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Abstract Weight gain in adult life is an impor-
tant risk factor for breast cancer. Observational 
studies indicate that pre- or postmeno-pausal 
weight loss is associated with a reduction in risk 
of postmenopausal breast cancer. Here we sum-
marise lifestyle changes including continuous or 
intermittent energy restriction and/or exercise 
which may be beneficial for preventing breast 
cancer and also potential pharmacological 
approaches to prevention using energy restric-
tion mimetic agents (ERMAs).

11.1
   Introduction 

 Increased energy balance, either produced by 
increased energy intake or reduced expenditure 
(or both), may be responsible for approximately 
one-third of human mammary tumours (Vainio 
et al. 2002). Energy excess gives rise to altera-
tions within the mammary cell (in the stroma 

and systemically) which alter epithelial cell 
metabolism and proliferation and promote carc-
inogenesis. Here we summarise the evidence for 
energy excess being a major factor in the devel-
opment and progression of breast cancer and 
how this might be circumvented by the use of 
dietary or exercise energy restriction measures 
and the potential use of energy restriction 
mimetic agents (ERMAs). The future of this 
approach will depend upon the introduction of 
methods which make energy restriction accept-
able on a population basis or by using simple 
non-toxic ERMAs. 

 Hypotheses to explain the beneficial effects 
of energy restriction have been summarised by 
Sinclair (2005) who suggested that the mild 
stress provided by energy restriction provides 
general protection from breast cancer and other 
chronic disease (hormesis). A related hypothesis 
suggests that during times of deprivation the 
body changes from growth and reproduction to 
dependence on somatic maintenance and repair 
(Shanley and Kirkwood 2000). Understanding 
the mechanism of energy restriction is not only 
important to develop optimal energy restriction 
approaches but also to determine targets for 
ERMAs. In turn, responsiveness to ERMAs can 
give insights into the key modulators of energy 
restriction.  
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  Risk Factors for Breast Cancer 

 Whilst survival from breast cancer is improving, 
the incidence of the disease continues to rise in 
most countries, indicating the need to determine 
the cause of the increase and to introduce preven-
tive approaches in women most at risk (Bray et al. 
2004). The rate of increase in incidence is illus-
trated by changes which have occurred in Iceland 
over the past century (Tryggvadottir et al. 2006). 
Not only has there been a fourfold increase in spo-
radic breast cancer, from 1.8% in 1920 to 7.5% in 
2002, but there has been a similar increase in the 
penetrance of the  BRCA2  gene amongst mutation 
carriers, from 18.6% to 71.9%. Whilst screening 
and other factors may, in part, be responsible for 
the increase in incidence, it is likely that other fac-
tors such as population changes in reproduction 
and lifestyle have contributed to the increase. 
Reproductive changes which are likely to increase 
breast risk include the increased age of first preg-
nancy by about 5 years since 1970 (Soerjomataram 
et al. 2007) and the marked reduction in parity in 
many developing countries (Chia et al. 2005). 

 Energy intake above requirements (due to 
excess food intake) combined with reduced 
expenditure by exercise is also likely related to 
increased breast cancer risk (Harvie and Howell 
2006). In the United States in 1980, 41.6% of 
women were estimated to be either overweight 
or obese, whereas this figure was 66.0% in 2004 
(http://www.cdc.gov/nccdphp/dnpa/obesity/
trend). In England, rates of overweight and obesity 
have increased from 31% in 1980 to 57% in 
2004 (Zaninotto et al. 2006).  

11.3
  Effect of Weight and Weight Gain and 
Exercise Deficiency on Breast Cancer Risk 

 Body weight, body mass index (BMI), waist 
circumference and weight gain are risk factors 
for postmenopausal breast cancer (Reeves 

2007; Harvie et al. 2003). Weight gain espe-
cially before the menopause is a particularly 
important risk factor (Eliassen et al. 2006; Han 
et al. 2006; Lahmann et al. 2005; Trentham-
Dietz et al. 2000; Magnusson et al. 1998; 
Huang et al. 1997; Harvie et al. 2005) in both 
women with and without a family history of the 
disease, and mainly amongst women who have 
not taken postmenopausal hormone replace-
ment therapy (HRT). In the Nurses Health 
Study, weight gain of 25 kg or more since 
age 18 increased the relative risk (RR) of post-
menopausal breast cancer by 1.98 compared to 
those with stable weight (Eliassen et al. 2006). 
In this study estimated population attributable 
risk of postmenopausal breast cancer in women 
who have not taken postmenopausal hormone 
therapy was 16.4% for premenopausal weight 
gain and 7.6% for weight gain after the meno-
pause. Weight gain in the 30s and 40s appears 
to be a particularly important risk factor for 
developing breast cancer after the menopause 
(Han et al. 2006; Harvie et al. 2005). This is the 
most common period for gain—it is often not 
appreciated that, on average, there is little gain 
in weight after the menopause (Health Survey 
of England: http://www.dh.gov.uk). The effect 
of reduced energy expenditure on breast cancer 
risk may be judged from studies relating risk to 
exercise. One-third or more risk reduction has 
been reported amongst women undertaking 4 h 
of exercise or more per week compared to sed-
entary counterparts. Risk is reduced amongst 
women with and without a family history and 
amongst both users and non-users of HRT 
(Monninkhof et al. 2007). 

 Studies estimating the interaction of exer-
cise and weight suggest that the effects may be 
additive. Chang et al. (2006) estimated that 
women who were obese and undertook less 
than 4 h of moderate exercise per week were at 
double the risk of postmenopausal breast can-
cer compared with women of normal BMI who 
exercised more than 4 h per week. Weight gain 
and exercise may modify risk through different 
mechanisms, and it appears that weight gain is 
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associated with oestrogen and/or progesterone 
receptor-positive tumours, whereas exercise 
appears to be associated with both positive and 
negative receptor subtypes (Adams et al. 
2006).  

11.4
  Mechanism of Weight Gain 
and Exercise Deficiency on Risk 

 It may be appropriate to view human breast cancer 
risk in the context of the two-stage initiation and 
promotion carcinogenesis model of Knudson 
(Moolgavkar 1986). In this report, Moolgavkar 
suggested that hormones promoted clonal 
expansion of cells that had been initiated earlier. 
This is consistent with the preventive effects of 
oophorectomy and tamoxifen with respect to 
premenopausal and postmenopausal breast 
cancer and tamoxifen, raloxifene and aromatase 
inhibitors with respect to postmenopausal breast 
cancer (Howell et al. 2007). It seems likely that 
energy excess may also have promotional effects 
and that excess energy and hormonal factors may 
act in concert to promote initiated mammary 
epithelial cells. Multiple animal models indicate 
that initiation can occur in the young mammary 
gland. In humans this may be in utero or during 
the teenage period of breast growth as judged by 
data derived from the follow-up of women 
exposed to radiation from atomic bomb explo-
sions (Land et al. 2003) or mantle irradiation for 
Hodgkin’s lymphoma (Horwich and Swerdlow 
2004). Thus, hormonal stimulation and energy 
excess after the menarche may promote foetal 
initiation and during the 30s and 40s may pro-
mote initiation that had occurred during the 
teenage period. Weight gain has been linked to 
post- not premenopausal breast cancer. The 
development of postmenopausal breast cancer is 
known to occur in the premenopausal period, 
since premalignant lesions have been found in 
the majority of breasts thoroughly examined in 
the late premenopausal period (Nielsen et al. 
1987; Wellings et al. 1975). 

 Premalignant and malignant lesions are asso-
ciated with an increase in proliferation and loss 
of cell polarity (Liu et al. 2005). Several studies 
show that energy restriction reduces mammary 
cell proliferation (Klebanov 2007; Varady et al. 
2007a; Stragand 1979; Jiang et al. 2003) and is 
likely to have a favourable effect on cell polarity. 
In the latter context it has recently been demon-
strated that increased adenosine monophosphate 
related protein kinase (AMPK) is associated 
with increased cell polarity (Zheng and Cantley 
2007; Hurov and Piwnica-Worms 2007). AMPK 
is an enzyme which senses the energy state of 
the cell and increases in activity when energy 
stores are low, when the ADP/ATP ratio is high. 
These and other recent studies are the first dem-
onstrations of a relationship between epithelial 
function/morphology and cellular energy status.  

11.5
  Chronic Energy Restriction 
Reduces Cancer Risk 

 There are no prospective randomised trials of 
chronic energy restriction (CER) for breast can-
cer prevention (Harvie and Howell 2006). 
However, observational studies suggest weight 
loss reduces breast cancer risk (Harvie et al. 2005; 
Eliassen et al. 2006). In collaboration with the 
Iowa Women’s Health Study, we assessed the 
effect of maintained weight loss (≥5% of body 
weight) from age 30 and also after the menopause 
in women who had gained weight up until these 
times (Harvie et al. 2005). Weight loss after 
age 30 resulted in a 38% reduction in postmeno-
pausal breast cancer (RR 0.62; 95% CI, 0.47–
0.82) compared with those who continued to gain 
weight, and after the menopause, weight loss 
resulted in a 22% reduction (RR 0.77; 95% CI, 
0.65–0.94). In the Nurses Health Study, Eliassen 
et al. (2006), reported that women who had not 
taken HRT and lost 10 kg or more since the meno-
pause were at lower risk than those who main-
tained weight (RR 0.43; 95% CI, 0.21–0.86). A 
small case control study linked weight loss in  
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BRCA1 / 2  mutation carriers to reduced risk 
(Kotsopoulos et al. 2005). Loss of at least 4.5 kg 
in the period from age 18 to 30 was associated 
with a decreased risk of breast cancer between 
age 30 and 49 (RR 0.47; 95% CI, 0.28–0.79). 

 Multiple studies have demonstrated that CER 
in rodents started at any time during life reduces 
breast cancer risk. Dirx et al. (2003) performed 
a meta-analysis of the reports of CER experi-
ments in studies of spontaneous tumours in 
mice. The results of 14 studies showed an over-
all RR of 0.45 (95% CI, 0.39–0.59) indicating a 
55% reduction in the incidence of mammary 
tumours. The results were similar regardless of 
the degree of CER, the time CER was initiated, 
whether there was restriction of fat, carbohydrate 
or protein or the duration of CER (the shortest 
period was 38 weeks). These experiments sup-
port a number of other experiments performed 
in carcinogen-induced tumours (Thompson 
et al. 2003) or xenotransplanted human tumour 
cell lines into nude deprived mice (Giovanella 
et al. 1982).  

11.6
  Intermittent Energy Restriction 
Also Reduces Breast Cancer Risk 

 Intermittent energy restriction (IER) to prevent 
breast cancer was tested in rodents after it was 
shown in the 1930s that this approach could 
increase rodent life span (Robertson et al. 1934). 
IER covers a wide range of experimental protocols 
from every other day (EOD) fasting (Varady and 
Hellerstein 2007), complete or partial energy 
restriction at less frequent intervals (Berrigan 
et al. 2002), or periods of up to 3 weeks of par-
tial restriction and 3 weeks of ad lib feeding 
(Cleary et al. 2002; Pape-Ansorge et al. 2002). 
In general, these approaches reduce the risk 
of spontaneous and genetically engineered 
mammary tumours but are largely ineffective 
in carcinogen-induced tumour models. 

 For example, Carlson and Hoelzel (1945) 
studied the development of spontaneous mam-
mary tumours in Wister rats. EOD fasting or 
fasting 1 day in 3 reduced the number of tumours 
and increased life span in animals who did 
develop mammary tumours. Another study used 
MMTV-TGF-α Lep ± and MMTV-neu engi-
neered mice and gave 3 weeks with 50% feeding 
followed by 3 weeks ad libitum feeding. 
Interestingly, IER mice had a greater tumour 
reduction than pair-fed CER mice (Cleary et al. 
2002; Pape-Ansorge et al. 2002). 

 IER has been assessed in other diseases: The 
first suggestion of IER use in humans was reported 
by Vallejo (1956) who demonstrated that alternat-
ing days of ad lib food or a reduction to an esti-
mated 700 calories for 2.5 years in members of a 
nursing home resulted in a significant reduction in 
admissions to the infirmary (123 vs 219  p  < 0.001) 
and a non-significant reduction in deaths (6 vs 
13). Hill et al. (1989) randomised moderately 
obese women to have CER at 1,200 kcal/day, or an 
alternating diet providing an average of 1,200 kcal/
day alternating between 600 to 1,800 kcal/day. 
The total weight loss for each regimen was about 
8 kg over 3 months. However, the IER group 
experienced greater reductions in total cholesterol 
(14% vs 6%  p  < 0.05). More recently Williams et 
al. (1998) compared a CER of 1,500–1,800 kcal/
day with 5 days of a very low calorie diet (VLCD) 
of 400–800 kcal/day followed by a similar VLCD 
for 1 day in each of 15 weeks. The IER diet was 
associated with significantly improved glycaemic 
control. In rodents IER was shown to be superior 
to CER with respect to glucose tolerance (Anson 
et al. 2003).  

11.7
  Mechanism of the Effect of CER and IER 

 During proliferation of normal cells there is an 
alteration of metabolism so that glycolysis and 
lipid synthesis are increased and the tricarboxy-
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lic acid (TCA) cycle is used to provide substrates 
for macromolecules (see DeBerardinis et al. 
2008 for discussion). Experimentally progres-
sive transformation of normal cells in vitro is 
associated with an increase in the cell’s depend-
ence on glycolysis and a reduced dependence on 
mitochondrial energy production (Ramanathan 
et al. 2005; Wu et al. 2006). Increases in glyco-
lysis and lipid synthesis are seen in tumours 
(Warburg 1930; Medes et al. 1953) and are 
maintained by alteration in growth factor and 
signal transduction pathways. CER is associated 
with a number of changes within target cells. In 
general, there is a switch from anabolic proc-
esses such as cell division to catabolic processes 
directed towards cell maintenance. The switch 
results in inhibition of lipid synthesis and 
enhanced fatty acid oxidation (FAO) and 
increased mitochondrial activity. It is becoming 
clear that these changes are controlled by a 
number of cellular master regulatory molecules 
which include silent information regulator 
(SIRT)1 (Boily et al. 2008), AMPK and a co-
factor, peroxisome-proliferator γ co-activator 
(PGC-1) α (Puigserver and Speigelman 2007) 
and several nuclear transcription factors includ-
ing peroxisome proliferator-activated receptor 
(PPAR)-α, -δ and -γ (Fig. 11. 1 ). 

 Studies of gene expression arrays in various 
tissues show that a large number of genes change 
during short-term CER, and they are also altered 
in the long-term (Dhahbi et al. 2004). These 
changes may provide clues with respect to the 
mechanism of the effectiveness of IER. Nearly 
all short-term fasting studies (24–48 h) have 
focussed on tissues other than epithelia and the 
results need confirmation in this tissue. Studies 
of the effects of short-term fasting on peripheral 
blood white cells (Bouwens et al. 2007), liver 
(Bauer et al. 2004), muscle (Spriet et al. 2004; 
Pilegaard et al. 2003) and fat (Nakai et al. 2008; 
Varady et al. 2007a, b) show, amongst many 
gene changes, a relatively consistent pattern of 
upregulation of carnitine palmitoyl transferase 1 
(CPT1), the rate-limiting enzyme of FAO and 

PPAR-α and downregulation of the enzymes of 
fat synthesis and desaturation such as fatty acid 
synthase and stearoyl CoA desaturase 1 (SCD-1). 
Many studies also show upregulation of pyru-
vate dehydrogenase kinase 4 (PDK4), an enzyme 
that inhibits pyruvate dehydrogenase and thus 
entry of pyruvate into the TCA cycle, indicating 
an overall change from cell dependence on glyco-
lysis to fat for energy, a phenomenon asso-
ciated with increased mitochondrial biogenesis 
(Civitarese et al. 2007). Curiously, genes for 
enzymes of the glycolytic pathway in breast epi-
thelial cells do not appear to be downregulated 
by energy restriction (Zhu et al. 2007). 

 A consistent feature of studies of CER and 
IER is the associated improvement in insulin 
sensitivity and the reduction of serum insulin 
and often, but not consistently, insulin-like 
growth factor (IGF)-1. Infusion of IGF-1 into 
animals with tumours controlled by CER showed 
reversal of the beneficial effects of CER in one 
study (Dunn et al. 1997) but not in the other 
(Zhu et al. 2005a, b).  

11.8
  Energy Restriction Mimetic Agents 

 Since CER and IER may prove to be difficult to 
introduce on a population basis to prevent 
breast and other cancers, there is interest in 
developing agents which mimic the potential 
benefits of energy restriction (ERMAs). In 
mammary epithelial cells, there are metabolic 
changes which accompany the development of 
malignancy which are potential targets for 
ERMAs (Young and Anderson 2008; Clapham 
and Arch 2007; Dilova et al. 2007). As outlined 
above, these targets include relative increases 
in glycolysis, lactate production and fat synthe-
sis and relative decreases in mitochondrial 
activity and β oxidation of lipids (Ingram et al. 
2006; Moreno-Sanchez et al. 2007). The first 
demonstration that an ERMA may be effective 
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was by Lane et al. (1998) who treated rats with 
2-deoxyglucose (2DG), which mimicked some 
of the effects of CER by inhibiting glycolysis. 
Since that time, 2DG has been shown to inhibit 
dimethylbenzanthracene (DMBA)-induced car-
cinomas in rats and the proliferation of tumours 
produced by the human mammary tumour cell 
line MCF7 in nude mice (Zhu et al. 2005a, b) 
and it improves functional and metabolic car-
diovascular risk factors in rats (Wan et al. 
2003). 

 In the following sections we examine the 
mechanism of action and activity of potential 
ERMAs. Few of these are likely to enter the pre-
vention arena but they are mentioned as agents 
that indicate “proof-of-principle”. We examine 
inhibitors of glycolysis and lipid synthesis, 
agents which stimulate activity of mitochondrial 
function and β oxidation of lipids and which 

activate the metabolic regulators AMPK, SIRT1 
and PGC-1α.  

11.9
  Inhibitors of Glycolysis 

 Not only is glycolysis increased in many invasive 
tumours as first described by Warburg (1930) but 
there is also evidence of upregulation of enzyme 
activity in precursor lesions, which makes inhi-
bition of this pathway an attractive approach 
(Isidoro et al. 2005) for prevention. Whilst there 
are a large number of molecules which have 
 activity, most of these could not be used for pre-
vention (for review see Chen et al. 2007). 
2-Deoxyglucose—which is phosphorylated by 
hexokinase and cannot be metabolised further or 
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 Fig. 11.1  Simplified view of some metabolic pathways which may be affected by CER, IER and ERMAs. 
In general ERMAs inhibit glycolysis and fatty acid synthesis and stimulate the other pathways shown. 
Key enzymes and co-factors in  red . Drugs and processes which may affect the pathways are in  blue .  
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excreted from the cell, and therefore it, in turn, 
inhibits hexokinase—inhibits MCF-7 cell growth 
in vitro and in nude mice and elicits a ‘starvation’ 
response intracellularly, resulting in upregulation 
of AMPK and SIRT1 in MCF-7 cells (Jiang et al. 
2008). Lonidamine is also an inhibitor of hexoki-
nase and enhances mitochondrial function by pre-
venting binding of hexokinase to the mitochondrial 
membrane. Lonidamine has been used to enhance 
the activity of various chemotherapeutic agents 
and is in clinical trial for the prevention of benign 
prostatic hyperplasia (Ditonno et al. 2005).  

11.10
  Inhibitors of Lipid Synthesis 

 Increased lipid synthesis in tumours was 
reported over 50 years ago (Medes et al. 1953). 
The activity of all four major enzymes of lipid 
synthesis is increased in tumours, making them 
targets for prevention and treatment of breast 
cancer (Swinnen et al. 2006; figure therein). It is 
likely that increased synthesis is related to the 
needs of proliferating cells to synthesise mem-
brane lipid and is related to upregulation of lipo-
genic stimulatory molecules such as sterol 
regulatory binding protein-1 and SPOT 14 
(Kinlaw et al. 2006). Expression of the four 
major genes for lipid synthesis is downregulated 
by CER in normal fat tissue in humans (Dahlman 
et al. 2005). 

 ATP citrate lyase (ACL) is the first enzyme 
of lipid synthesis and converts cytosolic citrate 
(a product of the TCA cycle) to acetyl CoA. The 
activity of ACL was reported to be 150 times 
higher in tumours than adjacent normal breast 
tissue (Szutowicz et al. 1979). RNAi knock-
down and use of the ACL inhibitor SB-204990 
reduces human tumour cell growth in nude mice 
(Hatzivassiliou et al. 2005) and decreases cho-
lesterol and triglyceride, concentrations in serum 
in animal models (Pearce et al. 1998). Newly 
reported arylbenzenesulphonamide inhibitors of 

ACL also reduce cholesterol and limit weight 
gain (Li et al. 2007). 

 Acetyl-CoA carboxylase (ACC) catalyses 
the carboxylation of acetyl CoA to malonyl-
CoA. There are two isoforms, ACC1 found in 
liver adipose tissue and the mammary gland and 
ACC2 in skeletal muscle and heart.  ACC2  
knockout mice have a lean phenotype and 
increased rates of fatty acid and also glucose 
oxidation (Oh et al. 2005). Specific silencing of  
ACC1  by RNAi reduced breast cancer cell 
survival (MCF7, MDA-MB-231 and HBL 100), 
but this inhibition was rescued by supplementa-
tion of the culture median by palmitate (Chajès 
et al. 2006). Recently the ACC inhibitor sora-
phen A was shown to inhibit the proliferation of 
prostate cancer cells but not cells from benign 
prostate hyperplasia (Beckers et al. 2007). 

 Fatty acid synthase (FAS) catalyses the con-
densation of acetyl-CoA and malonyl-CoA. It is 
not only expressed in invasive breast tumours 
but also preneoplastic lesions (Esslimani-Sahla 
et al. 2006). FAS inhibitors decrease cell prolif-
eration and induce apoptosis in breast cancer 
cell lines (Pizer et al. 1996) and the FAS inhibitor 
C75 reduces the growth of MCF-7 xenografts in 
nude mice (Pizer et al. 2000) and may be particu-
larly active when there is HER2 over-expression 
(Menendez and Lupu 2007). The antibiotic 
triclosan is also a FAS inhibitor and reduces 
nitrosomethylurea (NMU)-induced mammary 
tumours and preneoplastic lesions in rats (Lu 
and Archer 2005). Recently Brusselmans et al. 
(2005) reported that in a series of 18 naturally 
occurring phenolic compounds reduction of cell 
proliferation was strongly associated with their 
FAS inhibitory activity. 

 SCD-1 is the rate-limiting enzyme in the bio-
synthesis of monounsaturated fatty acids. It is a 
key controller in lipid partitioning between lipo-
genesis and oxidation. High SCD activity is 
associated with a wide range of disorders 
 including diabetes, obesity and cancer (Dobrzyń 
and Dobrzyń 2006)  SCD-1  knockout is associ-
ated with an increase in FAO, increased AMPK 
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concentrations and leanness (Dobrzyń et al. 
2004). Several inhibitors of SCD—including 
analogues of conjugated linoleic acid (Choi et al. 
2002) and sterculic acid (Khoo et al. 1991)—
inhibit the growth of mammary carcinomas in 
vitro and in vivo. Recently, potent selective 
orally bioavailable pridazinecarboxamide inhib-
itors have been reported (Liu G et al. 2007).  

11.11
  Activation of AMP-Activated 
Protein Kinase 

 AMPK is a regulator of the cellular response to 
low energy. AMPK concentrations increase in 
response to nutrient deprivation and pathological 
stresses and is upregulated by 2DG (Jiang et al. 
2008), metformin (Zakikhani et al. 2006; Phoenix 
et al. 2008) and the cell-permeable nucleo- 
side 5-aminoimidazole-4-carboxamide (AICAR) 
(Swinnen et al. 2005). 2DG and metformin 
reduce proliferation and growth of human mam-
mary tumour cells in-vitro, tumour formation 
after carcinogenesis and human tumour cell 
growth in nude mice. Activation of AMPK results 
in inhibition of Akt and fat synthesis (by inhibi-
tion of acetyl-CoA carboxylase and HMG CoA 
reductase) and reduction of IGF-1 activity. It is 
unlikely that AICAR and 2DG can be used for 
prevention, but metformin treatment for diabetes 
is associated with reduced breast cancer risk and 
is being explored as a possible breast cancer 
preventive agent (Evans et al. 2005).  

11.12
  Stimulation of Mitochondrial Activity 
and Fat Oxidation 

 Tumour cell proliferation is reduced by diver-
sion of pyruvate to the TCA cycle by inhibition 
of lactic dehydrogenase (LDH) (Fantin et al. 

2006) or inhibition of PDK4 (which results in 
upregulation of pyruvate dehydrogenase) by 
2-chloroacetate [in clinical use for the treat-
ment of lactic acidosis (Bonnet et al. 2007)] 
thus increasing mitochondrial activity and 
reducing tumour cell proliferation. Several 
studies indicate that CER increases mitochon-
drial biogenesis probably related to upregula-
tion of SIRT1 and PGC-1α, which in turn 
stimulates PPAR-α. PPAR-α agonists (e.g. 
fenofibrate, WY-14643) have been reported to 
suppress the growth of tumour cells (Panigrahy 
et al. 2008; Pozzi et al. 2007). It is of interest 
that 19% of genes regulated by CER are also 
regulated by PPAR-α including genes involved 
in FAO (Corton et al. 2004). FAO is also stimu-
lated by the anti-obesity drug rimonabant, 
which has also been shown to have anti-tumour 
activity (Bifulco et al. 2006). Other approaches 
to mitochondrial stimulation include the use of 
cell-permeating α-ketoglutarate derivatives 
(MacKenzie et al. 2007).  

11.13
  Activation of SIRT1 

 SIRT1, an NAD+ dependent deacetylase, is 
known to activate a number of beneficial met-
abolic pathways including PGC-1α and 
AMPK and their downstream pathways 
(Lagouge et al. 2006). In turn, resveratrol and 
a number of other small molecules are known 
to activate SIRT1. Their CER mimetic effect 
upon activation of SIRT1 is demonstrated by 
improvement in health and survival in mice on 
a high-calorie diet (Baur et al. 2006) and the 
treatment of type 2 diabetes (Milne et al. 
2007). Numerous studies show that resvera-
trol has anti-tumour activity. The clinical 
development of this promising agent has been 
summarised recently (Howells et al. 2007; 
Cucciolla et al. 2007).   
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