {ξi(v)}. That is,

X(u, v) =
n∑

i=1

n∑

j=1

Ai,jxi,j(u, v)(ξi(v))1/p, u = 1, . . . , s1, v = 1, . . . , s2 .

The estimate F̂p,q is obtained using the following steps.

Algorithm. BilinStable(p, q, s1, s2, {X(u, v)}u∈[1,s1],v∈[1,s2]) .

1. For v = 1, 2, . . . , s2, calculate Ŷ (v) as follows.

Ŷ (v) = StableEst(p)({X(u, v)}u=1,...,s1) .

2. Return the estimate F̂p,q as follows.

F̂p,q =
1
γq

· StableEst(q)({Ŷ (v) | v = 1, . . . , s2})

Fig. 1. Algorithm BilinStable for estimating Fp,q

3.2 Analysis of Bi-linear Stable Sketches

In this section, we present an analysis of the bi-linear stable sketch algorithm.
The analysis is divided into two basic cases, namely, (a) p ∈ (0, 2) and q ∈ (0, 1)
and (b) p ∈ (0, 2] and q ∈ (1, 2]. The cases, p = 0 or q = 0 or q = 1 are treated
as singularities and considered separately. Recall that by Fact 3, we can assume
that |p − q| > ε

4 log F1,1
.

Lemma 4. For each 0 < p ≤ 2 and 0 < q < 1, the estimator BilinStable(p, q,
s1, s2, {X(u, v)}u∈[1,s1],v∈[1,s2]) with parameters β = 0, δ = 0, γ = 1, s2 =
Θ(1

q2ε2) and s1 = Θ(1
p2ε2 log 1

εq) satisfies |F̂p,q − Fp,q| ≤ 3εFp,q with
probability 3

4 . ��

Proof. For 0 < q < 1, S1(q, 0, 1, 0) is non-negative [15]. Therefore, ξi ∼ S1(q, 0, 1,
0) and by property of StableEst, Ŷ (v) = λv

∑n
j=1(‖Aj‖p)pξj , where, 1−ε ≤ λv ≤

1 + ε, with probability 1 − δ′, for v ∈ [1 . . . s2]. Denote the jth column of A as
Aj , j = 1, 2, . . . , n.

Ŷ (v) = λv

n∑

j=1

(‖Aj‖p)p ξj ∼ S1(q, 0, Fp,q(A) · λ1/q
v , 0) .

Suppose 1 − ε ≤ λv ≤ 1 + ε for each v ∈ [1, s2]. If s2 = Θ(1
q2ε2) then by property

of StableEst [13], |F̂p,q − λFp,q | ≤ ελFp,q with probability 7
8 − s2δ

′, for some λ

Estimating Hybrid Frequency Moments of Data Streams 61

satisfying 1 − ε ≤ λ ≤ 1 + ε. Therefore,

|F̂p,q − Fp,q| ≤ Fp,q(ελ + (λ − 1)) < 3εFp,q with prob.
6
8

.

provided, δ′ ≤ 1
8s2

. Since, s2 = O(1/(q2ε2)), therefore, s1 = O(1
ε2p2 log 1

δ′) =
O(1

ε2p2 log 1
εq). This proves the lemma. ��

We now consider the analysis for 0 < p ≤ 2 and 1 ≤ q < 2.

Lemma 5. Let m be an upper bound on the maximum absolute value of any
matrix entry Ai,j. For each 0 < p ≤ 2 and 1 < q < 2, the bi-linear stable sketch
estimator BilinStable(p, q, A, s1, s2) given in Figure 1 with the parameters
β = 1, γ given by (3) and δ = ε

2m satisfies |F̂p,q − Fp,q| < 5εFp,q, provided,

s2 = Θ(1
q2ε2) and s1 = Θ

(
1

p2ε2

(
log 1

qε

))
.

Proof. Let U ∼ S0(q, β, 1, 0) and ξ ∼ S1(q, β, γ, δ). There exists a constant
x0(q, β) such that by Levy’s result (1),

Pr {U < −x} < 2Cq(1 − β)x−q, for x > x0(q, β) > 0. (2)

Then, ξ−δ
γ ∼ U + tan πq

2 . Therefore,

Pr {ξ < 0} = Pr
{

U < − δ

γ
+ tan

πq

2

}

Choose δ, γ such that

δ

γ
− tan

πq

2
> x0(q, β) and 2Cq(1 − β)

(
δ

γ
− tan

πq

2

)−q

<
1

8n3 .

This is implied if γ satisfies

γ = δ
(
1 + max

(
x0(q, β) − tan

πq

2
, (4Cqn

2s2(1 − β))−1/q − tan
πq

2

))−1
. (3)

Assume (3) holds for the rest of the discussion. Then,

Pr {ξ < 0} = Pr
{

U < − δ

γ
+ tan

πq

2

}
< Pr {U < x0(q, β)} <

1
8n3 .

Define η as the scale factor

η = (1 − Pr {ξ < 0})−1 ≤
(
1 − 1

8n3

)−1
. (4)

Let V ∼ S1(q, β, γη, δ), where, δ = 1 and γ satisfies (3). Therefore,

|D(ξ) − D(V)| <
1

8n3 . (5)

62 S. Ganguly, M. Bansal, and S. Dube

By Lemma 2, the joint product distributions have a distance bounded as follows,
where, the Vi’s are each independently distributed as S1(q, β, γ, δ) and the ξi’s
are independently distributed as S1(q, β, γ, δ), conditional on the fact that ξi ≥ 0.

‖D({ξi(v)}i∈[1,n],v∈[1,s2]) − D({Vi(v)}i∈[1,n],v∈[1,s2])‖ < ns2 · 1
8n3 =

s2

8n2 . (6)

For (1 − ε) ≤ λv ≤ (1 + ε) and v ∈ [1, s2], define

Z(v)= λvη
∑

i∈[1,n]

‖Ai‖p
pVi(v) and Z ′(v) = λv

∑

i∈[1,n]

‖Ai‖p
pξi(v), v = 1, 2, . . . , s2.

(7)

The value of λv is chosen so that Z ′(v) is the same as the variable Ŷ (v) used in
the algorithm of Figure 1 with probability 1− δ′. This follows from the property
of StableEst[11,13]. Furthermore, let η = (1−Pr

{
S1(q, 1, γ, δ) < 0

}
)−1, as given

by (4). We now condition the remainder of the analysis on Z ′(v) = Ŷ (v),
v = 1, 2, . . . , s2.
By Lemma 1, taking the function g(X1, . . . , Xn) =

∑
i∈[1,n]‖Ai‖p

pXi,

‖D(Z ′(v)) − D(Z(v))‖ ≤ ‖D({ξi(v)}i∈[1,n],v∈[1,s2]) − D({Vi(v)}i∈[1,n],v∈[1,s2])‖

≤ s2

8n2 , v = 1, 2, . . . , s2 .

By property of stable distributions,

Z(v) ∼ S1(q, β, (Fp,q(A))1/qγηλv, F1,1(A)δ) .

By Lemma 1 and Lemma 2,

|D(Z ′(v)) − D(Z(v))| ≤ s2

4n2 v = 1, 2, . . . , �s2/2� .

Finally, suppose we use Li’s estimator of geometric means, since, the estimator
is a continuous and differentiable function of its arguments and Lemma 1 is
applicable 1. Therefore, by Lemma 2,

∣∣∣∣D(StableEstq({Z ′(v)}v∈[1,s2])) − D(StableEstq({Z(v)}v∈[1,s2]

∣∣∣∣ ≤ s2
2

4n2 (8)

Suppose s2 = Θ(1
q2ε2). Using Li’s estimator [13], we have with probability 7/8

∣∣StableEstq({Z(v)}v∈[1,s2] − Fp,q(A)γηλv

∣∣ ≤ Fp,q(A)γηλv + F1,1(A)δη .

By (8), and multiplying with scale factor γ−1, it follows that
∣∣γ−1StableEstq({Z ′(v)}v∈[1,s2]) − Fp,q(A)ηλv

∣∣

≤ εFp,q(A)ηλv + F1,1(A)
δη

γ

1 Indyk’s median estimator can also be used by appropriately strengthening Lemma 1.

Estimating Hybrid Frequency Moments of Data Streams 63

with probability 7
8 − s2

2
4n2 . Substituting λv ∈ (1 ± ε), and adding the error proba-

bility Pr
{

Z ′(v) = Ŷ (v), v ∈ [1, s2]
}

≤ s2δ
′, thereby unconditioning the analysis

on this event,

∣∣γ−1StableEstq({Z ′(v)}v∈[1,s2]) − Fp,q(A)
∣∣

≤ (3ε + (1 + ε)(η − 1))Fp,q(A) + F1,1(A)
δη

γ

with probability 7
8 − s2

2
4n2 − s2δ

′. Recall that η ≤ (1− 1/(8n3))−1 ≤ (1+1/(4n3))
from (4) and ε ≥ 1

n . Therefore,

∣∣γ−1StableEstq({Z ′(v)}v∈[1,s2] − Fp,q(A)
∣∣ ≤ 4εFp,q(A) + F1,1(A)

2δ

γ
(9)

with prob. 7
8 − s2

2
4n2 − s2δ

′.
Choice of δ. By choosing δ <

εFp,q

2F1,1(A) , (9) becomes

∣∣γ−1StableEstq({Z ′(v)}v∈[1,s2]) − Fp,q(A)
∣∣ ≤ 5εFp,q(A)

with probability 7
8 − s2

2
4n2 − s2δ

′. The condition δ <
εFp,q(A)
2F1,1(A) is simply enforced

by letting δ <
εF0,0(A)
2F1,1(A) ≤ ε

2m , where, m is an upper bound on the maximum
absolute value of a matrix element.

To bound the error probability, we let δ′ < 1
8s2

. By property of StableEst, it is

sufficient to let s2 = Θ(1
q2ε2) and s1 = Θ(1

p2ε2 log 1
δ′) = Θ

(
1

p2ε2

(
log 1

q + log 1
ε

))
.

This then implies that
∣∣γ−1StableEstq({Z ′(v)}v∈[1,s2]) − Fp,q(A)

∣∣ ≤ 5εFp,q(A)

with probability 5
8 . Since, F̂p,q = γ−1StableEstq({Z ′(v)}v∈[1,s2]) the statement

of the lemma follows. ��

The Levy asymptotic result given by (1) holds for 0 < q < 2. The case for q = 2
is simpler, since the distribution is the well-known Gaussian distribution with
density function fS1(2,0,γ,δ)(x) = 1

γ
√

2π
e−(x−δ)2/γ2

. A standard tail inequality
for Gaussian distributions implies that if Z ∼ S1(2, 0, γ, δ), then, Pr {Z < 0} <
2γ
δ e−δ2/(2γ2), provided, δ

γ = Ω(1). Therefore, Pr {Z < 0} < 1
8n3 is satisfied, if,

δ = 1 and γ = O(
√

log n).

Singularities around q = 1 and for p = 0 or q = 0. There are two singularities
that remain. First, the above method does not work for estimating Fp,q when,
either q = 1 or when either p or q is 0. The first case, namely, q = 1 is not solved
using the above method since, tan πq

2 = ∞ and therefore, there is no solution
to (3). The second problem case arises when either p or q is 0, since, stable

64 S. Ganguly, M. Bansal, and S. Dube

distributions are not known for these parameters. The solution to both these
cases are obtained by approximating Fp,q by Fp′,q′ , where, p′ and q′ are chosen
to be close enough to p to q so that |Fp′,q′ − Fp,q| ≤ εFp,q.

Suppose q = 1. Then by Fact 3, |Fp,q′ − Fp,q| ≤ |q − q′|Fp,q log Fp,q. Thus, by
choosing q′ = 1− ε

6 log−1(mn), where, mn is an upper bound on F1,1, we will have
|Fp,q′ − Fp,1| ≤ ε

2Fp,1. Lemma 4 can now be used to estimate Fp,q′ to within a
factor of (1± ε

2); the approximation is proved using triangle inequality. A problem
of having to use very large values of γ arises because γ = Ω(x0(q, β)−tan πq

2). If q
is very close to 1, then, x0(q, β) = Θ(tan πq

2) is very large. Since, O(log γ−1) bits
is necessary for accurate computation, tan πq

2 must be bounded. This is again
solved by choosing q′ = 1+ ε

12 (log−1(mn), in case q ∈ [1, q′]. By Fact 3, it follows
that |Fp,q − Fp,q′ | ≤ ε

2Fp,q. The precision required is O(log F1,1δ
−1 tan πq′

2) =
O(log(mn · m

ε · log(mn)
ε) = O(log mn

ε) bits. The case for the singularity p = 0 is
handled similarly, since, by Fact 3, if p′ = ε/(2(1 + q log(mn))), |F0,q − Fp′,q| ≤
ε
2F0,q. The case for q = 0 follows similarly from Fact 3.

The space requirement is more appropriately written as Op,q(· · ·) signifying
the dependence on the parameters p and q, which are treated as constants for the
sake of space complexity expressions. As analyzed by Li, the direct dependence
on p, q is O(1

p2q2). However, for p (respectively q) equal to 0 or very close to 0,
it suffices (by the arguments above) to let p = Ω(ε

log F1,1
). We can now use the

technique of Indyk [11] to reduce the number of random bits from n2 bits to
O(S log(nS)), where, S is the space used by the algorithm assuming access to
fully independent random bits. The constants in the space complexity expression
are independent of p, q and n.

Theorem 1. For p, q ∈ [0, 2] and an a-priori upper bound m on |Ai,k|, for
1 ≤ i, k ≤ n, there exists an algorithm that returns F̂ satisfying |F̂ − Fp,q| <

εFp,q using space O(S log(nS)), where, S = O
(

p′2q′2

ε4

(
log q′

ε

) (
log nm

ε

))
, p′ =

min
(

6 log(mn)
ε , 1

p

)
, q′ = min

(
6 log(mn)

ε , 1
q

)
. ��

Remarks. Bi-linear stable sketches can be used to estimate Fp,q for p ∈ [0, 2] and
q > 2 using space Ō(1

ε4+1/q n1−2/q) and can be found in the full version of this
paper. The problem of finding space lower bounds for estimating Fp,q is open.
We conjecture that estimating F0,2 requires Ω(1

ε4) space.

References

1. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating fre-
quency moments. J. Comp. Sys. and Sc. 58(1), 137–147 (1998)

2. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics
approach to data stream and communication complexity. In: Proceedings of ACM
Symposium on Theory of Computing, Princeton, NJ, pp. 209–218 (2002)

3. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D., Trevisan, L.: Counting
Distinct Elements in a Data Stream. In: Rolim, J.D.P., Vadhan, S.P. (eds.) RAN-
DOM 2002. LNCS, vol. 2483. Springer, Heidelberg (2002)

Estimating Hybrid Frequency Moments of Data Streams 65

4. Bhuvanagiri, L., Ganguly, S.: Estimating Entropy over Data Streams. In: Azar, Y.,
Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 148–159. Springer, Heidelberg
(2006)

5. Chakrabarti, A., Khot, S., Sun, X.: Near-Optimal Lower Bounds on the Multi-
Party Communication Complexity of Set Disjointness. In: Proceedings of 18th
IEEE Conference on Computational Complexity, pp. 107–117. IEEE Computer
Society, Los Alamitos (2003)

6. Cormode, G., Muthukrishnan, S.: Space Efficient Mining of Multigraph Streams.
In: Proceedings of the 24th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, ACM 2005, pp. 271–282 (2005)

7. Flajolet, P., Martin, G.N.: Probabilistic Counting Algorithms for Database Appli-
cations. J. Comp. Sys. and Sc. 31(2), 182–209 (1985)

8. Ganguly, S.: Counting Distinct Items over Update Streams. In: Deng, X., Du, D.-Z.
(eds.) ISAAC 2005. LNCS, vol. 3827, pp. 505–514. Springer, Heidelberg (2005)

9. Ganguly, S., Cormode, G.: On Estimating Frequency Moments of Data Streams.
In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007
and APPROX 2007. LNCS, vol. 4627, pp. 479–493. Springer, Heidelberg (2007)

10. Gibbons, P.B., Tirthapura, S.: Estimating simple functions on the union of data
streams. In: Proceedings of the 13th ACM Symposium on Parallel Algorithms and
Architectures, pp. 281–291. ACM, New York (2001)

11. Indyk, P.: Stable Distributions, Pseudo Random Generators, Embeddings and Data
Stream Computation. In: Procedings of the 41st Symposium on Foundations of
Computer Science (FOCS), pp. 189–197. IEEE Computer Society, Los Alamitos
(2000)

12. Indyk, P., Woodruff, D.: Optimal Approximations of the Frequency Moments. In:
Proceedings of the 37th ACM Symposium on Theory of Computing, 2005 (STOC),
pp. 202–208 (2005)

13. Li, P.: Very Sparse Stable Random Projections, Estimators and Tail Bounds for
Stable Random Projections (manuscript, 2006)

14. McGregor, A.: Open Problems In Data Streams And Related Topics: IITK Work-
shop On Algorithms For Data Streams (2006),
http://www.cse.iitk.ac.in/users/sganguly/openproblems.pdf

15. Nolan, J.P.: Stable Distributions, Ch.1 (2006),
http://academic2.american.edu/∼jpnolan

16. Woodruff, D.P.: Optimal space lower bounds for all frequency moments. In: Pro-
ceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
167–175. SIAM, Philadelphia (2004)

A Proofs

Proof (Of Lemma 1). Pr {g(X) ∈ [u, u + du]} = Pr
{
X ∈ g−1[u, u + du]

}
. By as-

sumption, g−1[u, u+du] is a finite union of disjoint maximal intervals, each of fi-
nite size I1, I2, . . . , Iw such that g(Ij) = [u, u+du], where, Ij = [g−1(y), g−1(y)+

1
g′(g−1(y))dy]. Thus,

fg(X)(u)du = Pr
{
X ∈ g−1[u, u + du]

}
=

w∑

j=1

fX(g−1(u))
|g′(g−1(u))|du.

http://www.cse.iitk.ac.in/users/sganguly/openproblems.pdf
http://academic2.american.edu/~jpnolan

66 S. Ganguly, M. Bansal, and S. Dube

Therefore,

‖Dg(X) − Dg(Y)‖ =
∫ ∞

−∞
|fg(X)(u) − fg(Y)(u)|du

=
∫ ∞

−∞

1
|g′(g−1(u))| |fX(g−1(u)) − fY (g−1(u))|du

=
∫ ∞

−∞
|fX(t) − fY (t)|dt, substituting t = g−1(u)

= ‖D(X) − D(Y)‖ .

Proof (Of Lemma 2). We prove the lemma using induction. The base case s = 1
is given as a premise. Suppose s = k + 1 and assume that the statement of the
lemma holds for any set of k independent and identically distributed variables.

‖D(X1, X2, . . . , Xk+1) − D(Y1, Y2, . . . , Yk+1)‖

=
∫ ∞

x1=−∞

∫ ∞,...,∞

x2,...,xk+1=−∞
|fX1(x1)fX2(x2) . . . fXk+1(xk+1)−

fY1(x1)fY2(x2) . . . fYk+1(xk+1)|dx1 . . . dxk+1

=
∫ ∞

x1=−∞

∫ ∞,...,∞

x2,...,xk+1=−∞
dx1 . . . dxk+1

∣∣fX1(x1)fX2(x2) . . . fXk+1(xk+1)−

fX1(x1)fY2(x2) . . . fYk+1(xk+1)+

fX1(x1)fY2(x2) . . . fYk+1(xk+1) − fY1(x1)fY2(x2) . . . fYk+1(xk+1)
∣∣

≤
∫ ∞

x1=−∞
|fX1(x1)|dx1

∫ ∞,...,∞

x2,...,xk+1=−∞
|fX2(x2) . . . fXk+1(xk+1)−

fY2(x2) . . . fYk+1(xk+1)|dx2 . . . dxk+1

+
∫ ∞

x1=−∞
|fX1(x1) − fY1(x1)|dx1

∫ ∞,...,∞

x2,...,xk+1=−∞
|fY2(x2) . . . fYk+1(xk+1)|dx2 . . . dxk+1

= ‖D(X2, . . . , Xk+1) − D(Y2, . . . , Yk+1)‖ + ‖D(X1) − D(Y1)‖ ≤ kδ + δ = (k + 1)δ .

The simplification of the integral follows from independence and since, |fX(x)| =
fX(x) for any probability density function fX , therefore,

∫ ∞

xj=−∞
|fXj (xj)|dxj =

∫ ∞

xj=−∞
fXj (xj)dxj = 1 . ��

Constraint Bipartite Vertex Cover

Simpler Exact Algorithms and Implementations

Guoqiang Bai and Henning Fernau

Univ. Trier, FB IV—Abteilung Informatik, 54286 Trier, Germany
baiguoqiang@hotmail.com, fernau@uni-trier.de

Abstract. constraint bipartite vertex cover is a graph-theoretical
formalization of the spare allocation problem for reconfigurable arrays. We
report on an implementation of a parameterized algorithm for this prob-
lem. This has led to considerable simplifications of the published, quite
sophisticated algorithm. Moreover, we can prove that the mentioned al-
gorithm could be quite efficient in practial situations.

1 Introduction

Problem Definition. In this paper, we are considering the following problem:
An instance of constraint bipartite vertex cover (CBVC) is given by

a bipartite graph G = (V1, V2, E), and the parameter(s), positive integers k1, k2.
The task is: Is there a vertex cover C ⊆ V1 ∪ V2 with |C ∩ Vi| ≤ ki for i = 1, 2?

This graph-theoretic problem can be easily seen to be equivalent to the fol-
lowing problem, namely via the adjacency matrix of a bipartite graph:

An instance of spare allocation (SAP) is given by a n ×m binary matrix
A representing an erroneous chip with A[r, c] = 1 iff the chip is faulty at posi-
tion [r, c], and the parameter(s), positive integers k1, k2. The task is: Is there a
reconfiguration strategy that repairs all faults and uses at most k1 spare rows
and at most k2 spare columns?

Motivation and Previous Work. Kuo and Fuchs [13] provide a fundamental
study of that problem. Put concisely, this “most widely used approach to recon-
figurable VLSI” uses spare rows and columns to tolerate failures in rectangular
arrays of identical computational elements, which may be as simple as memory
cells or as complex as processor units. If a faulty cell is detected, the entire row
or column is replaced by a spare one. The tacit (but unrealistic) assumption
that spare rows and columns are never faulty can be easily circumvented by
a parameter-preserving reduction, as exhibited by Handa and Haruki [11]. For
technological reasons (avoiding superfluous redundancy [12] as well as too much
expensive laser repair surgery), the number of spare rows and columns is very
limited (rarely more than fourty), making this problem a natural candidate for
a “fixed parameter approach” [5].

However, due to the NP-hardness of the problem (shown in [13]), no poly-
time algorithms can be expected. In [9], it is shown that constraint bipartite

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 67–78, 2008.
© Springer-Verlag Berlin Heidelberg 2008

68 G. Bai and H. Fernau

vertex cover can be solved slightly faster than O∗(1.4k). However, that par-
ticular algorithm is derived via a very sophisticated analysis of local situations,
quite typical for search-tree algorithms that were developed ten years ago. This
means that a naive implementation would have to test all these local cases, which
is quite a challenging and error-prone task by the sheer number of cases (more
than 30). Since many of these cases are quite special, these cases would show up
rarely, and therefore programming errors would be hard to detect. Our approach
presented here means nearly a complete re-design of the published algorithm:
as it is often the case now with “modern” exact algorithms, most of the burden
is taken from the algorithm implementor and shifted on the shoulders of the
algorithm analyzer.

Contributions. Our main contribution is to present within Sec. 2 implementable
algorithm variants of the algorithm given in [9]; to the most refined variant, basi-
cally the same run time analysis applies. These variants have been implemented
and tested, which will be described in Sec. 3. We observe that in practical instances
(generated according to previously described schemes), the algorithms perform
much better than it could be expected from theory. This shows that exact algo-
rithms could be useful even in circumstances where real-time performance is im-
portant, as it is the case in industrial processes.

Notations. We need some non-standard notation: If S = (C1, C2) is a CBVC
solution of G = (V1, V2, E), then (|C1|, |C2|) is called the signature σ(S) of that
solution. We call a solution (C1, C2) signature-minimal if there is no solution S′

with σ(S′) < σ(S); we will also call σ(S) a minimal signature in this case. Here,
we compare two vectors of numbers componentwisely. The signature spectrum
of a CBVC instance (G, k1, k2) is the set of all minimal signatures (i1, i2) (that
obey (i1, i2) ≤ (k1, k2)). If the parameter is not given, we ignore the latter
restriction. As can be seen, all our algorithms (written as decision algorithms
for convenience) can be easily converted into algorithms that produce (solutions
to) all minimal signatures.

2 Algorithm Variants

We are going to describe three algorithm variants that will be compared later in
Sec. 3.

2.1 The Simplest Algorithm A1

It should be noted here that people developing algorithms for VLSI design actually
discovered the FPT concept in the analysis of their algorithms, coming up with
O(2k1+k2k1k2 +(k1 +k2)|G|) algorithms in [10,15]. They observed that “if k1 and
k2 are small, for instance O(log(|G|)), then this may be adequate.” [10, p. 157]. It
was in the context of this problem that Evans [6] basically discovered Buss’ rule
to prove a problem kernel for constraint bipartite vertex cover. Kuo and
Fuchs called this step quite illustratively the must-repair-analysis: Whenever a

Constraint Bipartite Vertex Cover 69

row contains more than k2 faulty elements (or a column contains more than k1
faulty elements, resp.), then that row (column, resp.) must be exchanged.

Lemma 1. constraint bipartite vertex cover has a problem kernel of
size 2k1k2.

The search-tree part (leading to the O∗(2k1+k2) is also easy to explain: any edge
must be covered (i.e., any failure must be repaired), and there are two ways to
do it. This leads to the simplest algorithm variant A1.

Heuristic improvements. From a heuristic viewpoint, it is always good to branch
at vertices of high degree (not just at edges) for vertex cover problems, since in
the branch when that vertex is not taken into the cover, all its neighbors must
go into the cover. A further very important technique is early abort. Namely,
observe that for the minimum vertex cover C∗ of G = (V1, V2, E), we have
|C∗| ≤ k1 + k2 for any constraint bipartite cover C with σ(C) ≤ (k1, k2). Since
those overall minimum vertex covers can be computed in polynomial time using
matching techniques (on bipartite graphs), we can stop computing the search-
tree whenever the remaining current parameter budget (k1, k2) has dropped (in
sum) below the overall minimum vertex cover cardinality. Notice that sometimes
also the variant that requires a minimum vertex cover as constraint vertex cover
is considered, e.g., in [4,18] from a parameterized complexity. However, it is not
quite clear from a practical perspective why one should insist on overall cover
minimality: to the contrary, repairable arrays should be repaired, irrespectively
of whether they yield an overall minimum cover or not.

2.2 Triviality Last: Algorithm A2

There are two simple strategies to improve on quite simplistic search-tree algo-
rithms: either (1) there are simple reduction rules that allow one to deduce that
(in our case) branching at high-degree vertices is always possible or (2) one can
simply avoid “bad branches” by deferring those branches to a later phase of the
algorithm that can be performed in polynomial time. We have called the first
strategy triviality first and the second one triviality last in [8]. Notice that both
strategies can be used within a mathematical run time analysis for the search
tree heuristic sketched in the previous subsection.

We will explain how to employ the triviality last principle based on the fol-
lowing observations.

Lemma 2. Let G = (V1, V2, E) be a connected undirected bipartite graph with
maximum vertex degree 2 and let � = |E| be the number of edges in G.

1. If G is a cycle, then for �′ := �/2 we have the minimal signatures (0, �′),
(�′, 0) as well as (2, �′ − 1), (3, �′ − 2), . . . , (�′ − 1, 2) if � > 4.

2. Let G be a path.
(a) If � is odd, then for �′ := (� + 1)/2 we have the minimal signatures

(0, �′), (1, �′ − 1), . . . , (�′ − 1, 1), (�′, 0).

70 G. Bai and H. Fernau

(b) If � is even, then for �′ := �/2 + 1 we have the minimal signatures
(0, �′ − 1), (2, �′ − 2), . . . , (�′ − 1, 1), (�′, 0) if |V1| > |V2| and
(0, �′), (1, �′ − 1), . . . , (�′ − 2, 2), (�′ − 1, 0) if |V1| < |V2|.

Lemma 3. If the signature spectra of all components of a graph are known, then
the signature spectrum of the overall graph can be computed in polynomial time.

Algorithm 1. CBVC-TL: a still simple search tree algorithm for CBVC

Input(s): a bipartite graph G = (V1, V2; E), positive integers k1 and k2

Output(s): YES iff there is a vertex cover (C1, C2) ⊆ V1 ×V2, |C1| ≤ k1 and |C2| ≤ k2

if k1 + k2 ≤ 0 and E �= ∅ then
return NO

else if k1 + k2 ≥ 0 and E = ∅ then
return YES

5: else if possible then
Choose vertex x ∈ V1 ∪ V2 such that deg(x) ≥ 3.
if x ∈ V1 then

d = (1, 0)
else

10: d = (0, 1)
if CBVC-TL(G − x, (k1, k2) − d) then

return YES
else

return CBVC-TL(G − N(x), (k1, k2) − deg(x)((1, 1) − d))
15: else

{vertex selection not possible � maximum degree is 2}
resolve deterministically according to Lemma 4

Proof. The most straight-forward way to see this is via dynamic programming:
If (k1, k2) is the parameter bound, then use a k1 × k2 table that is originally
filled by zeros, except the entry at (0, 0) that contains a one. Let c loop from
1 to the number of components plus one. In that loop, for each entry (i, j) of
that table that equals c and for each element (r, s) of the signature spectrum,
we write c + 1 as entry into place (i + r, j + s). Finally, the signature spectrum
of the overall graph can be read off as those (i, j) whose table entry contains
the number of components plus one. This procedure can be further sped up by
noting that there could be at most k1 +k2 +1 minimal signatures for any graph;
so with some additional bookkeeping one can avoid looping through the whole
table of size k1 × k2.

Lemma 4. constraint bipartite vertex cover can be solved in time
O(k log k) on forests of cycle and path components with budget k1, k2 (where
k = k1 + k2), i.e., on graphs of maximum degree of two.

We want to point out that Lemma 4 could be seen by a more efficient algorithm
than indicated in the proof of Lemma 3. The strategy is the following one:

Constraint Bipartite Vertex Cover 71

—First, solve paths of even length.
—Secondly, solve cycles.
—Finally, solve paths of odd length.

Within each of these three categories of components of a graph of maximum de-
gree two, we basically solve small components first (except for cycles as discussed
below).

The intuition behind this strategy is that solving paths of even length by an
overall minimum cover is the most challenging task, while it is close to trivial
for paths of odd length.

– (A) Namely, from Lemma 2, we can easily deduce that a cover is signature-
minimal iff it is overall minimum in the case of paths of odd length. Therefore,
we can defer the selection of the specific cover vertices to the very end, and
this decision could be then taken in a greedy fashion.

– (B) The only difficulty that can show up with covering cycles is that both
parameter budgets k1 and k2 might be smaller than the length of that cycle.
So, when left with cycle components C1,. . . , Cr (of length �1, . . . , �r) and
paths of odd length, we first test if there are xi ∈ {0, 1} with

∑r
i=1 xi�i ∈

{k1, k2}. If
∑r

i=1 xi�i = kj for some xi ∈ {0, 1}, we solve those Ci with xi = 1
by covering them with vertices from Vj . More generally, if

∑r
i=1 xi�i ≤ k1

and
∑r

i=1(1 − xi)�i ≤ k2 for some xi ∈ {0, 1}, we solve those Ci with xi = 1
by covering them with vertices from V1, and the remaining cycles by vertices
from V2. If such xi cannot be found but the overall minimum for solving the
cycle components is less than k1 + k2, our general greedy strategy (working
from small length cycles onwards) will produce one cycle (and only one) that
is not solved matching the overall minimum cover, by covering it both with
vertices from V1 and with vertices from V2.

– (C) The greedy strategy used at the beginning on paths of even length might
also lead to a point that some path cannot be solved matching the overall
minimum. In that particular case (*), we will deliberately first empty the
critical parameter budget. Similar to (A), one can see that this choice is arbi-
trary for that particular component: any other feasible minimal choice would
have served alike. However, since we are working from smaller to larger com-
ponents, we will never later see a path of even length that cannot be solved
to optimum for the reason that we might have “stolen” the optimum solution
through step (*). Moreover, the preference of solving small components first
is justified by the fact that this way, the smallest distance from the overall
minimum is guaranteed. A further justification for the choice of (*) is that
this guarantees that (later on) all cycle components will be solved matching
the overall minimum.

2.3 More Sophistication: Algorithm A3

The main part of [9] was struggling with improving the branching on vertices
up to degree three. Here, we are going to display a much simpler branching

72 G. Bai and H. Fernau

1. If possible: branch at a vertex of degree four or higher.
2. If the graph is polynomially solvable: do so and terminate.
3. if the graph is 3-regular: branch at an arbitrary vertex of degree three.

// In the following, let c be a component of the graph that is not polynomially
solvable and that is not 3-regular.
4. Let A be the vertex in c with the largest number of attached tails.
4a. If A has three tails, then we branch at A. (Notice that c is no S3.)
4b. If A has only two tails, then consider the neighbor D of A that is not on a tail. Let
E be the first vertex of degree three on the path p starting with A, D (E must exist,
since p is no tail) and branch at E, with possibly E = D.
4c. If A has only one tail p, then branch at A if p is not a microtail.

// The only tails in c are microtails attached to vertices A with no other tail.
4d. Let A be a vertex with microtail. Let B �= A be one of the two vertices of degree
three that can be reached from A (with possible intermediate vertices of degree two),
preferring the closer one, ties broken arbitrarily. Then, branch at B.

// This way, all microtails are deleted from c.
// Let A be a vertex of degree two, with the largest number of neighbors that also

have degree two. Let B and C be the two vertices of degree three that can be reached
from A in either direction, s.t. B is not farther away from A than C.
5. If C is not neighbor of A, then we branch at B.
6. // Now, the vertices B and C of degree three are neighbors of the degree-2-vertex A.
6a. If B and C have three common neighbors A,D, E, either take B, C or A,D, E
together into the cover.
6b. If B and C have two common neighbors A,D of degree two, then branch at B.
6c. If B and C have two common neighbors A, D, with D of degree three, then branch
at D.
7. // Now, the degree-3-vertices B and C have only one common neighbor, namely the
degree-2-vertex A.
7a. If C has three neighbors of degree two, branch at B, and vice versa.
7b. If B or C has exactly one neighbor E of degree three, branch at E.
8. // Now, B and C possess only one neighbor of degree two, namely A.

// Let N(B) = {B1, B2, A} and N(C) = {C1, C2, A}.
8a. If (N(B1) ∩ N(B2)) = {B, B′}, then branch by either taking B and B′ into the
cover or taking B1, B2 into the cover. The case |N(C1) ∩ N(C2)| > 1 is symmetric.
8b. If N(B1) = {B, B′, B′′} with deg(B′′) = 2, then branch at B′. (There are three
possible symmetric cases to be considered.)
8c. Branch at some X ∈ (N(B1) ∪ N(B2) ∪ N(C1) ∪ N(C2)) \ {B, C}.

Fig. 1. List of heuristic priorities

strategy (that was actually implemented) to obtain basically the same run time
estimate improvements. We describe the adopted branching strategy in what
follows. Here, S3 denotes a star graph with four vertices, one center connected
to the three other vertices (and these are all edges of the graph). Notice that we
can easily adapt our polynomial-time algorithms described above to cope with
S3-components, as well. So, we term a graph that contains only components of
maximum degree two or S3-components polynomially solvable. We also need two
further notions from [9]: a tail consists of a degree-3-vertex A, followed by a
(possibly empty) sequence of degree-two-vertices, ended by a degree-1-vertex. If

Constraint Bipartite Vertex Cover 73

case branching vector branching number

1. (1, 4) 1.3803
2. — no branching
3. (1, 3) happens only once per search tree path
4a. − 4c. (2, 3) 1.3248
4d. − 5. (3, 3, 4) 1.3954
6a. (2, 3) 1.3248
6b. (3, 3, 4) 1.3954
6c.; 7b. (3, 4, 6, 6, 7) 1.3954
7a. (3, 4, 6, 6, 8) 1.3867
8a. (2, 4, 5) 1.3803
8b. (4, 5, 7, 9, 7, 6, 7, 9) 1.3905
8c. (4, 5, 7, 7, 8, 6, 6, 7) 1.4154

Fig. 2. Branching vectors and numbers for different heuristic priorities

A is neighbor of a degree-1-vertex, we speak of a micro-tail. In Fig. 1, we give a
list of priorities according to which branching should be done.

Notice that there are further variations of the algorithm that are easily at
hand. For example, one can observe that step 4a. can be avoided, since then the
component c is a tree for which a list of all minimal signatures can be obtained
by dynamic programming. However, this does not affect our worst-case running
time analysis that is sketched in the following.

Some Further Comments on the Run-Time Analysis
4d: Recall that there is a micro-tail A′ attached to A. The worst case is when
B ∈ N(A), and when C ∈ N(A) is also of degree three. If B is taken into the
cover, then in the next recursive call of the procedure, in the worst case C would
be selected for branching, since a (non micro-)tail is attached to C, giving it the
highest heuristic priority. If C is put into the cover, then the edge A′A must be
covered by an additional vertex. Hence, we obtain the claimed branching vector.
5: In the worst case, B ∈ N(A) and C ∈ N(N(A)). Since the graph is bipartite,
C �= B. If B goes into the cover, then we obtain a (non micro-)tail at C as in
case 4d. The case when B = C, i.e., B and C are (at least) at distance four, is
even better, yielding a branching vector of at least (2, 3).
6: Here, we consider the remaining cases that the degree-2-vertex A is part of a
4-cycle. Notice that the analysis of small cycles was one of the cornerstones of
the analysis in [9].
6a: If one out of A, D, E is not going into the cover, then B and C must go there.
Conversely, if B or C does not go into the cover, then all of A, D, E are there.
6b: If B goes into the cover, we produce a situation with C having two microtails
(case 4b).
6c: There are three subcases to be considered for the run-time analysis, depend-
ing on j = |N(N(C) \ {A, D}) ∩ N(N(B) \ {A, D})| ∈ {0, 1, 2}. Notice that
N(B) ∩ N(C) = {A, D}, since otherwise case 6 would have applied. Details of
the tedious but straight-forward analysis are omitted for reasons of space.

74 G. Bai and H. Fernau

7: Observe that now |(N(B)∪N(C))\{A}| = 4; otherwise, A is part of a 4-cycle
or B and C do not have degree three; all these cases were treated above.
7a: If B is taken into the cover, we find a microtail at C. Since both neighbors
of C are of degree two, we will branch at their neighbors C1 and C2 (not equal
to C) at worst. Due to case 6b, we can assume that N(C1)∩N(C2) = ∅. Taking
the branches at C1 and C2 alone, we arrive at a branching vector of (3, 5, 5, 7)
in the case when B goes into the cover. Altogether, we get a branching vector
of (3, 4, 6, 6, 8) which yields a branching number of 1.3867.
7b: If E goes into the cover, we produce a chain of three consecutive degree-2
vertices. Assuming that we have no cycles of length four or six, such a chain can
be resolved through a branching vector of (3, 5, 5, 6). Altogether, we arrive at a
branching vector of (3, 4, 6, 6, 7), yielding a branching number of 1.3956.
8a: Notice that A, B form a tail after branching at B1 and B2. So, the analysis
from [9, Table 15] applies.
8b: If B′ is taken into the cover, this will be followed by branching at the hitherto
unnamed neighbor B̂ of B′′ by priority 5. We consider the cases that the neigh-
bors of B′ or B′ and the neighbors of B̂ go into the cover. In both cases, we have
the possibility to isolate small components (by observing tails) with branching
at C and at B2. Overall, this gives a branching vector of (4, 5, 7, 9, 7, 6, 7, 9) and
hence the claimed branching number.
8c: Consider B′ ∈ N(B1) selected for branching. If B′ goes into the cover, then
B is neighbor of two vertices of degree two, so that B2 will be selected for
branching, following the analysis of case 7b. If N(B′) is put into the cover, A
and B are two neighbored vertices of degree two; so, priority 5 applies. Com-
bining the branching vectors yields the claim. Notice that this is by far the
worst case branching. The analysis from [9] shows that this particular case can
be improved, basically by consequently branching at all vertices from (N(B1) ∪
N(B2) ∪ N(C1) ∪ N(C2)) \ {B, C} in parallel. To actually and fully mimic the
case distinctions from [9], cycles of length 6 should be treated in a separate way.
However, as it turned out, this case (in fact, all subcases of case 8) showed up
very rarely in the experiments, so that we could safely omit it. More precisely,
less than 0.001% of all branches were due to these “isolated vertices of degree
two.” So, our implementation is deliberately omitting some of the details from [9]
without sacrificing speed in practice. However, it would need only three special
cases to be implemented to completely cover case 8c. according to the analysis
from [9], namely those depicted in Tables 6, 22 and 23 in [9].

3 The Tests

Blough [2,3] discussed how to model failures in memory arrays. He suggested
the so-called center-satellite model, based on earlier work of Meyer and Prad-
han [16]. In that model, it is assumed that memory cells could spontaneously
and independently fail with a certain probability p1. However, once a cell failed,
its neighbors also fail with a certain probability p2, and this affects a whole re-
gion of radius r around a central element. So, we are dealing with compound

Constraint Bipartite Vertex Cover 75

Fig. 3. The graphical interface of the implementation; to the right, the bipartite graph
model is shown

probabilities. This leads to a two-stage model to simulate such kind of failures:
in a first phase, with probability p1, memory cells are assumed to be faulty; in a
second phase, within a neighborhood of radius r, cells are assumed to be faulty
with probability p2. Fig. 3 shows a failure pattern obtained in this way.

Notice that we assume both underlying distributions to be uniform. This
differs a bit from the original model of Meyer and Pradhan [16] who assumed a
Poisson distribution for the satellites; however, since we are focussing on rather
small radii in our experimental studies, this distinction is not essential. Also
Blough and Pelc adopted this simpler approach. However, we deviate from the
approach of Blough and Pelc insofar as we are considering cycles around the
center with the usual meaning, while they considered cycles in the Manhattan
metric, i.e., square-shaped failure regions.

All tests were run on a PC with Athlon XP 2000+ processor (2 GHz with
512 KB Cache) and with 256 MB main memory. We used Microsoft Windows
XP Professional, Visual Studio 2003 and LEDA 3.0. All the running times were
obtained by testing 100 independently generated instances within a given setup
as described in the first columns of the tables, describing the dimensions of the
array, the number of spare lines, the chosen probabilities and the chosen radius r
(for the satellites). The run times are given in seconds per instance (on average).
Fig. 4 tries to simulate the settings described by Blough and Pelc in [3]. We list
the measurements separately for the case that a solution was found (or not).

At first glance, the corresponding figures seem to be surprising, since the run-
ning times for finding a solution are consistently larger than the ones for rejecting
the instance. This phenomenon is partly explained when looking at the average
number of branchings (# br) encountered. Obviously, the early abort method
(based on maximum matching) allows to early reject most instances nearly with-
out branching in polynomial time. We validated this hypothesis by testing our
algorithms without that heuristic, which led to a tremendous slow-down, in par-
ticular in the case when no solution was to be found. We also separately list the

76 G. Bai and H. Fernau

Fig. 4. The run times of Blough’s setup

Fig. 5. The run times for larger numbers

running times for the (quite sophisticated) Alg. 3 in comparison with the much
simpler Alg. 2. In practice, it does not necessarily pay off to invest much more
time in implementing the more complicated algorithm.

In Fig. 5, we take a more radical approach: while we always restricted the
radius of the defective region to one, we explored quite large parameter values.
Even with values as high as k1 = k2 = 512, which gives an astronomic constant of
about 2500 in our run-time worst case estimates, we still obtain (non-)solutions in
only a few seconds. In this sense, our algorithm displays quite a robust behaviour.

Constraint Bipartite Vertex Cover 77

It is also seen that the savings of branches of the more complicated Alg.3 are
more visible in more complicated instances.

In fact, we also tested on usual random graph models and found similar ob-
servations as those reported for Blough’s model, see [1]. In another set of experi-
ments (again explicitly reported in [1]), we observed that good run times seem to
depend on the fact that, in the experiments displayed so far, k1 = k2: whenever
k1 and k2 are much different, the early abort method strikes only occasionally,
and therefore the running times do considerably increase.

We can read our experimental results also as a validation of earlier probability-
theoretic results indicating that it is unlikely to find hard instances for CBVC
under various probability models, including the center-satellite model described
above [3,17]. This also explains why the probabilities p1 and p2 listed in our
figures look quite special: indeed they were searched for in order to display any
non-trivial behaviour of our algorithms.

4 Conclusions: Lessons Learned and Future Work

We have shown that FPT methodology is quite useful at various stages when
designing algorithms for NP-hard problems:

– One could validate heuristics against known optimal solutions; this sort of
application is useful even when the exact algorithm turns out to be too slow
for actual applications within the industrial process at hand;

– At least in some circumstances, one could actually use those algorithms, even
when dealing with a (pipelined, but still real-time) industrial application (as
in chip manufacturing processes in our concrete application), at least with an
additional time limit that might sometimes stop the search tree and output
the current (sub-optimum) solution.

In particular, modern exact algorithms are very neat to implement since their
overall structure tends to be quite simple: in our case, we could first implement
Algorithm A1 as search tree backbone. A1 can be safely implemented in two
weeks by one programmer. The integration of the polynomial phase, leading to
A2, may take another week including validation. The details of the heuristic
priority list may take more time than previously invested, but tests could and
should always accompany this phase to see if the special cases considered with
those priorities will actually occur. This consideration brought us to the decision
to omit some of the special cases (that should have been implemented to fully
match the analysis given in [9]), because those cases will not show up very often.

It remains as future work to compare our approach with existing published
heuristics and also with some other exact approaches, a recent example be-
ing [14]. Even more interesting would be to test our algorithms on “real data”,
not only on simulated data. Since this particular problem is connected with many
production secrets, these real data are not available.

Furthermore, there are alternative yield enhancement strategies employed in
modern chip fabrication processes, as sketched in [7]. As detailed in [1], some

78 G. Bai and H. Fernau

of these enhancements can actually be solved with (a slight variant of) the
algorithms described in this paper. However, others seem to be more costly
within the parameterized algorithm framework. So, the development of efficient
parameterized algorithms for these variants is a further challenge for the future.

References

1. Bai, G.: Ein eingeschränktes Knotenüberdeckungsproblem in bipartiten Graphen.
Diplomarbeit, FB IV, Informatik, Universität Trier, Germany (2007)

2. Blough, D.M.: On the reconfiguration of memory arrays containing clustered faults.
In: Fault Tolerant Computing, pp. 444–451. IEEE Press, Los Alamitos (1991)

3. Blough, D.M., Pelc, A.: A clustered failure model for the memory array reconfig-
uration problem. IEEE Transactions on Computers 42(5), 518–528 (1993)

4. Chen, J., Kanj, I.A.: Constrained minimum vertex cover in bipartite graphs: com-
plexity and parameterized algorithmics. Journal of Computer and System Sci-
ences 67, 833–847 (2003)

5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

6. Evans, R.C.: Testing repairable RAMs and mostly good memories. In: Proceedings
of the IEEE Int’l Test Conf., pp. 49–55 (1981)

7. Fernau, H.: On parameterized enumeration. In: Ibarra, O.H., Zhang, L. (eds.) CO-
COON 2002. LNCS, vol. 2383, pp. 564–573. Springer, Heidelberg (2002)

8. Fernau, H.: Parameterized Algorithmics: A Graph-Theoretic Approach, Habilita-
tionsschrift, Universität Tübingen, Germany (2005)

9. Fernau, H., Niedermeier, R.: An efficient exact algorithm for constraint bipartite
vertex cover. Journal of Algorithms 38(2), 374–410 (2001)

10. Haddad, R.W., Dahbura, A.T., Sharma, A.B.: Increased throughput for the testing
and repair of RAMs with redundancy. IEEE Transactions on Computers 40(2),
154–166 (1991)

11. Handa, K., Haruki, K.: A reconfiguration algorithm for memory arrays containing
faulty spares. IEICE Trans. Fundamentals E83-A(6), 1123–1130 (2000)

12. Koren, I., Pradhan, D.K.: Modeling the effect of redundancy on yield and perfor-
mance of VLSI systems. IEEE Transactions on Computers 36(3), 344–355 (1987)

13. Kuo, S.-Y., Fuchs, W.K.: Efficient spare allocation for reconfigurable arrays. IEEE
Design and Test 4, 24–31 (1987)

14. Lin, H.-Y., Yeh, F.-M., Kuo, S.-Y.: An efficient algorithm for spare allocation
problems. IEEE Transactions on Reliability 55(2), 369–378 (2006)

15. Lombardi, F., Huang, W.K.: Approaches to the repair of VLSI/WSI PRAMs by
row/column deletion. In: International Symposium on Fault-Tolerant Computing
(FTCS 1988), pp. 342–347. IEEE Press, Los Alamitos (1988)

16. Meyer, F.J., Pradhan, D.K.: Modeling defect spatial distribution. IEEE Transac-
tions on Computers 38(4), 538–546 (1989)

17. Shi, W., Fuchs, W.K.: Probabilistic analysis and algorithms for reconfiguration of
memory arrays. IEEE Transactions on Computer-Aided Design 11(9), 1153–1160
(1992)

18. Wang, J., Xu, X., Liu, Y.: An Exact Algorithm Based on Chain Implication for the
Min-CVCB Problem. In: Dress, A.W.M., Xu, Y., Zhu, B. (eds.) COCOA. LNCS,
vol. 4616, pp. 343–353. Springer, Heidelberg (2007)

NP-Completeness of (k-SAT,r-UNk-SAT) and

(LSAT≥k,r-UNLSAT≥k)
�

Tianyan Deng1 and Daoyun Xu2

1 Department of Computer Science, Guizhou University(550025), Guiyang;
Guangxi Teachers Education University(530001), Nanning, P.R.China

dengty@gxtc.edu.cn
2 Department of Computer Science, Guizhou University(550025), Guiyang, P.R.China

dyxu@gzu.edu.cn

Abstract. k-CNF is the class of CNF formulas in which the length of
each clause of every formula is k. The decision problem asks for an as-
signment of truth values to the variables that satisfies all the clauses of
a given CNF formula. k-SAT problem is k-CNF decision problem. Cook
[9] has shown that k-SAT is NP-complete for k ≥ 3. LCNF is the class
of linear formulas and LSAT is its decision problem. In [3] we present a
general method to construct linear minimal unsatisfiable (MU) formulas.
NP = PCP (log, 1) is called PCP theorem, and it is equivalent to that
there exists some r > 1 such that (3SAT, r-UN3SAT)(or denoted by
(1 − 1

r
) − GAP3SAT) is NP-complete [1][2]. In this paper,we show that

for k ≥ 3, (kSAT, r-UNkSAT) is NP-completre and (LSAT, r-UNLSAT)
is NP-completre for some r > 1. Based on the application of linear
MU formulas[3], we construct a reduction from (4SAT, r-UN4SAT) to
(LSAT≥4,r

′-UNLSAT≥4), and proved that (LSAT≥4,r − UNLSAT≥4)
is NP-complete for some r > 1, so the approximation problem s-Approx-
LSAT≥4 is NP-hard for some s > 1.

Keywords: PCP theorem, linear CNF formula, LSAT, NP-completeness,
reduction, minimal unsatisfiable(MU) formula.

1 Introduction

A clause C is a disjunction of literals, C = (L1 ∨ · · · ∨ Lm), or denoted by a set
{L1, · · · , Lm}. A formula F in conjunctive normal form (CNF) is a conjunction
of clauses, F = (C1 ∧ · · · ∧ Cn), or denoted by a set {C1, · · · , Cn}. var(F) is the
set of variables occurring in the formula F and var(C) is the set of the variables
in the clause C. We denote #cl(F) as the number of clauses of F and #var(F)
(or |var(F)|) as the number of variables occurring in F . CNF(n, m) is the class
of CNF formulas with n variables and m clauses. The deficiency of a formula
F is defined as #cl(F) − #var(F), denoted by d(F). A formula F is minimal
� The work is supported by the National Natural Science Foundation of China (No.

60563008) and the Special Foundation for Improving Science Research Condition of
Guizhou Province of China.

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 79–88, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

80 T. Deng and D. Xu

unsatisfiable (MU) if F is unsatisfiable and F − {C} is satisfiable for any clause
C ∈ F . It is well known that F is not minimal unsatisfiable if d(F) ≤ 0 [4]. So,
we denote MU(k) as the set of minimal unsatisfiable formulas with deficiency
k ≥ 1. Whether or not a formula belongs to MU(k) can be decided in polynomial
time [5].

A CNF formula F is linear if any two distinct clauses in F contain at most one
common variable. A CNF formula F is exact linear if any two distinct clauses in
F contain exactly one common variable. We define k-CNF := {F ∈ CNF| (∀C ∈
F)(|C| = k)}, LCNF := {F ∈ CNF| F is linear}, LCNF≥k := {F ∈ LCNF| (∀C ∈
F)(|C| ≥ k)}, and k-LCNF := {F ∈ LCNF| (∀C ∈ F)(|C| = k)}. The decision
problems of satisfiability are denoted as k-SAT, LSAT, and k-LSAT for restricted
instances to the corresponding to subclasses, respectively.

For r > 1, let r-UNkSAT={F |F ∈ k − CNF, val(F) ≤ 1 − 1
r }, r-UNLSAT=

{F |F ∈ LCNF, val(F) ≤ 1 − 1
r }, r-UNLSAT≥k = {F |F ∈ LCNF≥k, val(F) ≤

1 − 1
r }, where val(F) denoted the maximum proportion of clauses that can

be satisfied to F. (A, B) is NP-hard if for any language L ∈ NP there is a
polynomial-time computable function f such that x ∈ L then f(x) ∈ A and
otherwise f(x) ∈ B.

It is shown thatLSAT is NP-completeness [6,7][8]. For the subclasses LCNF≥k,
LSAT≥k remains NP-completeness if there exists an unsatisfiable formula in
LCNF≥k [6,7][8].In [6,8], by the constructions of hypergraphs and latin squares,
the unsatisfiable formulas in LCNF≥k (k = 3, 4) are constructed, respectively.
But, the method is too complex and has no generalization. In [8], it leaves
the open question whether for each k ≥ 5 there is an unsatisfiable formula
in LCNF≥k.

Researchers are extremely interested in finding the best possible approxima-
tion algorithms for NP-hard optimization problems. Yet until the early 1990’s
most such questions were wide open. In particular, we did not know whether
MAX3SAT has a polynomial-time ρ-approximation algorithm for every ρ < 1.
It changed this situation when PCP Theorem appeared. PCP Theorem implies
that for many NP optimization problems, computing near-optimal solutions is
no easier than computing exact solutions.

In this paper, we show that there exists r > 1 such that (kSAT, r-UNkSAT)
is NP-complete for k ≥ 3. Based on the application of linear MU formulas[3], We
construct a reduction from (4SAT, r-UN4SAT) to (LSAT≥4,r′-UNLSAT≥4), and
proved that there exists a constant r > 1 such that (LSAT≥4,r −UNLSAT≥4) is
NP-complete, so for some s > 1 the approximation problem s-Approx-LSAT≥4
is NP-hard.

2 Preliminaries

We define |F | =
∑

1≤i≤m |Ci| as the size of F . In this paper, the formulas mean
CNF formulas.

A formula F = [C1, · · · , Cm] with n variables x1, · · · , xn in CNF(n, m) can
be represented as the following n × m matrix (ai,j), called the representation

NP-Completeness of (k-SAT,r-UNk-SAT) and (LSAT≥k,r-UNLSAT≥k) 81

matrix of F , where aij = + if xi ∈ Cj , aij = − if ¬xi ∈ Cj , otherwise aij = 0
(or, blank).

A formula F is called minimal unsatisfiable if F is unsatisfiable, and for any
clause f ∈ F , F − {f} is satisfiable. We denote MU as the class of minimal
unsatisfiable formulas, and MU(k) as the class of minimal unsatisfiable formulas
with deficiency k. Let C = (L1 ∨ · · · ∨ Ln) be a clause. We view a clause as a
set of literals. The collection C1, · · · , Cm of subsets of C (as a set) is a partition
of C, where C =

⋃
1≤i≤m C and Ci ∩ Cj = φ for any 1 ≤ i 	= j ≤ m, which

corresponds to a formula FC = C1 ∧ · · · ∧Cm. We call FC as a partition formula
of C. Specially, the collection {L1}, · · · , {Ln} of singleton subsets of C is called
the simple partition of C, and the formula [L1, · · · , Ln] = L1 ∧ · · · ∧ Ln is called
the simple partition formula of C.

Let F1 = [f1, · · · , fm] and F2 = [g1, · · · , gm] be formulas. We denote F1∨clF2 =
[f1∨g1, · · · , fm∨gm]. Similarly, let C be a clause and F = [f1, · · · , fm] a formula,
denote C ∨cl F = [(C ∨ f1), · · · , (C ∨cl fm)].

Let (A,B) denote the partial decision problem: input x ∈ A∪B, decide x ∈ A
or x ∈ B . (If x 	∈ A ∪ B , we ignore what the answer is so it is called partial
decision problem). For a complexity class Γ , if there exists C ∈ Γ such that
A ⊆ C and B ⊆ C then we say that the partial decision problem (A, B) belongs
to Γ .

Definition 1. Suppose A ∩ B = C ∩ D = φ , if there exists a polynomial-time
computable function f such that

x ∈ A ⇒ f(x) ∈ C
x ∈ B ⇒ f(x) ∈ D we say (A,B) is polynomial-time reduction to (C,D)

and denote by (A, B) ≤p
m (C, D) .

Theorem 1. If (A, B) ≤p
m (C, D) and (A,B) is NP-hard, then (C,D) is NP-

hard.[1][2]

Let F = {C1, C2, · · · , Cm} ∈ CNF , we denote pos(x, F) (resp. neg(x, F)) as
the times of positive (resp. negative) occurrence of variable x in F , and write
occs(x, F) = pos(x, F)+pos(x, F) . Sometimes, we denote Frest as a subformula
of F , which consists of part clauses of F . The following facts are clear:

(1) If pos(x, F) > 0 and neg(x, F) = 0 (or pos(x, F) = 0 and neg(x, F) > 0)
for some x ∈ var(F), then the formula F ′ , by deleting all clauses contained x,
has the same satisfiability with ϕ .

(2) If pos(x, F) = neg(x, F) = 1 , pos(y, F) = neg(y, F) = 1 and F = [(x∨y∨
C′1), (¬x∨¬y∨C′1), C3, · · · , Cm] (or F = [(x∨¬y∨C′1), (¬x∨y∨C′1), C3, · · · , Cm])
then the formula F ′ = [(C3, · · · , Cm] has the same satisfiability with F.

From now on, for the sake of description, we assume that the formulas satisfy
the following conditions: (for a formula F)

(1) For each x ∈ var(F) , pos(x, F) > 0 and neg(x, F) > 0, and
(2) For any x, y ∈ var(F)(x 	= y), if pos(x, F) = neg(x, F) = 1 and pos(y, F)=

neg(y, F) = 1 then the number of clauses contained x or y is at least three.

82 T. Deng and D. Xu

Definition 2. For a CNF formula ϕ, define valτ (ϕ) to be the fraction of clauses
that can be satisfied by assignment τ , and val(ϕ) = maxτ{valτ (ϕ)}, sat∗(ϕ) to
be the maximum number of clauses that can be satisfied by any assignment to
ϕ’s variables.

In particular, if ϕ is satisfiable then val(ϕ) = 1 and sat∗(ϕ) = #cl(ϕ).

3 NP-Completeness of (k-SAT,r-UNk-SAT) and
(LSAT,r-UNLSAT)

In this section , we introduce the class LCNF, called linear CNF formulas,
and construct two reductions from 3-CNF to k-CNF (Theorem 3)and 3-CNF
to LCNF(Theorem 4).

Definition 3. (1) A formula ϕ ∈ CNF is called linear if
(a) ϕ contains no pair of complementary unit clauses, and
(b) For all C1, C2 ∈ var(ϕ) with C1 	= C2 ,|var(C1) ∩ var(C2)| ≤ 1.

Let LCNF denote the class of all linear formulas.
(2) A formula ϕ ∈ CNF is called exact linear if ϕ is linear, and for all C1, C2 ∈
var(ϕ) with C1 	= C2, |var(C1) ∩ var(C2)| = 1.

Let k − SAT = {F |F ∈ k − CNF, F is satisfiable},LSAT = {F |F ∈ LCNF, F is
satisfiable} and LSAT≥k = {F |F ∈ LCNF≥k, F is satisfiable} , where LCNF≥k

denote the class of all linear formulas, in which formulas have only clauses of
length at least k(k ∈ N), and for r > 1, let r-UNk-SAT={F |F ∈ k − CNF, val
(F) ≤ 1 − 1

r }, r-UNLSAT= {F |F ∈ LCNF, val(F) ≤ 1 − 1
r }, r-UNLSAT≥k =

{F |F ∈ LCNF≥k, val(F) ≤ 1 − 1
r }.

It is shown that LSAT and LSAT≥k(k = 3, 4) are NP-complete.[6,7][8]
PCP Theorem is NP=PCP(log,1)[1][2],and it is equivalent to the following

theorem:

Theorem 2. For some r > 1 , (3SAT, r-UN3SAT) is NP-complete.[1][2]

The following result is not difficult.

Theorem 3. For every k ≥ 3 , there is some constant r > 1 such that (k −
SAT, r-UNk − SAT) is NP-complete.

Proof. We use induction to proof the result. By theorem 2,it holds for k=3.
Suppose that for a given constant r > 1, (kSAT, r-UNkSAT) is NP-complete.

We construct a reduction f from k-CNF to (k+1)-CNF.
Let ϕ = C1 ∧ C2 ∧ · · · ∧ Cm ∈ 3 − CNF or denote by ϕ = {C1, C2, · · · , Cm},

where |Ci| = 3 for 1 ≤ i ≤ m.
We construct a (k+1)-CNF formula f(ϕ) as following:
f(ϕ) = {C1 ∨ y1, C1 ∨ ¬y1, C2 ∨ y2, C2 ∨ ¬y2, · · · , Cm ∨ ym, Cm ∨ ¬ym}
where var(ϕ) ∩ {y1, y2, · · · , ym} = φ. It is clear that f(ϕ) ∈(k+1)-CNF.

NP-Completeness of (k-SAT,r-UNk-SAT) and (LSAT≥k,r-UNLSAT≥k) 83

Completeness: If ϕ ∈ kSAT , then there is an assignment τ , such that
valτ (ϕ) = 1, τ can extend to τ ′ , that is τ ′(w) = τ(w) if w ∈ var(ϕ), 0 or
1 otherwise, then τ ′ satisfy the formula f(ϕ). That is f(ϕ) ∈ (k + 1)SAT .

Soundness: If ϕ ∈ r − UNkSAT , then for any assignment τ, valτ (ϕ) ≤ (1 −
1
r), now for any assignment τ ′ for f(ϕ), no matter what values be assigned to
y1, y2, · · · , ym, we have half of the clauses in f(ϕ) be satisfied, and at least 1

r m
clauses be unsatisfied in rest clauses. So we have that

val(f(ϕ)) ≤ (2m − m
r)/(2m) = 1 − 1

2r
Let r′ = 2r, then f(ϕ) ∈ r′-UN(k+1)SAT.
That is for constant r′ = 2r ,((k+1)-SAT,r’-UN(k+1)SAT) is NP-complete.

�

Lemma 1. For any finite set X(|X | ≥ 4) there is a constant c > 0 and there
exists a strong connect directed graph G=(V,E) such that X ⊆ V and satisfies
the following properties:
(a) |V | ≤ c|X |,
(b) for any x ∈ X, its output degree and input degree is 1, for any x ∈ V − X,
its degree (sum of output degree and input degree) is at most 3,and
(c) if S ⊆ V and |S ∩ X | ≤ |X |/2,then
|E ∩ (S × (V − S))| ≥ |S ∩ X | and
|E ∩ ((V − S) × S)| ≥ |S ∩ X |

About the proof of this lemma, one can refer to lemma 11.13 in [1].

Theorem 4. There is some constant r > 1 such that (LSAT, r-UNLSAT) is
NP-complete.

Proof. By Theorem 2, we can assume a given r > 1 such that(3SAT,r-UN3SAT)
is NP-complete, we construct a polynomial-time reduction from (3SAT, r-UN3
SAT) to (LSAT, r′-UNLSAT) where r′ is some constant depending on r.

Let ϕ ∈ 3CNF , ϕ = {C1, C2, · · · , Cm} , we transform ϕ into a linear formula
ϕlin by invoking the following procedure 1.

Procedure 1: (Linear transformation for CNF formulas)
Input: a CNF formula ϕ with variables x1, x2, · · · , xn ;
Output: a linear formula ϕlin ;
Begin

ϕlin := ϕ; i := 1;
while (i ≤ n) ∧ (occs(xi, ϕ

lin) ≥ 3) do
(let ϕlin = [(xi ∨ f1), · · · , (xi ∨ fsi), (¬xi ∨ g1), · · · , (¬xigti), ϕlin

rest],
where (si + ti = occ(xi, ϕ

lin)) and si = pos(xi, ϕ
lin), ti = neg(xi, ϕ

lin))
case occs(xi, ϕ

lin) = 3,
introducing new variables yi,1, yi,2, yi,3 ;

ϕlin :=[(yi,1∨f1), · · · , (yi,si∨fsi), (¬yi,si+1∨g1), · · · , (¬yi,si+ti∨gti), ϕlin
rest]+

[(¬yi,1 ∨ yi,2), (¬yi,2 ∨ yi,3), (¬yi,3 ∨ yi,1)];
case occs(xi, ϕ

lin) = k ≥ 4,

84 T. Deng and D. Xu

introducing new variables yi,1, yi,2, · · · , yi,k to replace all occurrences xi in the
formula, and will append a series clauses of u → v(¬u ∨ v) such that all yi,j

can take the same value and the number of satisfied clauses can be maximized.
So let Xi = {yi,1, yi,2, · · · , yi,k}, by lemma 1,we construct directed graph Gxi =
(Vxi , Exi) satisfies the properties (a)(b)(c),all vertexes in Vxi as new boolean
variables and all edges u → v as new clauses, that is

ϕlin := {(yi,1 ∨ f1), · · · , (yi,si ∨ fsi), (¬yi,si+1 ∨ g1), · · · , (¬yi,si+ti ∨ gti),
ϕlin

rest}+
{¬u ∨ v|u, v ∈ Vxi , u → v ∈ Exi};

i := i + 1;
enddo;
output ϕlin;

end.
The above procedure can be completed in polynomial-time of n.

We note that ϕlin has the following property: for any assignment τ , there
exists an assignment τ ′ such that

(1) the number of clauses of ϕlin which τ ′ satisfied is not less than the number
of clauses which τ satisfied, and

(2) τ ′ takes the same value to introduced new variables yi,1, yi,2, · · · , yi,si+ti for
every xi, that is τ ′(yi,1) = τ ′(yi,2) = · · · = τ ′(yi,si+ti) for every i.

In fact, if τ can not satisfy (2) for some xi, then we let variablesyi,1, yi,2,· · · , ysi+ti

take the majority value and induce a new assignment τ ′ , that is

maj(yi,1, yi,2, · · · , ysi+ti) =
{

1, if at least a half τ(yi,j) = 1,
0, otherwise,

and let τ ′(yi,1) = τ ′(yi,2) = · · · = τ ′(yi,si+ti) = maj(yi,1, yi,2, · · · , ysi+ti) ,
for fixed i, let Si = {yi,j ∈ Vxi |τ(yi,j) 	= τ ′(yi,j)}, we note that the assignment
from τ to τ ′ may at most |Xi ∩Si| satisfied clauses in ϕ change to be unsatisfied,
but by lemma 1(c),in the new introduced clauses will have at least |Xi ∩ Si|
unsatisfied clauses change to be satisfied. So τ ′ satisfy the condition (1).

Completeness: If ϕ ∈ 3SAT , then there is an assignment τ , such that
valτ (ϕ) = 1, τ induce to τ ′ , that is τ ′(yi,1) = τ ′(yi,2) = τ ′(yi,3) = τ(xi)
for every xi with occs(xi, ϕ) = si + ti = 3 and if u ∈ Vxi then τ ′(u) = τ(xi) for
every xi with occs(xi, ϕ) = si + ti ≥ 4 , it is clear that τ ′ satisfy the formula
ϕlin. That is ϕlin ∈ LSAT .

Soundness: If ϕ ∈ r − 3UNSAT , then for any assignment τ, valτ (ϕ) ≤ (1− 1
r),

For any assignment τ ′ for ϕlin , by above property, we could induce an as-
signment τ ′′ satisfy above condition (1) and (2) , please note, #cl(ϕ) = m, ϕlin

has at most 3mc variables, where c is the constant of lemma 1, because every
variable occurs at most 3 times, so ϕlin has at most 9cm/2 clauses (every clause
has at least 2 variables) , that is #cl(ϕlin) ≤ 9cm/2, we have

NP-Completeness of (k-SAT,r-UNk-SAT) and (LSAT≥k,r-UNLSAT≥k) 85

valτ ′(ϕlin) ≤ (#cl(ϕlin) − 1
r m)/#cl(ϕlin)

= 1 − 1
r

m
#cl(ϕlin)

≤ (1 − 1
r

2
9c

= 1 − 2
9rc = 1 − 1

r′

where r′ = 9rc/2, so ϕlin ∈ r′-UNLSAT. �

Let s > 1, s-Approx-LSAT is the problem of, given a LCNF formula ϕ, finding
an assignment satisfy at least sat∗(ϕ)/s clauses, then we have

Corollary 1. There exists a constant s > 1 such that s-Approx-LSAT is NP-
hard.

4 NP-Completeness of (LSAT≥4, r-UNLSAT≥4)

In [3], we have showed that for k=3 there exists some r > 1 such that (LSAT≥k, r-
UNLSAT≥k) is NP-complete. Now we consider NP-completeness of (LSAT≥4, r-
UNLSAT≥4) .
Let B6 = [(x1, x3), (¬x1, x2), (¬x2, x3), (¬x3, x4), (¬x4, x5), (¬x5, ¬x3)], its rep-
resentation is:

x1
x2
x3
x4
x5

⎛

⎜⎜⎜⎜⎝

+ −
+ −

+ + − −
+ −

+ −

⎞

⎟⎟⎟⎟⎠

It is clear that B6 belongs to MU(1) and B6 is a linear formula.
The standard MU formula S6 with 6 variables x1, · · · , x6 is defined as S6 =

∧(ε1,···,ε6)∈{0,1}6(x
ε1
1 ∨· · ·∨xε6

6),where x0
i = xi and x1

i = ¬xi for 1 ≤ i ≤ 6. Denote
the clause Xε1,···,ε6 = xε1

1 ∨ · · · ∨ xε6
6 , Fε1,···,ε6 = [xε1

1 , · · · , xε6
6] = xε1

1 ∧ · · · ∧ xε6
6 ,

SL3 := ∧(ε1,···,ε6)∈{0,1}6(Fε1,···,ε6 ∨cl Bε1,···,ε6
6)

where Bε1,···,ε6
6 is a copy of B6 and it restricts var(Bε1··· ε6

6)∩var(Bε′
1···ε′

6
6) = φ for

any distinct (ε1, · · · , ε6), (ε′1, · · · , ε′6) ∈ {0, 1}6, and var(Bε1··· ε6
6) ∩ var(S6) = φ

for any (ε1, · · · , ε6) ∈ {0, 1}6.
SL3 is a linear MU formula [3].

Please note that #cl(SL3) = 6 · 26, and |C| = 3 for each C ∈ SL3.
We define inductively a counting functions of clauses cl(k) for k ≥ 3: cl(3) =

6 · 26 and cl(k + 1) = cl(k) · 2cl(k) for k ≥ 3.
For the case of k ≥ 3, suppose that the linear formula SLk has been con-

structed such that SLk is a linear MU formula, and the length of each clause in
SLk equals to k.

In [3], we define inductively the following linear MU formula:
SLk+1 :=

∧
(ε1,···, εcl(k))∈{0,1}cl(k)(Fε1··· εcl(k) ∨cl SL

ε1··· εcl(k)

k)

where, for (ε1, · · · , εcl(k)) ∈ {0, 1}cl(k)

(a) Fε1··· εcl(k) is the simple partition formula of clause Xε1··· εcl(k) ∈ Scl(k).
(b) SL

ε1··· εcl(k)

k is a copy SLk with new variables.

86 T. Deng and D. Xu

Scl(k) is minimal unsatisfiable, SLk is both minimal unsatisfiable and linear.
SLk+1 is a linear MU formula.

We will use the case SL4 in the proof of theorem 5, please note that SL4 is
linear and MU formula, and it contains cl(4)(= cl(3) · 2cl(3) = 6 · 26 · 26·26

=
6 · 26(1+26)) clauses, and each clause has length 4.

Based on the application of minimal unsatisfiable formulas SL4, we have the
following result.

Theorem 5. There exists a constant r > 1 such that (LSAT≥4, r-UNLSAT≥4)
is NP-complete.

Proof. we construct a reduction from (4SAT, r-UN4SAT) to (LSAT≥4,
r-UNLSAT≥4) polynomially.

Let F = [C1, · · · , Cm] be a 4CNF formula,#cl(F) = m, var(F)= {x1, · · · , xn},
|F | =

∑
1≤i≤m |Ci| = 4m, W.l.o.g., we assume occs(x, F) ≥ 3 for each x ∈

var(F). We now transform F into F ∗ in 4-LCNF by the following two stages.

Stage 1: Call Procedure 1(Linear Transformation for CNF formulas) to trans-
form F into a linear formula F lin . Please note that for any clause C ∈ F lin, |C| =
4 or |C| = 2.

Stage2: Lengthen clauses of the length 2 in F lin

We take a linear MU formula SL4 which mentioned above[3], and assuming
SL4 = [(l1∨l2∨l3∨l4), f1, · · · , fs] , where s = cl(4)−1 and |fi| = 4 for 1 ≤ i ≤ s.
Define H = [(l3 ∨ l4), f1, · · · , fs] . The following procedure 2 generates a linear
formula F ∗ in 4-CNF.

Procedure 2: (Lengthen clauses in linear formula)
Input: a formula F lin;
Output: a linear formula F ∗ in 4-CNF;
Begin

F ∗ := F lin; i := 1;
while ((∃C ∈ F lin) ∧ (|C| = 2)) do

taking a copy Hi = [(li3 ∨ li4), f i
1, · · · , f i

s] of H with new variables, that is
for any i 	= j, var(Hi) ∩ var(Hj) = φ;

F ∗ := (F ∗ − C) + (C ∨ li3 ∨ li4) + [f i
1, · · · , f i

s];
enddo;
output F ∗ ;

end.
(For formulas F1 and F2, F1 + F2 means F1 ∧ F2)

The above stages can be completed in polynomial-time of |F |, and we have
|F ∗| = |F | · |H |.

Please note that the formula F ∗ has also the property similarly to which
Procedure 1 mentioned, that is : for any assignment τ ,there exists an assignment
τ ′ such that

(1) the number of clauses of F ∗ which τ ′ satisfied is not less than the number
of clauses which τ satisfied, and

NP-Completeness of (k-SAT,r-UNk-SAT) and (LSAT≥k,r-UNLSAT≥k) 87

(2) τ ′ takes the same value to yi,1, yi,2, · · · , yi,si+ti for every i, that is τ ′(yi,1) =
τ ′(yi,2) = · · · = τ ′(yi,si+ti) for every i.

Completeness: If F ∈ 4SAT , then there is an assignment τ satisfy F, by
the proof of Theorem 4 there is an assignment τ ′ satisfy F lin . As SL4 is MU
formula, for every copy Hi of H ,[f i

1, · · · , f i
s] = Hi − {(li3 ∨ li4)} is satisfiable, so

there is a assignment τ i satisfy [f i
1, · · · , f i

s] . we can extend τ ′ to τ ′′ by combining
of τ ′ and all τ i, such that τ ′′ satisfy F ∗ . So F ∗ ∈ LSAT≥4.

Soundness: If x ∈ r − UN4SAT ,val(F) ≤ 1 − 1
r , then val(F lin) ≤ 1 − 1

5r ,let
m′ = #cl(F lin) and m′′ = #cl(F ∗), and please note m′ = m + 4m = 5m,and
m′′ = m + 4m + 4m × (cl(4) − 1) = m + 4m × cl(4)

val(F ∗) ≤= [m” − 1
r m]/m′′

= 1 − 1
r · m

m′′

= 1 − 1
r(1+4×cl(4)) = 1 − 1

r′ ,
where r′ = r(1 +4 × cl(4)), so F ∗ ∈ r′-UNLSAT≥4. �

Corollary 2. There exists a constant r > 1 such that r-Approx-LSAT≥4 is
NP-hard, where r-Approx-LSAT≥4 is the problem of given a LCNF≥4 formula
F output an assignment which satisfy at least sat∗(F)/r clauses.

5 Conclusions and Future Works

Based on the application of minimal unsatisfiable formulas SL4 [3], we show
a polynomial-time reduction from (4SAT, r-UN4SAT) to (LSAT, r′-UNLSAT)
and proved that (LSAT, r′-UNLSAT) is NP-complete for some r > 1, and hence
the approximation s-Approx-LSAT is NP-hard. We also construct a reduction
from (4SAT, r′-UN4SAT) to (LSAT≥4, r-UNLSAT≥4) , and proved that there
exists a constant r > 1 such that (LSAT≥4, r-UNLSAT≥4) is also NP-complete.
The future works is to investigate deeply structures and characterizations of
linear formulas, and for k ≥ 5 the NP-completeness of (LST≥k, r-UNLSAT≥k),
and the NP-completeness of the gap decision problem of classes (r, s)-CNF ’s
and its approximation problem.

References

1. Du, D., Ko, K.-I., Wang, J.: Introduction to Computational Complexity (Chinese).
Higher Education Press, P.R.China (2004)

2. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Princeton
University, Princeton (2007)

3. Zhang, Q., Xu, D.: The Existence of Unsatisfiable Formulas in k-LCNF for k ≥
3. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp.
616–623. Springer, Heidelberg (2007)

4. Davydov, G., Davydova, I., Kleine Büning, H.: An efficient algorithm for the minimal
unsatisfiability problem for a subclass of CNF. Annals of Mathematics and Artificial
Intelligence 23, 229–245 (1998)

88 T. Deng and D. Xu

5. Fleischner, H., Kullmann, O., Szeider, S.: Polynomial-time recognition of minimal
unsatisfiable formulas with fixed clause-variable difference. Theoretical Computer
Science 289(1), 503–516 (2002)

6. Porschen, S., Speckenmeyer, E.: Linear CNF formulas and satisfiability, Tech. Re-
port zaik2006-520, University Köln (2006)

7. Porschen, S., Speckenmeyer, E., Randerath, B.: On Linear CNF Formulas. In: Biere,
A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 212–225. Springer, Heidel-
berg (2006)

8. Porschen, S., Speckenmeyer, E.: NP-completeness of SAT for restricted linear for-
mulas classes. In: Proceedings of Guangzhou Symposium on Satisfiability in Logic-
Based Modeling, vol. 1, pp. 108–121, pp. 111–123 (1997)

9. Cook, S.C.: The complexity of theorem-proving procedures. In: Proc. 3rd ACM
STOC, pp. 151–158 (1971)

Absorbing Random Walks and the NAE2SAT Problem

K. Subramani�

LDCSEE,
West Virginia University,

Morgantown, WV
ksmani@csee.wvu.edu

Abstract. In this paper, we propose a simple, randomized algorithm for the
NAE2SAT problem; the analysis of the algorithm uses the theory of symmet-
ric, absorbing random walks. NAESAT (Not-All-Equal SAT) is the variant of the
Satisfiability problem (SAT), in which we are interested in an assignment that sat-
isfies all the clauses, but falsifies at least one literal in each clause. We show that
the NAE2SAT problem admits an extremely simple literal-flipping algorithm, in
precisely the same way that 2SAT does. On a satisfiable instance involving n
variables, our algorithm finds a satisfying assignment using at most 9

4n2 veri-
fication calls with probability at least 5

6 . The randomized algorithm takes O(1)
extra space, in the presence of a verifier and provides an interesting insight into
checking whether a graph is bipartite. It must be noted that the bounds we derive
are much sharper than the ones in [1].

1 Introduction

This paper details a randomized algorithm for the problem of determining whether an
instance of NAE2SAT is satisfiable. To recapitulate, NAESAT is the version of clausal
satisfiability (SAT), in which we seek an assignment that satisfies all the clauses, while
falsifying at least one literal in each clause. NAESAT is known to be NP-complete,
even when there are at most three literals per clause (NAE3SAT) [2]. The NAE2SAT
problem is the variant of NAESAT in which there are exactly two literals per clause and
is known to be solvable in polynomial time. For instance, one could use each clause
as a partitioning constraint and decide an instance in linear time. From a complexity-
theoretic perspective, [3] established that NAE2SAT is in the complexity class SL; more
recently, [4] proved that SL=L, from which it follows that NAE2SAT is in L. Our al-
gorithm is based on the literal-flipping algorithm proposed in [1] for the 2SAT problem
and is extremely space-efficient. In particular, on a satisfiable NAE2SAT instance hav-
ing n variables and m clauses, the expected number of literal-flips to find the satisfying
assignment is n2

4 . Further, if a satisfying assignment is not found within 9
4n2 literal-

flips, then the probability that the instance is not satisfiable is at least 5
6 .

The principal contributions of this paper are as follows:

(a) The design and analysis of a randomized, literal-flipping algorithm for the NAE2SAT
problem.

� This research was supported in part by a research grant from the Air-Force Office of Scientific
Research under contract FA9550-06-1-0050.

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 89–100, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

90 K. Subramani

(b) Some new observations on the convergence times of absorbing random walks.
(c) Establishing the complexity of NAE2SATPOS, which is the variant of NAE2SAT,

in which all literals are positive.

2 Preliminaries

Let φ = C1 ∧ C2 . . . ∧ Cm denote a 2CNF formula on the literal set
L = {x1, x̄1, x2, x̄2 . . . xn, x̄n}.

Definition 1. The Not-All-Equal satisfiability problem for 2CNF formulas (NAE2SAT),
is concerned with checking whether there exists a satisfying assignment to φ, such that
at least one literal in each clause is set to false. If such an assignment exists, then φ is
said to be nae-satisfiable.

For instance, the 2CNF formula φ = (x1, x2) ∧ (x2, x3) is nae-satisfiable (x1 =
true x2 = false x3 = true), while the 2CNF formula φ = (x̄1, x2) ∧ (x1, x2))
is not nae-satisfiable.

Without loss of generality, we assume that each clause has exactly two literals, since
φ cannot be nae-satisfiable, if it has a clause with exactly one literal.

In order to understand our approach for the NAE2SAT problem, we discuss a graph
theoretic approach. Given a 2CNF formula φ(x), we can construct its nae-graph Gφ(x)
as follows:

(a) For each literal xi, create a vertex labeled xi. Note that corresponding to boolean
variable xi, there are two literals, viz., xi, and its complement literal, x̄i.

(b) Corresponding to each clause (xi, yj) (say), add the undirected edges ȳj − xi and
x̄i − yj .

The graph that is created is similar but not identical to the implication graph technique
for 2SAT discussed in [5]. In particular, note that in our case, the graph edges are undi-
rected, whereas in [5], the edges represent implications and are therefore directed. The
implication graph G models the fact that each 2-literal clause (xi, ȳj) can be thought
of as a pair of implications x̄i → yj and ȳj → xi connected conjunctively. In [5], it is
shown that the φ(x) is unsatisfiable if and only there exists a path from a vertex xi to
its complement vertex x̄i and vice versa. We now provide a test for the nae-satisfiability
of φ(x).

Theorem 1. Let φ(x) denote a CNF formula and Gφ(x) denote the corresponding nae-
graph built as per the above rules. Then φ(x) is nae-unsatisfiable if and only there
exists a path from a vertex xi to its complement vertex x̄i in Gφ(x).

Proof: Assume that there exists a path from a vertex xi to its complement vertex x̄i

denoted by xi → x1 → . . . → xk → x̄1. As per the construction of the implication
graph, the following clauses are part of the clause set φ(x): (x̄i, x1)(x̄1, x2) . . . (x̄k, x̄i).
Now consider an assignment in which xi is set to true. It follows that x1 must be set
to true. Arguing similarly, x2, x3, . . . , xk must all be set to true. However, the last
clause (x̄k, x̄i) has both literals set to false and is therefore not nae-satisfied. Likewise,

Absorbing Random Walks and the NAE2SAT Problem 91

consider an assignment in which xi is set to false. This forces x1 to be false; arguing
similarly, x2, x3, . . . , xk must all be set to false. However, this forces both literals in
the last clause to be true, thereby falsifying it from a nae-sat perspective.

The converse can be argued similarly, albeit with some effort involving case-based
analysis. �

The above theorem immediately establishes that NAE2SAT can be solved in linear time
using a variant of the connected components approach discussed in [5]. All that we need
to ensure that is that no literal is reachable from its complement.

2.1 Assignment Verification for NAE2SAT

Consider an instance F of NAE2SAT, i.e., a 2CNF formula on the x variables only. Let
�a represent a {true, false} assignment to the variables of F . It is straightforward to
verify whether �a nae-satisfies F , by substituting the value of literals in each clause, as
specified by �a and checking that all clauses evaluate to true, with at least one literal
set to false in each clause. We now present an implication graph interpretation of a
nae-satisfying assignment. Let G represent the implication graph of F and consider the
labeling of the vertices of G, as per �a.

Theorem 2. An assignment �a nae-satisfies a 2CNF formula φ(x), if and only if there
is no arc, with tail vertex assigned true and head vertex assigned to false, i.e., a
(true→false) arc or a (false→true) arc, in the implication graph Gφ(x) of φ(x).

Proof: Let (xi, xj) denote an arbitrary clause of φ(x); this clause contributes the two
arcs l1 : x̄i → xj and l2 : x̄j → xi to the implication graph G. If this clause is satisfied
by the assignment �a, either xi is set to true and xj is set to false or xj is set to true and
xi is set to false. If xi is set to true and xj is set to false, the tail of arc l1 is set to false
and so is its head, while the head of arc l2 is set to true and so is its head. We thus see
that there is no (true→false) arc or (false→true) arc. The case when xj is assigned to
true and xi is assigned to false can be argued symmetrically.

Now consider the case in which both xi and xj are set to false in �a. Both the arcs
l1 and l2 are (true→false) arcs. Similarly, the case in which xi and xj are both set to
true, results in l1 and l2 both becoming (false→true) arcs. �

From Theorem 2, it follows that given an assignment to a NAE2SAT instance φ(x),
the verification process consists of scanning through the implication graph Gφ(x) and
ensuring that there does not exist a (true→false) or (false→true) arc. If the instance
φ(x) has m clauses and n variables, then as per the implication graph construction,
Gφ(x) has 2 · m arcs. Hence, the verification process can be accomplished in O(m)
time.

2.2 Complexity Classes

Definition 2. A language L is said to be in RL, if there exists a randomized algorithm
which recognizes it in logarithmic space.

92 K. Subramani

Definition 3. The undirected s − t connectivity problem (USTCON) is defined as fol-
lows: Given an undirected graph G = 〈V, E〉 and two vertices, s, t ∈ V , is t reachable
from s?

Definition 4. A language L is said to be in SL, if it can be log-space reduced to UST-
CON.

3 Markov Chains and Random Walks

This section contains preliminaries on Markov Chains and Random Walks that may not
be familiar to non-experts in Probability Theory. I have included this material so that the
paper as a whole is accessible to researchers in both Computer Science and Statistics. If
the reviewers feel that this section does not add value to the paper, it will be removed.

There are two types of theorems that are described here; the first type are known
results for which appropriate references are provided and the second type are results
which are proved here for the first time, to the best of our knowledge. The latter theo-
rems are marked as O for original.

Let R denote a stochastic process which can assume one of the following values:
S = {0, 1, 2,n}. If R assumes the value i at a particular time, then it is said to be in
state i at that time. Further, suppose that when it is in state i, the probability that it will
move to state j, at the next instant is a fixed constant pij , independent of the history of
the process. R is said to be a Finite Markov Chain over the state space S.

Definition 5. A Finite Markov Chain over the state space S = {0, 1, . . . , n} is said to
be a Random Walk, if for some fixed constants p ∈ (0, 1), p0 ∈ [0, 1], pn ∈ [0, 1],

pi i+1 = p = 1 − pi i−1, i = 1, 2, . . . , n − 1,

p0 1 = p0

pn n−1 = pn

Definition 6. A random walk R is said to be absorbing, if p0 1 = pn,n−1 = 0.

States 0 and n are said to be absorbing barriers of the random walk.

Definition 7. An absorbing random walk is said to be symmetric, if p = 1
2 .

The rest of this paper will be concerned with absorbing, symmetric random walks (ASR
walks) only. An ASR walk has the following game-theoretic interpretation: Imagine a
drunkard on a straight road, with his house on one end and a bar on the other. Assume
that the drunkard is at some point i, in between the house and the bar. Point i is the
initial position of the game. In each state the drunkard is currently in, he takes one step
towards the bar with probability one-half or one step towards his house with probability
one-half. The game is over when the drunkard reaches either his home or the bar.

Definition 8. The absorption time of state i, 0 ≤ i ≤ n, in an ASR walk R, is the
expected number of steps for R to reach an absorbing state, given that it is currently in
state i.

Absorbing Random Walks and the NAE2SAT Problem 93

The absorption time of state i, is denoted by t(i); we thus have,

t(i) = E[ASR walk R to reach 0 or n | R is currently in state i]

Definition 9. The absorption time of an ASR walk R is defined as the maximum ab-
sorption time over all the states in R.

The absorption time of R is denoted by Rt; we thus have,

Rt = max
0≤i≤n

t(i)

The literature has shown that every state in an absorbing, symmetric random walk is
recurrent, i.e., the probability that a state is ever reached is 1 [6]. From the perspective
of algorithmic efficiency, mere recurrence is not sufficient; it is important that the ab-
sorption time of a state is s a small number, preferably a polynomial function of the
total number of states.

We now proceed to compute the absorption time of various states in an ASR walk R;
in order to carry out this computation, we need the following technical lemma that helps
us to compute the expectation of a random variable by conditioning it on a different
random variable. This lemma has been proved in [7].

Lemma 1. Let X and Y denote two random variables; let E[X | Y] denote that func-
tion of the random variable Y , whose value at Y = y is E[X | Y = y]. Then,

E[X] = E[E[X | Y]]. (1)

In other words,

E[X] =
∑

y

E[X | Y = y] · Pr[Y = y]. (2)

We use t(i) to denote the absorption time of state i and Rt to denote the absorption
time of the ASR walk R. Observe that if the ASR walk is currently in state i, where i
is a non-absorbing state, then at the next step, it will be in state (i + 1) with probability
one-half and it will be in state (i − 1), with probability one-half. In the former case, the
absorption time for state i is (1 + t(i + 1)), while in the latter case, it is (1 + t(i − 1)).
Noting that t(0) = t(n) = 0, we apply Lemma (1) to derive the following set of
equations for computing the absorption times of states in the ASR walk.

t(0) = 0

t(i) =
1
2

· (t(i − 1) + 1) +
1
2

· (t(i + 1) + 1), 0 < i < n

t(n) = 0 (3)

Note that System (3) contains (n+1) equations and (n+1) unknowns and can be repre-
sented as: A · �x = �b, where, �x is an (n+1)-vector representing the expected absorption

94 K. Subramani

times of the states ([t(0), t(1), . . . , t(n)]T), �b is an (n+1)-vector [0, 1, 1, . . . , 1, 0]T ,
and A is the (n + 1) × (n + 1) matrix represented by:

⎡

⎢⎢⎢⎢⎢⎣

1 0 . . . 0
− 1

2 1 − 1
2 . . .

...
...

...
...

. . . − 1
2 1 − 1

2
0 0 . . . 1

⎤

⎥⎥⎥⎥⎥⎦

Row i (0 < i < n), of A has 1 in the diagonal entry and a negative one-half in the entry
preceding and succeeding it. All other entries in this row are zero. Row 0 and Row n
are unit vectors with the unit entry occupying the diagonal entry. It is not hard to see
that A is non-singular and therefore, System (3) has a unique solution.

We need the following lemma to aid us in solving System (3).

Lemma 2

t(i) = t(n − i), ∀i = 0, 1, . . . , n

Proof: By symmetry of the random walk. �

The technique to solve System (3) (which is a non-trivial contribution) appears in the
journal version of the paper. We show that in the worst case, the absorption time of a
state (i.e., the expected number of steps for the random walk to reach an absorbing state,
from a state) in an ASR walk is n2

4 , i.e., max0≤i≤n t(i) ≤ n2

4 .

Theorem 3. Let Var[t(i)] denote the variance of the absorption time of state i, in the
ASR walk R. Then,

max
0≤i≤n

Var[t(i)] ≤ 2
3
n4.

Proof: Will provide in revised version. �

The following theorem is known as Chebyshev’s inequality and is proved in [7] among
other places.

Theorem 4. Let X denote a random variable, with mean E[X] and variance σ2. Then,
for any k > 0, we have,

Pr[|X − E[X]| ≥ k] ≤ σ2

k2

Theorem 5. (O) Given an ASR walk R, which is initially in an arbitrary state i, 0 ≤
i ≤ n, the probability that R does not reach an absorbing state in 9

4n2 steps is at
most 1

6 .

Absorbing Random Walks and the NAE2SAT Problem 95

Proof: Let X denote the worst-case number of steps taken by the ASR walk R to reach
an absorbing state. We are interested in the quantity Pr[X ≥ 9

4n2].
Note that,

Pr[X ≥ 9
4
n2] = Pr[X − n2

4
≥ 2 · n2]

≤ Pr[|X − n2

4
| ≥ 2 · n2]

= Pr[X − E[X]| ≥ 2 · n2]

≤
2
3n4

(2n2)2
, using Chebyshev′s inequality

=
1
6

�

3.1 The Convergence Numbers

Let G(n, k) denote the expected number of steps taken by an ASR walk to reach an
absorbing state, assuming that it is currently in state k, 0 ≤ k ≤ n, i.e., G(n, k) is the
absorption time of state k.

Table (1) represents the computed values of G(n, k) for small values of n. For each
value of n, the corresponding row stores the absorption time for all n+1 initial positions
of the random walk.

Table 1. Convergence Numbers

Number of variables Starting Point of Walk
n = 0 0

n = 1 0 0

n = 2 0 1 0

n = 3 0 2 2 0

n = 4 0 3 4 3 0

n = 5 0 4 6 6 4 0

n = 6 0 5 8 9 8 5 0

n = 7 0 6 10 12 12 10 6 0

Each of the following theorems (which do not appear in the literature, to the best of
our knowledge) can be proved using induction.

Theorem 6. For all n ≥ 2, G(n, 1) = G(n − 1, 1) + 1.

Theorem 7. For all n ≥ 3, G(n, 2) = G(n − 2, 2) + 2.

Theorem 8. For all n ≥ k, G(n, k) = G(n − k, k) + k.

Theorem 9. For all n, G(n, k) = G(n, n − k).

96 K. Subramani

4 Algorithm and Analysis

Algorithm 4.1 is our strategy to solve the NAE2SAT problem.

Function NAE2SAT-SOLVE(Gφ(x))

1: {The 2CNF formula φ(x) is input through its implication graph Gφ(x).}
2: {We assume that φ(x) has n variables and m clauses, so Gφ(x) has 2 · n vertices and 2 · m

arcs.}
3: Let T be an arbitrary truth assignment to the variables of φ(x).
4: Update Gφ(x) with T .
5: {We say that an arc in Gφ(x) is broken, if under the current assignment it is a true→false arc

or a false→true arc.}
6: count = 0;
7: if (there does not exist a broken arc in Gφ(x)) then
8: return (“φ(x) is nae-satisfiable”)
9: end if

10: while (there exists at least one broken arc in Gφ(x)) and (count ≤ 9
4n2) do

11: Select any broken arc in Gφ(x), say x1 → x2.
12: Flip a fair coin to pick one of x1 and x2.
13: if (x1 is selected) then
14: Flip x1; i.e., complement its assignment.
15: else
16: Flip x2.
17: end if
18: Adjust T and Gφ(x) to reflect the changed assignments.
19: if (T now satisfies φ(x). i.e., there is no broken arc in Gφ(x)) then
20: return (“φ(x) is nae-satisfiable.”)
21: else
22: count = count + 1.
23: end if
24: end while
25: return (“φ(x) is probably nae-unsatisfiable.”)

Algorithm 4.1 Randomized algorithm for the NAE2SAT problem

4.1 Analysis

Observe that if Algorithm 4.1 claims that φ(x) is nae-satisfiable, then φ(x) definitely
has a nae-satisfying assignment, i.e, the assignment T , which causes the algorithm to
terminate. On the other hand, if Algorithm 4.1 claims that φ(x) is not nae-satisfiable,
then it is possible that φ(x) is still nae-satisfiable; we now show that the probability of
this occurrence is less than 1

6 .

Lemma 3. Let φ(x) denote a 2CNF formula; if assignment x nae-satisfies φ(x), then
so does assignment xc, where xc is derived from x, by complementing the assignment
to each variable in x. The tuple (x, xc) is called a complementary pair.

.

Absorbing Random Walks and the NAE2SAT Problem 97

Proof: Since, x nae-satisfies φ(x), it sets one literal to true and one literal to false in
each clause. Under xc, the literals which are set to true become false and vice versa. It
follows that each clause is still nae-satisfied and therefore, so is φ(x). �

Assume that φ(x) is nae-satisfiable and let us focus on a particular nae-satisfying com-
plementary pair of assignments T̂ and T̂ c. Let T denote the current assignment to the
variables of φ(x). If T is a nae-satisfying assignment, we are done. If it is not, then there
is a clause, say (xi, xj) that is not nae-satisfied by T . There are two cases to consider:

(i) Both xi and xj are set to false in T - In T̂ , at least one of these two literals is set to
true; likewise, in T̂ c, at least one of these literals is set to false. Hence choosing
one of them uniformly and at random, moves T closer to T̂ , with probability at
least one-half and closer to T̂ c with probability one-half. In other words, after the
literal flip, with probability one-half, T agrees with T̂ in one more variable and
with probability one-half, T agrees with T̂ c in one more variable.

(ii) Both xi and xj are set to true in T - In T̂ , at least one of the two literals is set
to false and in T̂ c, at least one of the two literals is set to true. Hence choosing
one of the two literals uniformly and at random and flipping it, moves T closer
(by one variable) to T̂ with probability at least one-half and closer to T̂ c (by one
variable) with probability at least one-half.

Let r(i) denote the expected number of literal-flips for Algorithm 4.1 to take the current
assignment T to the nae-satisfying assignment T̂ or its complement T̂ c, assuming that
T differs from T̂ on exactly i variables. By our previous arguments, it is clear that T
differs T̂ c in exactly (n−i) variables. Note that r(0) = 0, since if the current assignment
differs from T̂ on 0 variables, then it is a nae-satisfying assignment. Likewise, r(n) = 0,
since if the current assignment differs from T̂ on all n variables, then it must differ from
T̂ c on exactly 0 variables, i.e., T must coincide with the nae-satisfying assignment T̂ c.

Applying Lemma (1) to the discussion above, for each i, 0 < i < n, we must have

r(i) =
1
2

(r(i − 1) + 1) +
1
2
(r(i + 1) + 1)

=
1
2
r(i − 1) +

1
2
r(i + 1) + 1 (4)

But System (4) in conjunction with the boundary conditions is precisely the defining
system of an ASR walk R. We therefore conclude that:

Theorem 10

max
0≤i≤n

r(i) ≤ n2

4
.

max
0≤i≤n

Var[r(i)] =
2
3
n4.

Corollary 1. Algorithm 4.1 is a Monte-Carlo algorithm for the NAE2SAT problem; on
a nae-satisfiable instance, the probability that it does not find a nae-satisfying assign-
ment is at most 1

6 .

98 K. Subramani

5 Graph Bipartiteness

In this section, we apply the techniques of Algorithm 4.1 to derive a Monte Carlo algo-
rithm for the problems of checking whether an undirected graph is 2-colorable. Without
loss of generality, we assume that the vertices of the graph need to be colored from the
set {red, blue}. A particular coloring c for the vertices of G, is inconsistent if there
exists at least one edge e such that both its endpoints are colored blue or red. If no such
edge exists, c is said to be a consistent (valid) coloring.

Function GRAPH-2-COLOR(G)

1: {We assume that G has n variables and m edges.}
2: Let c be an arbitrary color assignment of red and blue to the vertices of G.
3: count = 0;
4: if (c is a valid coloring) then
5: return (“G is 2-colorable.”)
6: end if
7: while ((c is an inconsistent coloring)and (count ≤ 9

4 · n2)) do
8: Pick an edge e = (xi, xj) ∈ E such that c[xi] = c[xj] = red or c[xi] = c[xj] = blue
9: Flip a fair coin to pick one of xi and xj .

10: if (xi is selected) then
11: Change its color to blue, if it was red and to red, if it was blue.
12: else
13: Change the color of xj to blue, if it was red and to red, if it was blue.
14: end if
15: Update c accordingly.
16: if (the current color assignment is valid) then
17: “G is 2-colorable”)
18: else
19: count = count + 1.
20: end if
21: end while
22: return (“G is probably not 2-colorable.)

Algorithm 5.1 Randomized algorithm for the Undirected Graph 2-coloring problem.

Algorithm 5.1 is a Monte Carlo algorithm for checking whether a graph is bipartite.

5.1 Analysis

The graph bipartiteness problem shares an important property with the NAE2SAT prob-
lem, in that if a particular coloring c is a valid 2-coloring of a graph, then so is its
complement coloring c̄. Clearly if Algorithm 5.1 returns “yes”, then the input instance
G is bipartite. However, if the algorithm claims that G is not 2-colorable, then it could
be incorrect. The error bound analysis is identical to the one for NAE2SAT, since at
each step, Algorithm 5.1 moves one step closer to a valid coloring or one step closer to
the complement of that valid coloring. Algorithm 5.1 can therefore also be modeled as

.

Absorbing Random Walks and the NAE2SAT Problem 99

a one dimensional random walk with one reflecting barrier and one absorbing barrier.
Accordingly, we get,

Theorem 11. Algorithm 5.1 is a Monte Carlo algorithm for the problem of checking
whether an undirected graph is 2-colorable. If the input graph is not 2-colorable, the
algorithm always returns the correct answer; if the input graph is 2-colorable, the prob-
ability that the algorithm returns the incorrect answer is at most 1

6 .

An interesting offshoot of the above work is the following theorem.

Theorem 12. Let NAE2SATPOS denote the class of NA2SAT problems in which every
literal is positive. NAE2SATPOS is L-complete.

Proof: First observe that NAE2SATPOS is trivially in L, since it is a special case of
NAE2SAT. Likewise, it has already been established that Undirected Graph 2-coloring
(UG2COL) is in SL and therefore in L [3,8,4]. Now, consider the following AC0 reduc-
tion from UG2COL to NAE2SATPOS.

Let G = 〈V, E〉 denote an instance of the UG2COL problem, where, V = {v1, v2,
. . . , vn} and E = {eij : there is an undirected edge between vertices vi and vj} .

We construct the following instance of NAESATPOS:

(a) Corresponding to vertex vi, the variable xi is created.
(b) Corresponding to edge eij = (vi, vj), the clause (xi, xj) is created.
(c) The conjunction of all the clauses gives us the 2CNF formula φ(x).

It is not hard to see that the graph G has a 2-coloring if and only if φ(x) is NAE-
satisfiable. �

This result can be seen as an addition to the collection of results in [9].

6 Conclusion

In this paper, we designed and analyzed a randomized, literal-flipping algorithm for
the NAE2SAT problem. As mentioned before, the existence of a polynomial time ran-
domized algorithm for this problem is not surprising, since NAE2SAT belongs to the
complexity class SL ⊆ P ⊆ RP. The interesting aspect of our work is the simplicity of
the randomized algorithm and its analysis. We extended the algorithm to check for bi-
partiteness in undirected graphs.

References

1. Papadimitriou, C.H.: On selecting a satisfying truth assignment. In: IEEE (ed.) Proceedings:
32nd annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico, Octo-
ber 1–4, pp. 163–169. IEEE Computer Society Press, USA (1991)

2. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman Company, San Francisco (1979)

3. Reif, J.H.: Symmetric complementation. J. ACM 31(2), 401–421 (1984)

100 K. Subramani

4. Reingold, O.: Undirected st-connectivity in log-space. In: STOC, pp. 376–385 (2005)
5. Aspvall, B., Plass, M.F., Tarjan, R.: A linear-time algorithm for testing the truth of certain

quantified boolean formulas. Information Processing Letters 8(3), 121–123 (1979)
6. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge

(1995)
7. Ross, S.M.: Probability Models, 7th edn. Academic Press, Inc., London (2000)
8. Àlvarez, C., Greenlaw, R.: A compendium of problems complete for symmetric logarithmic

space. Electronic Colloquium on Computational Complexity (ECCC) 3(39) (1996)
9. Johannsen, J.: Satisfiability problems complete for deterministic logarithmic space. In:

STACS, pp. 317–325 (2004)

Versioning Tree Structures by Path-Merging

Khaireel A. Mohamed, Tobias Langner, and Thomas Ottmann

Albert-Ludwigs-Universität Freiburg, D-79110 Freiburg, Germany
{khaireel,langneto,ottmann}@informatik.uni-freiburg.de

Abstract. We propose path-merging as a refinement of techniques used
to make linked data structures partially persistent. Path-merging sup-
ports bursts of operations between any two adjacent versions in con-
trast to only one operation in the original variant. The superiority of
the method is shown both theoretically and experimentally. Details of
the technique are explained for the case of binary search trees. Path-
merging is particularly useful for the implementation of scan-line algo-
rithms where many update operations on the sweep status structure have
to be performed at the same event points. Examples are algorithms for
planar point location, for answering intersection queries for sets of hori-
zontal line segments, and for detecting conflicts in sets of 1-dim IP packet
filters.

Subject Classifications: E.1 [Data]: Data Structures – trees; E.2 [Data]:
Data Storage Representations – linked representations; F.2.2 [Analysis
of Algorithms and Problem Complexity] Nonnumerical Algorithms
and Problems – Geometrical problems and computations.

Keywords: Partial persistence, path-merging, path-copying, node-
copying.

1 Introduction

A data structure supporting access to multiple versions is called a persistent
data structure, and to date, there are various problems in computer science
where such structures are often sought after. This is mainly due to their elegance
of maintaining a historical list of the ever-changing primary structure through
efficient update operations, and then providing convenient ways to get to the
archived data by means of well-designed access operations.

There are mainly two different degrees of persistence; partial and full. A par-
tially persistent structure allows only read access to previous versions, while a
fully persistent structure allows write access to earlier versions, on top of the
read access. In this article, we shall concentrate on the former degree of persis-
tence and discuss the two well-known, classical methods of making linked data
structures persistent, namely the ‘path-copying’ method and the ‘node-copying’
method. Our perusal of the two methods shall be applied primarily onto binary
search tree (BST) structures.

As their names suggest, the path-copying method reproduces an entire path
in the BST to effect a single update operation, while the node-copying method

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 101–112, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

102 K.A. Mohamed, T. Langner, and T. Ottmann

copies only single nodes (one node in amortized average) per update operation.
An update operation creates a new persistent version in the BST. But ever
so often, in many domain specific applications, we find that we do not actually
require every single one of these versions. Suffice to keep only those versions that
we find essential and remove all others as they play no significant part in the
broader view of the application it ministers. However, we cannot simply delete
those non-essential intermediate versions, as in a partially persistent BST, nodes
in one version may share subtrees belonging to other versions.

Hence, we introduce our path-merging technique to show how we can com-
prehensively collate and properly link the non-essential intermediate versions to
keep only those versions we think are essential. The correctness of our technique
leads to the cost savings in both time and space when compared to the original
methods it overlays.

2 Implications of Access Operations in Partially
Persistent Structures

Following a series of successful update operations on a partially persistent linked
data structure τ , we can acquire and assemble a previously persisted version
with an access operation. For the purpose of our deliberations, we shall exploit
τ as a partially persistent binary search tree (BST), where an access operation
refers to a search for an item or items in τ , at some past version vi given a query
object q. The accessed set forms a path in τ that starts at the root at vi, and
is extended one node at a time, ensuing an access heuristic until the desired
items matching the query q are found. Particularly, we shall discuss the access
heuristic of Sarnak and Tarjan’s path-copying method [1] and Driscoll et al.’s
node-copying method [2], which will lead to the discourse of our path-merging
method later on in this article.

Let us first observe the importance of access operations in persistent data
structures when they are used to support surrogate applications.

2.1 Planar Point Location

The key to efficiently solve the planar point location problem is to build a sys-
tematically organized data structure to represent a planar subdivision S of n
edges. In order to report the face f of S that contains a given query point q, de
Berg et al. [3] showed how to decompose S into a trapezoidal map T (S), which
uses O(n) space and answers the query in O(log n) time.

An alternative method introduced by Sarnak and Tarjan [1] is to use a par-
tially persistent RB-BST as an improvement over Cole’s [4] persistent representa-
tion of sorted sets. This also answers the same query in O(log n) time. The space
consumption, however, depends on the method of persistence; the path-copying
method takes up O(n log n) space, while the node-copying method requires O(n)
storage.

Vertical lines are drawn through each vertex in S which split the plane into
O(n) slabs as shown in Fig. 1(a). Each slab contains the edges of S, which are

Versioning Tree Structures by Path-Merging 103

associated to the faces just above them, ordered from bottom to top. An RB-
BST τ is first built for the left-most slab to hold the sorted edges. Afterwhich,
a left to right sweep is carried out on all the slabs, stopping at each vertical
line and persisting τ by creating one new version for every update operation.
The x-coordinate value of the vertical line is also augmented to the top-most
version pointer during the update operation, and these are indexed in another
balanced BST on a higher level. This vertical partitioning of the subdivision
gives us exactly 2n update operations; where at every vertical line, one edge is
deleted at version vi and one other edge is inserted at version vi+1.

Thus, to locate the face f in which q lies, we first perform an O(log n) time
search on the upper level BST to locate the correct version of τ corresponding
to the x-coordinate of q, and then access τ at version vqx to perform a second
O(log n) time search using the y-coordinate of q to determine the correct f .

q

q

Fig. 1. (a) Planar point location problem. (b) Stabbing range query q on a set of n
horizontal line-segments.

2.2 Range Query of Horizontal Line-Segments

We can apply a similar technique as we did before in handling the point location
problem with a persistent data structure when we are presented with a set S
of n horizontal line-segments. Given a vertical query range q, we are to report
all the line-segments in S that intersect q. Again, we draw vertical lines at both
endpoints of each line-segment, splitting the plane into at most 2n − 1 slabs
as depicted in Fig. 1(b). Each slab contains the line-segments in S sorted in
ascending y order. We then perform an identical sweepline approach to build a
partially persistent RB-BST τ on the slabs, such that at every encounter of the
vertical line li, all line-segments whose left-endpoints match li are inserted into
τ and all other line-segments whose right-endpoints match li are deleted from
τ . Every single one of these update operations creates a new version of τ , and
unlike the slabs in the point location problem, we tend to face an arbitrarily
many insertions and deletions per vertical line as we transit between adjacent
slabs during the sweep.

Using the resultant partially persistent structure, we can report the solution
in time O(log n + k), where k is the number of line-segments in S intersecting
the vertical range q. Like before, we first execute a binary search to access the
correct version vqx of τ where q lies, and then perform a range query on τ at vqx

to return the active line-segments that intersect q.

104 K.A. Mohamed, T. Langner, and T. Ottmann

2.3 Essential and Non-essential Versions

Clearly, as evidenced by the two examples above, it is not necessary to persist
every single version, every time we perform an update operation. It is sufficient
to store only those versions that are the collective results of multiple update
operations after completely handling an event point. In other words, the ver-
sions that we persist must be substantially essential, such that all other versions
leading to an essential version will have no effect on the overall correctness of
the application that τ serves. Thus, we should be able to omit the non-essential
versions in the partially persistent τ without breaking the temporal flow of the
essential versions within.

3 Merging Non-essential Versions in Partially Persistent
BSTs

Our problem involving the partially persistent data structures laid out in the
previous section is what Driscoll et al. and Sarnak and Tarjan [2,1] termed the
“persistent sorted set” problem. Here, we maintain a set of elements that changes
over time, where each element has a distinct key that is comparable to all other
keys in the elements in the same set, such that these keys can be totally ordered.
The BST τ is a structure that represents such a set, where it contains one element
per node arranged in a symmetric ordering.

We begin by characterizing the different types of nodes that can exist during
the intercession of two adjacent essential versions of τ . As we collate the series of
non-essential versions effected on τ by the corresponding series of intermediate
update operations, we need to distinguish the set of ephemeral nodes from the
set of persistent nodes. They tend to appear simultaneously in τ amidst this
transition period, but always in a some formal ordering.

An ‘ephemeral node’ is a node created during an intermediate update oper-
ation and is ephemerally modifiable until it becomes a persistent node, or until
it is deleted. On the other hand, a ‘persistent node’ is a versioned node belong-
ing to an existing persistent version vi of τ , and that any modification on it is
strictly not allowed.

Let vm−1 be the latest essential version of a partially persistent BST τ under
our path-merging technique. Let vm be the next essential version of τ to be
spawned. Let all intermediate versions contributing to the non-essential versions
of τ between vm−1 and vm be v∗m. Then τ at version v∗m is a ‘semi-ephemeral’
BST containing both ephemeral nodes and persistent nodes. Note that v∗m may
change over time.

3.1 Path-Merging Via Path-Copying

Sarnak and Tarjan [1] compiled from several sources and presented the idea of
the path-copying method to make a linked data structure persistent. During an
update operation on τ , we copy only those nodes that are effected by the said
operation and percolate the copying procedure to any node with a direct pointer

Versioning Tree Structures by Path-Merging 105

to the copied nodes. Consequently, if τ is a BST, then entire paths from the
effected nodes to the roots are copied, creating a set of search trees for all the
partially persistent versions of τ , having different roots per version but sharing
common subtrees.

In our path-merging technique, only the first update operation that imme-
diately follows the successful persistence of the latest essential version vm−1,
adheres to the original path-copying method. This effectively gives us a new
semi-ephemeral BST rooted at v∗m. The newly copied path forms a set of linked
ephemeral nodes in v∗m. All other nodes linked from the subtrees of the ephemeral
nodes in v∗m belong to other partially persistent versions of τ , and they make up
the set of persistent nodes in v∗m. All subsequent update operations contributing
to the non-essential versions of τ shall begin with a search at the root at v∗m.
Note that each update will change v∗m.

(a)

2

9

12

11

10

6

22

18 30

26 38

34

14

2

9

12

11

10

6

22

18 30

26 38

34

14

17

18

26

34

14

v0
v
∗

1

(b)

2

9

12

11

10

6

22

18 30

26 38

34

14

2

9

12

11

10

6

22

18 30

26 38

34

14

17

18

28

30

26

34

14

v0
v
∗

1

(c)

2

9

12

11

10

6

22

18 30

26 38

34

14

2

9

12

11

10

6

22

18 30

26 38

34

14

18

28

30

26

34

17

v0
v
∗

1

(d)

2

9

12

11

10

6

22

18 30

26 38

34

14

2

9

12

11

10

6

22

18 30

26 38

34

14

6

10

18

28

30

26

34

17

v0
v
∗

1

Fig. 2. Path-merging via path-copying. Version v0: Insert {14, 6, 34, 38, 26, 10, 2, 18,
30, 22, 11, 12, 9}. Version v1: {Insert {17}, Insert{28}, Delete {14}, Rotate-Left {6}},
showed in sequence from (a) to (d), respectively. The BST rooted at v∗

1 during the
intercession is a semi-ephemeral structure. Red nodes are ephemeral nodes, and black
nodes are persistent nodes.

Let x be a node in v∗m in which an update operation will be effected upon,
and let c(x) denote an ephemeral copy of the node x. Then we only need to copy
the persistent nodes in v∗m if our search for x breaks away from the traversal
of the path of ephemeral nodes. We note here that a newly created copy of a
persistent node is an ephemeral node.

The next two rules complete the handling of the path-merging technique once
we have identified the node x:

106 K.A. Mohamed, T. Langner, and T. Ottmann

1. If x is an ephemeral node, then we treat the update operation on x as a
normal ephemeral instruction, overriding the effects of a previous operation
made on x.

2. If x is a persistent node, then we perform the update operation on c(x).

Fig. 2 shows an example of path-merging four successive intermediate update
operations between v0 and v1, with each sub-figure showing an intermediate
update operation.

After a series of i intermediate update operations, the “net” set of ephemeral
nodes in v∗m is the result of merging i non-essential versions of the original path-
copying method of persistence. What is left to be executed in persisting this set
of merged paths for the next essential version of τ is to set the status of all the
ephemeral nodes in version vm to ‘persistent’. Since the set of ephemeral nodes
in vm is a connected subtree at the root, we can carry out this change of status
in time proportional to the number of ephemeral nodes in vm using a simple
depth-first traversal.

3.2 Path-Merging Via Node-Copying

The node-copying method was conceived to eliminate the shortcomings of the
näıve fat node method. Where there can be arbitrarily many outgoing pointers
in a fat node in a persistent structure, a node following the node-copying method
is allowed to have only a fixed number of such pointers.

In fact, Driscoll et al. [2] showed that the improved node for the persistent
BST τ needs to store, apart from its key element, only three obligatory pointers:
one left pointer, one right pointer, and one other modification pointer, each with
a version stamp. When such a node becomes full, we create a new copy of the
node containing only the newest value of each pointer field. Also, as was with
the case of the path-copying method, every time we copy an existing node, its
predecessor must be informed of the change. In this case, the parent of the copied
node must update its modification pointer to point to the newly copied node and
accorded the newest version stamp. But if the parent is also full, then the parent
too, must be copied. This copy-percolation process may end up with the root
itself being copied.

Accessing Persisted Versions. Unlike the path-copying method where every
update operation always produces a new root, the node copying method tends to
be more conservative in its expansion of the main tree structure. Every update
operation leaves a distinct version stamp in the pointers to the nodes inside τ
that are effected by the operation. Thus, traversing a persistent BST τ made by
the node-copying method must abide by the following access heuristic (which is
similar to the access heuristic of the fat node method):

1. Find the correct root for a given version vi.
2. Traverse the nodes by choosing only pointers with the maximum version

stamp that is less than or equal to vi.

Versioning Tree Structures by Path-Merging 107

Intermediate Update Operations. As before, let x be a node in v∗m in which
an update operation will be effected upon, and let c(x) denote an ephemeral copy
of the node x.

We impose a slight variant on the original node-copying procedures in our
path-merging technique when an update operation contributes to a non-essential
version. Navigating and manipulating this conservative structure of τ at version
v∗m, influenced by the node-copying method, requires a different kind of atten-
tion to be paid when managing the internal nodes. This is not as forthright
as compared to the more discernible arrangement of ephemeral and persistent
nodes in τ created by the path-copying method. That is, whenever we access τ
at v∗m to search for the node x, we may end up retrieving a path from the root
to x that contains both ephemeral and persistent nodes, in random sequence!
Furthermore, the nodes in τ have an additional modification pointer field that
exhibits special properties when we apply our path-merging technique via the
node-copying method.

Hence, here, we extend the notions of our earlier terminologies so as to apply
them to the context of the node-copying method, in order to handle the path-
merging procedure efficiently.

At one end of the access-spectrum, we have the persistent nodes. A ‘persistent’
node is a versioned and full node in τ belonging to an existing essential version,
and is strictly unmodifiable. By full, we mean that this persistent node has
its key and all three of its pointer fields, particularly the modification pointer,
assigned to objects (even to a null object). On the opposite end of the spectrum,
lies the ephemeral nodes. An ‘ephemeral’ node in τ is always created during
an intermediate update operation at version v∗m, either as a new entity or as an
ephemeral copy of an existing persistent node. All the contents in this ephemeral
node are ephemerally modifiable, and remain so until the node is deleted, or
until the node is versioned at vm. What is now left to be considered are those
nodes that are in the middle of the spectrum, and they fit neither of the two
descriptions above. We shall call them semi-persistent nodes.

An ephemeral node becomes a ‘semi-persistent’ node, if and only if its mod-
ification pointer is empty at the time of spawning a new essential version of τ .
In other words, only its key and its left and right pointers can be versioned. The
modification pointer, left untouched, is ephemerally modifiable by any future
update operation, and remains so as long as the node is in transition. Further-
more, the semi-persistent node becomes a persistent node if at the next essential
version vm the modification pointer is no longer empty.

Given an intermediate update operation, we first invoke the access heuristic on
τ at version v∗m (or at version vm−1 if v∗m does not yet exist) and traverse τ until
we arrive at the node x in which to effect the operation. We then execute the
node-copying method on x implicitly, while explicitly adhering to an additional
set of rules when administering any nodal changes.

Rule 1. If x is an ephemeral node, then we treat the update operation on x
as a normal ephemeral instruction, overriding the effects of a previous
operation made on x.

108 K.A. Mohamed, T. Langner, and T. Ottmann

(a)

14

6

2 10

9 11

12

34

26

18

v
∗

1
:lp

2217

30

v
∗

1
:lp

28

38

v0 − v
∗

1

(b)

14

6

2 10

9 11

12

34

26

18

22

30

v
∗

1
:lp

28

38

17

28

v0
v
∗

1

Fig. 3. For example, deleting {14} from (a) results in (b), where the dotted red nodes
are ephemeral nodes and all others are semi-persistent nodes. Note that {17} was
deleted in (a) without consequence following Rule 1 below, and a copy of the root was
made in (b) following Rule 3(a).

Rule 2. If x is a persistent node, then we perform the update operation on c(x).
Rule 3. If x is a semi-persistent node, then we react according to the update

operation as follows:
(a) If the update operation changes the key in x, then we perform the change

of key in c(x).
(b) If the update operation changes the modification pointer of x without

causing a node-contention, then we simply execute the change. We give a
further explanation of what a node-contention is in the next sub-section.

(c) If the update operation changes the modification pointer of x and causes
a node-contention, then we make a copy of x and resolve the conflict
between x and the update operation, in the new c(x).

In addition to the rules above, the pointers in every intermediate update
operation effecting or effected by x shall carry the version stamp v∗m. Fig. 4
depicts an example of path-merging the same four successive intermediate update
operations as performed in the previous section.

After a series of i intermediate update operations, the “net” set of ephemeral
nodes is again the result of merging i non-essential versions of the original node-
copying method. The partially persistent BST τ in Fig. 4 underwent exactly the
same sequence of intermediate update operations as was in the case of the tree

Versioning Tree Structures by Path-Merging 109

produced in Fig. 2. The stark difference between both these trees is that the
ephemeral nodes in Fig. 4 are sporadically dispersed, rather than being ordered
as a proper subtree as we saw in Fig. 2.

Hence, it may require an O(n) effort to locate the ephemeral nodes in τ at
v∗m in order to change their access statuses when spawning the next essential
version vm. One way to counter this problem is not to find them at all in the
first place. That is, instead of stamping v∗m to pointers effecting x when execut-
ing intermediate update operations, we simply stamp the identity of the next
essential version vm. Since each node knows which essential version it belongs
to, past or future, stamping the version vm during the merging of non-essential
versions holds for our path-merging technique via the node-copying method.

14

6

v
∗

1
:rp

2 10

v
∗

1
:lp

9 11

12

34

26

18

22

30

v
∗

1
:lp

28

38

17

28

v0
v
∗

1

Fig. 4. Path-merging via node-copying. Version v0: Insert {14, 6, 34, 38, 26, 10, 2, 18,
30, 22, 11, 12, 9}. Version v1: {Insert {17}, Insert{28}, Delete {14}, Rotate-Left {6}}.
Dotted red nodes are ephemeral nodes. Red nodes are ‘marked’ semi-persistent nodes.

Node-Contentions in Semi-persistent Nodes. A ‘node-contention’ can oc-
cur only in a semi-persistent node during its transition between two essential
versions. The contention is caused between a current update operation and the
non-empty modification pointer in the node. More specifically, it happens when
the modification pointer is already pointing to an object meant to override the
node’s right (left) pointer, while the current update operation contains an in-
struction to override the node’s left (right) pointer.

When such a case happens, and if we are to replace the modification pointer
in favour of the instruction, we then end up with an incorrect routing path
in τ . And since we cannot modify the node’s original left and right pointers,
we resolve this contention by making an ephemeral copy of this semi-persistent
node, and directly assign its new left and right pointers from the instruction and
from the reference from the original modification pointer. Afterwhich, we delete
the modification pointer in the original node to complete the reassignment.

For example, suppose we need to handle one more intermediate update oper-
ation in v∗1 in Fig. 4 – to Delete {2}. A search for the node x in v∗1 to effect the
delete operation returns the parent of the node {2}, so that x = node {6} and
where x is a semi-persistent node. Now, in order to delete {2}, we need the left
pointer of x to be null. Since x is a semi-persistent node, we can only change

110 K.A. Mohamed, T. Langner, and T. Ottmann

its modification pointer. However, its modification pointer is already assigned to
point right to node {9}, and that overriding this pointer will be erroneous to v∗1 .
Thus, we make a copy of x and resolve the contention by assigning the latest
left and right pointers to the new ephemeral c(x) = copy(node {6}), and then
remove the modification pointer in the original x. The result is shown in Fig. 5.

14

6

2 10

v
∗

1
:lp

9 11

12

34

26

18

22

30

v
∗

1
:lp

28

38

17

28

6

v0
v
∗

1

Fig. 5. Resolving a node-contention: Deleting {2} from v∗
1 in Fig. 4, where the parent

node {6} = x was a semi-persistent node, which would have triggered a node-contention
if 2 was deleted without checking

4 Analysis of the Path-Merging Technique

The time required for a single update operation in the path-merging technique is
the same as the time taken to execute a single update operation by the original
underlying methods of path-copying and node-copying [2,1]. However, we note
the stern reduction in the overall time by a large factor in the path-merging
technique, since no ephemeral nodes are copied more than once.

In terms of space consumption, the path-merging techniques surpass both
its predecessors’, as it supports bursts of operations between any two essential
versions. That is, only the “net” set of ephemeral nodes, which comes from the
resultant set of newly created nodes after merging the non-essential versions,
contributes to the net increase in space after i intermediate operations. This net
increase can even be zero, particularly for the path-merging via node-copying
technique, in the case that exactly the same set of keys is inserted into and
then deleted from τ several times during the transition period between essential
versions. This, compared to the original node-copying method which will end
up spawning entire paths after O(h) insertions and deletions of a single key,
resulting in h + (h − 1)+ . . .+ 1 = O(h2) additional space, where h is the height
of the BST τ .

Using the examples in Section 2, we can expect to see a significant reduc-
tion in storage space when using the path-merging technique; particularly for
the problem of the ‘Range Query of Horizontal Line-Segments’, where we can
anticipate handling arbitrarily many insertions and deletions at an event point.
Furthermore, our benchmarked results in Fig. 6 proves the space efficiency be-
tween the original path-copying method versus our path-merging technique. For

Versioning Tree Structures by Path-Merging 111

0

1

2

3

#
S
t
o
r
e
d

n
o
d
e
s

/
1
0
6

0 1 2 3 4 5 6 7 8 9 10

Version

0

1

2

3

#
S
t
o
r
e
d

n
o
d
e
s

/
1
0
6

0 1 2 3 4 5 6 7 8 9 10

Version

Path-copying

Path-merging

Fig. 6. Space complexity comparison between ‘path-merging via path-copying’ and the
original ‘path-copying’ methods. Graphs show the execution of 214 operations between
vi and vi+1.

the complete details of the benchmarking process, the reader is invited to check
out the work by Langner [5].

5 Conclusion

The pertinence of the path-merging technique reignites the relevance of the ap-
plicative components of the classical path-copying and node-copying methods in
partially persistent data structures. The technique’s strengths lie in their sub-
tle, yet effective ways of merging non-essential versions of the original underlying
methods of persistence to derive efficient time and space bounds, that are primed
for handling applications where it makes sense to store only the substantially
essential versions.

We conclude with a real-world example to prove the usefulness of the path-
merging technique. We invite the reader to review our completed works of de-
tecting conflicts in internet router tables [6,7,8], where the 1-dim IP packet filters
resemble that of the horizontal line-segments on the plane, similar to the problem
discussed in Section 2.2. In the summarized context of the IP-Lookup problem, q
is taken to be an incoming packet filter and becomes a stabbing query for the set S
of n filters. We need to return the most-specific filter that q stabs. The advantage
in this case is two-fold: We were able to solve the conflict detection problem in
optimal time of O(n log n) – while building the partially persistent structure; and
then utilize the benefits of path-merging’s space saving output to store the entire
conflict-free set S, which is immediately ready for packet classification.

Now, to appreciate the solution to this problem better, usually, we would re-
quire two separate structures to handle the two independent problems of conflict
detection and packet classification. But by executing path-merging as described
above, we are able to unite them and take advantage of path-merging’s adeptness
to kill two birds with one stone.

Acknowledgement

This research is funded by the Deutschen Forschungsgemeinschaft (DFG) as
part of the research project ,,Algorithmen und Datenstrukturen für ausgewählte
diskrete Probleme (DFG-Projekt Ot64/8-3)“.

112 K.A. Mohamed, T. Langner, and T. Ottmann

References

1. Sarnak, N., Tarjan, R.E.: Planar point location using persistent search trees. Com-
munications of the ACM 29(7), 669–679 (1986)

2. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures per-
sistent. In: STOC 1986: Proceedings of the Eighteenth Annual ACM Symposium on
Theory of Computing, pp. 109–121. ACM Press, New York (1986)

3. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Ge-
ometry: Algorithms and Applications, 2nd edn. Springer, Heidelberg (2000)

4. Cole, R.: Searching and storing similar lists. Journal of Algorithms 7(2), 202–220
(1986)

5. Langner, T.: Using partial persistence to support bursts of operations in IP-lookup.
Bachelor Thesis, Albert-Ludwigs-Universität Freiburg (March 2007)

6. Maindorfer, C., Mohamed, K.A., Ottmann, T., Datta, A.: A new output-sensitive
algorithm to detect and resolve conflicts in internet router tables. In: INFOCOM
2007: Proceedings of the 26th IEEE International Conference on Computer Com-
munications, May 2007, pp. 2431–2435. IEEE Press, Los Alamitos (2007)

7. Mohamed, K.A., Kupich, C.: An O(n log n) output-sensitive algorithm to detect
and resolve conflicts for 1D range filters in router tables. Technical Report 226,
Institut für Informatik, Albert-Ludwigs-Universität Freiburg (August 2006)

8. Kupich, C., Mohamed, K.A.: Conflict detection in internet router tables. Technical
Report 225, Institut für Informatik, Albert-Ludwigs-Universität Freiburg (August
2006)

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 113–123, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Linear In-situ Algorithm for the Power of Cyclic
Permutation∗

Jinyun Xue1, Bo Yang1,2,3, and Zhengkang Zuo1,2

1 Provincial Key Lab. of High-Performance Computing , Jiangxi Normal University,
Nanchang 330027, China
Jinyun@jxnu.edu.cn

2 Institute of Software, Chinese Academy of Sciences, Beijing 100080, China
3 Information School, Jiangxi University of Finance & Economics, Nanchang 330013, China

Abstract. We present and develop a linear in-situ algorithm for the power of a
cyclic permutation Pr (-n< r < n). Several related algorithms become the special
cases of this algorithm. At first, we used an abstract structure, named twin ring, to
represent cyclic permutation and derive a simple algorithm to compute Pr on twin
ring. Then, the algorithm and the abstract structure twin ring were implemented
based on PAR platform that consists of a set of program generating tools. The
correctness of the final algorithmic program is based on the data coupling in-
variant and the assumption of PAR Platform correct. The abstract structure twin
ring and the program generating tools take a key role in deriving the simple al-
gorithm for computing Pr. The techniques demonstrated in this paper can be used
in developing intricate algorithms.

Keywords: Linear In-situ Algorithm, PAR platform, abstract structure, power of
a cyclic permutation, twin ring.

1 Introduction

Cyclic permutation is a specific permutation and a general permutation can be parti-
tioned into some cyclic permutations which have no shared element. It has very im-
portant applications in the area of cryptography and wireless radio communication
etc[15-16]. There are variant algorithmic problems related with cyclic permutation, say
products of permutations, inversion of a cyclic permutation and generating random
cyclic permutation, etc[1-9]. Knuth presented two algorithms for production of two
permutations and two algorithms for computing inversion of cyclic permutation [4]. One
better algorithm for computing the inversion of a cyclic permutation was given by
Huang B,C.[3]. Sattolo presented an algorithm to generate random cyclic permutations
[6]. All this kind of algorithms did not give clear explanation that shows the process of
developing the algorithms and convincing proof of the algorithms. We want to search
for an unified algorithm to deal with some algorithms of cyclic permutation and a

∗ Supported by the National Natural Science Foundation of China under Grant No.60573080,

60773054 and the National Grand Fundamental Research 973 Program of China under Grant
No. 2003CCA02800 and the Natural Science Foundation of Jiangxi Province no.0211027.

114 J. Xue, B Yang, and Z. Zuo

suitable representation of cyclic permutation that make the algorithms more simple, easy
to understand and to implement. Section 2 describes the preliminaries in developing
algorithm; Section 3 gives the approach for deriving a simple algorithm to compute Pr
with P represented by twin ring; Section 4 describes the implementation of abstract
structure twin ring and the abstract algorithm based on the PAR platform; The com-
parisons with related works are given in section 5; Section 6 includes concluding
remarks.

2 Preliminaries

2.1 Notations about Permutations

If P is a permutation of a finite set B={0, 1, 2, …, n-1}, then P can be viewed as a
one-to-one function on the set B. The following is a permutation P on the set{0, 1, 2, 3, 4｝ :

P =
⎛ ⎞
⎜ ⎟
⎝ ⎠

0　 　 1　 　 2　 　 3　 　 4

1 3 4 0 2
 (2.1)

Then P.0=1, P.1=3, P.2=4, P.3=0, P.4=2, where “.” is used to represent the function
application. If we use an array A to represent this permutation, then A[0]=1, A[1]=3,
A[2]=4, A[3]=0, A[4]=2. Therefore, the array A represents permutation P if and only if
P.x = A[x] for all values of x. This case is marked as A=P in this article.

If P and Q are two permutations on the same set, P*Q can be defined as product of P
and Q as follow: (P*Q).x=P.(Q.x).

Define P0 denotes the identity permutation with P.x=x, x∈B;
P-1 is the inversion of P with P-1.(P.x)=x
for r≥0, Pr+1=Pr*P , P-r-1=P-r*P-1

Obviously, P*Pr=Pr*P and P-1*P-r=P-r*P-1 hold.
The product of permutations, the power of permutations, and the inversion of per-

mutations are all simple concepts in abstract algebra and combinatorial mathematics.
However, it is not easy to realize these calculations in computers.

Let array A contain the permutation P on the set B, for every x∈B, A[x] = P.x. The
A can be viewed as the function on the set B. An algorithm S is needed to transform P in
A to Pr. where r is arbitrary integer. The algorithm only uses O(1) extra storage units.
The specification of the algorithm S is shown as follows.

{A=P∧(-n< r < n) }S{A=Pr
∧(-n< r < n) } (2.2)

If | r | ≥n, Obviously, Pr=Pn-r holds. Thus, we always assume | r | < n.
Any permutation can be viewed as a combination of its cyclic components which

have no shared element. For example, equation (1) can be represented as the combi-
nation of

P=
⎛ ⎞
⎜ ⎟
⎝ ⎠

1　 　 2　 4

2 4 1

⎛ ⎞
⎜ ⎟
⎝ ⎠

3　 　 5

5 3
 (2.3)

The power of permutation is equal to combination of powers of these cyclic per-
mutations. Therefore, we restrict our attention to permutations P that are cyclic. And P
is assumed to be a permutation on set B.

 A Linear In-situ Algorithm for the Power of Cyclic Permutation 115

It is extremely difficult to derive algorithm S which is satisfied with specification
(2.2) based on array A directly. Thus, we search for another new representation of P so
that the law about computing Pr can be revealed simply. The answer will be given in
section 3.

2.2 A Brief Description of PAR[10 - 14]

PAR means PAR method and PAR platform, which consists of the methodology for
development of algorithms and programs, specification and algorithm describing lan-
guage Radl, abstract programming language Apla, a set of rules for specification
transformation and a set of automatic transformation tools of algorithms and programs.
PAR provides powerful generic structures that support convenient generic program-
ming and the methodology that supports formal derivation of executable algorithmic
programs from their formal specification. PAR can be used to develop correct appli-
cation program that access to database and to develop software components with high
reliability.

2.2.1 Algorithm Design Language Radl
Radl was designed for the description of algorithm specifications, transformation rules
for deriving algorithms and algorithms itself. We presented a set of abstract notations
for expressing pre-defined data type, say array, set, list, binary tree, graph and table,
etc. Radl provides a user-defined mechanism for abstract data type. The motivation of
developing these mathematics-oriented notations is aimed at making specification
transformation, algorithm derivation and program proof like operating traditional
mathematical formula.

2.2.2 Apla Language and Its ADT Mechanism
Apla is an object-based abstract programming language with convenient generics. The
purpose of developing Apla is to implement functional abstract and data abstract in
program development perfectly so that any Apla program is simple enough and is ease
for understanding, formal derivation or proof. It is also ease to transform into some
OOP language programs, say C++, Java, Delphi and VB, etc.. Apla and Radl have same
standard procedures and functions. The pre-defined data types and user-defined ADT
mechanism are also same. The relational algebra is embedded into Apla and Radl that
make easy to access relational database. We borrow some control structure from
Dijkstra’s Guarded Command Language, but restrict the nondeterminism.

The following is the ADT mechanism:

define ADT <ADT name>(<list of generic parameters>);
 type <ADT name> = private;
 ……..
enddef;

implement ADT <ADT name>(<list of generic parameters>);
 type <ADT name> = concrete data type;
…………….
endimp;

116 J. Xue, B Yang, and Z. Zuo

Generic programming is parameterized programming. In Apla and Radl, PAR
supports data value, data type and subroutine as parameter of procedure, function and
abstract data type. Generic programming makes programming simpler and increases
obviously the reusability, security and reliability of programs.

2.2.3 PAR Platform
Radl algorithms and Apla programs are simple enough and ease for formal derivation
and proof. But, they can not be executed in a computer. Therefore, we developed the
PAR platform that consists of 5 automatic transformation tools of algorithms or pro-
grams. One of them would be able to transform a Radl algorithm into Apla program.
Others may transform Apla programs to the programs of target language that is linked
to some database, says VB, Delphi, C++ and Java, etc. Sometimes, we call the tool as
program generator. Based on the PAR platform, the efficiency of developing algo-
rithmic program and reliability of the programs are increased obviously.

3 Computing Pr with P Represented by Twin Ring T

A cyclic permutation can be represented by a sequence (consisting of elements of the
domain of P) in which the successor of any element x in the sequence is the value P.x (
the successor of the last element of the sequence is first) . For example, the two cyclic
permutations in (1) are

⎛ ⎞
⎜ ⎟
⎝ ⎠

0 1 3

1 3 0
 and ⎛ ⎞

⎜ ⎟
⎝ ⎠

2 4

4 2
. They can be represented as (0 1 3) and (2 4). Obviously,

such representations are not exclusive; the above cyclic permutations can also be rep-
resented as (1 3 0), (3 0 1), (4 2) and so on. Feijien et el. Called the sequence as
ring[1]. In a given ring (XxY), the follower of every element x is P.x.

Let P be a cyclic permutation. Based on the definition of inversion of a permutation
and the properties of a cyclic permutation, we have following lemma:

Lemma 1. IF P is a cyclic permutation, then P-1 is a cyclic permutation too and P-1.x =
P-x where x∈B, P.x denotes the successor of x and P-x denotes the antecedent of x.

Consider that sequence K is a ring representation of a cyclic permutation P. If every
element in K is rotated one position to the left, then another ring representation of the p
is gotten, that is denoted as sequence H. In[9], we represented a cyclic permutation P as
T, a two-line scheme:

P T= =
⎛ ⎞
⎜ ⎟
⎝ ⎠

K

H
 or P=T=(H:K). (3.1)

Based on this representation, we defined the function rotL.k;k to represent the value
of the permutation that was produced by rotating sequence k one position to the left,
and had P3=rotL3.K:K., Thus we got a simple algorithm to compute P3.

After further research on the two-line scheme of a cyclic permutation, we found
more interesting properties about it. We define the function rotR.K;K to represent the
value of the permutation that is produced by rotating sequence K one position to the
right, and had a more interesting result: P-1=rotR.K:K., Thus we got a simple algorithm

 A Linear In-situ Algorithm for the Power of Cyclic Permutation 117

to compute P-1 that is the inversion of a cyclic permutation. This inspire us to give the
definition of function rotRr.K:K and computation of P-r. For describing the properties
of the two-line scheme of a cyclic permutation precisely and simply, we renamed it as
the twin ring where the top line is a ring K that represents the domain. The bottom line
is a ring H that gives its rang. We always use linear notation P=(H:K) to represent twin
ring T.

Following examples can help us to understand function rotL.s and rotR.s.
Let s=(0,1,2,3,4), then rotL.s=(1,2,3,4,0), rotR.s=(4,0,1,2,3).
rotLi+1.s is defined as rotL.(rotLi.s); rotRi+1.s is defined as rotR.(rotRi+1.s), where

i≥0, rotL0.s=rotR0.s=s.
With the twin ring representation of a cyclic permutation P, following interesting

properties can be verified:

P2=rotL2.K:K P3=rotL3.K:K P-1=rotR.K:K P-2=rotR2.K:K
These properties can be induced into a theorem as follows.

Theorem 1: Let H:K be a twin ring representation of a cyclic permutation p, then for
r≥0, Pr=rotLr.K:K P-r=rotRr.K:K

Proof: At first, we try to prove Pr=rotLr.K:K
 If r=0, rotLr.K:K= rotL0.K:K= K:K= Pr
 Hence the equation Pr=rotLr.K:K is correct for r=0.
 Now if r>0, suppose Pr-1=rotLr-1.K:K has been proved, then we have
 Pr= {the definition of the power of a permutation}P*Pr-1

 ={ Induction postulate }
 P*(rotLr-1.K:K)
 ={ the definition of multiplication of permutation and the property of a cyclic

permutation }
rotL. (rotLr-1.K:K)

 ={ The definition of power of Function rotL.s }
rotLr.K:K

Therefore, equation Pr=rotLr.K:K is correct for any r≥0.
Similarly, equation P-r=rotRr.K:K can be proved.
Obviously, we have

Lemma 2: For 0≤r < n, Pr = rotLr.K:K = rotRn-r.K:K = Pr-n.
According to Lemma 2 and for pursuing high efficiency of the algorithm, we com-

pute Pr-n for getting the value of Pr with r≥ n/2; vice versa. Therefore, let 0≤r≤n/2 in Pr
and P-r .

Based on theorem 1 and for given cyclic permutation and its twin ring represent
T=(H:K), for computing Tr, if r>0, we only need to rotate ring H r-1 position to the left;
if r≤0, for computing Pr, we only need to rotate ring H |r|+1 positions to the right.

Let function rotL(T, r) denote rotLr-1.H and function rotR(T, r) denote rotR |r-1|.H, we
can get a simple program to computing Tr. The program is described using Apla that is
an abstract programming language supported by PAR platform. Apla provides a lan-
guage mechanism to define abstract data type TwinRing. We will give the implemen-
tation of twin ring type TwinRing in next section.

118 J. Xue, B Yang, and Z. Zuo

program PowerPermutation;

const n=10;

define ADT TwinRing(sometype elem);

type TwinRing = private;

function CreateTwinRing(T:TwinRing):TwinRing;

function rotL(T:TwinRing; r:integer):TwinRing;

function rotR(T:TwinRing; r:integer):TwinRing;

procedure TwinRingOutput(T:TwinRing);

enddef;

implement ADT TwinRing(sometype elem);

type TwinRing = array[0..n-1,elem];

 ………….

endimp.

ADT intTwinRing : new TwinRing(integer);

var T:intTwinRing;

 r:integer;

begin

{Q:(-n/2≤r≤n/2)∧T=P:intTwinRing}

{R:(-n/2≤r≤n/2)∧T = Pr}

writeln("create-twin-ring(must-input-cyclic-permutatio
n-for-0~",n-1,")：");

 T:= CreateTwinRing(T); //: Create a cyclic permutation
in T ://

 readln(r);

if r> 0→ T:=rotL(T, r);
[] r≤ 0→T:=rotR(T,-1*r);
fi;

TwinRingOutput(T);//: output Tr inT.://

end.

We need that the program users only see the twin ring T which is logical view of
permutation P. Under this case, users need not to know how to realize this twin ring
data type. Therefore, we can define the twin ring a new ADT(abstract data type). And

 A Linear In-situ Algorithm for the Power of Cyclic Permutation 119

the new ADT(abstract data type) can be realized by the concrete data type which can be
array or other concrete data types. Program users need not to know the concrete
datatype, they only need to know how to use the ADT(abstract data type).

In next section, we will define a new ADT which is called twin ring, and it is realized
by the concrete data type ‘array’. Therefore, the twin ring T does not take any addi-
tional memory space, it is only virtual rather practical. The algorithm based on the new
ADT is in-situ algorithm for computing Pr.

4 Implementation of Twin Ring Based on PAR Platform

The ADT TwinRing consists of four operations, where function CreateTwinRing
(T:TwinRing) and procedure TwinRingOutput(T:TwinRing) provides input and output
functions. Their implementations are quite simple. We just pay main attention on the
implementation of function rotL(T:TwinRing; r:integer) and function rotR(T:TwinRing;
r:integer). According to program specification (2.2) and for developing the in-situ al-
gorithmic program, an array variable A should be used to store a cyclic permutation P
and Pr.. The twin ring type TwinRing should be implemented using an array. Obviously
three types of data permutation P, twin ring T and array A satisfies following coupling
invariant of data:

P.x = T.x = A.x = the successor of x in the ring (4.1)

where x is any element in set B={0, 1, 2, …, n-1}.
Here, twin ring variable T is a though variable that can be used to develop and de-

scribe algorithm. Based on the thought variable, the derivation of the algorithm be-
comes quite easy and the algorithm described using twin ring is easy to understand.
Therefore, for getting an efficient implementation, we derive two efficient algorithms
for implementation of function rotL and rotR based on twin ring firstly, then derive
corresponding programs based on array and coupling invariant.

4.1 Derive a Algorithmic Program to Implement rotL(T:TwinRing; r:Integer)

The function rotL(T:TwinRing; r:integer):TwinRing computes Tr., where (-n/2≤r≤n/2)
and T is a cyclic permutation of set B= {0, 1, 2, …, n-1}. Let T=(H:K) and K=x1, x2, …,
xr, W, where W is a sequence of elements in set B and W ≠ []. Therefore, we have

T=(H:K)=(x2, x3, …, xr, W, x1):(x1, x2, …, xr, W)

Based on theorem 1, the specification of function rotL can be written as follows:

{Q: T=(H:K)=(x2, x3, …, xr, W, x1):(x1, x2, …, xr, W) ∧(-n/2≤r≤n/2)}
 rotL(T:TwinRing; r:integer):TwinRing

{R: T=(H:K)=(W, x1, x2, x3, …, xr,):(x1, x2, …, xr, W) ∧(-n/2≤r≤n/2)}

(4.2)

There are two methods to satisfy postcondition R. One is following theorem 1, rotate
x2, x3, …, xr to left one by one; another method is better than this method in time and
space. Following is the Algorithm:

Algorithm 4.1 for computing rotL: For given twin ring T=(H:K), take head element
from sequence Wx1, move the sequence x2, x3, …, xr one position to right, put the

120 J. Xue, B Yang, and Z. Zuo

head element before x2; repeat the process of taking and putting element in sequence
WX1, until the sequence Wx1 is been removed to the position before x2 and Postcon-
dition R is satisfied.

Following is the implementation of the algorithm 4.1.The twin ring variable
T:TwinRing is denoted by array variable T: array[0..n-1, elem]. The subscript of array
variable T correspond ring K and the value of T corresponds ring H. Let subscripts of
array that will be changed be stored in list variable y. The program satisfies the cou-
pling invariant (4.1).

function rotL(T:TwinRing; r:integer):TwinRing;

var x,j,temp:integer;

begin

 x,y:=T[0],y↑[T[0]];

 foreach(j:1≤j<r:y:=y↑[T[y[j-1]]];);

 do y[y.t]≠x →

 temp:=T[y[y.t]];

 foreach(j:0≤j<r-1:T[y[y.t-j]]:=T[y[y.t-j-1]];);
 T[y[y.h]]:=temp;

 y:=y[y.h+1..y.t]↑[T[y[y.h]]];

 od;

 end;

Let r=3, the function rotL(T, 3) compute rotL T3 that cube a cyclic permutation.

4.2 Derive a Algorithmic Program to Implement rotR(T:TwinRing; r:Integer)

The function rotR(T:TwinRing; r:integer):TwinRing computes Tr., where r<0∧
0≤|r|≤n/2) and T is a cyclic permutation of set B= {0, 1, 2, …, n-1}. Let i= |r |,
T=(H:K) and K=x ,W, x1 x2, …, xi where W is a sequence of elements in set B and W
≠ []. Therefore, we have

T=(H:K)=(W x1, x2, x3, …, xi, x):(x, W, x1, x2, …, xi)

Based on theorem 1, the specification of function rotR can be written as follows:

{Q: T=(H:K)=(W, x1, x2, x3, …, xi, x):(x, W, x1, x2, …, xi) ∧ r<0
∧0≤|r|≤n/2}

rotR(T:TwinRing; r:integer):TwinRing
{R: T=(H:K)=(x1, x2, x3, …, xi, x, W):(x, W, x1, x2, …, xi)∧r<0
∧0≤|r|≤n/2 }

(4.3)

 A Linear In-situ Algorithm for the Power of Cyclic Permutation 121

There is also one efficient algorithm to satisfy specification (4.2). Following is the
algorithm:
Algorithm 4.2 for rotR: For given twin ring T=(H:K), choose any element x from T,
fixed i+1 position starting at x in T, take tail element from sequence xW , move the
elements in the fixed i+1 positions and the tail element to left cyclically; repeat the
process until each element in sequence xW has been processed and Postcondition R is
satisfied.

Following is the implementation of the algorithm 4.2 that is same as algorithm 4.1.

function rotR(T:TwinRing; r:integer):TwinRing;

var x,j,b,temp:integer;

begin

 x,y:=T[0],y↑[T[0]];

foreach(j:1≤j<r+1:y:=y↑[T[y[j-1]]];);

do T[y[y.t]]≠x → b,temp:=T[y[y.t]],T[y[y.h]];

 foreach(j:0≤j<r:T[y[y.h+j]]:=T[y[y.h+j+1]];);
 T[y[y.t]],T[b]:=T[b],temp;

 od;

end;

Let r=1 the function rotR(T , 1) computing T-1 that is the inversion of permutation.
Using C++ program generating system tool in PAR platform, the Apla program

permutationPower can be transformed to executable C++ program.

5 Compare with Related Works

Cyclic permutation has very important applications in the area of cryptography and
wireless radio communication. There are many algorithmic problems and related re-
search about the cyclic permutation.

Knuth presented two in-situ algorithms for computing the inverse of permutation in
his famous book [4]. One of them is the algorithm I. Another algorithm is the algorithm
J which is due to Boothroyd. It is less obvious that the algorithm J really works. Both of
algorithm I and Algorithm J are based on finding cycle and the antecedent of each
element in the cycle.

A modified Knuth’s in-situ algorithm, called algorithm A, for inversion of permu-
tation was presented by B.C, Huang in [3]. The algorithm is also based on finding the
cycles of the permutation and the antecedent of each element in the cycle. The main
difference between the two algorithms is that algorithm A is a little shorter than algo-
rithm I. The common shortcomings of above three algorithms are no explanation about
the correctness of algorithms and no process of designing algorithm.

122 J. Xue, B Yang, and Z. Zuo

In [1], Feijen and Gries try to present the explanation and proof of the algorithm A
given by B.C. Huang. They used a sequence, called ring, to denote cyclic permutation
and get abstract algorithm based on the ring, then a coordinate transformation was used
to transform the abstract algorithm to concrete program based on array manually.

Xue and Gries presented a two-line ring representation for a cyclic permutation in
[9]. They developed a linear abstract algorithm for cubing a cyclic permutation based
on the two-line ring representation. A coordinate transformation was also used to
transform the abstract algorithm to concrete program based on array manually. The
two-line ring representation of a cyclic permutation was used to produce a convincing
proof for Sattolo’s algorithm for generating a random permutation [2,6]. Two suc-
cessful examples show us that the two-line ring representation of a cyclic permutation
is superior to the one-line representation.

In this paper, we rename the two-line ring representation of a cyclic permutation as
twin ring and reveal more properties about twin ring. We try to use a unified approach
to treat the power of a cyclic permutation and present a linear in-suit algorithm to
computing Pr. Based on the abstract structure twin ring, we presented and proved
theorem 1 for computing Pr and got a very simple algorithm. then defined the abstract
data type TwinRing to implementation the twin ring using the language mechanism
provided in PAR platform. The theorem 1 and the ADT TwinRing made the algorithm
and program for computing Pr quite simple. The correctness of the final algorithmic
program is based on the data coupling invariant and assumption of PAR Platform
correct. The success in this example gives us more evidence that the twin ring is more
suitable for deriving the permutation algorithms than the single ring.

6 Concluding Remarks

Several novel points are deserved summary as follows:

1. We developed a linear in-suit algorithm and executable program for computing
the power of a cyclic permutation. Algorithm for computing inversion of permutation
and linear in-situ algorithm for cubing a cyclic permutation can be viewed as the special
cases of this algorithmic program.

2. The application of the idea of thought variable provides us an efficient approach to
develop intricate algorithms. Abstract structure twin ring is thought variable that is
different from general abstract data type. It is a dummy variable. Only partial properties
are implemented. The twin ring consists of two lists, but we did not implement it using
two lists. We just use a general array to denote it. The success in this example gives us
more evidence that the twin ring is more suitable for deriving the permutation algo-
rithms than the single ring.

3. PAR platform is very useful in developing intricate algorithms. The platform
provides a convenient language mechanism to define and implement ADT, say twin
ring type TwinRing. The platform provides predefined composition data type that
make programming more simple and reliable. In this paper, the predefined data type list
can be used like general standard data type.

 A Linear In-situ Algorithm for the Power of Cyclic Permutation 123

References

1. Feijen, et al.: In-situ Inversion of a Cyclic Permutation. J. IPL. 24, 11–14 (1987)
2. Gries, D., Xue, J.: Generating a Random Cyclic Permutation. J. BIT 28 (1988)
3. Huang, B.C.: An Algorithm for Inverting a Permutation. J. IPL 10 (1981)
4. Knuth, D.E.: The Art of Computer Programming, vol. 1. Addison-Wesley, Reading (1973)
5. Prodinger, H.: On the Analysis of An Algorithm to Generate a Random Cyclic Permutation.

J. Ars Comb. 65 (2002)
6. Sattolo (Sandra).: An algorithm to generate a random cyclic permutation. J. Information

Processing Letters. 22, 315–317 (1986)
7. Semple, C., Steel, M.: Cyclic permutations and evolutionary trees. J. Advances in Applied

Mathematics 32, 669–680 (2004)
8. Wilson, M.C.: Overview of Sattolo’s Algorithm. J. Algorithms Seminar 2002 – 2004,

Chyzak, F.(ed.) INRIA, pp.105–108 (2005)
9. Xue, J., Gries, D.: Developing a Linear Algorithm for Cubing a Cyclic Permutation. Sci.

Comput. Program. 11(2), 161–165 (1988)
10. Xue, J.: A Unified Approach for Developing Efficient Algorithmic Programs. J. Journal of

Computer Science and Technology 12, 103–118 (1997)
11. Xue, J.: Formal Derivation of Graph Algorithmic Programs Using Partition and Recur. J.

Journal of Computer Sciences and Technology 13, 553–561 (1998)
12. Xue, J.: A Practicable Approach for Formal Development of Algorithmic Programs. In:

Proceedings of the International Symposium on Future software Technology (1999)
13. Xue, J., et al.: Methods of program design. Higher education press (2001)
14. Xue, J.: PAR Method and Its Supporting Platform. In: Proceedings of The First International

Workshop on Asian Working Conference on Verified Software (2006)
15. The application in cryptography, http://planetmath.org/encyclopedia/CyclicPermutation.

htm http://www.cs.utsa.edu/~wagner/laws/AESkeys.html
16. The application in a wireless radio communication, http://www.patentstorm.us/patents/

6999760-claims.html

Multi-bidding Strategy in Sponsored Keyword

Auction�

Tian-Ming Bu1,��, Xiaotie Deng2,���, and Qi Qi2

1 Shanghai Key Laboratory of Trustworthy Computing
East China Normal University

Shanghai, P.R. China
tmbu@sei.ecnu.edu.cn

2 Department of Computer Science
City University of Hong Kong

Hong Kong SAR
csdeng@cityu.edu.hk, qi.qi@student.cityu.edu.hk

Abstract. The generalized second price auction has recently become a
much studied model for sponsored keyword auctions for Internet adver-
tisement. Though it is known not to be incentive compatible, properties
of its pure Nash equilibria have been well characterized under the single
bidding strategy of each bidder.

In this paper, we study the properties of pure Nash equilibria of the
generalized second price auction when each bidder is allowed to submit
more than one bid. This multi-bidding strategy is noted to have been
adopted by companies for keyword advertisements on search engines.
In consideration of the pure Nash equilibria, we completely characterize
conditions on the number of selling slots for a pure Nash equilibrium
to exist, assuming all the advertisers are allowed to use multi-bidding
strategies or only one advertiser will use a multi-bidding strategy.

Our findings reveal interesting properties of limitation and potentials
of the market place of online advertisement.

1 Introduction

Sponsored keyword auction is a brand new type of market models adopted by
major search engine companies such as Google and Yahoo. It has become a
principal source of revenue for those companies. As its name indicates, such
kind of auctions mostly sells the advertising positions for web links displayed
along with the search results when a user places a related keyword or a few
related keywords to find information on those search engines.

Different advertising positions have different click-through-rates, the ratio of
the number of clicks on the advertising to the number of appearances of the

� We would like to thank the anonymous referees for constructive suggestions.
�� Research is supported by grants of NSF of China (No. 60496321 and No. 90718013)

and a grant of 863 program (No. 2007AA01Z189).
��� The work was supported by a grant from CityU (7001989).

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 124–134, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Multi-bidding Strategy in Sponsored Keyword Auction 125

advertising web links. Some advertising position draws more attentions from
users and generates more clicks than others. For this reason, it is named the
position auction by Varian [1], which is equivalent to the generalized second
price auction (GSP for short), a term used by Edelman, Ostrovsky and Schwarz
[2]. It is the primary protocol for sponsored link auctions to sell the advertising
positions.

Under GSP, each advertiser bid for a price per each click and each winning
advertiser is allocated exclusively for a position to place its web-link. The posi-
tions are sorted in their click-through-rates (commonly assumed to be the same).
For K positions to sell, the K highest bidders win them in the corresponding
decreasing order of their bidding prices. A winner pays a price per click, which
is equal to the bidding per-click-price of the next highest bidder, i.e., the highest
bidding price that is lower than its own bidding price.

If there is only one advertising position to sell, GSP is equal to the popular
second price auction/Vickrey auction [3] which is a special case of the more
general VCG [3,4,5] mechanisms. Therefore, no bidder can gain any advantage by
not bidding its own private value for each click. Any protocol with the property
that every agent has a dominant optimal strategy to reveal its own private value
is called a truthful one. It is also often called an incentive compatible protocol.

The GSP allocation method seems simple, intuitive and, arguably, fair. How-
ever, if there are more than one position to sell, it will no longer be incentive
compatible [2,6]. This observation has inspired further studies of GSP, mostly
its pure Nash equilibria in a single bidding strategy.

Fig. 1. The sponsor results when keyword “laptop” is typed into the search engine of

Yahoo. Both “Dell” and “Hp” adopt the multi-bidding strategy.

In the practice of sponsored keyword auctions, however, bidders may submit
multiple bids. For example, when the keyword “laptop” is typed into Yahoo, the
sponsor results shown along with the search results page will be similar to the
sponsor results shown in Figure 1. In Figure 1, Dell gets two adjacent advertising
positions by multiply bids. Although one of the link points to Dell’s homepage
and the other link points to Dell’s sub-homepage, it opens up a possibility for
Dell to manipulate these bids to decrease the company’s total advertising costs.
Similarly, HP also gets two advertising positions in the figure. So this case shows

126 T.-M. Bu, X. Deng, and Q. Qi

that i) multi-bidding strategy exists in current online advertisement market,
ii) usually only the big companies have the competence and the need for the
multi-bidding strategy.

We are particularly interested in the GSP auctions with multi-bidding strat-
egy. We aim at studying the pure Nash equilibrium behavior of the bidders in
such market conditions.

1.1 Related Work

The considered model for sponsored search auctions were formalized in [2,1]. In
[2], Edelman, Ostrovsky and Schwarz name it generalized second price auction,
while Varian names it position auction in [1]. They all discovered that the auc-
tion model is not incentive compatible. Then [2,1,7,8] refined the concept of Nash
equilibrium of the position auction and study the related properties. Regarding
the auction as a static one-shot complete information game, in [2], Edelman,
Ostrovsky and Schwarz introduced the concept of locally envy-free equilibrium.
In [1], Varian proposed symmetric Nash equilibrium due to mathematic consid-
erations. In [7], Zhou and Lukose argued for a certain type of pure strategy Nash
equilibrium, as a result of some anti-social behavior, called vindictive bidding
strategy.

In [8], Bu, Deng and Qi presented the concept of forward looking Nash equi-
librium as a result of the auction’s dynamics and the bidders’ strategic manip-
ulations, based on an important property called the forward looking attribute.
Furthermore, in [9] they analyzed the convergence of this dynamic system. Co-
incidentally, convergence is also studied based on the same bidding strategy by
Cary, Das, Edelman, Giotis, Heimerl, Karlin, Mathieu and Schwarz in [10] where
it is called the greedy bidding strategy.

The concept of false-name bid (multiple bids by the same agent under differ-
ent false names) was firstly introduced by [11] in 1999. In [11], Sakurai, Yokoo
and Matsubara observed that generalized Vickrey auction mechanism, the gen-
eralized version of Vickrey auction, is not robust enough against false-name bid
behavior in combinatorial auctions. Then they showed that the concavity of a
surplus function over bidders is the sufficient condition where the VCG mecha-
nism is false-name-proof in [12].

Note that the multiple biddings we discuss here are related but not exactly
the same as the false name biddings. The agents are submitting their bids under
their own true identities where false name biddings are the bids under assumed
different identities by the same agent.

1.2 Our Contributions

We study the next technical issue when multiple biddings are allowed. Note that
this is different from false name bids in that multiple bidding bidders reveal their
true identities but false name bidders do not.

We completely characterize conditions on the number of selling slots for a pure
Nash equilibrium to exist, if the advertisers are allowed to use multiple-bidding

Multi-bidding Strategy in Sponsored Keyword Auction 127

strategies. We find that there always exists a pure Nash equilibrium when the
maximum allowed number of submitted bids is not less than the number of
slots. Otherwise, a pure Nash equilibrium need not exist. Even there is only one
advertiser using the multi-bidding strategy, the property of non-existence of pure
Nash equilibria still be discovered when the number of multiple bids is greater
than 2.

As commented above, when the number of positions to bid for is one, the
GSP auction is the same as Vickrey auction which is known to be incentive
compatible. When the number of positions is at least two, the GSP auction is
no longer incentive compatible even if everyone is allowed for at most one bid.
Furthermore, we prove that no other auction protocols selling two or more slots
can have the properties of incentive compatibility, social efficiency and individual
rationality if multiple biddings are allowed.

Furthermore, we study the most general case when a single bidder may have
several advertisements to bid with different private values for each of them. We
develop a complete characterization of the existence conditions of equilibrium in
this model.

Therefore, in general, we have the existence of Nash equilibrium and the
impossibility result in the multiple-bidding market.

The paper is organized as follows. In Section 2 we present the standard GSP
model and the extended version with multi-bidding strategy. Section 3 com-
pletely characterize conditions on the number of selling slots for a pure Nash
equilibrium to exist, if the advertisers are allowed to use multi-bidding strate-
gies. Section 4 discusses the existence of pure Nash equilibria when only one
bidder is allowed to use multi-bidding strategy. We present the impossible result
in section 5. In Section 6, we discuss the issue of biddings of agents each with
multiple advertisement needs of different values.

2 Model and Notation

We follow the GSP auction model presented in [2,1]. For some keyword, there
are N = {1, 2, . . . , N} advertisers who bid K = {1, 2, . . . , K} advertisement slots
(K < N). If the indexes of slots satisfy k1 < k2, then slot k1’s expected click-
through-rate (CTR for short) ck1 is larger than ck2 . Namely, c1 > c2 > · · · >
cK > 0. Moreover, each bidder i ∈ N has a privately known information, v(i),
which represents the maximum price he is willing to pay for per-click of his
advertisement.

According to each bidder i’s submitted bid b(i) ≥ 0, the auctioneer decides
how to distribute the advertisement slots among the bidders and how much they
should pay for per-click. In particular, the auctioneer firstly sorts the bidders in
decreasing order according to their submitted bids. Then the slot with smaller
index will be allocated to the bidder with higher bidding value. The last N − K
bidders would lose and get nothing. Finally, each winner would be charged for
per-click the next bid to his in the descending bid queue. The losers would
pay nothing. In the case of ties, we assume that the auctioneer would break

128 T.-M. Bu, X. Deng, and Q. Qi

ties according to a prior notice he declares. For example, ties could be broken
randomly. Another method of breaking ties is to allocate the higher slot to the
bidder with a prior time stamp.

Let bk denote kth highest bid in the descending bid queue and vk the true value
of the kth bidder in the descending queue. So if bidder i got slot k, i’s payment
would be bk+1 · ck. Otherwise, his payment would be zero. Hence, for any bidder
i ∈ N , if i were on slot k ∈ K, his utility (payoff) could be represented as

ui
k = (v(i) − bk+1) · ck .

2.1 Multi-bidding Model

We consider the extended GSP model associated with the multiple bidding strat-
egy. In other words, each bidder is allowed to submit several bids instead of only
one bid. We refer to the extended GSP model as M -GSP if each bidder is allowed
to submit at most M bids.

In M -GSP, every bidder i submits at most M non-negative bidding prices to
the auctioneer, despite having a unique v(i). We denote bidder i’s jth bidding
price by b(i,j). Without loss of generality, if the number of submitted bids of i
is less than M , the extra dummy bids will be added to make sure that bidder i
submits exactly M bids. So for any bidder i, his bidding vector could be written
as b(i) = {b(i,1), . . . , b(i,M)}.

Similarly, if bidder i’s jth bidding price is the kth highest among all the bids of
bidders, i would be on slot k and the utility of bidding b(i,j) could be represented
as

ui,j
k = (v(i) − bk+1) · ck .

As a result, the total utility of bidder i submitting b(i) is

u(i) =
M∑

j=1

u(i,j) .

Additionally, the following lemma states that each bidder would never overbid
his true value in the sponsored keyword auctions. Let b(−i) = (b(1), . . . ,b(i−1),
b(i+1), . . . ,b(N)). u(i)(b) represents the total utility of bidder i given all the
bidders’ bidding vector b.

Lemma 2.1. In M -GSP, ∀i ∈ N , for any fixed b(−i), if

b̄(i) ∈ arg max
{b(i)|b(i,j)≤v(i),∀j∈{1,...,M}}

u(i)(b(−i),b(i)) ,

then
b̄(i) ∈ argmax

b(i)
u(i)(b(−i),b(i)) .

As a result, our model adopts the similar assumption in [13].

Assumption 2.2. (Non-overbidding strategy) In M -GSP, ∀i ∈ N , ∀j ∈
{1, . . . , M}, b(i,j) ≤ v(i).

Multi-bidding Strategy in Sponsored Keyword Auction 129

At last, we give the formal definition of pure Nash equilibrium in M -GSP.

Definition 2.3. (Pure Nash equilibrium) In M -GSP, the pure Nash Equi-
librium is a set of biddings b̂ = (b̂(1), b̂(2), . . . , b̂(N)), in which ∀i, b̂(i) ∈
argmaxb(i) u(i)(b̂(−i),b(i)).

In other words, no bidder can benefit from changing any of his or her bids
unilaterally. It should be note that since the bidder could decrease one of his
bids from some value to 0 or increase one of his bids from 0 to some value, no
bidder could benefit even from adding or removing any bids unilaterally in any
pure Nash equilibrium.

3 The Existence of Nash Equilibrium

In this section, we focus on the existence of pure Nash equilibrium in GSP
auction with multiple bidding strategy.

3.1 Preliminaries

Firstly, The following lemma gives some necessary conditions for the existence
of Nash equilibrium, which is helpful to verify the (non)existence of Nash equi-
librium later.

Lemma 3.1. (Necessary conditions) If there exists a pure Nash equilibrium
b̂ in M -GSP, then the following propositions must be true.

1. If v(i) �= v(j) for any i, j ∈ N , then bidder i gets at least one slot except slot
K (the last slot) in b̂ ⇒ bidder i gets exactly M slots in b̂;

2. ∀i ∈ N , bidder i gets slot k, k + 1, . . . , k + l (l < m) in b̂ ⇒ bk+1 = bk+2 =
· · · = bk+l+1 + ε for arbitrarily small ε > 0;

3. (Winner monotone) [14] ∀i, j ∈ N , v(i) < v(j) and bidder i gets at least
one slot in b̂ ⇒ bidder j must also gets at least one slot in b̂;

4. If the owner of slot K is bidder i, and v̄ = max{v(j)|j �= i and j gets less
than M slots in b̂}, then bK ≥ v̄.

3.2 Simple Setting

We first consider a simple setting where K = 3, M = 2. I.e, there are totally 3
slots and each bidder can submit 2 bids. Let the three slots be slot 1, 2, and 3
with CTR c1 > c2 > c3. Assume N bidders compete for these three slots and
v(1) > v(2) > · · · > v(N). According to Condition 1 and 3 of Lemma 3.1, in the
equilibrium, the winners must be bidder 1 and bidder 2. Either bidder 1 gets
slot 1, 2 and bidder 2 gets slot 3 or bidder 2 gets slot 1, 2 and bidder 1 gets slot
3. By Condition 2 and 4 of Lemma 3.1, in equilibrium, bidder 3 bids b4 ≤ v(3),
and b2 = b3 ≥ v(3). Now assume b2 = b3 = x.

Case I: Bidder 1 gets slot 1, 2 and bidder 2 gets slot 3.

130 T.-M. Bu, X. Deng, and Q. Qi

This allocation is an equilibrium if and only if for some fixed c1 > c2 > c3,
v(1) > v(2) > v(3), all the following inequalities are satisfied.

(v(1) − x)c2 ≥ (v(1) − b4)c3

(v(1) − x)(c1 + c2) ≥ (v(1) − b4)(c2 + c3)

(v(2) − b4)c3 ≥ (v(2) − x)(c2 + c3)

b4 ≤ v(3)

v(2) ≥ x ≥ v(3)

(3.1)

Case II: Bidder 2 gets slot 1, 2 and bidder 1 gets slot 3.
Similarly, it is an equilibrium if and only if all the following inequalities are

satisfied.

(v(2) − x)c2 ≥ (v(2) − b4)c3

(v(2) − x)(c1 + c2) ≥ (v(2) − b4)(c2 + c3)

(v(1) − b4)c3 ≥ (v(1) − x)(c2 + c3)

(v(1) − b4)c3 ≥ (v(1) − v(2))(c1 + c2)

b4 ≤ v(3)

v(2) ≥ x ≥ v(3)

(3.2)

Thus, an equilibrium exists in this setting if and only if one of the above
inequality set is satisfied.

Let A = {x|x is a feasible solution to inequality set (3.1)}, B = {x|x is a fea-
sible solution to inequality set (3.2)}. We observe that B ⊂ A. Thus the case
K = 3, M = 2 has an equilibrium if and only if the inequality set (3.1) has a
solution. By solving the inequality set (3.1), we obtain the following proposition.

Proposition 3.2. For K = 3, 2-GSP has equilibria if and only if one of the
following inequality satisfies,

1. v(1)−v(2)

v(1)−v(3) ≥ c2
3

c2
2
, c1c3 ≥ c2

2;

2. c1−c3
c1+c2

v(1) + c2+c3
c1+c2

v(3) ≥ c2
c2+c3

v(2) + c3
c2+c3

v(3), c1c3 ≤ c2
2,

where c1 > c2 > c3 are CTRs of the three slots and v(1) > v(2) > v(3) are the
three highest private values among all the bidders.

When some bidders share a same value, it could be verified similarly that the
above proposition is still true.

3.3 Existence of Pure Nash Equilibria

When the number of submitted bids of each bidder is unlimited, the following
theorem shows that there always exist a pure Nash equilibrium.

Multi-bidding Strategy in Sponsored Keyword Auction 131

Theorem 3.3. M -GSP always has pure Nash equilibria when M ≥ K.

Theorem 3.4. (Revenue in M -GSP) In M -GSP, the auctioneer’s revenue is
R = v(2) ∑K

j=1 cj in any equilibrium when M ≥ K.

Obviously, the revenue under this situation is trivially equal to the revenue under
VCG mechanism.

3.4 Non-existence of Nash Equilibria

Now, we explore the case where the maximum number of allowed submitted bids
of each bidder is less than the number of advertising positions. We first fix M = 2
and study the relationship between the number of slots and the (non)existence
of Nash equilibrium. The important lemmas obtained are as follows.

Lemma 3.5. (The (non)Existence of Nash Equilibrium when M = 2)
2-GSP always has Nash equilibria for any K ≤ 2; 2-GSP doesn’t always have a
Nash equilibrium for any K ≥ 3.

After studying the case of M = 2, we try to generalize our observation to any
M and we get some interesting results as follows.

Algorithm 1. Counter Example Generator (K, M)
1: if (K ≤ M) then
2: exit
3: end if
4: if (K/M == 2) then
5: Let a = 0
6: else
7: Let a = �K/M� − 1
8: end if
9: Let the click through rates of K slots be c = (c1, c2, · · · , cK)

10: for i = 1 : aM + M − 2 do
11: Let ci = 200 + aM + M − 2 − i
12: end for
13: Let caM+M−1 = 20, caM+M = 11 and caM+M+1 = 10
14: for i = aM + M + 2 : K do
15: Let ci = 10−i

16: end for
17: Let the true values of a + 3 bidders be v = (v(1), v(2), · · · , v(a+3))
18: for i = 1 : a do
19: Let v(i) = 6 + a − i
20: end for
21: Let v(a+1) = 5, v(a+2) = 4, v(a+3) = 1
22: Output c, v

Algorithm 1 is a counter example generator. For any input K > M , the
algorithm will output K slots with click through rates c1 > c2 > · · · > cK and
	K/M
+2 bidders with true values v(1) > v(2) > · · · > v(�K/M�+2) . And in fact,

132 T.-M. Bu, X. Deng, and Q. Qi

there doesn’t exist a Nash equilibrium for multiple-bidding position auctions
with input c,v generated by the above algorithm. So we called the algorithm
Counter Example Generator. The idea of the algorithm comes from the proof of
lemma 3.5. In order to prove there may not exist a Nash equilibrium for the case:
K = 4 in lemma 3.5, we add one more slot with very small click through rate
based on the counter example for K = 3. And later, to prove the nonexistence
of Nash equilibrium for K > 4, we add some more slots with very large click
through rates. Similarly, here we add K − 3 more slots with very large or very
small click through rates based on ci = 20, ci+1 = 11, ci+2 = 10 for some i and
add 	K/M
−1 more bidders with high true values to v(�K/M�) = 5, v(�K/M�+1) =
4, v(�K/M�+2) = 1. It’s easy to verify the correctness of the algorithm. And from
the above algorithm, we obtain the following lemma.

Lemma 3.6. M -GSP doesn’t always have a Nash equilibrium when M < K.

From the above two lemmas, we obtain the theorem of (non)existence of Nash
equilibrium as follows.

Theorem 3.7. (The (non)Existence of Nash Equilibrium) M -GSP al-
ways has Nash equilibria when M ≥ K; It doesn’t always have a Nash equilibrium
when M < K.

4 Only One Bidder Multi-bidding

In the above sections, we study the M -GSP model in which every bidder can
submit at most M bids in the auction. We prove that when the number of slots
K > M , there doesn’t always exist a Nash equilibrium in that model. Now
consider the case that only one bidder can submit at most M bids and each of
the other bidders can only submit one bid, i.e., only one bidder multi-bidding.
Does there always exist a Nash equilibrium in this situation? In this section,
we try to find the solution to this question. We use M (i)-GSP to represent the
extended GSP model in which only bidder i is allowed submitting at most M
bids, and each of the other bidders can only submit one bid. In the following
part, without loss of generality, we always assume v(1) ≥ v(2) ≥ · · · ≥ v(N).

Lemma 4.1. (The (non)Existence of Nash Equilibrium when M = 2)

1. ∀ i > K, 2(i)-GSP always has Nash equilibria;
2. ∀ i ≤ K, 2(i)-GSP always has Nash equilibria for any K ≤ 2; 2(i)-GSP

doesn’t always have a Nash equilibrium for any K ≥ 3.

Next, we relax the constraint M = 2 and study the existence of Nash equilibrium
in M (i)-GSP model for any given M .

Theorem 4.2. (The (non)Existence of Nash Equilibrium in M (i)-GSP)

1. ∀ i > K, M (i)-GSP always has Nash equilibria;
2. ∀ i ≤ K, M (i)-GSP always has Nash equilibria for any K ≤ 2; M (i)-GSP

doesn’t always have a Nash equilibrium for any K ≥ 3.

Multi-bidding Strategy in Sponsored Keyword Auction 133

5 An Impossibility Result

As we mentioned, the sponsored keyword auction is not incentive compatible.
However, if we replace the allocation method and pricing method in the position
auction by other methods, does there exist a mechanism satisfying not only
truthful but also multiple-bidding proof? The following theorem answers the
question.

Theorem 5.1. There exists no mechanism (with allocation method and pricing
method) which is truthful, multiple-bidding proof, social efficiency and individual
rationality.

6 Multiple Biddings of Players with Multiple Private
Values

Up to this point, we have regarded that each bidder’s value per-click is the same
for all the submitted bids. It may more adequately called the single value multi-
bidding model. In general, there could be a multi-value multi-bidding model. In
the multi-value multi-bidding model, a bidder submits more than one bid and his
value per-click is not unique. For example, a computer company sells both business
laptops and home laptops. The company wants to buy two slots for the keyword
’laptop’, one for his business laptops and the other for his home laptops. The value
per click for the advertise of the business laptops may be different from that of the
home laptops. The company cares about his total profit and in the auction he can
always cooperate with himself. And indeed it is often the case as in the examples
of the multiple advertisement displays of Dell and HP in Figure 1.

Proposition 6.1. (Individual Efficiency Property) At any Nash equilibrium, an
agent’s winning biddings are ordered in their privates values for the correspond-
ing advertisements. That is, the higher is the private value, the higher is the
bid.

In the single-value multi-bidding GSP auction, there may not always exist a Nash
equilibrium. Unfortunately, there may not exist a Nash equilibrium in the multi-
value multi-bidding GSP auction neither. This can be shown by the following
counter example.

Business Laptop Home Laptop

Merchant A 10 8

Merchant B 9 6

For the same keyword both Merchant A and B bid for two slots, one for
business laptop and the other for home laptop. Their values per-click are shown
in the above table. However, there are totally three slots with c1 = 12, c2 =
11, c3 = 10. In this setting, there doesn’t exist a Nash equilibrium.

134 T.-M. Bu, X. Deng, and Q. Qi

References

1. Varian, H.R.: Position auctions. International Journal of Industrial Organiza-
tion 25(6), 1163–1178 (2007)

2. Edelman, B., Ostrovsky, M., Schwarz, M.: Internet advertising and the general-
ized second price auction: Selling billions of dollars worth of keywords. American
Economic Review 97(1), 242–259 (2007)

3. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. Journal
of Finance XVI(1), 8–37 (1961)

4. Clarke, E.H.: Multipart pricing of public goods. Public Choice 11(1), 11–33 (1971)
5. Groves, T.: Incentives in teams. Econometrica 41(4), 617–631 (1973)
6. Aggarwal, G., Goel, A., Motwani, R.: Truthful auctions for pricing search keywords.

In: Proceedings of the 7th ACM Conference on Electronic Commerce (EC 2006),
Ann Arbor, Michigan, USA, June 11–15, pp. 1–7 (2006)

7. Zhou, Y., Lukose, R.: Vindictive bidding in keyword auctions. In: Second Work-
shop on Sponsored Search Auctions, in conjunction with the ACM Conference on
Electronic Commerce (EC 2006), Ann Arbor, Michigan, June 11 (2006)

8. Bu, T.M., Deng, X., Qi, Q.: Forward looking nash equilibrium for keyword auction.
Information Processing Letters 105(2), 41–46 (2008)

9. Bu, T.M., Deng, X., Qi, Q.: Dynamics of strategic manipulation in ad-words auc-
tion. In: Third Workshop on Sponsored Search Auctions, in conjunction with
WWW 2007, Banff, Canada, May 8–12 (2007)

10. Cary, M., Das, A., Edelman, B., Giotis, I., Heimerl, K., Karlin, A.R., Mathieu, C.,
Schwarz, M.: Greedy bidding strategies for keyword auctions. In: Proceedings of the
8th ACM Conference on Electronic Commerce (EC 2007), San Diego, California,
USA, June 11–15, pp. 262–271 (2007)

11. Sakurai, Y., Yokoo, M., Matsubara, S.: A limitation of the generalized vickrey auc-
tion in electronic commerce: Robustness against false-name bids. In: Proceedings
of the 6th National Conference on Artificial Intelligence (AAAI 1999); Proceedings
of the 11th Conference on Innovative Applications of Artificial Intelligence, Menlo
Park, Cal, July 18–22, pp. 86–92 (1999)

12. Yokoo, M., Sakurai, Y., Matsubara, S.: The effect of false-name declarations in
mechanism design: Towards collective decision making on the internet. In: Pro-
ceedings of the 20th International Conference on Distributed Computing Systems
(ICDCS 2000), April 2000, pp. 146–153 (2000)

13. Lambert, N.S., Shoham, Y.: Asymptotically optimal repeated auctions for spon-
sored search. In: Proceedings of the 9th International Conference on Electronic
Commerce: The Wireless World of Electronic Commerce, Minneapolis, USA, Au-
gust 19–22, pp. 55–64 (2007)

14. Deng, X., Iwama, K., Qi, Q., Sun, A.W., Tasaka, T.: Properties of Symmetric
Incentive Compatible Auctions. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598,
pp. 264–273. Springer, Heidelberg (2007)

A CSP-Based Approach for Solving Parity

Game�

Min Jiang1, Changle Zhou1, Guoqing Wu2, and Fan Zhang2

1 Department of Cognitive Science, Xiamen University, Fujian, China,
minjiang@xmu.edu.cn

2 Computer School of Wuhan University, Hubei, China

Abstract. No matter from the theoretical or practical perspective, solv-
ing parity game plays a very important role. On one side, this prob-
lem possesses some amazing properties of computational complexity,
and people are still searching for a polynomial time algorithm. On the
other side, solving it and modal mu-calculus are almost the same in na-
ture, so any efficient algorithm concerning this topic can be applied to
model checking problem of modal mu-calculus. Considering the impor-
tance of modal mu-calculus in the automatic verification field, a series
of model checkers will benefit from it. The main purpose of our study
is to use constraints satisfaction problem (CSP), a deeply-studied and
widely-accepted method, to settle parity game. The significance lies in
that we can design efficient model checker through introducing various
CSP algorithms, hence open a door to explore this problem of practi-
cal importance from a different viewpoint. In the paper, we propose a
CSP-based algorithm and the related experimental results are presented.

1 Introduction

Game theory has aroused more interest coming from computer science and AI
community in the recent years. The following reasons may explain the growing
enthusiasm. At first, after a series of exciting breakthroughs [1,2,3], people has
a deeper understanding of the computational complexity on some foundational
problems in the field. Secondly, from the practical point of view, game theory
plays a major role in handling the matter in the real world. None disbelieves
that this world is filled with uncertainty and conflict. Game theory, as proba-
bility helps us to investigate the uncertainty, is a powerful mathematical tool to
understand the opposite and selfish world. Computational game theory, a brand-
new field, is taking shape under the influence of a lot of relevant disciplines.

In computational game theory, there are two kinds of problems attracting spe-
cial attention: equilibrium, especially Nash equilibrium [4], and winning strategy.

� Research supported by China Postdoctoral Science Foundation funded project under
contract No. 20070420749; the National High-Tech Research and Development Plan
of China under contract No.2006AA01Z129; the National High-Tech Research and
Development Plan of China under contract No. 2007AA01Z185.

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 135–146, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

136 M. Jiang et al.

Very roughly speaking, equilibrium depicts, under some conditions, a stable state
among n(n ≥ 2) players. Winning strategy study can be regarded as the qual-
itative analysis of some problems we are interested in, in other words, it is to
investigate whether a model based on game theory has some desired properties.
In this paper, we focus our attention on a special instance of the latter – parity
game.

Simply and informally, a parity game is a game played by two players, player
0 and player 1, on a directed graph (V, E). V is finite and composed of two
kinds of vertices, i.e., V = V0

⋃
V1 and V0

⋂
V1 = ∅, while a priority function

p : V → N assigns a priority to every vertex. Those players move a token from a
vertex to a vertex in turns according to the following rules to form a path: if the
token is at a V0-type vertex, player 0 decides which is the next vertex , and if
the token is at a V1-type node, player 1 can make his decision. In the event they
can play this game all the time. It is not difficult to find that, some nodes in the
path will occur infinitely often. We say player 0 wins the game if the smallest
priority of those nodes is even, otherwise player 1 succeed. What we care about
is that, assume they play rationally enough, who will win this game.

The motivations of studying parity game come from two fields: pure theory
and practical application. At first, solving a parity game is a foundational and
interesting problem in theoretical computer science, especially in computational
complexity, since it is one of the few problems which are in NP

⋂
coNP [7] and

even in UP
⋂

coUP [11]. Although the community devotes substantial effort
to settling it and many people believe that it’s in P, finding a polynomial time
algorithm is still a major open problem at present. Solving parity problem, just
as David S. Johnson stated in his recent paper [6], is “ the only candidates
I know for (nontrival) membership in NP

⋂
coNP - P ”. Secondly, we have

already known that if problem X is in NP
⋂

coNP, then finding the answer of
its instance and proving the answer is correct are in TFNP (total function in
NP), so if a problem is in NP

⋂
coNP - P, the above question is a candidate

for TFNP − FP.
Moreover, parity game plays an interesting connector in algorithmic game

theory. We have known that parity game is polynomial time reducible to simple
stochastic game [5], and simple stochastic game can be reduced in polynomial
time to finding a Brouwer fixpoint [10] and computing a P-matrix linear com-
plementary problem [8]. The approaches for conquering both latter problems
also can be used to compute Nash equilibrium in bimatrix games [2], hence the
problem is also in PPAD (Polynomial Parity Argument, Directed version) [13].

We also want to point out that by using strategy improvement [14], another
pretty good approach in practice, one can transform the problems of solving those
games into a search problem, hence the value functions used in those algorithms
witness membership of search problem in the class of polynomial local search
problem (PLS) [9].

If considering this problem from the practical perspective, we will also find
its significance. As is well known, model checking [21] has gained tremendous

A CSP-Based Approach for Solving Parity Game 137

success in automatic verification field, and modal mu-calculus1 has received sub-
stantial academic interest and enjoyed widely industrial acceptance. The alter-
nation depth of modal mu-calculus formula is a standard measure of conceptual
complexity. We can use this measure to induce a hierarchy which is semantically
strict, and this notion of syntactic complexity of a formula is reflected in its
semantic complexity. With this measure, lots of common formalisms adopted by
successful model checkers can be translated into low levels of modal mu-calculus
alternation hierarchy, for instance, Propositional dynamic logic (PDL) and Com-
putational Tree Logic (CTL) can be depicted in the first level of this hierarchy,
while their extensions ΔPDL and CTL∗ do not exceed the second level.

Parity game has a close connection with modal mu-calculus, so solving parity
game and modal mu-calculus are almost the same in nature. It also tells us that
if we can find out a method to solve parity game effectively, even if it lacks strict
theoretical fundament, we still can apply it to various types of model checkers.
Obviously, it makes our study sense from a practical perspective.

Some parts need explanations. Comparing with [17], we use a concept named
game parity progress measure introduced by the literature, which is an extension
of progress measure proposed in [18]. But the major differences are that, firstly,
their method constructed a strict lattice based on game parity progress measure,
and provided a monotonic function. By this way, they transformed solving a
parity game into computing a fixpoint on the lattice. Our approach is to handle
this problem by using the methods based on constraints satisfaction problem.
Both methods use the concept, game parity progress measure from an opposite
direction in some sense; secondly, the original paper uses induction method to
prove some important theorems, but we give a constructional interpretation on
it to accelerate the solving speed.

The rest of the paper is organized as follows: Section 2 introduces some pre-
vious works; in section 3 we describe some concepts about parity game and con-
straints satisfaction problem (CSP); in section 4, we discuss how to translate
the problem of solving parity game into a solution of CSP; then one CSP-based
algorithm and experimental results are presented in Section 5 and Section 6; and
in section 7, we conclude this paper and future work is discussed.

2 Previous Works

As we claimed, solving parity game shows its significance in different fields; so
many different methods have been presented to settle this amazing but still
open problem. Here, we just list three kinds of algorithms with their great in-
fluence on the community: deterministic, randomized and strategy improvement
algorithms.

Let n = |V | and m = |E| be the number of vertices and edges of parity game
graph and let d be the largest priority assigned to vertices by a function p : V →
{0, . . ., d-1}.
1 Roughly speaking, modal mu-calculus is regard as an extension of standard modal

logic, which adds some monadic variables bounded by fixpoint of definable operators.

138 M. Jiang et al.

In [17], the authors give a deterministic algorithm based on progress measure.
Progress measure [18] are decorations of graphs. We can obtain some global,
often infinitely desired properties by guaranteeing local consistency of graph.
When d = O(

√
n), the time complexity of this algorithm is O(dm · (2n/d)d/2).

In a very recent paper [16], the same author presented another deterministic
algorithm for solving this problem. If the out-degree of all vertices is bounded,
the complexity of the algorithm is nO(

√
n/ log n) ; if we drop this constraint, the

complexity is nO(
√

n) , and at the same time, this new algorithm just needs
polynomial space.

Another randomized algorithm has been given by Björklund et.al [15], which
also has an expected running time bound of nO(

√
n/ log n). Compared with the

above deterministic algorithm, the advantage of this randomized algorithm is
that it can be used to settle some other games, for example, computing mean
payoff games, discounted games and simple stochastic games. But the determin-
istic algorithm does not seem to be good for other games in an obvious way.

Strategy improvement, though lacking a rigorous theoretical analysis, is an
effective method in practice. Hoffman and Karp first proposed it for solving
stochastic game in 1966 [14], then Puri [19] and vöge[20] et.al gave two algo-
rithms based on this concept to conquer parity game. Both algorithms can do
one iteration in polynomial time, but it is a pity that the number of iterations
may be huge. The major problem of Puri’ approach is that their algorithm is
not a discrete algorithm, but involves linear programming and high precision
arithmetic. Vöge’s algorithm avoids those weaknesses.

3 Preliminaries

3.1 Parity Game

A parity game is composed of an arena, a priority function and a starting node.
An arena is a triple A = (V0, V1, E). V0 a is a set of 0-type vertices and V1

denotes a set of 1-type vertices, and both sets are finite. We define V0
⋃

V1 = V
and V0

⋂
V1 = ∅. E ⊆ V × V , sometimes, it also means the set of moves. The

set of successors of v ∈ V is defined by vE = {v′ ∈ V |(v, v′) ∈ E}. We define
[d] = {0, 1, . . . , d − 1} and d ∈ N . A priority function p : V → [d], which assigns
a priority to every vertex . Starting node v0 ∈ V . So a parity game is a tuple
G = (A, p, v0). We assume that G is total, in other words, every vertex on the
graph has at least one out-going edge, i.e., for every v ∈ V , there is a v′ ∈ V
with (v, v′) ∈ E.

A play of a parity game G is a path π = v0v1, . . ., which initiates in v0. We
can imagine it is formed as the following way: at the beginning of the game,
a token is placed on v0. If v0 is a V0-type vertex, player 0 chooses a vertex
v′ ∈ vE as successor. If v0 is a V1-type vertex player 1 makes his decision, and
the construction of the play continues with v′. According to our definition of
parity game, obviously, all the paths are infinite since every vertex has at least
one successor to choose.

A CSP-Based Approach for Solving Parity Game 139

Given a path π, we define a function Inf : π → 2V , which denotes a set
of vertices which occur infinitely often2. Let another function Min : 2V → [d],
which finds the smallest priority among a set of vertices. So Min(Inf(π)) means
the smallest priority of those vertices occurring infinitely often in the play π. if
Min(Inf(π)) is even, we say player 0 wins this play, otherwise, π is a winning
play for player 1.

A strategy for player σ, σ ∈ {0, 1}, is a function θ : V ∗Vσ → V , which tells the
player σ how to make his decision according to the current situation in a play.
we call a strategy memoryless (or positional) strategy if θ : Vσ → V such that
θ(v) ∈ vE for all v ∈ Vσ. It means a memoryless strategy chooses the next vertex
just according to the last nodes visited. A play π = v0v1 . . . is called conforming
a player σ’s strategy θ, if for all i ∈ N , vi ∈ Vσ , vi+1 = θ(vi). We say a strategy
is a winning strategy for player σ, i.e., if every play conforms to θ, player σ will
wins this game,

Given a parity game G, we define the problem of solving the parity game is to
determine the winner of it. The following theorem guarantees every parity game
has a winner.

Theorem 1 (Memoryless Determinacy [26,27]). For every parity game,
there is a unique partition (W0, W1) of the set of vertices of its game graph,
such that there is a memoryless winning strategy for player 0 from W0, and a
memoryless winning strategy for player 1 from W1.

Remark 1. At first, the theorem is not trivial in an infinite game, and it plays
a fundamental role in solving parity game. According to our definition, it tells
us that either player 0 has a memoryless winning strategy in a parity game or
player 1 has it. Secondly, those literatures define solving parity game as finding
the partition (W0, W1). Obviously, our problem is polynomial time equivalent
to their problem since we can carry them out in polynomial time to get the
partition. In the rest of the paper, strategy means memoryless strategy.

3.2 Constraint Satisfaction Problem (CSP)

Many computational problems from different application fields can be consid-
ered as constraint satisfaction problems. For example, the problems of scheduling
a collection of tasks [22], laying out a chip [23], even understanding the visual
image [24], can all be done in this way. ACM(Association for Computing Machin-
ery) identified it as one of the strategic directions in computer research. Many
facts tell us CSP is a powerful tool to settle some hard problems, especially,
combinational optimization problem.

Let us recall some primary concepts about CSP briefly. A CSP is a 3-tuple
CSP =< X, D, C >, where X = {x1, ..., xn} is a set of variables, and Di is a
non-empty domain of xi; C = {c1, . . . , cm} , and every ci involves some subsets
of the variables and specifies the allowable combinations of the values for those
subsets.
2 we just have finite vertices, and the path is infinite, so there are some vertices

occurring infinitely often.

140 M. Jiang et al.

CSP is a problem which was deeply studied, and there are a huge amount
of literature and algorithms. Although it is hard to solve theoretically, i.e., the
famous 3-SAT problem is a special case, sometimes we still can find a solution
effectively in practice. Another predominance of CSP is that the simple yet pow-
erful description ability makes one possess the capability to handle sophisticated
problem even if he is not very familiar with it.

4 Translate Parity Game to CSP

4.1 Character of Winning Strategy

For depicting the character of winning strategy, we need the following definitions
and theorems.

Definition 1 (Annotation). We call α = (α0, α1, . . . , αd−1) an annotation,
which is a d-tuple of non-negative integers. We can compare an annotation to
another one according to lexicographic ordering. If we subscript with a number
i ∈ N under the comparison symbols �, �, <, . . ., it means the lexicographic
ordering applied to their first i components, for example, (1, 2, 3) >0 (0, 2, 3),
(4, 3, 4) =1 (4, 3, 3).

Definition 2 (Parity Progress Measure [17]). Let G be a parity game, and
d is the max priority among all the vertices. We call a function ρ : V → N d

parity progress measure if the following conditions are held. For every (v, w) ∈ E,
ρ(v) �p(v) ρ(w) if p(v) is even ,otherwise, ρ(v) >p(v) ρ(w).

Remark 2. We can understand a parity progress measure as the following way:
it assigns a value to every vertex; if the priority of a vertex is even, then its value
will not be less than the values of its neighbors, and if the priority is odd, the
value will larger than its neighbors’.

Definition 3. We say a cycle in a parity graph is even, if the smallest priority
of the vertex occurring in this cycle is even, otherwise, the cycle is odd.

The following lemmas reveal some special relationships between parity progress
measure and winning strategy.

Lemma 1 ([17]). If there is a parity progress measure for a parity graph G then
all cycles in G are even.

Proof. Reduction to absurdity. We assume that there is a odd cycle γ = v1v2,
. . . , vkv1. Without loss of generalization, we let v1 has the smallest priority and it
is odd. Then according to the definition, we have ρ(v1) >p(v1) ρ(v2), ρ(v2) �p(v2)
ρ(v3), . . .,ρ(vk) �p(vk) ρ(v1); due to the property of lexicographic ordering, we
have ρ(v1) >p(v1) ρ(v1), a contradiction. ��

.

A CSP-Based Approach for Solving Parity Game 141

The lemma tells us something but not enough. First, the range of the parity
progress measure is too wide, so it’s hard to be computed. Second, it’s just a
witness for player 0 to win all the vertices, obviously, it is unusual in parity
games. Hence we need some other tools based on the lemma to conquer those
problems.

We settle the first problem, i.e., we will restrict the range of parity progress
measure.

Definition 4. Given a parity game G, let η(v) be the set of all the paths whose
starting node is v, and let #i(η(v)) be the maximal number of nodes with priority
i occurring on any element in the set η(v), at the same time, the element does
not contain a vertex whose priority is smaller than i. If we cannot find such an
element or the priority of v is smaller than i, #i(η(v)) = 0.

If infinitely many vertices with priority i occur on some path with no smaller
priority occurring on the path, the value is infinite.

Lemma 2. Given a parity game G, if all cycles in G are even, for any odd i,
#i(η(v)) will not larger than the number of vertices with priority i.

Proof. Firstly, some #i(η(v)) is finite for some odd i. Otherwise there is an
infinite path originating in v and the path contains no vertex with lower priority
than i. Obviously, a vertex with priority i occurs twice in the path, so there is
a odd cycle, a contradiction to the assumption of the lemma. Secondly, assume
that #i(η(v)) is larger than the number of vertices with priority i for some odd i,
so there is a path starting in v such that #i(η(v)) vertices with priority i before
a vertex with priority small than i, and the vertex occurs twice according to our
assumption. So there is an odd cycles, a contradiction again. ��

Definition 5. Given a parity game G with the maximal priority d, we define
MG is an annotation, and MG is constructed as follows: if d is even, MG =
[1] × [#1(η(·)) + 1] × [1] × [#3(η(·)) + 1] × . . . × [1] × [#d−1(η(·)) + 1], otherwise,
MG = [1] × [#1(η(·)) + 1] × [1] × [#3(η(·)) + 1] × . . . × [#d−2(η(·)) + 1] × [1]. ([d]
= {0, 1, . . . , d-1}).

Remark 3. We consider MG as an annotation. In its odd position i the value
is not larger than the number of vertices with priority i, and in even position
it is zero. Please note that, in an intuitive way, our definition is similar to the
definition given by [17], but there is a notable difference when we hope to take
CSP as a tool to settle this problem. If adopting that definition, we will encounter
a knotty problem - the domains of variables have huge possible values and no clue
helps us to reduce it, but our definition avoid the weakness. We will demonstrate
the advantages of our definition when translating parity game to an instance of
CSP, especially, when we implement a unary constraint.

Lemma 3 (Small Parity Progress Measure [17]). If all cycles in a parity
graph G are even then there is a parity progress measure
 : V → MG.

142 M. Jiang et al.

Remark 4. What we want to explain is that, according to Definition. 5, for every
v ∈ V , if p(v) is even,
(v) = (0, #1(η(v)), 0, #3(η(v)), . . . , 0, #d−1(η(v)); if p(v)
is odd,
(v) = (0, #1(η(v)), 0, #3(η(v)), . . . , #d−2(η(v), 0).

Now it’s time to settle the second problem, namely, both players have a chance
to win the game. To achieve this goal, we just need drop the constraint that all
cycles are even. The following lemmas and theorems given by [17] assure it, and
we don’t modify them anymore, so we represent them here directly.

Definition 6. Let M�
G denote MG

⋃
{	} where 	 is an extra element and larger

than any elements of MG under the order >i, for all i ∈ [d]; and 	 =i 	.
Prog(
, v, w) denotes the least m ∈ M�

G , such that m �p(v)
(w), the inequality
is strict if p(v) is odd.

Definition 7 (Game Parity Progress Measure). A function
 : V → M�
G

is a game parity progress measure if for all v ∈ V , we have:

1. if v ∈ V0 then
(v) �p(v) Prog(
, v, w) for some w ∈ vE, and
2. if v ∈ V1 then
(v) �p(v) Prog(
, v, w) for all w ∈ vE.

Theorem 2 ([17]). If
 is a game parity progress measure then we can deter-
mine who wins the game.

Now, we know that a game parity progress measure is a witness of winning strat-
egy, so we can solve a parity game by finding a game parity progress measure.
It’s one of theoretical foundations of our approach.

4.2 Encoding Parity Game to CSP

In this section, we will discuss how to transform solving a given parity game into
finding a solution of CSP. Note that, the players in all the parity games graph
we discuss in the paper are finite and every player has at least one successor.
Given a parity game G, we present our reduction as follows:

1. Every variable vi denotes a vertex i on the parity game graph G;
2. The domain of every variable is a set of all possible values, i.e., all possible

values of M�
G . We arrange the elements of the domain ascending;

3. Unary constraint: The constraint is important for our approach since it
can reduce the search space remarkably. The constraint stems from definition
4. For example, if the current vertex is v, and p(v) = i; it will remove all the
possible assignments: for all j > i, its component #j(v) is not equal to zero;

4. Binary constraints: The binary constraints proposed by our approach are
composed of four types:
(a) V0−Odd: If the current vertex v ∈ V0, and p(v) is odd, we will apply this

constraint. This constraint guarantees the value of this vertex is strictly
larger than the smallest value of some neighbors.

(b) V0 − Even: If the current vertex v ∈ V0, and p(v) even, we will apply
this constraint. This constraint guarantees the value of the vertex is not
less than the smallest value of some neighbors.

A CSP-Based Approach for Solving Parity Game 143

(c) V1 − Odd: If the current vertex v ∈ V1, and p(v) odd, we will apply this
constraint. This constraint guarantees the value of the vertex is strictly
larger than the smallest value of all its neighbors.

(d) V1 − Even: If the current vertex v ∈ V1, and p(v) even, we will apply
this constraint. This constraint guarantees the value of this vertex is not
less than the smallest value of all its neighbors.

Obviously, if a vertex has been assigned to 	, the corresponding constraint
must be satisfied.

5. Constraints propagation: Assign a value to each variable in turn, with
the requirement that the current assignment should not conflict with the
previous assignments.

5 An CSP-Based Algorithm

5.1 The Algorithm

We present our algorithm as follows.

Algorithm 1. Parity-CSP (sketch)
Data: A parity game G = (A, p, v1)
Result: “Player 0 wins” or “Player 1 wins”
begin

Step.1 Select the node v1 as root, and do breadth-first search, form a
sequence v1, v2, ..., vn, and add them to a queue CheckQueue;
Step.2 for i = 1 to n do

Unary-Constraint(vi);

Step.3 while CheckQueue �= ∅ do
CV ← CheckQueue.head;
if CV ∈ V0 then

if p(CV) is odd then Change := V0 − Odd(CV);
else Change := V0 − Even(CV);

if CV ∈ V1 then
if p(CV) is odd then Change := V1 − Odd(CV);
else Change := V1 − Even(CV);

if Change == True then
forall (v, CV) ∈ E do

CheckQueue.add(v)

Step.4 if v1.value �= � then return “player 0 wins”else return “player 1
wins”

end

Remark 5. By using this reduction, we will benefit from taking various heuristic
searching methods to accelerate the performance of the algorithm, but for the
limit of space, we will not discuss it.

144 M. Jiang et al.

5.2 Correctness of the Algorithm

Theorem 3. The algorithm is terminable, and if we have a solution of an in-
stance, then we know whether player 0 wins the corresponding parity game or
not.

Proof. If the value of CV is 	, no new element will be added to the queue.
Obviously, the algorithm will be terminated at some time. If we have an solution
of an instance, the value of v1 is 	 or not. If it is 	, we know that there is an odd
j such that #j(v1) = ∞, and it means that there is a path which must contain
some vertices with priority j twice, then there is an odd cycle, hence player 1
can win the game according to the path. Otherwise, player 0 wins. ��

6 Experimental Results

Our prototype employs JCL3 package, which is developed by EPFL. For pos-
sessing the unary and the bi-constraints needed in our algorithm, we extend it.
Please note, it is not for its performance that we choose JCL. Strictly speaking,
it is not the fastest one, but it is the only package that we find can handle the
soft constraint satisfaction problem. Despite not using this feature in the paper,

Table 1. The running time

of V MAX of Pri. = 1 MAX of Pri. = �
√

#	

CSP Solving CSP Solving

50 0.03s 0.03s 0.28s 0.18s

100 0.05 0.07s 0.34s 1.4s

200 0.9s 1.2s 1.8s 23.1s

300 0.18s 0.25s 2.8s 5m23s

400 0.25s 0.27s 5.6s 34s

500 0.36s 0.43s 6.7s 1m23s

600 0.58s 0.54s 8.9s 3m14s

700 0.77s 0.71s 15.1s 23m13s

800 0.86s 0.84s 17.8s 7m14s

900 1.23s 0.94s 27.1s 16m23s

1000 1.4s 1.23s 34.1s 2h34s

1200 1.56s 1.44s 56s 1h45s

1400 1.73s 1.56s 1m14s 3h34s

3 http://liawww.epfl.ch/JCL/index.htm

A CSP-Based Approach for Solving Parity Game 145

it has established the foundation for our future work. In the present paper, all
programs are implemented in java 5.0, and the running environment is Linux
FC 5.0 on Pentium(R) 1.86G with 1G memory. The running time is presented
in Table 1. We must point out that it is a premature implement, so the program
still leave some room to improve its performance.

We generate those random graphes with different vertices, and let the out-
degree of every vertex be larger than one. Since every parity game can be reduced
to a corresponding parity game with constant out-degree two, we restrict the
out-degree to be less than three in our experiment, and assign a priority to a
vertex randomly. The column CSP depicts the time spent constructing an CSP
instance, and the other column means the time spent solving it.

7 Conclusion and Future Work

Parity game plays an interesting connector between theoretic computer science
and industrial application. Any effective approach for solving this problem can
be used to settle model checking problem of modal mu-calculus, even other
common formalisms. So it seems more important to find it at a fast speed from
an empirical perspective.

In this paper, we put forward an algorithm based on constraints satisfaction
problem, which takes a concept called game parity progress measure as founda-
tion. In order to make this concept more fit CSP approach, we do some modifi-
cation and give constructional interpretations to it. By this way, the searching
space is reduced and computing speed of our implement is accelerated. We hope
this approach will open a door to explore this hard problem from a different
viewpoint.

There are two major tasks needed to be done in our future work.

1. speed up the algorithm by designing some heuristic searching strategies and
make it more memory-efficient.

2. take this approach as a tool to settle some other well-accepted formalisms
and games, especially, modal temporal logic and mean-payoff parity game.

References

1. Chen, X., Deng, X.: 3-NASH is PPAD-Complete. ECCC (2005) TR05-134

2. Chen, X., Deng, X.: Settling the Complexity of 2-player Nash Equilibrium. ECCC
(2005) TR05-140

3. Daskalakis, C., Papadimitriou, C. H.: Three-Players Games are Hard. ECCC (2005)
TR05-139

4. Nash, J.F.: Non-cooperative games. Annals of Mathematics (54), 286–295 (1951)

5. Condon, A.: The complexity of stochastic games. Information and Computation,
203–224 (1992)

6. David, S.J.: The NP-completeness column: Finding needles in haystacks. ACM
Transactions on Algorithms 3(2), 24 (2007)

146 M. Jiang et al.

7. Emerson, E.A., Jutla, C.S., Sistla, A.P.: On Model-Checking for Fragments of
mu-Calculus. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 385–396.
Springer, Heidelberg (1993)

8. Gartner, B., Rust, L.: Simple Stochastic Games and P-Matrix Generalized Linear
Complementarity Problems. In: Lískiewicz, M., Reischuk, R. (eds.) FCT 2005.
LNCS, vol. 3623, pp. 209–220. Springer, Heidelberg (2005)

9. Johnson, D.S., Papadimtriou, C.H., Yannakakis, M.: How easy is local search?
Journal of Computer and System Sciences 37, 79–100 (1988)

10. Juba, B.: On the hardness of simple stochastic games (manuscript, 2004)
11. Jurdzinski, M.: Deciding the winner in parity games is in UP and co-UP. Informa-

tion Processing Letters 68, 119–124 (1998)
12. Megiddo, N., Papadimitriou, C.H.: A note on total functions, existence theorems,

and computational complexity. Theoretical Computer Science 81, 317–324 (1991)
13. Papadimitriou, C.H.: On the complexity of the parity argument and other ineffi-

cient proofs of existence. Journal of Computer and System Sciences 48, 498–532
(1994)

14. Hoffman, A.J., Karp, R.M.: On Nonterminating Stochastic Games. Management
Science 12, 359–370 (1966)

15. Bjorklund, H., Sandberg, S., Vorobyov, S.: A discrete subexponential algorithm
for parity games. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp.
663–674. Springer, Heidelberg (2003)

16. Jurdzinski, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm
for solving parity games. In: SODA 2006, Proceedings of the seventeenth annual
ACM-SIAM symposium on Discrete algorithm, pp. 117–123 (2006)

17. Jurdzinski, M., Ics, B.R.: Small Progress Measures for Solving Parity Games. In:
STACS 2000, 17th Annual Symposium on Theoretical Aspects of Computer Science
Lille, France, February 17-19 (2000)

18. Klarlund, N., Kozen, D.: Rabin measures and their applications to fairness and
automatatheory. In: LICS 1991, Proceedings of Sixth Annual IEEE Symposium on
Logic in Computer Science, pp. 256–265 (1991)

19. Puri, A.: Theory of hybrid systems and discrete event systems. Ph.D thesis, Uni-
versity of California, Berkeley (1996)

20. Voge, J., Jurdziiiski, M.: A Discrete Strategy Improvement Algorithm for Solving
Parity Games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855,
pp. 202–215. Springer, Heidelberg (2000)

21. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

22. Dhar, V., Ranganathan, N.: Integer Programming vs Expert Systems: An Experi-
mental Comparison. Communications of the ACM, 323–336 (1990)

23. de Kleer, J., Sussman, G.J.: Propagation of Constraints Applied to Circuit Syn-
thesis. Circuit Theory and Applications, 127–144 (1980)

24. Davis, A.L., Rosenfeld, A.: Cooperating Processes for Low Level Vision: A Survey.
Articial Intelligence, 245–263 (1981)

25. Russell, S., Norvig, P.: Artificial Intelligence: a Modern Approach. Prentice Hall,
Englewood Cliffs (2000)

26. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy. In: FOCS
1991, Proceedings of 32nd Annual Symposium on Foundations of Computer Sci-
ence, pp. 368–377 (1991)

27. Mostowski, A.W.: Games with forbidden positions. Technical Report 78, University
of Gdansk (1991)

Characterizing and Computing Minimal

Cograph Completions�

Daniel Lokshtanov, Federico Mancini, and Charis Papadopoulos

Department of Informatics, University of Bergen, N-5020 Bergen, Norway
{daniello,federico,charis}@ii.uib.no

Abstract. A cograph completion of an arbitrary graph G is a cograph
supergraph of G on the same vertex set. Such a completion is called
minimal if the set of edges added to G is inclusion minimal. In this
paper we present two results on minimal cograph completions. The first
is a a characterization that allows us to check in linear time whether
a given cograph completion is minimal. The second result is a vertex
incremental algorithm to compute a minimal cograph completion H of
an arbitrary input graph G in O(V (H) + E(H)) time.

1 Introduction

Any graph can be embedded into a cograph by adding edges to the original
graph and the resulting graph is called a cograph completion, whereas the added
edges are called fill edges. A cograph completion with the minimum number of
edges is called minimum, while it is called minimal if no proper subset of the fill
edges produces a cograph when added to the original graph.

Computing a minimum completion of an arbitrary graph into a specific graph
class is an important and well studied problem with applications in molecular
biology, numerical algebra, and more generally areas involving graph modelling
with missing edges due to lacking data [10,23,26]. Unfortunately minimum com-
pletions into most interesting graph classes, including cographs, are NP-hard to
compute [5,8,17,23,33]. This fact encouraged researchers to focus on various al-
ternatives that are computationally more efficient, at the cost of optimality or
generality. Examples of the approaches that have been attempted include approx-
imation [18], restricted input [28,29,30,31], parameterization [19,20,21,22,32] and
minimal completions [12,13,14,16,25,27]. Here we consider the last alternative.

The reason why minimal completions can be used as a tool to understand
minimum completions better, is that every minimum completion must also be a
minimal one. Hence, if one is able to efficiently sample from the space of minimal
completions, it is possible to pick the one in the sample with fewest fill edges and
have good chances to produce a completion close to the minimum. This process,
while only being a heuristic without any approximation guarantees, has proven
to often be good enough for practical purposes [2,34]. In addition, the study
� This work is supported by the Research Council of Norway through grant

166429/V30.

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 147–158, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

148 D. Lokshtanov, F. Mancini, and C. Papadopoulos

of minimal completions gives a deep insight in the structure of the graph class
we consider. It is often the case that new tools created to characterize minimal
completions are applied to design new exact algorithms for minimum completions
[9,35,36], or to efficiently solve other problems on the specific graph class in
question. In particular, from a new minimal completion algorithm there can
easily follow new recognition algorithms [3,37], since completion can be regarded
as a generalization of recognition. Finally, as shown in [3] for the case of chordal
graphs, completions can also be useful to efficiently solve problems that otherwise
are hard on the original input graph.

In this paper we consider minimal cograph completions, and we study them
both from a graph theoretic and from an algorithmic point of view. Our main
graph theoretic result is a theorem that captures the essence of what makes a
cograph completion minimal. We apply this characterization to obtain several
algorithmic results. First we give a linear time algorithm for the characteriza-
tion problem, namely checking whether a given cograph completion is minimal.
Second we show how this algorithm can be applied to solve the extraction prob-
lem, i.e., extracting a minimal completion from a non-minimal one by removing
fill edges. Finally we present our main algorithmic result, an algorithm for the
computation problem. In this problem you are asked to compute a minimal co-
graph completion of an arbitrary input graph. Our algorithm can be viewed as a
generalization of the cograph recognition algorithm given in [7], due to its incre-
mental nature. We consider the input graph one vertex at the time, completing
the graph locally in an on-line fashion. Due to this feature it is likely the algo-
rithm can be extended to a dynamic completion algorithm, like the one for split
graphs presented in [37]. The running time is linear in the size of the computed
minimal cograph completion, and therefore optimal if an explicit representation
of the output graph is required.

One should notice that, for cographs, as for other classes for which completions
are interesting, an algorithm for the extraction problem can easily be applied to
solve the computation problem as well. The reason why we provide a separate
algorithm for each problem, is the big difference between their time complex-
ity. While our computation algorithm is linear in output size, the one for the
extraction problem runs in time O(|V (G)|4) in the worst case.

While we have argued why minimal completions are important in general,
we have not yet explained why it is interesting to study minimal cograph com-
pletions. An obvious reason is that cographs arise naturally in many different
fields. It is not by chance that they have been re-discovered various times and
have so many different characterizations [6]. Even more interesting is the fact
that many problems that are NP-hard on general graphs, can be solved very
efficiently when the input is restricted to being a cograph (see [4] for a summary
of such results).

However, as noticed by Corneil et. al [7], in most typical applications, the
graphs encountered may not be cographs but in fact will be very close to being
a cograph. Due to this they asked for good heuristics for the problem of adding
and deleting as few edges of the input graph as possible to achieve a cograph.

Characterizing and Computing Minimal Cograph Completions 149

Our computation alorithm can be used as such a heuristic, both in the case
of adding and in the case of deleting edges. The reason for this is that the
class cographs is self-complementary. Besides, an advantage of using a minimal
completion algorithm as a heuristic is that the minimality guarantees that we
never add unnecessary fill edges. Also, since our completion algorithm is fast it
is possible to improve the performance of the heuristic by trying several different
completions and picking the one with fewest edges.

Another reason to study cographs with respect to minimal completions, is that
this graph class is not sandwich monotone (see [14] for an exact definition). If a
graph class has this property, then a completion into the class is minimal if and
only if no single fill edge can be removed keeping the completed graph in the class.
Hence, for polynomial time recognizable classes with this property, it becomes
trivial to solve the characterization problem, and very easy to solve both the ex-
traction and the computation problems as well. Examples of algorithms that ex-
ploit sandwich monotonicity for efficiently extracting and computing a minimal
completion, are those for chordal [2], split [12], threshold and chain graph [14] com-
pletions. In contrast, among the classes that do not have the sandwich monotone
property, the only one for which a solution to the characterization and extraction
probems is known, is the class of interval graphs [15].

When viewed from this perspective, our characterization of minimal cograph
completions becomes interesting. It allows us to check minimality efficiently and
provides a straightforward way to solve the extraction problem for cograph com-
pletions, even though cographs do not have the sandwich monotone property.

Before we begin the technical exposition, we should note that it is possible
to adapt the algorithm for the cograph sandwich problem given in [11] to yield
a polynomial time algorithm for the extraction problem. However such an algo-
rithm would only be a smart brute force approach and would not give any graph
theoretical characterization or intuition on how a minimal cograph completion
should look like, which is what we aim for. Also the running time of the algo-
rithm we would get from such an approach would be too high for any practical
purpose.

The paper is organized in three main sections: Section 2 with background and
definitions, Section 3 with the details of the characterization and finally, Section
4 with the computation algorithm. This section is split in two. The first part
contains a high level description of the algorithm for easing the understanding
and proving correctness. The second part contains a version more suitable for
implementation, together with a running time analysis of the algorithm. The
proofs have been omitted due to lack of space.

2 Preliminaries

We consider undirected finite graphs with no loops or multiple edges. For a
graph G = (V, E), V (G) = V and E(G) = E. For S ⊆ V , the subgraph of
G induced by S is denoted by G[S]. Moreover, we denote by G − S the graph
G[V \ S] and by G − v the graph G[V \ {v}]. We distinguish between subgraphs

150 D. Lokshtanov, F. Mancini, and C. Papadopoulos

and induced subgraphs. By a subgraph of G we mean a graph G′ on the same
vertex set containing a subset of the edges of G, and we denote it by G′ ⊆ G. If
G′ contains a proper subset of the edges of G, we write G′ ⊂ G.

The neighborhood of a vertex x of G is NG(x) = {v | xv ∈ E}. The degree
of x in G is dG(x). For S ⊆ V NG(S) =

⋃
x∈S NG(x) \ S. The complement G

of a graph G consists of all vertices and all non-edges of G. A vertex x of G is
universal if NG(x) = V \ {x} and is isolated if it has no neighbors in G. A clique
is a set of pairwise adjacent vertices while an independent set is a set of pairwise
non-adjacent vertices. Given two graphs G1 = (V1, E1) and G2 = (V2, E2) with
V1 ∩ V2 = ∅, their union is G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). Their join G1 + G2 is
the graph obtained from G1 ∪ G2 by adding all the edges between the vertices
of V1 and V2.

A connected component of a disconnected graph G is a connected subgraph
of G with a maximal set of vertices and edges. The co-connected components of
G are the connected components of G. By C(G) and Ĉ(G) we denote the family
of the vertex sets of the connected components and co-connected components,
respectively, of G. More formally, C(G) = {Ci | G[Ci] is a connected component
of G} and Ĉ(G) = {Ĉi | G[Ĉi] is a co-connected component of G}.

Given an arbitrary graph G = (V, E) and a graph class Π , a Π completion of
G is a graph H = (V, E∪F) such that H ∈ Π , and H is a minimal Π completion
of G if (V, E ∪ F ′) fails to be in Π for every F ′ ⊂ F . The edges added to the
original graph in order to obtain a Π completion are called fill edges.

Cographs: The class of cographs, also known as complement reducible graphs, is
defined recursively as follows: (i) a single vertex is a cograph, (ii) if G1 and G2
are cographs, then G1 ∪ G2 is also a cograph, (iii) if G1 and G2 are cographs,
then G1 + G2 is also a cograph. Here we shall use the following characterization
of cographs.

Theorem 1 ([6]). G is a cograph if and only if the complement of any nontrivial
connected induced subgraph of G is disconnected.

Along with other properties, it is known that cographs admit a unique tree rep-
resentation, called a cotree [6]. For a cograph G its cotree, denoted by T (G), is a
rooted tree having O(|V |) nodes. Notice that we also consider T () as a function
that, given a cograph as argument, returns the corresponding cotree. Similarly,
we define the function Co(), that takes as an input a cotree and returns the
corresponding cograph; that is, for a cograph G, Co(T (G)) = G. The vertices of
G are precisely the leaves of T (G) and every internal node of T (G) is labelled
by either 0 (0-node) or 1 (1-node). Two vertices are adjacent in G if and only
if their least common ancestor in T (G) is a 1-node. Moreover, if G has at least
two vertices then each internal node of the tree has at least two children and
any path from the root to any node of the tree consists of alternating 0- and
1-nodes. The complement of any cograph G is a cograph and the cotree of the
complement of G is obtained from T (G) with inverted labeling on the internal

Characterizing and Computing Minimal Cograph Completions 151

nodes of T (G). Cographs can be recognized and their cotrees can be computed
in linear time [7].

For a node t of T (G) we denote by Tt the subtree rooted at t. The set of t’s
children in T (G) is denoted by Q(t) and the set of leaves of Tt is denoted by M(t).
If S ⊆ V (T (G)) then M(S) =

⋃
t∈S M(t). Let Q(t) = {t1, . . . , tq}. If t is a 0-node

then G[M(t)] is disconnected with q connected components and M(ti) = Ci, for
Ci ∈ C(G[M(t)]). Otherwise, if t is a 1-node then G[M(t)] is connected with q

co-connected components and M(ti) = Ĉi, for Ĉi ∈ Ĉ(G[M(t)]).

Observation 2. Let G = (V, E) be a cograph, T (G) be its cotree, and let a(G)
be the set of the 1-nodes of T (G).

∑

t∈a(G)

∑

ti,tj∈Q(t)

|M(ti)| · |M(tj)| = |E|.

3 Characterizing Minimal Cograph Completions

Here we exploit certain properties of cographs in order to characterize minimal
cograph completions.

Lemma 3. Let H = (V, E ∪ F) be a cograph completion of a graph G = (V, E).
H is a minimal cograph completion of G if and only if H [Ci] is a minimal cograph
completion of G[Ci] for every Ci ∈ C(H).

Let H = (V, E∪F) be a cograph completion of a graph G = (V, E). Next we focus
on a connected cograph completion H of G. Note that H has at least two co-
connected components since it is connected. In order to characterize minimality
of H , the idea is to consider any two co-connected components of H , remove all
the fill edges between them in H , and then simply check the connectivity of the
resulting graph. More formally, if H is disconnected, let Ĉ(H) = {Ĉ1, . . . , Ĉ�}.
Given two vertex sets Ĉu, Ĉv ∈ Ĉ(H), we consider the induced subgraph H [Ĉu ∪
Ĉv]. We build a graph Guv by taking H [Ĉu ∪ Ĉv] and removing all the fill edges
between the two vertex sets Ĉu and Ĉv. We define

Guv = (Ĉu ∪ Ĉv, E(H [Ĉu]) ∪ E(H [Ĉv]) ∪ Euv),

where Euv = {xy | x ∈ Ĉu, y ∈ Ĉv, xy ∈ E}. Let us consider now, the subgraphs
of H induced by the vertex sets of the connected components of Guv. We define
Huv =

⋃
Yi∈C(Guv) H [Yi]. Notice that if Guv is connected, then Huv = H [Ĉu∪Ĉv];

otherwise Huv is disconnected and G[Ĉu ∪ Ĉv] ⊆ Guv ⊆ Huv ⊂ H [Ĉu ∪ Ĉv].

Lemma 4. Let H = (V, E ∪ F) be a cograph completion of a graph G = (V, E).
H is a minimal cograph completion of G if and only if H [Ĉi] is a minimal cograph
completion of G[Ĉi], for every Ĉi ∈ Ĉ(H) and Guv is a connected graph for any
two distinct Ĉu, Ĉv ∈ Ĉ(H).

As we are about to see, in order to check the connectivity of Guv it is enough to
consider only the edges between the co-connected components Ĉu and Ĉv and

152 D. Lokshtanov, F. Mancini, and C. Papadopoulos

not the ones that are inside Ĉu and Ĉv. For that reason we introduce the graph
G∗uv which can be viewed as the graph obtained from Guv by replacing every
connected component of H [Ĉu] and H [Ĉv] with a single vertex.

We formally define the graph G∗uv over the cotree T (H) of H . Let tu, tv be
two children of the root of T (H). If Q(tu) �= ∅ then let Au = Q(tu); otherwise let
Au = {tu}. Similarly if Q(tv) �= ∅ then let Av = Q(tv); otherwise let Av = {tv}.
Observe that Au and Av contain nodes of T (H). Given the two nodes tu, tv we
define the graph G∗uv as follows.

G∗uv = (Au ∪ Av, E∗uv),

where E∗uv = {(au, av) ∈ Au × Av | (M(au) × M(av)) ∩ E �= ∅}. In other words,
edges are between Au and Av, and a vertex au of Au is adjacent to a vertex av of
Av if and only if there is an edge xy ∈ E such that x ∈ M(au) and y ∈ M(av).
This also means that G∗uv is a bipartite graph.

An example of the graphs Guv and G∗uv is give in Figure 1.

Cu

^ Cv

^

v1

v2

Guv
*

A v

Cu

^ Cv

^

Guv

Cu

^ Cv

^

Huv

t u

u1 u2
v1 v2

t v

T(H[C U C])u v
^^

uH[C U C]v
^^

A u

u1

u2

f

e

fb

c g

d

e

fb

c g

a

da

d

a e

fb

c g

e 1

0

g

0

11

1

b c

d

a

Fig. 1. Example of Guv, G∗
uv and Huv. We can see how it is possible to obtain Guv from

H [Ĉu ∪ Ĉv] removing the fill edges between H [Ĉu] and H [Ĉv]. Then we can think of
G∗

uv as either obtained from Guv contracting the connected component in each side, or
directly defined on the cotree of H [Ĉu ∪ Ĉv] when we do not consider fill edges between
the children of tu and the children of tv.

Observation 5. Let T (H) be the cotree of a connected cograph completion H
of G and let t be the root of T (H) and tu, tv ∈ Q(t). G∗uv is connected if and
only if Guv is connected, where Ĉu = M(tu) and Ĉv = M(tv). Moreover, for
any element Yi ∈ C(G∗uv), M(Yi) ∈ C(Guv).

We can now rephrase Lemma 4 in terms of the cotree of H instead of H itself,
and using G∗uv instead of Guv.

Theorem 6. Let H be a cograph completion of a graph G and let T (H) be its
cotree. H is a minimal cograph completion of G if and only if for every 1-node
t of T (H) the graph G∗uv is connected for any two nodes tu, tv ∈ Q(t).

Characterizing and Computing Minimal Cograph Completions 153

It is quite straightforward to turn the previous theorem into a linear time algo-
rithm for deciding whether a given cograph completion is minimal.

Theorem 7. Let H = (V, E∪F) be a cograph completion of a graph G = (V, E).
Recognizing whether H is a minimal cograph completion of G can be done in
O(|V | + |E| + |F |) time.

Using the previous theorem, we can give an algorithm for extracting a minimal
cograph completion from a given one. The idea is very simple, on input G, H
we use the algorithm from Theorem 7 to check whether H is a minimal cograph
completion of G. If the answer is yes we can output H , while if the answer is no,
there must be a 1-node t of T (H) with children u and v such that the graph G∗uv

is disconnected. In that case Huv is a cograph completion of G[M(u) ∪ M(v)]
such that Huv ⊂ H [M(u) ∪ M(v)]. Thus H ′ = (H \ (M(u) ∪ M(v))) + Huv) is a
cograph completion of G such that H ′ ⊂ H . We can now reiterate this process
with H ′ as a candidate cograph completion. Since each such iteration can be done
in O(|V |+ |E|+ |F |) time and we remove at least one fill edge for each iteration,
this algorithm runs in O((|V | + |E| + |F |)|F |) time. One should notice that our
extraction algorithm has many similarities with the generic extraction algorithm
for sandwich monotone graph classes [14]. Similarly to sandwich monotonicity,
our characterization states that in some sense, a cograph completion is minimal
if and only if it is locally minimal.

Theorem 8. Given a cograph completion H = (V, E∪F) of a graph G = (V, E),
a minimal cograph completion H ′ with G ⊆ H ′ ⊆ H, can be computed in time
O((|V | + |E| + |F |) · |F |).

4 Computing a Minimal Cograph Completion Directly

In this section we give an algorithm to solve the problem of computing a minimal
cograph completion of an arbitrary input graph, in time linear in the size of the
output graph. We use a vertex incremental scheme proposed in [13] for comput-
ing minimal cograph completions. At all times we maintain a minimal cograph
completion of the part of the input graph that already has been considered. The
algorithm starts off with the empty graph and adds in the vertices of the input
graph one at a time, at each step updating the minimal completion by adding
fill edges incident to the new vertex. The main technical part of this section is
the design and analysis of an algorithm for one incremental step.

4.1 Adding a Vertex to a Cograph

In this section we give an algorithm for one incremental step of our completion
algorithm. Hereafter we use G = (V, E) to denote a cograph, unless otherwise
specified. Given a vertex x together with a list of vertices Nx ⊆ V , we denote
by Gx the graph obtained by adding x to G. That is, Gx = (V ∪ {x}, E ∪ {xy :
y ∈ Nx}). Given a cograph G and a vertex set Nx ⊆ V the algorithm computes

154 D. Lokshtanov, F. Mancini, and C. Papadopoulos

a vertex set S ⊆ V such that Nx ⊆ S and Hx = (V ∪ {x}, E ∪ {xy : y ∈ S}) is a
minimal cograph completion of Gx.

The algorithm is fairly simple. We start off with Gx and consider G = Gx −x.
If G is disconnected we only need to add edges to the connected components of
G that x is already adjacent to. If x is adjacent to only one connected component
we run the algorithm recursively on that connected component. However, if x
is adjacent to more than one connected component of G we make x universal
to all connected components of G that are adjacent to x. When G is connected
we have to be a bit more careful. The basic idea is the following: We try adding
x to a particular co-connected component Ĉ. To do this we have to make x
universal to all other co-connected components of G and make sure not to make
x universal to Ĉ. If we find out that x cannot be added to any co-connected
component in this way, we make x universal to all co-connected components of
G that x is adjacent to in Gx. In order to justify these choices, we will apply
Theorem 3.

Algorithm: Minimal x Cograph Completion – MxCC (G, Nx)
Input: A cograph G, and a set of vertices Nx which are to be made

adjacent to a vertex x /∈ V
Output: An inclusion minimal set S ⊆ V such that Nx ⊆ S and

Hx = (V ∪ {x}, E ∪ {xy : y ∈ S}) is a cograph
if G is connected then

if there are Ĉi ∈ Ĉ(G) and Cj ∈ C(G[Ĉi]) s.t. Ĉi ∩ Nx �= ∅ and
Cj ∩ Nx = ∅ then

S = MxCC(G[Ĉi], Nx ∩ Ĉi) ∪ (V \ Ĉi);
else

S =
⋃

Ĉi∈Ĉ(G) : Ĉi∩Nx �=∅ Ĉi;

else
if there is a Ci ∈ C(G) such that Nx ⊆ Ci then

S = MxCC(G[Ci], Nx);
else

S =
⋃

Ci∈C(G) : Ci∩Nx �=∅ Ci;

return S;

Observe that the algorithm always terminates because each recursive call takes
as an argument a subgraph of G induced by a strict subset of V . We are now
ready to prove the correctness of Algorithm MxCC.

Lemma 9. Given a cograph G and a set of vertices Nx, Algorithm MxCC
returns a set of vertices S such that Hx is a cograph completion of Gx.

Observation 10. If G is disconnected, Ci ∈ C(G), Nx ∩ Ci = ∅, and S =
MxCC(G, Nx) then S ∩ Ci = ∅.
Theorem 11. Given a cograph G and a set of vertices Nx, Algorithm MxCC
returns a set of vertices S such that Hx is a minimal cograph completion of Gx.

Characterizing and Computing Minimal Cograph Completions 155

4.2 Implementing Algorithm MxCC Using a Cotree Representation

In order to obtain a good running time for Algorithm MxCC we give an algo-
rithm that works directly on the cotree of the input graph. That is, we give an
algorithm, namely CMxCC, that takes as an input the cotree T (G) of a cograph
G and a set Nx of vertices in G and returns a set of vertices S of G so that Hx

is a minimal cograph completion of Gx. For a node t in T (G), recall that Q(t) is
the set of t’s children in T (G). Let Qx(t) = {ti ∈ Q(t) : M(ti) ∩ Nx �= ∅}. Thus
Qx(t) ⊆ Q(t).

Algorithm: Cotree Minimal x Cograph Completion – CMxCC (T, Nx)
Input: A cotree T of a cograph G = (V, E) and a set of vertices Nx which

are to be made adjacent to a vertex x /∈ V
Output: An inclusion minimal set S ⊆ V such that Nx ⊆ S and

Hx = (V ∪ {x}, E ∪ {xy : y ∈ S}) is a cograph

r = root(T) ;
if r is a 1-node then

if there is a t ∈ Qx(r) such that ∅ ⊂ Qx(t) ⊂ Q(t) then
S = CMxCC(Tt, Nx ∩ M(t)) ∪ (M(r) \ M(t));

else
S =

⋃
t∈Qx(r) M(t);

else
if there is a t ∈ Q(r) such that Qx(r) ⊆ {t} then

S = CMxCC(Tt, Nx);
else

S =
⋃

t∈Qx(r) M(t);

return S;

The correctness of the algorithm follows from the following two observations
which imply that Algorithm CMxCC returns the same set S as Algorithm
MxCC.

Observation 12. Let G be a connected cograph and let r be the root of T (G).
There are vertex sets Ĉi ∈ Ĉ(G) and Cj ∈ C(G[Ĉi]) such that Ĉi ∩ Nx �= ∅ and
Cj ∩ Nx = ∅ if and only if there is a node t ∈ Qx(r) such that ∅ ⊂ Qx(t) ⊂
Q(t) �= ∅.

Observation 13. Let G be a disconnected cograph and let r be the root of T (G).
There is a set Ci ∈ C(G) such that Nx ⊆ Ci if and only if there is a node t ∈ Q(r)
such that Qx(r) ⊆ {t}.

Now we are ready to prove a bound on the running time for computing a minimal
cograph completion Hx of Gx, and give the final theorem about the existence
of an algorithm to compute a minimal cograph completion in time linear in the
output graph.

156 D. Lokshtanov, F. Mancini, and C. Papadopoulos

Theorem 14. Given a cograph G and its cotree T (G), there is an algorithm
for computing the set of vertices S that are adjacent to x in a minimal cograph
completion of Gx which runs in O(|S| + 1) time.

Theorem 15. There is an algorithm for computing a minimal cograph comple-
tion H = (V, E ∪ F) of an arbitrary graph G = (V, E) in O(|V | + |E| + |F |)
time.

5 Concluding Remarks

We have studied minimal cograph completions from two different points of view.
Our results include an efficient algorithm for the computation problem and a
precise characterization of minimal cograph completions. Such characterizations
are rarely known for graph classes that do not have the sandwich monotone prop-
erty. This makes our characterization and the consequent extraction algorithm
particularly interesting. Observe that for other classes that are not sandwich
monotone, like comparability and proper interval graphs, there exists a com-
putation algorithm [13,25] while no characterization of minimal completions is
known.

Three interesting problems we leave open are:

1. Can one design a faster extraction algorithm, possibly linear in the size of
the given completion?

2. Does there exist a computation algorithm running in time linear in the size
of the input graph?

3. Is the problem of finding a minimum cograph completion of a graph obtained
by adding one vertex to a cograph polynomial time solvable?

To solve the first of these problems it might be enough to give a clever im-
plementation of our naive extraction algorithm. For the second one, we can not
use an explicit representation of the output graph H , since H can be much big-
ger than G. However, if we can accept the cotree of H as output, an algorithm
with running time linear in the size of G could be achievable. Examples of com-
pletion algorithms that produce minimal completions in time linear in the size
of input graph can be found in [12,14]. The third problem can be viewed as a
generalization of the problem solved in [24].

References

1. Berry, A., Heggernes, P., Villanger, Y.: A vertex incremental approach for dynam-
ically maintaining chordal graphs. Discrete Math. 306, 318–336 (2006)

2. Blair, J., Heggernes, P., Telle, J.A.: A practical algorithm for making filled graphs
minimal. Theoretical Computer Science 250, 125–141 (2001)

3. Bodlaender, H.L., Koster, A.M.C.A.: Safe separators for treewidth. Discrete
Math. 306, 337–350 (2006)

4. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. In: SIAM Mono-
graphs on Discrete Mathematics and Applications (1999)

Characterizing and Computing Minimal Cograph Completions 157

5. Burzyn, P., Bonomo, F., Durán, G.: NP-completeness results for edge modification
problems. Disc. Appl. Math. 154, 1824–1844 (2006)

6. Corneil, D.G., Lerchs, H., Stewart, L.K.: Complement reducible graphs. Disc. Appl.
Math. 3, 163–174 (1981)

7. Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs.
SIAM J. Comput. 14, 926–934 (1985)

8. El-Mallah, E., Colbourn, C.: The complexity of some edge deletion problems. IEEE
Transactions on Circuits and Systems 35, 354–362 (1988)

9. Fomin, F.V., Kratsch, D., Todinca, I.: Exact (Exponential) Algorithms for
Treewidth and Minimum Fill-In. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella,
D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 568–580. Springer, Heidelberg (2004)

10. Goldberg, P.W., Golumbic, M.C., Kaplan, H., Shamir, R.: Four strikes against
physical mapping of DNA. J. Comput. Bio. 2(1), 139–152 (1995)

11. Golumbic, M.C., Kaplan, H., Shamir, R.: Graph sandwich problems. J. Algo-
rithms 19, 449–473 (1995)

12. Heggernes, P., Mancini, F.: Minimal Split Completions of Graphs. In: Correa, J.R.,
Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 592–604. Springer,
Heidelberg (2006)

13. Heggernes, P., Mancini, F., Papadopoulos, C.: Making Arbitrary Graphs Transi-
tively Orientable: Minimal Comparability Completions. In: Asano, T. (ed.) ISAAC
2006. LNCS, vol. 4288, pp. 419–428. Springer, Heidelberg (2006)

14. Heggernes, P., Papadopoulos, C.: Single-Edge Monotonic Sequences of Graphs and
Linear-Time Algorithms for Minimal Completions and Deletions. In: Lin, G. (ed.)
COCOON 2007. LNCS, vol. 4598, pp. 406–416. Springer, Heidelberg (2007)

15. Heggernes, P., Suchan, K., Todinca, I., Villanger, Y.: Characterizing Minimal In-
terval Completions. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393,
pp. 236–247. Springer, Heidelberg (2007)

16. Heggernes, P., Telle, J.A., Villanger, Y.: Computing minimal triangulations in time
O(nα log n) = o(n2.376). In: Proceedings of SODA 2005 - 16th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 907–916 (2005)

17. Kashiwabara, T., Fujisawa, T.: An NP-complete problem on interval graphs. In:
IEEE Symp. of Circuits and Systems, pp. 82–83 (1979)

18. Natanzon, A., Shamir, R., Sharan, R.: A polynomial approximation algorithm for
the minimum fill-in problem. In: Proceedings of STOC 1998 - 30th Annual ACM
Symposium on Theory of Computing, pp. 41–47 (1998)

19. Cai, L.: Fixed-Parameter Tractability of Graph Modification Problems for Hered-
itary Properties. Inf. Process. Lett. 58(4), 171–176 (1996)

20. Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion
problems on chordal and interval graphs: Minimum Fill-in and Physical Mapping.
In: Proceedings of FOCS 2004 - 35th Annual Symposium on Foundations of Com-
puter Science, pp. 780–791 (2004)

21. Heggernes, P., Paul, C., Telle, J.A., Villanger, Y.: Interval Completion is Fixed Pa-
rameter Tractable. In: Proceedings of STOC 2007 - 39th Annual ACM Symposium
on Theory of Computing, pp. 374–381 (2007)

22. Dom, M., Guo, J., Hüffner, F., Niedermeier, R.: Error Compensation in Leaf Power
Problems. Algorithmica 44(4), 363–381 (2006)

23. Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge mod-
ification problems. Disc. Appl. Math. 113, 109–128 (2001)

24. Nikolopoulos, S.D., Palios, L.: Adding an Edge in a Cograph. In: Kratsch, D. (ed.)
WG 2005. LNCS, vol. 3787, pp. 214–226. Springer, Heidelberg (2005)

158 D. Lokshtanov, F. Mancini, and C. Papadopoulos

25. Rapaport, I., Suchan, K., Todinca, I.: Minimal Proper Interval Completions. In:
Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 217–228. Springer, Heidelberg
(2006)

26. Rose, D.J.: A graph-theoretic study of the numerical solution of sparse positive
definite systems of linear equations. In: Read, R.C. (ed.) Graph Theory and Com-
puting, pp. 183–217. Academic Press, New York (1972)

27. Suchan, K., Todinca, I.: Minimal Interval Completion Through Graph Exploration.
In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 517–526. Springer, Heidel-
berg (2006)

28. Bodlaender, H.L., Kloks, T., Kratsch, D., Müller, H.: Treewidth and Minimum
Fill-in on d-Trapezoid Graphs. J. Graph Algorithms Appl. 2(5), 1–28 (1998)

29. Kloks, T., Kratsch, D., Spinrad, J.: On treewidth and minimum fill-in of asteroidal
triple-free graphs. Theor. Comput. Sci. 175(2), 309–335 (1997)

30. Broersma, H.J., Dahlhaus, E., Kloks, T.: A linear time algorithm for minimum
fill-in and treewidth for distance hereditary graphs. Discrete Applied Mathemat-
ics 99(1), 367–400 (2000)

31. Kloks, T., Kratsch, D., Wong, C.K.: Minimum Fill-in on Circle and Circular-Arc
Graphs. Journal of Algorithms 28(2), 272–289 (1998)

32. Mancini, F.: Minimum Fill-In and Treewidth of Split+ ke and Split+ kv Graphs.
In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 881–892. Springer,
Heidelberg (2007)

33. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Alg.
Disc. Meth. 2, 77–79 (1981)

34. Berry, A., Heggernes, P., Simonet, G.: The Minimum Degree Heuristic and the Min-
imal Triangulation Process. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880,
pp. 58–70. Springer, Heidelberg (2003)

35. Bouchitté, V., Todinca, I.: Treewidth and Minimum Fill-in: Grouping the Minimal
Separators. SIAM J. Comput. 31(1), 212–232 (2001)

36. Villanger, Y.: Improved Exponential-Time Algorithms for Treewidth and Minimum
Fill-In. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887,
pp. 800–811. Springer, Heidelberg (2006)

37. Heggernes, P., Mancini, F.: Dinamically Mantaining Split Graphs. Tech report:
http://www.ii.uib.no/∼federico/papers/dynsplit-rev2.pdf

38. Bretscher, A., Corneil, D.G., Habib, M., Paul, C.: A Simple Linear Time LexBFS
Cograph Recognition Algorithm. In: Bodlaender, H.L. (ed.) WG 2003. LNCS,
vol. 2880, pp. 119–130. Springer, Heidelberg (2003)

39. Aho, A.V., Hopcroft, I.E., Ullman, J.D.: The design and analysis of computer
algorithms, ex. 2.12, p. 71. Addison-Wesley, Reading (1974)

http://www.ii.uib.no/~federico/papers/dynsplit-rev2.pdf

Efficient First-Order Model-Checking Using Short
Labels�

Bruno Courcelle��, Cyril Gavoille, and Mamadou Moustapha Kanté

Université de Bordeaux, LaBRI, CNRS, France
{courcell,gavoille,mamadou.kante}@labri.fr

Abstract. We prove that there exists an O(log(n))-labeling scheme
for every first-order formula with free set variables in every class of
graphs that is nicely locally cwd-decomposable, which contains in par-
ticular, the nicely locally tree-decomposable classes. For every class of
graphs of bounded expansion we prove that every bounded formula has
an O(log(n))-labeling scheme. We also prove that every quantifier-free
formula has an O(log(n))-labeling scheme in graphs of bounded arboric-
ity. Some of these results are extended to counting queries.

1 Introduction

The model-checking problem for a class of structures C and a logical language
L consists in deciding, for given S ∈ C and for some fixed sentence ϕ ∈ L if
S |= ϕ, i.e., if S satisfies the property expressed by ϕ. More generally, if ϕ is
a formula with free variables x1, . . . , xm one asks whether S |= ϕ(d1, . . . , dm)
where d1, . . . , dm are values given to x1, . . . , xm. One may also wish to list the
set of m-tuples (d1, . . . , dm) that satisfy ϕ in S, or simply count them.

Polynomial time algorithms for these problems (for fixed ϕ) exist for cer-
tain classes of structures and certain logical languages. In this sense graphs of
bounded degree “fit” with first-order (FO for short) logic [17,7] and graphs of
bounded tree-width or clique-width “fit” with monadic second-order (MSO for
short) logic. Frick and Grohe [8,9,11] have defined Fixed Parameter Tractable
(FPT for short) algorithms for FO model-checking problems on classes of graphs
that may have unbounded degree and tree-width (Definitions and Examples are
given in Section 4). We will also use graph classes introduced by Nešeťril and
Ossona de Mendez [15].

We will use the same tools for the following labeling problem: let be given a
class of graphs C and a property P (x1, . . . , xm, Y1, . . . , Yq) of vertices x1, . . . , xm

and of sets of vertices Y1, . . . , Yq of graphs in C. We want two algorithms, an
algorithm A that attaches to each vertex u of every n-vertex graph of C a label
L(u), defined as a sequence of 0’s and 1’s of length O(log(n)) or logO(1)(n),
and an algorithm B that checks property P (a1, . . . , am, W1, . . . , Wq) by using
� Research supported by the project “Graph decompositions and Algorithms

(GRAAL)” of “Agence Nationale pour la Recherche”.
�� Member of “Institut Universitaire de France”.

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 159–170, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

160 B. Courcelle, C. Gavoille, and M.M. Kanté

the labels. This latter algorithm must take as input the labels L(a1), . . . , L(am)
and the sets of labels L(W1), . . . , L(Wq) of the sets W1, . . . , Wq and tell whether
P (a1, . . . , am, W1, . . . , Wq) is true. Moreover each label L(u) identifies the vertex
u in the graph, which is possible with a sequence of length �log(n)�. An f(n)-
labeling scheme for a class of structures C is a pair (A, B) of functions solving
the labeling problem and using labels of size at most f(n) for n-vertex graphs
of C. Results of this type have been established for MSO logic by Courcelle
and Vanicat [5] and, for particular properties (connectivity queries, that are
expressible in MSO logic) by Courcelle and Twigg in [4] and by Courcelle et al.
in [2].

Let us review the motivations for looking for compact labelings of graphs. By
compact, we mean of length of order less than O(n), where n is the number of
vertices of the graph, hence in particular of length logO(1)(n).

In distributed computing over a communication network with underlying
graph G, nodes must act according to their local knowledge only. This knowl-
edge can be updated by message passing. Due to space constraints on the local
memory of each node, and on the sizes of messages, a distributed task cannot be
solved by representing the whole graph G in each node or in each message, but
it must rather manipulate more compact representations of G. Typically, the
routing task may use routing tables, that are sublinear in the size of G (prefer-
ably of poly-logarithmic size), and short addresses transmitted in the headers
of messages (of poly-logarithmic size too). As surveyed in [12] many distributed
tasks can be optimized by the use of labels attached to vertices. Such labels
should be usable even when the network has node or link crashes. They are
called forbidden-set labeling schemes in [4]. In this framework local informations
can be updated just by transmitting to all surviving nodes the list of (short)
labels of all defected nodes and links, so that the surviving nodes can update
their local information, e.g., their routing tables.

Let us comment about using set arguments. The forbidden (or defective) parts
of a network are handled as a set of vertices passed to a query as an argument.
This means that algorithm A computes the labels once and for all, independently
of the possible forbidden parts of the network. In other words the labeling sup-
ports node deletions from the given network. (Edge deletions are supported in
the labelings of [2] and [4].) If the network is augmented with new nodes and
links, the labels must be recomputed. We leave this incremental extension as a
topic for future research. Set arguments can be used to handle deletions, but
also constraints, or queries like “what are the nodes that are at distance at most
3 of X and Y ” where X and Y are two specified sets of nodes.

2 Notations and Definitions

All graphs and relational structures are finite. Let ϕ (x1, . . . , xm, Y1, . . . , Yq) be
a FO formula with free FO variables among x1, . . . , xm and free set variables
among Y1, . . . , Yq. Set variables are allowed in FO formulas but are not quanti-
fied. They occur in atomic formulas of the form “y ∈ Yi”. Gaifman’s Theorem

Efficient First-Order Model-Checking Using Short Labels 161

[10] and its stronger versions are valid for such formulas because “y ∈ Yi” is the
same as “Ri(y) holds” where Ri is a unary relation representing Yi.

Let S be a relational structure of type relevant with signature R, S =
〈DS , (RS)R∈R〉 with domain DS . A labeling of S is an injective mapping
J : DS → {0, 1}∗ (or into some more convenient set Σ∗ where Σ is a finite
alphabet). If Y ⊆ DS we let J (Y) be the family (J (y))y∈Y . Clearly Y is defined
from J (Y).

For a formula ϕ (x1, . . . , xm, Y1, . . . , Yq) and a class of structures C we are
interested in the construction of two algorithms A and B doing the following:

1. A constructs for each S ∈ C a labeling J of S such that |J (a) | = O (log (n))
for every a ∈ DS, where n = |DS |.

2. If J is computed from S by A, then B takes as input an (m + q)-tuple
(J (a1) , . . . , J (am) , J (W1) , . . . , J (Wq)) and says correctly whether:

S |= ϕ (a1, . . . , am, W1, . . . , Wq) .

In this case we say that the pair (A, B) defines an O (log (n))-labeling support-
ing the query defined by ϕ for the structures in C.

Labelings based on logical descriptions of queries have been defined by Cour-
celle and Vanicat [5] for MSO queries and graphs of bounded clique-width
(whence also of bounded tree-width). Applications to distance and connectiv-
ity queries in graphs of bounded clique-width and in planar graphs have been
given by Courcelle and Twigg in [4] and by Courcelle, Gavoille, Kanté and Twigg
in [2]. In the present article, we consider classes of graphs of unbounded clique-
width and in particular, classes that are locally decomposable (Frick and Grohe
[8,9]) and classes of bounded expansion (Nešeťril and Ossona de Mendez [15]).
So, MSO logic cannot be achieved, we are thus obliged to consider FO logic.

In this extended abstract we only consider vertex-labeled graphs. The exten-
sion to structures can be done in a standard way through the so-called Gaifman
graphs. A Σ-labeled graph is G = 〈VG, edgG (·, ·) , (laba,G)a∈Σ〉 (vertices, edge
relations and unary relation for vertex labels).

By replacing everywhere “clique-width”, “local clique-width”, etc. by “tree-
width”, “local tree-width”, etc., one can handle formulas with edge-set quantifi-
cations.

Definition 1 (Logic)
An FO formula ϕ (x1, . . . , xm, Y1, . . . , Yq) is basic bounded if for some p ∈ N

we have the following equivalence for all graphs G, all a1, . . . , am ∈ VG and all
W1, . . . , Wq ⊆ VG

G |= ϕ (a1, . . . , am, W1, . . . , Wq) iff G[X] |= ϕ (a1, . . . , am, W1 ∩ X, . . . , Wq ∩ X)

for some X ⊆ VG such that |X | ≤ p and a1, . . . , am ∈ X . (If this is true for X ,
then G[Y] |= ϕ(a1, . . . , am, W1 ∩ Y, . . . , Wq ∩ Y) for every Y ⊇ X .)

An FO formula is bounded if it is a Boolean combination of basic bounded for-
mulas. In particular, the negation of a basic bounded formula is not (in general)
basic bounded, but it is bounded.

162 B. Courcelle, C. Gavoille, and M.M. Kanté

An FO formula ϕ (x1, . . . , xm, Y1, . . . , Yq) is t-local around (x1, . . . , xm) if for
every G and, every a1, . . . , am ∈ VG, W1, . . . , Wq ⊆ VG we have

G |= ϕ (a1, . . . , am, W1, . . . , Wq) iff G[N] |= ϕ (a1, . . . , am, W1 ∩ N, . . . , Wq ∩ N)

where N = N t
G (a1, . . . , am) = {y ∈ VG | d (y, ai) ≤ t for some i = 1, . . . , m} and

d (u, v) is the length of a shortest undirected path between u and v in G.
An FO sentence is basic (t, s)-local if it is equivalent to a sentence of the form

∃x1 · · · ∃xs

⎛

⎝
∧

1≤i<j≤s

d (xi, xj) > 2t ∧
∧

1≤i≤s

ψ (xi)

⎞

⎠

where ψ (x) is t-local around its unique free variable x.

Remark. The query d (x, y) ≤ r is basic bounded (p = r + 1) and t-local
with t = �r/2�. Its negation d (x, y) > r is t-local and bounded (but not basic
bounded).

3 Graphs

We are interested in on-line checking properties of networks in case of (re-
ported) failures. Hence for each property of interest ϕ (x1, . . . , xm) we are not
only interested in checking if G |= ϕ (a1, . . . , am) by using J (a1) , . . . , J (am)
where a1, . . . , am ∈ VG but also in checking G\X |= ϕ (a1, . . . , am) by using
J (a1) , . . . , J (am) and J (X) where X ⊆ VG − {a1, . . . , am} and G\X is the
subgraph of G induced on VG − X .

However, G\X |= ϕ (a1, . . . , am) for a FO formula ϕ(x1, . . . , xm) is equivalent
to G |= ϕ′ (a1, . . . , am, X) and to GX |= ϕ′′ (a1, . . . , am) for FO formulas
ϕ′(x1, . . . , xm, Y) and ϕ′′(x1, . . . , xm) that are easy to write. We denote by GX

the graph G equipped with an additional vertex-label. Hence, we consider GX as
the structure G augmented with a unary relation lab such that labGX (u) holds
iff u ∈ X . We will handle “holes” in graphs by means of set variables.

A graph has arboricity at most k if it is the union of k-edge disjoint forests
(independently of the orientations of its edges).

Classes with bounded expansion, defined in [15] have several equivalent char-
acterizations. We will use the following one: a class C has bounded expansion if
for every integer p, there exists a constant N (C, p) such that for every G ∈ C,
one can partition VG in at most N (C, p) parts such that any i ≤ p of them
induce a subgraph of tree-width at most i − 1. (For i = 1 this implies that each
part is a stable set, hence the partition can be seen as a proper vertex-coloring.)

4 Locally Decomposable Classes

We refer to [16] and to [3,5] for the definitions of tree-width and of clique-width
respectively. (We denote by cwd(G) the clique-width of a graph G). We will use
the same notations as in [8,9]. Definition 2 is analogous to [9, Definition 5.1].

Efficient First-Order Model-Checking Using Short Labels 163

Definition 2

1. The local clique-width of a graph G is the function lcwG : N → N defined by
lcwG(t) := max{cwd(G[N t

G (a)]) | a ∈ VG}.
2. A class C of graphs has bounded local clique-width if there is a function

f : N → N such that lcwG (t) ≤ f (t) for every G ∈ C and t ∈ N.

Examples

1. Every class of graphs of bounded clique-width has also bounded local clique-
width since cwd(G[A]) ≤ cwd(G) for every A ⊆ VG (see [3]).

2. The classes of graphs of bounded local tree-width have bounded local clique-
width since every class of graphs of bounded tree-width has bounded clique-
width (see [3]). We can cite graphs of bounded degree and minor-closed
classes of graphs that do not contain all apex-graphs (see [8,9]) as examples
of classes of bounded local tree-width.

3. The class of unit-interval graphs has bounded local clique-width (using re-
sults from [14]) but neither bounded clique-width nor bounded local tree-
width.

4. The class of interval graphs has not bounded local clique-width.

In order to obtain an O (log (n))-labeling for certain classes of graphs of bounded
local clique-width, we cover them as in [8,9], by graphs of small clique-width in a
suitable way. In [8] a notion of nicely locally tree-decomposable class of structures
was introduced. We will define a slightly more general notion.

Definition 3. Let r, l ≥ 1 and g : N → N. An (r, l, g)-cwd cover of a graph G
is a family T of subsets of VG such that:

1. For every a ∈ VG there exists a U ∈ T such that N r
G (a) ⊆ U .

2. For each U ∈ T there exist less than l many V ∈ T such that U ∩ V �= ∅.
3. For each U ∈ T we have cwd(G[U]) ≤ g(1).

An (r, l, g)-cwd cover is nice if condition 3 is replaced by condition 3’ below:

3’. For all U1, . . . , Uq ∈ T and q ≥ 1 we have cwd(G[U1 ∪ · · · ∪ Uq]) ≤ g(q).

A class C of graphs is locally cwd-decomposable (resp. nicely locally cwd-
decomposable) if there is a polynomial time algorithm that given a graph G ∈ C
and r ≥ 1, computes an (r, l, g)-cwd cover (resp. a nice (r, l, g)-cwd cover) of G
for suitable l, g depending on r. (These two definitions are the same as in [9,8]
where we substitute clique-width to tree-width.)

Examples

1. It is clear that every nicely locally cwd-decomposable class is locally cwd-
decomposable and the converse is not true.

2. Each class of nicely locally tree-decomposable structures [8] is nicely locally
cwd-decomposable.

164 B. Courcelle, C. Gavoille, and M.M. Kanté

3. Let G be a unit-interval graph. Using results from [14, Theorems 1,3 and
Corollary 5] one can prove that G has an (r, r, f(2r + 1))-cwd cover where f
is the function that bounds local clique-width of unit-interval graphs. Thus
every class of unit-interval graphs is locally cwd-decomposable.

4. Figure 1 shows inclusion relations between the many classes defined in Sec-
tions 3 and 4. It completes the diagram [9, Figure 2].

Excludes a Minor

Locally cwd−decomposable

nicely Locally tree−decomposable

Bounded Degree Planar

Bounded Local Tree−Width

Bounded Local Clique−Width

Bounded Arboricity

nicely Locally cwd−decomposable Th.4(3,4)

Bounded Expansion Th.4(2)

Th.4(1)

Th.4(3,5), Th.7

Fig. 1. Inclusion diagram indicating which results apply to which classes. An arrow
means an inclusion of classes. Bold boxes are proved in this paper.

5 Results

The main results are as follows. In each case we consider labeled graphs over a
finite set Σ of vertex-labels.

Theorem 4 (First Main Theorem). There exist O (log (n))-labeling schemes
for the following queries and graph classes:

1. Quantifier-free queries in graphs of bounded arboricity.
2. Bounded FO queries for each class of graphs of bounded expansion.
3. Local queries with set arguments on locally cwd-decomposable classes.

Efficient First-Order Model-Checking Using Short Labels 165

4. FO queries without set arguments on locally cwd-decomposable classes.
5. FO queries with set arguments on nicely locally cwd-decomposable classes.

We recall that for graphs G of clique-width at most k, there exists a cubic time
algorithm that computes a cwd-term that defines G without being optimal [13].
(It uses 2k+1 − 1 labels, hence does not witness cwd(G) ≤ k; however this term
is enough for using [5].) And if a graph G has tree-width at most k, there exists
a linear time algorithm that computes a tree-decomposition of width k of G [1].
We will also use results by Gaifman [10], Frick and Grohe [9,8] recalled below.

Theorem 5 ([10]). Let ϕ(x̄) be a FO formula where x̄ =
(x1, . . . , xm). Then ϕ is logically equivalent to a Boolean combination
B (ϕ1(ū1), . . . , ϕp(ūp), ψ1, . . . , ψh) where:

– each ϕi is a t-local formula around ūi ⊆ x̄.
– each ψi is a basic (t′, s)-local sentence.

Moreover B can be computed effectively and, t, t′ and s can be bounded in terms
of m and the quantifier-rank of ϕ.

We will use a stronger form from [8]. Let m, t ≥ 1. The t-distance type of an
m-tuple ā is the undirected graph ε = ([m], edgε) where edgε(i, j) iff d(ai, aj) ≤
2t + 1. The satisfaction of a t-distance type by an m-tuple can be expressed by
a t-local formula:

ρt,ε(x1, . . . , xm) :=
∧

(i,j)∈edgε

d(xi, xj) ≤ 2t + 1 ∧
∧

(i,j)/∈edgε

d(xi, xj) > 2t + 1.

We recall that Gaifman’s Theorem and its variants extend to FO formulas
with set variables.

Lemma 1 ([8]). Let ϕ(x̄, Y1, . . . , Yq) be a t-local formula around
x̄ = (x1, . . . , xm), m ≥ 1. For each t-distance type ε with ε1, . . . , εp

as connected components, one can compute a Boolean combination
F t,ε(ϕ1,1, . . . , ϕ1,j1 , . . . , ϕp,1, . . . , ϕp,jp) of formulas ϕi,j with FO free variables
among those of x̄ and set arguments in {Y1, . . . , Yq} such that:

– The FO free variables of each ϕi,j are among x̄ | εi (x̄ | εi is the restriction
of x̄ to εi).

– ϕi,j is t-local around x̄ | εi.
– For each m-tuple ā, each q-tuple of sets W1, . . . , Wq, G |= ρt,ε(ā) ∧ ϕ(ā, W1,

. . . , Wq) iff G |= ρt,ε(ā) ∧ F t,ε(. . . , ϕi,j(ā | εi, W1, . . . , Wq), . . .).

The lemma below is an easy adaptation of the results in [9].

Lemma 2 ([9]). Let G be in a locally cwd-decomposable class. Every basic (t, s)-
local sentence can be decided in polynomial time.

We now give the proofs of each statement of Theorem 4 (except statement 1
because of space constraints). For clarity, we give them separately.

166 B. Courcelle, C. Gavoille, and M.M. Kanté

Proof (of Theorem 4 (2)). Let ϕ be a basic bounded formula with bound p and
at least one free FO variable. We let N = N(C, p) and we partition VG into
V1 � V2 � · · · � VN as in the definition, Vi �= ∅.

For every α ⊆ [N] of size p we let Vα =
⋃

i∈α Vi so that the tree-width of
G[Vα] is at most p − 1. Each vertex u belongs to less than (N − 1)p−1 sets Vα.

Hence a basic bounded formula ϕ(x1, . . . , xm, Y1, . . . , Yq) is true in G iff it is
true in some G[X] with |X | ≤ p, hence in some G[Vα] such that x1, . . . , xm ∈ Vα.
For each α we construct a labeling Jα of G[Vα] (of tree-width at most p − 1)
supporting query ϕ by using [5]. We let J(x) =

(
�x�, {(�α�, Jα(x)) | x ∈ Vα}

)
.

We have |J(x)| = O(log(n)).
We now explain how to decide ϕ by using the labels only. Given J(a1),

. . . , J(am) we can determine all those sets α such that Vα contains a1, . . . , am. Us-
ing the components Jα(·) of J(a1), . . . , J(am) and the labels in J(W1), . . . , J(Wq)
we can determine if for some α, G[Vα] |= ϕ(a1, . . . , am, W1 ∩ Vα, . . . , Wq ∩ Vα)
hence whether G |= ϕ(a1, . . . , am, W1, . . . , Wq).

It remains to consider the case of a basic bounded formula of the form
ϕ(Y1, . . . , Yq). For each α we determine the truth value tα of ϕ(∅, . . . , ∅) in
G[Vα]. The family of pairs (α, tα) is of fixed size (depending on p) and is
appended to J(x) defined as above. From J(W1), . . . , J(Wq) we get D =
{α | Vα ∩ (W1 ∪ · · · ∪ Wq) �= ∅}.

By using the Jα(·) components of the labels in J(W1) ∪ · · · ∪ J(Wq) we can
determine if for some α ∈ D we have G[Vα] |= ϕ(W1 ∩ Vα, . . . , Wq ∩ Vα). If one
is found we conclude positively. Otherwise we look for some tβ = True where
β /∈ D. This gives the final answer.

For a Boolean combination of basic bounded formulas ϕ1, . . . , ϕt with associ-
ated labelings J1, . . . , Jt we take the concatenation J1(x) • J2(x) • · · · • Jt(x). It
is of size O(log(n)) and gives the desired result. ��

Proof (of Theorem 4 (3)). Let ϕ(x̄, Y1, . . . , Yq) be a t-local formula around x̄ =
(x1, . . . , xm), m ≥ 1. Then G |= ϕ(ā, W1, . . . , Wq) iff G[N t

G(ā)] |= ϕ(ā, W1 ∩
N t

G(ā), . . . , Wq ∩ N t
G(ā)). Let ε be a t-distance type with ε1, . . . , εp as connected

components. By Lemma 1, G |= ρt,ε(ā) ∧ ϕ(ā, W1, . . . , Wq) iff G |= ρt,ε(ā) ∧
F t,ε(ϕ1,1(ā | ε1, W1, . . . , Wq), . . . , ϕp,jp(ā | εp, W1, . . . , Wq)).

We let T be an (r, l, g)-cwd cover of G where r = m(2t + 1). We use such
an r in order to warranty that if a1, . . . , am are in a connected component of a
t-distance type, there exists a U ∈ T such that N t

G(a1, . . . , am) ⊆ U . For each
vertex x there exist less than l many V ∈ T such that x ∈ V . We assume that
each U ∈ T has an index encoded as a bit string �U�. There are at most n · l
sets in T . Hence �U� has length O(log(n)).

By the results of [5] we can label each vertex with a label K(x) of length
O(log(n)) and decide in O(log(n))-time if d(u, v) ≤ 2t + 1 or not by using K(u)
and K(v)1. We build a labeling KU for each U ∈ T ; then for each x we let
K(x) =

(
�x�, {

(
�U�, KU(x)

)
| N(x) ⊆ U}, {

(
�U�, KU(x)

)
| N(x) � U}

)
.

where N(x) = N2t+1
G (x). (We always assume that x ∈ N t

G(x) for all t ∈ N.)
1 For checking if d(u, v) ≤ 2t + 1, an (r′, l′, g′)-cwd cover suffices, with r′ = 2t + 1.

Efficient First-Order Model-Checking Using Short Labels 167

By [5] for each ϕi,j(x̄ | εi, Y1, . . . , Yq) and each U ∈ T we can label each vertex
x ∈ U with Jε

i,j,U (x) of length O(log(n)) and decide ϕi,j(ā | εi, W1, . . . , Wq) in
G[U] by using

(
Jε

i,j,U (b)
)
b∈ā |εi

and Jε
i,j,U (W1 ∩U), . . . , Jε

i,j,U (Wq ∩ U). For each
x we let

Jε(x) :=
{(

�U�, Jε
1,1,U (x), . . . , Jε

1,j1,U (x), . . . , Jε
p,1,U (x), . . . , Jε

p,jp,U (x)
)

| N t
G(x) ⊆ U

}
.

It is clear that |Jε(x)| = O(log(n)) since each x is in less than l many V ∈ T .
There exist at most k′ = 2k(k−1)/2 t-distance type graphs; we enumerate them
by ε1, . . . , εk′

. For each x we let J(x) := (�x�, K(x), Jε1(x), . . . , Jεk′ (x)).
From the labels K(x), we can determine {�U� | U ∈ T , x ∈ U}, hence the

sets U ∈ T such that W ∩ U �= ∅, W ⊆ VG, where W is a set argument. It is
clear that J(x) is of length O(log(n)) and is computed in polynomial time since
T is computed in polynomial time and each Jε is computed in polynomial time.
We now explain how to decide whether G |= ϕ(a1, . . . , am, W1, . . . , Wq) by using
J(a1), . . . , J(am) and J(W1), . . . , J(Wq).

By using K(a1), . . . , K(am) from J(a1), . . . , J(am) we can construct the t-
distance type ε satisfied by a1, . . . , am; let ε1, . . . , εp be the connected components
of ε. From each J(ai) we can recover Jε(ai). For each ā | εi there exists at least
one U ∈ T such that N t

G(ā | εi) ⊆ U . We can recover them (there are less than
l) from the J(b), b ∈ ā | εi. We can now decide whether G |= F t,ε(ϕ1,1(ā |
ε1, W1 ∩ U1, . . . , Wq ∩ U1), . . . , ϕp,jp(ā | εp, W1 ∩ Up, . . . , Wq ∩ Up)) for some
U1, . . . , Up determined from J(a1), . . . , J(am). By using also J(W1), . . . , J(Wq)
we can determine the sets Wi ∩ Uj and this is sufficient by Lemma 1. ��

Proof (of Theorem 4 (4)). Let ϕ(x1, . . . , xm) be a FO formula without set ar-
guments. By Theorem 5 ϕ is equivalent to a Boolean combination B(ϕ1(x̄), . . . ,
ϕp(x̄), ψ1, . . . , ψh) where ϕi is t-local and ψi is a basic (t′, s)-local sentence for
suitable t, t′, s.

By Lemma 2 one can decide in polynomial time each sentence ψi. Let b =
(b1, . . . , bh) where bi = 1 if G satisfies ψi and 0 otherwise. For each 1 ≤ i ≤ p we
construct a labeling Ji supporting query ϕi by Theorem 4 (3) (G belongs to a
locally cwd-decomposable class and ϕi is a t-local formula around x̄). For each
x we let J(x) := (�x�, J1(x), . . . , Jp(x), b).

It is clear that |J(x)| = O(log(n)). Since from b one can recover the truth
value of each sentence ψi, we can decide whether G |= ϕ(a1, . . . , am) by using
J(a1), . . . , J(am), the truth values of ϕi(ā) and b. ��

Proof (of Theorem 4 (5)). By Theorem 4 (3) it is sufficient to consider FO
formulas ϕ(Y1, . . . , Yq) of the form:

∃x1 · · · ∃xm

⎛

⎝
∧

1≤i<j≤m

d(xi, xj) > 2t ∧
∧

1≤i≤m

ψ(xi, Y1, . . . , Yq)

⎞

⎠

where ψ(x, Y1, . . . , Yq) is t-local around x. We show how to check their validity
by means of O(log(n))-labelings.

168 B. Courcelle, C. Gavoille, and M.M. Kanté

We consider for purpose of clarity the particular case of m = 2. Let T be a nice
(r, l, g)-cwd cover of G where r = 2t + 1. We let K(U) = {x ∈ U | N2t

G (x) ⊆ U}
(the 2t-kernel of U (see [8])).

We let γ be a distance-2 coloring of the intersection graph of T (vertices at
distance 1 or 2 have different colors). For every 2 colors i, j we let Gi,j be the
graph induced by the union of the blocks U ∈ T of colors i and j.

Claim 1. cwd(Gi,j) ≤ g(2).

Proof (of Claim 1). Gi,j is a disjoint union of sets U in T and of unions U ∪ U ′

with U ∩ U ′ �= ∅ for U, U ′ ∈ T . This union is disjoint because if U ∪ U ′ with
U ∩ U ′ �= ∅ would meet some U ′′ ∈ T , U ′′ �= U, U ′′ �= U ′, then we would have
γ(U) = i, γ(U ′) = j and U ′′ meets U or U ′. It cannot have color i or j because
γ is a distance-2 coloring. Since cwd(G[U ∪ U ′]) ≤ g(2), we are done. ��

Claim 2. Let x ∈ K(U) and y ∈ K(U ′) for some U, U ′ ∈ T . Then dG(x, y) > 2t
iff dG[U∪U ′](x, y) > 2t.

Proof (of Claim 2). The “if direction” is clear since distance increases if we go
to induced subgraphs.

For the “converse direction”, we let dG(x, y) ≤ 2t; there exists a path of length
≤ 2t from x to y. This path is in U ∪ U ′ since x ∈ K(U) and y ∈ K(U ′). Hence
it is also in G[U ∪ U ′], hence dG[U∪U ′] ≤ 2t. ��

Let us now give to each vertex x of G the smallest color i such that x ∈ K(U)
and γ(U) = i. Hence a vertex has one and only one color. For each pair i, j we
consider the formula ψi,j (possibly j = i):

∃x, y
(
d(x, y) > 2t ∧ ψ(x, Y1, . . . , Yq) ∧

ψ(y, Y1, . . . , Yq) ∧ “x has color i” ∧ “y has color j”
)

We use [5] to construct a labeling Ji,j for the formula ψi,j in the graph Gi,j

(with vertices colored by i or j, that is, we use new unary “color” predicates).
We compute the truth value bi,j of ψi,j(∅, . . . , ∅) in Gi,j ; we get a vector b of
fixed length. We also label each vertex x by its color. We concatenate to that b
and the Ji,j(x) for x ∈ VGi,j , giving J(x).

From J(W1), . . . , J(Wq) we can determine those Gi,j such that VGi,j ∩ (W1 ∪
· · · ∪ Wq) �= ∅, and check if for one of them Gi,j |= ψi,j(W1, . . . , Wq). If one
is found we are done. Otherwise we use the bi,j ’s to look for Gi,j such that
Gi,j |= ψi,j(∅, . . . , ∅) and (W1 ∪ · · · ∪ Wq) ∩ VGi,j = ∅. This gives the correct
results because of the following facts:

– If x, y satisfy the formula ϕ, then x ∈ K(U), y ∈ K(U ′) (possibly U = U ′)
and dG(x, y) > 2t implies dGi,j (x, y) > 2t, hence Gi,j |= ψi,j(W1, . . . , Wq)
where i = γ(U) and j = γ(U ′).

– If Gi,j |= ψi,j(W1, . . . , Wq) then we get G |= ϕ(W1, . . . , Wq) by similar
argument (in particular dGi,j (x, y) > 2t implies dG[U∪U ′](x, y) > 2t which
implies that dG(x, y) > 2t by Claim 2).

Efficient First-Order Model-Checking Using Short Labels 169

For m = 1, the proof is similar with γ a proper (distance-1) coloring and we
use Gi instead of Gi,j .

For the case m > 2, the proof is the same: one takes for γ a distance-m
proper coloring of the intersection graph, one considers graphs Gi1,...,im defined
as (disjoint) unions of sets U1 ∪ · · · ∪ Um for U1, . . . , Um in T , of respective
colors i1, . . . , im and cwd(G[U1 ∪ · · · ∪ Um]) ≤ g(m). This terminates the proof
of Theorem 4. ��
Let us ask a very general question: what can be done with O (log (n)) labels ?
Here is a fact that limits the extension of these results.

Proposition 1. There exists a constant c > 0 such that one cannot handle all
local or bounded FO queries for n-vertex graphs of arboricity at most 2 with labels
of size c

√
n.

We now discuss extension to counting queries. Let ϕ (x1, . . . , xm, Y1, . . . , Yq) be
a MSO formula and S be a finite structure. For W1, . . . , Wq ⊆ DS we define

#Sϕ (W1, . . . , Wq) :=
∣∣∣
{

(a1, . . . , am) ∈ Dm
S | S |= ϕ (a1, . . . , am, W1, . . . , Wq)

}∣∣∣

A counting query consists in determining #Sϕ (W1, . . . , Wq) for given
(W1, . . . , Wq). We will need the following extension of the results of [5].

Theorem 6. Let ϕ (x1, . . . , xm, Y1, . . . , Yq) be a MSO formula over labeled
graphs and k ∈ N. There exists an O

(
log2 (n)

)
-labeling scheme for n-vertex

graphs of clique-width or tree-width at most k supporting the counting query
#Gϕ. For computing #Gϕ (W1, . . . , Wq) modulo some fixed integer s, or up to s
(threshold counting) we need only labels of size O (log (n)).

We now state our second main theorem. The proof is omitted because of space
constraints.

Theorem 7 (Second Main Theorem). There exists an O(log2(n))-labeling
scheme for counting queries based on FO formulas for nicely locally cwd-
decomposable classes. O(log(n)) is enough for modulo counting.

We conjecture that the results of Theorem 4 (3,4,5) extend to classes of graphs
excluding, or locally excluding a minor [6,11].

Question. Does there exist an O(log(n))-labeling scheme for FO formulas with
set arguments on locally cwd-decomposable classes ?

References

1. Bodlaender, H.L.: A Linear-Time Algorithm for Finding Tree-Decompositions of
Small Tree-width. SIAM J. Comput. 25(6), 1305–1317 (1996)

2. Courcelle, B., Gavoille, C., Kanté, M.M., Twigg, A.: Optimal Labeling for Connec-
tivity Checking in Planar Networks with Obstacles. (manuscript, 2008); An extended
abstract will appear in Electronic Notes in Discrete Mathematics. In: Proceedings of
the first Conference Topological and Geometric Graph Theory, Paris (2008)

170 B. Courcelle, C. Gavoille, and M.M. Kanté

3. Courcelle, B., Olariu, S.: Upper Bounds to the Clique-Width of Graphs. Discrete
Applied Mathematics 101(1-3), 77–114 (2000)

4. Courcelle, B., Twigg, A.: Compact Forbidden-Set Routing. In: Thomas, W., Weil,
P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 37–48. Springer, Heidelberg (2007)

5. Courcelle, B., Vanicat, R.: Query Efficient Implementation of Graphs of Bounded
Clique-Width. Discrete Applied Mathematics 131(1), 129–150 (2003)

6. Dawar, A., Grohe, M., Kreutzer, S.: Locally Excluding a Minor. In: 22nd IEEE
Symposium on Logic in Computer Science (LICS), pp. 270–279. IEEE Computer
Society, Los Alamitos (2007)

7. Durand, A., Grandjean, E.: First-Order Queries on Structures of Bounded Degree
are Computable with Constant Delay. ACM Trans. Comput. Log 8(4) (2007)

8. Frick, M.: Generalized Model-Checking over Locally Tree-Decomposable Classes.
Theory Comput. Syst. 37(1), 157–191 (2004)

9. Frick, M., Grohe, M.: Deciding First-Order Properties of Locally Tree-
Decomposable Structures. J. ACM 48(1), 1184–1206 (2001)

10. Gaifman, H.: On Local and Non-Local Properties. In: Proceedings of the Herbrand
Symposium Logic Colloquium 1981, pp. 105–135 (1982)

11. Grohe, M.: Logic, Graphs and Algorithms. In: Flum, Grädel, Wilke (eds.) Logic,
Automata, History and Perspectives, pp. 357–422. Amsterdam University Press
(2007)

12. Gavoille, C., Peleg, D.: Compact and Localized Distributed Data Structures. Dis-
tributed Computing 16(2-3), 111–120 (2003)

13. Hliněný, P., Oum, S.: Finding Branch-Decompositions and Rank-Decompositions.
In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 163–
174. Springer, Heidelberg (2007)

14. Lozin, V.: Clique-Width of Unit Interval Graphs. arXiv:0709.1935 (manuscript,
2007)

15. Nešetřil, J., Ossona de Mendez, P.: Linear Time Low Tree-Width Partitions and
Algorithmic Consequences. In: Kleinberg, J.M. (ed.) 38th Annual ACM Symposium
on Theory of Computing (STOC), pp. 391–400. ACM, New York (2006)

16. Robertson, N., Seymour, P.: Graph Minors V: Excluding a Planar Graph. J. Com-
bin. Theory Ser. B 41(1), 92–114 (1986)

17. Seese, D.: Linear Time Computable Problems and First-Order Descriptions. Math-
ematical Structures in Computer Science 6(6), 505–526 (1996)

Matching for Graphs of Bounded Degree

Yijie Han

School of Computing and Engineering
University of Missouri at Kansas City

Kansas City, MO 64110, USA
hanyij@umkc.edu

Abstract. We show that there exists a matching with 4m
5k+3 edges in a

graph of degree k and m edges.

Keywords: Matching, lower bound.

1 Introduction

Matching is an extensively studied topic. The question we want to address here
is the size of a maximum matching in a graph. Earlier researchers studied the
problem of the existence of a perfect matching (i.e. a matching of size n/2 with
n vertices in a graph). Petersen [5] showed that a bridgeless cubic graph has a
perfect matching. König [3] showed that there exists a perfect matching in any
k-regular bipartite graph. Tutte [6] characterizes when a graph has a perfect
matching. For graphs without a perfect matching the size of a maximum match-
ing is studied. Nishizeki and Baybars [4] showed that any 3-connected planar
graphs has a matching of size at least (n+4)/3 for n ≥ 22. Biedl et al. [1] raised
the question whether a bound better than m/(2k − 1) can be obtained for the
size of a maximum matching in a graph of m edges and degree k. Recently Feng
et al. [2] showed a lower bound of 2m/(3k − 1) (for k ≥ 3) for this problem.

In this paper we give a lower bound of a 4m/(5k+3)-size matching for a graph
of m edges and degree k. Here the degree of a graph is the maximum degree of
any vertex of the graph.

2 The Bound

Assume that a maximum matching M is obtained for the input graph with m
edges. Vertices incident to an edge in the matching are saturated vertices. Ver-
tices not incident to any edge in the matching are unsaturated vertices. Without
loss of generality we can assume that the input graph is connected. If the graph
has no unsaturated vertex then for each edge e in the matching we can have at
most 1+(2k−2) edges incident to e. Among which 1 is the edge in the matching
and 2k − 2 are nonmatching edges. However, when we are counting this way the
nonmatching edges are counted twice, once from each vertex they are incident
to. Therefore we have that |M |(2 + (2k − 2)) ≥ 2m, i.e. |M | ≥ m/k. Therefore
we assume that there is at least one unsaturated vertex.

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 171–173, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

172 Y. Han

Since any alternating path starting from an unsaturated vertex a cannot end
at another unsaturated vertex b (for otherwise an augmenting path exists), the
only possibility for an alternating path to start from an unsaturated vertex and
end at an unsaturated vertex is that the starting unsaturated vertex and the
ending unsaturated vertex are the same vertex. If this happens and say such an
alternating path is a, a1, a2, ..., ar, a, then both a1 and ar have only one neighbor
which is unsaturated (which is a in this case) for otherwise an augmenting path
exists. In this case we remove edge (ar, a) and therefore all alternating paths
starting from an unsaturated vertex do not end at an unsaturated vertex. We
have thus removed no more than |M | nonmatching edges from the input graph.
Let (a, b) be an edge in the matching, If a or b has a neighboring vertex which is
unsaturated we say that (a, b) is an outer matching edge. Otherwise we say that
(a, b) is an inner matching edge. Let M1 be the set of outer matching edges and
M2 be the set of inner matching edges. For each matching edge in M1 we will
call the vertex of the edge which has an unsaturated neighbor the outer vertex
and the vertex which has no unsaturated neighbors the inner vertex. There are
no more than |M1|(k − 1) nonmatching edges incident to outer vertices. Any
nonmatching edge cannot be incident to two inner vertices for otherwise an
augmenting path exists. We put nonmatching edges in three sets N1, N2, N3. N1
is the set of edges incident to an outer vertex. N2 is the set of edges incident to
an inner vertex and a vertex in M2. N3 is the set of edges incident to vertices in
M2 only. Then

|N1| + |N2| + |N3| + |M | ≥ m − |M |.

The number of nonmatching edges incident to vertices in M2 is no more than
|M2|(2k − 2). Among which there are 2|N3| edges incident to vertices in M2
only and |N2| edges incident to vertices both in M1 and M2. Thus we have
|N3| + |N2|/2 ≤ |M2|(k − 1). Also we have that |N1| ≤ |M1|(k − 1) and |M1| +
|M2| = |M |. Therefore we have that

|M1|(k + 1) + |M2|(k + 1) + |N2|/2 ≥ |N1| + |N2| + |N3| + 2|M | ≥ m.

We have that |M1|(k − 1) ≥ |N2| (these edges cannot be incident to outer
vertices). Now for each edge (a, b) in M2 it cannot happen that one edge in N2
is incident to a and an inner vertex c and another edge in N2 is incident to b
and another inner vertex d, for otherwise an augmenting path exists if c �= d. If
in this case c = d then both a and b cannot be incident to other edges in N2
besides (a, c) and (b, d). Therefore we partition M2 into M21, M22 and M23 with
edges in M21 having only one vertex of the edge incident to edges in N2 and
edges in M22 having both vertices incident to edges in N2 (i.e., an inner vertex is
the only inner vertex neighbor of bother vertices of the edge in M22) and edges
in M23 has no vertex incident to edges in N2 (i.e. they are incident to edges in
N3 only).

We have that |M21|(k − 1) + 2|M22| ≥ |N2|. Therefore we have that |M2|(k −
1) ≥ |N2| if k ≥ 3. Now we have that (1/2)|M1|(k−1)+(1/2)|M2|(k−1) ≥ |N2|.
Thus we have that

Matching for Graphs of Bounded Degree 173

|M1|(k+1)+|M2|(k+1)+(1/4)|M1|(k−1)+(1/4)|M2|(k−1)=((5k+3)/4)|M |≥m.

Therefore we obtain that |M | ≥ 4m/(5k + 3) if k ≥ 3.
For k = 1, 2, |M | ≥ 4m/(5k + 3) obviously holds. Therefore we have

Theorem 1. For a graph of m edges and degree k there exists a matching of
size 4m/(5k + 3).

A reviewer of this paper posted the following question: Is there an upper
bound of the form cm/k for some c? The answer to this question is negative.
Consider the graph of vertex set {v0, v1, v2, ..., vk} (assume that k is even) and
edge set {(v0, v1), (v0, v2), ..., (v0, vk), (v1, v2), (v3, v4), ..., (vk−1, vk)}. This graph
has m = 3k/2. The maximum matching has size k/2 = m/3. Thus cm/k cannot
be used as an upper bound.

References

1. Biedl, T., Demaine, E., Duncan, C., Fleischer, R., Kobourov, S.: Tight bounds on
the maximal and maximum matchings. Discrete Math. 285(1-3), 7–15 (2004)

2. Feng, W., Qu, W., Wang, H.: Lower bounds on the cardinality of maximum match-
ings in graphs with bounded degrees. In: Proc. 2007 Int. Conf. on Foundations of
Computer Science, Las Vegas, pp. 110–113 (2007)

3. König, D.: Über Graphen und ihre Anwendung auf Determinantentheorie und Men-
genlehre. Math. Ann. 77, 453–456 (1916)

4. Nishizeki, T., Baybars, I.: Lower bounds on the cardinality of the maximum match-
ings of planar graphs. Discrete Math. 28(3), 255–267 (1979)

5. Petersen, J.: Die Theorie der regulären graphs (The theory of regular graphs). Acta
Math. 15, 193–220 (1891)

6. Tutte, W.T.: The factorization of linear graphs. J. London Math. Soc. 22, 107–111
(1947)

Searching Trees with Sources and Targets�

Chris Worman and Boting Yang

Department of Computer Science, University of Regina
{worman2c,boting}@cs.uregina.ca

Abstract. We consider a new pursuit-evasion problem on trees where a
subset of vertices, called sources, are initially occupied by searchers. We
also consider the scenario where some of the searchers must end their
search at certain vertices called targets. We incrementally consider such
problems, first considering only sources, then only targets, and finally
we consider the case where there are both sources and targets. For each
case we provide a polynomial-time algorithm for computing the search
number, i.e. the minimum number of searchers required to clear the tree,
and an optimal search strategy. We also demonstrate that each search
model is monotonic, i.e. for each case their exists an optimal search
strategy such that the set of cleared edges grows monotonically as the
search progresses.

1 Introduction

Imagine a scenario where a group of police officers is attempting to capture a
fugitive who is hiding in a building. The police officers could enter the building
and hope to capture the fugitive by exploring the building in an ad hoc manner.
A better approach is to systematically explore the building to ensure the fugitive
is captured. If we can guarantee that we can capture the fugitive by carefully
choosing our search strategy, the following question becomes relevant: “What is
the minimum number of police officers required to capture the fugitive?” This
question motivates so-called graph searching problems, which are pursuit-evasion
problems that take place on graphs.

In a typical graph searching problem introduced by Megiddo et al. [4], a group
of searchers must capture an exceedingly fast and clever fugitive that is hiding
on a graph. The graph is meant to represent some real-world domain, such as the
hallways and rooms in a building. The searchers proceed by clearing edges, i.e. vis-
iting edges to guarantee that the fugitive is not on the edge; initially all edges are
dirty. Three searcher actions are allowed: (1) place a searcher on a vertex in the
graph, (2) remove a searcher from a vertex, and (3) slide a searcher along an edge
from one end vertex to the other. An edge uv is cleared when either (1) at least
two searchers are located on a vertex u, and one of them slides along uv, or (2) a
searcher is located on u, and all edges incident on u, except uv, are clear and the
searcher slides along uv. A search strategy is a sequence of searcher actions that

� Research was supported in part by NSERC.

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 174–185, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Searching Trees with Sources and Targets 175

result in every edge in the graph being cleared. Researchers are often interested
in computing the search number of a graph G, denoted s(G), which is the mini-
mum number of searchers required to clear G. A search strategy is called optimal
if at each step it uses at most s(G) searchers. Another important consideration
for searching problems is that of monotonicity. Define Ai to be the set of edges
that are clear after the ith action of some searching strategy. We define A0 = ∅.
A search strategy S = {m1, m2, . . . , mr} is called monotonic if Ai−1 ⊆ Ai, for
all 1 ≤ i ≤ r. A searching problem is in turn called monotonic if there exists
an optimal monotonic search strategy for each instance of the searching problem.
For non-monotonic search strategies, if a searcher is removed or slides from a ver-
tex such that the resulting graph contains a path, which is not occupied by any
searchers, connecting a dirty edge to a clear edge then the clear edge becomes re-
contaminated instantaneously because the fugitive moves exceedingly fast.

Graph searching was first studied by Parsons [5], who studied a continuous
version of the graph searching problem. This model was subsequently discretized
by Megiddo et al. [4], who showed that deciding the search number of a graph is
NP-hard [4]. The monotonicity result of LaPaugh [3] demonstrates that deciding
the search number is in NP, and hence deciding the search number of a graph
is NP-complete. Megiddo et al. [4] also provided an O(n) time algorithm for
computing the search number of a tree that can be extended to compute an
optimal search strategy in O(n log n) time. Subsequently, Peng et al. [6] improved
this result by giving an O(n) time algorithm for computing an optimal search
strategy of a tree. The search number of a graph has been shown to be related
to some important graph parameters, such as vertex separation number and
pathwidth. Other graph searching models have been studied; see [1,2] for surveys.

All the searching problems discussed in this paper take place on trees. In
the problems that we study, two disjoint subsets of vertices of a tree T have
been identified: the sources, denoted Vs, and the targets, denoted Vt. We use
Vs and Vt to define a constrained graph searching problem as follows. At the
beginning of the search, each source vertex is occupied by exactly one searcher.
Furthermore, for the entire duration of the search strategy, each source vertex
remains clear, i.e. is occupied by a searcher or all incident edges are clear. Also,
once a searcher occupies a vertex v ∈ Vt, v must be occupied by at least one
searcher for the remainder of the search strategy. We refer to such searching
problems as Source Target Searching (STS) problems. In an STS problem, we call
the searchers that were initially on sources starting searchers. All other searchers
are called additional searchers. During the progression of a search strategy, a
starting searcher may be removed. A starting searcher is called free when it is
not currently occupying a vertex on T .

One of our primary motivations for studying STS problems comes from an
algorithm development point of view: our algorithms for STS problems can be
used as subroutines for searching algorithms for other classes of graphs, such
as cycle-disjoint graphs [7], in which lots of induced subgraphs are trees. In this
application, the starting searchers are placed as a result of some other algorithm.
The algorithms presented herein can then be used to complete the search while

176 C. Worman and B. Yang

still ensuring that the already cleared portions of the graph remain clear. Target
vertices represent vertices where certain searchers must terminate. In this appli-
cation, the target vertices represent portals to other parts of the graph that are
contaminated, but that we are not willing to visit at this point in the search.
Thus a target searching algorithm can be used as a subroutine for searching
algorithms for other classes of graphs that first clear an induced subgraph that
is a tree, and then clear the remaining parts of the graph.

Another motivation for studying STS problems comes from scenarios where
the graph contains vertices that are portals to uncontaminated or already cleared
areas of the graph. For example, consider the scenario where the graph models a
network of city streets where a fugitive is hiding. In this case, we may be able to
restrict our search to a particular neighborhood. We can place starting searchers
at intersections connecting the neighborhood with the rest of the city. These
intersections are modeled by the source vertices in our searching model. The
source vertices are initially protected by the starting searchers, and remain pro-
tected throughout the search, ensuring the fugitive remains in the neighborhood
that we are searching. Extending this example to target vertices, we may wish
to search for the fugitive “neighborhood by neighborhood.” In this scenario, we
first search a particular neighborhood, ensuring that when a searcher encounters
an intersection leading another neighborhood, this searcher stays at the intersec-
tion until the original neighborhood is cleared. These intersections are modeled
by the target vertices in an instance of the STS problem. Thus STS problems
can be seen as a particular type of subgraph searching.

In Section 2 we describe an O(|Vs|n) time algorithm for computing the search
number of a tree when the tree contains sources, but does not contain any
targets. In Section 3 we demonstrate an inverse relationship between searching
with sources and searching with targets. We exploit this relationship in order to
use the algorithm from Section 2 to compute the search number of a tree that
contains only targets in O(|Vt|n) time. In Section 4 we combine these results and
extend the algorithm from Section 2 so that we can compute the search number
of a tree with both sources and targets in O(|Vs||Vt|n) time. In all cases, we show
that the algorithms only output monotonic search strategies, thus establishing
the monotonicity of each search model. Due to space constraints, some details
have been omitted.

2 Searching Trees with Sources

In this section we consider the STS problem on trees that contain only sources.
We call this type of searching Source Searching, or simply SS. Let T be a tree
and Vs ⊆ V (T) be a set of source vertices such that each vertex in Vs is initially
occupied by a starting searcher. We define the source search number with respect
to T an Vs, denoted ss(T, Vs), as the minimum number of additional searchers
required to clear T . We deem a vertex v to be clear if all edges incident with v
are clear. A searcher occupying a vertex v in Vs is moveable if all but one edges
incident with v are clear. We can formally state our searching problem as follows:

Searching Trees with Sources and Targets 177

Source Searching (SS)
Instance: A tree T and a set of source vertices Vs ⊆ V (T), such that each
v ∈ Vs is occupied by exactly one searcher.

Question: Is there a search strategy of T using k additional searchers such that
each vertex from Vs remains clear during the entire search strategy?

Recall that in the SS problem, all edges are initially dirty. In order to make
our analysis more simple, we actually describe an algorithm for a more general
searching problem, which we call Partial-Clear Source Searching (PSS), which
allows certain subtrees to be clear at the beginning of the problem. In order to
define this new searching problem, we require some notation. Given a tree T and
a subset of vertices Vs ⊆ V (T), define T � Vs to be the set of maximal induced
subtrees {T1, T2, ..., Tk} of T such that if v ∈ Vs and v ∈ Ti, then v is a leaf in
Ti, and

⋃
{Ti} = T , 1 ≤ i ≤ k.

Partial-Clear Source Searching (PSS)
Instance: A tree T with a set of cleared edges Ec ⊆ E(T), and a set of source
vertices Vs ⊆ V (T), such that each v ∈ Vs is occupied by exactly one searcher
and each subtree in T � Vs is either completely clear or completely dirty.

Question: Is there a search strategy of T using k additional searchers such that
each vertex from Vs remains clear during the entire search strategy?

The associated search number for this searching problem is denoted pss(T , Vs,
Ec). One can see that an instance of the SS problem is a valid instance of the
PSS problem with Ec = ∅. Moreover, since the two search problems have the
same objective, any algorithm for the PSS problem can be used to solve the SS
problem. Thus, for the remainder of this section we focus on the PSS problem,
keeping in mind that the results also hold for the SS problem.

Our algorithm for computing pss(T, Vs, Ec) recursively performs two ma-
jor steps in order to clear T : firstly, the algorithm calls a subroutine called
Reposition, which moves some of the searchers occupying sources, and secondly
the algorithm clears a specially chosen subtree of T . Specifically, the algorithm
will clear the dirty subtree from T � Vs with the smallest search number. Then
a recursive call is made in order to search the remaining tree. The algorithm is
formally stated in Figures 1 and 2. The algorithm makes use of a global variable
f that records how many of the starting searchers have been removed thus far,
i.e. f is equal to the number of free starting searchers. Thus, f = 0 initially. The
algorithm computes a value smax, which we claim is equal to pss(T, Vs, Ec).

Now we turn our attention to proving the correctness of our algorithm. Intu-
itively, our proof approach is the following. Firstly, Lemma 1 essentially proves
that the actions performed by the Reposition algorithm are part of some opti-
mal strategy. Secondly, Lemma 2 essentially shows that pss(T, Vs, Ec) is at least
as large as the search number of the first subtree that the algorithm clears. Since
our algorithm is recursive, once these two Lemmas are shown, the correctness of
our algorithm follows. We begin with the following observation:

178 C. Worman and B. Yang

Algorithm Reposition(T, Vs, Ec)

1. While there exists a moveable searcher λ on vertex v ∈ Vs:
(a) Let vu be the only dirty edge incident with v.
(b) Slide λ from v to u, clearing the edge vu, and Vs ← (Vs−{v})∪{u},

Ec ← Ec ∪ {vu}.
(c) If u contains two searchers then remove λ and f ← f + 1.

2. While there exists a searcher λ on a clear vertex v ∈ Vs:
(a) Remove λ and Vs ← Vs − {v}.
(b) f ← f + 1.

Fig. 1. The algorithm for repositioning the starting searchers

Algorithm ST-S(T, Vs, Ec) (Search Tree with Sources)

1. If T is clear then return 0.
2. Call Reposition(T, Vs, Ec).
3. Compute T �Vs, discarding all clear subtrees, to obtain {T1, T2, ..., Tk}.

Without loss of generality, suppose that s(T1) ≤ s(Ti), for 2 ≤ i ≤ k.
4. Clear all edges of T1 using s(T1) searchers and Ec ← Ec ∪ E(T1).
5. smax ← max{s(T1) − f, ST-S(T, Vs, Ec)}.
6. Return smax.

Fig. 2. The algorithm for computing pss(T, Vs, Ec)

Lemma 1. Let (T, Vs, Ec) be an instance of the PSS problem. If V ′s and E′c are
the results of running the Reposition(T, Vs, Ec) algorithm, then pss(T, V ′s , E′c)≤
pss(T, Vs, Ec) + f , where f is the number of starting searchers removed by the
Reposition(T, Vs, Ec) algorithm.

Proof. Let S be an optimal PSS strategy for (T, Vs, Ec). We construct a PSS
strategy S′ for (T, V ′s , E′c) that does exactly what S does, except in a few
cases. Before describing these cases, we introduce some notation and make
some observations. Let λv be the starting searcher located on vertex v. De-
fine (v, v1, v2, ..., vl) to be the path that λv slides along during the execution of
the Reposition(T, Vs, Ec) algorithm. From the condition of the while loop in
step 1 of the Reposition algorithm, we know that every vi, 1 ≤ i ≤ l − 1, has
degree two. Notice that the path (v, v1, ..., vl) is dirty in (T, Vs, Ec) and has been
cleared in (T, V ′s , E′c).

Now we describe the changes made to S in order to obtain S′. The following
change ensures that λv is located on T so that it can mimic the movements of
λv in S.

1. For each λv that was removed by the Reposition algorithm, S′ begins by
placing λv on vl.

The next change ensures that vl ∈ V ′s does not become incident with a dirty
edge while it is unoccupied in S:

Searching Trees with Sources and Targets 179

2. Whenever a searcher λ∗ is placed on or slides to a vertex vi ∈ {v, v1, v2, ...,
vl−1}, in S′ we place λ∗ on vl, unless in S′ λ∗ is already occupying vl, in
which case in S′ we do nothing. If in S λ∗ is subsequently removed from vi

or slides to a vertex not in {v, v1, v2, ..., vl−1, vl}, then λ∗ is removed from
vl, placed on vi, and then λ∗ performs this action.

Let ai ∈ S be the first action that either removes or slides λv. In S′, prior to
performing ai, we do the following:

3. Remove λv from vl, place λv on v, and then perform ai.

Notice that since S clears T , then S′ clears T . In order to complete the
proof we must show that S′ uses at most pss(T, Vs, Ec) + f additional searchers
and that all members of V ′s remain clear during the progression of S′. Notice
that in S′, the only new searchers that are added are those that were removed
by the Reposition algorithm (see change (1) above), and there are exactly f
searchers removed by the Reposition algorithm. Hence S′ uses pss(T, Vs, Ec)+f
searchers.

All that remains is to demonstrate that all members of V ′s remain clear during
the progression of S′. We can focus on the actions introduced in the changes given
above since in all other cases, S′ performs the same actions as in S. Specifically,
we must consider the case where λv is removed from vl in change (3), and when
λ∗ is removed from vl (and then placed on vi) in change (2). In either case, we
have that in S there is no searcher occupying a vertex from {v, v1, v2, ..., vl−1}
when λv performs ai, otherwise this searcher would have been placed on vl

in change (2). Thus in S the dirty edge e is connected to v ∈ Vs via a path
containing no searchers, and v is unoccupied, which is a contradiction. ��

In the following lemma, T1 is defined as in step 3 of the ST-S algorithm; that is,
after the call to the Reposition algorithm.

Lemma 2. For any instance (T, Vs, Ec) of the PSS problem, pss(T, Vs) ≥ s(T1)−
f , where T1 is the subtree computed after steps 1-3 of the ST-S(T, Vs, Ec) algo-
rithm, and f is the number of free starting searchers removed during the call to
Reposition(T, Vs, Ec) in step 2 of the ST-S(T, Vs, Ec) algorithm.

Proof. Let V ′s and E′c be the results of running the Reposition(T, Vs, Ec) al-
gorithm. By Lemma 1, we have that pss(T, V ′s , E′c) − f ≤ pss(T, Vs, Ec), and
hence it suffices to show that pss(T, V ′s , E′c) ≥ s(T1). Let S∗ be any optimal
PSS strategy for the instance (T, V ′s , E′c). Define T ∗ to be the first subtree from
{T1, T2, ..., Tk} (as defined in the algorithm) that S∗ completely clears1. Recall
that s(T1) ≤ s(Ti), for 2 ≤ i ≤ k. If S∗ only uses additional searchers to clear
T ∗ then pss(T, V ′s , E′c) ≥ s(T ∗) ≥ s(T1) and the Lemma holds. Thus we only
need to consider the case where S∗ uses at least one starting searcher to aid
in clearing T ∗. In what follows, we show that this implies a contradiction by
demonstrating that for each starting searcher used to clear T ∗, there exists a
corresponding additional searcher on the tree T .
1 S∗ may have cleared other edges of T prior to completely clearing T ∗.

180 C. Worman and B. Yang

We begin by demonstrating a property of S∗ that we will use in the rest of
the proof. Suppose that at some point during S∗, a source vertex v ∈ Vs is
occupied, but is not occupied by the original starting searcher λv that occupied
v in the instance (T, V ′s , E′c). We can adjust S∗ as follows: if λv is removed from
v, then either all edges incident with v are clear, in which case no searcher needs
to occupy v for the remainder of S∗, or v is occupied by another searcher, and
we can remove this searcher instead of removing λv. If λv slides off v at some
point, then after it slides off either all incident edges are clear, in which case no
searcher needs to occupy v for the remainder of S∗, or there is another searcher
occupying v, and we can slide this searcher instead of λv. So without loss of
generality, during the progression of S∗, if a source vertex v ∈ Vs is occupied,
then it is occupied by λv, where λv is the starting searcher that occupies v in
the instance (T, V ′s , E′c). We use this fact throughout the remainder of the proof.

Define {λ1, λ2, ..., λb} to be the set of starting searchers occupying T ∗ at
some moment during S∗. We define a procedure for associating a unique ad-
ditional searcher with each starting searcher in {λ1, λ2, ..., λb}, but first we re-
quire some definitions. We begin by defining two sets of source vertices V ∗ and
U∗, which form a partition of the currently unoccupied source vertices. Define
V ∗ = {v1, v2, ..., vb} to be the set of source vertices that {λ1, λ2, ..., λb} initially
occupied. Define U∗ = {u1, u2, ..., uk} to be the set of unoccupied source vertices
whose original starting searchers are not currently occupying T ∗. For a subset
of source vertices V ′s ⊆ Vs, define P (V ′s) = {Ti1 , Ti2 , ..., Tik

} to be the subset of
trees from {T1, T2, ..., Tk} such that for each Ti ∈ P (V ′s) there exists a v ∈ V ′s
such that v is a leaf in Ti.

We define two graphs G and H as folllows. Define G = (V (G), E(G)) as
V (G) = V ∗ ∪ P (V ∗) and {v, Ti} ∈ E(G) if v is a leaf in Ti. Define H =
(V (H), E(H)) as V (H) = U∗ ∪ P (U∗), and {u, Ti} ∈ E(G) if u is a leaf in
Ti. One can easily show that both G and H are forests since T is a tree.

Now consider the following procedure for assigned a unique additional searcher,
which is currently occupying T , to each of {λ1, λ2, ..., λb}. Let Ti be a leaf of G
(notice that leaves in G cannot be source vertices since (T, V ′s , E′c) is the result of
running the Reposition algorithm). Let vj ∈ V ∗ be the parent of Ti in G. Since
initially each source vertex is adjacent to two or more dirty edges, and since T ∗

is the first tree from {T1, T2, ..., Tk} to be cleared, there must be a searcher, say
λ∗, in Ti which is protecting vi from becoming adjacent with a dirty edge.

If λ∗ is an additional searcher, then we associate λ∗ with λj , and remove vj

and Ti from G. Otherwise, the searcher located in Ti is a starting searcher. By
our assumption about S∗ (i.e. during the progression of S∗, if a source vertex
v ∈ Vs is occupied, then it is occupied by λv, where λv is the starting searcher
that occupies v in the instance (T, V ′s , E′c)), this means that λ∗’s original source
vertex v∗ is currently unocuppied, and hence v∗ ∈ V (H). Since (T, V ′s , E′c) is
result of running the Reposition algorithm, the vertex v∗ is adjacent to at least
two trees Tk and Tl in H . Since T ∗ is the first tree from {T1, T2, ..., Tk} to be
cleared, there must be a searcher, say λk, in Tk. If λk is an additional searcher,
then associate λk with λj , and we remove Tk and λ∗ from H , and remove vj and

Searching Trees with Sources and Targets 181

Ti from G. If λk is not an additional searcher, then we can recursively consider
the trees adjacent to vk in H , and then consider the searcher that must be
located in one of the subtrees incident to vk. Since H is a finite tree, this process
must eventually stop when an additional searcher is found to be located in a
subtree incident with some source vertex in H . When this additional searcher is
found, we remove the appropriate source vertices and subtrees from H , remove
vj and Ti from G, and associate this additional searcher with λj .

We repeat the procedure given above for each leaf in G until G is empty. This
procedure associates a unique additional searcher with each starting searcher
currently occupying a vertex in T ∗, as required. ��

It is clear that the search strategy output by the ST-S algorithm actually clears
T . Thus we can use induction and Lemma 2 to obtain one of our main results:

Theorem 1. The value of smax at the termination of the ST-S algorithm is
equal to pss(T, Vs, Ec).

Theorem 2. Let (T, Vs, Ec) be an instance of the PSS problem with |V (T)| = n.
The source search number and the optimal search strategy of (T, Vs, Ec) can be
computed in O(|Vs|n) time.

Theorem 3. The PSS problem is monotonic.

3 Searching Trees with Targets

In this section we study the problem where instead of having only sources, we
have only targets.

Target Searching (TS)
Instance: A tree T with a set of target vertices Vt ⊆ V (T).
Question: Is there a search strategy of T using k additional searchers such that
once a searcher occupies a vertex v ∈ Vt, v remains occupied by at least one
searcher for the remainder of the search?

Associated with this problem, we define the target search number, denoted
ts(T, Vt), to be the minimum number of searchers required to clear the tree
T under the TS model. The TS problem can be seen as a kind of inversion of
the SS problem. Given a search strategy S, define the reverse of a action a ∈ S,
denote a−1, as follows:

– If a is “slide λ from v to u”, then a−1 is “slide λ from u to v”.
– If a is “remove λ from v”, then a−1 is “place λ on v”.
– If a is “place λ on v”, then a−1 is “remove λ from v”.

Given a strategy S = (a1, a2, ..., ak), define the inverse of S, denoted S−1, to be
S−1 = (a−1

k , a−1
k−1, . . . , a

−1
1).

182 C. Worman and B. Yang

Lemma 3. Let (T, Vs) be an instance of the SS problem and (T, Vt) be an in-
stance of the TS problem such that Vs = Vt. Then S is a monotonic SS strategy
for (T, Vs) if and only if S−1 is a monotonic TS strategy for (T, Vt).

Proof. (sketch) Let V ′ = Vs(= Vt). If S is a TS strategy for (T, V ′), then it is
clear that S−1 ends with V ′ occupied by searchers. Conversely, if S−1 is a TS
strategy for (T, V ′), then (S−1)−1 = S begins with V ′ occupied by searchers.
To complete the proof, we must show that S monotonically clears T if and
only if S−1 monotonically clears T . Since S and S−1 are inverses, it suffices to
demonstrate the following property: if S clears T monotonically then S−1 clears
T monotonically. For any sequence of actions (b1, b2, ..., bl), define A(b1, b2, . . . , bl)
to be the set of edges cleared by a sequence of actions (b1, b2, . . . , bl). We want
to show that A(a−1

k , a−1
k−1, . . . , a

−1
1) = A(a1, a2, ..., ak).

We proceed by induction on the number of actions completed by S−1. Initially
no edges are cleared in the TS model, and the last action of a TS model is a
remove operation, and hence no edge is cleared by the last action in S. This
provides the base case for induction.

Assume A(a−1
k , a−1

k−1, . . . , a
−1
p) = A(ap, ap+1, ..., ak), for p ≤ k. By carefully

considering a−1
p−1 in S−1, we can show that no recontamination occurs in S−1

unless it occurs in S, and the Lemma follows. ��

In light of this observation, and Theorem 1, Theorem 3, and Theorem 2 from
the previous section, we have the following two results:

Theorem 4. Let (T, Vt) be an instance of the TS problem with |V (T)| = n. The
target search number and the optimal search strategy of (T, Vt) can be computed
in O(|Vt|n) time.

Theorem 5. The TS problem is monotonic.

4 Searching Trees with Sources and Targets

Now we study the STS problem. Recall that in this problem some searchers start
on sources, and the search ends with some searchers occupying the targets. As
in Section 2, we will actually study a slightly more general problem in order to
make our analysis simpler:

Partial-Clear Source Target Searching (PSTS)
Instance: A tree T with a set of cleared edges Ec ⊆ E(T), a set of source ver-
tices Vs ⊆ V (T), and a set of target vertices Vt ⊆ V , such that Vt ∩ Vs = ∅, and
each v ∈ Vs is initially occupied by exactly one searcher.
Question: Is there a search strategy of T using k additional searchers such that
once a searcher occupies a vertex v ∈ Vt, v remains occupied by at least one
searcher for the remainder of the search, and each vertex from Vs remains clear
during the entire search strategy?

Searching Trees with Sources and Targets 183

We denote the search number associated with this searching problem as psts(T ,
Vs, Vt, Ec). Our algorithm for the PSTS problem is a modified version of the al-
gorithm presented in Section 2. The modifications take into account the addition
of target vertices. Unlike the algorithm for the PSS problem, our algorithm for
the PSTS problem does not necessarily first clear the subtree from T � Vs with
the smallest search number. Instead, the algorithm first clears the subtree from
T � Vs with the smallest search number that does not contain a target vertex.
If all subtrees in T � Vs contain targets, then these subtrees are searched in in-
creasing order by the number of target vertices they contain. Figure 3 illustrates
why we must do this. In this example, s(T3) = 10. If T1 is cleared first then
an additional searcher must be left behind to occupy v1. To clear the remaining
tree requires at least 10 additional searchers, resulting in a total of 11 additional
searchers. The situation is the same if T2 is cleared first. If T3 is cleared first
using 10 additional searchers, then T1 can then be cleared using 2 of these ad-
ditional searchers, leaving one behind on v1, and then T2 can be cleared using 2
more additional searchers, resulting in a total of 10 additional searchers.

2

v3

3T

2T

1
T

v1

v

Fig. 3. A PSTS problem where v1, v2 ∈ Vt, v3 ∈ Vs, and s(T3) = 10

Now we present the new “reposition” algorithm that takes into account target
vertices. A searcher λ occupying a vertex v ∈ Vt is called frozen if it is the only
searcher occupying v. The Reposition-T algorithm behaves the same as the
Reposition algorithm from Section 2, except that frozen searchers are ignored
(see Figure 4). We claim the following:

Lemma 4. Let (T, Vs, Vt, Ec) be an instance of the PSTS problem. If V ′s and E′c
are results of running the Reposition-T algorithm, then psts(T, V ′s , Vt, E

′
c) ≤

psts(T, Vs, Vt, Ec) + f , where f is the number of starting searchers removed by
the Reposition-T algorithm.

Now we describe the main algorithm for computing psts(T, Vs, Vt, Ec). The main
difference between this algorithm and the one presented in Section 2 is that we
must now take into account the target vertices. This is reflected in the choice
that the algorithm makes with regard to the subtree that it chooses to clear first.
Our algorithm is given in Figure 5.

Intuitively, the following Lemma shows that it is correct for the algorithm to
clear T1 first. In the following, Tsource defined in step 4 of the ST-ST algorithm
for the instance (T, Vs, Vt, Ec).

184 C. Worman and B. Yang

Algorithm Reposition-T(T, Vs, Vt, Ec) (Reposition with Targets)

1. While there exists a non-frozen moveable searcher λ on vertex v ∈ Vs:
(a) Let vu be the only dirty edge incident with v.
(b) Slide λ from v to u, clearing the edge vu, and Vs ← (Vs−{v})∪{u},

Ec ← Ec ∪ {u}.
(c) If u contains two searchers then remove λ and f ← f + 1.

2. While there exists a non-frozen searcher λ on a clear vertex v ∈ Vs:
(a) Remove λ and Vs ← Vs − {v}.
(b) f ← f + 1.

Fig. 4. The algorithm for repositioning the starting searchers when the tree contains
targets

Algorithm ST-ST(T, Vs, Vt, Ec) (Search Tree with Sources and Targets)

1. If T is clear then return 0.
2. Call Reposition-T(T, Vs, Vt, Ec).
3. Compute T �Vs, discarding all clear subtrees, to obtain {T1, T2, ..., Tk}.
4. Partition T1, T2, . . . , Tk into two sets Tsource and Ttarget such that

Ti ∈ Ttarget if and only if Ti contains a target vertex. Sort Tsource

in increasing order by search number, and sort Ttarget in increasing
order by the number of target vertices in the subtree. Furthermore,
subtrees in Ttarget that have the same number of target vertices are
sorted by their target search number.

5. If Tsource �= ∅ then,
(a) Mark all edges in the first tree from Tsource, say T1, as clear.

(explicitly clear this subtree if we are computing an actual
search strategy, rather than just computing psts(T,Vs, Vt, Ec).)

(b) s ← s(T1) and go to step 7.
6. Otherwise, do the following:

(a) Clear the first subtree from Ttarget, say T1, using the algorithm
from Section 3.

(b) s ← ts(T1, Vt ∩ V (T1)).
7. smax ← max{s − f + |Vt ∩ V (T1)|, ST-ST(T, Vs, Vt, Ec)}.
8. Return smax.

Fig. 5. The algorithm for computing psts(T,Vs, Vt, Ec)

Lemma 5. Let (T, Vs, Vt, Ec) be an instance of the PSTS problem. If Tsource = ∅
then
psts(T, Vs, Vt, Ec) ≥ s(T1)− f . Otherwise psts(T, Vs, Vt, Ec) ≥ ts(T1)− f + |Vt ∩
V (T1)|.

As in Section 2, we can use induction and Lemma 5, along with Lemma 2 and
4 to show the following:

Theorem 6. Let (T, Vs, Vt, Ec) be an instance of the PSTS problem with
|V (T)| = n. The source target search number and the optimal search strategy
of (T, Vs, Vt, Ec) can be computed in O(|Vs||Vt|n) time.

Searching Trees with Sources and Targets 185

An analysis of the actions generated by the Reposition-T algorithm and The-
orem 5 implies the following:

Theorem 7. The PSTS problem is monotonic.

5 Conclusion and Future Work

We have introduced and studied a new kind of graph searching problem involving
sources and targets. We showed that each search model studied is monotonic.
We have provided an O(|Vs|n) time algorithm for the problem of searching a
tree with |Vs| sources, an O(|Vt|n) time algorithm for searching a tree with |Vt|
targets, and an O(|Vs||Vt|n) time algorithm for searching a tree with |Vs| sources
and |Vt| targets. We conjecture that algorithms exist for all these problems that
run in O(n log n) time. We are interested in studying source and target search-
ing problems on larger classes of graphs. We are also interested in relating the
source- and target-searching parameters to other graph parameters such as ver-
tex separation and treewidth.

References

1. Dendris, N., Kirousis, L., Thilikos, D.: Fugitive-search games on graphs and related
parameters. Theoretical Computer Science 172, 233–254 (1997)

2. Fomin, F., Petrov, N.: Pursuit-evasion and search problems on graphs. Congressus
Numerantium 122, 47–58 (1996)

3. LaPaugh, A.: Recontamination does not help to search a graph. Journal of ACM 40,
224–245 (1993)

4. Megiddo, N., Hakimi, S., Garey, M., Johnson, D., Papadimitriou, C.: The complexity
of searching a graph. Journal of ACM 35, 18–44 (1998)

5. Parsons, T.: Pursuit-evasion in a graph. In: Theory and Applications of Graphs.
Lecture Notes in Mathematics, pp. 426–441. Springer, Heidelberg (1976)

6. Peng, S., Ho, C., Hsu, T., Ko, M., Tang, C.: Edge and Node Searching Problems on
Trees. Theoretical Computer Science 240, 429–446 (2000)

7. Yang, B., Zhang, R., Cao, Y.: Searching Cycle-Disjoint Graphs. In: Dress, A.W.M.,
Xu, Y., Zhu, B. (eds.) COCOA 2007. LNCS, vol. 4616, pp. 32–43. Springer, Heidel-
berg (2007)

Ranking of Closeness Centrality for Large-Scale

Social Networks

Kazuya Okamoto1, Wei Chen2, and Xiang-Yang Li3

1 Kyoto University
okia@kuis.kyoto-u.ac.jp
2 Microsoft Research Asia

weic@microsoft.com
3 Illinois Institute of Technology and Microsoft Research Asia

xli@cs.iit.edu

Abstract. Closeness centrality is an important concept in social net-
work analysis. In a graph representing a social network, closeness cen-
trality measures how close a vertex is to all other vertices in the graph. In
this paper, we combine existing methods on calculating exact values and
approximate values of closeness centrality and present new algorithms
to rank the top-k vertices with the highest closeness centrality. We show
that under certain conditions, our algorithm is more efficient than the
algorithm that calculates the closeness-centralities of all vertices.

1 Introduction

Social networks have been the subject of study for many decades in social sci-
ence research. In recent years, with the rapid growth of Internet and World Wide
Web, many large-scale online-based social networks such as Facebook, Friend-
ster appear, and many large-scale social network data, such as coauthorship net-
works, become easily available online for analysis [Ne04a, Ne04b, EL05, PP02].
A social network is typically represented as a graph, with individual persons
represented as vertices, the relationships between pairs of individuals as edges,
and the strengths of the relationships represented as the weights on edges (for
the purpose of finding the shortest weighted distance, we can treat lower-weight
edges as stronger relationships). Centrality is an important concept in studying
social networks [Fr79, NP03]. Conceptually, centality measures how central an
individual is positioned in a social network. Within graph theory and network
analysis, various measures (see [KL05] for details) of the centrality of a vertex
within a graph have been proposed to determine the relative importance of a
vertex within the graph. Four measures of centrality that are widely used in net-
work analysis are degree centrality, betweenness centrality1, closeness centrality,

1 For a graph G = (V, E), the betweenness centrality CB(v) for a vertex v is CB(v) =∑
s,t:s�=t �=v

σv(s,t)
σ(s,t) where σ(s, t) is the number of shortest paths from s to t, and

σv(s, t) is the number of shortest paths from s to t that pass through v.

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 186–195, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Ranking of Closeness Centrality for Large-Scale Social Networks 187

and eigenvector centrality2. In this paper, we focus on shortest-path closeness
centrality (or closeness centrality for short) [Ba50,Be65]. The closeness central-
ity of a vertex in a graph is the inverse of the average shortest-path distance from
the vertex to any other vertex in the graph. It can be viewed as the efficiency
of each vertex (individual) in spreading information to all other vertices. The
larger the closeness centrality of a vertex, the shorter the average distance from
the vertex to any other vertex, and thus the better positioned the vertex is in
spreading information to other vertices.

The closeness centrality of all vertices can be calculated by solving all-pairs
shortest-paths problem, which can be solved by various algorithms taking O(nm+
n2 log n) time [Jo77,FT87], where n is the number of vertices and m is the num-
ber of edges of the graph. However, these algorithms are not efficient enough for
large-scale social networks with millions or more vertices. In [EW04], Eppstein
and Wang developed an approximation algorithm to calculate the closeness cen-
trality in time O(log n

ε2 (n log n +m)) within an additive error of εΔ for the inverse
of the closeness centrality (with probability at least 1 − 1

n), where ε > 0 and Δ is
the diameter of the graph.

However, applications may be more interested in ranking vertices with high
closeness centralities than the actual values of closeness centralities of all ver-
tices. Suppose we want to use the approximation algorithm of [EW04] to rank
the closeness centralities of all vertices. Since the average shortest-path distances
are bounded above by Δ, the average difference in average distance (the inverse
of closeness centrality) between the ith-ranked vertex and the (i + 1)th-ranked
vertex (for any i = 1, . . . , n − 1) is O(Δ

n). To obtain a reasonable ranking result,
we would like to control the additive error of each estimate of closeness central-
ity to within O(Δ

n), which means we set ε to Θ(1
n). Then the algorithm takes

O(n2 log n(n log n + m)) time, which is worse than the exact algorithm.
Therefore, we cannot use either purely the exact algorithm or purely the ap-

proximation algorithm to rank closeness centralities of vertices. In this paper,
we show a method of ranking top k highest closeness centrality vertices, com-
bining the approximation algorithm and the exact algorithm. We first provide
a basic ranking algorithm TOPRANK(k), and show that under certain condi-

2 Given a graph G = (V, E) with adjacency matrix A, let xi be the eigenvector central-
ity of the ith node vi. Then vector x = (x1, x2, · · · , xn)T is the solution of equation
Ax = λx, where λ is the greatest eigenvalue of A to ensure that all values xi are
positive by the Perron-Frobenius theorem. Google’s PageRank [BP98] is a variant
of the eigenvector centrality measure. The PageRank vector R = (r1, r2, · · · , rn)T ,
where ri is the PageRank of webpage i and n is the total number of webpages, is
the solution of the equation

R =
1 − d

n
· 1 + dLR.

Here d is a damping factor set around 0.85, L is a modified webpage-adjacency
matrix: li,j = 0 if page j does not link to i, and normalised such that, for each j,∑n

i=1 li,j = 1, i.e., li,j =
ai,j

dj
where ai,j = 1 only if page j has link to page i, and

dj =
∑n

i=1 ai,j is the out-degree of page j.

188 K. Okamoto, W. Chen, and X.-Y. Li

tions, the algorithm ranks all top k highest closeness centrality vertices (with
high probability) in O((k + n

2
3 · log

1
3 n)(n log n + m)) time, which is better than

O(n(n log n + m)) (when k = o(n)), the time needed by a brute-force algorithm
that simply computes all average shortest distances and then ranks them. We
then use a heuristic to further improve the algorithm. Our work can be viewed
as the first step toward designing and evaluating efficient algorithms in finding
top ranking vertices with highest closeness centralities. We discuss in the end
several open problems and future directions of this work.

2 Preliminary

We consider a connected weighted undirected graph G = (V, E) with n vertices
and m edges (|V | = n, |E| = m). We use d(v, u) to denote the length of a
shortest-path between v and u, and Δ to denote the diameter of graph G, i.e.,
Δ = maxv,u∈V d(v, u). The closeness centrality cv of vertex v [Be65] is defined as

cv =
n − 1

Σu∈V d(v, u)
. (2.1)

In other words, the closeness centrality of v is the inverse of the average (shortest-
path) distance from v to any other vertex in the graph. The higher the cv, the
shorter the average distance from v to other vertices, and v is more important
by this measure. Other definitions of closeness centralities exist. For example,
some define the closeness centrality of a vertex v as 1

Σu∈V d(v,u) [Sa66], and some
define the closeness centrality as the mean geodesic distance (i.e the shortest
path) between a vertex v and all other vertices reachable from it, i.e., Σu∈V d(v,u)

n−1 ,
where n ≥ 2 is the size of the network’s connected component V reachable from
v. In this paper, we will focus on closeness centrality defined in equation (2.1).

The problem to solve in this paper is to find the top k vertices with the
highest closeness centralities and rank them, where k is a parameter of the
algorithm. To solve this problem, we combine the exact algorithm [Jo77,FT87]
and the approximation algorithm [EW04] for computing average shortest-path
distances to rank vertices on the closeness centrality. The exact algorithm iterates
Dijkstra’s single-source shortest-paths (SSSP for short) algorithm n times for all
n vertices to compute the average shortest-path distances. The original Dijkstra’s
SSSP algorithm [Di59] computes all shortest-path distances from one vertex, and
it can be efficiently implemented in O(n log n + m) time [Jo77,FT87].

The approximation algorithm RAND given in [EW04] also uses Dijkstra’s
SSSP algorithm. RAND samples � vertices uniformly at random and computes
SSSP from each sample vertex. RAND estimates the closeness centrality of a
vertex using the average of � shortest-path distances from the vertex to the �
sample vertices instead of to all n vertices. The following bound on the accu-
racy of the approximation is given in [EW04], which utilizes the Hoeffding’s
theorem [Ho63]:

Pr{| 1
ĉv

− 1
cv

| ≥ εΔ} ≤ 2

n2� ε2
log n (n−1

n)2
, (2.2)

Ranking of Closeness Centrality for Large-Scale Social Networks 189

for any small positive value ε, where ĉv is the estimated closeness centrality of
vertex v. Let av be the average shortest-path distance of vetex v, i.e.,

av =
Σu∈V d(v, u)

n − 1
=

1
cv

.

Using the average distance, inequality (2.2) can be rewritten as

Pr{|âv − av| ≥ εΔ} ≤ 2

n2� ε2
log n (n−1

n)2
, (2.3)

where âv is the estimated average distance of vertex v to all other vertices. If
the algorithm uses � = α log n

ε2 samples (α > 1 is a constant number) which will
cause the probability of εΔ error at each vertex to be bounded above by 1

n2 ,
the probability of εΔ error anywhere in the graph is then bounded from above
by 1

n (≥ 1 − (1 − 1
n2)n). It means that the approximation algorithm calculates

the average lengths of shortest-paths of all vertices in O(log n
ε2 (n log n+m)) time

within an additive error of εΔ with probability at least 1 − 1
n , i.e., with high

probability (w.h.p.).

3 Ranking Algorithms

Our top-k ranking algorithm is based on the approximation algorithm as well
as the exact algorithm. The idea is to first use the approximation algorithm
with � samples to obtain estimated average distances of all vertices and find a
candidate set E of top-k′ vertices with estimated shortest distances. We need to
guarantee that all final top-k vertices with the exact average shortest distances
are included in set E with high probability. Thus, we need to carefully choose
number k′ > k using the bound given in formula (2.3). Once we find set E,
we can use the exact algorithm to compute the exact average distances for all
vertices in E and rank them accordingly to find the final top-k vertices with
the highest closeness centralities. The key of the algorithm is to find the right
balance between sample size � and the candidate set size k′: If we use a too small
sample size �, the candidate set size k′ could be too large, but if we try to make
k′ small, the sample size � may be too large. Ideally, we want an optimal � that
minimizes � + k′, so that the total time of both the approximation algorithm
and the computation of exact closeness centralities of vertices in the candidate
set is minimized. In this section we will show the basic algorithm first, and then
provide a further improvement of the algorithm with a heuristic.

3.1 Basic Ranking Algorithm

We name the vertices in V as v1, v2, . . . , vn such that av1 ≤ av2 ≤ · · · ≤ avn . Let
âv be the estimated average distance of vertex v using approximation algorithm
based on sampling. Figure 1 shows our basic ranking algorithm TOPRANK(k),
where k is the input parameter specifying the number of top ranking vertices

190 K. Okamoto, W. Chen, and X.-Y. Li

the algorithm should extract. The algorithm also has a configuration parameter
�, which is the number of samples used by the RAND algorithm in the first step.
We will specify the value of � in Lemma 2. Function f(�) in step 4 is defined

as follows: f(�) = α′
√

log n
� (where α′ > 1 is a constant number), such that

the probability of the estimation error for any vertex being at least f(�) · Δ is
bounded above by 1

2n2 , based on inequality (2.3) (when setting ε = f(�)).

Algorithm TOPRANK(k)
1 Use the approximation algorithm RAND with a set S of � sampled vertices to obtain the

estimated average distance âv for each vertex v.
// Rename all vertices to v̂1, v̂2, . . . , v̂n such that âv̂1 ≤ âv̂2 ≤ · · · ≤ âv̂n .

2 Find v̂k.
3 Let Δ̂ = 2minu∈S maxv∈V d(u, v).

// d(u, v) for all u ∈ S, v ∈ V have been calculated at step 1 and Δ̂ is determined in O(�n) time.
4 Compute candidate set E as the set of vertices whose estimated average distances are less than

or equal to âv̂k
+ 2f(�) · Δ̂.

5 Calculate exact average shortest-path distances of all vertices in E.
6 Sort the exact average distances and find the top-k vertices as the output.

Fig. 1. Algorithm for ranking top-k vertices with the highest closeness centralities

Lemma 1. Algorithm TOPRANK(k) given in Figure 1 ranks the top-k vertices
with the highest closeness centralities correctly w.h.p., with any configuration
parameter �.

Proof. We show that the set E computed at step 4 in algorithm TOPRANK(k)
contains all top-k vertices with the exact shortest distances w.h.p.

Let T = {v1, . . . , vk} and T̂ = {v̂1, . . . , v̂k}. Since for any vertex v, the proba-
bility of the estimate âv exceeding the error range of f(�) · Δ is bounded above
by 1

2n2 , i.e., Pr (¬{av − f(�) · Δ ≤ âv ≤ av + f(�) · Δ}) ≤ 1
2n2 , we have

Pr

(
¬{

∧

v∈T

âv ≤ av + f(�) · Δ ≤ avk
+ f(�) · Δ}

)
≤ k

2n2 ; and

Pr

⎛

⎝¬{
∧

v̂∈T̂

av̂ ≤ âv̂ + f(�) · Δ ≤ âv̂k
+ f(�) · Δ}

⎞

⎠ ≤ k

2n2 .

The latter inequality means that, with error probability of at most k
2n2 , there

are at least k vertices whose real average distances are less than or equal to
âv̂k

+ f(�) · Δ, which means avk
≤ âv̂k

+ f(�) · Δ with error probability bounded
above by k

2n2 . Then âv ≤ avk
+ f(�) ·Δ ≤ âv̂k

+2f(�) ·Δ for all v ∈ T with error
probability bounded above by k

n2 . Moreover, we have Δ ≤ Δ̂, because for any
u ∈ S, we have

Δ = max
v,v′∈V

d(v, v′) ≤ max
v,v′∈V

(d(u, v) + d(u, v′))

= max
v,v′∈V

d(u, v) + max
v,v′∈V

d(u, v′) = 2 max
v∈V

d(u, v).

Ranking of Closeness Centrality for Large-Scale Social Networks 191

and thus

Δ ≤ 2 min
u∈S

max
v∈V

d(u, v) = Δ̂.

Therefore, for all v ∈ T , âv ≤ âv̂k
+2f(�) · Δ̂ with probability at least (1 − 1

n)
(because k ≤ n). Hence, TOPRANK(k) includes all top-k vertices with exact
average distances in E in step 4, and TOPRANK(k) finds these exact k vertices
in steps 5 and 6, with high probability. This finishes the proof of the lemma. �

We now evaluate the complexity of algorithm TOPRANK(k). The major com-
putation tasks are � computations of SSSP in step 1 and |E| computations of
SSSP in step 5. We need to choose an appropriate � to minimize the sum of these
computations. The number of computations of SSSP in step 5 depends on the
distribution of estimated average distances of all vertices. The following lemma
provides an answer when this distribution is uniform.

Lemma 2. If the distribution of estimated average distances is uniform with
range cΔ (c is a constant number), then TOPRANK(k) takes O((k + n

2
3 ·

log
1
3 n)(n log n + m)) time, when we choose � = Θ(n

2
3 · log

1
3 n).

Proof. TOPRANK(k) takes O(�(n log n + m)) time at step 1 because SSSP
algorithm takes O(n log n+m) time and TOPRANK(k) iterates SSSP algorithm
� times.

Since the distribution of estimated average distances is uniform with range
cΔ, there are n · 2f(�)·Δ̂

cΔ vertices between âv̂k
and âv̂k

+ 2f(�) · Δ̂, and n · 2f(�)·Δ̂
cΔ

is O(nf(�)) because Δ̂ = 2 minu∈S maxv∈V d(u, v) ≤ 2 maxu,v∈V d(u, v) = 2Δ.
So, the number of vertices in E is k+O(nf(�)) and TOPRANK(k) takes O((k+
O(nf(�)))(n log n + m)) time at step 5.

Therefore, we select an � that could minimize the total running time at step 1
and 5. In other words, we choose an � to minimize � + nf(�), which implies
� = Θ(n

2
3 · log

1
3 n). Then TOPRANK(k) takes O(n

2
3 · log

1
3 n(n log n + m)) time

at step 1, and takes O((k + n
2
3 · log

1
3 n)(n log n + m)) at step 5. Obviously

TOPRANK(k) takes O(n
2
3 · log

1
3 n(n logn + m)) time at the other steps. So,

TOPRANK(k) takes O((k + n
2
3 · log

1
3 n)(n log n + m)) total running time. �

Combining Lemmata 1 and 2, we arrive at the following theorem.

Theorem 1. If the distribution of estimated average distances is uniform with
range cΔ (c is a constant number), then algorithm TOPRANK(k) given in Fig-
ure 1 ranks the top-k vertices with the highest closeness centralities in O((k +
n

2
3 · log

1
3 n)(n log n + m)) time w.h.p., when we choose � = Θ(n

2
3 · log

1
3 n).

Theorem 1 only addresses the case when the distribution of estimated average
distances is uniform. In this case, the complexity of TOPRANK(k) is better than
a brute-force algorithm that simply computes all average shortest distances and
ranks them, which takes O(n(n log n + m)) time (assuming k = o(n)). Even

192 K. Okamoto, W. Chen, and X.-Y. Li

though the theorem is only for the case of uniform distribution, it could be
applied to more general situations, as explained now. Given an estimated average
distance x, its density d(x) is the number of vertices whose estimate average
distance is around x. The uniform distribution means that the density d(x)
is the same anywhere in the range of x. For any other distribution, it has an
average density of d, which is the average of d(x) over all x’s. Suppose that
the distribution is such that when x is sufficiently small, d(x) ≤ d (this property
requires further investigation but we believe it is reasonable for social networks).
Let x0 be the largest value such that for all x ≤ x0, d(x) ≤ d. Then, in our
algorithm, as long as âv̂k

+ 2f(�) · Δ̂ ≤ x0, the number of vertices between âv̂k

and âv̂k
+2f(�) ·Δ̂ is at most n · 2f(�)·Δ̂

cΔ , as given in the proof of Lemma 2. Thus,
Lemma 2 uses a conservative upper bound for this number, and it will still hold
for the distributions with the above property.

Even with the above generalization, however, the savings from O(n(n log n +
m)) to O((k + n

2
3 · log

1
3 n)(n log n + m)) is still not very significant. Ideally, we

would like a ranking algorithm that is O(poly(k)(n log n+m)), where poly(k) is a
polynomial of k, which means the number of SSSP calculations is only related to
k, not n. This is possible for small k when the distribution of estimated average
distances is not uniform but other distributions like the normal distribution. In
this case, the number of additional SSSP computations for vertices in the range
from âv̂k

to âv̂k
+2f(�) · Δ̂ could be small and not related to n. We leave this as

a future research work (see more discussion in Section 4).

3.2 Improving the Algorithm with a Heuristic

The algorithm in Figure 1 spends its majority of computation on the following
two steps: (1) step 1 computing SSSP for � samples, and (2) step 5 computing

Algorithm TOPRANK2(k)
1 Use the approximation algorithm RAND with a set S of � sampled vertices to obtain the

estimated average distance âv for each vertex v.
// Rename all vertices to v̂1, v̂2, . . . , v̂n such that âv̂1 ≤ âv̂2 ≤ · · · ≤ âv̂n .

2 Find v̂k.
3 Let Δ̂ = 2minu∈S maxv∈V d(u, v).
4 Compute candidate set E as the set of vertices whose estimated average distances are less than

or equal to âv̂k
+ 2f(�) · Δ̂.

5 repeat
6 p← |E|
7 Select additional q vertices S+ as new samples uniformly at random.
8 Update estimated average distances of all vertices using new samples in S+ (need to compute

SSSP for all new sample vertices).
9 S ← S ∪ S+; �← � + q; Δ̂← min(Δ̂, 2 minu∈S+ maxv∈V d(u, v))

// Rename all vertices to v̂1, v̂2, . . . , v̂n such that âv̂1 ≤ âv̂2 ≤ · · · ≤ âv̂n .
10 Find v̂k.
11 Compute candidate set E as the set of vertices whose estimated average distances are less

than or equal to âv̂k
+ 2f(�) · Δ̂.

12 p′ ← |E|
13 until p − p′ ≤ q
14 Calculate exact average shortest-path distances of all vertices in E.
15 Sort the exact average distances and find the top-k vertices as the output.

Fig. 2. Improved algorithm for ranking vertices with top k closeness centralities

Ranking of Closeness Centrality for Large-Scale Social Networks 193

SSSP for all candidates in set E. The key in reducing the running time of the
algorithm is to find the right sample size � to minimize �+ |E|, the total number
of SSSP calculations. However, this number is difficult to obtain before running
the algorithm, especially when the distribution of average distances is unknown.
In this section, we improve the algorithm by a heuristic to achieve the above
goal.

The idea of the heuristic is to incrementally add new samples to compute
more accurate average distances of all vertices. In each iteration, q new sample
vertices are added. After computing the new average distances with these q
new vertices, we obtain a new candidate set E. If the size of the candidate
set E decreases more than q, then we know that the savings by reducing the
number of candidates outweigh the cost of adding more samples. In this case, we
continue the next iteration of adding more samples. This procedure ends when
the cost of adding more samples outweighs the savings obtained by the reduced
number of candidates. Figure 2 provides this heuristic algorithm. Essentially,
this is the dynamic way of finding the optimal � to minimize �+ |E| (or to make
Δ� = −Δ|E|, where Δ� is the small change in � and Δ|E| is the corresponding
change in |E|).

The initial value of the � in step 1 can be obtained based on Theorem 1
if we know that the distribution of the estimated average distances is uniform.
Otherwise, we can choose a basic value, for example k, since we need to compute
at least k SSSP in step 14 in any case. The incremental unit q could be a small
value, for example, log n. However, we do not know yet if |E| strictly decreases
when the sample size � for estimating average distances increases, and if the
rate of decrease of |E| slows down when adding more and more sample vertices.
Therefore, it is not guaranteed that the heuristic algorithm will always stop at
the optimal sample size �. An open problem is to study the conditions under
which the change of |E| with respect to the change of sample size � indeed has
the above properties, and thus the heuristic algorithm indeed provides the most
efficient solution.

4 Conclusion and Discussions

This paper can be viewed as the first step towards the design of more efficient al-
gorithms in obtaining highest ranked closeness centrality vertices. By combining
the approximation algorithm with the exact algorithm, we obtain an algorithm
that has better complexity than the brute-force exact algorithm.

There are many directions to extend this study.

– First, as mentioned in the previous section, we are interested in more efficient
algorithms such that the number of SSSP computations is only related to
k, not to n. This may be possible for some classes of social networks with
certain properties on their average distance distributions.

– Second, the condition under which the heuristic algorithm results in the
least number of SSSP computation is an open problem and would be quite
interesting to study.

194 K. Okamoto, W. Chen, and X.-Y. Li

– Third, we may be able to obtain faster algorithm if we can relax the problem
requirement. Instead of finding all top-k vertices with high probability, we
may allow the output to have an error bound t, which is the number of
vertices that should be ranked within top-k vertices but are missed in the
output. Generally, given an algorithm for top-k query of various centralities,
we define the hit-ratio, denoted as η(A), of an output A = {v1, v2, · · · , vκ}
(not necessarily of size k) as |A∩Qk|

k , where Qk is the actual set of top-k
vertices. Let r(vi) denote the the actual rank of vi. Here, we require that
r(vi) < r(vi+1), for i ∈ [1, κ − 1]. Thus we have r(vi) ≥ i. We define the
accuracy of A, denoted as α(A), as κ(κ+1)

2
∑κ

i=1 r(vi)
(other definitions of accuracy

are possible). Clearly, η(A) ∈ [0, 1] and α(A) ∈ [0, 1]. The hit-ratio and
accuracy of an algorithm are then its worst performance over all possible
inputs. We then may only require that Pr (η(A) ≥ 1 −
, α(A) ≥ 1 − ε) ≥
1−δ, for sufficiently small
, ε and δ. Such relaxations in the requirement may
allow much more efficient algorithms, since we observe that the complexity
of our algorithm is mainly because we need to include all vertices in the
extra range from âv̂k

to âv̂k
+ 2f(�) · Δ̂ in order to include all top-k vertices

with high probability.
– Fourth, we would like to study the stability of our algorithms for top-k query

using random sampling. Costenbader et al. [CV03] studied the stability of
various centrality measures. Their study shows that, with a 50% sample of
the original network nodes, average correlations for the closeness measure
ranged from 0.54 to 0.71.

– Finally, we can look into other type of centralities and see how to rank
them efficiently using the technique in this paper. For example, Brandes
[Br00] presents an algorithm for betweenness centrality of weighted graph
with time-complexity n(m + n log n). Brandes et al. [BP00] present the first
approximation algorithm for betweenness centrality. Improvements over their
method were presented recently in [GS08,BK07].

To conclude, we would like to provide a brief comparison of our algorithms
with the well known PageRank algorithm [BP98]. PageRank is an algorithm
used to rank the importance of the webpages, which are viewed as vertices con-
nected by directed edges (hyperlinks). As explained in Footnote 2, PageRank
is a variant of the eigenvector centrality. Thus, it is a different measure from
closeness centrality. More importantly, by definition the PageRank of a vertex
(a webpage) depends on the PageRanks of other vertices linking to it, so the
PageRank calculation requires computing all PageRank values of all vertices,
even if only the top-k PageRank vertices are desired. However, for closeness cen-
trality measure, our algorithms do not need to compute closeness centralities
for all vertices. Instead, we may start with rough estimates of closeness central-
ities of vertices, and through refining the estimates we reduce the candidate set
containing the top-k vertices. This results in reduced time complexity in our
computation.

Ranking of Closeness Centrality for Large-Scale Social Networks 195

References

[BK07] Bader, D.A., Kintali, S., Madduri, K., Mihail, M.: Approximating Betweenness
Centrality. In: The 5th Workshop on Algorithms and Models for the Web-
Graph, pp. 124–137 (2007)

[Ba50] Bavelas, A.: Communication patterns in task-oriented groups. The Journal of
the Acoustical Society of America 22(6), 725–730 (1950)

[Be65] Beauchamp, M.A.: An improved index of centrality. Behavioral Science 10(2),
161–163 (1965)

[Br00] Brandes, U.: Faster Evaluation of Shortest-Path Based Centrality Indices.
Konstanzer Schriften in Mathematik und Informatik 120 (2000)

[BP00] Brandes, U., Pich, C.: Centrality Estimation in Large Networks. Intl. Journal
of Bifurcation and Chaos in Applied Sciences and Engineering 17(7), 2303–
2318

[BP98] Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search
engine. Computer Networks and ISDN Systems 30, 107–117 (1998)

[CV03] Costenbader, E., Valente, T.W.: The stability of centrality measures when
networks are sampled. Social Networks 25, 283–307 (2003)

[Di59] Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959)

[EL05] Elmacioglu, E., Lee, D.: On six degrees of separation in DBLP-DB and more.
ACM SIGMOD Record 34(2), 33–40 (2005)

[EW04] Eppstein, D., Wang, J.: Fast Approximation of Centrality. Journal of Graph
Algorithms and Applications 8, 39–45 (2004)

[FT87] Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM 34(3), 596–615 (1987)

[Fr79] Freeman, L.C.: Centrality in social networks conceptual clarification. Social
Networks 1(3), 215–239 (1978/79)

[GS08] Geisberger, R., Sanders, P., Schultes, D.: Better Approximation of Betweenness
Centrality. In: Proceedings of the 10th Workshop on Algorithm Engineering
and Experiments (ALENEX 2008), pp. 90–100. SIAM, Philadelphia (2008)

[Ho63] Hoeffding, W.: Probability inequalities for sums of bounded random variables.
Journal of the ACM 58(1), 13–30 (1963)

[Jo77] Johnson, D.B.: Efficient algorithms for shortest paths in sparse networks. Jour-
nal of the ACM 24(1), 1–13 (1977)

[KL05] Koschutzki, D., Lehmann, K.A., Peeters, L., Richter, S., Tenfelde-Podehl, D.,
Zlotowski, O.: Centrality indices. Network Analysis, 16–61 (2005)

[Ne04a] Newman, M.E.J.: Coauthorship networks and patterns of scientific collabora-
tion. Proceedings of the National Academy of Sciences 101, 5200–5205 (2004)

[Ne04b] Newman, M.E.J.: Who is the best connected scientist? A study of scientific
coauthorship networks. Complex Networks, 337–370 (2004)

[NP03] Newman, M.E.J., Park, J.: Why social networks are different from other types
of networks. Physical Review E 68, 036122 (2003)

[PP02] Potterat, J.J., Phillips-Plummer, L., Muth, S.Q., Rothenberg, R.B., Wood-
house, D.E., Maldonado-Long, T.S., Zimmerman, H.P., Muth, J.B.: Risk net-
work structure in the early epidemic phase of HIV transmission in Colorado
Springs. Sexually Transmitted Infections 78, i159–i163 (2002)

[Sa66] Sabidussi, G.: The centrality index of a graph. Psychometrika 31(4), 581–603
(1966)

Mixed Search Number of Permutation Graphs

Pinar Heggernes and Rodica Mihai

Department of Informatics, University of Bergen, N-5020 Bergen, Norway
pinar@ii.uib.no, rodica@ii.uib.no

Abstract. Search games in graphs have attracted significant attention
in recent years, and they have applications in securing computer net-
works against viruses and intruders. Since graph searching is an NP-hard
problem, polynomial-time algorithms have been given for solving it on
various graph classes. Most of these algorithms concern computing the
node search number of a graph, and only few such algorithms are known
for computing the mixed search or edge search numbers of specific graph
classes. In this paper we show that the mixed search number of permuta-
tion graphs can be computed in linear time, and we describe an algorithm
for this purpose. In addition, we give a complete characterization of the
edge search number of complete bipartite graphs.

1 Introduction

The graph searching problem concerns a team of searchers who are trying to
capture a fugitive moving along the edges of the graph. The fugitive is assumed
to be very fast and invisible, and he knows the search strategy of the searchers.
The minimum number of searchers that can guarantee the capture of the fugitive
under this worst case scenario for the searchers is the search number of the
graph, and the problem is to compute this number. The study of the graph
searching problem started in 1970s when it was independently introduced by
Parsons [25] and Petrov [28], and since that time it has been studied extensively
[3,2,21,22,18,26]. It fits into the broader class of pursuit-evasion, search, and
rendezvous problems on which a large number of results have appeared [1].

In a computer network setting, the graph searching problem serves as a math-
ematical model for protecting networks against viruses and other unwanted
agents, like spyware or eavesdroppers [2,13]. A practical example is the problem
of finding a successful strategy for a group of collaborating software programs
that are designed to clean the network from a virus [11].

In the above mentioned original version of graph searching by Parsons and
Petrov, later called edge searching [19], a search step consists of placing a searcher
on a vertex or removing a searcher from a vertex or sliding a searcher along an
edge. An edge is cleared by sliding a searcher from one of its endpoints to the
other endpoint. Kirousis and Papadimitriou [19] introduced a variant of graph
searching called node searching. In this version an edge is cleared if both its
endpoints contain searchers. A new version of the graph searching was introduced
by Bienstock and Seymour in [3]. This version, called mixed searching, combines

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 196–207, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Mixed Search Number of Permutation Graphs 197

features of both edge searching and node searching. An edge is cleared either by
sliding or by placing searchers at each endpoint. In the mixed searching game,
a contaminated edge of the graph is cleared if either both its two endpoints
contain searchers or a searcher is slided along it. The allowable moves are placing
a searcher on a vertex, removing a searcher from a vertex and sliding a searcher
along an edge.

The minimum number of the searchers sufficient to perform searching and
ensure the capture of the fugitive for each of the models are respectively the
edge, node, and mixed search numbers, and computations of these are all NP-
hard [3,22,18]. The node search number of a graph is known to be equal to its
pathwidth plus one; the mixed search number of a graph is equal to its proper
pathwidth [31].

Polynomial-time algorithms are known for computing the node search number
of trees [27,29], interval graphs [7], cographs [6], k-starlike graphs for fixed k [26],
d-trapezoid graphs [5], block graphs [9], split graphs [17], circular-arc graphs
[30], and permutation graphs [4,23]. However, only for a few of these graph
classes polynomial-time algorithms are known for computing mixed search or
edge search numbers. Edge search number of trees [22,27], interval graphs and
split graphs [26,15] can be computed in polynomial time. For computing the
mixed search number, polynomial-time algorithms exist so far only for interval
graphs and split graphs [12].

In this paper we show that the mixed search number of permutation graphs
can be computed in linear time, thereby resolving the computational complexity
of this problem on this graph class. Permutation graphs are a well-studied graph
class with significant theoretical importance [16,8]. In addition, we show how to
compute the edge search number for a subclass of permutation graphs, namely
complete bipartite graphs. In fact we give a complete characterization of both
edge and mixed search numbers on complete bipartite graphs.

2 Preliminaries

We work with simple and undirected graphs G = (V, E), with vertex set V (G) =
V and edge set E(G) = E, and we let n = |V |, m = |E|. The set of neighbors
of a vertex x is denoted by N(x) = {y | xy ∈ E}. A vertex set C is a clique if
every two vertices in C are adjacent, and a maximal clique if no superset of C is
a clique. The subgraph of G induced by a vertex set A ⊆ V is denoted by G[A].

A path is a sequence v1, v2, ..., vp of distinct vertices of G, where vivi+1 ∈ E
for 1 ≤ i < p, in which case we say that this is a path between v1 and vp. A path
v1, v2, ..., vp is called a cycle if v1vp ∈ E. A chord of a cycle (path) is an edge
connecting two non-consecutive vertices of the cycle (path).

A vertex set S ⊂ V is a separator if G[V \ S] is disconnected. Given two
vertices u and v, S is a u, v-separator if u and v belong to different connected
components of G[V \ S], and S is then said to separate u and v. Two separators
S and T are said to be crossing if S is a u, v-separator for a pair of vertices
u, v ∈ T , in which case T is an x, y-separator for a pair of vertices x, y ∈ S

198 P. Heggernes and R. Mihai

[20,24]. A u, v-separator S is minimal if no proper subset of S separates u and
v. In general, S is a minimal separator of G if there exist two vertices u and v
in G such that S is a minimal u, v-separator. It can be easily verified that S is a
minimal separator if and only if G[V \S] has two distinct connected components
C1 and C2 such that NG(C1) = NG(C2) = S. In this case, C1 and C2 are called
full components.

2.1 Chordal Graphs, Interval Graphs, and Pathwidth

Permutation graphs and complete bipartite graphs will be introduced in the
sections in which they are studied. In this subsection we mention the graph
classes and graph parameters that are central in graph searching.

A graph is chordal if every cycle of length at least 4 has a chord. A triangulation
of a graph G is a chordal graph H on the same vertex set as G such that G is
a subgraph of H . If there is no proper subgraph of H that is a triangulation
of G then H is said to be a minimal triangulation of G. The following central
characterization of minimal triangulations is useful for understanding our results
on permutation graphs. A triangulation of G is minimal if and only if it is
obtained by adding edges to make into cliques a maximal set of non-crossing
minimal separators of G [24]. A set C of vertices of G is a potential maximal
clique if there is a minimal triangulation of G in which C is a maximal clique.

A path-decomposition of a graph G = (V, E) is a linearly ordered sequence of
subsets of V , called bags, such that the following three conditions are satisfied:
1. Every vertex x ∈ V appears in some bag. 2. For every edge xy ∈ E there is
a bag containing both x and y. 3. For every vertex x ∈ V , the bags containing
x appear consecutively. The width of a decomposition is the size of the largest
bag minus one, and the pathwidth of a graph G, pw(G), is the minimum width
over all possible path decompositions. A path decomposition of width pw(G) is
called an optimal path decomposition of G.

A graph is an interval graph if intervals of the real line can be associated to
its vertices such that two vertices are adjacent if and only if their corresponding
intervals overlap. An important characterization of interval graphs is that a graph
G is an interval graph if and only if it has an optimal path decomposition where
every bag is a maximal clique of G [14]. Such an optimal path decomposition is
called a clique-path. It is well known that the pathwidth of an interval graph is
one less than the size of its largest clique. Clique-paths of interval graphs can be
computed in linear time [7]. For an arbitrary graph G, every path decomposition
of G corresponds to an interval graph obtained by adding edges to G until each
bag of the path decomposition is a clique. The mentioned path decomposition
is then a clique path of this interval graph.

2.2 Search Games

The mixed search game can be formally defined as follows. Let G = (V, E) be a
graph to be searched. A search program consists of a sequence of discrete steps
which involves searchers. Initially there is no searcher on the graph. Every step
is one of the following three types

Mixed Search Number of Permutation Graphs 199

– Some searchers are placed on some vertices of G (there can be several
searchers located in one vertex);

– Some searchers are removed from G;
– A searcher slides from a vertex u to a vertex v along edge uv.

At every step of the search program the edge set of G is partitioned into
two sets: cleared and contaminated edges. Intuitively, the agile and omniscient
fugitive with unbounded speed who is invisible for the searchers, is located some-
where on a contaminated territory, and cannot be on cleared edges. Initially all
edges of G are contaminated, i.e., the fugitive can be anywhere. A contaminated
edge uv becomes cleared at some step of the search program either if both its
endpoints contain searchers, or if at this step a searcher located in u slides to v
along uv.

A cleared edge e is (re)contaminated at some step if at this step there exists
a path P containing e and a contaminated edge and no internal vertex of P
contains a searcher. For example, if a vertex u is incident to a contaminated
edge e, there is only one searcher at u and this searcher slides from u to v along
edge uv �= e, then after this step the edge uv, which is cleared by sliding, is
immediately recontaminated.

A search program is winning if after its termination all edges are cleared.
The mixed search number of a graph G, denoted by ms(G), is the minimum
number of searchers required for a winning program of mixed searching on G.
The differences between mixed, edge, and node searching are in the way the edges
can be cleared. In node searching an edge is cleared only if both its endpoints are
occupied (no clearing by sliding). In edge searching an edge can be cleared only
by sliding. So mixed searching can be seen as a combination of node and edge
searching. The edge and node search numbers of a graph G are defined similarly
to the mixed search number, and are denoted by es(G) and ns(G), respectively.
A winning mixed search program using ms(G) steps (analogously, a winning
edge search program using es(G) steps) is called optimal. The following result is
central and gives the relation between the three graph searching parameters.

Lemma 1 ([31]). Let G be an arbitrary graph.

– ns(G) = pw(G) + 1.
– pw(G) ≤ ms(G) ≤ pw(G) + 1.
– pw(G) ≤ es(G) ≤ pw(G) + 2.

Note that, although the node search number of a graph is known, it might
be difficult to decide its mixed search number or edge search number. Hence
although pw(G) of a graph G can be computed easily, it might be difficult to
decide whether ms(G) = pw(G) or ms(G) = pw(G) + 1.

A search program is called monotone if at any step of this program no re-
contamination occurs. For all three versions of graph searching, recontamination
does not help to search the graph with fewer searchers [3,21], i.e., on any graph
with {edge, mixed, node} search number k there exists a winning monotone
{edge, mixed, node} search program using k searchers. Thus in this paper we
consider only monotone search programs.

200 P. Heggernes and R. Mihai

3 Mixed Search Number of Permutation Graphs

Let π be a permutation of {1, ..., n}. We define G(π) to be the graph with vertex
set {1, ..., n} and edge set {ij | (i−j)·(π−1(i)−π−1(j)) < 0}. Hence, two vertices
i, j of G(π) are adjacent if and only if the permutation π changes their natural
order. An undirected graph G is called a permutation graph if there exists a
permutation π such that G is isomorphic to G(π).

In this section we give a linear-time algorithm to compute the mixed search
number of permutation graphs. Permutation graphs are a well studied graph class
with subject to many theoretical results, and they have many characterizations
[16]. If G is a permutation graph then all minimal triangulations of G are interval
graphs [4]. In addition, permutation graphs have a linear number of minimal
separators [23]. Pathwidth of permutation graphs, and hence their node search
number, can be computed in linear time [4,23]. No polynomial-time algorithm
has been known for computing their mixed search number.

We start by relating mixed search number to proper pathwidth, and then
giving a new general result, before we move to permutation graphs. A path
decomposition is called proper if no three bags of the same size s all intersect in
the same s − 1 vertices. The proper pathwidth of a graph G, denoted by ppw(G)
is the minimum width over all proper path decompositions of G.

Theorem 1 ([31]). For any graph G, ms(G) = ppw(G).

Thus computing the mixed search number and the proper pathwidth are equiv-
alent problems. This, in combination with the following result, is the main tool
that we use to compute the mixed search number of permutation graphs.

Theorem 2 ([12]). For an interval graph G, ms(G) = pw(G) if and only if no
three maximum cliques intersect in pw(G) vertices.

We define a good path decomposition to be an optimal path decomposition that
does not contain three consecutive bags intersecting in the same pw(G) ver-
tices. We now add the following new result for general graphs that strengthens
Theorem 1.

Theorem 3. For any graph G, ms(G) = pw(G) if and only if G has a good
path decomposition. (Otherwise ms(G) = pw(G) + 1.)

Proof. First we show that in any optimal path decomposition P , if there are
three bags of maximum size intersecting in the same pw(G) vertices then there
are three consecutive bags intersecting in the same pw(G) vertices. Let Bi, Bj , Bk

be three bags from left to right (not necessarily consecutive) in P such that
|S = Bi ∩ Bj ∩ Bk| = pw(G). Then by the definition of a path decomposition,
S is a subset of every bag of P between Bi and Bk. Since no bag is a subset of
another bag, it means that all bags between Bi and Bk must be of maximum
size and contain S. Hence any three consecutive bags between Bi and Bk are of
size pw(G) + 1 and contain the same pw(G) vertices.

Mixed Search Number of Permutation Graphs 201

If ms(G) = pw(G) then by Theorem 1, pw(G) = ppw(G), and by the above
argument there exists a good path decomposition of G.

If G has a good path decomposition P then let H be the interval graph obtained
by making each bag of P into a clique by adding edges. Since P is an optimal
path decomposition of G, pw(H) = pw(G). Since G is a subgraph of H , ms(G) ≤
ms(H). No three bags of P of maximum size overlap in the same pw(G) vertices,
and since there is a one-to-one correspondence between the bags of P and the
maximal cliques of H , no three maximum cliques of H overlap on the same pw(G)
vertices. Hence ms(H) = pw(H) by Theorem 2. Combining all of the above, we
obtain that ms(G) ≤ pw(G), and the result follows from Lemma 1. �	

With this general result, we are now ready to move to permutation graphs, and
the computation of their mixed search number.

Lemma 2. Let G be a permutation graph. If ms(G) = pw(G) then G has a good
path decomposition that corresponds to a minimal triangulation of G.

Proof. Since ms(G) = pw(G), by Theorem 3 G has a good path decomposition
P . Assume that the interval graph H that has P as a clique path is not a mini-
mal triangulation of G. Then H has a chordal subgraph H ′ which is a minimal
triangulation of G. Since all minimal triangulations of permutation graphs are
interval graphs, H ′ is an interval graph and has a clique path P ′ which is a path
decomposition of G. We argue that P ′ is a good path decomposition of G. Ob-
serve that the size of the largest bag in P ′ cannot be larger than the size of the
largest bag in P since H ′ is a subgraph of H , and thus P ′ is an optimal path de-
composition. Removal of edges from H might create three new bags of size s that
intersect at the same s − 1 vertices. However, if this happens then s cannot be
equal to pw(G)+1 because if the removal of an edge splits a maximal clique into
two new maximal cliques, then the new maximal cliques will be of size at least 1
less than the size of the old maximal clique. Hence, P ′ is a good path decompo-
sition of G that corresponds to the minimal triangulation H ′, and the proof is
complete. �	

In the remaining of this section, let G = G(π) be a permutation graph for
a permutation π of {1, ..., n}. A permutation diagram of G is obtained in the
following way. Take two copies of the real line between 0.5 and n + 0.5; place
one of them below the other; put consecutive labels from 1 to n on the integer
points of the above one; put consecutive labels from π(1) to π(n) on the integer
points of the other; draw lines between a point on the upper line and a point
on the lower line if and only if the two points have the same labels. Each line
(i, π−1(i)) will be called the line of vertex i. It is easy to see that two vertices
i and j are adjacent in G if and only if their lines intersect in the permutation
diagram for G.

A scanline of G is a pair (a, e) where a, e ∈ {0.5, 1.5, ..., n + 0.5}. We also
define the following two scanlines s0 = (0.5, 0.5) and sn

e = (n+0.5, n+0.5). Each
scanline si is associated with a set of vertices Si of G such that Si consists of
exactly those vertices whose lines cross si. For each scanline si, the corresponding

202 P. Heggernes and R. Mihai

vertex set Si is a separator of G [4]. A special scanline is a scanline si such that
Si is a minimal separator of G and si is between two full components of G[V \Si]
in the permutation diagram [23].

Meister defined the potential maximal clique graph of a permutation graph,
and used this to compute the pathwidth of permutation graphs in linear time
[23]. We will heavily rely on this algorithm. The potential maximal clique graph
of a permutation graph G(π) is a directed graph PC(π) defined as follows: PC(π)
has a vertex for every special scanline of G, and there is an arc from vertex si

to vertex sj if and only if the corresponding special scanline si is on the left
side of the special scanline sj and there is no other special scanline strictly
between them (non-intersecting with any of them). Hence the set of vertices of
PC(π) correspond exactly to the set of minimal separators of G(π), and arcs
go between non-crossing minimal separators. For each arch sisj of PC(π) we
define Cij to be the set of vertices whose lines cross si or sj and vertices whose
lines are between si and sj in the permutation diagram of G. For each arc sisj in
PC(π), Cij is a potential maximal clique of G, and each potential maximal clique
of G corresponds to an edge in PC(π). Furthermore, the number of vertices of
PC(π) is O(n + m), PC(π) is acyclic and can be generated in linear time [23]. A
source-sink path in PC(π) is any directed path from s0 to sn

e .

Theorem 4 ([23]). Let G = G(π) be a permutation graph. An interval graph
H is a minimal triangulation of G if and only if there is a source-sink path
s0, ..., sk−1, s

n
e in PC(π) such that C01, ..., Ck−1,k is a clique path of H.

We will call a source-sink path s0, ..., sk−1, s
n
e a good path if |Ci−1,i| ≤ pw(G)+1,

and Si−1 �= Si whenever |Si−1| = |Si| = pw(G), for all i ∈ {1, 2, . . . , k}. We can
now give the following main structural result.

Theorem 5. Let G = G(π) be a permutation graph. Then ms(G) = pw(G) if
and only if there exists a good path in PC(π). (Otherwise ms(G) = pw(G) + 1.)

Proof. If there exists a good path in PC(π) then by Theorem 4 there exists
a good path decomposition of G. Hence by Theorem 3, ms(G) = pw(G). If
ms(G) = pw(G) then by Lemma 2 there exists a good path decomposition P of
G that corresponds to a minimal triangulation. Observe that the condition that
no three consecutive bags of P intersect in the same pw(G) vertices is equivalent
to the condition that no two consecutive minimal separators of size pw(G) of P
are equal. Hence by Theorem 4, there exists a good path in PC(π) corresponding
to this minimal triangulation. �	

Thus we will search for good paths in PC(π) to decide whether ms(G) = pw(G)
or ms(G) = pw(G) + 1. The algorithm is described in the proof of the following
theorem.

Theorem 6. The mixed search number of a permutation graph can be computed
in linear time.

Proof. We describe such an algorithm. By the results of [23], PC(π) can be com-
puted, a topological search on it can be performed, and pw(G) can be computed

Mixed Search Number of Permutation Graphs 203

in linear time. In fact, the algorithm of Meister [23] computes the size of each
minimal separator corresponding to a vertex and each potential maximal clique
corresponding to an arc of PC(π) within the linear time bound, and the data
structure on which this algorithm is based allows checking the equivalence of two
minimal separators in constant time. During the construction of PC(π), minimal
separators that are equal are detected and only one copy of the list of vertices
in these minimal separators is kept, whereas all minimal separators that contain
exactly these vertices are set to point to the same location, all within the linear
time bound. Hence to check whether two vertices of PC(π) correspond to two
minimal separators that are equal, can be done in constant time by comparing
the pointers, after the preprocessing during the construction of PC(π).

We now describe our algorithm, based on the above. First we run the algorithm
of [23] to construct PC(π) as described above and to compute pw(G). After this,
we delete all arcs corresponding to potential maximal cliques of size larger than
pw(G)+1, and all vertices corresponding to minimal separators of size larger than
pw(G) from PC(π), since these can never be involved in paths corresponding to op-
timal path decompositions. After this we traverse the graph in a topological order,
and delete every arc sisj such that |Si| = |Sj | = pw(G) and Si = Sj . Such arcs
can never be part of a good path, and can thus be deleted safely. Let us call PC′(π)
the potential maximal cliques graph that we obtain after the described deletions
from PC(π). We claim that there is a good path in PC(π) if and only if there is a
source-sink path in PC′(π). Clearly, if there is a source-sink path P in PC′(π) then
P is a good path in PC(π) since P is a path in PC(π) that does not contain any
of the forbidden substructures of a good path. If there is a good path P in PC(π)
then this path survives all the deletions described above since it does not contain
any of the deleted substructures. Hence P is a source-sink path in PC′(π).

The algorithm, after the deletions, is to simply search for a source-sink path
in PC′(π). The algorithm returns such a path if it is found and outputs ms(G) =
pw(G). If no such path is found, then the algorithm returns ms(G) = pw(G)+1.
The correctness of the algorithm follows from the proof of the claim in the
previous paragraph and Theorem 5.

For the running time, after computing PC(π) and pw(G) in linear time with
Meister’s algorithm [23], deletion of arcs and vertices that correspond to too big
potential maximal cliques and minimal separators can be done in linear time,
too, since we only check sizes. For each arc sisj , whether |Si| = |Sj | = pw(G)
can be checked in constant time by the same arguments, and checking whether
Si = Sj can be done in constant time, too, as explained in the first paragraph,
comparing the pointers from si and sj . Looking for source-sink paths in PC′(π)
takes also clearly linear-time, since this is just simple graph traversal. Hence the
total running time is O(n+m). �	

4 Edge Search Number of Complete Bipartite Graphs

A bipartite graph is a graph whose vertex set can be partitioned into two inde-
pendent sets. We denote such a graph by G = (A, B, E) where A∪B is the vertex

204 P. Heggernes and R. Mihai

set of G, and A and B are independent sets. If G is a connected bipartite graph,
then the partition of the vertex set into the two independent sets is unique. A
bipartite graph G = (A, B, E) is a complete bipartite graph if every vertex of A
is adjacent to every vertex of B. Such a graph is denoted by Ka,b, where a = |A|
and b = |b|.

It is known that pw(Ka,b) = min{a, b} [6], hence the node search number
of complete bipartite graphs is completely characterized. By the results of the
previous section, their mixed search number can be computed in linear time,
since complete bipartite graphs are a subset of permutation graphs. Here, we
give a complete characterization of their edge search number, hence completing
the knowledge of searching in complete bipartite graphs.

Lemma 3. If min{a, b} ≥ 3 then es(Ka,b) = min{a, b} + 2.

Proof. Let A and B be the two independent sets of G = Ka,b with |A| = a and
|B| = b. Assume without loss of generality that a ≤ b. By the result mentioned
above, pw(G) = a. Thus by Lemma 1 we have a ≤ es(G) ≤ a + 2. We will show
that es(G) = a + 2. Hence we have to show that es(G) ≥ a + 2.

For this lower bound, assume for a contradiction that there is an edge search
program that clears the graph with a + 1 searchers without recontamination. If
all vertices of A are occupied by searchers initially, then one searcher is left to
clear all edges, and since all vertices of B are uncleared and without searchers,
there is no way to continue without recontamination. Hence initially at least one
vertex v of B is occupied with a searcher. This searcher can only be removed after
the clearance of all edges incident to B but one, so the first move cannot be to
slide the searcher on v. The same is true for the vertices of A as well, so at most
a − 1 vertices of A are occupied with searchers initially, and the first move must
be to use the last searcher to clear an edge whose both endpoints are occupied
by searchers. When all edges incident to v are cleared except one, the searcher
on v can be slided to the other endpoint of this remaining edge, and all edges
incident to v will be cleared. This can be done only if at most one vertex of A
was without searcher. After this, all vertices of A are occupied with searchers, we
have one idle searcher, and at least two vertices of B remain without searchers.
Hence each vertex of A has at least two uncleared edges incident to it. We can
slide the idle searcher from a vertex u of A to a vertex of B different from v and
leave it there, and if b = 3 we can even slide the searcher on u to the last vertex
of B and leave it there, without recontamination. These are the only possible
allowed moves at this stage. But after that still we are left with at least two
vertices from each side that each have at least two uncleared edges incident to
it, and we have no idle searcher available to slide between them. Since none
of the searchers can be moved without recontamination, we obtain the desired
contradiction, and conclude that the search cannot be completed with at most
a + 1 searchers. �	

For the cases not covered by the above lemma, it can be easily verified that
es(K1,1) = es(K1,2) = 1, es(K1,b) = 2 for b ≥ 3, es(K2,2) = 2, and es(K2,b) = 3
for b ≥ 3.

Mixed Search Number of Permutation Graphs 205

Hence we can conclude that if a complete bipartite graph is given as a pair
of integers, representing the sizes of the two independent sets, its edge search
number can be computed in constant time. This is also true for its node search
number by the results of [6], and its mixed search number by our next result,
which we include for completeness.

Lemma 4. If max{a, b} ≥ 3 then ms(Ka,b) = min{a, b} + 1.

Proof. Let A and B be the two independent sets of G = Ka,b with |A| = a and
|B| = b. Assume without loss of generality that a ≤ b. By the result mentioned
above, pw(G) = a. Thus by Lemma 1 we have a ≤ ms(G) ≤ a+1. We will show
that ms(G) = a + 1. Hence we have to show that ms(G) ≥ a + 1.

Assume for a contradiction that there is a mixed search program to clear
the graph using a searchers without allowing recontamination. If initially all
searchers are placed on the vertices of A, each of the vertices is adjacent to at
least two uncleared edges. Therefore none of the searchers can be removed or
slided without allowing recontamination. Hence initially at least one searcher is
placed on a vertex v of B so that at most a−1 are placed on the vertices of A. Let
u ∈ A be a vertex without a searcher. All the edges between v and the vertices of
A\{u} are thus cleared. Note that there are at least two uncleared vertices in B
without searchers. (If a = b and all searchers are placed on B the same argument
above on A applies on B.) Hence the next step of this search program cannot
be to move a searcher from a vertex of A to a vertex of B, because this would
recontaminate that vertex of A since every vertex of A is adjacent to at least two
uncleared vertices in B. Hence the next move is to move the searcher on v. If it
is moved to another vertex of B, v will be recontaminated because of u, which
is still uncleared. So to avoid recontamination, the search has to continue by
sliding the searcher on v to u along the edge vu. At this moment v and all edges
incident to it are cleared, all vertices of A are occupied by searchers, but each
vertex of A is adjacent to at least two uncleared edges. Therefore no searcher can
be slided or removed without allowing recontamination, which contradicts the
existence of the assumed search program. Thus, ms(G) ≥ a+1. �	

For the cases not covered by this lemma, it can be easily verified that ms(K1,1) =
ms(K1,2) = 1 and ms(K2,2) = 2.

5 Concluding Remarks

We have shown that the mixed search number of permutation graphs can be
computed in linear time. An interesting further research direction is to study
the edge search number of permutation graphs. A result in this direction would
complete the knowledge about all three graph searching parameters on this graph
class.

206 P. Heggernes and R. Mihai

References

1. Alpern, S., Gal, S.: The theory of search games and rendezvous. In: International
Series in Operations Research & Management Science, vol. 55. Kluwer Academic
Publishers, Boston (2003)

2. Bienstock, D.: Graph searching, path-width, tree-width and related problems (a
survey). In: DIMACS Ser. in Discrete Mathematics and Theoretical Computer
Science, vol. 5, pp. 33–49 (1991)

3. Bienstock, D., Seymour, P.: Monotonicity in graph searching. J. Algorithms 12,
239–245 (1991)

4. Bodlaender, H.L., Kloks, T., Kratsch, D.: Treewidth and pathwidth of permutation
graphs. SIAM J. Disc. Math. 8, 606–616 (1995)

5. Bodlaender, H.L., Kloks, T., Kratsch, D., Möhring, R.H.: Treewidth and Minimum
Fill-in on d-Trapezoid Graphs. J. Graph Algorithms Appl. 2 (1998)

6. Bodlaender, H.L., Möhring, R.H.: The pathwidth and treewidth of cographs. In:
Gilbert, J.R., Karlsson, R. (eds.) SWAT 1990. LNCS, vol. 447, pp. 301–310.
Springer, Heidelberg (1990)

7. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and graph planarity using pq-tree algorithms. J. Comp. Syst. Sc. 13, 335–
379 (1976)

8. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph classes: a survey, Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, USA (1999)

9. Chou, H., Ko, M., Ho, C., Chen, G.: Node-searching problem on block graphs.
Disc. Appl. Math. 156, 55–75 (2008)

10. Corneil, D.G., Lerchs, H., Stewart Burlingham, L.: Complement reducible graphs.
Annals Discrete Math 1, 145–162 (1981)

11. Flocchini, P., Huang, M.J., Luccio, F.L.: Contiguous search in the hypercube for
capturing an intruder. In: Proceedings of IPDPS 2005. IEEE Computer Society
Press, Los Alamitos (2005)

12. Fomin, F., Heggernes, P., Mihai, R.: Mixed search number and linear-width of
interval and split graphs. In: Proceedings of WG 2007. LNCS, vol. 4769, pp. 304–
315 (2007)

13. Franklin, M., Galil, Z., Yung, M.: Eavesdropping games: a graph-theoretic approach
to privacy in distributed systems. J. ACM 47, 225–243 (2000)

14. Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and of
interval graphs. Canad. J. Math. 16, 539–548 (1964)

15. Golovach, P.A., Petrov, N.N.: Some generalizations of the problem on the search
number of a graph. Vestn. St. Petersbg. Univ., Math. 28(3), 18–22 (1995); trans-
lation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 3, 21–27 (1995)

16. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Dis-
crete Mathematics, vol. 57. North-Holland, Amsterdam (2004)

17. Gustedt, J.: On the pathwidth of chordal graphs. Disc. Appl. Math. 45, 233–248
(1993)

18. Kirousis, L.M., Papadimitriou, C.H.: Interval graphs and searching. Disc. Math. 55,
181–184 (1985)

19. Kirousis, M., Papadimitriou, C.H.: Searching and pebbling. Theor. Comput.
Sci. 47, 205–218 (1986)

20. Kloks, T., Kratsch, D., Spinrad, J.: On treewidth and minimum fill-in of asteroidal
triple-free graphs. Theor. Comp. Sc. 175, 309–335 (1997)

Mixed Search Number of Permutation Graphs 207

21. LaPaugh, A.S.: Recontamination does not help to search a graph. J. ACM 40,
224–245 (1993)

22. Megiddo, N., Hakimi, S.L., Garey, M.R., Johnson, D.S., Papadimitriou, C.H.: The
complexity of searching a graph. J. ACM 35, 18–44 (1988)

23. Meister, D.: Computing Treewidth and Minimum Fill-In for Permutation Graphs
in Linear Time. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 91–102.
Springer, Heidelberg (2005)

24. Parra, A., Scheffler, P.: Characterizations and algorithmic applications of chordal
graph embeddings. Disc. Appl. Math. 79, 171–188 (1997)

25. Parsons, T.: Pursuit-evasion in a graph. In: Theory and Applications of Graphs,
Springer, Heidelberg (1976)

26. Peng, S.-L., Ko, M.-T., Ho, C.-W., Hsu, T.-s., Tang, C.Y.: Graph searching on
some subclasses of chordal graphs. Algorithmica 27, 395–426 (2000)

27. Peng, S.-L., Ho, C.-W., Hsu, T.-s., Ko, M.-T., Tang, C.Y.: Edge and node searching
problems on trees. Theor. Comput. Sci. 240, 429–446 (2000)

28. Petrov, N.N.: A problem of pursuit in the absence of information on the pursued.
Differentsialnye Uravneniya 18, 1345–1352, 1468 (1982)

29. Skodinis, K.: Construction of linear tree-layouts which are optimal with respect to
vertex separation in linear time. J. Algorithms 47, 40–59 (2003)

30. Suchan, K., Todinca, I.: Pathwidth of circular-arc graphs. In: Proceedings of WG
2007. LNCS, vol. 4769, pp. 258–269. Springer, Heidelberg (2007)

31. Takahashi, A., Ueno, S., Kajitani, Y.: Mixed searching and proper-path-width.
Theor. Comput. Sci. 137, 253–268 (1995)

The 2-Terminal-Set Path Cover Problem and Its

Polynomial Solution on Cographs�

Katerina Asdre and Stavros D. Nikolopoulos

Department of Computer Science, University of Ioannina
P.O. Box 1186, GR-45110 Ioannina, Greece

{katerina, stavros}@cs.uoi.gr

Abstract. In this paper we study a generalization of the path cover
problem, namely, the 2-terminal-set path cover problem, or 2TPC for
short. Given a graph G and two disjoint subsets T 1 and T 2 of V (G),
a 2-terminal-set path cover of G with respect to T 1 and T 2 is a set of
vertex-disjoint paths P that covers the vertices of G such that the vertices
of T 1 and T 2 are all endpoints of the paths in P and all the paths with
both endpoints in T 1 ∪T 2 have one endpoint in T 1 and the other in T 2.
The 2TPC problem is to find a 2-terminal-set path cover of G of minimum
cardinality; note that, if T 1 ∪ T 2 is empty, the stated problem coincides
with the classical path cover problem. The 2TPC problem generalizes
some path cover related problems, such as the 1HP and 2HP problems,
which have been proved to be NP-complete even for small classes of
graphs. We show that the 2TPC problem can be solved in linear time
on the class of cographs. The proposed linear-time algorithm is simple,
requires linear space, and also enables us to solve the 1HP and 2HP
problems on cographs within the same time and space complexity.

Keywords: path cover, fixed-endpoint path cover, perfect graphs, com-
plement reducible graphs, cographs, linear-time algorithms.

1 Introduction

Framework–Motivation. A well studied problem with numerous practical ap-
plications in graph theory is to find a minimum number of vertex-disjoint paths
of a graph G that cover the vertices of G. This problem, also known as the path
cover problem (PC), finds application in the fields of database design, networks,
code optimization among many others (see [1,2,16,21]); it is well known that the
path cover problem and many of its variants are NP-complete in general graphs
[10]. A graph that admits a path cover of size one is referred to as Hamilto-
nian. Thus, the path cover problem is at least as hard as the Hamiltonian path
problem (HP), that is, the problem of deciding whether a graph is Hamiltonian.

� The research Project is co-funded by the European Union - European Social Fund
(ESF) & National Sources, in the framework of the program ”Pythagoras II” of the
3rd Community Support Framework of the Hellenic Ministry of Education.

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 208–220, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The 2-Terminal-Set Path Cover Problem 209

Several variants of the HP problem are also of great interest, among which
is the problem of deciding whether a graph admits a Hamiltonian path between
two points (2HP). The 2HP problem is the same as the HP problem except that
in 2HP two vertices of the input graph G are specified, say, u and v, and we
are asked whether G contains a Hamiltonian path beginning with u and ending
with v. Similarly, the 1HP problem is to determine whether a graph G admits a
Hamiltonian path starting from a specific vertex u of G, and to find one if such
a path does exist. Both 1HP and 2HP problems are also NP-complete in general
graphs [10].

The path cover problem and several variants of it have numerous algorithmic
applications in many fields. Some that have received both theoretical and practi-
cal attention are in the content of communication and/or transposition networks
[22]. In such problems, we are given a graph (network) G and (Problem A) a set
T of k = 2λ vertices of G, and the objective is to determine whether G admits
a path cover of size λ that contains paths connecting pairs of vertices of T , that
is, G admits λ vertex-disjoint paths with both their endpoints in T (note that,
the endpoints of a path P are the first vertex and the last vertex visited by P),
or (Problem B) a set T of λ = k/2 pairs of vertices of G (source-sink pairs), and
the objective is to determine whether G admits for each pair (ai, bi), 1 ≤ i ≤ λ,
a path connecting ai to bi such that the set of λ paths forms a path cover.

Another path cover related problem that has received increased attention in
recent years is in the context of communication networks. The only efficient way
to transmit high volume communication, such as in multimedia applications, is
through disjoint paths that are dedicated to pairs of processors. To efficiently
utilize the network one needs a simple algorithm that, with minimum overhead,
constructs a large number of edge-disjoint paths between pairs of two given sets
of requests.

Both problems A and B coincide with the 2HP problem, in the case where
k = 2. In [9], Damaschke provided a foundation for obtaining polynomial-time
algorithms for several problems concerning paths in interval graphs, such as
finding Hamiltonian paths and circuits, and partitions into paths. In the same
paper, he stated that the complexity status of both 1HP and 2HP problems on
interval graphs remains an open question; until now the complexities of 1HP and
2HP keep their difficulties even in the small subclass of split interval graphs –
no polynomial algorithm is known.

Motivated by the above issues we state a variant of the path cover problem,
namely, the 2-terminal-set path cover problem (2TPC), which generalizes both
1HP and 2HP problems, and also Problem B.
(Problem 2TPC) Let G be a graph and let T 1 and T 2 be two disjoint sets of
vertices of V (G). A 2-terminal-set path cover of the graph G with respect to T 1

and T 2 is a path cover of G such that all vertices in T 1 ∪ T 2 are endpoints of
paths in the path cover and all the paths with both endpoints in T 1 ∪ T 2 have
one endpoint in T 1 and the other in T 2; a minimum 2-terminal-set path cover of
G with respect to T 1 and T 2 is a 2-terminal-set path cover of G with minimum

210 K. Asdre and S.D. Nikolopoulos

Fig. 1. The complexity status (NP-complete, unknown, polynomial) of the 2TPC prob-
lem for some graph subclasses of comparability and chordal graphs. A → B indicates
that class A contains class B.

cardinality; the 2-terminal-set path cover problem (2TPC) is to find a minimum
2-terminal-set path cover of the graph G.

Contribution. In this paper, we show that the 2-terminal-set path cover prob-
lem (2TPC) has a polynomial-time solution in the class of complement reducible
graphs, or cographs [8]. More precisely, we establish a lower bound on the size
of a minimum 2-terminal-set path cover of a cograph G on n vertices and m
edges. We then define path operations, and prove structural properties for the
paths of such a path cover, which enable us to describe a simple algorithm for
the 2TPC problem. The proposed algorithm runs in time linear in the size of
the input graph G, that is, in O(n+m) time, and requires linear space. Figure 1
shows a diagram of class inclusions for a number of graph classes, subclasses
of comparability and chordal graphs, and the current complexity status of the
2TPC problem on these classes; for definitions of the classes shown, see [6,11].
Note that, if the problem is polynomially solvable on interval graphs, then it is
also polynomially solvable on convex graphs [18].

The proposed algorithm for the 2TPC problem can also be used to solve the
1HP and 2HP problems on cographs within the same time and space complexity.
Moreover, we have designed our algorithm so that it produces a minimum 2-
terminal-set path cover of a cograph G that contains a large number of paths
with one endpoint in T 1 and the other in T 2 (we can easily find a graph G
and two sets T 1 and T 2 of vertices of V (G) so that G admits two minimum
2-terminal-set path covers with different numbers of paths having one endpoint
in T 1 and the other in T 2; for example, consider the graph G with vertex set
V (G) = {a, b, c, d}, edge set E(G) = {ab, bc, ac, cd}, and T 1 = {a}, T 2 = {b}).

The 2-Terminal-Set Path Cover Problem 211

Related Work. The class of cographs has been extensively studied and several
sequential and/or parallel algorithms for recognition and for classical combinato-
rial optimization problems have been proposed [8,16,19]. Lin et al. [16] presented
an optimal algorithm for the path cover problem on cographs, while Nakano et al.
[19] described an optimal parallel algorithm which finds and reports all the paths
in a minimum path cover of a cograph in O(log n) time using O(n/ log n) proces-
sors on a PRAM model. Recently, Asdre and Nikolopoulos proposed a linear-time
algorithm for the k-fixed-endpoint path cover problem (kPC) on cographs and
on proper interval graphs [3,4]. Algorithms for optimization problems on other
related classes of graphs have been also described [5,12,13,14,20]. Moreover, al-
gorithms for the path cover problem on other classes of graphs were proposed in
[2,15,21].

2 Theoretical Framework

The cographs admit a tree representation unique up to isomorphism. Specifically,
we can associate with every cograph G a unique rooted tree Tco(G) called the co-
tree (or, modular decomposition tree [17]), which we can construct sequentially in
linear time [7,8]. The co-tree forms the basis for fast algorithms for problems such
as isomorphism, coloring, clique detection, clusters, minimum weight dominating
sets [6,7], and also for the path cover problem [16,19].

For convenience and ease of presentation, we binarize the co-tree Tco(G) in
such a way that each of its internal nodes has exactly two children [16,19]. We
shall refer to the binarized version of Tco(G) as the modified co-tree of G and
will denote it by T (G). Thus, the left and right child of an internal node t of
T (G) will be denoted by t� and tr, respectively. Let t be an internal node of
T (G). Then G[t] is the subgraph of G induced by the subset Vt of the vertex
set V (G), which contains all the vertices of G that have as common ancestor
in T (G) the node t. For simplicity, we will denote by V� and Vr the vertex sets
V (G[t�]) and V (G[tr]), respectively.

Let G be a cograph, T 1 and T 2 be two sets of vertices of V (G) such that
T 1 ∩T 2 = ∅, and let P2T (G) be a minimum 2-terminal-set path cover of G with
respect to T 1 and T 2 of size λ2T ; note that the size of P2T (G) is the number
of paths it contains. The vertices of the sets T 1 and T 2 are called terminal
vertices, and the sets T 1 and T 2 are called the terminal sets of G, while those of
V (G)− (T 1 ∪T 2) are called non-terminal or free vertices. Thus, the set P2T (G)
contains three types of paths, which we call terminal, semi-terminal, and non-
terminal or free paths:

(i) a terminal path Pt consists of at least two vertices and both its endpoints,
say, u and v, are terminal vertices belonging to different sets, that is, u ∈ T 1

and v ∈ T 2;
(ii) a semi-terminal path Ps is a path having one endpoint in T 1 or T 2 and the

other in V (G) − (T 1 ∪ T 2); if Ps consists of only one vertex (trivial path),
say, u, then u ∈ T 1 ∪ T 2;

212 K. Asdre and S.D. Nikolopoulos

(iii) a non-terminal or free path Pf is a path having both its endpoints in V (G)−
(T 1∪T 2); if Pf consists of only one vertex, say, u, then u ∈ V (G)−(T 1∪T 2).

The set of the non-terminal paths in a minimum 2TPC of the graph G is denoted
by N , while S and T denote the sets of the semi-terminal and terminal paths,
respectively. Furthermore, let S1 and S2 denote the sets of the semi-terminal
paths such that the terminal vertices belong to T 1 and T 2, respectively. Thus,
|S| = |S1| + |S2| and the following equation holds.

λ2T = |N | + |S| + |T | = |N | + |S1| + |S2| + |T | (1)

From the definition of the 2-terminal-set path cover problem (2TPC), we can
easily conclude that the number of paths in a minimum 2TPC can not be less
than the number of the terminal vertices of the terminal set having maximum
cardinality. Furthermore, since each semi-terminal path contains one terminal
vertex and each terminal path contains two, the number of terminal vertices is
equal to |S|+2|T | = |S1|+ |S2|+2|T |. Thus, we have the following proposition,
which also holds for general graphs:

Proposition 2.1. Let G be a cograph and let T 1 and T 2 be two disjoint subsets
of V (G). Then |T 1| = |S1| + |T |, |T 2| = |S2| + |T | and λ2T ≥ max{|T 1|, |T 2|}.

Clearly, the size of a 2TPC of a cograph G, as well as the size of a minimum
2TPC of G, is less than or equal to the number of vertices of G, that is, λ2T ≤
|V (G)|. Let F (V (G)) be the set of the free vertices of G; hereafter, F (V) =
F (V (G)). Furthermore, let P be a set of paths and let VP denote the set of
vertices belonging to the paths of the set P ; hereafter, F (P) = F (VP). Then, if
T 1 and T 2 are two disjoint subsets of V (G), we have λ2T ≤ |F (V)|+ |T 1|+ |T 2|.

Let t be an internal node of the tree T (G), that is, t is either an S-node or a
P-node [17]. Then λ2T (t) denotes the number of paths in a minimum 2TPC of
the graph G[t] with respect to T 1

t and T 2
t , where T 1

t and T 2
t are the terminal

vertices of T 1 and T 2 of the graph G[t], respectively. Let t� and tr be the left
and the right child of node t, respectively. We denote by T 1

� and T 1
r (resp.

T 2
� and T 2

r) the terminal vertices of T 1 (resp. T 2) in V� and Vr, respectively,
where V� = V (G[t�]) and Vr = V (G[tr]). Let N�, S� and T� be the sets of the
non-terminal, semi-terminal and terminal paths in a minimum 2TPC of G[t�],
respectively. Similarly, let Nr, Sr and Tr be the sets of the non-terminal, semi-
terminal and terminal paths in a minimum 2TPC of G[tr], respectively. Note
that S1

� and S1
r (resp. S2

� and S2
r) denote the sets of the semi-terminal paths in

a minimum 2TPC of G[t�] and G[tr], respectively, containing a terminal vertex
of T 1 (resp. T 2). Obviously, Eq. (1) holds for G[t] as well, with t being either
an S-node or a P-node, that is,

λ2T (t) = |Nt| + |St| + |Tt| = |Nt| + |S1
t | + |S2

t | + |Tt| (2)

where Nt, St and Tt are the sets of the non-terminal, the semi-terminal and the
terminal paths, respectively, in a minimum 2TPC of G[t], that is in P2T (t),
and S1

t and S2
t denote the sets of the semi-terminal paths in P2T (t) containing

The 2-Terminal-Set Path Cover Problem 213

a terminal vertex of T 1 and T 2, respectively. If t is a P-node, then P2T (t) =
P2T (t�)∪P2T (tr), where P2T (t�) and P2T (tr) are minimum 2TPCs correspond-
ing to G[t�] and G[tr], respectively, and λ2T (t) = λ2T (t�)+λ2T (tr). Furthermore,
in the case where t is a P-node, we have

|Nt| = |N�| + |Nr|
|St| = |S�| + |Sr| = |S1

� | + |S2
� | + |S1

r | + |S2
r |

|Tt| = |T�| + |Tr|

Thus, we focus on computing a minimum 2TPC of the graph G[t] for the case
where t is an S-node. Before describing our algorithm, we establish a lower bound
on the size λ2T (t) of a minimum 2TPC P2T (t) of a graph G[t]. More precisely,
we prove the following lemma.

Lemma 2.1. Let t be an internal node of T (G) and let P2T (t�) and P2T (tr) be a
minimum 2TPC of G[t�] and G[tr], respectively. Then λ2T (t) ≥ max{λ2T (t�) −
|F (Vr)|, λ2T (tr) − |F (V�)|, max{|T 1

t |, |T 2
t |}}.

We next define four operations on paths of a minimum 2TPC of the graphs G[t�]
and G[tr], namely break, connect, bridge and insert operations; these operations
are illustrated in Fig. 2.

Break Operation: Let P = [p1, p2, . . . , pk] be a path of P2T (tr) or P2T (t�) of
length k. We say that we break the path P in two paths, say, P1 and P2, if we
delete an arbitrary edge of P , say the edge pipi+1 (1 ≤ i < k), in order to obtain
two paths which are P1 = [p1, . . . , pi] and P2 = [pi+1, . . . , pk]. Note that we can
break the path P in at most k trivial paths.

Connect Operation: Let P1 be a non-terminal or a semi-terminal path of
P2T (t�) (resp. P2T (tr)) and let P2 be a non-terminal or a semi-terminal path of
P2T (tr) (resp. P2T (t�)). We say that we connect the path P1 with the path P2,
if we add an edge which joins two free endpoints of the two paths. Note that if
P1 ∈ S1

� (resp. P1 ∈ S1
r) then, if P2 is also a semi-terminal path, P2 ∈ S2

r (resp.
P2 ∈ S2

�). Similarly, if P1 ∈ S2
� (resp. P1 ∈ S2

r) then, if P2 is also a semi-terminal
path, P2 ∈ S1

r (resp. P2 ∈ S1
�).

Bridge Operation: Let P1 and P2 be two paths of the set N� ∪ S1
� ∪ S2

� (resp.
Nr ∪ S1

r ∪ S2
r) and let P3 be a non-terminal path of the set Nr (resp. N�). We

say that we bridge the two paths P1 and P2 using path P3 if we connect a free
endpoint of P1 with one endpoint of P3 and a free endpoint of P2 with the other
endpoint of P3. The result is a path having both endpoints in G[t�] (resp. G[tr]).
Note that if P1 ∈ S1

� (resp. P1 ∈ S1
r) then, if P2 is also a semi-terminal path,

P2 ∈ S2
� (resp. P2 ∈ S2

r). Similarly, if P1 ∈ S2
� (resp. P1 ∈ S2

r) then, if P2 is also
a semi-terminal path, P2 ∈ S1

� (resp. P2 ∈ S1
r).

Insert Operation: Let P1 = [t1, p1, . . . , p
′
1, t
′
1] be a terminal path of the set T�

(resp. Tr) and let P2 = [p2, . . . , p
′
2] be a non-terminal path of the set Nr (resp.

N�). We say that we insert the path P2 into P1, if we replace the first edge of

214 K. Asdre and S.D. Nikolopoulos

P

v1 v1

P1v2 v2

v3

⇒
v3

P2v4 v4

P1

v1 w1

P2
v2 w2

v3

v4

P1

v1 w1

P3

v2 w2

u1
P2

u2

P1

v1 w1

P2v2 w2

v3 w3

P3v4 w4

P1

w1

P2w2

v1 w3

P3v2 w4

v3 w5

P4v4 w6

w7

P5w8

Fig. 2. Illustrating (a) break, (b) connect, (c) bridge, (d) insert, and (e) connect-bridge
operations; the vertices of T 1 are denoted by black-circles, while the vertices of T 2 are
denoted by black-squares

P1, that is, the edge t1p1, with the path [t1, p2, . . . , p
′
2, p1]. Thus, the resulting

path is P1 = [t1, p2, . . . , p
′
2, p1, . . . , p

′
1, t
′
1]. Note that we can replace every edge

of the terminal path so that we can insert at most |F ({P1})| + 1 non-terminal
paths, where F ({P1}) is the set of the free vertices belonging to the path P1. If
the terminal path P1 = [t1, p1, . . . , p

�
1, p

r
1, . . . , p

′
1, t
′
1] is constructed by connecting

a semi-terminal path of S�, say, P� = [t1, p1, . . . , p
�
1] with a semi-terminal path

of Sr, say, Pr = [pr
1, . . . , p

′
1, t
′
1], then it obviously has one endpoint in G[t�] and

the other in G[tr]. In this case, if P2 ∈ N� (resp. Nr) we can only replace the
edges of P1 that belong to G[tr] (resp. G[t�]). On the other hand, if P2 has one
endpoint, say, p2, in N� and the other, say, p′2, in Nr, we insert P2 into P1 as
follows: P1 = [t1, p1, . . . , p

�
1, p
′
2, . . . , p2, p

r
1, . . . , p

′
1, t
′
1].

We can also combine the operations connect and bridge to perform a new oper-
ation which we call a connect-bridge operation; such an operation is depicted in
Fig. 2(e) and is defined below.

Connect-Bridge Operation: Let P1 = [t1, p1, . . . , pk, t′1] be a terminal path
of the set T� (resp. Tr), where t1 ∈ T 2 and t′1 ∈ T 1, and let P2, P3, . . . , P s+1

2
be

semi-terminal paths of the set S1
r (resp. S1

�) and P s+1
2 +1, . . . , Ps be semi-terminal

paths of the set S2
r (resp. S2

�), where s is odd and 3 ≤ s ≤ 2k + 3. We say that

The 2-Terminal-Set Path Cover Problem 215

we connect-bridge the paths P2, P3, . . . , Ps using vertices of P1, if we perform
the following operations: (i) connect the path P2 with the path [t1]; (ii) bridge
r = s−3

2 pairs of different semi-terminal paths using vertices p1, p2, . . . , pr; and
(iii) connect the path [pr+1, . . . , pk, t′1] with the last semi-terminal path Ps.

The Connect-Bridge operation produces two paths having one endpoint in G[t�]
and the other in G[tr] and s−3

2 paths having both endpoints in G[tr] (resp. G[t�]).

3 The Algorithm

We next present an algorithm for the 2TPC problem on cographs. Our algorithm
takes as input a cograph G and two vertex subsets T 1 and T 2, where T 1∩T 2 = ∅,
and finds the paths of a minimum 2TPC of G in linear time; it works as follows:

Algorithm Minimum 2TPC

1. Construct co-tree Tco(G) and make it binary; let T (G) be the resulting tree;
2. Execute subroutine process(root), where root is the root of T (G); the min-

imum 2TPC P2T (root) = P2T (G) is the set of paths returned by the sub-
routine;

where the description of the subroutine process() is as follows:

process (node t)

1. if t is a leaf
then return({u}), where u is the vertex associated with the leaf t;
else {t is an internal node with left and right child denoted by t� and tr.}

P2T (t�) ← process(t�);
P2T (tr) ← process(tr);

2. if t is a P-node
then return(P2T (t�) ∪ P2T (tr));

3. if t is an S-node
then if |N�| ≤ |Nr| then swap(P2T (t�), P2T (tr));

s1 = |S1
� | − |S2

r |;
s2 = |S2

� | − |S1
r |;

case 1: s1 ≥ 0 and s2 ≥ 0
call procedure 2TPC 1;

case 2: s1 < 0 and s2 < 0
if |Nr| + min{|s1|, |s2|} ≤ |F (S1

� ∪ S2
� ∪ N�)|

then call procedure 2TPC 2 a;
else call procedure 2TPC 2 b;

case 3: (s1 ≥ 0 and s2 < 0) or (s1 < 0 and s2 ≥ 0)
call procedure 2TPC 3;

We next describe the subroutine process() in the case where t is an S-node
of T (G). Note that, if |N�| ≤ |Nr|, we swap P2T (t�) and P2T (tr). Thus, we

216 K. Asdre and S.D. Nikolopoulos

distinguish the following three cases: (1) s1 ≥ 0 and s2 ≥ 0, (2) s1 < 0 and
s2 < 0, and (3) (s1 ≥ 0 and s2 < 0) or (s1 < 0 and s2 ≥ 0). We next describe
case 1; cases 2 and 3 are similar.

Case 1: s1 ≥ 0 and s2 ≥ 0

Let SNr be the set of non-terminal paths obtained by breaking the set S1
r ∪S2

r ∪Nr

into |N�| − 1 + min{s1, s2} non-terminal paths; thus, |SNr| ≤ |F (S1
r ∪S2

r ∪Nr)|.
In the case where |N�| − 1 + min{s1, s2} ≥ F (S1

r ∪ S2
r ∪ Nr), the paths of SNr

are trivial (recall that F (S1
r ∪ S2

r ∪ Nr) is the set of free vertices belonging to
the set S1

r ∪S2
r ∪Nr). The paths of SNr are used to bridge at most 2 min{s1, s2}

semi-terminal paths of S1
� ∪S2

� and, if |SNr|−min{s1, s2} > 0, at most |N�| non-
terminal paths of N�. We can construct the paths of a 2TPC using the following
procedure:

Procedure 2TPC 1

1. connect the |S2
r | paths of S2

r with |S2
r | paths of S1

� , and the |S1
r | paths of S1

r

with |S1
r | paths of S2

� ;

2. bridge 2 min{s1, s2} semi-terminal paths of S1
� ∪ S2

� using min{s1, s2} paths
of SNr;

3. bridge the non-terminal paths of N� using |N�| − 1 non-terminal paths of
SNr; this produces non-terminal paths with both endpoints in G[t�], unless
|N�| ≤ |F (S1

r ∪ S2
r ∪ Nr)| − min{s1, s2} where we obtain one non-terminal

path with one endpoint in G[t�] and the other in G[tr];

4. if |N�| ≤ |F (S1
r ∪S2

r ∪Nr)|−min{s1, s2} insert the non-terminal path obtained
in Step 3 into one terminal path which is obtained in Step 1;

5. if |Tr| = |S1
� | = |S2

� | = 0 and |F (S1
r ∪ S2

r ∪ Nr)| ≥ |N�| + 1 construct a
non-terminal path having both of its endpoints in G[tr] and insert it into a
terminal path of T�;

6. if |Tr| = |S1
r | = |S2

r | = 0 and |F (Nr)| ≥ |N�| + min{s1, s2} construct a non-
terminal path having both of its endpoints in G[tr] and use it to connect two
semi-terminal paths of S1

� ∪ S2
� ;

7. if s1−min{min{s1, s2}, |F (S1
r ∪S2

r ∪Nr)|} (resp. s2−min{min{s1, s2}, |F (S1
r∪

S2
r ∪Nr)|}) is odd and there is at least one free vertex in S1

r ∪S2
r ∪Nr which is

not used in Steps 1–6, or there is a non-terminal path having one endpoint
in G[t�] and the other in G[tr], connect one non-terminal path with one
semi-terminal path of S1

� (resp. S2
�);

8. connect-bridge the rest of the semi-terminal paths of S1
� ∪ S2

� (at most
2(|F (Tr)| + |Tr|)) using vertices of Tr;

9. insert non-terminal paths obtained in Step 3 into the terminal paths of Tr;

Based on the procedure 2TPC 1, we can compute the cardinality of the sets Nt,
S1

t , S2
t and Tt, and thus, since λ′2T (t) = |Nt|+ |St|+ |Tt| and |St| = S1

t +S2
t , the

number of paths in the 2TPC constructed by the procedure at node t ∈ T (G).

The 2-Terminal-Set Path Cover Problem 217

In this case, the values of |Nt|, |St| and |Tt| are the following:

|Nt| = max{μ − α, 0}
|S1

t | = min{σ1
� , max{σ1

� − |F (Tr)| − |Tr|, max{σ1
� − σ2

� , 0}}}
|S2

t | = min{σ2
� , max{σ2

� − |F (Tr)| − |Tr|, max{σ2
� − σ1

� , 0}}}
|St| = |S1

t | + |S2
t |

|Tt| = |S1
r | + |S2

r | + min{min{s1, s2}, |F (S1
r ∪ S2

r ∪ Nr)|} + |T�| + |Tr|+
σ1

� +σ2
�−|St|
2

(3)

where

σ1
� = |S1

� | − |S2
r | − min{min{s1, s2}, |F (S1

r ∪ S2
r ∪ Nr)|},

σ2
� = |S2

� | − |S1
r | − min{min{s1, s2}, |F (S1

r ∪ S2
r ∪ Nr)|},

μ = max{|N�| − πr, max{1 − max{|S1
� |, |S2

� |}, 0}} − max{|F (Tr)| + |Tr| −
min{σ1

� , σ2
� }, 0} − min{max{min{|N�| − πr, δ(σ1

�), δ(σ2
�)}, 0},

max{min{F (S1
r ∪ S2

r ∪ Nr) − min{s1, s2}, 1}, 0}},

α = min{max{min{πr − |N�|, 1}, 0}, max{|T�|, 0}}, and
πr = max{|F (S1

r ∪ S2
r ∪ Nr)| − min{s1, s2}, 0}.

In Eq. (3), σ1
� (resp. σ2

�) is the number of semi-terminal paths of S1
� (resp. S2

�)
that are not connected or bridged at Steps 1–3. Furthermore, πr is the number
of free vertices in the set S1

r ∪S2
r ∪Nr that are not used to bridge semi-terminal

paths of S1
� ∪S2

� at Step 3 and δ is a function which is defined as follows: δ(x) = 1,
if x is odd, and δ(x) = 0 otherwise. Note that at most |F (Tr)|+|Tr| non-terminal
paths can be inserted into the terminal paths of Tr or the terminal paths can
connect-bridge at most 2(|F (Tr)| + |Tr|) semi-terminal paths.

4 Correctness and Time Complexity

Let G be a cograph, T (G) be the modified co-tree of G, and let T 1 and T 2 be two
terminal sets of G. Since our algorithm computes a 2TPC P ′2T (t) of G[t] of size
λ′2T (t) for each internal node t ∈ T (G), we need to prove that the constructed
2TPC P ′2T (t) is minimum. Obviously, the size λ2T (t) of a minimum 2TPC of
G[t] is less than or equal to the size λ′2T (t) of the 2TPC constructed by our
algorithm. According to Proposition 2.1, if the size of the 2TPC constructed by
our algorithm is λ′2T (t) = max{|T 1

t |, |T 2
t |}, then it is a minimum 2TPC. After

performing simple computations we get four specific values for the size λ′2T (t) of
the 2TPC constructed by our algorithm, that is, by the 2TPC procedures 1, 2 a,
2 b and 3. More precisely, if t is an internal S-node of T (G), our algorithm returns
a 2TPC of size λ′2T (t) equal to either max{|T 1

t |, |T 2
t |} + 1, max{|T 1

t |, |T 2
t |},

λ2T (t�)−|F (Vr)|, or λ2T (tr)−|F (V�)|; see Table 1. Specifically, in the case where
|S1

� | = |S2
� | = |Tr| = |S1

r | = |S2
r | = 0 and |N�| = |Vr | procedure 2TPC 1 returns a

2TPC of G[t] of size λ′2T (t) = max{|T 1
t |, |T 2

t |}+1. We prove the following lemma,
which shows that if the size of the 2TPC returned by subroutine process(t) for
G[t] is λ′2T (t) = max{|T 1

t |, |T 2
t |}+1 (procedure 2TPC 1), then it is a min 2TPC.

218 K. Asdre and S.D. Nikolopoulos

Table 1. The size of the 2TPC that our algorithm returns in each case

Procedures Size of 2-terminal-set PC

Procedure 2TPC 1 max{|T 1
t |, |T 2

t |} + 1

All the procedures max{|T 1
t |, |T 2

t |}

Procedures 2TPC 1, 2TPC 2 a and 2TPC 3 λ2T (t�) − |F (Vr)|

Procedure 2TPC 2 b λ2T (tr) − |F (V�)|

Lemma 4.1. Let t be an S-node of T (G) and let P2T (t�) and P2T (tr) be a
minimum 2TPC of G[t�] and G[tr], respectively. If |S1

� | = |S2
� | = |Tr| = |S1

r | =
|S2

r | = 0 and |N�| = |Vr|, then the procedure 2TPC 1 returns a minimum 2TPC
of G[t] of size λ′2T (t) = max{|T 1

t |, |T 2
t |} + 1.

Moreover, if the size of the 2TPC returned by the process(t) is max{|T 1
t |, |T 2

t |}
(all the procedures), then it is obviously a minimum 2TPC of G[t]. We prove
that the size λ′2T (t) of the 2TPC P ′2T (t) that process(t) returns is minimum.

Lemma 4.2. Let t be an S-node of T (G) and let P2T (t�) and P2T (tr) be a
minimum 2TPC of G[t�] and G[tr], resp. If the subroutine process(t) returns a
2TPC of G[t] of size λ′2T (t) = max{|T 1

t |, |T 2
t |}, then λ′2T (t) ≥ max{λ2T (t�) −

|F (Vr)|, λ2T (tr) − |F (V�)|}.

Let t be an S-node of T (G) and let P2T (t�) and P2T (tr) be a minimum 2TPC of
G[t�] and G[tr], resp. Furthermore, we assume that the conditions |S1

� | = |S2
� | =

|Tr| = |S1
r | = |S2

r | = 0 and |N�| = |Vr| do not hold together. We consider the
case where process(t) returns a 2TPC P ′2T (t) of the graph G[t] of size λ′2T (t) =
λ2T (t�) − |F (Vr)| (cases 1, 2.a and 3). We prove the following lemma.

Lemma 4.3. Let t be an S-node of T (G) and let P2T (t�) and P2T (tr) be a
minimum 2TPC of G[t�] and G[tr], respectively. If the subroutine process(t)
returns a 2TPC of G[t] of size λ′2T (t) = λ2T (t�) − |F (Vr)|, then λ′2T (t) >
max{max{|T 1

t |, |T 2
t |}, λ2T (tr) − |F (V�)|}.

Similarly we can show that if process(t) returns a 2TPC of G[t] of size λ′2T (t) =
λ2T (tr) − |F (V�)| (case 2.b), then λ′2T (t) > max{max{|T 1

t |, |T 2
t |}, λ2T (t�) −

|F (Vr)|}. Thus, we can prove the following result.

Lemma 4.4. Let t be an S-node of T (G) and let P2T (t�) and P2T (tr) be a
minimum 2TPC of G[t�] and G[tr], resp. Subroutine process(t) returns a 2TPC
P2T (t) of G[t] of size

The 2-Terminal-Set Path Cover Problem 219

λ′2T (t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max{|T 1
t |, |T 2

t |} + 1 if |N�| = |Vr| and
|S1

� | = |S2
� | = |T 1

r | = |T 2
r | =0,

max{max{|T 1
t |, |T 2

t |},

λ2T (t�) − |F (Vr)|, λ2T (tr) − |F (V�)|} otherwise.

Obviously, a minimum 2TPC of the graph G[t] is of size λ2T (t) ≤ λ′2T (t). On
the other hand, we have proved a lower bound for the size λ2T (t) of a minimum
2TPC of the graph G[t] (see Lemma 2.1). It follows that λ′2T (t) = λ2T (t), and,
thus, we can state the following result.

Lemma 4.5. Subroutine process(t) returns a minimum 2TPC P2T (t) of the
graph G[t], for every internal S-node t ∈ T (G).

Since the above result holds for every S-node t of T (G), it also holds for t = troot

and T 1
t = T 1 and T 2

t = T 2. Thus, the following theorem holds:

Theorem 4.1. Let G be a cograph and let T 1 and T 2 be two disjoint subsets of
V (G). Let t be the root of the modified co-tree T (G), and let P2T (t�) and P2T (tr)
be a minimum 2TPC of G[t�] and G[tr], respectively. Algorithm Minimum 2TPC
correctly computes a minimum 2TPC of G = G[t] with respect to T 1 = T 1

t and
T 2 = T 2

t of size λ2T = λ2T (t), where

λ2T (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ2T (tr) + λ2T (t�) if t is a P-node,
max{|T 1

t |, |T 2
t |} + 1 if t is an S-node and

|N�| = |Vr | and
|S1

� | = |S2
� | = |T 1

r | = |T 2
r | =0,

max{max{|T 1
t |, |T 2

t |},

λ2T (t�) − |F (Vr)|, λ2T (tr) − |F (V�)|} otherwise.

Let G be a cograph on n vertices and m edges, T 1 and T 2 be two terminal
sets, and let t be an S-node of T (G). From the description of the algorithm we
can easily conclude that a minimum 2TPC P2T (t) of G[t] can be constructed in
O(E(G[t])) time, since we use at most |V (G[t�])| · |V (G[tr])| edges to connect the
paths of the minimum 2TPCs of the graphs G[t�] and G[tr]; in the case where
t is a P-node a minimum 2TPC is constructed in O(1) time. Thus, the time
needed by process(t) to compute a minimum 2TPC in the case where t is the
root of T (G) is O(n+m); moreover, through the execution of the subroutine no
additional space is needed. The construction of the co-tree Tco(G) of G needs
O(n + m) time and it requires O(n) space [7,8]. Furthermore, the binarization
process of the co-tree, that is, the construction of the modified co-tree T (G),
takes O(n) time. Hence, we can state the following result.

Theorem 4.2. Let G be a cograph on n vertices and m edges and let T 1 and
T 2 be two disjoint subsets of V (G). A minimum 2-terminal-set path cover P2T
of G can be computed in O(n + m) time and space.

220 K. Asdre and S.D. Nikolopoulos

References

1. Adhar, G.S., Peng, S.: Parallel algorithm for path covering, Hamiltonian path, and
Hamiltonian cycle in cographs. In: Int’l Conference on Parallel Processing. Algo-
rithms and Architecture, vol. III, pp. 364–365. Pennsylvania State Univ. Press (1990)

2. Arikati, S.R., Rangan, C.P.: Linear algorithm for optimal path cover problem on
interval graphs. Inform. Process. Lett. 35, 149–153 (1990)

3. Asdre, K., Nikolopoulos, S.D.: A linear-time algorithm for the k-fixed-endpoint
path cover problem on cographs. Networks 50, 231–240 (2007)

4. Asdre, K., Nikolopoulos, S.D.: A polynomial solution for the k-fixed-endpoint path
cover problem on proper interval graphs. In: 18th Int’l Conference on Combinatorial
Algorithms (IWOCA 2007), Lake Macquarie, Newcastle, Australia (2007)

5. Asdre, K., Nikolopoulos, S.D., Papadopoulos, C.: An optimal parallel solution for
the path cover problem on P4-sparse graphs. J. Parallel Distrib. Comput. 67, 63–76
(2007)

6. Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes – A Survey. In: SIAM Mono-
graphs in Discrete Mathematics and Applications. SIAM, Philadelphia (1999)

7. Corneil, D.G., Lerchs, H., Stewart, L.: Complement reducible graphs. Discrete.
Appl. Math. 3, 163–174 (1981)

8. Corneil, D.G., Perl, Y., Stewart, L.: A linear recognition algorithm for cographs.
SIAM J. Comput. 14, 926–984 (1985)

9. Damaschke, P.: Paths in interval graphs and circular arc graphs. Discrete
Math. 112, 49–64 (1993)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-completeness. W.H. Freeman, San Francisco (1979)

11. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Aca-
demic Press, New York (1980); Annals of Discrete Mathematics 57, Elsevier (2004)

12. Hochstättler, W., Tinhofer, G.: Hamiltonicity in graphs with few P4’s. Comput-
ing 54, 213–225 (1995)

13. Hsieh, S.Y.: An efficient parallel strategy for the two-fixed-endpoint Hamiltonian
path problem on distance-hereditary graphs. J. Parallel Distrib. Comput. 64, 662–
685 (2004)

14. Hung, R.W., Chang, M.S.: Linear-time algorithms for the Hamiltonian problems
on distance-hereditary graphs. Theoret. Comput. Sci. 341, 411–440 (2005)

15. Hung, R.W., Chang, M.S.: Solving the path cover problem on circular-arc graphs
by using an approximation algorithm. Discrete. Appl. Math. 154, 76–105 (2006)

16. Lin, R., Olariu, S., Pruesse, G.: An optimal path cover algorithm for cographs.
Comput. Math. Appl. 30, 75–83 (1995)

17. McConnell, R.M., Spinrad, J.: Modular decomposition and transitive orientation.
Discrete Math. 201, 189–241 (1999)

18. Müller, H.: Hamiltonian circuits in chordal bipartite graphs. Discrete Math. 156,
291–298 (1996)

19. Nakano, K., Olariu, S., Zomaya, A.Y.: A time-optimal solution for the path cover
problem on cographs. Theoret. Comput. Sci. 290, 1541–1556 (2003)

20. Nikolopoulos, S.D.: Parallel algorithms for Hamiltonian problems on quasi-
threshold graphs. J. Parallel Distrib. Comput. 64, 48–67 (2004)

21. Srikant, R., Sundaram, R., Singh, K.S., Rangan, C.P.: Optimal path cover problem
on block graphs and bipartite permutation graphs. Theoret. Comput. Sci. 115, 351–
357 (1993)

22. Suzuki, Y., Kaneko, K., Nakamori, M.: Node-disjoint paths algorithm in a trans-
position graph. IEICE Trans. Inf. & Syst. E89-D, 2600–2605 (2006)

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 221–232, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Distributed Algorithm to Approximate
Node-Weighted Minimum α-Connected (θ,k)-Coverage

in Dense Sensor Networks

Yongan Wu, Min Li, Zhiping Cai, and En Zhu

School of Computer, National University of Defense Technology,
410073 Changsha, P.R. China
yongan@nudt.edu.cn

Abstract. The fundamental issue in sensor networks is providing a certain degree
of coverage and maintaining connectivity under the energy constraint. In this
paper, the connected k-coverage problem is investigated under the probabilistic
sensing and communication models, which are more realistic than deterministic
models. Furthermore, different weights for nodes are added in order to estimate
the real power consumption. Because the problem is NP-hard, a distributed prob-
abilistic coverage and connectivity maintenance algorithm (DPCCM) for dense
sensor networks is proposed. DPCCM converts task requirement into two parame-
ters by using the consequence of Chebyshev’s inequality, then activate sensors
based on the properties of weighted ε-net. It is proved that the sensors chosen by
DPCCM have (θ,k)-coverage and α-connectivity. And the time and communica-
tion complexities are theoretically analyzed. Simulation results show that com-
pared with the distributed randomized k-coverage algorithm, DPCCM signifi-
cantly maintain coverage in probabilistic model and prolong the network lifetime
in some sense.

Keywords: probabilistic model; (θ,k)-coverage; α-connectivity; dense sensor
networks.

1 Introduction

Generally speaking, a wireless sensor network (WSN) is composed of a large number
of small, autonomous sensors scattered in the hazardous or inaccessible environment.
Applications of WSN include forest fire detection, vehicle traffic monitoring, battle-
field surveillance, and so on [1-3].

The main goal of WSN is to provide information about a sensing field for an
extended period of time. The quality of monitoring provided by WSN is usually
measured by coverage. k-Coverage (k ≥ 1) means that each point in the target area is
monitored by at least k sensors. How to select appropriate active sensors to preserve
required coverage as well as prolong the network lifetime at the same time is the cov-
erage control problem, which is one of the most fundamental problems in WSN. Con-
nectivity is closely-related to coverage, which ensures that there is at least one
communication path between any pair of active sensors. The connected k-coverage
problem has been studied extensively for more practical [4].

222 Y. Wu et al.

However, there are some shortcomings in the traditional connected k-coverage pro-
tocols. First, some connectivity maintenance protocols assume the deterministic
communication models for convenience, where node i successfully sends messages to
j if j is in the communication range of i. Though they are accurate in wired networks,
previous works have shown that communications of sensors are not deterministic but
probabilistic [5]. Second, similarly to above, probabilistic sensing models are more
practical than the deterministic ones assumed by some k-coverage protocols [6].
Third, traditional connected k-coverage protocols ignore the difference in power
available (PA). They activate as few sensors as possible. Although they cost possibly
little energy in one task, the protocols are not optimal in a series of tasks because of
unbalanced energy. This also results in hotspots of energy consumption, which may
cause premature death of sensors and even premature death of entire network.

In order to solve the problems, we propose a new connected k-coverage problem
called α-Connected (θ, k)-Coverage Set ((α,θ, k)-CCS) problem, where α (0 < α < 1)
shows the connectivity metric, and (θ, k) (0 < θ < 1, *k ∈) represents the coverage.
α-Connectivity means that any pair of active sensors communicate successfully with
probability at least α. And (θ, k)-coverage means that each target point is monitored
by at least k sensors with probability at least θ . It is worth of pointing out that θ and k

aren’t combined into expectation θ k. This is because that θ k-coverage may infeasible
for (θ, k)-coverage. The result is obvious on the supposition that sensors have enough
good sensing performance. To the best of our knowledge, this work is the first to
address the connected k-overage problem under the probabilistic communication
model as well as probabilistic sensing model. Moreover, we take the PA of each sen-
sor into account to activate nodes for energy-consuming balance.

On the other hand, the densely deployment is a common method to avoid blind ar-
eas of coverage. In dense sensor networks, the (α,θ,k)-CCS is reduced to a generaliza-
tion of the connected minimum dominating problem [3]. So we propose a distributed
probabilistic coverage and connectivity maintenance algorithm (DPCCM) for the
node-weighted (α,θ, k)-CCS problem in dense WSN because the problem is NP-hard.
DPCCM utilizes the properties of weighted ε-net to find “good positions”, then ex-
pands (θ, k)-flower with α-connectivity by two parameters which can be calculated
according to probabilistic model and the request, i.e. (α,θ, k). Comparing with the
randomized k-coverage algorithm [7], DPCCM significantly maintain coverage and
connectivity in probabilistic model and prolong the network lifetime.

The remainder of the paper is organized as follows: Section II reviews the related
work in the field. Section III introduces some necessary notations and preliminaries,
including the formalization of (α,θ, k)-CCS and our approach. The pseudo code and
the analysis of the proposed DPCCM are presented in Sections IV. Section V presents
the simulation results. The paper concludes in Section VI.

2 Related Work

Because of its importance, the connected k-coverage problem has received significant
research attention. Several protocols have been proposed in the literatures. Some of
them assume the deterministic models and others assume the probabilistic models.

 Approximate Node-Weighted Minimum α-Connected (θ,k)-Coverage 223

To the deterministic model, some protocols consider mainly coverage under the
condition “the communication range is at least twice the sensing range” [7-9], and
others study both coverage and connectivity [4,10,11]. Chakrabarty [8] formulates the
k-coverage problem of a set of grid points as an integer linear programming. How-
ever, it is known well that localized algorithms (in which simple local node behavior
achieves a desired global objective) may be necessary for sensor network coordina-
tion. Huang [9] presents a distributed node-scheduling algorithm to turn off redundant
sensors. A node decides whether it is redundant only by checking the coverage state
of its sensing perimeter. The authors in [7] propose an efficient approximation algo-
rithm to achieve k-coverage in dense sensor networks. They model the problem as a
set system for which an optimal hitting set corresponds to an optimal solution for k-
coverage. For the connected k-coverage problem, Zhou [10] presents a distributed
algorithm, DPA, which works by pruning unnecessary nodes. Wu [11] proposes sev-
eral local algorithms to construct a k-connected k-dominating set. Yang [4] also pre-
sents two distributed algorithms. The first one uses a cluster-based approach to select
backbone nodes to form the active node set. The second uses the pruning algorithm
based on only 2-hop neighborhood information.

To the probabilistic model, new challenges are introduced in connected k-coverage
protocols in sensor networks though they are more realistic. It is the first to address
the k-coverage problem under the probabilistic sensing model in [12]. The authors
address the problem to activate sensors one by one in a greedy fashion, in which the
“contribution” or the “coverage merit” is computed based on the probability of detec-
tion of an event by that sensor within its sensing area. The authors in [6] propose a
new probabilistic coverage protocol that is fairly general and can be used with differ-
ent sensing models. However, how to maintain network connectivity is not consid-
ered. Hefeeda [13] designs a distributed probabilistic connectivity maintenance proto-
col that can employ different probabilistic models.

The closest works to ours are [6], [7] and [13]. Unlike DPCCM, node weight, i.e.
power available is not considered. The algorithms for unweighted case can not be
directly applied in weighted one. In addition, associating PCP [6] with PCMP [13]
will provide probabilistic coverage and connectivity at the same time, but it only
ensures (with probability at least required parameter) that each point in the target area
is monitored by at least one sensor. In other words, it is only an approximate algo-
rithm for (α,θ, 1)-CCS. Therefore, DPCCM for (α,θ, k)-CCS is more general.

3 The Node-Weighted (α,θ, k)-CCS Problem and Our Approach

In this section, we formulate the α-connected (θ, k)-coverage set ((α,θ, k)-CCS)
problem in WSN. Then an overview of our solution is stated with the assumption that
sensors are deployed densely and have the same sensing radius Rs and communication
radius Rc. Furthermore, localization and time synchronization have been finished,
which can be done by many efficient schemes [14,15].

To study connectivity under probabilistic communication model, we represent the
network with an undirected weighted simple graph G = (V,E,c) called communication
graph, where c is a communication probability function c: V ×V→[0,1]. There exists
an edge (i, j) if the distance between i and j is not more than Rc. For an edge (i, j), c (i,
j) is the probability of communication between i and j. For a path p: i→ j, c (i, j),

224 Y. Wu et al.

called c(p), equals to ∏c(e), where e is an arbitrary edge in p. Thus, for arbitrary i,
j∈V, c(i, j) is 1− ∏(1− c(p)), where p is an arbitrary path between i and j in graph G.

To study coverage under probabilistic sensing model, a sensing probability func-
tion s: V×T→[0,1] is defined, where T is the target set: if the distance between i and j
is not more than Rs, i senses j with probability s(i, j), otherwise s(i, j) = 0.

Definition 1 (α-Connectivity and (θ, k)-Coverage). Given a communication graph G

= (V,E,c) and a sensing probability function s as above, and the target set T. G is said
to have α-connectivity if c(i, j) ≥ α for arbitrary i, j∈V, where 0 <α <1. G is said to
have (θ, k)-coverage on T if each element of T is sensed by at least k nodes in V with
probability at least θ, where 0 <θ <1.

Then the α-connected (θ, k)-coverage set problem is formally stated as follows.

Problem 1 (α-Connected (θ, k)-Coverage Set problem, (α,θ,k)-CCS). Given a com-
munication graph G = (V,E,c), a target set T, 0<α <1, 0<θ <1, *k ∈ . Is there a mini-

mum subset *V of V whose induced subgraph *[]G V has α-connectivity and (θ, k)-

coverage on T.

The above (α,θ, k)-CCS is NP-hard, because (1,1,1)-CCS, i.e. connected cover set
problem, as a special case of (α,θ, k)-CCS is NP-hard [16].

PA is considered also by node weight in this paper. Generally speaking, the less its
PA is, the larger its weight will be, and the smaller the activated probability will be. In

this paper, as an example, the weight of node i is defined as W(i) =
()

2
PA i

b

a λ
⎡ ⎤− ⎢ ⎥⎢ ⎥

⎡ ⎤
⎢ ⎥
⎢ ⎥⎢ ⎥
i ,

where W reflects the relation between PA and activated probability, and the
(a,b,λ) are constant parameters based on the type of sensor and environment.

When the target value is continuous variable and deployed sensors are sufficiently
dense, area coverage can be approximated by point coverage [4]. That is, it is feasible
to select a subset of sensors to cover the rest of sensors. Even now, the problem is still
NP-hard because it is reduced to the minimum dominating set problem. We present an
approach in dense sensor networks: first find out “good positions” where only a few
nodes can cover as many nodes as possible, then activate sensors with small weight
around good positions to achieve (θ, k)-coverage and α-connectivity.

The “good positions” problem can be stated that given some weighted disks with
the same radius, how to select disks with the minimum total weight to cover all the
centers, as shown in Figure 1. In order to reduce the total weight of the nodes around
good positions, the weight of disk is defined as follows. According to the theory of
geometric disk cover, we adopt a method based on VC-dimension and ε-net to find
out “good positions”. Differing from [7], the weight of node is considered.

Let ω: 2
V→ , where ω (∅) = 0, ω (i) =

()
() ()

() 1
j N i

W i W j

N i
∈

⎢ ⎥+
⎢ ⎥

+⎢ ⎥⎣ ⎦

∑
, N(i) = { j: (i, j)∈E }

for i∈V and () ()
i V

V iω ω
′∈

′ =∑ for V ′ ⊆V. Let F ⊆ 2
V, | F | = |V |. Each of F states the

nodes covered by the center. Together, the trine (V, F,ω) is a weighted set system.

 Approximate Node-Weighted Minimum α-Connected (θ,k)-Coverage 225

1

7

1 2

1

2

4

2 2
2

2

3

1

1

7

3

4

3

2

3
2

sensor node good position shattered node

v0

v1v2

vmv3

v4

v5

Fig. 1. An example of “good positions” and
set shattering: the points are good positions,
and the foursquare points are shattered by the
four disks with fatter borderlines

Fig. 2. An example of (θ, k)-flower: vi senses
v0 with the same probability p(r)

Definition 2 (Weighted ε-Net). Given a weighted set system (V, F,ω), N ⊆ F is called
a weighted ε-net for (V,F,ω) if N L∩ ≠ ∅ for all L∈ F with ω (L) ≥ ε ω (V).

The weighted ε-net is more general than uniform ε-net, because it is a special case of
the former if ω (L) = | L |. We interest in finding small weighted ε-nets. Typically, ε-net
finder algorithms are designed for the uniform case. Thus we reduce the weighted
case to unweighted one by taking ⎣ω (v) + 1⎦ copies for v∈V, as outlined by [17]. In
this paper, we adopt randomly selecting strategy to find ε-nets due to limited comput-
ing power and storage space of sensors.

The VC-dimension quantifies how “well behaved” of a set system. VC-dim�ψψψ� �is
the size of the largest subset of ψψthat is shattered by ψψψFigure 1 shows an example
of the concept of shattering. The authors in [7] prove the set system composed of the
set of points in R2 and all disks with the same radius for each point has a VC-
dimension of 3. From Corollary 3.8 in [� 8], a distributed weighted ε-net finder is
designed by randomly selecting biased based on the weight in this paper.

After finding out a weighted ε-net, we simply verify whether it can hit all disks. If
it can not, we try another weighted ε-net by the modified doubling process. The main
idea is to put another weight ψ (i) (initially uniformly) on the node i, and let ζ (i)=
a2−bω(i) +ψ (i), where a2−bω(i) reflects the relation between node weight and the prob-
ability of being the node of a weighted ε-net. If a weighted ε-net doesn’t hit some
element L of F, we double ψ (i) for all i in L. Then find another weighted ε-net.

With the concept of weighted ε-net, the repeat can be proved only finite times be-
fore finding out a hitting set.

Lemma 1. Given a weighted set system (V, F,ω). If there is a hitting set of size c, the
modified doubling process as above iterate not more than 6c log[(n−c)/cqψ0− 1] times
for ε =1/(2c), where n = |V

 | and q = min{ω (i): i∈V } and ψ0 is initially ψ.

Proof. Let H be a hitting set of size c. Let Lj be the element of F that doesn’t be hit by
a weighted ε-net at the j th iteration, and the weight with subscript j be the one after j
iterations. From Definition 2 ζj-1(Lj) < εζj-1(V). So ζj (V) = ζj (Lj) + ζj(V−Lj) = ζj-1(V)

+ψj-1(Lj). Because ω (i)
 > 0, we have ζj (V) < ζj-1(V) + ζj-1(Lj) < (1+ε)ζj-1(V) < (1+ε)

jζ0(V) < ζ0(V) e
j/2c. Moreover, since jH L∩ ≠ ∅, there is at least one node in H whose

226 Y. Wu et al.

i

jG

x y

i x j
i y j

Fig. 3. The triangular mesh expansion

ψ (i) has been doubled. That is, if each h∈H has been doubled d(h) times, then ∑d(h)

≥ j. We have ψj (H) = ψ0 ∑2d(h)
 ≥ cψ0 2

 j/c. Note that ψj (H) < ζj (V), we conclude that
cψ0 e

 2j/3c< cψ0 2
 j/c< ζ0(V)e

 j/2c<[cψ0+(n−c)/q]e j/2c from which the proof follows. □

The following is how to achieve (θ, k)-coverage and α-connectivity. The authors in
[7] introduce the concept of k-flower to guarantee the coverage. Similarly, in order to
select (θ, k)-flower which is a set of k sensors that all intersect at the center point with
probability p, our approach is to choose m center nodes with minimal weight at dis-
tance r (r < Rs) at m sectors [2πi/m, 2π(i+1) /m] for 0 ≤ i ≤ m − 1. Note that the m sen-
sors sense the center with the same probability p(r) for given r. Differing from [7], the
m and r are alterable parameters, and how to choose is shown as follows.

Theorem 1. Given r and p(r). Selecting mmin= min{m: mp(r)/(mp(r)−k)2 ≤1−θ and m

≥ k} nodes as the above strategy yield a (θ, k)-flower.

Proof. Assume that {v1,v2,…,vm} is a (θ, k)-flower with radius r, whose center is v0,
as shown in Figure 2. Let Xi be independent random variable��attaining the value 1
when vi�senses v0 and otherwise the value 0. Let�X�= ∑ Xi, then E[X] = mp(r),
σ2= mp(r). We have P[X ≥ k] = 1− P[X < k] = 1− P[X −mp(r) < k−mp(r)] ≥ 1− P[|X − E[X

]| ≥ mp(r)−k] = 1− P[|X −E[X]| ≥ (σ − k/σ) σ] ≥ 1 − mp(r)/(mp(r) − k)2. The last inequal-
ity is derived from a consequence of Chebyshev’s inequality that states P[|X − E[X]|
≥ kσ] ≤ 1/k2.

According to the definition of (θ, k)-flower, we have 1 − mp(r)/(mp(r) − k)2 ≥ θ. □

For example, let θ = 0.8, k = 10 and p(r) = 0.6, we find mmin = 34. For convenience the
following m means mmin.

The guarantee of α-connectivity is shown as follows.

Lemma 2. Given a triangular mesh grid. If any pair of neighbors can directly commu-
nicate with probability at least max{ α, 1/ [1+ (1−α)0.5] }, the triangular mesh has a α-
connectivity.

Proof. Statements proven by math induction.
First, the proposition is true if |V | = 3. Assume
it is also true when |V |=K for K ≥ 3. Let G ′ with
|V(G ′)| = K + 1 is a triangular mesh expanded
from G, as shown in Figure 3. By Definition 1,
we have c(i, j) ≥ α for arbitrary j∈V(G). There
exist two i→j paths, where c(x,i) ≥ α and
c(y,i)≥α by the assumption, so we have
c(i, j) = 1− [1−c(j,x)c(x,i)] [1−c(j,y)c(y,i)] ≥α.□

From Theorem 1 and Lemma 2, a sensor can gain appropriate r and m according to
its probability model and given (α,θ, k). And the (θ, k)-flower based on min{r, Rs}
(for convenience, still named r) and m has α-connectivity and (θ, k)-coverage.

In the following and the simulations, we leave out the communication link with
probability less than α for the communication efficiency. This is because that infor-
mation exchanges between neighbors are very frequent in practical application. Any
pair of neighbors should firstly attempt to communicate directly.

 Approximate Node-Weighted Minimum α-Connected (θ,k)-Coverage 227

4 Distributed Algorithm for Node-Weighted (α,θ, k)-CCS

In the previous section, we propose an approach to node-weighted (α,θ, k)-CCS,
where the cost of computation is a little, and activating nodes does not rely heavily on
global information. Therefore, a distributed algorithm called DPCCM for node-
weighted (α,θ, k)-CCS is proposed. Its pseudo code is shown in Figure 4.

DPCCM SENDER
(1) Initialize parameters
ψ =1; state=TEMP; coverage=0; netSize=1; T= −1; calculate the W; broadcast W to
neighbors and wait for B time units; calculate the ω, ζ, r, m; totalWeight = n*ζ ;
(2) Find out “good positions”:
while (netSize < n) {
 if (state = = TEMP and netSize ×ζ / totalWeight > rand()) {
 state = ACTIVE;
 broadcast OK message containing location to neighbors; break; }
 wait for a constant S time units;
 if (state = = TEMP and 1 / (n − netSize) > rand()) {
 ψ = 2ψ ; totalWeight = totalWeight + totalWeight / n; calculate ζ ; }
 netSize = 2*netSize; }
(3) Verify the coverage and form (θ, k)-flower with α-connectivity:
while (true) {

if (state = = ACTIVE) {
 broadcast VERIFY message containing location to neighbors;
 wait for YES message; % for a constant R time units

if (coverage > = m) {break;}
if (coverage < m) {

broadcast FLOWER message containing coverage and location
to neighbors; coverage = m; break; } }

DPCCM RECEIVER
if (msg.type = = OK and state = = TEMP and

space(msg.source) < min{Rc, Rs}) {break;}
if (msg.type = = VERIFY and space(msg.source) < r) {
 coverage = coverage + 1;
 if (state = = ACTIVE) {send YES message to msg.source;}
 if (state = = TEMP & coverage > = m) { state = = SLEEP;} }
if (msg.type = = YES and state = = ACTIVE) { coverage = coverage + 1;}
if (msg.type = = FLOWER and state = = TEMP and space(msg.source) < r) {

calculate back-off timer T ; % construction steps as follows
 if (T > 0) { wait until T = = 0; state = ACTIVE;

broadcast TURNOFF message containing l to its neighbors; } }
if (msg.type = = TURNOFF and T > 0 and l = = l.source) { T = −1;}

Fig. 4. A distributed algorithm for the node weighted (α,θ,k)-CCS (DPCCM)

228 Y. Wu et al.

DPCCM works upon receiving a task from the base station. In initialization, node i
calculates and broadcasts W(i) to its neighbors. After B time units ω (i) is calculated,
where B is chosen beforehand to receive W of neighbors. Note that the weighted ε-net
finder as above randomly selects nodes biased based on the weight. In order to locally
estimate the total initial weight, we regard ζ (i) as the average weight. The estimation
is practical since ω (i) is average and ψ (i) is the same initially. Finally, it calculates
the r and m based on Lemma 2 and Theorem 1.

In the process of finding out the “good positions”, DPCCM works in rounds of
equal S time units, where S is chosen beforehand according to the environment and
the task requirement. In each round, some nodes switch randomly to be in ACTIVE
state biased based on the weight ζ (i) , and others uniformly double ψ (i) with prob-
ability 1/(n − netSize). The reason is an under-covered node double ψ (i) in the modi-
fied doubling process, the number of which is less than n − netSize. From the proof of
Lemma 1, it is feasible to estimate the number by n − netSize because it only increases
iteration times. Every node with ACTIVE state broadcasts an OK message to its
neighbors. When a neighbor is covered by an active node, it breaks the process of
finding “good positions”. At the end of each round, double netSize.

After S⋅ ⎡logn⎤ time units, every node with ACTIVE state begins to verify its cov-
erage and connectivity. It broadcasts a VERIFY message containing location to
neighbors and waits for R time units, where R is sufficient to reduce collision and
guarantee that all neighbors can finish the response work. When a node receives a
VERIFY message, it firstly compares r with the distance between itself and the mes-
sage source. If the distance is more than r it rejects the VERIFY message, or else it
checks its state. If its state = ACTIVE, it replies a YES message to the message
source, otherwise it self-increases coverage and judges whether its coverage reaches
k. As soon as a node achieves (θ, k)-coverage, it will change to be in SLEEP state. In
R time units, coverage of node i self-increase every time receiving a YES message. If
its coverage is less than k, it will activate some neighbors by broadcasting a
FLOWER message to gain (θ, k)-coverage.

The FLOWER message contains location of source and its coverage. We prove
that, as shown in Theorem 1 and Lemma 2, the centre node of (θ, k)-flower with α-
connectivity has at least m active neighbors within radius r. In order to form (θ, k)-
flower with α-connectivity, DPCCM chooses nodes with the minimum weight at
distance r at M(i) sectors [2πl /M(i), 2π(l+1) /M(i)] for 0 ≤ l ≤ M(i)−1, where M(i) =
m−coverage. To make this decision locally, a back-off timer is adopted. The back-off
timer T(j) of the receiver j is determined according to its location, r(i) and M(i). The
following steps are used in turn to decide T(j): (1) if d(i,j) < r(i)−δ, let T(j) = −1,
where δ is a small positive constant; (2) if j is in the sector [2πl /M(i), 2π(l+1) /M(i)],
let T(j) = l⋅C + C⋅W(j) /E, where C is a constant and E > W(j) for arbitrary j. When a
sensor times out, the sensor changes its state = ACTIVE and broadcasts a TURNOFF
message containing l to its neighbors. When a sensor receives a TURNOFF message
before the timer expires, it compares l with own: if they are the same, it lets T(j) = −1,
or else rejects the message.

The algorithm terminates when all sensors are in ACTIVE state or SLEEP state.
As the following, some analyses of DPCCM are shown. First, we prove the cor-

rectness of the proposed DPCCM.

 Approximate Node-Weighted Minimum α-Connected (θ,k)-Coverage 229

Theorem 2. Given a node-weighted sensor network G as above. The active sensors
chosen by DPCCM can (θ, k)-cover all nodes in G and have α-connectivity.

Proof: Firstly, we show that the active sensors are guaranteed to hit every sensing
disk. In the process of finding out the “good positions”, node i doubles ψ (i) with
probability 1 / (n − netSize) until it is activate node or the neighbor of an activated one.
Doubling ψ (i) increases the probability to be activated. From Lemma 1, the active
node set is a hitting set, otherwise node density is not enough to achieve a hitting set.
Then DPCCM activates some nodes to guarantee every active node has m active
neighbors within less than radius r. Since the algorithm terminates when all sensors
are in ACTIVE state or SLEEP state, both of them satisfy the condition coverage ≥ m.
According to Theorem 1 and Lemma 2, the (θ, k)-flower based on the above r and m
has α-connectivity and (θ, k)-coverage. □

The next theorem provides time complexity of DPCCM. We carry out our analysis in
terms of the input parameters B, C, R and S, which are discussed in Figure 4. We
assume that a message transferred between two neighbors takes one time unit, and so
does continuous local computation. And we reduce the communication collision by
waiting for some time.

Theorem 3. DPCCM terminates in at most (m⋅C + R + 5)n + S⋅ ⎡logn⎤ + B + 2, i.e. O(n)
time units, where m is determined by (α,θ, k) based on Lemma 2 and Theorem 1.

Proof. According to hypothesis, every node completes the initialization in B + 2 time
units. In the process of finding “good positions”, the algorithm iterates for ⎡logn⎤ steps.
Since each iteration works in rounds of S time units, the algorithm costs S⋅ ⎡logn⎤ time
units. Within the following processes till the termination of algorithm, there exist three
types of state change: ACTIVE→break, TEMP→ACTIVE→break, and TEMP
→SLEEP. To the first, an active node broadcasts a VERIFY message to its neighbors
and waits for R time units. Within R time units, either a TEMP node increases its cover-
age or an ACTIVE node replies a YES message. So it costs R+3 time units. To the sec-
ond, it is certain that the node receives a FLOWER message from an active node. After
it receives the message it will wait for T time units to be activated. From the construc-
tion of T, we have T ≤ C(l + 1) ≤ CM ≤ Cm. So it costs at most mC + 2 time units. Then it
costs R + 3 time units from ACTIVE to break. To the last, the node receives at least k
VERIFY messages and it costs k time units. On the other hand, the above three types of
state change are repeated continuously until the algorithm terminates. Since every node
is corresponding to one type and only, the total time is B + 2 + S⋅ ⎡logn⎤ + (R + 3)τ1 + (mC

+ R + 5)τ2 + kτ3, where τi is the number of the i th case as above. Note that m ≥ k and τ1

+ τ2 + τ3 = n, the proof can be concluded. □

In the following theorem, we provide the communication complexity of DPCCM
algorithm.

Theorem 4. The number of messages broadcasted or sent in the DPCCM is at most
6n, i.e. O(n).

Proof. In the initialization, every node broadcasts its W to its neighbors, so the num-
ber of messages is n. In the process of finding “good positions”, every active node
broadcasts an OK message. The number of active node is less than n, so is the number
of OK messages. From the following processes till the termination of algorithm,

230 Y. Wu et al.

analysis is similar to the proof of Theorem 3. One “ACTIVE→break” node broad-
casts at most two messages: VERIFY and FLOWER. And one “TEMP →AC-
TIVE→break” node broadcasts at most three messages: TURNOFF, VERIFY and
FLOWER. And one “TEMP→SLEEP” node does not broadcast. On the other hand,
the YES messages are only sent by active but not break nodes, the number of which is
less than n. So the proof can be concluded. □

The approximation factor of DPCCM algorithm is underway. Because it is difficult to
analyze theoretically the approximation factor, we test experimentally the perform-
ance of DPCCM. The result is shown in Fig.7. In fact, it is exactly our aim to prolong
the network lifetime on the requirement of connectivity and coverage. So the experi-
ment result can support the performance of DPCCM in some sense.

5 Simulation

This section presents results from our simulation. The proposed DPCCM algorithm
and the randomized k-coverage algorithm, named DRKC [7], were simulated in
Prowler, a probabilistic sensor network simulator [19]. To assure the network is dense
without coverage hole, 300 sensors are deployed as a grid of points and 300 sensors
are randomly placed in a restricted 10×10 area. Some simulation parameters are
shown here: sensing range is 1 and so is communication, the initial energy of each
sensor is 5000, transmission, reception and idle are 5, 1, and 1, completeness a task
consumes 300. The sensing mode is adapted from the exponential model, and the
communication model is set to the log-normal shadowing model. The evaluation
metrics include the percentage of active sensors with various (α,θ, k), coverage, and
the network lifetime.

First we analyze the percentage of active sensors when (α,θ, k) is changed. We
vary the requested coverage k between 1 and 8, sensing probability between 50% and
90%, connected probability between 50% and 90%. When one of them is varied, all
other parameters are fixed, as shown in Figure 5. The Figure 5(a) and 5(c) shows that
the percentage of active sensors increases fast while required sensing probability or
required coverage increase. We think that it may be caused by r and m from Theorem
1 and Lemma 2, especially m increases rapidly. However, as is shown in Figure 5(b),
the percentage increases slowly with higher connected probability. The result indi-
cates that a triangle mesh is sufficient to ensure probabilistic connectivity.

Required sensing probability (%)
50 55 60 65 70 75 80 85 90

P
er

ce
nt

ag
e

of
 a

ct
iv

e
se

ns
or

s

4

6

8

10

12

14

16

18

20

22

 Required connected probability (%)

50 55 60 65 70 75 80 85 90

P
er

ce
nt

ag
e

of
 a

ct
iv

e
se

ns
or

s

10.4

10.6

10.8

11.0

11.2

11.4

11.6

Required coverage, i.e. k
1 2 3 4 5 6 7 8

P
er

ce
nt

ag
e

of
 a

ct
iv

e
se

ns
or

s

8

10

12

14

16

18

20

22

24

Fig. 5. Analyzing effect on percentage of active sensors when (α, θ, k) is changed:
(a) vary α∈[0.5,0.9] while fix θ = 0.75, k = 3; (b) vary θ ∈[0.5,0.9] while fix α = 0.75, k = 3;
(c) vary k ∈[1,8] while fix α = 0.75, θ = 0.75

 Approximate Node-Weighted Minimum α-Connected (θ,k)-Coverage 231

Required coverage, i.e. k

1 2 3 4 5 6 7 8

P
er

ce
nt

ag
e

of
 p

oi
nt

s
k-

co
ve

re
d

0

20

40

60

80

100

DPCCM
DRKC

 MTTFF

0 2 4 6 8 10 12

D
R

K
C

D
P

C
C

M

Fig. 6. Comparing the percentage of points
k-covered with DRKC

Fig. 7. The MTTFF under DPCCM and
DRKC

The coverage by DPCCM and DRKC are compared. The achieved coverage at
some random sampling points in the target area has been collected statistically. We
fix θ = 0.70 and α = 0.80. As shown in Figure 6, DPCCM is significantly better than
DRKC. This is important because, under the probabilistic sensing model, the active
sensors chosen for deterministic model are not k-covered really.

Finally, we study the MTTFF (mean time to first failure) of any given task under
DPCCM and DRKC, which can indicate the network lifetime in some application. We
randomly gain k from 1 to 8 in each task. As soon as a task can not been completed,
we calculate the MTTFF in this experiment. After repeating 50 times, the result is
shown in Figure 7. Compared with DRKC the MTTFF under DPCCM has been pro-
longed about 21%. This is because that DRKC activate as few sensors as possible
based on required coverage and isn’t always optimal in a series of tasks because of
unbalanced energy-consuming among nodes.

6 Conclusion

In this paper, we consider connected k-coverage problems under probabilistic sensing
models and probabilistic communication models, which are more realistic than determi-
nistic models. We represent the problems with the α-connected (θ,k)-coverage set prob-
lem and formulize it as (α,θ,k)-CCS. Moreover, in order to satisfy various coverages
and realize energy-consuming balance, we also take power available into consideration
with node weight. Because node-weighted (α,θ, k)-CCS is NP-hard, a distributed ap-
proximate algorithm, named DPCCM, is proposed for dense sensor networks. DPCCM
utilizes the properties of VC-dimension and weighted ε-net to find “good positions”,
then expands (θ, k)-flower with α-connectivity by r and m. The two parameters can be
calculated according to the tasks and performance indexes of sensors. We prove the
correctness of DPCCM and theoretically analyze the time complexity and communica-
tion complexity. We also implement our algorithm in Prowler and compare it against
the randomized k-coverage algorithms.

Acknowledgments. This research was supported by the National Natural Science
Foundation of China under Grant Nos.60603062 and the Natural Science Foundation
of Hu'nan Province of China under Grant No.06JJ3035.

232 Y. Wu et al.

References

1. Estrin, D., Govindan, R., Heidemann, J., Kumar, S.: Next century challenges: Scalable co-
ordination in sensor networks. In: 5th ACM International Conference on Mobile Comput-
ing and Networking (MOBICOM 1999), pp. 263–270. ACM Press, Seattle (1999)

2. Cerpa, A., Elson, J., Hamilton, M., Zhao, J., Estrin, D., Girod, L.: Habitat monitoring: Ap-
plication driver for wireless communications technology. In: Proc. of ACM SIGCOMM
Workshop on Data Communications in Latin America and the Caribbean, pp. 3–5. ACM
Press, Costa Rica (2001)

3. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: A
survey. Computer Networks 38(4), 393–422 (2002)

4. Yang, S., Dai, F., Cardei, M., Wu, J., Patterson, F.: On connected multiple point coverage in
wireless sensor networks. Journal of Wireless Information Networks 13(4), 289–301 (2006)

5. Hekmat, R., Van Mieghem, P.: Connectivity in wireless ad-hoc networks with a log-
normal radio model. Mobile Networks and Applications 11(3), 351–360 (2006)

6. Hefeeda, M., Ahmadi, H.: A probabilistic coverage protocol for wireless sensor networks.
In: 15th IEEE International Conference on Network Protocols (ICNP 2007), pp. 41–50.
IEEE Press, Beijing (2007)

7. Hefeeda, M., Bagheri, M.: Randomized k-coverage algorithms for dense sensor networks.
In: 26th IEEE International Conference on Computer Communications (INFOCOM 2007),
pp. 2376–2380. IEEE Press, Anchorage (2007)

8. Chakrabarty, K., Iyengar, S., Qi, H., Cho, E.: Grid coverage for surveillance and target location
in distributed sensor networks. IEEE Transactions on Computers 51(12), 1448–1453 (2002)

9. Huang, C., Tseng, Y.: The coverage problem in a wireless sensor network. In: 2nd ACM
International Conference on Wireless Sensor Networks and Applications (WSNA 2003),
pp. 115–121. ACM Press, San Diego (2003)

10. Zhou, Z., Das, S., Gupta, H.: Connected k-coverage problem in sensor networks. In: 13th
International Conference on Computer Communications and Networks (ICCCN 2004), pp.
373–378. IEEE Press, Chicago (2004)

11. Wu, J., Dai, F.: On constructing k-connected k-dominating set in wireless networks. In:
19th International Parallel and Distributed Processing Symposium (IPDPS 2005), pp. 81a–
81a. IEEE Press, Denver (2005)

12. Lu, J., Bao, L., Suda, T.: Coverage-Aware Sensor Engagement in Dense Sensor Networks.
In: Yang, L.T., Amamiya, M., Liu, Z., Guo, M., Rammig, F.J. (eds.) EUC 2005. LNCS,
vol. 3824, pp. 639–650. Springer, Heidelberg (2005)

13. Hefeeda, M., Ahmadi, H.: Network connectivity under probabilistic communication mod-
els in wireless sensor networks. In: 4th IEEE International Conference on Mobile Ad-hoc
and Sensor Systems (MASS 2007), pp. 1–9. IEEE Press, Pisa (2007)

14. He, T., Huang, C., Lum, B., Stankovic, J., Adelzaher, T.: Range-free localization schemes
for large scale sensor networks. In: 9th ACM International Conference on Mobile Comput-
ing and Networking (MOBICOM 2003), pp. 81–95. ACM Press, San Diego (2003)

15. Ganeriwal, S., Kumar, R., Srivastava, M.B.: Network-Wide Time Synchronization in Sen-
sor Networks. NESL Technical Report (2003)

16. Gupta, H., Zhou, Z., Das, S.R., Gu, Q.: Connected sensor cover: Self-Organization of sen-
sor networks for efficient query execution. In: 4th ACM Interational Symposium on Mo-
bile Ad Hoc Networking and Computing (MobiHoc 2003), pp. 189–200. ACM Press, New
York (2003)

17. Brönnimann, H., Goodrich, M.: Almost optimal set covers in finite VC-dimension. Dis-
crete&Computational Geometry 14(4), 463–479 (1995)

18. Haussler, D., Welzl, E.: Epsilon-nets and simplex range queries. Discrete and Computa-
tional Geometry 2(1), 127–151 (1987)

19. Simulator can be downloaded from, http://www.isis.vanderbilt.edu/Projects/nest/prowler/

Optimal Surface Flattening

Danny Z. Chen1,� and Ewa Misio�lek2

1 Department of Computer Science and Engineering, University of Notre Dame,
Notre Dame, IN 46556, USA

chen@cse.nd.edu
2 Mathematics Department, Saint Mary’s College, Notre Dame, IN 46556, USA

misiolek@saintmarys.edu

Abstract. The problem of optimal surface flattening in 3-D finds many
applications in engineering and manufacturing. However, previous algo-
rithms for this problem are all heuristics without any quality guarantee
and the computational complexity of the problem was not well under-
stood. In this paper, we prove that the optimal surface flattening problem
is NP-hard. Further, we show that the problem admits a PTAS and can
be solved by a (1 + ε)-approximation algorithm in O(n log n) time for
any constant ε > 0, where n is the input size of the problem.

1 Introduction

We consider the problem of “flattening” a surface S in IR3. Surface flattening is
an important problem that finds applications in computer graphics and surface
reconstruction as well as in engineering and manufacturing [3] (particularly in
aircraft, vehicle, or garment design). In the latter applications, the surface of a
3-D object must be assembled from a flat piece of material. To find the shape
of the flat piece of material for the assembly of the surface, we start with a 3-D
model of the surface S and search for an optimal way to flatten it by cutting S.
The cutting must start from the boundary and continue toward the interior of S
in such a way that (1) the total length of the cutting paths is minimized and (2)
if the flat equivalent S′ of S in IR2 is glued back along the cuts, the reconstructed
surface requires a minimum “stretch” to achieve the original shape of S. The
amount of needed stretch, or the deviation of S around a point p from being flat,
is measured by the Gaussian curvature at p. The Gaussian curvature at a point
p of S is the product of the principal curvatures of S at p, i.e., roughly speaking,
the product of the maximum and minimum curvatures at the point p among all
the curves on the surface passing through p. The larger the absolute value of the
Gaussian curvature at p is, the farther S is from being flat at p. Thus, to reduce
the stretch, we cut the surface S along points at which the absolute values of the
Gaussian curvatures are too large (e.g., with respect to a given threshold value).
On the other hand, if the Gaussian curvatures at all points on S are 0, then the

� The research of this author was supported in part by the National Science Foundation
under Grant CCF-0515203.

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 233–244, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

234 D.Z. Chen and E. Misio�lek

surface is flat and requires no cuts to flatten it (and no stretch to “reconstruct”
the original shape from the flat version).

From the application view point, the surface to be flattened is represented
by a triangular mesh S = (N, M), where N is a given set of n points and
M is a set of m = O(n) segments connecting the points in N . We assume
that the Gaussian curvature at each of the n points is given. (Note that the
computation of Gaussian curvature using a discrete representation of the surface
is not possible, but it can be approximated, for example, by using a discrete
method [9,12].) Each point at which the absolute value of the Gaussian curvature
is greater than a given threshold value is required to lie on a cutting path.
Clearly, we can use an undirected graph G = (V, E) to represent the mesh
surface S = (N, M), by letting V = N and E = M . We assume in this paper
that such a graph G for S is planar and G admits a planar embedding such
that the boundary of S corresponds to the border of the outer face of the planar
embedding of G.

Given this setting, the optimal surface flattening problem is defined as follows.

Surface Flattening Problem (SF). Given a triangular mesh S = (N, M)
representing a surface in IR3, NA ⊆ N , which is the set of points with the
absolute values of the Gaussian curvatures above a threshold value, and NB ⊆ N ,
NB �= ∅, which is the set of points on the boundary of the surface S, find a set of
cutting paths of the shortest total length along the edges of S that connect every
point in NA to at least one point in NB.

Without loss of generality, we assume NA �= ∅ (otherwise, the solution is trivial).
Note that in the above definition of the SF problem, the essential requirement is
that in the solution, there is a path connecting each point in NA to some point
in NB. The paths for two different points in NA can cross or (partially) overlap.
Therefore, the union of the paths in a solution should form a certain subgraph
in the graph G defined by (N, M), such that the total sum of the edge lengths
in this subgraph is minimized.

Since surface flattening is a very important problem in a number of industrial
applications, the literature on surface flattening is vast. However, to the best of
our knowledge, all previous algorithms for this problem are heuristics without
any quality guarantee of their solutions, and no thorough analysis of the com-
putational complexity of the problem has been given. In most cases, the known
algorithms seek to find a solution based on an application-specific metric. The
various approaches for solving the problem include greedy algorithms that search
for seemingly best possible insertions of cuts or darts; for example, Parida and
Mudur [11] found cuts during successive flattenings of the mesh triangles, and
Aono et al. [1,2] inserted darts into a flat cloth to adjust the shape to the surface.
Other methods include optimization of various energy functions [8,10,13] and,
more recently, algorithms searching for individual shortest cuts passing through
points with high absolute values of Gaussian curvatures [12,14]. Sheffer’s algo-
rithm [12] finds shortest paths that connect nodes with high absolute values of
Gaussian curvatures with the nodes on the boundary of the surface using a min-
imal spanning tree. Unfortunately, this method does not work well for surfaces

Optimal Surface Flattening 235

with widely distributed curvatures. Wang et al. [14] avoided this problem by first
computing a boundary geodesic map and then repeatedly finding a shortest path
from a selected node to the surface boundary using this map. Neither of these
algorithms guarantees an optimal quality solution. Azariadis et al. [3], recogniz-
ing the large number of optimization criteria and methods for surface flattening,
considered the problem of quality control from the view point of applications.
They evaluated many existing surface flattening methods by using “intuitively-
acceptable” visualization techniques (they also gave a brief overview of the many
surface flattening algorithms). To the best of our knowledge, there are no pre-
vious results providing theoretical analysis of the computational complexity of
the problem or quality guarantee of the solutions.

In this paper, we prove that the optimal surface flattening problem as spec-
ified in [12,14], i.e., the problem of computing cutting paths of the minimum
total length along the mesh edges that pass through points with high absolute
values of Gaussian curvatures, is NP-hard. This implies that finding an optimal
solution for the problem in deterministic polynomial time is unlikely unless P =
NP. Furthermore, we show that the surface flattening problem admits a PTAS
(polynomial-time approximation scheme), that is, it can be reduced to the prob-
lem of computing an optimal Steiner tree on a planar graph, and, as such, can
be solved by a (1 + ε)-approximation algorithm due to Borradaile, Klein, and
Mathieu [5] in O(n log n) time, where ε > 0 is any constant. This appears to be
a theoretically “best possible” solution for the problem unless P = NP.

2 The NP-Hardness of the Optimal Surface Flattening
Problem

In order to show that the optimal SF problem is NP-hard, we first prove the
NP-completeness of the following decision version of the problem.

Surface Flattening Decision Problem (SF-D). Given a triangular mesh
S = (N, M) representing a surface in IR3, NA ⊆ N which is a set of points on
S with the absolute values of the Gaussian curvatures above a threshold value,
NB ⊆ N which is a set of points on the boundary of S, and an integer k, does
there exist a set of cutting paths along the edges of S that connect every point in
NA to at least one point in NB whose total length is less than or equal to k?

To show that the SF-D problem is NP-complete, we must show that (1) the
problem is in NP, i.e., it can be solved in polynomial time by a nondeterministic
Turing machine (or a given solution can be verified in polynomial time), and
(2) the problem is NP-hard (a known NP-complete problem can be transformed
in polynomial time to the SF-D problem). Since verifying the first condition is
easy, we omit it here. The second part will involve a two-step reduction from a
well-known NP-complete problem, the Rectilinear Steiner Tree Problem [6].

Given a set A of points in the plane, a rectilinear Steiner tree (RST) for A is a
tree connecting all points in A using line segments that are either horizontal or
vertical. As opposed to a spanning tree, the nodes of an RST (i.e., the endpoints

236 D.Z. Chen and E. Misio�lek

of the segments of the RST) may include some Steiner points, that is, points in
the plane that do not belong to A but are needed for the desired connection of the
RST. A minimum RST is a tree whose total length of line segments is minimized.
The RST problem, stated as follows, has been proved to be NP-complete [6].

Rectilinear Steiner Tree Problem (RSTP). Given a finite set A of points
in the plane and an integer k > 0, does there exist a rectilinear Steiner tree for
A with a total length no bigger than k?

In fact, even the special case of the RST problem in which the coordinates of the
points in A are all integers was shown to be NP-complete in [6]. In the rest of
this paper, whenever we refer to any variations of the (geometric) RST problem,
we assume that the coordinates of the points in A are all integers.

For our proof, we start with transforming the RSTP to a slightly different
problem, called the boxed rectilinear Steiner tree problem (or the boxed RSTP),
and proving that the boxed RSTP is also NP-complete. In the boxed RSTP, we
choose a certain “box” BA containing all the points in the set A (as shown below),
and require that the sought rectilinear Steiner tree connect all the points of A
as well as at least one point on the box BA. Note that for the sought rectilinear
Steiner tree to connect all the points in A and at least one point of the box BA,
it is sufficient to consider only a finite set of points on the box BA, denoted by
B. The box BA and the point set B on BA are constructed as follows. Create a
rectilinear grid RA using the vertical and horizontal lines on the plane passing
through all the points in A. Note that the coordinates of all vertices of RA are
integers. Let d = 1+max{dh, dv}, where dh is the distance between the leftmost
and the rightmost vertical lines of the grid RA, x = xl and x = xr, and dv is
the distance between the top and the bottom horizontal lines of RA, y = yt and
y = yb. Clearly, d is an integer value. Further, note that the rectilinear (or L1)
distance between any two points in A is strictly less than 2d. The box BA is
defined by the two vertical lines x = x1 = xl − 2d and x = x2 = xr + 2d and the
two horizontal lines y = y1 = yb−2d and y = y2 = yt+2d. That is, BA consists of
four line segments ((x1, y1), (x2, y1)), ((x2, y1), (x2, y2)), ((x1, y2), (x2, y2)), and
((x1, y1), (x1, y2)). The points in the set B are those on the intersection of the
grid RA and the four segments of BA. See Fig. 1 for an example. Let RB denote
the finite portion of the grid RA contained inside the box BA, together with the
box BA as its boundary. Clearly, the coordinates of all vertices of RB are also
integers; furthermore, the lengths of edges of RB are all integers as well.

Boxed Rectilinear Steiner Tree Problem (BRSTP). Given a finite set A
of points in the plane and an integer k > 0, and suppose the box BA containing
A and the point set B on BA have been determined as above, does there exist
a rectilinear Steiner tree for A that also includes at least one point in B with a
total length less than or equal to k?

Note that we can restrict a rectilinear Steiner tree T , as a solution to RSTP
or BRSTP, to the grid RA or RB in the sense that any Steiner point of the
tree T not on a grid vertex can be moved to a grid vertex without changing the

Optimal Surface Flattening 237

,y1

2) 2)

1)) y,2

1, 2,y

1(x

y (x(x

(x

RB .

Fig. 1. The points in A are marked as solid dots, and the points in B are marked as
empty dots

total length of the resulting rectilinear Steiner tree T ′. We have the following
statement on A and the grid RB whose vertices all have integer coordinates only.

Lemma 1. The boxed rectilinear Steiner tree problem (BRSTP) is NP-complete.

Proof. Our transformation is from the rectilinear Steiner tree problem (RSTP)
(with the points in A all having integer coordinates) to the boxed rectilinear
Steiner tree problem (BRSTP). The ideas of the proof are not complicated but
the details are a little tedious. Due to the space limit, the detailed proof is
omitted here and can be found in the full version of the paper. ��

We now show the NP-completeness of the surface flattening decision prob-
lem (SF-D) by using a transformation from the NP-complete boxed rectilinear
Steiner tree problem on RB whose vertices all have integer coordinates only.
The instance of the SF-D problem produced by the transformation, however,
may have nodes with non-integer coordinates.

Theorem 2. The surface flattening decision problem (SF-D) is NP-complete.

Proof. Our idea for the proof, based on a transformation from the integer version
of BRSTP to SF-D, is fairly straightforward, yet the details of the transformation
are a little tedious.

Using the grid RB on the plane (i.e., the box BA together with the portion
of RA enclosed in and bounded by BA), we construct, in polynomial time, a
triangular mesh surface S = (N, M) in IR3 such that the solutions to BRSTP
on RB and to SF-D on S are equivalent.

To define S in IR3, we need to specify the x-, y-, and z-coordinates of all the
points in N as well as the set M of segments (including their lengths) connect-
ing the points of N . To begin, we include in S all vertices and segments of RB,
initially setting the z-coordinates of all these vertices to 0. This creates a rectan-
gular mesh on the xy-plane (with z = 0). To obtain from this planar rectangular
mesh a triangular mesh in IR3, we add to the rectangular mesh more vertices and
edges: Each of the newly added vertices lies at the intersection of the two diago-
nals of every cell of the rectangular mesh, and the new edges are the “diagonal”
segments connecting each of these diagonal intersection points with its four cell
vertices. We denote the set of points thus added by ND (ND ⊂ N). Also, we let

238 D.Z. Chen and E. Misio�lek

(a) (b) (c)

Fig. 2. Illustrating the steps for constructing the mesh surface S (S is vertically pro-
jected onto the xy-plane in these figures). (a) S = RB (the points of NA are marked by
solid dots). (b) The addition of points in ND lying at the intersections of the diagonals
of all the cells of RB and the addition of the diagonal segments. (c) The addition of
points in NK and the addition of segments between the points in ND and the neigh-
boring points in NK .

NA and NB denote the subsets of points in N that correspond to the points of
A and B on RB, respectively. Figure 2(a) shows the initial rectangular mesh of
S (= RB) in which the points of NA are marked by large solid dots; Figure 2(b)
shows the modified mesh with the points of ND and the “diagonal” segments.

The next step is to elevate (i.e., increase the z-coordinates of) all points of
NA and ND in IR3. The necessity of elevating the points of NA is obvious: To
ensure their absolute Gaussian curvatures to be sufficiently large. We elevate the
points of ND to ensure that no points of ND belong to any shortest path along
the edges of S between any two points of S that correspond to two arbitrary
vertices of the initial grid RB (so that any “good” cutting path on S will follow
only the edges of S that correspond to those of RB). Without loss of generality,
we assume that the length of the shortest edge of the original grid RB is one
unit. Let l be the length of the longest edge of RB, and c be the number of edges
of RB . Then we set the z-coordinates of all points in ND to be 2l + 1 and the
z-coordinates of all points in NA to be 1/(9c).

Let g0 be the absolute value of the Gaussian curvature at the intersection
point p of the diagonals of a 1 × 1 square such that the z-coordinate of p is
2l + 1 and all the vertices of the square are on the xy-plane. Since the length
of the shortest edge of RB is 1, the absolute value of the Gaussian curvature
at any point of ND is no bigger than g0. We set the threshold curvature value
for the SF-D problem on S to be g0. To ensure a high absolute value of the
Gaussian curvature at each point pa ∈ NA on S, we build a “steep” structure
around pa on S, as follows. We create four points around every point pa ∈ NA,
and denote the set of all the points thus created by NK . Specifically, for each
pa ∈ NA, we place points pa

i ∈ NK , i = 1, 2, 3, 4, on each of the four segments of
the original rectangular mesh RB adjacent to pa, such that the z-coordinate of
each pa

i is 0 and pa
i is at a distance d0 from the vertical projection point of pa

on the xy-plane. The fixed value d0 is chosen to be sufficiently small to satisfy
the following two conditions: (1) d0 ≤ 1/(9c), and (2) the absolute value of the
Gaussian curvature at any pa ∈ NA is larger than the threshold value g0. (The
value d0 can be calculated from the fixed values g0, l, and c.) The points in

Optimal Surface Flattening 239

NK , all on the xy-plane, are added to the set N to make their corresponding
points pa ∈ NA locally “steep” (thus attaining high absolute values of Gaussian
curvatures at pa), and they split each edge of RB adjacent to every pa ∈ NA

into two segments in M . Lastly, we add to M the segments connecting each
point pd ∈ ND with any point pa

i ∈ NK lying on the boundary of the cell of RB

containing pd.
This completes the construction of S. See Fig. 2(c) for an example of the

resulting mesh surface S (as projected vertically onto the xy-plane). Clearly, the
construction of S takes polynomial time since S consists of O(|A|2) vertices and
O(|A|2) segments.

It remains to show that BRSTP has a solution TBP of a total length less than
or equal to k on RB if and only if SF-D has a solution CSF of a total length less
than or equal to k + 1/2 on S, for any given integer k > 0.

Before we show the equivalence of these two solutions, recall that the reason
for adding the points of ND to N is to create a triangular mesh for the surface
flattening problem. However, we need to prevent any “good” cutting paths of
S from going through any points of ND so that the cutting paths on S follow
only those segments of S corresponding to the edges of RB (as required by a
BRSTP solution on RB). By elevating the points of ND high enough to make
their adjacent segments longer than any of the edges of RB and by making
the heights of all the points of NA very small, we make sure that no points of
ND belong to any shortest path along the segments of S connecting any two
points in N − ND. This is because a path between any two points in N − ND

through a “diagonal peak point” pd ∈ ND of any cell of RB is longer than a path
along the border of that cell. Thus, “good” cutting paths connecting points in
N − ND and along the segments of S use only segments that correspond to the
edges of RB. Without loss of generality, we assume that any solution CSF for
the SF-D problem on S, that is, the union of a set of cutting paths for NA on
S, uses only segments of S that correspond to the edges of RB (otherwise, we
can always replace any cutting path in CSF passing through a point in ND by
another cutting path using only the segments along the borders of the cells of
RB without increasing the total length of the resulting SF-D solution).

Now, suppose TBP is a solution to BRSTP on RB of a total length less than
or equal to k. Note that since the lengths of all edges of RB are integers, the
total length |TBP | of TBP must be an integer as well. Let CSF consist of all the
segments of S whose vertical projections onto the xy-plane lie entirely on the
edges of TBP . Then CSF is a feasible solution to SF-D since every point in NA is
connected to a point in NB along the segments of S ∩CSF (this follows from the
fact that TBP is an RST for A and connects to at least one point of B). Note that
the segments of CSF correspond to the edges of TBP on RB, plus connections
to a little “tip” at each point pa ∈ NA. Every such little tip at pa ∈ NA adds a
total length less than 4×1/(9c) < 1/(2c) to the total length of TBP for the SF-D
solution CSF . Thus, a total length less than |A|× 1/(2c) ≤ c× 1/(2c) = 1/2 due
to the “tips” over all the points of NA is added to the total length of TBP for

240 D.Z. Chen and E. Misio�lek

the SF-D solution CSF , implying that the total length |CSF | of CSF is no bigger
than |TBP | + 1/2 ≤ k + 1/2.

Conversely, suppose CSF is a solution to SF-D on S of a total length less
than or equal to k + 1/2. Let TBP be the set of edges on RB corresponding to
the segments of CSF . Since, unlike CSF , TBP does not contain the “tips” at the
points of NA, its total length |TBP | is strictly smaller than |CSF | ≤ k + 1/2.
Further, since the total length of TBP must be an integer, the largest possible
integer value for |TBP | that is less than k + 1/2 is k. Besides, as argued in the
previous paragraph, the total contribution of all the “tips” to the total length
of CSF is strictly less that 1/2. Thus, |TBP | ≤ k holds. If TBP forms a tree,
then we are done, since it contains all the points of A and at least one point
of B. However, note that CSF is the union of cutting paths along the segments
of S corresponding to the edges of RB, and such a cutting solution, although
connecting each point of NA to some point of NB, need not form a tree structure.
That is, TBP may not be a desired RST for BRSTP on RB. Actually, TBP may
consist of multiple connected components, and each such component may contain
some cycles. Hence, our remaining task is to convert TBP to an RST for A on
RB that touches at least one point in B, without increasing the total length of
the resulting TBP .

Observe that since CSF is a feasible cutting solution to SF-D on S, every
connected component of TBP must contain at least one point of B and some
points of A (those components containing no points of A can be safely removed
from any further consideration). We first remove from TBP all edges that lie
entirely on the boundary of the box BA (this removal does not yet remove the
end vertices of those edges). If any point of B∩TBP becomes an isolated vertex of
TBP after this edge-removal, then remove that point from TBP as well. Clearly,
this removal process does not affect the feasibility of the corresponding cutting
solution to SF-D on S (i.e., if the corresponding segments and endpoints are
removed from CSF), and can only decrease the total length of TBP . But, it can
create more connected components of TBP , each of which still contains at least
one point of B (but, each such point of B is now of degree exactly one in TBP).
Note that for any two points of A, the rectilinear (or L1) distance between them
is strictly less than 2d. We “merge” any two distinct connected components
C1 and C2 of TBP into one component, as follows: Remove from TBP all the
points of B and their adjacent edges that are contained in C1 (this decreases
the total length of TBP by at least 2d), and connect an arbitrary remaining
vertex of C1 with an arbitrary vertex of C2 by a shortest path lying on RB

(this increases the total length of TBP by less than 2d). The resulting TBP ,
with at least one less connected component, has a smaller total length than its
previous version. Further, TBP still contains all the points of A, and each of its
connected components contains at least one point of B. We continue this merge
process until TBP has exactly one connected component. At this point, TBP is
a connected subgraph on RB that contains all the points of A and at least one
point of B. But, TBP may not yet be a tree. Thus, we remove from TBP any
edge (but not its end vertices) without disconnecting TBP (this can only further

Optimal Surface Flattening 241

decrease the total length of TBP). We continue this edge-removal process until
TBP becomes a tree, which is a sought RST for A touching at least one point of
B on RB , and its total length is no bigger than k. Hence, the resulting TBP is a
solution to BRSTP for A on RB with |TBP | ≤ k.

Finally, it is easy to see that given a solution CSF to SF-D on S, a corre-
sponding solution TBP to BRSTP on RB can be obtained in polynomial time in
terms of the input size |A|. ��

Because the decision version of the surface flattening problem is NP-complete,
the optimization version of this problem is NP-hard.

3 A (1 + ε)-Approximation SF Algorithm

Since the optimal surface flattening problem (SF) is NP-hard, it is unlikely that
a deterministic polynomial time algorithm for optimally solving this problem
is possible unless P = NP. Thus, we present an efficient method for finding a
provably good approximate solution for the problem.

Our approach is to solve the SF problem using a graph representation. We
model the mesh surface S = (N, M) using an undirected weighted graph G =
(V, E), where V = N and E = M , i.e., the vertices of G correspond to the point
set of S and the edges of G correspond to the line segments of S. We let VA ⊆ V
be the subset of vertices corresponding to the points of NA whose absolute values
of the Gaussian curvatures are greater than the threshold value. The weight of
an edge e = (v, w) in E is equal to the length of the segment between the mesh
points represented by vertices v and w. Since S is a bounded surface in IR3,
the graph G is planar and a planar embedding of G can be easily specified by
S such that the boundary of S corresponds to the border of the outer face of
the planar embedding of G. Clearly, the one-to-one correspondence between the
mesh points on the boundary of S and the vertices on the outer face of G defines
the vertex subset VB ⊆ V as corresponding to NB ⊆ N .

Given the graph representation G of the surface S, observe that the union of
the optimal cutting paths connecting some boundary points of S with all the
points of NA along the segments of S corresponds to a set of trees, or a forest, F ,
in G whose roots all lie on the outer face. It is required that the total length of
these optimal cutting paths (or trees) be minimized. The reason that the union
of the optimal cutting paths for S must form a forest is as follows. Suppose the
union, F , in G contains a cycle. Then we can remove from F any edge (but
not its end vertices) on the cycle, still retaining a feasible cutting solution for
S; but, the solution thus obtained has a smaller total length than that of F , a
contradiction to the assumption that F corresponds to the union of the optimal
cutting paths for S.

The optimal surface flattening problem defined on the graph model G is as
follows.

Terminal Cutting Problem on a Planar Graph (TCPG). Given an em-
bedded undirected weighted planar graph G = (V, E) representing a mesh surface

242 D.Z. Chen and E. Misio�lek

(a) (b)

v0

Fig. 3. (a) A planar graph G representing the surface S (the vertices of VA are denoted
by solid dots, and the vertices of VB are on the outer face of G). (b) The planar graph
G′ augmented by adding the supernode v0 and the edges connecting v0 with all the
vertices of VB .

S in IR3, VA ⊆ V , which is a set of terminals (corresponding to the points of A on
S whose absolute values of the Gaussian curvatures are above a threshold value),
and VB ⊆ V , which is the set of vertices on the outer face of G (corresponding to
the boundary nodes of S), find a subgraph F of G with the minimum total sum of
edge weights connecting every vertex of VA to at least one vertex of VB .

We solve the TCPG problem by transforming it to the optimal Steiner tree
problem on planar graphs, which is known to be NP-hard [6], and applying an
O(n log n) time (1 + ε)-approximation algorithm for the optimal Steiner tree
problem on planar graphs [5] to finish the job.

Optimal Steiner Tree Problem on a Planar Graph (OSTPG). Given an
undirected planar graph H = (VH , EH) with nonnegative edge weights and a set
T ⊆ VH of terminals, find a tree F ′ in G with the minimum total sum of edge
weights that contains all terminals of T .

The key to the transformation from TCPG to OSTPG is to make certain changes
to the graph G while preserving the planarity of the resulting graph G′ and to
specify which of the vertices in G′ are to be terminals in T for OSTPG. Clearly, T
should include all the vertices of VA. But, since TCPG requires that each vertex
of VA be connected with some vertex on the outer face of G, a feasible solution to
OSTPG needed by TCPG must include connections to some vertices of VB . To
satisfy this requirement, we add to G a new vertex v0, which is also a terminal in
T and is called a supernode, and add edges that connect v0 with all the vertices
of VB such that the weights of these added edges are all zero. To preserve the
planarity of the resulting embedded graph, v0 and its edges are all placed in the
interior of the outer face of G. Let G′ be the new graph thus obtained from G.
Figure 3 illustrates the transformation from G to G′. Clearly, G′ is planar and
has a set of terminals that includes v0. Furthermore, G′ has O(|V |) vertices and
O(|E|) = O(|V |) edges. The next lemma shows the equivalence of a solution to
TCPG on G and a corresponding solution to OSTPG on G′.

Before we proceed to the next lemma, observe that a non-optimal solution to
TCPG is a subgraph of G that may consist of one or more connected components,

Optimal Surface Flattening 243

each of which contains some vertices of VA and at least one vertex of VB and may
even contain some cycles (i.e., it may not be a tree). However, when this case
occurs, we can, easily in linear time (say, based on depth-first search), remove
any edges (but not their end vertices) from each non-tree component without
disconnecting it until the component becomes a tree. This edge-removal process
does not affect the feasibility of the resulting TCPG solution for G, and the total
sum of edge weights of the resulting TCPG solution can only decrease. Thus,
without loss of generality, we assume for the rest of this paper that any solution
to TCPG consists of l ≥ 1 connected components in G, each of which is a tree.

Lemma 3. Let G = (V, E) be an undirected, weighted embedded planar graph
representing a mesh surface S, VA ⊆ V be the subset of vertices represent-
ing the set A of points on S whose absolute Gaussian curvatures are above a
threshold value, and VB = {vb1 , . . . , vbk

} ⊆ V be the subset of vertices on the
outer face of G representing the nodes on the boundary of S. Furthermore, let
G′ = (V ∪ {v0}, E ∪ {(v0, vb1), . . . , (v0, vbk

)}), and T = VA ∪ {v0} be a set of
terminals in G′. Then a solution to TCPG on G can be obtained from a solution
to OSTPG on G′ (with the same sum of edge weights), and vice versa. Moreover,
the transformation takes O(n) time, where n = |V |.

Proof. The proof of the equivalence of the solutions to OSTPG and TCPG is
not difficult to show. Due to the space limit, the detailed proof is omitted here
and can be found in the full version of the paper. ��

Using the algorithm for OSTPG by Borradaile, Klein, and Mathieu [5], we obtain
a (1+ ε)-approximate solution to TCPG (and thus to SF) in O(2poly(1/ε)n log n)
time, for any constant ε > 0. Note that for any constant ε > 0, 2poly(1/ε) is a (pos-
sibly large) constant as well. Hence the running time of our (1+ε)-approximation
SF algorithm is O(n log n).

Theorem 4. The surface flattening problem can be solved by a (1 + ε)- approx-
imation algorithm in O(2poly(1/ε)n log n) time, for any constant ε > 0.

Proof. This follows immediately from Lemma 3 and the PTAS result in [5]. ��

For any constant ε > 0, we have obtained in O(n log n) time an approximate solu-
tion (i.e., a cutting of the surface S) whose total length is no more than 1+ε times
the total length of the optimal solution. Due to its NP-hardness, this appears to
be a theoretically “best possible” approximation solution for the SF problem.

References

1. Aono, M., Breen, D.E., Wozny, M.J.: Modeling methods for the design of 3D broad-
cloth composite parts. Computer-Aided Design 33(13), 989–1007 (2001)

2. Aona, M., Denti, P., Breen, D.E., Wozny, M.J.: Fitting a woven cloth model to a
curved surface: Dart insertion. IEEE Computer Graphics and Applications 16(5),
60–70 (1996)

244 D.Z. Chen and E. Misio�lek

3. Azariadis, P.N., Sapidis, N.S.: Planar development of free-form surfaces: Quality
evaluation and visual inspection. Computing 72(1-2), 13–27 (2004)

4. Borradaile, G., Kenyon-Mathieu, C., Klein, P.N.: A polynomial-time approxima-
tion scheme for Steiner tree in planar graphs. In: Proc. of 18th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 1285–1294 (2007)

5. Borradaile, G., Klein, P.N., Mathieu, C.: Steiner tree in planar graphs: An
O(n log n) approximation scheme with singly exponential dependence on epsilon.
In: Proc. of 10th International Workshop on Algorithms and Data Structures, pp.
276–287 (2007)

6. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete.
SIAM Journal on Applied Mathematics 32(4), 826–834 (1977)

7. Karp, R.: On the computational complexity of combinatorial problems. Networks 5,
45–68 (1975)

8. Kim, S.M., Kang, T.J.: Garment pattern generation from body scan data.
Computer-Aided Design 35(7), 611–618 (2003)

9. Kobbelt, L.P., Bischoff, S., Botsch, M., Kähler, K., Rössl, C., Schneider, R., Vor-
satz, J.: Geometric modeling based on polygonal meshes. In: Eurographics 2000
Tutorial (2000)

10. McCartney, J., Hinds, B.K., Seow, B.L.: The flattening of triangulated surfaces
incorporating darts and gussets. Computer-Aided Design 31(4), 249–260 (1999)

11. Parida, L., Mudur, S.P.: Constraint-satisfying planar development of complex sur-
faces. Computer-Aided Design 25(4), 225–232 (1993)

12. Sheffer, A.: Spanning tree seams for reducing parameterization distortion of tri-
angulated surface. In: Proc. of International Conference on Shape Modeling and
Applications, pp. 61–68 (2002)

13. Wang, C.L., Smith, S.F., Yuen, M.F.: Surface flattening based on energy model.
Computer-Aided Design 34(11), 823–833 (2002)

14. Wang, C.L., Wang, Y., Tang, K., Yuen, M.F.: Reduce the stretch in surface flat-
tening by finding cutting paths to the surface boundary. Computer-Aided De-
sign 36(8), 665–677 (2004)

Visiting a Polygon on the Optimal Way to a

Query Point�

Ramtin Khosravi1 and Mohammad Ghodsi2,3

1 School of Electrical and Computer Engineering, University of Tehran,
P.O. Box 14395-515, Tehran, Iran

2 Department of Computer Engineering, Sharif University of Technology,
P.O. Box: 11365-9517, Tehran, Iran

3 School of Computer Science, Institute for Studies in Theoretical Physics and
Mathematics,

P.O. Box: 19395-5746, Tehran, Iran
rkhosravi@ece.ut.ac.ir, ghodsi@sharif.ir

Abstract. We study a constrained version of the shortest path prob-
lem in polygonal domains, in which the path must visit a given target
polygon. We provide an efficient algorithm for this problem based on the
wavefront propagation method and also present a method to construct
a subdivision of the domain to efficiently answer queries to retrieve the
constrained shortest paths from a single-source to the query point.

1 Introduction

In this paper, we study the problem of finding a shortest path between two points
inside a polygonal domain P (a simple polygon with a number of polygonal holes
inside it) while the path is constrained to visit (i.e. has non-empty intersection
with) a given target polygon T inside the free space. We call such a path a
shortest T -visiting path. Our goal is to construct the shortest T -visiting path
map SPMT (s, P), a decomposition of the free space into a number of regions
such that the combinatorial structure of the shortest T -visiting path from the
given source point s to any point in a region is the same. This way, we will be
able to find the length of the shortest T -visiting path between s and any query
point in logarithmic time and report the actual path with an additional cost
proportional to the complexity of the path. If the number of vertices in P and
T be n and m respectively, and N = m + n, we preprocess the input (s, P, T)
in O(N log N) time to construct a subdivision of the same space, so that the
queries can be answered in O(log N) time.

Our method is based on the continuous Dijkstra paradigm to compute shortest
paths in polygonal domains [4,10]. The main idea of our algorithm is to propagate
a wavefront from s to visit T . Parts of T reached this way work as pseudo-
sources for finding shortest T -visiting paths to points of the free space. We let
those wavelets that first visit T propagate further and also propagate back a
� This work has been supported by a grant from IPM School of CS (No. CS1382-2-02).

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 245–251, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

246 R. Khosravi and M. Ghodsi

reflected version of those wavelets to cover points of the free space that shortest
T -visiting paths to them visits the boundary of T and reflect back. This idea
has been previously introduced in [7] by the authors.

A similar problem has been studied by the authors for the case of simple
polygons [8] resulting in a linear algorithm for convex target polygons, as well as
a method to construct the shortest T -visiting path map. The method presented
here can be used to solve that problem for non-convex polygons. Extending
the problem to multiple target polygons makes the problem similar to TSP with
neighborhoods [2,3] which is NP-hard. Dror et al. [1] have presented an algorithm
for the problem of finding the shortest path that visits k given convex polygons
in a pre-specified order. Also, they have shown that the problem is NP-hard for
the case of non-convex polygons.

We first introduce the concept of reflective subdivision in Sect. 2 which deter-
mines the structure of the shortest T -visiting paths without any obstacles in the
plane. Then we extend this concept to the general case of polygonal domains in
Sect. 3.

2 The Reflective Subdivision

To study the properties of the constrained shortest paths, we start by a simple
case in which there is no obstacles in the plane. We are given a (possibly non-
convex) target polygon T with m vertices and a point s outside T . We define
G(s) as the set of points where shortest T -visiting paths from s have their first
intersections with T and call it the gate of s to T , or the gate of s for short. If
T is a convex polygon, G(s) is a connected chain on the boundary of T [1]. In
general, G(s) is not connected, but since we assumed there is no obstacles in the
plane, there is at most one segment in G(s) on any edge of T (which of course
may be the entire edge).

Computing G(s) can be easily done using algorithms for computing visibility
polygon of a point in simple polygons [9,5], since if we consider T as an obstacle,
G(s) is the part of the boundary of T visible from s.

For an arbitrary point x, consider a shortest T -visiting path from s to x. If
the segment sx intersects T , this segment is the desired path. The set of such
points x makes a connected region called the pass-through region. If sx does not
intersect T , the path consists of two segments sc and cx where c is a point on
the boundary of T . We call c the contact point.

If c is an interior point of an edge e of T , the angle between sc and e is the
same as the angle between e and cx . We call the part of G(s) on the interior of
e an edge-reflector. If c is a vertex v of T , we call v a vertex-reflector. It easy to
see that a vertex in G(s) is a vertex-reflector if the angle made by the incident
edges inside T is less than π. We define the root of a reflector r as r itself if it is
a vertex-reflector, and s reflected about r if it is an edge-reflector.

Since the pass-through region can be easily computed and the corresponding
shortest T -visiting paths are straight segments, we limit our attention to its
complement, called D.

Visiting a Polygon on the Optimal Way to a Query Point 247

The reflective subdivision RS(s, T), or RS(s) for short, is the decomposition
of D into faces such that the contact point of every point in a face is the same
vertex-reflector r, or belongs to the same edge-reflector r. We call such a face a
reflective region of r (Fig. 1).

s

T

Fig. 1. The reflective subdivision RS(s, T): The shaded area is the pass-through region.
The edge-reflectors are shown in thick segments and the vertex-reflectors are shown in
black circles.

Some edges of RS(s) are from the boundary of D. Other edges separate re-
flective regions of different reflectors. In general, the edge separating two regions
of reflectors r1 and r2 with roots a and b respectively, is defined by the bisector
curve of a and b. This curve is a hyperbolic curve in general and is the locus of
points x such that w(a) + |ax| = w(b) + |bx| where w(a) is |sa| if a is a vertex-
reflector and zero if it is an edge-reflector. The following lemma establishes a
linear bound on the size of this decomposition.

Lemma 1. For a target polygon T with m vertices, the complexity of RS(s, T)
is O(m).

Proof. We prove that for a reflector r, there is at most one reflective region. First
observe that the points on a reflector r belong to its own reflective regions. Now
consider a point x in a reflective region of r and assume c is the contact point of
x. We can easily check that every point y on cx belongs to the same reflective
region.

Now consider a case in which there is a reflector r with root a that has two
reflective regions f1 and f2. Since these two regions are distinct, there exists a
ray R emanated from a in the space between f1 and f2 such that every point on
R from the intersection of R and r away from a belongs to the reflective regions
of reflectors other than r. Let x be the intersection of R and r. Then, the length

248 R. Khosravi and M. Ghodsi

of the T -visiting path between s and x through r is the same as the length of
such a path through another reflector namely r′. So, x lies on the bisector curve
of the roots of r and r′. If this curve is a straight line, part of either f1 or f2
will be in the half-plane geodetically closer to r′ which is impossible. The case
that the curve is a not a straight line and has two intersections with r is not
acceptable since part of r will reside in the reflective region of r′. So, there is
at most one face in RS(s) corresponding to a reflector r, hence the number of
faces is O(m). The vertices of this subdivision are of these kinds: vertices of T ,
endpoints of edge-reflectors, and intersections between bisectors. The number of
the first two kinds is O(m). A vertex of the third kind borders at least three
faces, hence the total number of vertices is O(m). ��

We can compute RS(s) in O(m log m) time and O(m) space using a simple sweep
process. For a point x ∈ D, define δ(s, x) to be the length of the shortest T -
visiting path from s to x. We sweep D based on the increasing value of δ. The
sweep structure is a wavefront consisting of circular arcs (wavelets) centered at
the roots of the reflectors. Initially, there will be a wavelet corresponding to each
reflector. The release time for a vertex-reflector with root a is the length of sa.
At any instant during sweep, we say two bisectors are adjacent if they bound
the same wavelet.

The only event in the sweep process occurs when the two bisectors separating
the region of r from its two adjacent regions intersect. At this time the wavelet
sweeping the region of r disappears and its two neighbors become adjacent. Since
the intersections only occur between two adjacent bisectors, when processing an
event, we can compute the times at which the newly created bisector intersects
its two adjacent bisectors. It is easy to see that processing all O(m) events can
be done in O(m log m) time and O(m) space.

3 Polygonal Domains

Let P be a polygonal domain having n vertices. A T -visiting path is a path in
the free space having non-empty intersection with the target polygon T which
we assume to have m vertices. We define the gate of s as before as the set of
points where the shortest T -visiting paths from s have their first intersections
with T . Again, G(s) consists of a number of segments on the boundary of T .

Consider a maximally connected set of points on an edge e of T such that
the last vertex on the shortest paths from s to them is the same vertex v of
P . We call such a segment an edge-reflector and define its root as v reflected
about e. Like before, a vertex of T in G(s) is called a vertex-reflector and its
root is the vertex itself. The edge-reflectors are a subset of the segments made
on the boundary of T when intersected by SPM(s, P). In general, there can be
O(mn) such segments, but the following lemma shows that only O(m + n) of
these segments are edge-reflectors.

Lemma 2. For a polygonal domain and a target polygon having n and m ver-
tices respectively, there are O(m + n) edge-reflectors.

Visiting a Polygon on the Optimal Way to a Query Point 249

Proof. Let f be a cell of SPM(s) with root r. By adding three kinds of segments,
we can decompose f into triangle-like regions (Fig. 2):

1. Segments connecting r to the intersection points between the boundaries of
T and f ,

2. segments connecting r to the vertices of f , and
3. segments each connecting r to some point on the boundary of f passing

through a vertex of T inside f .

Since f is star-shaped with kernel r, all these segments are inside f and connect
r to some point on the boundary of f . The regions obtained this way are either
triangles, or bounded by two segments incident to r and a hyperbolic curve.
Each region intersects a number of edges of T (possibly zero), but there is no
vertices of T inside a region. Thus, the intersection of a region with T makes a
number of segments with their end-points lying on the two boundary segments
incident to r. Since the segments does not intersect inside the region, they can
be ordered according to the increasing distance from r. It easy to check that
only the nearest segment to r is a part of an edge-reflector. Since the shortest
T -visiting paths to points on other segments already intersect it. Since there are
at most O(m + n) triangle-like regions in total, the number of edge-reflectors is
bounded by the same order. ��

f

r

T

Fig. 2. Proof of lemma 2: The thick segments are parts of G(s)

To compute the set of reflectors, we can use the algorithms for constructing the
shortest path map of a polygonal domain such as the algorithm of Hershberger
and Suri [4] or that of Mitchell [10]. To do this, we consider T as an obstacle
and define the polygonal domain P ′ = P − T . If we construct SPM(s, P ′), the
boundary of T is partitioned into a number of segments. Some of these segments
are edge-reflectors. Consider a segment that is made by the SPM cell with root
r. If r is a vertex of T , then the segment cannot be a part of G(s). Assuming
r is a vertex of P , we locate r in the two shortest path trees SPT(s, P) and
SPT(s, P ′). If the path from s to r is the same in both trees, considering T as
an obstacle has no effect in the shortest path to the points in the segment under
consideration, so it is an edge-reflector. So, computing the edge-reflectors can be

250 R. Khosravi and M. Ghodsi

done in O((m + n) log(m + n)) time and the same space. This computation also
produces a list of vertex reflectors.

We define the pass-through region as before. Let D be the free space with
the pass-through region removed. RS(s, T) is the partition of D into regions
according to the reflector that is first visited along shortest T -visiting paths
from s. A similar argument as the one in lemma 1 proves there are O(m) regions
in the subdivision and its complexity is O(m + n).

Computing the shortest T -visiting path map SPMT (s, P) can be done using
wavefront propagation method. This map has two parts: one corresponding to
the pass-through region, and another for D. The first part is SPM(s, P) restricted
to the pass-through region. For the second part, we have multiple sources which
are the roots of the reflectors. Each source has a specified release-time. For
vertex-reflectors, the release time is the geodesic distance from s to that vertex,
and for the edge-reflectors, it is the geodesic distance from s to the last vertex
v on the shortest paths from s to points on the edge-reflector, plus d which is
the distance from v to the reflector segment. To cover points in D, we use a
wavefront propagation algorithm to “reflect back” those parts of the original
wavefront started from s that have visited T . Note that the initial wavelets are
to be computed carefully, since some sources may lie outside D. For an edge-
reflector, if v is the last vertex on the shortest path from s to points on the
reflector, the initial wavelet is centered at the v̄ which is v reflected about the
edge-reflector, and the radius is d.

Both algorithms of [4] and [10] are capable of handling multiple source with
specified release-times. If we use the first algorithm (that of Hershberger and
Suri) which is worst-case optimal, we obtain O((m+n) log(m+n)) time and space
bounds to construct SPMT (s, P). Since computing the reflectors can be done
using the same algorithm, the order remains the same for the entire computation.
Hence we have our main result as follows.

Theorem 1. For a polygonal domain P and a target polygon T inside P with
N vertices in total, and a source point s, we can compute the shortest T -visiting
path map SPMT (s, P) in O(N log N) time and space.

4 Conclusion

We showed how one can use the wavefront propagation method to partition
the free space in a polygonal domain according to the combinatorial structure of
shortest paths from a given source point s to the points in the free space that has
non-empty intersection with a target polygon T . We showed how to compute this
subdivision having an algorithm for wavefront propagation capable of handling
multiple sources with specified release-times. The best known method so far ([4])
solves this problem in O((m + n) log(m + n)) time and space.

We leave an open problem that is whether one can use the methods based
on searching the visibility graph to find the shortest T -visiting path between
two points. This is particularly important, since the best known algorithm using
this method by Kapoor et al. [6], solves the shortest path problem in polygonal

Visiting a Polygon on the Optimal Way to a Query Point 251

domains in O(n + h2 log n) which is only linear in n, while being quadratic in
the number, h, of holes.

References

1. Dror, M., Efrat, A., Lubiw, A., Mitchell, J.S.B.: Touring a sequence of polygons.
In: Proc. 35th ACM Sympos. Theory Comput (2003)

2. Dumitrescu, A., Mitchell, J.S.B.: Approximation algorithms for TSP with neigh-
borhoods in the plane. In: Symposium on Discrete Algorithms, pp. 38–46 (2001)

3. Gudmundsson, J., Levcopoulos, C.: A Fast Approximation Algorithm for TSP
with Neighborhoods and Red-Blue Separation. In: Asano, T., Imai, H., Lee, D.T.,
Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 473–482.
Springer, Heidelberg (1999)

4. Hershberger, J., Suri, S.: An optimal algorithm for Euclidean shortest paths in the
plane. SIAM J. Comput. 28(6), 2215–2256 (1999)

5. Joe, B., Simpson, R.B.: Correction to Lee’s visibility polygon algorithm. BIT 27,
458–473 (1987)

6. Kapoor, S., Maheshwari, S.N., Mitchell, J.S.: An efficient algorithm for euclidean
shortest paths among polygonal obstacles in the plane. Discrete Comput. Geom. 18,
377–383 (1997)

7. Khosravi, R., Ghodsi, M.: Shortest paths in polygonal domains with polygon-
meet constraints. In: Proc. 19th European Workshop Comput. Geom., pp. 137–142
(2003)

8. Khosravi, R., Ghodsi, M.: Shortest paths in simple polygons with polygon-meet
constraints. Inform. Process. Lett. 91, 171–176 (2004)

9. Lee, D.T.: Visibility of a simple polygon. Comput. Vision Graph. Image Process 22,
207–221 (1983)

10. Mitchell, J.S.B.: Shortest paths among obstacles in the plane. Internat. J. Comput.
Geom. Appl. 6, 309–332 (1996)

Constraint Abstraction in Verification of

Security Protocols�

Ti Zhou1, Zhoujun Li2, Mengjun Li1, and Huowang Chen1

1 School of Computer Science,National University of Defence Technology, Changsha,
410073, China

2 School of Computer, BeiHang University, Beijing, 100083, China
lizj@buaa.edu.cn

Abstract. This paper incorporates time constraints in the Horn logic
model, and this extended model can verify Wide-Mouthed-Frog protocol
quickly. It discusses relations between the constraint system and Horn
model, abstracts the constraint system, and gives the proofs of some
propositions and theorems. We also give the algorithm about how to
compute the abstract constraint, and analyze its complexity. As a case
study we discuss the verification of Wide-Mouthed-Frog protocol whose
attack can be found quickly in new model. Therefore, the method in this
paper is very effective in verification of time sensitive security protocols.
In the future, we will use this method to verify some complex protocols,
such as Kerberos protocol etc.

Keywords: time sensitive; security protocol; logic model; formal veri-
fication; constraint system.

1 Introduction

Network security protocols are difficult to design and debug. Some attacks are
found after protocols have used many years [1]. Many flaws cannot be found
by hands. Therefore, the formal verification of security protocols is one of the
key fields of protocol design [2]. However, there is no effective method to model
and verify the validity of messages and security properties when the session key
is expired. In many cases, the analysis was carried out at the symbolic Dolev-
Yao level [3,4] which cannot verify protocols with time stamps. [5] gives a Horn
logic model with constraints to verify time sensitive protocols. The method is
easy to understand, but constraints will be too much in the process of resolu-
tion. In this paper, we will discuss how to abstract constraints and reduce the
complexity.

Many approaches focus on the study of protocols that use time stamps [6,7,8,
9,10,11,12,13]. [6] analyzes protocols with timing information based on a discrete
� Supported by the National Natural Science Foundation of China under Grant No.

60473057, 90604007, 60703075, 90718017, the National High Technology Research
and Development Program of China No. 2007AA010301, and the Research Fund for
the Doctoral Program of Higher Education No. 20070006055.

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 252–263, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Constraint Abstraction in Verification of Security Protocols 253

time model. [7] uses a model of discrete time with an upper bound on the time
window. It can identify a timed-authentication attack on Wide-Mouthed-Frog
protocol. [6, 7] have to define a finite integer set as the range of time stamps,
so time stamps are discrete, and Casper/FDR can just check a finite number of
sessions. In our method, the range of time stamps is in a continuous interval of
real number without no the upper bound, and this method can verify protocols
with an unbounded number of sessions. Last but not least, constraints assure
there is few false attacks generated by time stamps. [8] makes a semi-automated
analysis on a Timed CSP model of Wide-Mouthed-Frog protocol. It uses the
PVS proving system to discharge proof obligations to find an invariant prop-
erty. [9] presents a real-time process algebra for the analysis of time-dependent
properties. It focuses on compositional results and shows how to model timeouts.
Theory of timewise refinement [10] allows refinement to be translated between
the untimed and timed models, thus enabling verifications to be carried out
at their most appropriate level of abstraction and then combined, if necessary,
from different models. [11] proposes a method for design and analysis of secu-
rity protocols that are aware of timing issues. It models security protocols using
timed automata, and uses UPPAAL to simulate, debug and verify protocols. The
verification method in [12] is based on the combination of constraint solving tech-
niques and first-order term manipulation with Sicstus Prolog. A global clock is
assumed to verify the Wide-Mouthed-Frog protocol. [13] presents a symbolic de-
cision procedure for time sensitive cryptographic protocols with time stamps. It
uses logic formulae to describe symbolic constraints. However, it does not give
an automatic method to determine how to choose time variables to obtain an
attack.

Based on the Horn logic model, [14, 15, 16] present an effective verification
method which fits for verifying interleaving runs of the security protocol’s infinite
sessions and terminates for many security protocols. In [17, 18], an extended
Horn logic model for security protocols is proposed, and the modified-version
verification method to construct counter-examples automatically is presented.
To verify time sensitive security protocols, [5] extends this approach to verify
protocols with time stamps effectively in a continuous domain.

This paper presents that the theory of abstract constraint system. We estab-
lish some novel theorems to guarantee the correctness of the abstraction process
of constraint system. By abstracting constraint system, the verification com-
plexity is reduced. Many constraints can be deleted. The number of resolution
of logic rules will decline due to the higher abstract level. As an example, we
consider the timed version of the Wide-Mouthed-Frog protocol (WMF for short).
The verification of the abstract constraint system is effective.

The paper is organized as follows. In Section 2, we describe the protocol
model and the resolution briefly. In Section 3, we characterize constraints in
resolution and solve the abstract constraint system. Section 4 shows the result
about the verification under abstract constraint system. In Section 5, we give
the summarization and the future work.

254 T. Zhou et al.

2 Protocol Model

2.1 Protocol Preliminaries

The Wide-Mouthed-Frog protocol [1,2] is one of the classic time sensitive proto-
cols. If time sensitive security protocols can be verified, we can detect the attack
of the Wide-Mouthed-Frog protocol(WMF for short). The formal description of
WMF is given in Table 1, and its attack is described in Table 2.

Table 1. The formal description of
Wide-Mouthed-Frog protocol

A→S : A, {B, K, T1}Kas
S→B : {A, K, T2}Kbs
B→A : {Secret}K

Table 2. The attack of WMF

I(B)→S : B, {A, K, T2}Kbs
S→I(A) : {B, K, T3}Kas
I(A)→S : A, {B, K, T3}Kas
S→B : {A, K, T4}Kbs
B→I(A) : {Secret}K

Table 1 denotes a protocol in which A (Alice) sends a message A, {B, K, T1}
Kas to S (Server), and then, S sends another message {B, K, T3}Kas to B
(Bob) who then sends {Secret}K to A. We denote a mischievous principal by
I. The notation I(A) denotes that the principal I impersonates A. In the first
message of WMF, A sends to S the message whose components are a principal
identifier B together with an encrypted tuple {A, K, T2}Kbs. K is a pseudo-
random session key, T2 is a time stamp and Kbs is a shared key between B and
S. This protocol uses T1, T2 to assure that respective messages are unexpired.
However, the attacker can repeat these actions in Table 2, and then, the server S
will transmit an encrypted message with a fresh time stamp to B. For the session
key K will be revealed after a period of time, and the session between A and B
has been finished. However, when S sends the session request {A, K, T4}Kbs to
B, B misunderstands that A wants to have a new session and the session key is
K. In fact, the attacker replays this message and masquerades A to begin a new
session with B, and then, the attacker I can use the old session key K to steal
secret data which B thought to send to A.

2.2 Horn Logic Syntax

Constraint is a linear equality or inequality whose variables are used to describe
time. A logic rule is the form of F1∧· · ·∧Fn → F : C where C is constraint. New
terms are introduced for time variable, such as time stamps. The Horn logic uses
these predicates: attacker, begin, and end. attacker(M) means that the attacker
may have M . begin(M, N) means that the event begin has been executed with a
parameter corresponding to M and environment N . end(M, N) means that end
has been executed in session list N with a parameter corresponding to M . [5]
defines a global clock now which is a special place-holder, and if the constraint is
true, then the rule will ignore this constraint. In other words, H1∧· · ·∧Hn → F
means H1∧· · ·∧Hn → F : true. The clock now represents the current time. The
sender overprints time stamps referring to now. When the receiver receives this

Constraint Abstraction in Verification of Security Protocols 255

message, he will check time stamps with the current time. If time stamps have
not expired, he will believe the message is still valid. The parameters representing
network delays can be assigned in the beginning.

2.3 The Model for the Attacker

The intruder’s Dolev-Yao model [3, 4], which is very popular in analysis and
verification of security protocols, describes that the intruder can control the
network wholly in perfect encryption assumption. However, after a long time,
some low-entropy keys are easy to be vulnerable. Generally speaking, the session
key between agents is easy to be leaked by accident when they have expired. The
attack of WMF protocol belongs to this case. Therefore, the Dolev-Yao model
with constraints needs to add the rule DY4 which means session keys can be
leaked after a long time. The Dolev-Yao model is described in Horn model with
constraints as follows:
DY1 → attacker(M) : true, where M belongs to the public knowledge set S;
DY2 attacker(x1) ∧ · · · ∧ attacker(xn) → attacker(f(x1, · · · , xn)) : true,

where f is an n-ary constructor;
DY3 attacker(M1) ∧ · · · ∧ attacker(Mn) → attacker(M) : true,

where g is a destructor and there is a reduction g(M1, · · · , Mn) = M ;
DY4 → attacker(k[t]) : Δ + t ≤ now

In the rule DY4, the lifetime of the session key k is Δ, where Δ is a big time
constant which describes the safe period of session keys, and k[t] means that k
is generated at the time clock t, and session keys can only be leaked by accident
when they have expired.

2.4 The Model of the Honest Roles

Every honest role A will do some action after she receives certain messages. When
A sends a message M , a rule R will be added to the model of the honest roles.
The head of R is an atomic attacker(M). Its body can be empty or conjunction of
some predicates, such as attacker(M1)∧ · · · ∧ attacker(Mn), where M1, · · · , Mn

have been received before A sends M .
To deal with time stamps, by adding constraints to honest roles, we should

obey the following principles:

– When a rule is added into a role, it is necessary to include a time constraint
now−d ≤ T ≤ now for the message which has a time stamp T in hypothesis;

– When agent needs to send a message which contains a time stamp t to
show the current time, the generated rule needs to contain a time constraint
t = now;

– The new generated session key is represented in the form of name, and the
parameter is a time stamp when it’s generated.

Example 1 (The model of Wide-Mouthed-Frog protocol)

A:① → attacker(A) : true
② → attacker({B,K[T1], T1}Kas) : T1 = now

256 T. Zhou et al.

S:③ attacker(xA) ∧ attacker({xB,xK, xT1}Kxas) → attacker({xA,xK,T2}Kxbs) :
now − d ≤ xT1 ≤ now, T2 = now

B:④ attacker({xA,xK, xT2}Kbs) → attacker({Secret}xK) : now − d ≤ xT2 ≤ now

These rules represent actions of role Alice (marked A), Server (marked S), and
Bob (marked B) respectively. If there are facts of the body of a rule in the
network and the constraint system can be satisfiable, the corresponding role will
send the message (as the action in the head of the rule).

2.5 Resolution

Let R = H → F : C, GetRule(R) = H → F , GetCons(R) = C. Suppose that σ
is a unifier, and σ′ is the maximal sub-constraint of σ involving only time terms.
If L is a constraint or a set of constraints, σ|L is the maximal sub-constraint of
σ involving only the variables in L.

Definition 1 (Resolution). Let R1 = H11∧H12∧· · ·∧H1n → F : L1 and R2 =
H21 ∧ H22 ∧ · · · ∧H2m → C : L2 be two logic rules, H2i = attacker(Mes), H2i =
attacker(Mes′), or F = end(M, Mes), H2i = end(M, Mes′), 1 ≤ i ≤ m, such
that Mes can be unified with Mes′, and θ = mgu(Mes, Mes′) is the most general
unifier of Mes and Mes′. Let L = (L1 ∪ L2)θ′ ∪ {t1θ

′ ≤ t2θ
′|t1 = max{t|t ∈

dom(θ′|L1)}, and t2 = max{t|t ∈ dom(θ′|L2)}}, and if L is satisfiable, then
the resolution R1 • R2 between R1 and R2 is (H21 ∧ · · · ∧ H2(i−1) ∧ (H11 ∧
· · · ∧ H1n) ∧ H2(i+1) ∧ · · · ∧ H2m)θ → C2θ : ∃x1 · · ·xnL, where {x1, · · · , xn} =
fv(GetRule(R1 • R2)) we say F ′ = selectedAtom(R2) is the selected atom of
R2, and θ = sub(R1, R2) is called the substitution of the resolution R1 • R2.

Let R1 and R2 have any other variables in common. R1 provides the head of
it (it sends a message). R2 provides a fact in the body (it receives a message).
So the latest time in R1 is earlier than that in R2. Therefore, a new constraint
should be added to the final constraints to represent this relation.

3 Constraint Abstraction

We now show how to abstract the constraints in Horn logic model to reduce
the verification complexity. We will discuss constraint abstraction under the
satisfiability of constraint system, which is determined by the algorithm in [19].
This abstraction will delete time variables which cannot keep the freshness of
messages, so the number of constraints are declined.

Proposition 1. Every time variable will not be greater than the current time
now in the constraint system of a rule.

Proof. By section 2.5, the rule with constraints can be resolved with another
one, only if constraints are satisfied. In Horn logic model, the agent will not
send the head of a rule until the messages in the body of the rule are received.
This means that the sender will do some action according to history messages.

Constraint Abstraction in Verification of Security Protocols 257

So the rule represents the current action in Horn logic model with constraints,
and the current time now is greater than other time variables. Therefore, every
rule contains a constraint t ≤ now where t is a time variable in this rule. �	

Definition 2. Let S(resp. S′) be the greatest lower bound (resp. the least upper
bound) of time variable t with now and constants. We define t ∈ Q = [S, S′],
min(Q) = S, and max(Q) = S′.

Definition 3. Suppose r : C1, s : C are two logic rules. r is a left (resp. right)
resolution fixpoint on s if r : C2 = r : C1 • s : C (resp. r : C2 = s : C • r : C1).
Let t1, · · · , tn be time stamps in r, and let the range of tj be Qij ⊆ R[now] in
Ci(i = 1, 2, 1 ≤ j ≤ n).

Definition 4. Let r : C = r1 : C1 • r2 : C2. If r �= r1 and r �= r2, then C is the
initial constraint of r, otherwise, C is the fixpoint constraint of r.

Firstly, we compute r3 = r1 • r2, if r3 = r1, then the fixpoint constraint of r1 is
used to compute the constraint of r3, and if there is no fixpoint constraint of r1,
then the initial constraint of r1 is used to compute it.

In the following discussion, Q (resp. Q′) represents the range of time stamp
t before (resp. after) the left or right resolution fixpoint R. Let nowR represent
the current time now in the rule R. We use Qj to represent the range of tj .
Introducing time stamps will redefine the freshness of message.

Definition 5 (fresh). For each message M in rule R:C, the message M is weak
fresh if the constraints corresponding to var(C) ∩ var(M) are satisfiable. For
each time stamp t ∈ M , now− t ≤ Δ is also true, then the message M is fresh.

Proposition 2. Let Qi = [0,now], then ti will not be constrained.

Proof. Qi = [0,now], that means ti can be any value from the start of the
protocol to the current time. So there is no constraints which can limit the
range of ti. Therefore, ti will not be constrained. �	

In the verification of time sensitive security protocols, it is necessary to discuss
the runs when the session key is expired. Therefore, when max(Qi)−min(Qi) ≥
Δ, the protocol cannot use ti to make sure the freshness of message, that is, after
a period Δ, the attacker can make the message sent at ti valid in a finite number
of steps. By the definition of fresh, there is a value a ∈ Qi s.t. now − ti ≤ Δ
is false when ti = a, the constraints about ti will not be in use. So we gain the
following theorem.

Theorem 1 (Freshness). If the range of ti in a message M is Qi ⊇ [now −
Δ,now], then ti cannot preserve the freshness of M .

Proof. For Qi ⊇ [now − Δ,now], max(Qi) − min(Qi) ≥ Δ. There is a value
a ∈ Qi s.t. now − ti ≤ Δ is false when ti = a. By the definition of fresh, the
message M is not fresh. So ti cannot preserve the freshness of M . �	

258 T. Zhou et al.

The theorem above presents that the freshness of M is vulnerable. When there
is an attack, the time stamp ti doesn’t keep the freshness of messages, so ti is not
constrained. In verification, authentication and security are very important to
security protocols, and the freshness of message needn’t to be satisfied, though
the attack of freshness usually lead to the attack of security. Therefore, it is
necessary to abstract current constraint system.

Corollary 1. If max(Qi)−min(Qi) ≥ Δ, then the constraints containing ti can
be deleted.

Because Δ is very big(the delay in network and the lifetime of message can be
omitted according to the lifetime of session key), ti can be any value in a huge
range, that is, ti is not constrained. Note that inequality will not always be held
on if there is a variable in it, so these constraints couldn’t be deleted.

Strategy 1 (Verification Strategy). When verifying time sensitive security
protocols, these strategies are used:
(a) DY4 in the attacker model isn’t concerned, that is, verifying the

model when session keys are not expired;
(b) DY4 in the attacker model should be concerned, that is, verifying

the model when session keys are expired;

If R1 : C = R1 : C1 • R2 : C2, then R1 : C1 is used to resolve with other rules
in the step (a) but not in the step (b), and R1 : C is used in the step (b) but
not in the step (a). In fact, the step (a) describes runs when session keys are
not expired and the attack in this step is one that session key is not revealed.
The step (b) describes runs when session keys are revealed, so the changes of
time stamps caused by message exchange should be payed attention to in the
last step. For example, message is thought to be valid though it is expired. So
R1 : C is used as the result of the resolution between R1 and R2.

Definition 6 (trivial constraint). A is a trivial constraint, if A is true or
substitution.

Proposition 3. The form of Q is [now − d,now] in the step (a).

Proof. In the Horn logic model, the non-trivial constraint is added as follows:

1. There is only the last rule which will add a non-trivial constraint in attacker model.
However, this rule will not resolve in step (a), so the attacker model will not lead
to non-trivial constraints in step (a).

2. In the honest model, there are two cases which will add constraints into system:
– to overprint the time stamp T in message M, a trivial constraint T = now is
added.
– to check if the time stamp T is in the valid range [now−d,now], now−d ≤ T ≤
now is added into constraint system. So the range of T is Q = [now − d,now].

3. In resolution, the result only adds a new constraint nowR1 ≤ nowR2 where R1

provides the head. This constraint doesn’t change the upper bound of Q, and the
unification just generates some equalities, so the form of range will not be changed.

Therefore, the form of Q is [now − d,now] in the step (a). �	

Constraint Abstraction in Verification of Security Protocols 259

Proposition 4. Suppose R : C = (R1 : C1) • (R2 : C2). If nowR1 can unify
with a time stamp t2 in R2, then, in constraint system of R, the lower bounds
of time stamps from R1 will extend a same interzone.

Proof. Suppose the range of t2 is [now − d,now] in C2, then nowR2 − d′ ≤
nowR1 ≤ nowR2 . For all t1 ∈ C1 and nowR1 − d ≤ t1 ≤ nowR1 , there is
nowR2 − d′ − d ≤ nowR1 − d ≤ t1 ≤ nowR1 ≤ nowR2 , so the low bound of t1
extends d′. �	

Proposition 5. Suppose R : C = (R1 : C1) • (R2 : C2), if there is no time
variable in the variable set of unification when R1 resolves with R2, then the
constraints from R1 could be deleted from C.

Proof. Because of no unification between time stamps t1 ∈ var(R1) and t2 ∈
var(R2), time variables in R1 have no relation with ones in R2 except that
max(Q) is changed by nowR1 ≤ nowR2 . The greatest lower bound of time
variables from R1 is independent of nowR and have no influence with time
constraints from R2. Therefore, in the later rules, these constraints will always
be satisfiable. So these constraints from R1 could be deleted from the result of
resolution, and the correctness of verification will not be changed. �	

Proposition 6. Suppose R1 : C = (R1 : C1) • (R2 : C2), if there are t1 ∈
var(R1) and t2 ∈ var(R2) such that they can unify, and t1 �= nowR1 , then there
is no range contracted when R1 : C resolves with R2 : C2 in this left resolution
fixpoint.

Proof. Suppose t1, t3 ∈ R1 and nowR1 − d1 ≤ t1 ≤ nowR1 ,nowR1 − d3 ≤ t3 ≤
nowR1 , and t2 ∈ R2 such that nowR2 − d ≤ t2 ≤ nowR2 , then t1 = t2 by the
condition. The cases is discussed as follows:

(1) there is no constraint t1 − d′ ≤ t3, then nowR2 − d ≤ t2 = t1 ≤ nowR2 , so
nowR2 − d − d3 ≤ nowR1 − d3 ≤ t3 ≤ nowR2 . Therefore the range of t3 is
extended a period d.

(2) there exists t1 − d′ ≤ t3, then the range of t3 is decided by the relation
between t1 and t3 since the changes of ranges of time variables in R1 are
brought by the change of the range of t1.
nowR2 − d − d′ ≤ t1 − d′ ≤ t3, but it is unknown who is greater than
another one between d + d′ and d3. However, when the result resolves with
R2, nowR2 − d − d′ ≤ t1 − d′ ≤ t3 holds. So the range of t3 will not be
changed in this iterative left resolution fixpoint. �	

Definition 7. Suppose R1 : C = (R1 : C1) • (R2 : C2), if the range of t1 ∈
var(R1) in the process of (R1 : C) • (R2 : C2) is unchanged, then t1 is called
stable in the resolution process (R1 : C1) • (R2 : C2), else it is called unstable.

Proposition 7. If the range of t extends a length d in the resolution process with
the left(or right) resolution fixpoint R, from Q = [L,now] to Q′ = [L − d,now],
and t is unstable, then its range will extend the same length in the iterative
resolution.

260 T. Zhou et al.

Proof. We will give the proof about the left resolution fixpoint, and it is analo-
gous to prove the other one.
By the proofs of propositions 4∼6, the process in which the range of t extends to
[now − d− d′,now] from [now − d,now] is independent with the possible value
of t, and the relative positions among time variables in the constraint system of
R1 are unchanged. So the extended length will be the same in the next fixpoint
resolution. �	

No matter how time changes, the hypothesis of R1 will lead to its result validly,
that is, time stamps in R1 couldn’t keep the freshness of messages. So there is a
theorem as follows:

Theorem 2. If there is a time variable in the resolution fixpoint such that its
range is extended and it is unstable, then the freshness of message in the protocol
is flawed.

Proof. Suppose the extended length is d in the process of fixpoint resolution,
by the proposition 7, it will extend d in every iterative resolution. Since Δ is a
finite value, there is a natural number n such that n × d > Δ. After n-iteration,
Q ⊇ [now − Δ,now]. By theorem 1, t couldn’t keep the freshness of messages.

�	

Corollary 2. If there is a time stamp t whose range is extended in fixpoint
resolution, and it is unstable, then the constraints containing t can be deleted.

Suppose R : C = (R1 : C1)•(R2 : C2), and θ is the most general unification in
this resolution. By the discussion in this section, we have the following algorithm.
Suppose the range of t in C1 is [tq1, tq2], and that in C is [tp1, tp2]. Let θ be the
most general unifier of R1 and R2 and var(R1) ∩ var(R2) = ∅.

Algorithm 1. function abs const(R:C, R1 : C1, R2 : C2, θ)
(1) if var(C1) ∩ dom(θ) = ∅,
(2) then C = C2θ;
(3) else
(3.1) for all t ∈ var(R1) do
(3.1.2) if t = nowR1 ,nowR1θ = t2θ, t2 ∈ R2,nowR2 − d′ ≤ t2 ≤ nowR2 then
(3.1.3) for each time variable t ∈ var(C1) do
(3.1.3.1) let tp1 = tq1 − d′

(3.1.4) if t = t1 ∈ var(R1), t2 ∈ var(R2), t1 �= nowR1 , t1θ = t2θ, nowR2 − d ≤
t2 ≤ nowR2 then

(3.1.5) for all t3 ∈ var(R1), t3 �= t1 do
(3.1.5.1) if C1 ⇒ (t1 − d′ ≤ t3) then t3p1 = t3q1 − d.
(3.1.5.2) else t3p1 = max{nowR2 − (d + d′),nowR2 − d3}
(3.2) let R : C3 = R : C • R2 : C2

(3.3) for all t ∈ C do
(3.3.1) if the range of t in C3 �= the range of t in C then
(3.3.2) mark(t)
(3.4) C ← C without t marked by step (3.3).
(4) return R:C

Constraint Abstraction in Verification of Security Protocols 261

In step (3.3.2), mark(t) is used to mark t deleted. In this algorithm, we delete all
time variables which will not work in constraint, and extend some time variables’
ranges. The algorithm is written according to the theory in this paper, so it is
correct. Suppose n1 = |var(C1)|, n2 = |var(C2)|, n = |var(C)|. Step (1) costs
O(n1 × (n1 + n2)). Step (2) costs O(n2). Step (3.1) needs to execute n1 times,
so do step (3.1.3) and step (3.1.5). Actually, the most cost is in step (3.1.5.1).
The time cost in C1 ⇒ (t1 − d′ ≤ t3) is very high. It depends on the number
m of inequalities in C1. Step (3.2), (3.3.1), (3.3.2) and (3.4) cost O(1), so the
loop from (3.3) to (3.3.2) will cost O(n). So the worst cost in this algorithm is
O(n2

1 × f(m)), where f(m) is the size of the cost in C1 ⇒ (t1 − d′ ≤ t3).

4 Verification of WMF Protocol in Abstracted Horn
Model

The attacker can hold the session key after it is expired. Because of a decrypt
rule(destruct rule) decrypt({Secret}xK , xK) = Secret by DY3, there is a fol-
lowing attack sequence(the first column is the No. of the rule, the second is the
rule, the last notes where the rule is generated from):

No. Rule Notes

A1: attacker({xB,xK, xT1}Kxas) → attacker({xA,xK, T2}Kxbs) :
now − d ≤ xT1 < now, T2 = now ①③

A2: attacker({xB,xK, xT1}Kxas) → attacker({xA,xK, xT2}Kxbs) :
xT2 = now A1A1

A3: attacker({xB,xK, xT1}Kxas) → attacker({Secret}XK) : true A2④

A4: → attacker({Secret}K[T1]) → attacker(Secret) : true A3②

A5: attacker(K[T1]) → attacker(Secret) : true A4(1)
A6: → attacker(Secret) : now > Δ + T1 DY4A5

A2 is thought to have constraints t1 − d ≤ xT1 ≤ t1,now − d ≤ t1 ≤ now.
However, because the range of xT1 is extended and it is not stable, by corollary
2, the constraints containing xT1 can be deleted. In rule A6, the attacker gains
the secret data Secret, and the constraints system is satisfiable, so the WMF
protocol does not hold secret. The reason is that messages are fresh in any time
by exchanging messages with the attacker.

In the Horn logic model without abstract constraint, we have a flaw sequence
as follows.

(1) attacker({xB,XK, XT1}Kxas) → attacker({xA,XK, T2}Kxbs) : now − d ≤
XT1 < now, T2 = now ①③

(2) attacker({xB,XK, XT1}Kxas) → attacker({xA,XK, XT2}Kxbs) : t1 − d ≤
XT1 < t1, now − d ≤ t1 < now, XT2 = now (1)(1)

. .
(n+1) attacker({xB,XK, XT1}Kxas) → attacker({xA,XK, XT2}Kxbs) : tn − d ≤

XT1 < tn, tn−1 − d ≤ tn < tn−1, · · · , t1 − d ≤ t2 < t1, now − d ≤ t1 <
now, XT2 = now (1)(n)

262 T. Zhou et al.

This proceeding will not terminate automatically. Although the attack can be
found with the attendance of human, it is very boring to the fact that, for any D,
there exists an n(n=[D/d]) such that there is a set of the solution of constraints
in the step n+1. The constraints in this proceeding are more complex than
the abstract constraints, and the termination cannot be decided automatically.
Therefore, the verification in abstract constraint is more effective than the model
without abstract.

The verification method in [12] is based on the combination of constraint
solving technology and first order term manipulation, and it uses Sicstus Prolog
to solve constraints. This method need to compute symbolic reachability graph
whose complex is higher than ours. [20] gives the result of verifying WMF proto-
col in the method of [12]: the back research procedure terminates in 3.3s after 9
steps computing a graph with 14 nodes. In our model, by abstracting constraints
system, the verification also terminates and the number of the attack sequence
is 11. Horn logic model is very effective in verification and it needs small time to
find the result [17], so the Horn model with time constraints will be suitable for
verification of complex protocols with time stamps. Table 3 gives the compare
with related work.

Table 3. Comparison of results with related work

Verification Method Termination No. of Nodes/Rules

MSR yes 14

Horn Logic with constraint no -

Horn Logic with abstract constraint yes 11

5 Conclusion

The verification in [14, 15, 16] is very effective, and can verify infinite runs of
protocols, but it cannot verify time sensitive security protocols for there is no
time information in that model. [5] adds time constraints into Horn logic model,
but it will not terminate automatically. We research the constraint system, and
give a method of constraints abstraction. And then, the Horn logic with abstract
constraint can verify WMF protocol very quickly and effectively. In this paper, we
discuss relations between the constraint system and Horn logic model, abstract
the constraint system, and give the proofs of some propositions and theorems.
In the experiment, the attack of WMF protocol can be found in new model very
quickly. Therefore, the method in this paper is a very effective one in verification
of time sensitive security protocols.

[18] gives an automatic verification tool SPVT on Horn model which can
verify security protocols and construct counter-examples very effective. The fu-
ture work is to modify the tool SPVT with the method in this paper to verify
time sensitive security protocols and construct counter-examples automatically.
Complex protocols will be verified by this tool.

Constraint Abstraction in Verification of Security Protocols 263

References

1. Anderson, R.J., Needham, R.M.: Programming Satan’s computer. In: van Leeuwen,
J. (ed.) Computer Science Today. LNCS, vol. 1000, pp. 426–440. Springer, Heidel-
berg (1995)

2. Clark, J.A., Jacob, J.L.: A survey of authentication protocol literature. Technical
Report 1.0 (1997)

3. Dolev, D., Yao, A.C.: On the security of public key protocols. Technical report,
Stanford, CA, USA (1981)

4. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions on
Information Theory 29(2), 198–208 (1983)

5. Zhou, T., Li, M., Li, Z., Chen, H.: Verification of time sensitive security protocols
based on the extended Horn logic model. Chinese Journal of Computer Research
and Development 43(suppl.2), 534–540 (2006)

6. Lowe, G.: Casper: A compiler for the analysis of security protocols. In: 10th IEEE
Computer Security Foundations Workshop (CSFW-10), pp. 18–30 (1997)

7. Lowe, G.: A hierarchy of authentication specifications. In: 10th IEEE Computer
Security Foundations Workshop (CSFW-10), pp. 31–44 (1997)

8. Evans, N., Schneider, S.: Analysing time dependent security properties in CSP
using PVS. In: ESORICS, pp. 222–237 (2000)

9. Gorrieri, R., Locatelli, E., Martinelli, F.: A Simple Language for Real-Time Cryp-
tographic Protocol Analysis. In: Degano, P. (ed.) ESOP 2003 and ETAPS 2003.
LNCS, vol. 2618, pp. 114–128. Springer, Heidelberg (2003)

10. Gorrieri, R., Martinelli, F.: A simple framework for real-time cryptographic proto-
col analysis with compositional proof rules. Sci. Comput. Program. 50(1-3), 23–49
(2004)

11. Corin, R., Etalle, S., Hartel, P.H., Mader, A.: Timed model checking of security
protocols. In: FMSE 2004: Proceedings of the 2004 ACM workshop on Formal
methods in security engineering, pp. 23–32. ACM Press, New York (2004)

12. Delzanno, G., Ganty, P.: Automatic Verification of Time Sensitive Cryptographic
Protocols. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
342–356. Springer, Heidelberg (2004)

13. Bozga, L., Ene, C., Lakhnech, Y.: A Symbolic Decision Procedure for Crypto-
graphic Protocols with Time Stamps. In: Gardner, P., Yoshida, N. (eds.) CONCUR
2004. LNCS, vol. 3170, pp. 177–192. Springer, Heidelberg (2004)

14. Abadi, M., Blanchet, B.: Analyzing security protocols with secrecy types and logic
programs. In: SymposiumonPrinciples ofProgrammingLanguages, pp. 33–44 (2002)

15. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
14th IEEE Computer Security Foundations Workshop (CSFW-14), pp. 82–96 (2001)

16. Blanchet, B.: From Secrecy to Authenticity in Security Protocols. In:
Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 342–359.
Springer, Heidelberg (2002)

17. Li, M., Li, Z., Chen, H.: Security protocol’s extended Horn logic model and its
verification method. Chinese Journal of Computers 29(9), 1667–1678 (2006)

18. Li, M., Li, Z., Chen, H.: Spvt: An efficient verification tool for security protocol.
Chinese Journal of Software 17(4), 898–906 (2006)

19. Li, Z., Zhou, T., Li, M., Chen, H.: Constraints Solution for Time Sensitive Security
Protocols. In: Preparata, F.P., Fang, Q. (eds.) FAW 2007. LNCS, vol. 4613, pp.
191–203. Springer, Heidelberg (2007)

20. Delzanno, G.: Automatic of secrecy and authentication in unbound models of cryp-
tographic protocols with fresh nonce generation and time-stamps(draft) (2003)

Fast Convergence of Variable-Structure

Congestion Control Protocol
with Explicit Precise Feedback

Huixiang Zhang, Guanzhong Dai, Lei Yao, and Hairui Zhou

College of Automatic, Northwestern Polytechnical University, Xi’an, China
hxiang.zhang@gmail.com

Abstract. Traditional TCP has significant limitations such as unclear
congestion implication, low utilization in high bandwidth delay product
networks, unstable throughput and limited fairness. In order to overcome
such limitations, research on design and development of more effective
congestion control algorithms, especially in the high bandwidth delay
product networks, is very active. Variable-structure congestion Control
Protocol (VCP) uses two ECN bits to deliver the bottleneck link utiliza-
tion region to end systems, and achieves high utilization, low persistent
queue length, negligible packet loss rate and reasonable fairness. Owing
to the utilization of large multiplicative decrease factor, VCP flows need
very long time to finish fairness convergence. To address this problem,
a new method called VCP-Fast Convergence (VCP-FC) is proposed in
this paper. VCP-FC uses more bits to deliver precise network load factor
back to end systems. The end system calculates the fairness bandwidth
based on the variance rates of the load factor and throughput, and then
quickly adjusts the congestion window to approach the fairness band-
width. VCP-FC shortens the fairness convergence time effectively, and
meanwhile improves the efficiency and fairness of VCP. At last, the per-
formance of VCP-FC is evaluated using ns2 simulations.

1 Introduction

It is well-known that the Addictive Increase Multiplicative Decrease (AIMD)[1]
congestion control algorithm employed by traditional TCP[2] doesn’t perform
well in high bandwidth delay networks. The research on design and development
of more effective congestion control algorithms, especially in the high band-
width delay product networks, is very active. One direction is pure end-to-end
improvement, such as High-speed TCP[3], LTCP[4], Fast TCP[5] and Scalable
TCP[6]. These algorithms increase congestion window aggressively and decrease
conservatively to improve the network utilization. Another approach is to utilize
explicit feedback from internet routers, such as VCP[7],RCP[8],ACP[9],XCP[10].
These algorithms redesign the internet to achieve high utilization, low persistent
queue length, negligible packet loss rate and max-min fairness.

Among the algorithms utilizing explicit feedback, Variable-structure conges-
tion Control Protocol (VCP) is a simple and low complexity protocol that mod-
ifies mainly in end systems and deploys easier than XCP. VCP is able to achieve

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 264–275, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Fast Convergence of Variable-Structure Congestion Control Protocol 265

comparable performance to XCP but converges significantly slower to the fair
bandwidth than XCP. When a new flow joins the network of high utilization,
the existing flows can’t decrease occupied bandwidth fast owing to VCP large
MD factor β (0.875), the new flow converges to the fair allocation very slowly.

There are several relative researches on improving convergence speed to fair-
ness in the literature. [11] improves the convergence speed of High-Speed TCP
to the fair bandwidth. The proposed mechanism checks the congestion window
size just before a loss event. If the size continuously declines, the window is as-
sessed to be on a downward trend. Once the difference between the maximum
and minimum values of the checked size during the current downward trend ex-
ceeds a threshold, the congestion window decrease parameter is set larger than
usual. Thus, flows with a larger window size than fair can decrease their window
more aggressively to improve the convergence times. But the condition described
above is an very special case in the fast changing network environment, so the
mechanism isn’t an general solution. [12] presented a congestion control algo-
rithm based on the traditional TCP. The algorithm explicitly calculates the fair
share and converges to it in two congestion cycles in a distributed fashion. But
owing to the limitation of TCP, only synchronous flows is analyzed in [12].

To improve VCP convergence speed to fairness, a new method called VCP-
Fast Convergence (VCP-FC) is proposed in this paper. VCP-FC use more bits
to deliver precise network load factor back to end systems. End systems estimate
the fair bandwidth based on the variance rates of the load factor and throughput.
If current bandwidth deviates from the fair bandwidth, the flow rapidly adjusts
its congestion window to the fair bandwidth, which improves the convergence
speed to fairness. If current bandwidth approaches the fair bandwidth, the flow
apply lager MD factor (0.9) than VCP so as to smooth the flow’s throughput
and meanwhile improves the network utilization. The additional benefit of using
precise feedback is to improve VCP convergence speed to efficiency in MI stage.

The rest of the paper is organized as follows: Section 2 briefly reviews VCP and
analysis its convergence behaviors. Section 3 elaborates VCP-FC. Section 4 uses
ns2 simulations to evaluate the performance of VCP-FC. Finally, conclusions
and future works are provided in Section 5.

2 Variable-Structure Congestion Control Protocol (VCP)

The VCP router calculates the load factor ρ periodically:

ρ =
λ + κq

γCtρ
(1)

Here tρ is the calculation interval. Owing to 75% ∼ 90% of flows have RTTs less
than 200 ms [13], VCP set tρ=200 ms. λ is the amount of input traffic during
the last interval tρ. q is the persistent queue length during the last interval tρ.
κ controls how fast the persistent queue drains and set κ = 0.5. γ is the target
utilization and set γ = 0.98. C is the link bandwidth.

266 H. Zhang et al.

In every interval tρ, the link utilization is classified into three regions based
on the load factor ρ. If 0≤ρ < 80%, the link utilization is classified as low-load
region; if 80≤ρ < 100%, the link utilization is classified as high-load region, if
ρ≥100%, the link utilization is classified as overload region. VCP routers encode
the utilization regions into two ECN bits in the IP header of each data packet.
This information is then sent back by the receiver to the sender via ACK packets.
Depending on the utilization regions, the sender applies different congestion
response. If in low-load region, the sender increases its sending rate using MI to
improve the link utilization quickly; if in high-load region, the sender increases its
sending rate using AI to improve the link utilization slowly; if in overload region,
the sender decreases its sending rate using MD immediately. The respective
response functions are as follows:

MI : cwnd(t + rtt) = cwnd(t) × (1 + ε) (2)

AI : cwnd(t + rtt) = cwnd(t) + α (3)

MD : cwnd(t + rtt) = cwnd(t) × β (4)

Where ε = 0.0625, α = 1, β = 0.875 . To offset the impact of the RTT het-
erogeneity, VCP scales ε and α using equation (5)(6) respectively according to
their RTTs. And further, in order to allocate the bandwidth in fairness, VCP
uses equation (7) adding an additional scaling factor to the AI algorithm:

εs = (1 + ε)
rtt
tρ − 1 (5)

αs = α
rtt

tρ
(6)

αrate = αs
rtt

tρ
= α(

rtt

tρ
)2 (7)

The behavior of VCP convergence could be divided into two stages. Stage one
is convergence to efficiency. VCP flows quickly take the available bandwidth using
MI. The link utilization ramps up to 80% quickly, which shows VCP has high
efficiency. Stage two is convergence to fairness. VCP flows achieve to the fair
bandwidth using AIMD. VCP doesn’t guarantee fairness in stage one. Owing
to the scaling of αs, the same time started flows but of different RTTs will
converge to the same congestion window in stage one, which also means that
flows converge to unfair bandwidth. Only in stage two these flows of different
sending rate converge to fairness. Owing to the scaling of αs, flows of different
RTTs increase their congestion window equally every tρ interval. Owing to the
scaling of αrate, flows of different RTTs increase their bandwidth equally every
tρ interval. To prevent the system from oscillating between MI and MD, VCP set
the MD factor β = 0.875. As only the MD function can affect the convergence
time to fairness, the choice of 0.875 is the root cause of slow convergence to
fairness.

The behavior that VCP flows converge to fairness slowly manifest in two
aspects. Firstly, the same time started flows but of different RTTs need long

Fast Convergence of Variable-Structure Congestion Control Protocol 267

time to converge to the fairness bandwidth. Figure 1 shows the convergence
of congestion window of two VCP flows with different RTTs (20 ms and 100
ms respectively). Two flows start to send packets at t = 0. The bottleneck
bandwidth is 100Mbps. In stage one, i.e. convergence to efficiency, two flows
converge to the identical congestion window value. Then the flows converge to
the fairness bandwidth using AIMD in stage two. The total convergence time is
about 300 seconds. Secondly, when the link utilization is in high-load region, i.e.
the load factor is between 80% and 100%, one new flow joins and starts sending
packets; the new flow needs long time to converge to the fairness bandwidth.
As shown in Fig.2, one flow starts firstly and achieves the stable state, then the
other new flow starts to send packets at t = 100s. The two flows have identical
RTT of 80 ms. The bottleneck bandwidth is 100Mbps. The new flow needs about
300 seconds to converge to the fairness bandwidth.

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250 300

cw
nd

 [p
ac

ke
ts

]

Time [sec]

Flow 1 (rtt = 20ms)
Flow 2 (rtt = 100ms)

Fig. 1. Two VCP flows of different RTTs start simultaneously

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300 350 400

cw
nd

 [p
ac

ke
ts

]

Time [sec]

Flow 1
Flow 2

Fig. 2. Two VCP flows of identical RTTs start sequentially

3 VCP Fast Convergence (VCP-FC)

VCP-FC keeps the algorithms of VCP router unchanged and just uses ten bits to
deliver the load factor back to end systems. The load factor ρ is represented using
ten bits, that is to say the quantized load factor has the precision of 0.001. With

268 H. Zhang et al.

the quantized load factor, end systems can improve the convergence speed to
efficiency and fairness. The following subsections will describe them separately.

3.1 Convergence to Efficiency

In the stage of convergence to efficiency, 0 ≤ ρ < 80%. Using the precise load
factor, VCP-FC can adjust the congestion window more quickly and accurately.
VCP-FC substitutes the VCP MI response function with equation (8):

cwnd(t + rtt) = cwnd(t) + μ(1 − ρ(t))cwnd(t) (8)

Where ρ(t) is the load factor at time of t. μ controls how fast the convergence
to efficiency; in order to guarantee the robustness, we choose μ = 0.5. VCP-FC
scales ρ(t) as VCP does in equation (5) and just replaces ε with ρ(t). At the
end of convergence to efficiency, simultaneously started flows can reach the same
value of congestion window. Using the new MI response function, the convergence
speed to efficiency is improved effectively.

Suppose there is a single bottleneck with bandwidth of C shared by multiple
flows. The flows start to send packets simultaneously. Assuming the flows have
identical RTTs and start from the unit aggregate rates r(0)=1. The flows con-
verge to efficiency using MI. For VCP flows, [7] proofs that the aggregate rate
after n rounds of MI is r(n) = r(0)(1+ ε)n, where ε = 0.0625; then at the end of
convergence to efficiency, VCP flows need log(0.8C)

log(1+ε) rounds of MI. For VCP-FC
flows, the aggregate rate after n rounds of MI is r(n) = r(0)

∏n
i=1(1 + μ(1 − ρi)),

where 0 ≤ ρi < 0.8 and μ = 0.5, so μ(1 − ρi) > 0.1 > ε. Apparently the number
of MI rounds VCP-FC flows needed is less than log(0.8C)

log(1+0.1) . Compared with VCP
flows, VCP-FC flows converge to efficiency faster than VCP flows.

3.2 Convergence to Fairness

In the stage of convergence to fairness, ρ ≥ 80%. VCP flows converge to fairness
using AIMD. Additive increase doesn’t affect the fairness among flows. The
convergence speed to fairness is determined by the MD factor, i.e. β. The smaller
the MD factor, the faster approaching the fairness; but the oscillation is higher
too. To prevent the system oscillation between MI and MD, VCP set β = 0.875.
To decrease the MD factor to improve the convergence speed to fairness isn’t a
good solution.

VCP-FC delivers the load factor back to end systems. Thus, the fairness
bandwidth is able to estimate using the variance rates of the load factor and
throughput in end systems. Suppose there is a single bottleneck with bandwidth
of C shared by multiple flows. Consider an situation which there are N flows
existing and no flows join or leave during a period of ΔT . In the stage of conver-
gence to fairness, all flows update their congestion window using AIMD. When
the bottleneck link is in high-load region, the aggregate incremental amount of
bandwidth during ΔT is :

∑n
i (ri(t+ΔT)−ri(t)). Owing to additive increase, all

flows increase their bandwidth by the same amount, denote as Δr, so we have:

Fast Convergence of Variable-Structure Congestion Control Protocol 269

n∑

i

(ri(t + ΔT) − ri(t)) = NΔr (9)

Assuming ΔT > tρ, the incremental amount of the bottleneck utilization is
Δu = u(t + ΔT) − u(t), we have:

Δu =
∑n

i (ri(t + ΔT) − ri(t))
C

=
NΔr

C
(10)

Thus, We can calculate the fairness bandwidth F as follow:

F =
C

N
=

Δr

Δu
(11)

And further we can obtain the fairness congestion window W as follow:

W = F•rtt =
Δw

Δu
(12)

The VCP is able to achieve very low persistent queue length, thus the change of
utilization Δu is approximately substituted with the change of load factor Δρ
in end systems.

Suppose the network reaches congestion at some point, due to addictive in-
crease. Then all flows will decrease their bandwidth multiplicative, and then
resume addictive increase until the network congests again. We choose the inter-
val between sequent congestion points as ΔT to estimate the fairness bandwidth
more accurately. Figure 3 elaborates this interval. There are m > 1 rounds of
AI and one round of MD in every ΔT interval. The bottleneck utilization is
changing every tρ interval. Thus, in each ΔT interval we can obtain n pairs of
value denote as (ui, wi), where ui represent the load factor every tρ interval;
wi represent the value of congestion window when ui is feed back to the end
system. At the time of T + ΔT , end systems calculate the fairness bandwidth
using equation (13). End systems take (un, wn) as the base value and calculate
n-1 values of the fairness congestion window. Then end systems calculate the
average of these values, so we obtain the fairness congestion window Wf in this
ΔT interval:

Wf =
1

n − 1

n−1∑

i=1

wn − wi

un − ui
(13)

The end systems estimate one new Wf every ΔT interval, then smooth the
value as follow:

W f
e = (1 − θ)last W f

e + θWf (14)

In order to track the quickly changed network environment we choose larger
value of θ and set θ = 0.4.

End systems compare current congestion window with W f
e , if |cwnd−W f

e | <
ηW f

e , where η = 0.1, that means the two variable is approximately equally,
flows approach the fairness approximately. Then we can use larger MD factor to

270 H. Zhang et al.

smooth the flow throughput and set β = 0.9; otherwise we use following equation
to update the congestion window:

cwndnew = (1 − ω)cwnd + ωW f
e (15)

where ω = 0.2. In some situation, we can’t obtain enough samples, if n < 5,
VCP-FC set β = 0.875 as original VCP.

Fig. 3. Interval of ΔT

4 Simulations and Results

We incorporated our algorithm into VCP and validated its performance on NS-
2[14]. The performance of VCP-FC is compare with VCP and XCP. We use
the single congested link topology shown in Fig.4, where Si is sending packets
to Di. We evaluate the convergence time to efficiency firstly, and then evaluate
the convergence time to fairness when varied fairness bandwidth and round-
trip times separately. At last, we study the performance of VCP-FC in an RTT
heterogeneity environment and in an dynamic environment. We use FTP as the
application layer data generator in all simulations. The data packet size is set
to 1KBytes. The parameters of VCP and XCP is set according to the authors’
recommendations in [7] and [10] separately.

Simulation results for convergence to efficiency: The bottleneck band-
width varies from 2Mbps to 1Gbps. Only a single flow starts to send packets at
t = 0, and its RTT=80 ms. The convergence time to efficiency is defined as how
much time needed the bottleneck utilization reaches 80%. The result is show
in Fig.5, and the x-axis is in logarithmic scale. From Fig.5, XCP converges to
efficiency fastest. The convergence time to efficiency of VCP-FC is shorter than
VCP regardless of the bandwidth. When the bandwidth varied from 2Mbps to
1Gbps, the convergence time to efficiency of VCP-FC increases slower than VCP.
The result shows the VCP-FC flows converge faster to efficiency than VCP.

Simulation results for converge to fairness with varied fairness band-
width: One flow starts to send packets at t = 0 and reaches the stable situa-
tion. Then the other flow starts to send packets. Two flows have identical RTT

Fast Convergence of Variable-Structure Congestion Control Protocol 271

Fig. 4. A single bottleneck topology

 0

 5

 10

 15

 20

 25

 30

 2 4 8 16 32 64 128 256 512 1024

T
im

e
[s

ec
]

Bandwidth [Mbps]

convergence time to 80% utilization

VCP
XCP

VCP-FC

Fig. 5. Convergence time to efficiency versus bandwidth

of 80ms. The bottleneck bandwidth varies from 2Mbps to 1Gbps, which means
the fairness bandwidth varies from 1Mbps to 512Mbps. The convergence time to
fairness of the second flow is measured using the metric of δ − fair convergence
time proposed in [15]. The metric is defined as the time taken for the second
flow converges to 1−δ

2 of the link bandwidth. Here we set δ = 0.1. As shown
in Fig.6, XCP converges to the fairness bandwidth very fast and hardly affect
by the fairness bandwidth. And the convergence time to fairness of VCP-FC is
almost the same as VCP when the fairness bandwidth is less than 2Mbps. When
the bandwidth increased, the increment of convergence time of VCP-FC is much
less than VCP. The result shows VCP-FC significantly improve the convergence
speed to fairness in high bandwidth environment, but still consume more time
than XCP.

Simulation results for converge to fairness with varied RTT: The bot-
tleneck bandwidth is fixed at 45Mbps. One flow starts to send packets at t = 0
and reaches the stable situation. Then the other flow starts to send packets. The
RTT of the two flows is varied from 20ms to 200ms. The convergence time to
fairness of the second flow is measured using δ − fair convergence time as the
preceding simulation. As shown in Fig.7, the impact of RTT is rather slight to
convergence time of VCP-FC, VCP and XCP. As the RTT grows, the conver-
gence time increases very slowly. The convergence time of VCP-FC is smaller
than VCP regardless of RTT, and XCP converges fastest to fairness.

272 H. Zhang et al.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 2 4 8 16 32 64 128 256 512 1024

T
im

e
[s

ec
]

Bandwidth [Mbps]

0.1-fair convergence time

VCP
XCP

VCP-FC

Fig. 6. Convergence time to fairness versus bandwidth

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 20 40 60 80 100 120 140 160 180 200

T
im

e
[s

ec
]

RTT [ms]

0.1-fair convergence time

VCP
XCP

VCP-FC

Fig. 7. Convergence time to fairness versus RTT

Simulation results for RTT heterogeneity environment: VCP flows can
achieve max-min fairness in some extent. VCP-FC preserves the good property
of VCP. We have 20 flows sharing the bottleneck link, and the bottleneck band-
width is fixed at 200Mbps. We perform four sets of simulations: (a) the same
RTT of 20ms; (b) small RTT difference from 20ms to 96ms; (c) large RTT dif-
ference from 20ms to 153ms; (d) huge RTT difference from 20ms to 229ms. We
measured flows throughput in equilibrium. As shown in Fig.8, VCP-FC is able
to allocate bandwidth fairly among competing flows, as long as their RTTs are
not significantly different. With the RTT heterogeneity increases, the fairness of
VCP-FC is degrade.

Simulation results for dynamic environment: In an dynamic environment,
flows usually join or leave the network in an unpredictable manner. When flows
leave, the available bandwidth is increased. VCP is able to take the available
bandwidth by MI action quickly, and so does VCP-FC. when flows join, the
contention of flows become intensive. The existing flows should decrease their
bandwidth to make room for new flows. Here we focus on the effect of increased
contention. We have 10 flows sharing a 400Mbps bottleneck. At t=60s, 110s,
160s, there are 10 flows join the network respectively. All flows have identical
RTT of 80ms. The simulation last for 210s. Thus, the duration is divided into

Fast Convergence of Variable-Structure Congestion Control Protocol 273

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

tp
ut

 [M
bp

s]

Flow ID

Flow Throughtput

RTT (20ms)
RTT (20-96ms)

RTT (20-153ms)
RTT (20-229ms)

Fig. 8. Flow throughput in an RTT heterogeneity environment

four parts, which is 0-60s, 60-110s, 110-160s, 160-210s. We measured the effi-
ciency and fairness in each part. The efficiency is measured using the goodput
which is the bytes received in receivers. The fairness is measured using Fair-
ness Index presented in [16]: F (x) = (

∑
xi)2/n(

∑
xi

2), where xi is the goodput
achieved by each flow. As show in Fig.9, XCP outperforms VCP and VCP-FC
both in efficiency and fairness when graduated contention increased. In the first
part of the duration, the efficiency of VCP-FC is much better than VCP, which
also means VCP-FC converge to efficiency faster than VCP. In all parts of the
duration, VCP-FC outperforms VCP in efficiency and fairness.

 2000

 2200

 2400

 2600

 2800

 3000

10 20 30 40

B
yt

es
 R

ec
ei

ve
d

[M
B

yt
es

]

Number of Flows

VCP
VCP-FC

XCP

(a) Efficiency

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

10 20 30 40

F
ai

rn
es

s
In

de
x

Number of Flows

VCP
VCP-FC

XCP

(b) Fairness

Fig. 9. Performance for graduated contention increase

5 Conclusion

This paper has proposed a new mechanism called VCP-FC for improving the
convergence speed of VCP to efficiency and fairness. VCP-FC uses ten bits to
deliver the load factor back to end systems. With the support from routers,
VCP-FC can estimate the fairness bandwidth every congestion cycle. Simulation

274 H. Zhang et al.

results show that VCP-FC is valid in stationary and dynamic environment, and
also effective in the RTT heterogeneity environment.

VCP-FC improves the efficiency and fairness of VCP effectively, but still not
as good as XCP. The weak point of VCP-FC manifest mainly in two aspects.
Firstly, the convergence time to fairness is affected by the fairness bandwidth,
which is determined by the AIMD algorithms employed by VCP-FC. Secondly,
the router calculates the load factor every tρ interval (tρ = 200ms). If the RTT
of flows is beyond 200ms, the fairness of VCP and VCP-FC becomes worse. In
such large RTT variance environment, the validity of VCP-FC needs further
research.

References

1. Chiu, D., Jain, R.: Analysis of the increase and decrease algorithms for congestion
avoidance in computer networks. Computer Networks and ISDN Systems 17(1),
1–14 (1989)

2. Jacobson, V.: Congestion Avoidance and Control. ACM SIGCOMM Computer
Communication Review 25(1), 157–187 (1995)

3. Floyd, S.: RFC3649: HighSpeed TCP for Large Congestion Windows. Internet
RFCs (2003)

4. Bhandarkar, S., Jain, S., Reddy, A.: Improving TCP Performance in High Band-
width High RTT Links Using Layered Congestion Control. In: The 3rd Interna-
tional Workshop on Protocols for FAST Long-Distance Networks (2005)

5. Wei, D., Jin, C., Low, S., Hegde, S.: FAST TCP: Motivation, Architecture, Algo-
rithms, Performance. IEEE/ACM Trans. Networking 16(6), 1246–1259 (2006)

6. Kelly, T.: Scalable TCP: Improving Performance in Highspeed Wide Area Net-
works. ACM SIGCOMM Computer Communication Review 32(2), 83–91 (2003)

7. Xia, Y., Subramanian, L., Stoica, I., Kalyanaraman, S.: One More Bit Is Enough.
In: The 2005 conference on Applications, technologies, architectures, and protocols
for computer communications, pp. 37–48. ACM Press, New York (2005)

8. Dukkipati, N., Kobayashi, M., Rui, Z., McKeown, N.: Processor Sharing Flows
in the Internet. In: The 13th International Workshop on Quality of service, pp.
286–297. Springer, Berlin (2005)

9. Lestas, M., Pitsillides, A., Ioannou, P., Hadjipollas, G.: Adaptive congestion pro-
tocol: A congestion control protocol with learning capability. Computer Net-
works 51(13), 3773–3798 (2007)

10. Katabi, D., Handley, M., Rohrs, C.: Congestion Control for High Bandwidth-Delay
Product Networks. In: The 2002 conference on Applications, technologies, architec-
tures, and protocols for computer communications, pp. 89–102. ACM Press, New
York (2002)

11. Nabeshima, M., Yata, K.: Improving the convergence time of highspeed TCP. In:
The 12th IEEE International Conference on Networks, pp. 19–23. IEEE press, New
York (2004)

12. Attie, P., Lahanas, A., Tsaoussidis, V.: Beyond AIMD: Explicit Fair-share Calcu-
lation. In: The 8th IEEE International Symposium on Computers and Communi-
cations, pp. 727–734. IEEE press, Washington (2003)

13. Jiang, H., Dovrolis, C.: Passive Estimation of TCP Round-Trip Times. ACM Com-
puter Communications Review 32(3), 75–88 (2002)

Fast Convergence of Variable-Structure Congestion Control Protocol 275

14. The network simulator ns-2.30, http://www.isi.edu/nsnam/ns
15. Bansal, D., Balakrishnan, H., Floyd, S., Shenker, S.: Dynamic Behavior of Slowly-

Responsive Congestion Control Algorithms. In: The 2001 conference on Applica-
tions, technologies, architectures, and protocols for computer communications, pp.
263–274. ACM Press, New York (2001)

16. Jain, R., Chiu, D., Hawe, W.: A Quantitative Measure Of Fairness And Discrimina-
tion For Resource Allocation In Shared Systems. Technical Report TR-301, Digital
Equipment Corporation (1984)

http://www.isi.edu/nsnam/ns

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 276–287, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Applying a New Grid-Based Elitist-Reserving
Strategy to EMO Archive Algorithms

Jiongliang Xie, Jinhua Zheng∗, Biao Luo, and Miqing Li

Institute of Information Engineering, Xiangtan University,
Xiangtan, Hunan, China 411105

bright1228@sohu.com, jhzheng@xtu.edu.cn
biao.Luo@Hotmail.Com, limit1008@126.Com

Abstract. Grid-based measure is an often-used strategy by some MOEAs to
maintain the diversity of the solution sets. The well known ε-MOEA, based on
the ε-dominance concept, is essentially based on grid-strategy too. Though of-
ten gaining an appropriate tradeoff between the aspects of the performance, the
ε-MOEA has its inherent vice and behaves unacceptably sometimes. That is,
when the PFtrue’s slope to one dimension changes a lot along the coordinate, the
algorithm loses many extreme or representative individuals, that has obvious in-
fluence on the diversity of the solution sets. In order to solve this problem, a
new δ-dominance concept and the suppositional optimum point concept are de-
fined. Then we proposed a new grid-based elitist-reserving strategy and applied
it in an EMO archive algorithm (δ-MOEA). The experimental results illustrated
δ-MOEA’s good performance, which is much better especially for the diversity
than NSGA-II and ε-MOEA.

Keywords: Grid, Archive set, ε-dominance, δ-dominance, suppositional opti-
mum point, Grid-based Elitist-reserving Strategy, δ-MOEA.

1 Introduction

MOEAs(Multi-Objective Evolutionary Algorithms) have the ability to detect interest-
ing solution candidates for multi-objective optimization problems[1][2], that enables
the decision maker to filter efficient solutions and to discover trade-offs between
opposing objectives among these solutions.

In practice, the decision maker wishes to evaluate only a limited number of Pareto-
optimal solutions. This is due to the limited amount of time for examining the appli-
cability of the solutions to be realized in practice. Hence, how to gain a solution set
with good distribution is an important pursuing goal for the MOEA designers. Typi-
cally the satisfying solution set should include extreme individuals as well as the ones
that are located in important parts of the solution space, where balanced trade-offs can
be found.

More than several methods based on grid or hyper-volume measure are used by
MOEAs as selection strategy to maintain diversity[3]. The well-known ε-MOEA[5]

∗ Corresponding author.

 Applying a New Grid-Based Elitist-Reserving Strategy to EMO Archive Algorithms 277

proposed by Deb et is essentially based on the grid measure too. When deciding
whether a new generated individual to be reserved in the archive or not, ε-MOEA
doesn’t employ the general Pareto domination concept[6] but uses the ε- dominance
concept instead. Because of the weaker domination relationship than the generally
used one, ε-dominance may make the domination relationship between two individu-
als come into being, though they have no similar relation according to the Pareto
domination concept. Furthermore, ε-MOEA just allows only one individual occupy-
ing each grid, hence the algorithm converges quickly and the archive set has good
diversity. However, the ε-dominance has its inherent vice that when the true PF of the
problem has quite discrepant value of slope in different portion of one dimension,
some extreme or important representative individuals are lost. Though one can relieve
this losing-phenomenon by adjusting the value of ε, the region used to having moder-
ate number of solutions may contain too many individuals, so it can’t solve this matter
fundamentally.

In order to solve this problem, we defined a new δ-dominance concept, which kept
the merit of ε-dominance down but avoided the important individual losing-
phenomenon. Then we applied it in the elitist-reserving strategy to update the archive
set, which made the new algorithm (δ-MOEA) gain solution sets with better diversity
than that by other ones(ε-MOEA and NSGA-II).

The rest of this paper is organized as follows. Section 2 briefly introduces some re-
lating definitions of multi-objective optimization problem. Section 3 explicates the ε-
domination and ε-MOEA. Section 4 presents the proposed δ-dominance concept, the
new elitist-reserving strategy and δ-MOEA. Section 5 shows experiment results and
discussions. Finally, Section 6 concludes with a summary of the paper.

2 Basic Concepts

Definition 1 (Multi-objective Optimization Problem(MOP)). A general MOP is de-
scribed as following:

Min
1 2() ((), (), , ())rf X f X f X f X= (1)

() 0;(1,2,...,)ig X i k≥ =

() 0;(1, 2,...,)ih X i l= =
(2)
(3)

where ()f X is the objective vector, r is the dimension of objectives, (2) and (3) are

equality-constraints and inequality-constraints, ()1 2, ,..., nX x x x= is variable vector,

n is the dimension of variables, X ∈ Ω , nRΩ ⊆ ,where Ω is the feasible space, then,

:f Ω → Π , rRΠ ⊆ , Π is the objective space.

Definition 2 (Pareto dominance). A solution x0 is said to dominate (Pareto optimal)
another solution x1 (denoted x0 x1) if and only if:

0 1 0 1{1, , } () () ({1, , } () ())i i k ki m f x f x k m f x f x∀ ∈ : ≤ ∃ ∈ : < ∩… … .

Definition 3 (Pareto optimal). A solution x0 is said to be non-dominated (Pareto
optimal) if and only if: 1 1 0:x X x x∃ ∈ .

278 J. Xie et al.

Definition 4 (Pareto optimal set). The set PS of all Pareto optimal solutions:
0 1 1 0{ | }:SP x x X x x= ∃ ∈ .

Definition 5 (Pareto optimal front). The set PF of all objective function values corre-
sponding to the solutions in PS:

1() ((), ()) |{ }mF Sf x f x f x xP P= ∈= …, .

The optimal result for such multi-objective optimization is no other than the Pareto
optimal set PS. However, the size of this set may be infinite, and it is impossible to
find this set by using a finite number of solutions. In this case, a representative subset
of PS is desired. Generally, the characteristic of MOEAs is to search the decision
space by maintaining a finite population of individuals (corresponding to the points in
the decision space), which work according to the procedures that resemble the princi-
ples of natural selection and evolution. Because we only consider the subset of all the
final non-dominated individuals resulted from a MOEA, we call such subset an ap-
proximation set and denote it by S, and we call the corresponding objective set a re-
sulting final Pareto optimal front and denote it by PFfinal. Ideally, we are interested in
finding an S of finite size, which contains a selection of individuals from such that the
individuals in PFfinal are diversified as possible. Unfortunately, we usually have no
access to PF on beforehand. However, it is common practice to search for a good
diversity of the individuals in the objective space because decision makers will ulti-
mately have to pick a single individual as final solution according to its objective
vector values. Therefore, it is often best to present a wide variety of tradeoff individu-
als for the specified goals in constructing MOEAs.

3 Grid-Measure and ε-MOEA

3.1 Generality of Grid-Measure

Generally, the grid-measure divides the objective space into a lot of small grids or
hyper-cubes and the size of them usually depends on the value of the objective func-
tion. If two individuals are located in the same grid, the difference on each dimension
is tolerant and neglectable for the problem.

3.2 The ε-Dominance Concept

Definition 6[4] (ε-dominance). Let f, g m+∈ . Then f is said to ε-dominate g for some

ε>0, denoted as f ε g, if and only if for all {1, , }i m∈ … (maximizing):

(1) i if gε •+ ≥ (4)

When the problem is a Minimizing-formulated one, the above inequality formula-
tion (4) should be simply modified.

In the divided objective space, each grid should be endued to ascertain which loca-
tion of the space that an individual is distributed. And for each candidate solution in
the archive set, an identification vector B (B＝(B1, B2,…Bm)T) is assigned to identify

 Applying a New Grid-Based Elitist-Reserving Strategy to EMO Archive Algorithms 279

its location and its ε-dominating area. The identification vector is assigned according
to the following formulation:

()
()
()

min

min

is to be Minimized

, is to be Maximized

j j j j

j

j j j j

f f f
B f

f f f

ε

ε

⎧ ⎢ ⎥ − , ⎪ ⎣ ⎦= ⎨
⎡ ⎤ − ⎪ ⎢ ⎥⎩

；

.

 (5)

Where j is the dimension number, min
jf is the minimum possible value (default as

0) of the j-th dimension, jε is the size of the grid on the j-th dimension. The ε-
dominated area of an individual is actually the Pareto dominated area of its identifica-
tion vector; If two are in the same grid (having the same B vector), the one has
smaller distance to the B vector is preserved and the other one is deleted. For more
detailed description, one can refer to [5].

3.3 ε-MOEA and Its Shortage

The ε-MOEA sets an archive population E(t) and an evolutionary population P(t). In
each iteration, an individual by tournament selection from P(t) and another one ran-
domly selected from E(t) are matched. Then they crossover and mutation is processed
and finally two new individuals are generated. For each one of them, ε-MOEA uses
the general Pareto domination concept to update P(t) while uses the ε-dominance to
update E(t). Hence the competitive models are remained in P(t), and the solutions in
E(t) are well distributed and the number of them is not too large. Figure 1 shows the
results of ZDT1 obtained by ε-MOEA.

As can be seen in the figure, the obtained solution set is nearly well distributed on
the PFtrue (the solid points are scattered in the bolded grids).

Fig. 1. Results of ZDT1 obtained by ε-MOEA (εi＝0.05)

However, several grids transited by the true PF contain no solutions, because these
grids (for example, the grids above A and the ones besides B in figure 1.) are ε-
dominated by the preserved individuals. Obviously, these grid-regions are either ex-
treme or important respective ones, but the algorithm failed to find solutions in these
regions. So the diversity of the solution set is not satisfying.

280 J. Xie et al.

In order to avoid this phenomenon, we proposed a new δ-domination concept and
new elitist-reserving strategy. The new strategy based δ-MOEA is also illuminated.

4 New Elitist-Reserving Strategy and δ-MOEA

4.1 The δ-Dominance Concept

As stated above, the ε-dominance uses the identify vector to confirm individual’s
location, and it allows only one solution preserved in each feasible grid. But, each of
the reserved solution has too large dominating ability, which makes some of the ex-
treme and representative solutions lost, and the diversity is dissatisfying. So we im-
proved the dominance concept and allow some individual’s (satisfying certain condi-
tions) to be preserved as well as those reserved according to the ε-dominance. It is a
more particular concept than the ε-dominance. We call the new dominance concept δ-
dominance.

Definition 7 (δ-dominance). Let f, g m+∈ . Then f is said to δ-dominate g for some
δ>0, denoted as f δ g, ,

i
Δ∃ with ,0

i iδΔ≤ ≤ if and only if for all {1, , }i m∈ … (minimiz-

ing):

()i i if gΔ − ≤ (6)

Where
iδ has similar effect as the ε did in the ε-dominance, it sets the upper extent of

possible dominating region; while iΔ helps to confirm the exact δ-dominating area of

the preponderant individual. Specially, when 0
i

Δ = for each i, the new concept de-

generates to the Pareto domination concept, while when
i iδΔ = for each i, it actually

equals the ε-dominance. Figure 2 helps to comprehend this relationship.

4.2 The δ-Dominance Based Elitist-Reserving Strategy

For its inclusion in the archive, an individual is compared with each member in the
archive for δ-dominance. Every individual in the archive is assigned an identification
vector (B＝(B1, B2,…Bm)T too, similar as Formulation (5) stated (with the denominator
replaced by

iδ). Figure 2 illustrates that the individual P δ-dominates the entire shad-

owed region, which is large than that of the Pareto dominance definition but not so
large than that of ε-dominance. We only discuss the minimization cases alone for brev-
ity, while similar analysis can be followed for maximization or mixed cases as well.

For the individual P, its identification vector is the coordinates of the point Bp in the
objective space and its δ-dominating region can be distinctly partitioned into 2 parts:
the partition in the grid and the other out of the grid. If two individuals are in the same
grid (having the same identification vector), we check which one is closer to the iden-
tification vector (in terms of the Euclidean distance), then delete the farer one (for
example, individual 2 is to be deleted and 1 is to be preserved). So the in-grid parti-
tion is a rectangle with its left-bottom sector removed. And if the comparing individu-
als have different B vectors (for example, P and Q1 or and Q2), we check whether the

 Applying a New Grid-Based Elitist-Reserving Strategy to EMO Archive Algorithms 281

Fig. 2. The δ-dominance concept is illustrated (for minimizing f1 and f2)

one with larger B vector is Pareto-dominated by the suppositional optimum point of
the other’s, if so, delete the dominated one, otherwise, both the two are saved in the
archive.

The suppositional optimum point for P (denoted as P′) is set and updated as:

 +1P min P P(')= { ('), ()}i t i t if f f (7)

Where t denotes the t-th updating iteration, i is the i-th dimension. It should be no-
ticed that each dimension of P′ is actually the ever-lowest objective function value (of
some individual that has been appeared in the grid). While the ever-lowest value for
different dimensions can hardly belong to a single individual. Hence, the compositive
P′ probably doesn’t correspond to any real individual point in the decision space, so
we call it suppositional optimum point. The suppositional optimum point is related to
the real individual and the grid where it stayed, so it should be updated once there is a
new individual that entered the archive or replaced an old one in it.

The use of the suppositional optimum point insures that the individuals, who should
be deleted according to their relationship with the having been deleted former ones,
won’t be involved in the archive. So the archive set evolves without degradation.

The following procedure explains the elitist-reserving strategy in detail.

Procedure： /* Whether_individual A_enters_the_Archive E(t) */
Begin
If： E(t) is empty
then A enters E(t), F(A')=F(A)；

 // A' is A’s suppositional optimum point,F(A)is A’s function value
Else：
For each P in E(t)
{ check whether A and P are in the same grid;

If (TURE) then whether |BpA|-|BpP|<0 ?
// compare A and P: which one is closer to the B vector

Yes: A enters E(t),update A'(P'),discard P,
end procedure;

282 J. Xie et al.

No: discard A, end procedure;

Else: whether A is dominated by P'(δ-dominated by P)
 or |AP|<0.5 |δ|; // or they are too close

Yes: discard A, end procedure;
 No: continue;

} end For
A enters E(t), F(A')=F(A)；

End.

4.3 The Framework of δ-MOEA

The δ-MOEA also sets an evolution population and an archive set that was initialized
empty. The crossover operator is SBX and the mutation operator is polynomial muta-
tion. Importantly, we use the new strategy stated above in 4.2 to update the archive
set. Figure 3 shows the framework of δ-MOEA.

Fig. 3. The flow chart of δ-MOEA

 Applying a New Grid-Based Elitist-Reserving Strategy to EMO Archive Algorithms 283

5 Numerical Experiments and Discussion

5.1 Test Functions and Parameter Settings

In order to test the performance of δ-MOEA, we choose some representative and
generally used benchmarks. They are: SCH[10], POL[11], FON[12], ZDT2[13][15],
DTLZ1[14], DTLZ2[14].The number of decision variables N: NSCH =1, NPOL =NFON
=2, NZDT2 =30, NDTLZ1 =NDTLZ2 =7. SCH, POL, FON, ZDT2 have 2 objectives and
DTLZ1, DTLZ2 have 3 ones. About the characteristic of these benchmarks, corre-
sponding literatures can be referenced to.

We use the well know NSGA-II[7] and ε-MOEA as comparing algorithms. The pa-
rameter settings for δ-MOEA and them are as follows: function evaluations and popu-
lation size are stated in Table 1. Other parameters are set as that suggested in [7] and
[5]. Withηc=15 for SBX,ηm=20 for polynomial mutation. The size of final solution set
is set to equal the population size.

Table 1. Parameter Setting

Objections 2 3
Population size 100 200
Evaluation 20000 (200 gen) 80000 (400 gen)

5.2 Performance Metrics

The metrics to evaluate the performance of the MOEAs were the Spacing Metric(SP)

by Schott[8] and the GD by Veldhuizen[9] respectively. The former was to measure
the extent of spread achieved among the obtained solutions, and the latter measured
the extent of convergence of known set of Pareto-optimal set. For detail, literature [8]
and [9] are suggested to be referred to.

5.3 Results and Discussion

For comparison, the SP and GD of the obtained solutions on all or some of the
benchmarks by NSGA-II, ε-MOEA and δ-MOEA are shown in Tables 2 and 3.

Table 2. Spacing Metric(SP) in 10 runs for NSGA2, ε-MOEA and δ-MOEA

NSGA 2 ε-MOEA δ-MOEA MOEAs
Sparsity

(Avg)
Std Dev Sparsity

(Avg)
Std Dev Sparsity

(Avg)
Std Dev

SCH 0.03638377 0.00356140 0.04038556 0.00008814 0.03182887 0.00012812
POL 0.10597446 0.01097994 0.13732486 0.00950219 0.03747305 0.00388055
FON 0.00870666 0.00066549 0.02332467 0.00089394 0.00434514 0.00092039
ZDT2 0.00679208 0.00068899 0.00858766 0.00050171 0.00618374 0.00052975
DTLZ1 0.04069481 0.00209326 0.01286952 0.00160352 0.01240354 0.00061743
DTLZ2 0.09117502 0.02048226 0.03132431 0.00142884 0.02504852 0.00106497

284 J. Xie et al.

Table 3. Convergence Metric(GD) in 10 runs for NSGA2, ε-MOEA and δ-MOEA

NSGA 2 ε-MOEA δ-MOEA MOEAs
GD (Avg) Std Dev GD (Avg) Std Dev GD (Avg) Std Dev

SCH 0.00041685 0.00002002 0.00030888 0.00000282 0.00039228 0.00000651
ZDT2 0.00014309 0.00002035 0.00025649 0.00003717 0.00029782 0.00004173
DTLZ1 0.00004080 0.00001494 0.00007769 0.00001098 0.00008530 0.00018663
DTLZ2 0.00028334 0.00004796 0.00396315 0.00077572 0.00309575 0.00008352

From Table 2, we know that for all problems, δ-MOEA has the best performance in
maintaining diversity of the solutions. ε-MOEA is worse than NSGA-II when the
objectives are 2 but better than it when the objectives are 3. Table 3 told that NSGA-II
gain the best GD of the three on ZDT2, DTLZ1 and DTLZ2, while on SCH, ε-MOEA
won the others; Though δ-MOEA is a little weaker than the other two, it is also com-
petitive with them. In the following, we’ll give a more intuitionistic illumination by a
set of figures (Figure 4-9).

 (a) NSGA2 (b) ε-MOEA (c) δ-MOEA

Fig. 4. Distribution of obtained solutions for NSGA2, ε-MOEA and δ-MOEA on SCH

Figure 4 shows that the distribution of obtained solutions by NSGA-II seems dis-
crete and that by ε-MOEA becomes sparser as going to the extremal regions of PFtrue.
Obviously δ-MOEA gained continuous and uniform solutions distributed on the PFtrue.

 (a) NSGA2 (b) ε-MOEA (c) δ-MOEA

Fig. 5. Distribution of obtained solutions for NSGA2, ε-MOEA and δ-MOEA on POL

In Figure 5, we can see that on POL, NSGA-II got PF that is not sleek; PF obtained
by ε-MOEA is dense in the parted segment but too sparse in the area of PFtrue closing
to f2. While δ-MOEA gains a well distributed, uniform solution set.

 Applying a New Grid-Based Elitist-Reserving Strategy to EMO Archive Algorithms 285

 (a) NSGA2 (b) ε-MOEA (c) δ-MOEA

Fig. 6. Distribution of obtained solutions for NSGA2, ε-MOEA and δ-MOEA on FON

Figure 6 illuminates the shortage of ε-MOEA clearly. It gets too many solutions
crowded in the middle part but quite fewer ones in the extremal part. And NSGA-II
has dissatisfying results while δ-MOEA is still the best.

 (a) NSGA2 (b) ε-MOEA (c) δ-MOEA

Fig. 7. Distribution of obtained solutions for NSGA2, ε-MOEA and δ-MOEA on ZDT2

Figure 7 shows the similar situation of results. The PF obtained by NSGA-II is not
so good and that by ε-MOEA is obviously sparser when the value of f2 approaching
1. The distribution of solutions obtained by δ-MOEA is acceptable.

 (a) NSGA2 (b) ε-MOEA (c) δ-MOEA

Fig. 8. Distribution of obtained solutions for NSGA2, ε-MOEA and δ-MOEA on DTLZ1

For the benchmarks with 3 objectives, DTLZ1 and DTLZ2 are selected. In Figure
8, (a) shows that NSGA-II found solutions asymmetrically distributed; (b) shows the
set by ε-MOEA is symmetrical but with no solutions reserved in extremal area;

286 J. Xie et al.

(a) NSGA2 (b) ε-MOEA (c) δ-MOEA

Fig. 9. Distribution of obtained solutions for NSGA2, ε-MOEA and δ-MOEA on DTLZ2

(c) tells the case that the set by δ-MOEA is satisfying uniformly distributed as well as
the extreme solutions were found.

In Figure 9, (a) shows the disorder solution set obtained by NSGA-II; (b) indicates
that ε-MOEA still fail to find symmetrical solutions in extremal area; (c) implies that
δ-MOEA gained the trade-off between extensiveness and uniformity.

In conclusion, δ-MOEA gained solution sets with better diversity than the other
two did. It is because that the new elitist-reserving strategy preserved individuals in
the ε-dominated grids especially in those near the extremal region of the PF. Since the
individuals that may be eliminated by ε-MOEA are kept down in the grids that are
went through by the PF, so the whole solution set is with higher uniformity than that
by the ε-MOEA.

6 Conclusions

The proposed δ-dominance concept and new elitist-reserving strategy help δ-MOEA
gain a solution set that has good distribution. The δ-MOEA overcomes the difficulties
of ε-MOEA in finding and preserving solutions in extremal and some other important
regions, it also outperforms the typical NSGA-II as the diversity is concerned. The
application of suppositional optimum point is also novel and the result of numerical
experiments illustrates the good performance of δ-MOEA.

Acknowledgment. This work was supported by The National Natural Science
Foundation of China (60773047), and the Natural Science Foundation of Hunan
Province (05JJ30125), and the Keystone Science Research Project of the Education
Office of Hunan Province (06A074).

References

1. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley &
Sons, Chichester (2001)

2. Xie, T., Chen, H.W., Kang, L.S.: Multi-objective Optimal Evolutionary Algorithms. Jour-
nal of Computer 26(8), 997–1003 (2003)

3. Zheng, J.H.: Multiobjective Evolutionary Algorithms and Applications. Science Press,
Beijing (2007)

 Applying a New Grid-Based Elitist-Reserving Strategy to EMO Archive Algorithms 287

4. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in
evolutionary multi-objective optimization. Evolutionary Computation 10(3), 263–282
(2002)

5. Deb, K., Mohan, M., Mishra, S.: A Fast Multi-objective Evolutionary Algorithm for Find-
ing Well-Spread Pareto-Optimal Solutions. KanGAL Report. No 2003002

6. Coello Coello, C.A.: Guest Editorial: Special issue on evolutionary multi-objective optimi-
zation. IEEE Transactions on Evolutionary Computation 7(2), 97–99 (2003)

7. Kalyanmoy, D., Pratap, A., Agrawal, S., Meyrivan, T.: A Fast and Elitist Multi-objective
Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–
197 (2002)

8. Schott, J.R.: Fault tolerant design using single and multicriteria genetic algorithm optimi-
zation. Master’s theis of Aeronautics and Astronautics, Massachusetts Institute of Tech-
nology, Cambridge (1995-05)

9. Van Veldhuizen, D.A., Lamont, G.B.: On measuring multiobjective evolutionary algo-
rithm performance. In: 2000 Congress on Evolutionary Computation, vol. 1, pp. 204–211
(2000)

10. David, S.J.: Multiple Objective Optimization with Vector Evaluated Genetic Algorithms.
In: Grefenstette: Proceedings of the First International Conference on Genetic Algorithms
and Their Applications, pp. 93–100 (1985)

11. Carlo, P.: Multi-objective Optimization by GAs: Application to System and Component
Design. Methods in Applied Sciences 1996: Invited Lectures and Special Technological
Sessions of the Third ECCOMAS Computational Fluid Dynamics Conference and the
Second ECCOMAS Conference on Numerical Methods in Engineering, pp. 258–264.
Wiley, Chichester (1996)

12. Fonseca, C.M., Fleming, P.J.: An Overview of Evolutionary Algorithms in Multi-objective
Optimization. Evolutionary Computation 3(1), 1–16 (1995)

13. Kalyanmoy, D.: Multi-Objective Genetic Algorithms: Problem difficulties and Construc-
tion of Test Problems. Technical Report CI-49/98. Department of Computer Sci-
ence/LS11,University of Dortmund

14. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test
problems. In: Proceeding of the Congress on Evolutionary Computation (CEC 2002), pp.
825–830 (2002)

15. Kalyanmoy, D.: Multi-Objective Genetic Algorithms: Problem difficulties and Construc-
tion of Test Problems. Evolutionary Computation 7(3), 205–230 (1999)

The Parameterized Complexity of the Rectangle

Stabbing Problem and Its Variants�

Michael Dom1 and Somnath Sikdar2

1 Institut für Informatik, Friedrich-Schiller-Universität Jena,
Ernst-Abbe-Platz 2, D-07743 Jena, Germany

dom@minet.uni-jena.de
2 The Institute of Mathematical Sciences,

C.I.T Campus, Taramani, Chennai 600113, India
somnath@imsc.res.in

Abstract. We study an NP-complete geometric covering problem called
d-Dimensional Rectangle Stabbing, where, given a set of axis-parallel
d-dimensional hyperrectangles, a set of axis-parallel (d − 1)-dimensional
hyperplanes and a positive integer k, the question is whether one can se-
lect at most k of the hyperplanes such that every hyperrectangle is inter-
sected by at least one of these hyperplanes. This problem is well-studied
from the approximation point of view, while its parameterized complexity
remained unexplored so far. Here we show, by giving a nontrivial reduc-
tion from a problem called Multicolored Clique, that for d ≥ 3 the
problem is W[1]-hard with respect to the parameter k. For the case d = 2,
whose parameterized complexity is still open, we consider several natural
restrictions and show them to be fixed-parameter tractable.

1 Introduction

A geometric covering problem, in the broadest sense, consists of a set of geometric
objects and a set of “resources”; the goal is to find a small set of resources
that “covers” all objects. Geometric covering problems arise in many practical
applications and are subject of intensive research (see [6, 7, 11]). In this paper
we consider a geometric covering problem known as d-Dimensional Rectan-
gle Stabbing. Here, the input consists of a set R of axis-parallel d-dimensional
hyperrectangles, a set L of axis-parallel (d − 1)-dimensional hyperplanes, and a
positive integer k; the question is whether there is a set L′ ⊆ L with |L′| ≤ k
such that every hyperrectangle from R is intersected by at least one hyperplane
from L′. In the special case of d = 2, the set R consists of axis-parallel rectangles
in the plane, and L consists of vertical and horizontal lines. In the polynomial-
time approximation setting, the optimization version of d-Dimensional Rec-
tangle Stabbing is considered, which asks for a minimum-cardinality set L′ ⊆
L to cover all rectangles from R.

The literature provides a bunch of results concerning the approximability
of d-Dimensional Rectangle Stabbing. Hassin and Megiddo [8] described
� Supported by the DAAD-DST exchange program D/05/57666.

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 288–299, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Parameterized Complexity of the Rectangle Stabbing Problem 289

a factor-d2d−1 approximation algorithm for the problem variant where L con-
sists of lines instead of hyperplanes and all hyperrectangles in R are identical.
Gaur et al. [6] gave a factor-2 approximation algorithm for the case d = 2 and
extended this result to the problem d-Dimensional Rectangle Stabbing,
for which they provided a factor-d approximation algorithm. Moreover, Mecke
et al. [12] gave a factor-d approximation algorithm for a problem called d-C1P-
Set Cover, which is a generalization of d-Dimensional Rectangle Stab-
bing. The restricted version of 2-Dimensional Rectangle Stabbing where
for every rectangle the number of horizontal lines intersecting it is bounded from
above by one is known as Interval Stabbing. This problem was considered by
Kovaleva and Spieksma [9, 10], leading to constant-factor approximation algo-
rithms for several variants of the problem. Hassin and Megiddo [8] gave approx-
imation algorithms for the more general variant of Interval Stabbing where
for every rectangle the number of horizontal lines or the number of vertical lines
intersecting it is bounded from above by one. Weighted and capacitated versions
of 2-Dimensional Rectangle Stabbing have been considered by Even et
al. [2].

Here, we consider d-Dimensional Rectangle Stabbing from the viewpoint
of parameterized complexity. More specifically, we investigate whether d-Dimen-
sional Rectangle Stabbing is fixed-parameter tractable with respect to the
parameter “solution size” k, that is, if there exists an algorithm running in
O(f(k) · |R ∪ L|O(1)) time with f depending only on k. On the one hand, we
show in Section 3 that for d ≥ 3 the problem is W[1]-hard with respect to the
parameter k, meaning that it is unlikely that there exists such an algorithm.
On the other hand, in Section 4 we consider several natural restrictions of the
case d = 2 and show them to be fixed-parameter tractable. The parameterized
complexity for the case d = 2 without further restrictions remains open.

Due to lack of space, some proofs are omitted.

2 Preliminaries

A parameterized problem is a subset of Σ∗ × �, where Σ is a finite alphabet
and � is the set of natural numbers. An instance of a parameterized problem
is, therefore, a pair (I, k), where k is called the parameter. In the framework of
parameterized complexity [1,5,13], the running time of an algorithm is viewed as
a function of two quantities: the size of the problem instance and the parameter.
A parameterized problem is said to be fixed parameter tractable (FPT) with
respect to the parameter k if there exists an algorithm for the problem running
in f(k) · |I|O(1) time, where f is a computable function only depending on k.

A common tool in the development of fixed-parameter algorithms is to use
a set of data reduction rules to obtain what is called a problem kernel. A data
reduction rule is a polynomial-time algorithm which takes as input a problem
instance (I, k) and outputs an instance (I ′, k′) such that |I ′| ≤ |I|, k′ ≤ k,
and (I ′, k′) is a yes-instances iff (I, k) is a yes-instance. An instance to which
none of a given set of data reduction rules applies is called reduced with respect

290 M. Dom and S. Sikdar

to these rules. A reduced instance (I ′, k′) is called a problem kernel if its size is
bounded from above by a function f depending only on k. If a parameterized
problem has a kernel, then it is clearly fixed-parameter tractable.

A parameterized problem π1 is fixed-parameter reducible to a parameterized
problem π2 if there are two computable functions f, g : � → � and an algo-
rithm Φ which transforms an instance (I, k) of π1 into an instance (I ′, f(k)) of π2
in g(k) · |I|O(1) time such that (I ′, f(k)) is a yes-instance for π2 iff (I, k) is a
yes-instance for π1. The basic complexity class for fixed-parameter intractabil-
ity is W [1], as there is strong evidence that W [1]-hard problems are not fixed-
parameter tractable [1, 5, 13]. To show that a problem is W [1]-hard, one needs
to exhibit a fixed-parameter reduction from a known W [1]-hard problem to the
problem at hand.

A graph G = (V, E) is called k-colorable if there is a function c : V →
{1, . . . , k} satisfying ∀{u, v} ∈ E : c(u) 	= c(v); the function c is then called a
proper vertex k-coloring for G.

To achieve our hardness result, we consider d-Dimensional Rectangle
Stabbing as a covering problem on binary matrices, which is a restriction of
the following, very general matrix problem:

Set Cover1

Given: A binary matrix M and a positive integer k.
Question: Is there a set of at most k columns of M such that the submatrix M ′

of M that is induced by these columns has at least one 1 in every row?
To define restricted versions of Set Cover, we need the following definitions.

Definition 1. 1. Given a binary matrix M , a block of 1s in a row of M is a
maximal set of consecutive 1-entries in this row.

2. A binary matrix M has the d-consecutive ones property (d-C1P) if every
row of M has at most d blocks of 1s.

3. A binary matrix M with columns c1, . . . , cn has the separated d-consecutive
ones property (d-SC1P) if the columns of M can be partitioned into d sets
of consecutive columns C1 = {c1, . . . , cj1}, C2 = {cj1+1, . . . , cj2}, . . . , Cd =
{cjd−1+1, . . . , cn} such that for every i ∈ {1, . . . , d} the submatrix of M in-
duced by Ci has at most one block of 1s per row.

If Set Cover is restricted by demanding that the input matrix M must have
the d-C1P, then we call the resulting problem d-C1P-Set Cover; if M must
have the d-SC1P, then we call the resulting problem d-SC1P-Set Cover.

Observation 1. The problems d-Dimensional Rectangle Stabbing and d-
SC1P-Set Cover are equivalent: There is a polynomial-time computable one-
to-one mapping between instances of d-Dimensional Rectangle Stabbing
and instances of d-SC1P-Set Cover that does not change the value of k and
that maps yes-instances to yes-instances and no-instances to no-instances.
1 The equivalence of this definition and the more common definition of Set Cover

as a subset selection problem can easily be seen by identifying columns with subsets
and rows with elements to be covered.

The Parameterized Complexity of the Rectangle Stabbing Problem 291

This observation is easy to see—the ith dimension in a d-Dimensional Rec-
tangle Stabbing instance can be represented by the column set Ci in a d-
SC1P-Set Cover instance and vice versa.

For some of our FPT algorithms, we make use of the following well-known
fact: Given a set of axis-parallel rectangles and a set of vertical (horizontal) lines,
the task of finding a minimum-cardinality subset of these vertical (horizontal)
lines that intersects all rectangles is polynomial-time solvable2: Order the rect-
angles with respect to their right (bottom) end. Then, repeatedly take the first
rectangle r in this order, include the rightmost vertical (bottommost horizontal)
line l that intersects r into the solution, and delete all rectangles intersected by l,
until all rectangles are deleted. The solution obtained is a minimum-size set of
vertical (horizontal) lines that are required to intersect all rectangles. Moreover,
all rectangles r together that are selected by the algorithm form a “certificate”
in the sense that they cannot be intersected by a set of vertical (horizontal) lines
that is smaller than the solution found by the algorithm. The pseudocode of this
algorithm is displayed in Fig. 2.

3 W[1]-Hardness Proof for d-Dimensional Rectangle
Stabbing with d ≥ 3

In this section we prove that d-Dimensional Rectangle Stabbing with pa-
rameter k is W[1]-hard for every d ≥ 3. To this end, we exhibit a fixed-parameter
reduction from Multicolored Clique, which is defined as follows, to 3-SC1P-
Set Cover.

Multicolored Clique
Given: An undirected k-colorable graph G = (V, E), a positive integer k, and a
proper vertex k-coloring c : V → {1, . . . , k} for G.
Question: Is there a size-k clique in G?

Multicolored Clique is W[1]-complete with respect to the parameter k [4].
Using the “k-Multicolored Clique reduction technique” designed by Fellows
et al. [4], a fixed-parameter reduction from Multicolored Clique to 3-C1P-
Set Cover can be found in a rather straightforward way [3], which proves the
W[1]-hardness of the latter problem. However, the W[1]-hardness of 3-SC1P-
Set Cover is more difficult to prove because of the more restricted nature of
this problem.

The basic scheme of the reduction. The basic scheme of our reduction follows
the technique described by Fellows et al. [4]. The key idea is to use an alter-
native, equivalent formulation of Multicolored Clique: Given an undirected
k-colorable graph G = (V, E), a positive integer k, and a proper vertex k-coloring
c : V → {1, . . . , k} for G, find a set E′ ⊆ E with |E′| =

(
k
2

)
and a set V ′ ⊆ V

with |V ′| = k that satisfy the following constraints:

2 This problem is equivalent to Clique Cover on interval graphs.

292 M. Dom and S. Sikdar

1. For every unordered pair {a, b} of colors from {1, . . . , k}, the edge set E′

contains an edge whose endpoints are colored with a and b.
2. For every color from {1, . . . , k}, the vertex set V ′ contains a vertex of this

color.
3. If E′ contains an edge {u, v}, then V ′ contains the vertices u and v.

Given an instance (G, k, c) of Multicolored Clique, we construct an equiv-
alent instance (M, k′) of 3-SC1P-Set Cover based on this alternative formu-
lation. To this end, define the color of an edge {u, v}, denoted with d({u, v}),
as d({u, v}) = {c(u), c(v)}. We assume that the edges E = {e1, . . . , e|E|} and ver-
tices V = {v1, . . . , v|V |} of G are ordered in such a way that that edges and ver-
tices of the same color appear consecutively: For every pair p1, p2 ∈ {1, . . . , |E|}
with p1 < p2 and d(ep1) = d(ep2) it holds that ∀p3 ∈ {p1 + 1, . . . , p2 − 1} :
d(ep3) = d(ep1) = d(ep2), and for every pair q1, q2 ∈ {1, . . . , |V |} with q1 < q2 and
c(vq1) = c(vq2) it holds that ∀q3 ∈ {q1 + 1, . . . , q2 − 1} : c(vq3) = c(vq1) = c(vq2).

The idea of the reduction is that every column of M corresponds to an edge or
a vertex of the given graph G; the rows of M are constructed in such a way that
any column subset of M that is a solution for 3-SC1P-Set Cover on (M, k′)
corresponds to a solution (E′, V ′) for Multicolored Clique on (G, k, c). To
this end, the rows of M must enforce that the three constraints for Multicol-
ored Clique mentioned above are satisfied. In order to obtain a matrix that
has the 3-SC1P, we need not only one, but two columns in M for every edge e
in G. Hence an instance (G, k, c) of Multicolored Clique is mapped to an
instance (M, k′), where k′ = 2 ·

(
k
2

)
+k. We next describe the construction of M .

The columns of M . The matrix M has 2 · |E| + |V | columns, partitioned into
three sets C1 = {c1

1, . . . , c
1
|E|}, C2 = {c2

1, . . . , c
2
|E|}, and C3 = {c3

1, . . . , c
3
|V |} and

ordered as follows: c1
1, . . . , c

1
|E|, c

2
1, . . . , c

2
|E|, c

3
1, . . . , c

3
|V |.

The rows of M . The rows of M have to ensure that every solution for 3-SC1P-
Set Cover on (M, k′ = 2 ·

(
k
2

)
+ k) corresponds to a subset of edges and

vertices of G satisfying the three constraints mentioned above. Because there
are two columns in M for every edge in G, we need four types of rows: Rows of
Type 1 and 2 ensure that any set of k′ columns that forms a solution for 3-SC1P-
Set Cover contains exactly

(
k
2

)
columns from C1—one of each edge color—,(

k
2

)
columns from C2—one of each edge color—, and k columns from C3—one of

each vertex color. Type 3 rows ensure that the columns chosen from C1 and C2

are consistent: if a solution contains the column c1
j then it must contain c2

j and
vice versa. Finally, Type 4 rows ensure that if a solution contains a column c1

j

corresponding to an edge {u, v} then it also contains the columns corresponding
to the vertices u and v. See Fig. 1 for an illustration of the following construction
details.

Type 1 rows. For every edge color {a, b}, add two rows r1
{a,b},C1 and r1

{a,b},C2

to M . For i = 1, 2, the row r1
{a,b},Ci has a 1 in every column ci

j ∈ Ci with d(ej) =
{a, b}, and 0s in all other columns.

The Parameterized Complexity of the Rectangle Stabbing Problem 293

C1 C2 C3

. . .

. . .

.

. . .

. {red, blue}{red, blue} red blue

r1
{red,blue},C1

r1
{red,blue},C2

r2
red

r2
blue

r3
{red,blue},1

r3
{red,blue},2

r3
{red,blue},3

r3
{red,blue},4

r3
{red,blue},5

r3
{red,blue},6

r4
e5,v2

r4
e5,v8

c14 c15 c16 c17 c24 c25 c26 c27 c32 c33 c37 c38 c39

1

1111
1111

1111
1111

1111
1111
111 1
1111

11
11

1111
1111

Fig. 1. Example for the construction of M . We assume that in G there are exactly
two red vertices v2, v3 and exactly three blue vertices v7, v8, v9, among vertices of other
colors. Moreover, the only edges between red and blue vertices are e4, e5, e6, e7 with
e5 = {v2, v8}. Hence, first({red, blue}) = 4.

Type 2 rows. For every vertex color a ∈ {1, . . . , k}, add a row r2
a to M which

has a 1 in every column c3
j ∈ C3 with c(vj) = a, and 0s in all other columns.

Type 3 rows. For every edge color {a, b}, define E{a,b} := {e ∈ E | d(e) =
{a, b}} and first({a, b}) := min{p ∈ {1, . . . , |E|} | d(ep) = {a, b}}. Now, for
every edge color {a, b}, add a set of 2 · (|E{a,b}| − 1) rows r3

{a,b},i where 1 ≤ i ≤
2 · (|E{a,b}| − 1). A row r3

{a,b},i with i ∈ {1, . . . , |E{a,b}| − 1}, has a 1 in
– every column c1

j ∈ C1 with d(ej) = {a, b} and j < first({a, b}) + i and
– every column c2

j ∈ C2 with d(ej) = {a, b} and j ≥ first({a, b}) + i,
and 0s in all other columns. A row r3

{a,b},i with i ∈ {|E{a,b}|, . . . , 2 ·(|E{a,b}|−1)}
has a 1 in
– every column c1

j ∈ C1 with d(ej) = {a, b} and j ≥ first({a, b})+i−(|E{a,b}|−
1) and

– every column c2
j ∈ C2 with d(ej) = {a, b} and j < first({a, b})+i−(|E{a,b}|−

1),
and 0s in all other columns.

Type 4 rows. For every edge ep = {vq1 , vq2} ∈ E, add two rows r4
ep,vq1

and r4
ep,vq2

to M . For i = 1, 2, the row r4
ep,vqi

has a 1 in
– every column c1

j ∈ C1 with d(ej) = d(ep) and j < p,
– every column c2

j ∈ C2 with d(ej) = d(ep) and j > p, and
– the column c3

qi
∈ C3,

and 0s in all other columns.

294 M. Dom and S. Sikdar

Lemma 1. Let (G, k, c) be an instance of Multicolored Clique and let
(M, k′) be the instance of 3-SC1P-Set Cover obtained by the above con-
struction. Then G contains a clique of size k if and only if there exists a set
of k′ = 2 ·

(
k
2

)
+ k columns in M that hits a 1 in every row.

Theorem 1. For every d ≥ 3, d-Dimensional Rectangle Stabbing is W[1]-
hard with respect to the parameter k.

By adding some additional columns to the above construction, we get the fol-
lowing result.

Theorem 2. For every d ≥ 3, the restricted variant of d-Dimensional Rec-
tangle Stabbing where every hyperrectangle in R is a hypercube is W[1]-hard
with respect to the parameter k.

With a similar reduction we can also show the W[1]-hardness of the following
problem: Given a set R of axis-parallel d-dimensional hyperrectangles, a set L
of axis-parallel lines, and a positive integer k, is there a set L′ ⊆ L with |L′| ≤ k
such that every hyperrectangle from R is intersected by at least one line from L′?

Theorem 3. For d ≥ 3, the problem of stabbing axis-parallel d-dimensional
hyperrectangles with k axis-parallel lines is W[1]-hard with respect to the param-
eter k.

4 FPT Algorithms for Restrictions of 2-Dimensional
Rectangle Stabbing

In the previous section we have shown that d-Dimensional Rectangle Stab-
bing with parameter k is W[1]-hard for d ≥ 3. However, the parameterized
complexity of 2-Dimensional Rectangle Stabbing, where a set R of axis-
parallel rectangles has to be stabbed with at most k lines chosen from a given
set L of vertical and horizontal lines, is still open. In this section we consider
some natural restrictions of this problem and show them to be fixed-parameter
tractable.

For an instance (R, L, k) of 2-Dimensional Rectangle Stabbing, let L =
V ∪ H , where V = {v1, . . . , vn} are the vertical lines ordered from left to
right and H = {h1, . . . , hm} are the horizontal lines ordered from top to bot-
tom. For a rectangle r ∈ R, let lx(r), rx(r), tx(r), bx(r) be the index of the
leftmost, rightmost, topmost and bottommost line intersecting r. Define the
width wh(r) := rx(r)− lx(r)+ 1 and the height ht(r) := bx(r)− tx(r)+ 1 as the
number of vertical and horizontal lines, respectively, intersecting r.

We start with some well-known data reduction rules for 2-Dimensional Rec-
tangle Stabbing, whose correctness is obvious.

1. If there is a rectangle that is intersected by no line from L, then the given
instance is a no-instance.

The Parameterized Complexity of the Rectangle Stabbing Problem 295

2. If there is a rectangle that is intersected by exactly one line l ∈ L, then delete
all rectangles that are intersected by l, delete l, and decrease k by one.

3. If there are two lines l1, l2 ∈ L such that every rectangle in R that is inter-
sected by l2 is also intersected by l1, then delete l2.

4. If there are two rectangles r1, r2 ∈ R such that every line in L that inter-
sects r1 also intersects r2, then delete r2.

The following observation is an immediate consequence of data reduction
rule 3.

Observation 2. In a reduced problem instance, for every vertical line vj ∈ V
there exist rectangles r, r′ ∈ R with lx(r) = j and rx(r′) = j. For every horizontal
line hi ∈ H there exist rectangles r, r′ ∈ R with tx(r) = i and bx(r′) = i.

In particular, Observation 2 implies that in a reduced problem instance there
exist rectangles r, r′ ∈ R such that wh(r) = 1 and ht(r′) = 1.

4.1 Case 1: Rectangles Have Bounded Height

We first consider the case where the height of every rectangle in R is bounded by
a number b. Even the case b = 1 where every rectangle is a horizontal segment
is NP-complete; Hassin and Megiddo [8] and Kovaleva and Spieksma [9,10] gave
approximation algorithms for this case and some of its variants.

For our FPT considerations, we use a simple search-tree algorithm using Ob-
servation 2. At every step, apply the data reduction rules until the current in-
stance is reduced, search for a rectangle r with rx(r) = 1, and branch as follows:
either select the single vertical line that intersects r or select one of the at most b
horizontal lines that intersect r.

Theorem 4. The restricted variant of 2-Dimensional Rectangle Stabbing
where the height ht(r) of every rectangle r ∈ R is bounded from above by a
number b can be solved in O((b + 1)k · nO(1)) time.

The algorithm described above can be modified to solve also the weighted version
of the problem, where every line has a weight that is bounded from below by 1
and from above by a number b′. The data reduction rules need modification for
this problem version; the running time of the algorithm is O((b + b′)k · nO(1)).

4.2 Case 2: Rectangles Have Bounded Width or Height

Next, we consider a generalization of Case 1: Here, for every rectangle r in R
the width wh(r) or the height ht(r) is bounded from above by a number b.
Clearly, even the case b = 1, where every rectangle is either a horizontal or a
vertical segment, is NP-complete; this case was already considered by Hassin
and Megiddo [8] from the approximation point of view.

The approach outlined in Section 4.1 does not work anymore since in a reduced
instance the height of every rectangle r with rx(r) = 1 may be unbounded.
However, there is again a search-tree algorithm. Let Rh ⊆ R be the set of

296 M. Dom and S. Sikdar

1 function greedy(R, L, k) {
// Input: R: a set of rectangles,
// L: a set of lines that are either all vertical or all horizontal,
// k: a nonnegative integer.
// Output: Either L′ ⊆ L or R0 ⊆ R.
// If all rectangles from R can be stabbed with a set L′ of at most k lines
// from L, then such a set L′ is returned.
// Otherwise, a set R0 of k + 1 rectangles from R is returned that cannot be
// stabbed with at most k lines from L.

2 R′ := R; R0 := ∅; L′ := ∅;
3 while R′ �= ∅: {
4 if L contains only vertical lines: { r := a rectangle from R′ with minimum rx(r); l := vrx(r); }
5 else { r := a rectangle from R′ with minimum bx(r); l := hbx(r); }
6 R0 := R0 ∪ {r}; L′ := L′ ∪ {l};
7 delete all rectangles from R′ that are intersected by l;
8 if |R0| = k + 1: return R0; }
9 return L′; }

Fig. 2. Greedy algorithm for stabbing a set R of rectangles with at most k lines chosen
from a given set L of vertical lines or horizontal lines

rectangles with bounded height and let Rv ⊆ R be the set of rectangles with
bounded width. Now, we write k as a sum kh + kv in all possible ways, where kh

and kv denote the number of horizontal and vertical lines, respectively, allowed
to be chosen into the solution. For every splitting of k into kh and kv, we run a
branching algorithm, which performs in every step the following actions.

First, compute the minimum number of vertical lines required to intersect
the rectangles in Rh. This is polynomial-time doable, and the simple greedy
algorithm in Fig. 2 obtains such a set of vertical lines. If Rh cannot be stabbed
with a set of at most kv vertical lines, then the algorithm in Fig. 2 outputs
a set R0

h ⊆ Rh of size kv + 1 such that the optimum number of vertical lines
needed to intersect all rectangles in R0

h is exactly kv + 1. Any solution for 2-Di-
mensional Rectangle Stabbing on (R, L, k) consisting of at most kv vertical
and at most kh horizontal lines must intersect at least one rectangle in R0

h by a
horizontal line. Hence, branch on the (kv + 1) · b possibilities to do so.

If, however, all rectangles in Rh can be intersected with kv vertical lines, we
use the greedy algorithm to check whether the rectangles in Rv can be intersected
with kh horizontal lines. If not, we branch on (kh + 1) · b possibilities in analogy
to the branching for R0

h described above; otherwise, we return the union of the
solutions returned by the two calls to the greedy algorithm. Fig. 3 shows a
pseudocode for this algorithm. The branching number is at most bk, which leads
to the following theorem.

Theorem 5. The restricted variant of 2-Dimensional Rectangle Stabbing
where the width or the height of every rectangle in R is bounded from above by
a number b can be solved in O((bk)k · nO(1)) time.

4.3 Case 3: Bounded Intersection

In this subsection we consider a restriction of 2-Dimensional Rectangle
Stabbing in which every horizontal line intersects at most b rectangles from R;

The Parameterized Complexity of the Rectangle Stabbing Problem 297

1 function stab(Rh, Rv , H, V, kh, kv) {
// Input: Rh: a set of rectangles with bounded height,
// Rv : a set of rectangles with bounded width,
// H, V : a set of horizontal lines and a set of vertical lines,
// kh, kv : nonnegative integers.
// Output: A subset of H ∪ V containing ≤ kh lines from H and ≤ kv lines from V
// that stabs all rectangles from Rh ∪ Rv, or null, if no such subset exists.

2 if greedy(Rh, V, kv) returns a set R0
h ⊆ Rh of rectangles: {

3 if kh = 0: return null;
4 for every rectangle r ∈ R0

h: for every line h ∈ H that intersects r: {
5 R′

h := Rh \Rh(h); R′
v := Rv \ Rv(h); H′ := H \ {h};

6 A := stab(R′
h, R′

v , H′, V, kh − 1, kv);
7 if A �= null: return A ∪ {h}; }
8 return null; }
9 if greedy(Rv , H, kh) returns a set R0

v ⊆ Rv of rectangles: {
10 if kv = 0: return null;
11 for every rectangle r ∈ R0

v : for every line v ∈ V that intersects r: {
12 R′

h := Rh \Rh(v); R′
v := Rv \Rv(v); V ′ := V \ {v};

13 A := stab(R′
h, R′

v , H, V ′, kh, kv − 1);
14 if A �= null: return A ∪ {v}; }
15 return null; }
16 return the union V ′ ∪H′ of the solutions returned by the two calls (lines 2 and 9) of greedy(); }

Fig. 3. Branching algorithm for stabbing a set Rv ∪ Rh of rectangles with at most kv

lines chosen from a given set V of vertical lines and at most kh lines chosen from a
given set H of horizontal lines. For a line l, we denote with Rh(l) and Rv(l) the set of
all rectangles in Rh and Rv , respectively, that are intersected by l.

this restriction was already considered by Kovaleva and Spieksma [9,10] from the
approximation point of view. For b = 1, this problem is clearly polynomial-time
solvable since the horizontal lines can just be ignored. For b = 2 the problem is
NP-complete, but one can easily find an O(kk ·nO(1))-time branching algorithm.
However, this algorithm cannot be generalized for the case b ≥ 3. In this subsec-
tion, we show that this restriction of 2-Dimensional Rectangle Stabbing is
fixed-parameter tractable with respect to the combined parameters k and b by
developing a problem kernel.

First, in addition to the previously mentioned data reduction rules, we use
the following data reduction rule:

5. If there are bk + 2 rectangles r1, . . . , rbk+2 ∈ R such that for each i ∈
{1, . . . , bk + 1} it holds that every vertical line that intersects ri also in-
tersects rbk+2, then delete rbk+2.

The correctness of this data reduction rule follows from the fact that k hori-
zontal lines cannot intersect all rectangles r1, . . . , rbk+1. Hence, if the instance
with rbk+2 deleted is a yes-instance, every solution must contain a vertical line
stabbing some of the rectangles r1, . . . , rbk+1, and this line also stabs rbk+2 in
the original instance, which, therefore, is also a yes-instance.

The following two observations are immediate consequences of data reduction
rule 5.

Observation 3. For every rectangle r in a reduced instance there are at most bk
rectangles r′ 	= r with lx(r′) ≥ lx(r) and rx(r′) ≤ rx(r).

298 M. Dom and S. Sikdar

Observation 4. In a reduced instance, for every j ∈ {1, . . . , n} there are at
most bk + 1 rectangles r with lx(r) = j.

Lemma 2. For every rectangle r ∈ R in a reduced instance it holds that rx(r) ≤
(bk + 1) · lx(r).

Proof. By induction on lx(r). Details are omitted due to lack of space.
�

Lemma 3. In a reduced instance, for every j ∈ {1, . . . , n − 1} there is a rect-
angle r ∈ R with lx(r) > j and rx(r) ≤ (bk + 1) · j + 1.

Proof. Assume for the sake of contradiction that there exists j ∈ {1, . . . , n − 1}
such that for every rectangle r ∈ R with lx(r) > j it holds that rx(r) > (bk +
1) · j + 1. Consider a rectangle r′ with rx(r′) = (bk + 1) · j + 1. Such a rectangle
exists by Observation 2. Then it holds that lx(r′) ≤ j due to our assumption.
But by Lemma 2 we have rx(r′) ≤ (bk + 1) · j, a contradiction.
�

Corollary 1. Let q ≤ n, and let {vj1 , vj2 , . . . , vjq } ⊆ V with j1 < j2 < . . . < jq

be a set of vertical lines stabbing all rectangles from R in a reduced instance.
Then for every i ∈ {1, . . . , q} it holds that ji ≤ ((bk + 1)i − 1)/bk.

Proof. By induction on i. For i = 1, the statement holds because in any reduced
instance there is a rectangle r with lx(r) = rx(r) = 1. Assume that the statement
holds for i − 1, that is, ji−1 ≤ ((bk + 1)i−1 − 1)/bk. By Lemma 3, there is a
rectangle r ∈ R with lx(r) > ji−1 and rx(r) ≤ (bk + 1) · ji−1 + 1. Clearly this
rectangle is not stabbed by any line from {vj1 , . . . , vji−1} and therefore, we have
ji ≤ rx(r) ≤ (bk + 1) · ji−1 + 1 ≤ ((bk + 1)i − 1)/bk.
�

Observation 5. If an instance of the restricted variant of 2-Dimensional
Rectangle Stabbing is a yes-instance, then there is a set V ′ ⊆ V of at
most bk vertical lines that intersect all rectangles in R.

Proof. Replace every horizontal line h in an optimal solution by at most b vertical
lines that intersect the rectangles intersected by h.
�

Theorem 6. The restricted variant of 2-Dimensional Rectangle Stabbing
where every horizontal line intersects at most b rectangles has a problem kernel
of size O((bk + 1)bk) and is therefore fixed-parameter tractable with respect to
the combined parameters k and b.

Proof. Given an instance of this restricted version, first find the optimal num-
ber of vertical lines needed to intersect all rectangles. As noted before, this is
polynomial-time doable. If the optimal solution size is greater than bk, report
that the given instance is a no-instance. Otherwise, by Corollary 1, we know
that every set of vertical lines {vj1 , . . . , vjbk

} that intersects all rectangles in R
has jbk ≤ ((bk + 1)bk − 1)/bk. If the given instance is a yes-instance, then R
cannot contain any rectangle r with lx(r) > jbk. For every j ∈ {1, . . . , jbk}, how-
ever, there are at most bk + 1 rectangles r with lx(r) = j due to Observation 4.
Hence, if R contains more than O((bk + 1)bk) rectangles, report that the given
instance is a no-instance.
�

The Parameterized Complexity of the Rectangle Stabbing Problem 299

5 Open Questions

We have shown that d-Dimensional Rectangle Stabbing with d ≥ 3 is W[1]-
hard. However, the parameterized complexity of the perhaps most interesting
case d = 2 remains open, as well as that of 2-C1P-Set Cover. Even for the
restriction of 2-Dimensional Rectangle Stabbing where no two rectangles
from R “overlap” (two rectangles r1, r2 overlap if there exist a vertical line v
and a horizontal line h that both intersect r1 and r2) we do not know the
parameterized complexity.

Acknowledgement

We thank Michael R. Fellows for explaining us the unpublished “k-Multi-
colored Clique reduction technique”.

References

1. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

2. Even, G., Rawitz, D., Shahar, S.: Approximation algorithms for capacitated rect-
angle stabbing. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006.
LNCS, vol. 3998, pp. 18–29. Springer, Heidelberg (2006)

3. Fellows, M.R.: Personal communication (September 2007)
4. Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized

complexity of multiple-interval graph problems (manuscript, 2007)
5. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)
6. Gaur, D.R., Ibaraki, T., Krishnamurti, R.: Constant ratio approximation algo-

rithms for the rectangle stabbing problem and the rectilinear partitioning problem.
J. Algorithms 43(1), 138–152 (2002)

7. Giannopoulos, P., Knauer, C., Whitesides, S.: Parameterized complexity of geo-
metric problems. The Computer Journal (2007), doi:10.1093/comjnl/bxm053

8. Hassin, R., Megiddo, N.: Approximation algorithms for hitting objects with straight
lines. Discrete Appl. Math. 30, 29–42 (1991)

9. Kovaleva, S., Spieksma, F.C.R.: Approximation of a geometric set covering prob-
lem. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 493–501.
Springer, Heidelberg (2001)

10. Kovaleva, S., Spieksma, F.C.R.: Approximation algorithms for rectangle stabbing
and interval stabbing problems. SIAM J. Discrete Math. 20(3), 748–768 (2006)

11. Langerman, S., Morin, P.: Covering things with things. Discrete Comput.
Geom. 33(4), 717–729 (2005)

12. Mecke, S., Schöbel, A., Wagner, D.: Station location – complexity and approxima-
tion. In: Proc. 5th ATMOS, IBFI Dagstuhl, Germany (2005)

13. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

Solving Medium-Density Subset Sum Problems

in Expected Polynomial Time: An Enumeration
Approach

Changlin Wan1,2 and Zhongzhi Shi1

1 Institute of Computing Technology, Chinese Academy of Sciences
Beijing 100080, China

2 Graduate University of Chinese Academy of Sciences
Beijing 100080, China

changlin.wan@gmail.com

Abstract. The subset sum problem (SSP) can be briefly stated as: given
a target integer E and a set A containing n positive integer aj , find a
subset of A summing to E. The density d of an SSP instance is defined by
the ratio of n to m, where m is the logarithm of the largest integer within
A. Based on the structural and statistical properties of subset sums,
we present an improved enumeration scheme for SSP, and implement it
as a complete and exact algorithm (EnumPlus). The algorithm always
equivalently reduces an instance to be low-density, and then solve it by
enumeration. Through this approach, we show the possibility to design
a sole algorithm that can efficiently solve arbitrary density instance in a
uniform way. Furthermore, our algorithm has considerable performance
advantage over previous algorithms. Firstly, it extends the density scope,
in which SSP can be solved in expected polynomial time. Specifically, It
solves SSP in expected O(n log n) time when density d ≥ c ·

√
n/ log n,

while the previously best density scope is d ≥ c · n/(log n)2. In addition,
the overall expected time and space requirement in the average case are
proven to be O(n5 log n) and O(n5) respectively. Secondly, in the worst
case, it slightly improves the previously best time complexity of exact
algorithms for SSP. The worst-case time complexity of our algorithm is
proved to be O(n · 2n/2 − c · 2n/2 + n), while the previously best result is
O(n · 2n/2).

1 Introduction

Let us denote N+ as the set of positive integers. The subset sum problem is a
classical NP-complete problem, in which one asks, given a set A = {a1, a2, ..., an}
with aj ∈ N+ (1 ≤ j ≤ n) and E ∈ N+, if there exists a subset A′ ⊆ A such that
the sum of all elements of A′ is E. More formally, the subset sum problem can
be formulated as an integer programming problem:

Maximize z =
n∑

j=1
ajxj

Subject to
n∑

j=1
ajxj ≤ E; ∀j, xj = 0 or 1.

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 300–310, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Solving Medium-Density Subset Sum Problems 301

Extensive study has been conducted on SSP and its related problems: knapsack
problem [1] and integer partition problem [2]. Many noticeable results have been
achieved. For example, the hardness distribution of those problems are carefully
investigated in [2] [3] [4] [5] et al., and it is now known that the hardness of SSP
varies greatly with density d (see [6]).

Low-density: an instance with density 0 < d < c, for some constant c, can be
efficiently solved by lattice reduction based algorithms, e.g., [7] [8] [9]. However,
these algorithms have two main limits. Firstly, they cannot solve instance with
d ≥ c efficiently, though the bound of constant c is recently extended from 0.6463
to 0.9408. Secondly, they are not complete, i.e., they may fail to find any solution
of an instance when the instance actually has solution.

High-density: an instance with density d > c ·n/ log n can be efficiently solved
by various techniques such as branch-and-bound, dynamic programming, and
number theory analysis. Specifically, the algorithm YS87 [10] adopts branch-
and-bound technique; NU69 [11] and HS74 [12] adopt dynamic programming
technique; ST02 [13] adopts both branch-and-bound and dynamic program-
ming; CFG89 [14] and GM91 [15] utilize number theory analysis. However,
these algorithms have two main limits. Firstly, they cannot solve instance with
d ≤ c · n/ logn efficiently. Secondly, their average-case complexity is expected to
increase with n, thus they have difficulty in handling large size instance.

Medium-density: an instance with density c ≤ d and d ≤ c ·n/ logn is usually
hard to solve. As far as we know, the algorithm DenseSSP [6] is the only previous
algorithm that works efficiently in part of this density scope. It solves uniformly
random instances with density d ≥ 16n/(logn)2 in expected polynomial time
O(n3/2).

Other than exact algorithms, it is worth to mention that highly efficient ap-
proximation methods (e.g., [16] [17]) can solve SSP at polynomial time and space
cost. However, they cannot guarantee the exactness of their solutions. In this pa-
per, we concentrate on solving SSP through exact methods, and we propose a
complete and exact algorithm, which we call EnumPlus. The two main ingre-
dients of EnumPlus are a new pruning mechanism and a new heuristic. Based
on the structural property of subset sums, the pruning mechanism allows to
dynamically partition the integer set into two parts and to prune branches in
the search tree. Based on the statistical property of subset sums, the heuristic
predicts which branch of the tree is more likely to contain the solution (and this
branch is explored first by the algorithm).

1.1 Contributions

The main contribution of this work is two-fold. First, by equivalently reducing
an instance to be low-density in linear time (see Section 4 and 6.2), we show the
possibility to design a sole algorithm that can efficiently solve arbitrary density
instance in a uniform way. Second, we propose a complete and exact algorithm
that has considerable advantage over previous exact algorithms. Specifically, it
extends the density scope, in which SSP can be solved in expected polynomial

302 C. Wan and Z. Shi

time, and it slightly improves the previously best worst-case time complexity of
exact algorithms for SSP.

1.2 Notation and Conventions

If it is not specifically mentioned, we assume that the elements of A are sorted in
decreasing order (a1 > a2 > .. > an), and use S to denote the sum of A. Following
the notation and description style of [1], we denote some basic notations that
are used for the algorithm description as follows:

Ak denotes the subset {ak, ak+1, .., an} of A;
Sk denotes the sum value of Ak

(
=

∑n
j=k aj

)
;

dk denotes the density of Ak

(
= n−k+1

log max{aj|aj∈Ak}
)
;

W (E) denotes the number of solutions for a given target E and integer set A;
x̂k denotes current partial solution {xj = 0, 1|1 ≤ j ≤ k};
ẑk denotes current partial solution value

(
=

∑k
j=1 ajxj

)
;

ĉk denotes current residual capacity (= E − ẑk);
¬ĉk denotes current residual opposite capacity (= Sk+1 − ĉk);
bMAX | (Ak, ĉk) denotes the maximum subset sum of Ak while bMAX ≤ ĉk;
bMIN | (Ak, ĉk) denotes the minimum subset sum of Ak while bMIN ≥ ĉk.

2 Motivation

There are two main causes of performance discrepancy of different enumeration
(searching) scheme. In the first place, the efficiency to prune infeasible solutions
contributes to the performance both in the worst case and in the average case. In
the second place, proper search strategy contributes to the performance in the av-
erage case. Specifically, algorithm HS74 has the best time complexity O(n · 2n/2)
in the worst case. It enumerates all possible solutions following breadth first strat-
egy; it prunes redundant branches by dividing the original problem into two sub-
problems and considering all equal subset sums as one state. However, HS74 does
not work well in two situations. Firstly, when processing low-density instance, al-
most all subset sums are different to each other, thus few pruning can be made.
Secondly, because of its breadth-first search strategy, HS74 is slow to approach
solutions when the size, i.e. breadth, of an instance is considerable large.

The central idea of our approach is dynamically partitioning the original in-
stance A[1..n] to two sub-instances A[1..k] and A[k + 1..n], 1 < k < n. We treat
the whole enumeration space as a binary tree (like the route colored by red in
Figure 1) that is stemmed from A[1] and ended by A[n]. During the enumera-
tion of A[1..n], all enumerated subset sums of A[k+1..n] are organized as “block
bounds”, which serve as block barriers that can prevent further expending of the
k-th level nodes. Therefore, for any partition point k, both A[1..k] and A[k+1..n]
are incrementally and simultaneously enumerated by enumerating A[1..n] as a
binary tree. In addition, a heuristic is utilized to accelerate the searching for

Solving Medium-Density Subset Sum Problems 303

global solution. The heuristic predicts which branch of the tree is more likely
to contain the answer. Therefore, a large problem is recursively reduced into a
smaller one in linear time, and it has high possibility that the two problems have
at least one common solution. To clarify the description of our algorithm, we
present the main phases separately.

3 Branch and Prune

The pruning mechanism is inspired by the partition operation of HS74. In HS74,
the original instance is divided into two sub-instances, and their subset sums are
separately computed and stored in two lists. For any subset sum si in a list, if
a subset sum sj can be found in the other list such that si + sj = E, a feasible
solution is located. While HS74 explicitly partitions the the oriental instance
only one time before enumeration, our algorithm implicitly performs partition
multiple times during enumeration.

A “block bound” of an integer set A is defined as a two elements structure
[bMAX , bMIN], in which bMAX and bMIN are subset sums of A. Furthermore, a
block bound must conform two constraints: (1) bMAX < bMIN ; (2) no subset
sum of A falls between bMAX and bMIN . Block bounds are recursively calculated
as follows:

If ĉk ≥ Sk, bMIN |(Ak, ĉk) = S, bMAX |(Ak, ĉk) = Sk.
If ĉk ≤ 0, bMIN |(Ak, ĉk) = 0, bMAX |(Ak, ĉk) = −ak+1.

If Sk > ĉk > 0, bMIN |(Ak, ĉk) = min

{
bMIN |(Ak+1, ĉk),
ak + bMIN |(Ak+1, ĉk − ak)

}
,

bMAX |(Ak, ĉk) = max

{
bMAX |(Ak+1, ĉk),
ak + bMAX |(Ak+1, ĉk − ak)

}
.

Let us consider a sorted integer array A[1..n], we create an n elements list V [1..n].
Each element V [k] of V [1..n] is a collection of block bounds of the integer set Ak.
Therefore, if there is an integer s = bMAX (or bMIN), [bMAX , bMIN] ∈ V [k + 1],
and s + ẑk = E, a feasible solution for target integer E is located. If there is
a block bound [bMAX , bMIN] ∈ V [k + 1] such that bMAX < ĉk < bMIN , we
can determine that there is no subset sum s of Ak+1 such that s + ẑk = E.
In this way, a block bound [bMAX , bMIN] of Ak acts as a bounded block that
prevents all attempts to find target E in Ak when bMAX ≤ E ≤ bMIN . To
describe the mechanism of block bound, a case that has an integer set A[1..4] =
{52, 40, 30, 16} and the target value E = 69 is illustrated in Figure 1.

As we can see in Figure 1, the first node ĉ1 = 69 is expended to two nodes ĉ2 =
{69, 17}, i.e., finding E = 69 and 17 in subset A[2..4]. Suppose the node having
larger E is always expended first, the first block bound [16, 138] is generated
when finding E = 69 in subset A[4..4]. Therefore, later finding of E = 39, 29
in subset A[4..4] is blocked by the block bound [16, 138] . In the same way, let
us observe the case of k = 3, the searching for ĉ3 = 29 is finished with the
generation of a block bound [16, 30], and the later searching for ĉ3 = 17 will be
blocked by the block bound [16, 30]. When the enumeration is finished, 6 block
bounds {[68, 70], [16, 30], [56, 70], [16, 30], [46, 138], [16, 138]} are generated.

304 C. Wan and Z. Shi

k

su
b

se
t

su
m

1
6

1
3

8

1
6

1
3

8
3
0

4
6

1
6

7
0

3
0

4
6

4
0

5
6

1
6

3
0

4
6

4
0

5
6

5
2

6
8

69 69

17

69

29

17

69

39

29

A[1]=52

V[1] V[2] V[3] V[4]

A[2]=40 A[3]=30 A[4]=16

0 0 0 0

1
3

8

1
3

8

7
0

69

1769

68 70

16 3056 70

-23

69

46 138

29

16 30

69

16 138

39

16 138-1

17

16 30

29

16 138

-1

-23

Fig. 1. The generation of block bounds for target value E = 69 and integer set A[1..4] =
{52, 40, 30, 16}

4 Heuristic Search Strategy

Instead of pure depth-first or breadth-first search strategy, we introduce a new
heuristic to accelerate the approach to feasible solution. At each state of enumer-
ation, the expanding branch that has larger possibility to find feasible solution
will be explored first. The heuristic is inspired by a previous study result of [3]
in the context of canonical ensemble, which is usually studied in the physics
literature. The main purpose of [3] is to study the property of the number
of solutions in SSP, and then explain the experiential asymptotic behavior of
W (E). As [3] suggested, given uniformly random input integer set A and target
value E, the number of solutions W (E) is a central symmetric function with
central point at E = S/2. Moreover, W (E) monotonically increases with the
increase of E in [0, S/2]. If we denote Pr[E] as the possibility of that there ex-
ists at least one solution of E, given two target value E1 and E2, we have that
Pr[E1] > Pr[E2] iff |S/2− E2| > |S/2− E1|. Suppose current partial solution is
x̂k, weather xk+1 = 1 (i.e. ĉk+1 = ĉk − ak+1) or xk+1 = 0 (i.e. ĉk+1 = ĉk) should
be tried first is decided by the inequation:

|(¬ĉk + ĉk)/2 − (ĉk − ak+1)| > |(¬ĉk + ĉk)/2 − ĉk| . (1)

Thus, we obtain the new heuristic: if inequation (1) holds, try xk+1 = 0 first,
otherwise, try xk+1 = 1 first.

5 The New Algorithm

Based on the “block bound” and “heuristic search” techniques, we propose a
complete and exact algorithm EnumPlus for SSP. In this algorithm, the whole

Solving Medium-Density Subset Sum Problems 305

search space is enumerated as a binary tree T . For any given target value v at a
branch node, the algorithm try to find both bMAX | (Ak, v) and bMIN | (Ak, v) in
the sub-tree Tk that has xk as root node. If the block bound is already existed
in the block bound list V [k], the existed block bound will be returned. Oth-
erwise, Tk is expended to find the block bound [bMAX | (Ak, v) , bMIN | (Ak, v)],
and the newly found block bound is inserted into V [k] as a new element. The
enumeration procedure terminates in 2 cases: 1) a feasible solution is found, 2)
it is backtracked to the root of T . At each branch node (xk) of T , if the target
value v is more possible to be found when xk = 0, then the branch xk = 0 is
enumerated first, otherwise the branch xk = 1 is enumerated first.

The pseudo-code of EnumPlus and SetSum are given in Algorithm 1 and
Algorithm 2 respectively, while the concrete implements of sub-algorithms QBB
and UBB are not given since they can be implemented by simply adopting
some classic data structures/algorithms (e.g., AVL-balance tree and Red-Black-
balance tree).

Algorithm 1. EnumPlus(A[1..N], E)
Input: an integer set A[1..N]; target value E.
Output: the maximum subset sum b1 ≤ E; the minimum subset sum b2 ≥ E.
1: allocate the vector of block bound sets V [1..N];
2: S ⇐ sum value of A[1..N];
3: [b1, b2] ⇐ SetSum(1, E);
4: destroy the vector of block bound sets V [1..N];
5: return [b1, b2];

6 Performance Analysis

Before analyzing the complexity of our algorithm, we assume that the require-
ment of time and space of our algorithm is maximized when target value E =
S/2. The assumption is reasonable because our algorithm simultaneously search
both E and S − E in the answer space. Moreover, E = S/2 is the hardest case
for the dynamic programming algorithm (see [15]). Therefore, all our following
analysis will be provided in case of that S/2 is chosen as target value E.

6.1 Worst-Case Complexity

Before the presentation of our results about the worst-case complexity of
EnumPlus, we first introduce a lemma as follows:

Lemma 1. For a certain subset A[k..n] of A, the number of block bounds gen-
erated by SetSum is less than min{2k−1, 2n−k+1}.

Proof. In case of 2k−1 ≥ 2n−k+1, the number of all possible subset sums of
A[k..n] is less than

(
2n−k+1 − 1

)
, therefore the number of all possible block

bounds of A[k..n] is less than 2n−k+1, i.e. min{2k−1, 2n−k+1}. In case of 2k−1 <

306 C. Wan and Z. Shi

Algorithm 2. SetSum(k, v)
Input: k = start position of residual subset A[k..n];

v = residential capacity ĉ.
Output: [bMAX , bMIN] = block bound of A[k..N] for ĉ = v.
1: if v ≥ Sk return [Sk, S];
2: if v ≤ 0 return [−ak+1, 0];
3: [bMAX , bMIN] ⇐ QBB(V [k], v); // query block bound [bMAX , bMIN] in V [k] such

that bMAX ≤ v ≤ bMIN .
4: if bMAX ≤ v ≤ bMIN then
5: if v = bMAX or v = bMIN then
6: identify solution; halt; // found solution
7: else
8: return [bMAX , bMIN];
9: end if

10: else if inequation 1 holds then
11: [b3, b4] ⇐ SetSum(k + 1, v);
12: [b1, b2] ⇐ SetSum(k + 1, v − A[k]); b1+ = A[k]; b2+ = A[k];
13: else
14: [b1, b2] ⇐ SetSum(k + 1, v − A[k], v2); b1+ = A[k]; b2+ = A[k];
15: [b3, b4] ⇐ SetSum(k + 1, v);
16: end if
17: bMAX ⇐ max{b1, b3}; bMIN ⇐ min{b2, b4};
18: UBB(V [k], bMAX , bMIN); // insert [bMAX , bMIN] into V [k]
19: return [bMAX , bMIN];

2n−k+1, the search tree has at most 2k−1 nodes at level k. Because each node
generates at most one block bound, the number of all possible block bounds of
A[k..n] is less than 2k−1, i.e. min{2k−1, 2n−k+1}.

About the worst-case complexity of EnumPlus, there are 2 propositions given as
follows:

Proposition 2. The worst-case space complexity of EnumPlus is O(2n/2).

Proof. For a subset Ak, the number of block bounds generated by SetSum is less
than min{2k−1, 2n−k+1}, therefore the total number Num(n) of generated block
bounds is

Num(n) ≤
n∑

k=1

min{2k−1, 2n−k+1} ≤ 2 ×
n/2∑

k=1

2k−1 ≤ 2n/2+1.

Thus the worst-case space complexity of EnumPlus is O(2n/2).

Proposition 3. The worst-case time complexity of EnumPlus is O(n · 2n/2 − c ·
2n/2 + n).

Proof. As we proved in the proposition 2, there are at most 2n/2+1 block bounds
are generated, and each recursive call for SetSum generates one block bound. The

Solving Medium-Density Subset Sum Problems 307

main time cost of each block bound is to search and insert it in a collection V [k].
There are some classic data structures/algorithms, such as AVL-balance tree and
Red-Black-balance tree, can efficiently manage the search and insert operations
on storable data collection. The worst-case time cost of these algorithms to search
or insert in the n elements collection is log n. Therefore we have the worst-case
time cost Time(n) of EnumPlus as follows:

Time(n) = 2 ×
n/2∑
k=1

2k−1∑
i=1

�log i� = 2 ×
n/2∑
k=1

k∑
i=1

((i − 1) × 2i−2)

= 2 ×
n/2∑
k=1

((k − 2) × 2k−1 + 1)

≤ (n − 6) × 2n/2 + n + 8

Thus the worst-case time complexity of algorithm EnumPlus is O(n · 2n/2 − c ·
2n/2 + n).

6.2 Average-Case Complexity

Before analyzing the average-case complexity of our algorithm, 2 lemmas are
introduced as follows:

Lemma 4. EnumPlus always reduces an instance A1 with ĉ1 = S1/2 to Ak with
ĉk, |ĉk − Sk/2| ≤ ak−1/2, in linear time.

Proof. [Induction] We first consider k = 2. Because of the heuristic search
strategy, EnumPlus first expends the branch that leads to a sub-problem, in
which |ĉk − Sk/2| is smaller. Then we have

ĉ2 =
{

S1/2, if |S1 − S2| ≤ |S1 − 2a1 − S2|
S1/2 − a1, if |S1 − S2| > |S1 − 2a1 − S2| .

Therefore,

ĉ2 − S2/2 =
{

a1/2, if |S1 − S2| ≤ |S1 − 2a1 − S2|
−a1/2, if |S1 − S2| > |S1 − 2a1 − S2| .

Thus EnumPlus reduces A1 with ĉ1 = S1/2 to A2 with ĉ2, |ĉ2 − S2/2| ≤ a1/2,
in 1 step.

Then we assume that EnumPlus reduces A1 with ĉ1 = S1/2 to Ak with ĉk,
|ĉk − Sk/2| ≤ ak−1/2, in k − 1 steps.

Consider Ak+1 and ĉk+1, we have

ĉk+1 =
{

ĉk, if |ĉk − Sk+1| ≤ |ĉk − 2ak+1 − Sk+1|
ĉk − ak, if |ĉk − Sk+1| > |ĉk − 2ak+1 − Sk+1| .

Combine the above definition of ĉk+1 and the assumption that |ĉk − Sk/2| ≤
ak−1/2, we have that |ĉk+1 − Sk+1/2| ≤ ak/2. Thus EnumPlus reduces A1 with
ĉ1 = S1/2 to Ak+1 with ĉk+1, |ĉk+1 − Sk+1/2| ≤ ak/2, in k steps.

308 C. Wan and Z. Shi

Lemma 5. Let M = 2m and the n elements of A is uniformly random in [1..M],
the number of distinct subset sums of A is expected to be O(n4).

Proof. We use S1, ..., SM to denote the sequence of all subsets of A listed in
non-decreasing order of their sums. Let the sum of subset Su be Pu =

∑
j∈Su

aj .
For any 2 ≤ u ≤ M , define Δu = Pu − Pu−1 ≥ 0, then Pu is a distinct subset
sum if Δu > 0, and P1 is always a distinct subset sum. Let every element aj of
A be a non-negative random variable with density function fj : [1..M] → [0, 1],
i.e., fj(t) = Pr(aj = t), t ∈ [1..M]. We notice that there is a theorem, which is
proved by [18] for general discrete distributions, shows that:

Suppose π = maxj∈[1..n](maxx∈[1..M](fj(x)) and μ ≥ maxj∈[1..n](E[aj]).
Then the expected number of dominating sets is E[q] = O(μn2(1 − e−πn2

)) =
O(μπn4).

Because a distinct subset sum is a special case of dominating set on condition
that weight wj and profit pj are both equal to aj , the number of distinct subset
sums is equal to the number of dominating sets on this condition. Since aj is
uniformly random in [1..M], we have π = 1/M , μ = M/2. Therefore, the number
of distinct subset sums is expected to be

E[q] = O(
M

2
· 1
M

· n4) = O(n4).

Assume that the elements of A is uniformly random in [1..M], we have 2
propositions about the complexity of EnumPlus in the average case:

Proposition 6. Given an integer set A whose elements are uniformly distributed,
the overall expected time and space requirement of EnumPlus in the average case
are O(n5 log n) and O(n5).

Proof. According to Lemma 5, the number of distinct subset sums of A is ex-
pected to be O(n4). Therefore the expected space cost is O(n ·n4) = O(n5), and
the expected time cost is O(n ·n4 · log (n4)) = O(n5 log n). Thus the overall time
and space complexity of EnumPlus are expected to be O(n5 log n) and O(n5)
respectively.

Proposition 7. EnumPlus solves SSP in O(n log n) time when density d ≥
c ·

√
n/ logn.

Proof. Consider an integer set A[1..n] whose elements are uniformly random in
[1..2m]. As the previous result shown by [3] and [2], if density d > 1, there is a
high possibility that the instance with target value S/2 has many solutions. Thus
it is expected that the sub-instance An−m+1 with Sk−m+1/2 has many solutions,
and it takes at most O(m2m/2) time to locate these solutions. Furthermore, as
we proved in Lemma 4, EnumPlus reduces instance A[1..n] with S/2 to sub-
instance Ak with Sk/2 in linear time. Thus the expected time complexity for
the problem A with S/2 is O(m2m/2) + O(n). If n = O(2m/2l), m

2 log m > l ≥ 1,
then the expected time complexity for instance A[1..n] with S/2 is O(nl log n),
and d = O(2l

√
2m/m) = O(2l

√
n/ logn). Thus EnumPlus solves SSP in O(n log n)

time when density d ≥ c ·
√

n/ logn.

Solving Medium-Density Subset Sum Problems 309

6.3 Comparison of Related Works

Among the previously exact algorithms for SSP, HS74 has the best time complex-
ity O(n · 2n/2) in the worst case. EnumPlus is an overall improvement of HS74,
its worst-case time complexity is O(n · 2n/2 − c · 2n/2 + n). As we described in
Section 2, HS74 always reduce the original instance to 2 half size sub-instances.
As we know, if the density of sub-instance is larger than 1, a solution is expected
to be found by solving one sub-instance whose size is half of the original instance.
However, by using a new heuristic, EnumPlus reduce the original instance to a
smaller sub-instance, in which the solution can be found (see the proof of Propo-
sition 7). Thus the performance of EnumPlus is better than HS74 in average case,
especially when handling large size instance. Specifically, EnumPlus solves SSP
in O(n log n) time when density d ≥ c ·

√
n/ log n. This density bound is better

than the density bound d ≥ c · n/(logn)2 of DenseSSP, which is the only pre-
vious algorithm working efficiently beyond the magnitude bound of O(n/ log n).
However, it must be noticed that the performance of EnumPlus is still not good
enough when handling low-density instance. When density d < 0.9408, some
incomplete algorithms, which are based on lattice reduction, are expected to
outperform EnumPlus.

7 Conclusions and Future Work

In this work, we proposed a new enumeration scheme that utilizes both structural
property and statistical property of subset sums to improve the efficiency of
enumeration. The improved enumeration scheme is implemented as a complete
and exact algorithm (EnumPlus). The algorithm always equivalently reduces
an instance to be low-density, and then solve it by enumeration. Through this
approach, we show the possibility to design a sole algorithm that can efficiently
solve arbitrary density instance in a uniform way. Furthermore, our algorithm has
considerable performance advantage over previous exact algorithms. It slightly
improves the previously best time complexity of exact algorithms for SSP in the
worst case; it extends the density scope to d ≥ c ·

√
n/ logn, in which SSP can

be solved in polynomial time. In addition, the overall expected time and space
requirements are proved to be O(n5 log n) and O(n5) respectively in the average
case.

As we previously described, arbitrary density SSP instance can be equiva-
lently reduced to and solved as low density instance by our approach. Thus the
efficiency of EnumPlus mainly relies on efficiently solving low density problem.
Since the lattice reduction approach shows particular efficiency when dealing low
density instance, the integration of the two approaches may be a potential way
to further improve the performance of our algorithm. Therefore, the relationship
between lattice reduction and enumeration scheme is an important issue in our
future work.

Acknowledgments. The authors thank the anonymous reviewers for their
helpful comments, and Dr. Qiufeng Wang for assistance with the experiments.

310 C. Wan and Z. Shi

References

1. Martello, S., Toth, P.: Knapsack problems: algorithms and computer implementa-
tions. John Wiley & Sons, Inc., New York (1990)

2. Borgs, C., Chayes, J., Pittel, B.: Phase transition and finite-size scaling for the
integer partitioning problem. Random Struct. Algorithms 19(3-4), 247–288 (2001)

3. Sasamoto, T., Toyoizumi, T., Nishimori, H.: Statistical mechanics of an np-
complete problem: subset sum. Journal of Physics A: Mathematical and General 34,
9555–9567 (2001)

4. Bauke, H., Franz, S., Mertens, S.: Number partitioning as random energy model.
Journal of Statistical Mechanics: Theory and Experiment (2004), P04003
http://arxiv.org/abs/cond-mat/0402010

5. Pisinger, D.: Where are the hard knapsack problems? Comput. Oper. Res. 32(9),
2271–2284 (2005)

6. Flaxman, A.D., Przydatek, B.: Solving medium-density subset sum problems in
expected polynomial time. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS,
vol. 3404, pp. 305–314. Springer, Heidelberg (2005)

7. Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems. J.
ACM 32(1), 229–246 (1985)

8. Frieze, A.M.: On the lagarias-odlyzko algorithm for the subset sum problem. SIAM
J. Comput. 15(2), 536–539 (1986)

9. Coster, M.J., Joux,A., LaMacchia, B.A., Odlyzko,A.M., Schnorr, C.P., Stern, J.: Im-
proved low-density subset sum algorithms. Comput. Complex. 2(2), 111–128 (1992)

10. Yanasse, H., Soma, N.: A new enumeration scheme for the knapsack problem.
Discrete applied mathematics 18(2), 235–245 (1987)

11. Nemhauser, G., Ullmann, Z.: Discrete dynamic programming and capital alloca-
tion. Management Science 15(9), 494–505 (1969)

12. Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack
problem. J. ACM 21(2), 277–292 (1974)

13. Soma, N., Toth, P.: An exact algorithm for the subset sum problem. European
Journal of Operational Research 136(1), 57–66 (2002)

14. Chaimovich, M., Freiman, G., Galil, Z.: Solving dense subset-sum problems by
using analytical number theory. J. Complex. 5(3), 271–282 (1989)

15. Galil, Z., Margalit, O.: An almost linear-time algorithm for the dense subset-sum
problem. SIAM J. Comput. 20(6), 1157–1189 (1991)

16. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum
of subset problems. J. ACM 22(4), 463–468 (1975)

17. Kellerer, H., Mansini, R., Pferschy, U., Speranza, M.G.: An efficient fully poly-
nomial approximation scheme for the subset-sum problem. J. Comput. Syst.
Sci. 66(2), 349–370 (2003)

18. Beier, R., Vöcking, B.: Random knapsack in expected polynomial time. In: STOC
2003: Proceedings of the thirty-fifth annual ACM symposium on Theory of com-
puting, pp. 232–241. ACM Press, New York (2003)

http://arxiv.org/abs/cond-mat/0402010

A Scalable Algorithm for Graph-Based Active

Learning

Wentao Zhao, Jun Long, En Zhu, and Yun Liu

National University of Defense Technology, Changsha, Hunan 410073, China

Abstract. In many learning tasks, to obtain labeled instances is hard
due to heavy cost while unlabeled instances can be easily collected. Ac-
tive learners can significantly reduce labeling cost by only selecting the
most informative instances for labeling. Graph-based learning methods
are popular in machine learning in recent years because of clear mathe-
matical framework and strong performance with suitable models. How-
ever, they suffer heavy computation when the whole graph is in huge
size. In this paper, we propose a scalable algorithm for graph-based ac-
tive learning. The proposed method can be described as follows. In the
beginning, a backbone graph is constructed instead of the whole graph.
Then the instances in the backbone graph are chosen for labeling. Finally,
the instances with the maximum expected information gain are sampled
repeatedly based on the graph regularization model. The experiments
show that the proposed method obtains smaller data utilization and av-
erage deficiency than other popular active learners on selected datasets
from semi-supervised learning benchmarks.

Keywords: Active Learning, Graph-based Learning.

1 Introduction

Supervised learning methods had been successfully used in many tasks. However,
their application may be limited due to the inability to obtain sufficient labeled
training instances because of heavy labeling cost associated with specific tasks.
Active learning is an important approach to reduce the burden of labeling effort
by only sampling the most informative instances to present for labeling by human
experts.

A general active learning method comprises two parts: a learning engine and
a sampling engine [1]. The whole process of active learning could be described as
follows. Initially, a labeled training set L and an unlabeled set UL are available.
Then, the learning engine trains a base classifier on the original training set L.
After that, the sampling engine chooses the most informative instance x from the
unlabeled instances and then has x labeled by human experts before < x, c(x) >
is added into the labeled set L where c(x) is the label of x. Then the learning
engine constructs a new classifier on the updated labeled set. The whole process
runs repeatedly until the accuracy of the base classifier reaches the target value.

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 311–322, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

312 W. Zhao et al.

According to the sampling criterion used to select instances for labeling, the
current research falls under three categories: uncertainty reduction, expected-
error minimization and version space reduction [2]. The uncertainty reduction
approach [3] selects the instances on which the current classifier has the least
certainty of prediction. Many sampling methods apply the similar strategy [4,5].
The expected-error minimization approach [6,7] samples the instances that min-
imize the future expected error rate on the test set. Such methods expect to
achieve the lowest error, but they are computationally expensive and their per-
formance depends on the loss function which they chose to estimate the future
error. The version space reduction approach [8,9] tries to select the instances
that can reduce the volume of version space by half. Query-by-Committee is a
representative method of this approach that constructs a committee consists of
randomly selected hypotheses from the version space and selects the instances on
which the disagreement within the committee is the greatest. The version space
reduction approach also includes QBag [10], QBoost [10] and Active DECO-
RATE [11].

A majority of these methods sample instances based on the prediction of the
base classifier (or the version space) trained on labeled instances and ignore the
effect of unlabeled instances. However, learning methods could be strengthened
by unlabeled instances to train stronger classifiers on certain assumptions. For
example, semi-supervised learning methods employ both unlabeled and labeled
instances to generate more powerful classifiers on the smoothness assumption
which says:

If two points x1, x2 in a high-density region are close, then so should be the
corresponding outputs y1, y2.

Holding such assumption, semi-supervised learning methods could be used to
strengthen active learners. Some researchers have made their contributions based
on such idea. McCallum and Nigam [12] presented an active learning method
which constructed the base classifier on labeled and unlabeled instances with the
EM algorithm for text categorization. It is efficient in text categorization, but
can only be suitable for the generative model. Muslea [2] proposed the multi-view
active learning method which selected the instances with the largest disagree-
ment from multi-view learners. However, it requires the learning task to be a
multi-view one.

In recent years, graph-based methods are popular in semi-supervised learn-
ing due to clear mathematical framework and strong performance with suitable
models. However, they suffer heavy computation when the whole graph is in
huge size. In this paper, we propose a scalable algorithm for graph-based ac-
tive learning which constructs a backbone graph instead of the whole graph
using the MST(Minimum Spanning Tree) algorithm, then chooses the instances
in the backbone graph for labeling first. After that, the active learner samples
the instances with the maximum expected information gain based on the graph
regularization model. The experiments show that the proposed method obtains
smaller data utilization and average deficiency than other popular active learners
on selected datasets from semi-supervised learning benchmarks.

A Scalable Algorithm for Graph-Based Active Learning 313

The rest of the paper is organized as follows. Section 2 provides the basic
notations. Section 3 presents the graph-based active learning method. Section
4 describes the proposed scalable algorithm for active learning called SGAL in
detail. Section 5 shows the experimental results of the SGAL method as well as
other methods on selected data sets. Section 6 draws the conclusion.

2 Preliminary

2.1 Basic Notation

Let X be the instance space and xi ∈ X represents an instance which is a
feature vector < xi1, xi2, · · · , xim >. Let Y = {y1, y2, · · · , yp} be the set of
possible labels.

Let c : X → Y be the target function which classifies any x ∈ X as an element
in Y . The notion < x, c(x) > denotes a labeled instance and < x, ? > denotes
an unlabeled instance where ? ∈ Y . L denotes the whole set of labeled instances
and U denotes the whole set of unlabeled instances.

There are l labeled instances: < x1, y1 >, · · · , < xl, yl >, and u unlabeled
instances:< xl+1, ? >, · · · , < xl+u, ? >. We have l � u. The total number of
instances is n = l + u.

Let G =< V, E > be a connected graph with vertices V and edges E. Each
vertex vi ∈ V represents an instance in L

⋃
U . Each edge < vj , vk >∈ E connects

two vertices vj and vk. We have the adjacency matrix Wnn of G and its entry
wij is the similarity between vi and vj . Here Wnn is given by Gaussian kernel of
width σ:

wij = e−
‖xi−xj‖2

2σ2 (1)

Furthermore, we define a diagonal matrix D, in which Dii =
∑n

j=1 wij .
Let Ymp be a m×p matrix on G, and yik in Ymp is the probability for instance

xi to be labeled as y ∈ Y .

3 The Graph-Based Active Learning method

Here we present an active learning method based on the graph regularization
model [13]. The graph regularization model, which is a semi-supervised learning
method, employs label propagation on graphs for smoothness. In our method, the
learning engine constructs the base classifier based on the graph regularization
model and the sampling engine samples the instance with the largest expected
information gain.

3.1 Learning Engine in GAL

Regularization on Graph. Based on the smoothness assumption, the graph
G has two constraints: first, the labeled vertices should be consistent with the

314 W. Zhao et al.

initial labels; second, the labels on G should not be changed quickly between
neighboring vertices. Then we obtain the following labeling cost[13]:

C(Ŷ) =
l∑

i=1

(ŷi − yi)2 + μ · (1
2

n∑

i,j=1

wij(ŷi − ŷj)2) (2)

where yi denotes the label of the instance xi and ŷi denotes the predicted label
of the instance xi. Then the first part of Eq.(2) evaluates the consistence with
the initial labels, the second part of Eq.(2) evaluates the consistence with the
smoothness assumption, and μ is a trade-off between them.

Moreover,
∑l

i=1 (ŷi − yi)2 can be rewritten as the matrix form: ‖Ŷl − Yl‖2,
and 1

2

∑n
i,j=1 wij(ŷi − ŷj)2 can also be rewritten as the matrix form:

1
2

n∑

i,j=1

wij(ŷi − ŷj)2 = Ŷ T LŶ (3)

where L = D − W is the un-normalized graph Laplacian.
The aim is to find Ŷ which minimize the labeling cost according to Eq. (2).

After calculating the derivative of Eq.(2) and setting it to 0, we obtain:

Ŷ = (S + μL)−1SY (4)

where Sii = I[l](i) [13]. Then the new labels can be calculated by a simple
matrix inversion. Eq.(4) shows that the predicted labels on unlabeled instances
rely on the graph Laplacian L and the initial labels Y on labeled instances.
Thus the graph regularization model can be viewed as that the original labels
are propagated to the whole graph depending on the intrinsic structure of the
graph.

Induction Learning on Graph. When a new instance x should be predicted
by the regularization framework, we simply use the following function to calcu-
late the label of x [13]:

ŷ =

∑
j WX(x, xj)ŷj∑
j WX(x, xj)

(5)

where WX is the Gaussian kernel function as:

WX(xi, xj) = e−
‖xi−xj‖2

2σ2 (6)

We take Eq.(5) as the base classifier in the GAL method.

3.2 Sampling Engine in GAL

Just using the graph regularization model as the base classifier in learning engine
is not enough for active learning. The sampling criterion should also be modified
to fit for the graph Regularization model.

A Scalable Algorithm for Graph-Based Active Learning 315

Maximizing Expected Information Gain. Let H(xi) be the entropy of label
probability distribution of instance xi. Then let H(G) denote the sum of H(x)
on all instances. Then

H(G) =
∑

xi∈L
⋃

U

p∑

k=1

(−yik log yik) (7)

Thus, H(G) reflects the certainty of the label probability distribution on
L

⋃
U . Larger H(G) indicates more uncertain labels. If all instances were la-

beled, H(G) equals to 0.
Therefore, we try to reduce H(G) as possible as we can in learning tasks. When

we select some instances for labeling, H(x) on those instances were changed
from some positive value to 0. Meanwhile, the process of graph regularization
could also change H(G). When the labels spread from labeled instances to those
unlabeled instance, H decreased on those unlabeled instances. Since we train
the semi-supervised classifier in learning engine, we should select the instance
which could reduce H(G) most after label propagation.

Let IG(G, xi) denote the information volume gained when xi was labeled
based on regularization model. Then

IG(G, xi) = H(RG(G)) − H(RG(Lable(G, v)))) (8)

where RG(G) is the regularization operation on G, and Lable(G, v) is the oper-
ation which labels v in G.

To find the most informative instance for labeling, we sample the instances
with the maximum expected information gain. Thus, the sampling criterion is

ESi =
∑

y∈Y

p(y|xi)Gain(G, vi, y) (9)

where Gain(G, vi, y) denotes the value of IG(G, vi) when labeling vi as y and
p(y|xi) denotes the probability of xi being labeled as y. We sample the instances
with the largest ESi.

3.3 The Process of Graph-Based Active Learning

The process of GAL method is given in Algorithm 1.

4 The Scalable Graph-Based Active Learning method

The time complexity of the original graph-base active learning is O(n4) and the
memory complexity of that is O(n2). It can not scale well when U is in large size.
Thus we propose a scalable active learning method to deal with this problem.
The method includes two aspects: backbone graph construction and two-stage
active learning.

The main strategy of backbone graph construction is keeping a subset S of
the unlabeled instances to represent U . It can be described as follows: first, we

316 W. Zhao et al.

Algorithm 1. The GAL method
Input: an initial labeled set L, an unlabeled set UL, a stopping criterion S, and an
integer M which specifies the number of instances sampled in each iteration.
Begin:
Construct G, W , D;
repeat

1.For each instance xi ∈ UL compute

ESi =
∑

y∈Y

p(y|xi)Gain(G, vi, y) (10)

2.Select a subset A of size M from UL in which instances xi have the largest Rxi ;

3.Remove A from UL;
4.Label instances in A;
5.Add A into L;

until the stopping criterion S is satisfied
End.
Output:The classifier I trained by the final labeled set L as Eq.(5).

construct a backbone graph B with the size of m(m � n) on unlabeled instances
to reduce the scale of the original graph and maintain the geometry in data;
second, to utilize the impact of ”label propagation”, a few unlabeled instances
of size r (r � n) are chosen randomly according to the same distribution as U
and added into S . Thus, the computing and storing expense could be limited
to a reasonable level.

Furthermore, the two-stage active learning can be described as follows. First,
we select all the instances in B for labeling and train the semi-supervised learning
classifier on B. Second, we run the GAL method until the target accuracy is
reached.

The details will be introduced in the following sections.

4.1 Backbone Graph Construction

MST Clustering. Since the backbone graph B should reflect the geometry
of the original graph G, the area with high density should have representative
nodes in B. Therefore, clustering technology is a good choice to obtain those
high dense areas.

We choose the following method to divide U into clusters. First, we compute
a minimum spanning tree on G. Second, we break the edge with the smallest
similarity repeatedly until m clusters are generated.

Center Points Selection. After MST clustering, areas with high density are
found. We choose one point in each cluster to represent all the points in it.

We define Ii as the influence degree of a point xi in a cluster Clu.

A Scalable Algorithm for Graph-Based Active Learning 317

Ii =
∑

xj∈Clu

wij (11)

Ii reflects the influence of xi on other points in the cluster Clu.
Thus, we select the point with the highest influence degree in each cluster as

the center points and add them into the backbone graph.

Random Points Selection. The vertices of the backbone graph represent the
high dense areas of U , thus they maintain the geometry structure of G. However,
such backbone graph can not propagate labels because the points in it share very
low similarity. Then we choose a few unlabeled instances of size r (r � n) at
random according to the same distribution as U .

4.2 Two-Stage Active Learning

In the first stage of our SGAL, we simply select the points in B for labeling.
Those points have the largest influence degree in each cluster.

In the second stage of our SGAL, we run the standard graph-based active
learning method based on the reduced unlabeled instances.

The process of the SGAL method is given in Algorithm 2.

Algorithm 2. The SGAL method
Input: an initial labeled set L, an unlabeled set UL, a stopping criterion S, and an
integer M which specifies the number of instances sampled in each iteration.
Begin:
Construct G, W , D;
Run MST algorithm on G and generate clusters as section 4.1 describes;
Select center points in each cluster as B and random points, keep them in the unla-
beled instances and abandon the rest unlabeled instances;
Remove B from UL;
Label instances in B;
Add B into L;
repeat

1.For each instance xi ∈ UL compute

ESi =
∑

y∈Y

p(y|xi)Gain(G, vi, y) (12)

2.Select a subset A of size M from UL in which instances xi have the largest ESi;

3.Remove A from UL;
4.Label instances in A;
5.Add A into L;

until the stopping criterion S is satisfied
End.
Output:The classifier I trained by the final labeled set L as Eq.(5).

318 W. Zhao et al.

4.3 Efficiency Improving

The original GAL method should compute matrix inversion for each unlabeled
instance in each iteration. Thus the total requirements for computation and
storing are O(n4) and O(n2), respectively.

In the SGAL method, the size of the constructed graph was reduced from
l + u to l + r + m, where l, m, r � u.

For MST construction, we can use Prim’s or Kruskal’s algorithm. The running
time of Prim’s algorithm is O(e log n) while the running time of Kruskal’s algo-
rithm is O(e log e), where e denotes the number of edges in G. Which algorithm
should be chosen depends on the problem to resolve.

Moreover, the running time of the two-stage active learning is O(r · (l + r)3)
and the storing expense of that is O((l + r + m)2).

5 Experiment

5.1 Methodology

To evaluate the performance of our SGAL method, we conducted a series of
experiments. Four representative active learning algorithms were tested:

– Random sampling: choosing the instance at random;
– Uncertainty sampling: choosing the instance with the largest uncertainty of

prediction, as in [3];
– QBC sampling: choosing the instance that the committee members disagree

with most, as in [8];
– SGAL sampling(the method introduced in this paper).

Naive bayes was selected to be the base classifier of all other active learners. 10-
fold cross-validation was used to obtain the target accuracy of the base classifier.
The target accuracy is defined as the accuracy obtained by the base learning
method trained on the whole dataset. All results presented were averages of ten
runs. The committee size in QBC were set to 5. For our proposed SGAL method,
we set the size of B and R to 20 and 200, respectively.

We divided each dataset into 10 equal partitions at random and each in turn
was used for testing and the remainder was used as the sampling set. Before the
test started, the sampling set was divided into two parts: one was the labeled set
and another was the unlabeled set. The labeled set contained only one instance
selected randomly and the unlabeled set contained all the rest. When the test
started, the active learner sampled 1 instance from the unlabeled set for labeling
in each iteration. While the active learner reached the target accuracy, the test
stopped.

5.2 Datasets

The experiments were conducted on g241c, handwritten digits, coil and sec-
str5000. These datasets were from the benchmarks of Semi-supervised learning

A Scalable Algorithm for Graph-Based Active Learning 319

[13]. The reason we selected these datasets for experiments is that they can be
easily obtained to compare different active learners and are widely accepted as
the benchmarks for semi-supervised learning.

Table 1 shows the basic properties of these datasets.

Table 1. Basic properties of the datasets

Data set Classes Dimension Instances Comment

g241c 2 241 1500 artificial
digit1 2 241 1500 artificial
coil 6 241 1500 natural
secstr5000 2 315 5000 natural

5.3 Metrics

Two metrics were used to compare the performance of different active learners:
data utilization [11] and average deficiency [14].

Data utilization is defined as the number of sampling that an active learner
requires to reach the target accuracy. This metric reflects how efficiently the
active learner can use the data. Smaller values of data utilization indicate more
efficient active learning. Moreover, it is employed by many other researchers
[11,10].

Average deficiency is used to evaluate how much an active learner could im-
prove accuracy over random sampling. It is defined as:

Defn(Active) =
∑n

t=1(Accn(Random) − Acct(Active))∑n
t=1(Accn(Random) − Acct(Random))

(13)

where n denotes the size of the whole unlabeled set, Active denotes the active
learner we want to evaluate, Random denotes the random sampling method, and
Acct(Active) denotes the average accuracy achieved by Active after t sampling.
Furthermore, the value of Defn(Active) is always non-negative and smaller values
in [0, 1) indicate more efficient active learning [14].

5.4 Results

We summarized the data utilization of the different active learners in Table 2
and deficiency in Table 3. In Table 2 and Table 3, the least data utilization and
the least deficiency are marked in bold in each row. In the head of the tables ,
target accuracy is denoted by TA.

According to Table 2 and Table 3, it shows that our SGAL method has a
superior performance than other sampling methods on most datasets. On sec-
str5000, the SGAL method requires just 376 labeling to reach the target accuracy
while the random sampling method requires 564. The former obtains almost 1/3
labeling saving.

320 W. Zhao et al.

Table 2. Average data utilization of the different active learners

Data set Random Uncertain QBC SGAL TA

g241c 291 268 349 220 81.23%
digit1 74 55 110 41 95.56%
coil 288 351 172 156 64.42%
secstr5000 564 552 511 376 65.29%

Table 3. Average deficiency of the different active learners

Data set Uncertain QBC SGAL

g241c 0.7525 0.6096 0.5251
digit1 0.2436 0.1873 0.1149
coil 0.6690 0.5979 0.5036
secstr5000 1.1854 1.2275 0.6391

Figure 1-4 show the learning curves on g241c, digit1, coil and secstr5000 .
In all these figures, the vertical axis shows the accuracy of the classifiers and
the horizontal axis shows the number of labels. To compare the beginning stage
of SGAL method with other methods, we recorded the accuracy of the SGAL
method after each instance in the backbone graph was selected for labeling.

In Figure 1, all the learning curves climb substantially. The SGAL method
finally reaches the highest point.

In Figure 2, 3 and 4, our SGAL method almost outperforms the other active
learners throughout the whole learning curve. The SGAL method starts with a
very sharp increase and then rises steadily in these figures.

Random
Uncertainty
QBC
SGAL

0 20 40 60 80 100
45

50

55

60

65

70

75

number of labeling

ac
cu

ra
cy

(%
)

Random
Uncertainty
QBC
SGAL

0 20 40 60 80 100

50

60

70

80

90

number of labeling

ac
cu

ra
cy

(%
)

Fig. 1. learning curves on g241c Fig. 2. learning curves on digit1

A Scalable Algorithm for Graph-Based Active Learning 321

Random
Uncertainty
QBC
SGAL

0 20 40 60 80 100
0

20

40

60

number of labeling

ac
cu

ra
cy

(%
)

Random
Uncertainty
QBC
SGAL

0 20 40 60 80 100
40

45

50

55

60

number of labeling

ac
cu

ra
cy

(%
)

Fig. 3. learning curves on coil Fig. 4. learning curves on secstr5000

It is interesting that our SGAL gets very prominent performance improving
than other methods at the beginning of all tests. This indicates that instances
in the backbone graph play a key role in accuracy promoting.

6 Conclusion

In this paper, we use graph-based semi-supervised learning, which employs unla-
beled instances when training, to strengthen active learning. However, standard
graph-based learning methods suffer heavy burden of computing and memory
requirements. For consideration of efficiency saving, we propose a scalable algo-
rithm for graph-based active learning which constructs a backbone graph instead
of the whole graph using MST algorithm, then chooses the instances in the back-
bone graph for labeling first. After that, the active learner selects the instances
which could gain the maximum expected information gain based on the graph
regularization model. Thus the computing complexity and memory complexity
become O(r · (l + r)3) and O((l + r + m)2), respectively. The experiments show
that the proposed method outperforms the traditional sampling methods on
most selected datasets.

We make several contributions in this paper. First, a general framework for
semi-supervised learning method to strengthen active learning was proposed.
Second, a backbone graph construction method for complexity reduction was
provided. Third, the strategy that selects instances according to global geometry
of unlabeled instances was presented.

We would like to pursue the following directions: extending the proposed
method to the imbalanced-data problem and developing efficient algorithms for
active learning on manifold structures.

Acknowledgments. This research was supported by the National Natural Sci-
ence Foundation of China (No.60603015, 60603062).

322 W. Zhao et al.

References

1. Hieu, T.N., Arnold, S.: Active learning using pre-clustering. In: Proc. 21th Inter-
national Conf. on Machine Learning, Banff. Morgan Kaufmann (2004)

2. Muslea, I., Minton, S., Knoblock, C.A.: Active learning with multiple views. Jour-
nal of Artificial Intelligence Research 27, 203–233 (2006)

3. Lewis, D.D., Gale, W.A.: A sequential algorithm for training text classifiers. In:
17th ACM International Conference on Research and Development in Information
Retrieval, pp. 3–12. Springer, Heidelberg (1994)

4. Tong, S., Koller, D.: Support vector machine active learning with applications to
text classification. Journal of Machine Learning Research 2, 45–66 (2001)

5. Schohn, G., Cohn, D.: Less is more: Active learning with support vector machines.
In: Proc. 17th International Conf on Machine Learning, pp. 839–846. Morgan Kauf-
mann, San Francisco (2000)

6. Cohn, D.A., Ghahramani, Z., Jordan, M.I.: Active learning with statistical models.
Journal of Artificial Intelligence research 4, 129–145 (1996)

7. Roy, N., McCallum, A.: Toward optimal active learning through sampling estima-
tion of error reduction. In: Proc. 18th International Conf. on Machine Learning,
pp. 441–448. Morgan Kaufmann, San Francisco (2001)

8. Seung, H.S., Opper, M., Sompolinsky, H.: Query by committee. In: Proceedings
of the Fifth Workshop on Computational Learning Theory, pp. 287–294. Morgan
Kaufmann, San Mateo (1992)

9. Freund, Y., Seung, H.S., Shamir, E., Tishby, N.: Selective sampling using the query
by committee algorithm. Machine Learning 28, 133–168 (1997)

10. Abe, N., Mamitsuka, H.: Query learning using boosting and bagging. In: Proc. 15th
International Conf. on Machine Learning, Madison, pp. 1–10. Morgan Kaufmann
(1998)

11. Melville, P., Mooney, R.J.: Diverse ensembles for active learning. In: Proc. 21th Inter-
national Conf. on Machine Learning, Banff, pp. 584–591. Morgan Kaufmann (2004)

12. McCallum, A., Nigam, K.: Employing em and pool-based active learning for text
classification. In: ICML, pp. 350–358 (1998)

13. Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-Supervised Learning. MIT Press,
Cambridge (2006)

14. Baram, Y., El-Yaniv, R., Luz, K.: Online choice of active learning algorithms. In:
ICML, pp. 19–26 (2003)

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 323–329, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Supervised Feature Extraction Algorithm for
Multi-class

Shifei Ding1,2, Fengxiang Jin3, Xiaofeng Lei1, and Zhongzhi Shi2

1 School of Computer Science and Technology, China University of Mining and Technology,
Xuzhou 221008 China

2 Key Laboratory of Intelligent Information Processing, Institute of Computing Technology,
Chinese Academy of Sciences, Beijing 100080 China

3 College of Geoinformation Science and Engineering, Shandong University of Science and
Technology, Qingdao 266510 P.R. China

dingsf@cumt.edu.cn

Abstract. In this paper, a novel supervised information feature extraction algo-
rithm is set up. Firstly, according to the information theories, we carried out
analysis for the concept and its properties of the cross entropy, then put forward
a kind of lately concept of symmetry cross entropy (SCE), and point out that the
SCE is a kind of distance measure, which can be used to measure the difference
of two random variables. Secondly, Based on the SCE, the average symmetry
cross entropy (ASCE) is set up, and it can be used to measure the difference de-
gree of a multi-class problem. Regarding the ASCE separability criterion of the
multi-class for information feature extraction, a novel algorithm for information
feature extraction is constructed. At last, the experimental results demonstrate
that the algorithm here is valid and reliable, and provides a new research ap-
proach for feature extraction, data mining and pattern recognition.

1 Introduction

Feature extraction is one of the most importmant steps in pattern recognition, data
mining, machine learning and so on[1,2]. In order to choose a subset of the original
features by reducing irrelevant and redundant, many feature selection algorithms have
been studied. The literature contains several studies on feature selection for unsuper-
vised learning in which he objective is to search for a subset of features that best
uncovers “natural” groupings (clusters) from data according to some criterion. For
example, principal components analysis (PCA) is an unsupervised feature extraction
method that has been successfully applied in the area of face recognition, feature
extraction and feature analysis[3-5]. But the method of PCA is effective to deal with
the small size and low-dimensional problems, and gets the extensive application in
Eigenface and feature extraction. In high-dimensional cases, it is very difficult to
compute the principal components directly[6]. Fortunately, the algorithm of Eigen-
faces artfully avoids this difficulty by virtue of the singular decomposition technique.
Thus, the problem of calculating the eigenvectors of the total covariance matrix, a
high-dimensional matrix, is transformed into a problem of calculating the eigenvec-
tors of a much lower dimensional matrix[7].

324 S. Ding et al.

Now an important question is how to deal with supervised information feature ex-
traction. For supervised feature extraction problem, some authors have studied by
discriminate analysis, bayes decision theory et al. But these methods depend on prob-
ability distributions of some classifications. In this paper, the authors have studied this
field on the basis of these aspects. Firstly, we study and discuss the information the-
ory, cross entropy theory, and point out its shortage. Secondly, a new concept of
symmetry cross entropy (SCE) is put forward, and proved that the SCE is a kind of
distance measure. At the same time, based on the SCE, we give the average SCE, i.e.
ASCE. Which is regarded multi-class separability criterion. Thirdly, according to
ASCE, a new information feature extraction algorithm is constructed. At last, the
proposed algorithm here is tested in practice, and the experimental results indicate
that it is efficient and reliable.

2 Feature Extraction Algorithm

In order to set up information feature extraction algorithm, we firstly discuss the fol-
lowing new concept of symmetry cross entropy and feature extraction theorem.

2.1 Symmetry Cross Entropy

Shannon[8] put forward the concept of information entropy for the very first time in
1948. The cross entropy (CE), or the relative entropy, is used for measuring differ-
ence information between the two probability distributions. But the CE satisfies only
nonnegativity, normalization and dissatisfies symmetry and triangle inequation. For
this reason, we carry out the improvement, and give the following definition.

Definition 1. Let X be a discrete random variable with two probability distribution
vectors P and Q , where),,,(21 npppP = ,),,,(21 nqqqQ = , the CE between

P and Q is defined as

)||(QPH ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==∑

= i

i
n

i i

i
i q

p
E

q

p
p loglog

1

 (1)

In the above definition denoted by formula (1), we show that the CE is always non-
negative and is zero if and only if ii qp = . However, it is not a true distance between

distributions since it is not symmetric and does not satisfy the triangle inequality. In
order to make it true distance between distributions, we improve the CE as follows.

Definition 2. Suppose that the)||(QPH and)||(PQH are CEs of P to Q and Q

to P respectively, the symmetric cross entropy (SCE) between P and Q , denoted by

),(QPD , defined as

)||()||(),(PQHQPHQPD +=

 ∑∑
==

+=
n

i
ii

n

i
ii qqpp

11

loglog ∑∑
==

−−
n

i
ii

n

i
ii pqqp

11

loglog (2)

 A Supervised Feature Extraction Algorithm for Multi-class 325

It is called Symmetric Cross Entropy (SCE) of P and Q .

According to the definition of the SCE, we have the following theorem.

Theorem 1. Suppose that the SCE is defined by formula (2), then the SCE is a kind of
distance measure, i.e.),(QPD satisfies basic properties as follows.

(Ⅰ) Non-negativity: 0),(≥QPD , and QPQPD =⇔= 0),(;

(Ⅱ) Symmetry:),(),(PQDQPD = ;

(Ⅲ) Triangle inequation: Suppose that),,,(21 nwwwW = is another probability

distribution vector of the discrete random variable X , then

),(),(),(QWDWPDQPD +≤ (3)

Therefore, the SCE is a distance measure, which can be used to measure the degree
of variation between two random variables. The SCE is considered as separability crite-
rion of the two-class for information feature extraction. It can be seen that the smaller
the SCE is, the smaller the difference of two-class. In particular, when the SCE=0, the
two-class are same completely. For information feature extraction, under the condition
of the given reduction dimensionality denoted by d , we should select such d charac-
teristics that make the value of the SCE approach maximum. For convenience, we use
the following function, denoted by),(QPH , in instead of above the SCE.

),(QPH ∑
=

−=
n

i
ii qp

1

2)((7)

For a multi-class problem, based on the formula (4), the SCE is computed for every
class i and j , where i and j denote number of class

 ∑
=

−=
n

k

j
k

i
kij ppH

1

2)()()((5)

The average symmetric cross entropy (ASCE) can be expressed as follows

 ∑∑∑∑∑
= = == =

−==
M

i

M

j

n

k

j
k

i
k

j
k

i
k

M

i

M

j
ij

j
k

i
k ppppdppH

1 1 1

2)()()()(

1 1

)()()((6)

being equivalent to the SCE, we should select such d characteristics that make the
value of H approach maximum. In fact, H approaching maximum is equivalent to

ijH approaching maximum, so information feature extraction for a multi-class prob-

lem is also equivalent to a two-class problem.
In order to set up the information feature extraction algorithm, we first give the fol-

lowing theorem.

326 S. Ding et al.

Theorem 2. Suppose }{)1(
jx),,2,1(1Nj = and }{)2(

jx),,2,1(2Nj = with covari-

ance matrices)1(G and)2(G are squared normalization feature vectors, so-called
squared normalization indicates

 1)(
1

2)(=∑
=

n

k

i
jkx (7)

where)2,1()(=ix i
jk denotes the kth feature component of the feature vector)(i

jx . Then

the SCE, i.e. the),(QPH =maximum if and only if the coordinate system is composed

of d eigenvectors corresponding to the first d eigenvalues of the ma-

trix)2()1(GGA −= .

So for }{)1(
jX),,2,1(1Nj = and }{)2(

jX),,2,1(2Nj =),,2,1(2Nj = with

covariance matrices)1(G and)2(G are squared normalization feature vectors. The k-

th feature component of)(i
jX is denoted by),,2,1;2,1()(nkix i

jk == , and the square

mean of each component for every class is)(i
kγ ∑

=

=
iN

j

i
jk

i

x
N

1

2)()(
1

, where

nji ,,2,1;2,1 == . Obviously 0)(≥i
kγ , and then

 ∑ ∑∑
= ==

=
n

k

N

j

i
jk

i

n

k

i
k

i

x
N

1 1

2)(

1

)()(
1γ ∑ ∑

= =

=
iN

j

n

k

i
jk

i

x
N

1 1

2)()(
1

1
1

1

==∑
=

iN

j iN
 (8)

Namely 0)(≥i
kγ and 1

1

)(=∑
=

n

k

i
kγ . Therefore, we can comprehend }{)(i

kγ as the prob-

ability distribution defined by)(i
jX . Suppose that the),(lk element of symmetric

matrix)(iG)2,1(=i is ∑
=

=
iN

j

i
jl

i
jk

i

i
kl xx

N
g

1

)()()(1
. Record)(iγ),,,()()(

2
)(

1
i

n
ii γγγ= , then

every components of)(iγ is element of)(iG)2,1(=i in diagonal line. Let

∑
=

−==
n

k
kkss

1

2)2()1()2()1()(),(γγγγ (9)

2.2 Feature Extraction Algorithm

Suppose three classes C1, C2, and C3 with covariance matrices)1(G ,)2(G and)3(G
are squared normalization feature vectors. According to the discussion above, an

 A Supervised Feature Extraction Algorithm for Multi-class 327

algorithm of information feature extraction based on the ASCE is derived and is as
follows.

Step 1. Data pretreatment. Perform square normalization transformation for two

classes original data according to the formula (7), and get data matrix)3()2()1(,, xxx
respectively.

Step 2. Compute symmetric matrix CBA ,, . Calculate the covariance matrixes
)3()2()1(,, GGG and then get symmetric matrix as follows.

)2()1(GGA −= ,)3()1(GGB −= ,)3()2(GGC −= (10)

Step 3. Calculate all eigenvalues and corresponding eigenvectors of the matrix A
according to Jacobi method.

Step 4. Construct extraction index. The total sum of variance square is denoted by

 ∑
=

=
n

k
knV

1

2λ , ∑
=

=
d

k
kdV

1

2λ (11)

and then the variance square ratio (VSR) is VSR= 0sVVV dnd = . The VSR value

can be used to measure the degree of information extraction. Generally speaking, so
long as %80≥iV , the purpose of feature extraction is reached.

Step 5. Construct extraction matrix. When %80≥iV , we select d eigenvectors

corresponding to the first d eigenvalues, and construct the information extraction
matrix),,,(21 duuuT = .

Step 6. Feature extraction. The data matrixes)3()2()1(,, xxx is transformed by

)3,2,1()()(=′= ixTy ii (12)

and the purpose to compress the data information is attained.

2.3 Experimental Results

The original data sets come from reference[9], they are divided into three classes C1,
C2, and C3, and denote light occurrence, middle occurrence, and heavy occurrence
about the occurrence degree of the pests respectively.

According to the algorithm set up above, and applying the DPS data processing
system, the compressed results for three classes are expressed in Fig. 1.

Fig.1. shows that the distribution of feature vectors after compressed for the class
C1 denoted by “+”, the class C2 denoted “*” and the class C3 denoted “^”, is obviously
concentrated relatively, meanwhile for these three classes, the within-class distance is
small, the between-class distance is big, and the ASCE is maximum. Therefore, 2-
dimensional pattern vector loaded above 99% information contents of the original 5-
dimensional pattern vector. The experimental results demonstrate that the algorithm
presented here is valid and reliable, and takes full advantage of the class-label infor-
mation of the training samples.

328 S. Ding et al.

Fig. 1. The compressed results for three classes

3 Conclusions

From the information theory, studied and discussed the compression problem of the
information feature in this paper, and come to a conclusion. According to the defini-
tion of the CE, a new concept of the SCE is proposed, and proved that the SCE is a
distance measure which can be used to measure the degree of two-class random vari-
ables. The average SCE (ASCE) is given based on SCE, and it is to measure the dif-
ference degree for the multi-class problem. Regarding the ASCE separability criterion
of the multi-class for information feature compression, we design a novel information
feature compression algorithm. The experimental results show that algorithm pre-
sented here is valid, and compression effect is significant.

Acknowledgements

This work is supported by the National Natural Science Foundation of China under
Grant No.40574001, 863 National High-Tech Program under Grant No.
2006AA01Z128, and the Opening Foundation of the Key Laboratory of Intelligent
Information Processing of Chinese Academy of Sciences, under Grant No.IIP2006-2.

References

1. Duda, R.O., Hart, P.E. (eds.): Pattern Classification and Scene Analysis. Wiley, New York
(1973)

2. Fukunaga, K. (ed.): Introduction to Statistical Pattern Recognition, 2nd edn. Academic
Press, London (1990)

3. Ding, S.F., Shi, Z.Z.: Supervised Feature Extraction Algorithm Based on Improved Poly-
nomial Entropy. Journal of Information Science 32(4), 309–315 (2006)

4. Hand, D.J. (ed.): Discrimination and Classification. Wiley, New York (1981)

 A Supervised Feature Extraction Algorithm for Multi-class 329

5. Nadler, M., Smith, E.P. (eds.): Pattern Recognition Engineering. Wiley, New York (1993)
6. Yang, J., Yang, J.Y.: A Generalized K-L Expansion Method That Can Deal With Small

Sample Size and High-dimensional Problems. Pattern Analysis Applications 6(6), 47–54
(2003)

7. Zeng, H.L., Yu, J.B., Zeng, Q.: System Feature Reduction on Principal Component Analy-
sis. Journal of Sichuan Institute of Light Industry and Chemical Technology 12(1), 1–4
(1999)

8. Shannon, C.E.: A Mathematical Theory of Communication. Bell Syst. Tech. J. 27, 379–423
(1948)

9. Tang, Q.Y., Feng, M.G. (eds.): Practical Statistics and DPS Data Processing System. Sci-
ence Press, Beijing (2002)

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 330–338, 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Incremental Feature Learning Algorithm Based on
Least Square Support Vector Machine

Xinwang Liu, Guomin Zhang, Yubin Zhan, and En Zhu

School of Computer Science, National University of Defense Technology, Changsha,
410073,

Hunan, China
liuxingwang023@163.com,

Guomin_Zhang@163.com, Zhanyubin_dm@yahoo.com.cn, nudt_EN@263.net

Abstract. Incremental learning has been widely addressed in machine learning
literature to deal with tasks where the learning environment is steadily changing
or training samples become available one after another over time. Support Vec-
tor Machine has been successfully used in pattern recognition and function
estimation. In order to tackle with incremental learning problems with new fea-
tures, an incremental feature learning algorithm based on Least Square Support
Vector Machine is proposed in this paper. In this algorithm, features of newly
joined samples contain two parts: already existing features and new features.
Using historic structural parameters which are trained from the already existing
features, the algorithm only trains the new features with Least Square Support
Vector Machine. Experiments show that this algorithm has two outstanding
properties. First, different kernel functions can be used for the already existing
features and the new features according to the distribution of samples. Conse-
quently, this algorithm is more suitable to deal with classification tasks which
can not be well solved by using a single kernel function. Second, the training
time and the memory space can be reduced because the algorithm fully uses the
structural parameters of classifiers trained formerly and only trains the new fea-
tures with Least Square Support Vector Machine. Some UCI datasets are used
to demonstrate the less training time and comparable or better performance of
this algorithm than the Least Square Support Vector Machine.

Keywords: Support Vector Machine, Least Square Support Vector Machine,
Incremental Learning.

1 Introduction

Example-based learning is an attractive framework for extracting knowledge from
empirical data, with the goal of generalizing well on new input patterns. Many real-
world processes may be solved by using example-based learning methods. When
designing classifiers with learning methods, although more training samples can re-
duce the prediction error, the learning process can itself get computationally intracta-
ble. This issue is becoming more evident today, because there are many complex
classification problems in real-world domains, such as medical diagnosis, needed to
be solved.

 An Incremental Feature Learning Algorithm 331

Ideally, it is desirable to be able to consider all samples at one time, to get the best
possible estimate of class distribution. However, in many cases, the data for training
can not be gotten simultaneously. One approach to overcome this constraint is to train
the classifier using an incremental learning technique, whereby only subsets of the
data are to be considered at any one time and results are subsequently combined.
Support Vector Machine has shown good results when used for batch learning.

Support Vector Machines (SVM’s) [1, 2] proposed by Vapnik is a new learning
technique based on the Statistical Learning Theory. Due to the solid theory foundation
and good generalization capability, it has drawn much attention on this topic in recent
years. The quality and complexity of the SVM solution does not directly depend on
the dimensionality of the input space. After nonlinearly mapping the input space into
a higher dimensional space, called feature space, the SVM constructs an optimal sepa-
rating hyperplane in this feature space. The explicit construction of this mapping is
avoided by the application of Mercer’s condition. Kernels that satisfy Mercer’s condi-
tion and are commonly used in SVM’s are linear, polynomial, radial basis function
and multilayer perceptron with one hidden layer [4]. The training of SVM’s is done
by quadratic programming.

In the SVM incremental feature learning algorithm, we make use of a least square
version of Support Vector Machine. Least Square Support Machine (LSSVM) is a
SVM version which involves equality instead of inequality constraints and works with
a sum squared error (SSE) cost function as it is frequently used in training of classical
neural networks [6]. In this way the solution follows from a linear Karush-Kuhn-
Tucher condition instead of a quadratic programming problem.

The common disadvantage of traditional incremental learning methods based on
SVM [7, 8] is that they can not tackle with newly joined samples with new features. In
many real-world applications, however, the training data used for classification are
available from several sensors and may contain many other new features. To overcome
the disadvantage, an incremental feature learning algorithm based on Least Square
Support Vector Machine is proposed. In this algorithm, features of newly joined train-
ing samples contain two parts: already existing features and new features. Using his-
toric structural parameters which are trained from the already existing features, the
algorithm only trains the new features with Least Square Support Vector Machine.

This paper is organized as follows: in the following section we give an introduction
to LSSVM; we introduce the incremental feature learning algorithm based on Least
Square Support Vector Machine in Section3; in Section4, we show and analyze the
results of experiments; Section5 is the conclusion.

2 Least Square Support Vector Machine (LSSVM)

Given a training set of L points 1{(,)}L
k k kx y = with input data

M
kx ∈ and output

data { }1, 1ky ∈ + − , one considers the following optimization problem:

2

1

1 1
min (, ,)

2 2

L
T

k
i

J w b e w w eγ
=

= + ∑ (1)

332 X. Liu et al.

1. . [()] 1 , 1, ,T
k k ks t y w x b e k Lϕ + = − = (2)

where 1(.) : N Fϕ → is a function with which the input space is mapped into a

so-called higher dimensional space.
In order to find the optimal hyperplane, one defines the following Lagrangian:

1
1

(, , ,) (, ,) { [()] 1 }
L

T
k k k k

k

L w b e J w b e y w x b eα α ϕ
=

= − + − +∑ (3)

where kα is a Lagrange multiplier. The condition for optimality

1
1

1

1

0 ()

0 0

0 , 1, 2, ,

0 [()] 1 0

L

k k k
k

L

k k
k

k k
k

T
k k k

k

L
w y x

w

L
y

b

L
e k L

e

L
y w x b e

α ϕ

α

α γ

ϕ
α

=

=

∂⎧ = → =⎪∂⎪
⎪∂ = → =⎪∂⎪
⎨ ∂⎪ = → = =
⎪∂
⎪ ∂⎪ = → + − + =
⎪∂⎩

∑

∑
 (4)

can be written as the solution to the following set of linear equations after the elimina-

tion of w and ke ,

0 0
TY b

Y eI αγ

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ = ⎢ ⎥⎢ ⎥Ω +⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦
 (5)

where 1 2, 1 2[, ,] , [1,1, ,1] , [, , ,]T T T
L LY y y y e α α α α= = = , I is a unit

diagonal matrix and 1 1 1() () (,),1 ,T
ij i j i j i j i jy y x x y y K x x i j Lϕ ϕΩ = = ≤ ≤ ,and

1K is a kernel function.

After solving the set of linear equation (5), for a given test sample Mx ∈ , the
corresponding label y is calculated by equation (6).

1
1

() ((,))
L

k k k
k

y x sign y K x x bα
=

= +∑ (6)

 An Incremental Feature Learning Algorithm 333

3 Incremental Feature Learning Algorithm Based on LSSVM

As the tasks of detection, recognition and decision get further, newly joined training
data in classification may contain many other new features. However, traditional
incremental learning based on SVM can not tackle with training data with new fea-
tures. Hereby we propose Incremental Feature Learning Algorithm based on Least
Square Support Vector Machine to get over this limitation. The main idea of this
algorithm is using two local minima to approximate the global minimum on some
constrains. It can learn new structural parameters from new features when keeping
historic structural parameters learned from previous data available so that the training
time is reduced while classification precision is kept.

Suppose the former training data contains M-dimension features, denoted

as Mx ∈ , newly joined training data contains (M+N)-dimension features with N
new features, and suppose the structural parameters of classifier trained from newly
joined training data with (M+N)-dimension features are w and b . In order to make

use of the historical structural parameters Mw and Mb , w can be approximately de-

noted as [,]M Nw w w= with Mw representing the structural parameter which are

trained from previous M-dimension features and Nw representing the structural pa-

rameter which are trained from the rest of new N-dimension features.

Given a set of data points 1{(,)}L
k k kx y ′

= with input data M N
kx +∈ and output

data { 1, 1}ky ∈ + − , kx can be denoted as [,]k kM kNx x x= with kMx representing the

previous M-dimension features of kx and kNx representing the rest new N-dimension

features. Applying two different implicit functions to the already existing M-
dimension and the rest new N-dimension features respectively, we reformulate the
Least Square Support Vector Machine to resolve the incremental features learning
problem as follows:

2

1

1
min (, ,)

2

T
L

M M
N k

iN N

w w
J w b e e

w w
γ

′

=

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ (7)

1

2

()
. . 1 , 1, 2,

()

T

M kM
k k

N kN

w x
s t y b e k L

w x

ϕ
ϕ

⎛ ⎞⎛ ⎞ ⎛ ⎞ ′⎜ ⎟+ = − =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 (8)

where 1 2(.) : , (.) :M F N Fϕ ϕ ′→ → are functions with which the input

space is mapped into a so-called higher dimensional feature space, respectively.
In order to find the optimal hyperplane, one defines the following Lagrangian:

334 X. Liu et al.

1

1 2

()
(, , ,) (, ,) { [] 1 }

()

T
L

M kM
N N k k k

k N kN

w x
L w b e J w b e y b e

w x

ϕ
α α

ϕ

′

=

⎛ ⎞ ⎛ ⎞′′ ′′= − + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ (9)

where kα′′ is a Lagrange multiplier. The condition for optimality

2
1

1

1

2

0 ()

0 0

0 , 1,2, ,

()
0 [] 1 0

()

L

N k k kN
kN

L

k k
k

k k
k

T

M kM
k k

N kNk

L
w y x

w

L
y

b

L
e k L

e

w xL
y b e

w x

α ϕ

α

α γ

ϕ
ϕα

′

=

′

=

∂⎧ ′′= → =⎪∂⎪
⎪∂ ′′= → =⎪∂⎪
⎨ ∂⎪ ′′ ′= → = =

∂⎪
⎪

⎛ ⎞ ⎛ ⎞∂⎪ = → + − + =⎜ ⎟ ⎜ ⎟⎪ ′′∂ ⎝ ⎠ ⎝ ⎠⎩

∑

∑
 (10)

can be written as the solution to the following set of linear equations after the elimina-

tion of Nw and ke ,

0 0

1

TY b
IY α βγ

⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ = ⎢ ⎥⎢ ⎥′′Ω +⎢ ⎥ −⎣ ⎦ ⎣ ⎦⎣ ⎦
 (11)

where 1 2, 1 2[, ,] ,1 [1,1, ,1] , [, , ,]T T T
L LY y y y α α α α′ ′′′ ′′ ′′ ′′= = = , I is a

unit diagonal matrix , 2 2 2() () (,)T
ij i j iN jN i j iN jNy y x x y y K x xϕ ϕΩ = = ,

1 1
1

() (,),1 ,
L

T
j j M jM j k k k jM

k

y w x y y K x x i j Lβ ϕ α
=

′′ ′= = ≤ ≤∑ , 1K and 2K are two

different kernel functions.
After solving the set of linear equations (11), for a given test sam-

ple M Nx +∈ denoted as[],M Nx x , the corresponding label y is calculated by equa-

tion (12).

1 N 2 N

1 2
1 1

() (() ())

((,) (,))

T T
M M

L L

i i i M k k kN N
i k

y x sign w x w x b

sign y K x x y K x x b

ϕ ϕ

α α
′

= =

= + +

′′= + +∑ ∑
 (12)

 An Incremental Feature Learning Algorithm 335

4 Experiments

The performance of the proposed method is measured on four UCI datasets which are
summarized in Table 1.

Table 1. The datasets used in the experiments

Dataset # Examples #features # training data #testing data

Iris
Wine

Spambase
Waveform

150
178

4601
5000

4
13
57
40

135
161

4201
4500

15
17

400
500

The number of already existing features, the number of new features, the kernel

functions used in already existing features and new features in our experiments are
presented in table 2.

Table 2. The number of already existing, new features and kernel functions

Dataset
#existing
features

#new
features

kernel function
used in already

existing features

kernel function used
in new features

Iris 2 2 linear linear
Wine 8 5 linear linear

Spambase 40 1:1:17 Gaussian linear
Waveform 25 1:1:15 Gaussian linear

The performance of this algorithm is measured by means of classification precision

and training time. The results presented in the following tables and figures are got by
the 10-fold cross validation using above measures.

Table 3 and table 4 list the comparison in classification precision and training time
between Incremental Feature Learning Algorithm based on LSSVM and LSSVM,
respectively, with 2 additional features on Iris while 5 on Wine.

Table 3. The Comparison of Incremental Feature Learning Algorithm based on LSSVM and
LSSVM in classification precision

LSSVM

Dataset
Incremental Feature
Learning Algorithm
based on LSSVM

Training with the
precious

M-dimension
features

Training with
(M+N)-dimension

features

Iris 0.99 1 1
Wine 0.94 0.96 0.98

336 X. Liu et al.

Table 4. The Comparison of Incremental Feature Learning Algorithm based on LSSVM and
LSSVM in training time (sec.)

Dataset
Incremental Feature
Learning Algorithm
based on LSSVM

LSSVM(Training with
(M+N)-dimension fea-

tures)

Iris 0.0093 0.0167
Wine 0.0085 0.0181

The comparisons between Incremental Feature Learning Algorithm based on LS-

SVM and LSSVM in classification precision as the number of the new features
increasing are shown in Figure 1 and Figure 2 on Spambase and Waveform, respec-
tively. Figure 3 and Figure 4 demonstrate the comparison of the training time as the
number of the new additional features increasing on Spambase and Waveform, re-
spectively. It is got by the 10-fold cross validation using above measures.

In table 3, for Iris and Wine datasets, the incremental feature learning algorithm
based on LSSVM is inferior to LSSVM in classification precision; for the later two
datasets, our algorithm is superior. We can see that our algorithm achieves compara-
ble or better performance than LSSVM when the training data which can not be sepa-
rated in features space after mapping using an implicit function. It is clear that this
method is more suitable to tackle with classification tasks which can not be well
solved using a single kernel function. When dealing with classification task with a
large amount of new additional features, our experiments validate that the proposed
algorithm have higher classification precision while saving training time.

0 2 4 6 8 10 12 14 16 18
0.87

0.875

0.88

0.885

0.89

0.895

0.9

0.905

0.91
Test Accuracy of Two Methods on Spambase

the Number of New Features

T
es

t
A

cc
ur

ac
y

Incremental Feature Learning Algorithm based on LSSVM
LSSVM

0 5 10 15

0.922

0.923

0.924

0.925

0.926

0.927

0.928

0.929

0.93

0.931
Test Accuracy of Two Methods on Waveform

the Number of New Features

T
es

t
A

cc
ur

ac
y

Incremental Feature Learning Algorithm based on LSSVM

LSSVM

Fig. 1. Comparison of Classification Accu-
racy between the Incremental Feature
Learning Algorithm based on LSSVM and
LSSVM on Spamebase as the number of the
new additional features increasing

Fig. 2. Comparison of Classification Accuracy
between the Incremental Feature Learning
Algorithm based on LSSVM and LSSVM on
Waveform as the number of the new additional
features increasing

 An Incremental Feature Learning Algorithm 337

5 Conclusions and Future Work

We propose a novel Incremental Features Learning Algorithm based on LS-SVM. In
this algorithm, we make use of the historical structural parameters and apply different
kernel functions to the already existing M-dimension features and the new additional
N-dimension feature. We conduct experiments to evaluate the performance of the
proposed Incremental Feature Learning Algorithm based on LSSVM on some UCI
datasets. In general, this algorithm achieves better classification precision and can
reduce the training time and memory space.

How to select a suitable kernel function and its parameters for a given dataset in
incremental feature learning algorithm is our future work.

Acknowledgments

This work is supported by the National Natural Science Foundation of China
(NO.60603015).

References

1. Vapnik, V.: The nature of statistical learning theory. Springer, New York (1995)
2. Vapnik, V.: Statistical learning theory. John Wiley, New York (1998)
3. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge

University Press, Cambridge (2000)
4. Schökopf, B., Burges, C., Smola, A. (eds.): Advances in Kernel Methods-Support Vector

Learning. MIT press, Cambridge (1999)
5. Schökopf, B., Mika, S., Burge, C., Knirsch, P., Müller, K.-R., Rätsch, G., Smola, A.: Input

Space vs. Feature Space in Kernel-Based Methods. IEEE Transactions on Neural Net-
works 10(5), 1000–1017 (1999)

0 2 4 6 8 10 12 14 16 18
1

2

3

4

5

6

7

8

9
Training Time Comparison of Two Methods on Spambase

the Number of New Features

T
ra

in
in

g
T

im
e

Incremental Feature Learning Algorithm based on LSSVM

LSSVM

0 5 10 15

0

1

2

3

4

5

6
Training Time of Two Methods on Waveform

the Number of New Features

T
ra

in
in

g
T

im
e

Incremental Feature Learning Algorithm based on LSSVM

LSSVM

Fig. 3. Comparison of Training Time be-
tween the Incremental Feature Learning
Algorithm based on LSSVM and LSSVM
on Spamebase as the number of the new
features increasing

Fig. 4. Comparison of Training Time between
the Incremental Feature Learning Algorithm
based on LSSVM and LSSVM on Waveform
as the number of the new features increasing

338 X. Liu et al.

6. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural
Processing Letters 9(3), 293–300 (1999)

7. Domeniconi, C., Gunopulos, D.: Incremental support vector machine construction. In: Pro-
ceedings IEEE International Conference on Data Mining, 2001, ICDM 2001, pp. 589–592
(2001)

8. Alistair Shilton, M.: Incremental Training of Support Vector Machines. IEEE transactions
on neural networks 16(1), 114–131 (2005)

9. Ong, C.S., Smola, A.J., Williamson, R.C.: Learning the Kernel with Hyperkernels. Journal
of Machine Learning Research 6, 1043–1071 (2005)

10. Zhao, Y., He, Q.: An Incremental Learning Algorithm Based on Support Vector Domain
Classifier. In: Proc. 5th IEEE Int. Conf. on Cognitive Information, pp. 805–809 (2006)

11. Shilton, A., Palaniswami, M., Ralph, D., Tsoi, A.: Incremental training of support vector
machines. IEEE Trans. Neural Netw. 16, 114–131 (2005)

12. Pelckmans, K., Karsmakers, P., Suykens, J.A.K., De Moor, B.: Ordinal Least Squares
Support Vector Machines – a Discriminant Analysis Approach. In: Proc. of the Machine
Learning for Signal Processing (MLSP 2006), Maynooth, Ireland, September 2006, pp. 1–
8 (2006)

13. Kazushi, I., Takemasa, Y.: Incremental support vector machines and their geometrical
analyses. In: Neurocomputing, pp. 2528–2533 (2007)

F.P. Preparata, X. Wu, and J. Yin (Eds.): FAW 2008, LNCS 5059, pp. 339–348, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Novel Wavelet Image Fusion Algorithm Based on
Chaotic Neural Network

Hong Zhang1,2, Yan Cao2, Yan-feng Sun2, and Lei Liu1,∗

1 College of Computer Science and Technology, Jilin University,
2699 Qianjin Street, 130012, Changchun, China

hong168z@126.com
2 State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and

Engineering, Jilin University, 2699 Qianjin Street, 130012, Changchun, China
zhong@jlu.edu.cn

Abstract. In this paper, Transiently Chaotic Neural Network (TCNN) is used in
wavelet image fusion method. This paper adopts the weighted average strategy
for the fusion of the wavelet transform coefficients. The TCNN outputs the
weighting coefficient of every wavelet transform pixel when the energy
function of the neural network has achieved the global minimum. At the same
time, the average gradient value of the region around every wavelet transform
pixel gets the global maximum according to the relationship between the
average gradient and energy. The wavelet transform coefficients of the fused
image are got by using the weighting coefficients. The advantage of the
algorithm is that the weighting coefficient is obtained through the dynamic
searching optimization of the average gradient. Experiments show that the
average gradient values of the fusion images using the proposed method are
greater than the results using the region energy method. The TCNN method
improves the performance of the fusion image effectively.

1 Introduction

Image fusion is to integrate complementary information from the same view point
under different focal sensors. Due to the limited depth of focus of optical lenses in
image sensors, it is often not possible to get an image that contains all relevant objects
in focus. In an image obtained by different sensors, only those objects within the
depth of field are focus, while other objects are blurred. Image fusion process is
required to give the new image which is more suitable for the purpose of human
visual perception and computer-processing tasks such as segmentation, feature
extraction, and object recognition. As a promising research field in recent years [1-2],
it has been a hot spot in the research area of object detection, automatic target
recognition, remote sensing, computer vision, smart buildings, robotics, battlefield
surveillance, guidance and control of autonomous vehicles, monitoring of complex
machinery, meteorological imaging and military applications.

∗ Corresponding author.

340 H. Zhang et al.

In recent years, various image fusion methods have been explored is by using
wavelet decomposition [3-6]. Among the fusion methods of the wavelet coefficients,
the weighted average decision method is typically used, in which choose-max
decision method is a special case of the weighted average decision method. Examples
of this approach include the Gabor filter method [7], local region variance method [8],
window-based standard deviation method [9] and region energy method [10]. Among
these methods, the region energy method is supposed to achieve the better result. In
these methods the subjective factors and rigid formulas are used to calculating the
weighting coefficients and the fusion results are not good as expected.

This paper proposes a novel wavelet TCNN fusion algorithm. Firstly, discrete
wavelet transform is used and the source images are decomposed into a series of
frequency channels. The weighted average strategy is taken up for the fusion of the
wavelet transform coefficients. The weighting coefficient of every wavelet pixel is
obtained through the dynamic optimization of the chaotic neural network when the
energy function of the chaotic neural network comes to the minimum. At this time,
according to the relationship between the average gradient and energy function, the
value of the region average gradient around the wavelet pixel comes to be the global
maximum. The region average gradient can be calculated according to the weighting
coefficient of the wavelet pixel. After t times of iteration of the neural network, the
weighting coefficient will be outputted by the chaotic neural network. At last, the
fused image is obtained through the inverse wavelet transform. Experimental results
show that the TCNN method has the greater value of the average gradient compared
with the results got by the region energy method. The following sections of this paper
are organized as follows. Section 2 presents the wavelet and TCNN theory. The
propose algorithm is described in Section 3. Experimental results compared with
region energy method will be presented in Section 4. Finally Section 5 summarizes
the conclusions.

2 The Theory of TCNN Algorithm

In this section, the theories of wavelet decomposition and chaotic neural network are
introduced.

2.1 The 2-D Wavelet Decomposition

With the development of mathematics and its applications in technology, researchers
have explored a large number of methods for multi-resolution analysis, such as the well-
known Laplacian pyramid introduced by Burt and Adelson [11], the morphological
pyramid [12-13], or the ratio-of-low-pass pyramid [14]. In recent years, because of its
ability to analyze the signal in both the spatial and frequency fields, DWT is a most
powerful tool in multi-resolution analysis.

The most convenient representation of an image requires that the image can be
recovered without any information lost. This process is always viewed as perfect
reconstruction condition and ψ is defined as the scale function and ω is defined as the
wavelets function. Thus the perfect reconstruction can be represented as:

 A Novel Wavelet Image Fusion Algorithm Based on Chaotic Neural Network 341

()(), ()x x xψ ω↓ ↑ ↑Ψ = , for
0Vx ∈ (1)

() () 1 1(,) (,) , ,x y x and x y y for x V y Wψ ω↑ ↓ ↑ ↓Ψ = Ψ = ∈ ∈ (2)

This paper will give a brief scheme of 2-D wavelet analysis and more detail
information about the wavelet theory. Fig. 1 shows a two-level decomposition process
of DWT, and it can be easily extended to any n-level transform. L symbolizes the 1-D
low-pass filter and H symbolizes as the 1-D high-pass filter. Four sub images,
ILL(x,y), ILH(x,y), IHL(x,y) and IHH(x,y), can be obtained by applying DWT to both
rows and columns. In this framework ILL(x,y) is a smoothed version of the original
image I(x,y). ILH(x,y), IHL(x,y) and IHH(x,y) are sub images representing the detail
information in horizontal, vertical and diagonal directions of the input image.

ILL1

IHL1 IHH1

ILH1

IHL IHH

ILH

Fig. 1. A representation of 2-D wavelet decomposition

2.2 The Chaotic Neural Network

Neural network is a very complicate nonlinear system, and it contains all kinds of
dynamic behaviors. Some chaotic behaviors have been observed in human brains and
animals’ neural systems, so they would improve the intelligent ability in neural
network. Further more, artificial neural network would have much more use in
application if chaotic dynamics mechanism is introduced. Chaotic neural networks
[15-17] have been proved to be powerful tools for escaping from local minimum.
Chaotic neural networks with chaotic dynamics have much rich and far-from
equilibrium dynamics with various coexisting attractors, not only of fixed and
periodic points but also of strange attractors. Chaotic neural networks can be applied
to dynamically associative memory, chaotic forecasting and chaotic optimization. The
characteristic of chaotic optimization is used in this paper.

Aihara K. proposed chaotic neural network (CNN) in [18]. A negative self-
feedback term is added in Hopfield neural network. This term introduces chaotic
dynamics to the network and can help network escape from the attraction of local
minimum points effectively. Chen L. Proposed Transiently Chaotic Neural Network
in [19], when the self-feedback term is large enough, TCNN utilize chaotic dynamics
to escape from local minimum points, when it becomes small enough, the network
fades away to Hopfield neural network and promises convergence to a near-optimal
solution. The structure of chaotic neural network is showed in fig. 2.

342 H. Zhang et al.

Fig. 2. Structure of chaotic neural network

where ix is output of neuron i ; iy denotes internal state of neuron i ; iZ is self-

feedback connection weight; iI is input bias of neuron i ; ijW describes connection

weight from neuron j to neuron i .

3 TCNN Algorithm

In this section, the frame and the process of the algorithm are given.

3.1 The Frame of the Algorithm

The frame of TCNN algorithm is denoted in fig. 3. First, the source images are deco-
mposed into multi-resolution representation. Then the weighted average decision
met- hod is taken to integrate all these decompositions to produce a composite
representati-on. The weighing coefficients will be outputted by the chaotic neural
network until the region average gradient value achieves the maximum. The final step
is to do Inve- rse Discrete Wavelet Transform (IDWT), and the final fusion result is
obtained.

Grad

Fig. 3. The frame of TCNN algorithm

 A Novel Wavelet Image Fusion Algorithm Based on Chaotic Neural Network 343

The weighting fusion strategy is presented as follows:

() () (), , ,R A A B Bf i j f i j f i jω ω= × + × (3)

1B Aω ω= − (4)

where Af , Bf and Rf are respectively the decomposition coefficients of wavelet of

the source image FA, FB and fused image FR; Aω and Bω are respectively the weig-
hting coefficients of wavelet of the source image FA and FB.

3.2 The Average Gradient Quality Assessment

The average gradient [20] is used to measure the clarity of the image and it can reflect
the contrast between the tiny details. The average gradient is presented as follows:

2 2

1 1

(,) (,)1

2

m n
x y

x y

f i j f i j
Grad

m n = =

+
=

× ∑∑ (5)

Where m n× is the size of the region around the wavelet pixel (),i j ; The average

gradient is calculated in the region. (,)xf i j and (,)yf i j are the differences of the x

axes direct and the y axes direct. The greater the value of Grad , the more informa-
tion the image can be obtained. For this reason, the image can have higher clarity.

3.3 The Chaotic Neural Network and the Setting

W. Zhong proposed a model of the transiently chaotic neural network in [21] and it is
defined as below:

() ()
1

1 exp
i

i

x t
y t

ε

=
−⎛ ⎞+ ⎜ ⎟
⎝ ⎠

(6)

() () () () () 01 1i i i i
i

E
y t ky t t z t x t I

x
α

⎛ ⎞∂+ = + − − − −⎡ ⎤ ⎡ ⎤⎜ ⎟⎣ ⎦ ⎣ ⎦∂⎝ ⎠
 (7)

() () ()1 1i iz t z tβ+ = − (8)

() ()1t tα γα+ = (9)

where i is the index of neurons and n is the number of neurons (1≤ i ≤ n); ()ix t is

output of the i th neuron at the discrete time t , t ∈ Ν （ positive integers） ; ε is

steepness parameter of the activation function (ε >0); iy denotes internal state of

neuron i ; k is the damping factor of the nerve membrane (0≤ k ≤1);
0I is the positive

344 H. Zhang et al.

parameter; ()iz t is self-feedback connection weight or refractory strength (()iz t >0);

α is the positive scaling parameter for neural inputs; E is energy function. β is

damping factor of the time-dependent ()iz t ; γ is damping factor of α .

The negative self-feedback is the main factor of the chaotic phenomenon in chaotic
neural network. The objective function is often mapped into the energy function and
then the minimum of the objective function can be solved by the chaotic neural
network. In this method the output ()ix t and the energy function E are represented

as follows:

() ()1 Ax t tω= (10)

E Grad= − (11)

Neuron output ()ix t represents the output of weighting coefficient
Aω at the discrete

time t . The negative value of the average gradient is presented as the energy
function. Because the average gradient is increasing function, the average gradient
can obtain global maximum when the energy function has fallen down to the global
minimum. At last, the output ()A tω is the optimal weighting coefficient that can be

used to obtain the greater value of the average gradient.

3.4 The Process of the TCNN Algorithm

The proposed fusion method consists of the following steps:

Step 1. Initialize parameters of the chaotic neural network is set as follows: k =0.95;

ε =0.25; 0I =0.5; β =0.0275; γ =0.9; ()0α =0.985 and ()0iz =3.5. If β is

smaller, the searching process is longer. If ()0α is too small, the neural

network can not produce the chaotic dynamics. If ()0iz is smaller, the

inverse-bifurcation process is shorter, and the chaotic neural network
converges sooner to a stable state. For these reasons mentioned above, the
initial parameters must be chosen the suitable values. The size of region
m n× for the calculation of the average gradient is set to 3×3.

Step 2. The source images are decomposed into multi-resolution representation and
each level of the wavelet coefficients are obtained.

Step 3. (),x y is the fused image pixel that need to be calculated. The negative value

of the average gradient of the region around the (),x y is represented the

energy function. After t times of iteration of the neural network, ()A tω of

the pixel (),x y is outputted by the chaotic neural network. According the

formula 3, the wavelet coefficient of pixel (),x y is calculated by the

weighted average strategy.
Step 4. Repeat the step 3, until the pixels of the fused image are all traveled.
Step 5. The fused image is obtained by the inverse wavelet transform.

 A Novel Wavelet Image Fusion Algorithm Based on Chaotic Neural Network 345

4 Fusion Experiment

To illustrate chaotic dynamic behaviors of the chaotic neural units, the time evolution
figure of a single neuron that is ()A tω and energy function obtained by the

experiment are represented as follows:

Fig. 4. The time evolution figure of a single neuron

The time evolution figure of a single neuron model which is one of the wavelet
weighting coefficients is plotted in fig. 4. TCNN maintains chaotic dynamics at the
beginning, converges sooner to a stable state after about 75 steps, and reach a
saturated state by using about 170 steps. The output value was about 0.95, so the last
value of the wavelet weighting coefficient is 0.95.

Fig. 5. The time evolution figure of the energy function

According to formulas 6-9, the time evolution figure of the energy function is plot-
ted in fig. 5. The energy function can converge into the minimum after the falling do-
wn process.

346 H. Zhang et al.

 (a) (b) (c) (d)

Fig. 6. TANK images and fused images.(a) Image1 (focus on the around).(b) Image2 (focus on
the center).(c) Fused image with region energy method.(d)Fused image with the TCNN
method.

 (a) (b) (c) (d)

Fig. 7. CLOCK images and fused images.(a) Image1(focus on the left).(b) Image2(focus on the
right).(c) Fused image with region energy method.(d) Fused image with the TCNN method.

Two pairs of the source images and the fused images using the region energy meth-
od and TCNN method are shown in fig.6 and fig.7. The region energy method is used
to compare with TCNN method. As shown in figure, the images obtained by TCNN
method （ fig. 6 (d) and fig. 7(d) ） outperform the images obtained by region energy
method (fig 6(c) and fig. 7(c)).

Table 1. Grad of two groups of fused images

image method Grad
TANK images Region energy method 8.4754
 The TCNN method 9.3803
CLOCK images Region energy method 6.4080
 The TCNN method 7.5723

Table 1 shows the average gradient values of the two sets of multi-focus images

(fig. 6 (c,d) and fig. 7 (c,d)). Compared with the region energy method, the values of
the average gradient of the fusion images obtained by the TCNN method are greater.
It indicates that the fused images obtained by the TCNN method have higher clarity
and more abundance information of the two source images.

 A Novel Wavelet Image Fusion Algorithm Based on Chaotic Neural Network 347

5 Conclusion

A wavelet image fusion algorithm using the TCNN is presented in this paper. The
average gradient value of fused image is used to measure the clarity of image blocks.
The weighting coefficient is outputted by chaotic neural network when the average
gradient achieved the maximum. The rigid calculation of the weighting coefficient is
replaced by dynamic chaotic optimization of TCNN. Experimental results show that
the TCNN method by using average gradient as criterion outperforms the region
energy method.

References

1. Varshney, P.K.: Scanning the special issue on data fusion. Proc. IEEE 85, 3–5 (1997)
2. Phol, C.: Multisensor Image Fusion in Remote Sensing: Concepts, Methods and

Application. International Journal of Remote sensing 9(5), 823–854 (1998)
3. Chipman, L.J., Orr, Y.M., Graham, L.N.: Wavelets and image fusion. In: Proc. Internat.

Conf. on Image Processing, Washington, USA, pp. 248–251 (1995)
4. Koren, I., Laine, A., Taylor, F.: Image fusion using steerable dyadic wavelet. In: Proc.

Internat. Conf. on Image Processing, Washington, USA, pp. 232–235 (1995)
5. Li, H., Manjunath, B.S., Mitra, S.K.: Multisensor image fusion using the wavelet

transform. Graph. Models Image Process. 57(3), 235–245 (1995)
6. Yocky, D.A.: Image merging and data fusion by means of the discrete two-dimensional

wavelet transform. J. Opt. Soc. Am. A: Opt., Image Sci. Vision 12(9), 1834–1841 (1995)
7. Li-ming, G., Hong-lin, C.: An image fusion method based on wavelet transformation.

Computer Simulation 24(3), 194–197 (2007)
8. Guan-qun, T., Guang-hua, L.: Medical Image Fusion Based on Wavelet Transforms and

3D Reconstruction Based on a Searching Algorithm of Volume Data. Journal of Zhejiang
Wanli University 16(4), 58–62 (2003)

9. Shu-gang, C., Xue-jie, Z.: Fusing anatomical and functional medical images based on
wavelet coefficient s adaptive weighted averaging. Journal of Yunnan University (Natural
Sciences) 27(3), 200–205 (2005)

10. Kai, H., Mingyi, H., Xiaorong, W., Tao, G.: A New Medical Image Fusion Method Based
on Energy Weighting Algorithm in Wavelet Domain. Science Technology and
Engineering 6(13), 1949–1954 (2006)

11. Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE
Transactions on Communication 31, 245–253 (1983)

12. Goutsias, J., Heijmans, H.J.A.M.: Nonlinear multiresolution signal decomposition
schemes. Part I: Morphological pyramids. IEEE Transactions on Image Processing. 9(11),
1862–1876 (2000)

13. Toet, A.: A morphological pyramidal image decomposition. Pattern Recognition Letters 9,
255–261 (1989)

14. Toet, A.: Image fusion by a ratio of low-pass pyramid. Pattern Recognition 9, 245–253
(1989)

15. Lu, J., Cao, J.: Synchronization-based approach for parameters identification in delayed
chaotic neural networks. Physica A 382(2), 672–682 (2007)

16. Xu, X., Tang, Z., Wang, J.: A method to improve the transiently chaotic neural network.
Neurocomputing 67, 456–463 (2005)

17. Wang, X., Qiao, Q.: A Quickly Searching Algorithm for Optimization Problems Based on
Hysteretic Transiently Chaotic Neural Network. In: Liu, D., Fei, S., Hou, Z., Zhang, H.,
Sun, C. (eds.) ISNN 2007. LNCS, vol. 4492, pp. 72–78. Springer, Heidelberg (2007)

348 H. Zhang et al.

18. Aihara, K., Takabe, T., Toyoda, M.: Chaotic neural networks. Physical Letters A 144(6),
333–340 (1990)

19. Chen, L.N., Aihara, K.: Chaotic simulated annealing by a neural network model with
transient chaos. Neural Networks 8(6), 915–930 (1995)

20. Chunmei, L., Rulin, W., Shuxia, L., Guoxin, L., Jie, L.: Wavelet Image Fused Based on
Neighborhood Average Grads. Control & Automation 22(12-3), 306–307 (2006)

21. Zhong, W., Cheng, S.X.: Multiuser detection using time-varying scaling-parameter
transiently chaotic neural networks. Electronic Letters 35(12), 987–989 (1999)

Author Index

Asdre, Katerina 208

Bai, Guoqiang 67
Bansal, Mohit 55
Bu, Tian-Ming 124

Cai, Zhiping 221
Cao, Yan 339
Chen, Danny Z. 4, 233
Chen, Huowang 252
Chen, Jianer 16
Chen, Wei 186
Choi, Mun-Ho 45
Courcelle, Bruno 159

Dai, Guanzhong 264
Deng, Tianyan 79
Deng, Xiaotie 1, 124
Ding, Shifei 323
Dom, Michael 288
Dube, Shruti 55

Fernau, Henning 67

Ganguly, Sumit 55
Gavoille, Cyril 159
Ghodsi, Mohammad 245

Han, Yijie 171
Heggernes, Pinar 196
Hopcroft, John 2

Jeong, In-Seon 45
Jiang, Min 135
Jin, Fengxiang 323

Kang, Seung-Ho 45
Kanté, Mamadou Moustapha 159
Khosravi, Ramtin 245

Langner, Tobias 101
Lei, Xiaofeng 323
Li, Mengjun 252
Li, Min 221
Li, Miqing 276

Li, Shuai Cheng 35
Li, Xiang-Yang 186
Li, Zhoujun 252
Liao, Li 28
Lim, Hyeong-Seok 45
Liu, Lei 339
Liu, Xinwang 330
Liu, Yun 311
Lokshtanov, Daniel 147
Long, Jun 311
Luo, Biao 276

Mancini, Federico 147
McCormick, Kevin 28
Mihai, Rodica 196
Misio�lek, Ewa 233
Mohamed, Khaireel A. 101

Ng, Yen Kaow 35
Nikolopoulos, Stavros D. 208

Okamoto, Kazuya 186
Ottmann, Thomas 101

Papadopoulos, Charis 147

Qi, Qi 124

Shi, Zhongzhi 300, 323
Shrivastava, Roli 28
Sikdar, Somnath 288
Sonka, Milan 3
Subramani, K. 89
Sun, Yan-feng 339

Wan, Changlin 300
Wang, Chao 4
Wang, Jianxin 16
Worman, Chris 174
Wu, Guoqing 135
Wu, Yongan 221

Xie, Jiongliang 276
Xie, Minzhu 16
Xu, Daoyun 79
Xue, Jinyun 113

350 Author Index

Yang, Bo 113
Yang, Boting 174
Yao, Lei 264

Zhan, Yubin 330
Zhang, Fan 135
Zhang, Guomin 330
Zhang, Hong 339
Zhang, Huixiang 264

Zhang, Louxin 35
Zhao, Wentao 311
Zheng, Jinhua 276
Zhou, Changle 135
Zhou, Hairui 264
Zhou, Ti 252
Zhou, Wei 16
Zhu, En 221, 311, 330
Zuo, Zhengkang 113

	Title Page
	Preface
	Organization
	Table of Contents
	Fixed Point Computation and Equilibrium
	Computer Science in the Information Age
	Knowledge-Based Approaches to Quantitative Medical Image Analysis and Image-Based Decision Making
	Optimal Field Splitting, with Applications in Intensity-Modulated Radiation Therapy
	Introduction
	Constrained Field Splitting with Overlapping (CFSO)
	Notation and Definitions
	The General Row Splitting (GRS) Problem
	The Constrained Field Splitting with Fixed Overlapping (CFSFO) Problem
	The Constrained Field Splitting with Overlapping (CFSO) Problem

	Implementation and Experiments

	A Practical Parameterized Algorithm for Weighted Minimum Letter Flips Model of the Individual Haplotyping Problem
	Introduction
	Individual Haplotyping Problem
	A Parameterized Algorithm for WMLF
	Experimental Results
	Conclusion

	SlopeMiner: An Improved Method for Mining Subtle Signals in Time Course Microarray Data
	Introduction
	Method
	Results
	Conclusions
	References

	A PTAS for the k-Consensus Structures Problem Under Euclidean Squared Distance
	Introduction
	Preliminaries
	PTAS for the k-Consensus Structural Fragments
	Discretized Rotation Space
	A Polynomial Time Algorithm with Cost $((1+\epsilon)D_{opt}+c)$
	A Polynomial Time 4 Approximation Algorithm
	A $(1+\epsilon)$ Polynomial Time Approximation Scheme

	Discussions

	Haplotype Assembly from Weighted SNP Fragments and Related Genotype Information
	Introduction
	Formulation and Problem Definition
	A Heuristic Method Based on a Genetic Algorithm
	The Hypothesis Space
	Construction of the Initial Population Under the Guidance of Genotype Information
	Haplotype Assembly Rule from a Partition
	Designation of the Fitness Function
	Genetic Operators

	Analysis of the Experimental Results
	Experiment on Data from Chromosome 5q31

	Conclusion

	Estimating Hybrid Frequency Moments of Data Streams
	Introduction
	Preliminaries
	Estimating Hybrid Frequency Moments $F_{p,q, p,q} [0,2]$
	Bi-linear Stable Sketches
	Analysis of Bi-linear Stable Sketches

	Proofs

	{\sc Constraint Bipartite Vertex Cover} Simpler Exact Algorithms and Implementations
	Introduction
	Algorithm Variants
	The Simplest Algorithm A1
	Triviality Last: Algorithm A2
	More Sophistication: Algorithm A3

	The Tests
	Conclusions: Lessons Learned and Future Work

	NP-Completeness of (k-SAT,r-UNk-SAT) and (LSAT$_{≥k},r$-UNLSAT$_{≥k}$)�
	Introduction
	Preliminaries
	NP-Completeness of (k-SAT,r-UNk-SAT) and (LSAT,r-UNLSAT)
	NP-Completeness of (LSAT$_{\geq4},r$-UNLSAT$_{\geq4}$)
	Conclusions and Future Works

	Absorbing Random Walks and the NAE2SAT Problem
	Introduction
	Preliminaries
	Assignment Verification for NAE2SAT
	Complexity Classes

	Markov Chains and Random Walks
	The Convergence Numbers

	Algorithm and Analysis
	Analysis

	Graph Bipartiteness
	Analysis

	Conclusion

	Versioning Tree Structures by Path-Merging
	Introduction
	Implications of Access Operations in Partially Persistent Structures
	Planar Point Location
	Range Query of Horizontal Line-Segments
	Essential and Non-essential Versions

	Merging Non-essential Versions in Partially Persistent BSTs
	Path-Merging Via Path-Copying
	Path-Merging Via Node-Copying

	Analysis of the Path-Merging Technique
	Conclusion

	A Linear In-situ Algorithm for the Power of Cyclic Permutation
	Introduction
	Preliminaries
	Notations about Permutations
	A Brief Description of PAR$^[10 - 14]}$

	Computing Pr with Pr Represented by Twin Ring T
	Implementation of Twin Ring Based on PAR Platform
	Derive a Algorithmic Program to Implement rotL(T:TwinRing; r:Integer)
	Derive a Algorithmic Program to Implement rotR(T:TwinRing; r:Integer)

	Compare with Related Works
	Concluding Remarks
	References

	Multi-bidding Strategy in Sponsored Keyword Auction
	Introduction
	Related Work
	Our Contributions

	Model and Notation
	Multi-bidding Model

	The Existence of Nash Equilibrium
	Preliminaries
	Simple Setting
	Existence of Pure Nash Equilibria
	Non-existence of Nash Equilibria

	Only One Bidder Multi-bidding
	An Impossibility Result
	Multiple Biddings of Players with Multiple Private Values

	A CSP-Based Approach for Solving Parity Game
	Introduction
	Previous Works
	Preliminaries
	Parity Game
	Constraint Satisfaction Problem (CSP)

	Translate Parity Game to CSP
	Character of Winning Strategy
	Encoding Parity Game to CSP

	An CSP-Based Algorithm
	The Algorithm
	Correctness of the Algorithm

	Experimental Results
	Conclusion and Future Work

	Characterizing and Computing Minimal Cograph Completions
	Introduction
	Preliminaries
	Characterizing Minimal Cograph Completions
	Computing a Minimal Cograph Completion Directly
	Adding a Vertex to a Cograph
	Implementing Algorithm MxCC Using a Cotree Representation

	Concluding Remarks

	Efficient First-Order Model-Checking Using Short Labels
	Introduction
	Notations and Definitions
	Graphs
	Locally Decomposable Classes
	Results

	Matching for Graphs of Bounded Degree
	Introduction
	The Bound

	Searching Trees with Sources and Targets
	Introduction
	Searching Trees with Sources
	Searching Trees with Targets
	Searching Trees with Sources and Targets
	Conclusion and Future Work

	Ranking of Closeness Centrality for Large-Scale Social Networks
	Introduction
	Preliminary
	Ranking Algorithms
	Basic Ranking Algorithm
	Improving the Algorithm with a Heuristic

	Conclusion and Discussions

	Mixed Search Number of Permutation Graphs
	Introduction
	Preliminaries
	Chordal Graphs, Interval Graphs, and Pathwidth
	Search Games

	Mixed Search Number of Permutation Graphs
	Edge Search Number of Complete Bipartite Graphs
	Concluding Remarks

	The 2-Terminal-Set Path Cover Problem and Its Polynomial Solution on Cographs
	Introduction
	Theoretical Framework
	The Algorithm
	Correctness and Time Complexity

	A Distributed Algorithm to Approximate Node-Weighted Minimum α-Connected $(θ,k)$-Coverage in Dense Sensor Networks�
	Introduction
	Related Work
	The Node-Weighted $(α,θ, k)$-CCS Problem and Our Approach�
	Distributed Algorithm for Node-Weighted $(α,θ, k)$-CCS�
	Simulation
	Conclusion
	References

	Optimal Surface Flattening
	Introduction
	The NP-Hardness of the Optimal Surface Flattening Problem
	A (1+ϵ)-Approximation SF Algorithm
	References

	Visiting a Polygon on the Optimal Way to a Query Point
	Introduction
	The Reflective Subdivision
	Polygonal Domains
	Conclusion

	Constraint Abstraction in Verification of Security Protocols
	Introduction
	Protocol Model
	Protocol Preliminaries
	Horn Logic Syntax
	The Model for the Attacker
	The Model of the Honest Roles
	Resolution

	Constraint Abstraction
	Verification of WMF Protocol in Abstracted Horn Model
	Conclusion

	Fast Convergence of Variable-Structure Congestion Control Protocol with Explicit Precise Feedback
	Introduction
	Variable-Structure Congestion Control Protocol (VCP)
	VCP Fast Convergence (VCP-FC)
	Convergence to Efficiency
	Convergence to Fairness

	Simulations and Results
	Conclusion

	Applying a New Grid-Based Elitist-ReservingStrategy to EMO Archive Algorithms
	Introduction
	Basic Concepts
	Grid-Measure and ε-MOEA�
	Generality of Grid-Measure
	The ε-Dominance Concept�
	ε-MOEA and Its Shortage�

	New Elitist-Reserving Strategy and δ-MOEA�
	The δ-Dominance Concept�
	The δ-Dominance Based Elitist-Reserving Strategy�
	The Framework of δ-MOEA�

	Numerical Experiments and Discussion
	Test Functions and Parameter Settings
	Performance Metrics
	Results and Discussion

	Conclusions
	References

	The Parameterized Complexity of the Rectangle Stabbing Problem and Its Variants
	Introduction
	Preliminaries
	AW[1]-Hardness Proof for d-Dimensional Rectangle Stabbing with $d \geq$ 3
	FPT Algorithms for Restrictions of 2-Dimensional Rectangle Stabbing
	Case 1: Rectangles Have Bounded Height
	Case 2: Rectangles Have Bounded Width or Height
	Case 3: Bounded Intersection

	Open Questions

	Solving Medium-Density Subset Sum Problems in Expected Polynomial Time: An Enumeration Approach
	Introduction
	Contributions
	Notation and Conventions

	Motivation
	Branch and Prune
	Heuristic Search Strategy
	The New Algorithm
	Performance Analysis
	Worst-Case Complexity
	Average-Case Complexity
	Comparison of Related Works

	Conclusions and Future Work

	A Scalable Algorithm for Graph-Based Active Learning
	Introduction
	Preliminary
	Basic Notation

	The Graph-Based Active Learning method
	Learning Engine in GAL
	Sampling Engine in GAL
	The Process of Graph-Based Active Learning

	The Scalable Graph-Based Active Learning method
	Backbone Graph Construction
	Two-Stage Active Learning
	Efficiency Improving

	Experiment
	Methodology
	Datasets
	Metrics
	Results

	Conclusion

	A Supervised Feature Extraction Algorithm for Multi-class
	Introduction
	Feature Extraction Algorithm
	Symmetry Cross Entropy
	Feature Extraction Algorithm
	Experimental Results

	Conclusions
	References

	An Incremental Feature Learning Algorithm Based on Least Square Support Vector Machine
	Introduction
	Least Square Support Vector Machine (LSSVM)
	Incremental Feature Learning Algorithm Based on LSSVM
	Experiments
	Conclusions and Future Work
	References

	A Novel Wavelet Image Fusion Algorithm Based on Chaotic Neural Network
	Introduction
	The Theory of TCNN Algorithm
	The 2-D Wavelet Decomposition
	The Chaotic Neural Network

	TCNN Algorithm
	The Frame of the Algorithm
	The Average Gradient Quality Assessment
	The Chaotic Neural Network and the Setting
	The Process of the TCNN Algorithm

	Fusion Experiment
	Conclusion
	References

	Author Index

