

Lecture Notes in Computer Science 5060
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Chunming Rong Martin Gilje Jaatun
Frode Eika Sandnes Laurence T. Yang
Jianhua Ma (Eds.)

Autonomic and
Trusted Computing

5th International Conference, ATC 2008
Oslo, Norway, June 23-25, 2008
Proceedings

13

Volume Editors

Chunming Rong
University of Stavanger, Stavanger, Norway
E-mail: chunming.rong@uis.no

Martin Gilje Jaatun
SINTEF ICT, Trondheim, Norway
E-mail: martin.g.jaatun@sintef.no

Frode Eika Sandnes
Oslo University College, Oslo, Norway
E-mail: frodes@hio.no

Laurence T. Yang
St. Francis Xavier University, Antigonish, NS, Canada
E-mail: ltyang@stfx.ca

Jianhua Ma
Hosei University, Tokyo 184-8584, Japan
E-mail: jianhua@hosei.ac.jp

Library of Congress Control Number: 2008929348

CR Subject Classification (1998): D.2, C.2, D.1.3, D.4, E.3, H.4, K.6

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-69294-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-69294-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12277896 06/3180 5 4 3 2 1 0

Preface

This volume contains the proceedings of ATC 2008, the 5th International Confer-
ence on Autonomic and Trusted Computing: Bringing Safe, Self-x and Organic
Computing Systems into Reality. The conference was held in Oslo, Norway, dur-
ing June 23–25, 2008.

ATC 2008 is a successor of the First IFIP Workshop on Trusted and Auto-
nomic Ubiquitous and Embedded Systems (TAUES 2005, Japan), the Interna-
tional Workshop on Trusted and Autonomic Computing Systems (TACS 2006,
Austria), the Third International Conference on Autonomic and Trusted Com-
puting (ATC 2006, China), and the 4th International Conference on Autonomic
and Trusted Computing (ATC 2007, Hong Kong).

Computing systems including hardware, software, communication and net-
works are growing dramatically in both scale and heterogeneity, becoming overly
complex. Such complexity is getting even more critical with the ubiquitous per-
meation of embedded devices and other pervasive systems. To cope with the
growing and ubiquitous complexity, Autonomic Computing (AC) focuses on self-
manageable computing and communication systems that exhibit self-awareness,
self-configuration, self-optimization, self-healing, self-protection and other self-x
operations to the maximum extent possible without human intervention or guid-
ance. Organic Computing (OC) additionally emphasizes natural-analogue con-
cepts like self-organization and controlled emergence.

Any autonomic or organic system must be trustworthy to avoid the risk of
losing control and to retain confidence that the system will not fail. Trust and/or
distrust relationships in the Internet and in pervasive infrastructures are key
factors in enabling dynamic interaction and cooperation of various users, systems
and services. Trusted/Trustworthy Computing (TC) aims at making computing
and communication systems as well as services available, predictable, traceable,
controllable, assessable, sustainable, dependable, persistable, security/privacy
protectable, etc.

A series of grand challenges remain before practical self-manageable auto-
nomic systems with truly trustworthy services become a reality. ATC 2008 ad-
dressed the most innovative research and development in these challenging areas,
and covered a multitude of technical aspects related to autonomic/organic com-
puting (AC/OC) and trusted computing (TC).

The ATC 2008 conference provided a forum for engineers and scientists in
academia, industry, and government to exchange ideas and experiences in devel-
oping AC/TC theory and models, architectures and systems, components and
modules, communication and services, tools and interfaces, services and appli-
cations. There were 75 papers submitted, representing 22 countries and regions,
from Asia, Europe, North America and the Pacific. All submissions were reviewed
by at least three Technical Program Committee members or external reviewers.

VI Preface

In order to allocate as many papers as possible and keep the high quality of
the conference, we finally decided to accept 25 regular papers for presentation,
which reflected a 33% acceptance rate. In addition, there were 26 special session
papers included in the proceedings. We believe that all of these papers and topics
not only provided novel ideas, new results, work in progress and state-of-the-art
techniques in this field, but also stimulated the future research activities in the
area of autonomic and trusted computing.

Organization of conferences with a large number of submissions requires a
lot of hard work and dedication from many people. We would like to take this
opportunity to thank numerous people whose work made this conference pos-
sible and ensured its high quality. We wish to thank the authors of submitted
papers, as they contributed to the conference technical program. We wish to
express our deepest gratitude to the Program (Vice) Chairs for their hard work
and commitment to quality when helping with paper selection. We would also
like to thank all Program Committee members and external reviewers for their
excellent job in the paper review process, the Steering Committee and Advisory
Committee for their continuous advice, and Erik Hjelmås for organizing a panel
on the important question: “Do we need a secure element in hardware?” A special
thanks to Yo-Ping Huang and Tsun-Wei Chang for organizing a special session
on “Sensor Networks, VoIP, and Watermarking.” We are also in debt to the Pub-
licity Chairs for advertising the conference, to the Local Organizing Committee
for managing registration and other conference organization-related tasks, and
to Oslo University College for hosting the conference. We are also grateful to
Son T. Nguyen for the hard work on managing the conference website and the
conference management system.

Chunming Rong
Martin Gilje Jaatun
Frode Eika Sandnes

Laurence T. Yang
Jianhua Ma

Organization

Executive Committee

General Chairs Chunming Rong, University of Stavanger, Norway
Jianying Zhou, Institute for Infocomm Research,

Singapore
Frode Eika Sandnes, Oslo University College, Norway

Program Chairs Martin Gilje Jaatun, SINTEF, Norway
Xiaolin (Andy) Li, Oklahoma State University, USA
Geng Yang, Nanjing University of Post and

Telecommunications, China
Program Vice Chairs Tadashi Dohi, Hiroshima University, Japan

Hein Meling, University of Stavanger, Norway
Jean-Marc Seigneur, University of Geneva,

Switzerland
Stephen R. Tate, University of North Texas, USA

Honorary Chairs Christian Müller-Schloer, University of Hannover,
Germany

Tosiyasu L. Kunii, Kanazawa Institute of Technology,
Japan

Javier Lopez, University of Malaga, Spain
Steering Committee Jianhua Ma (Chair), Hosei University, Japan

Laurence T. Yang (Chair), St. Francis Xavier
University, Canada

Hai Jin, Huazhong University of Science and
Technology, China

Jeffrey J.P. Tsai, University of Illinois at Chicago,
USA

Theo Ungerer, University of Augsburg, Germany
International Advisory
Committee Jiannong Cao, Hong Kong Polytechnic University,

Hong Kong
Chin-Chen Chang, Feng Chia University, Taiwan
Jingde Cheng, Saitama University, Japan
Zhong Chen, Peking University, China
Petre Dini, Cisco Systems, USA
Jadwiga Indulska, University of Queensland, Australia
Victor C.M. Leung, University of British Columbia,

Canada
David Ogle, IBM, USA
Manish Parashar, Rutgers University, USA
Franz J. Rammig, University of Paderborn, Germany

VIII Organization

Executive Committee(continued)

International Advisory
Committee Omer F. Rana, Cardiff University, UK

Kouichi Sakurai, Kyushu University, Japan
Hartmut Schmeck, Karlsruhe Institute of Technology,

Germany
Xinmei Wang, Xidian University, China
Stephen S. Yau, Arizona State University, USA
Mazin Yousif, Intel, USA

Publicity Chairs Jinhua Guo, University of Michigan-Dearborn, USA
Ting-Wei Hou, National Cheng Kung University,

Taiwan
Jan Newmarch, Monash University, Australia
Fangguo Zhang, Sun Yat-Sen University, China

International
Liaison Chairs Ho-Fung Leung, Chinese University of Hong Kong,

Hong Kong
Yi Mu, University of Wollongong, Australia
Benno Overeinder, Vrije University, The Netherlands
Nguyen Huu Thanh, Hanoi University of Technology,

Vietnam
Huaglory Tianfield, Glasgow Caledonian University,

UK
George Yee, National Research Council, Canada

Industrial
Track Chairs Leif Nilsen, Thales Norway

Josef Noll, UniK/Movation, Norway
Publication Chairs Tony Li Xu, St. Francis Xavier University, Canada

Son Thanh Nguyen, University of Stavanger, Norway
Award Chairs Bjarne E. Helvik, Norwegian University of Science and

Technology
Bin Xiao, Hong Kong Polytechnic University,

Hong Kong
Panel Chair Erik Hjelmås, Gjøvik University College, Norway
Financial Chair Kari Anne Haaland, University of Stavanger, Norway
Web Administration
Chair Son Thanh Nguyen, University of Stavanger, Norway
Local Arrangement
Chairs Siri Fagernes, Oslo University College, Norway

Simen Hagen, Oslo University College, Norway
Kirsten Ribu, Oslo University College, Norway
Kyrre Begnum, Oslo University College, Norway
Jie Xiang, Simula Research Laboratory, Norway
Qin Xin, Simula Research Laboratory, Norway
Hai Ngoc Pham, University of Oslo, Norway

Organization IX

Program Committee

Ahmed Al-Dubai Napier University, UK
Richard Anthony University of Greenwich, UK
Bernady Apduhan Kyushu Sangyo University, Japan
Irfan Awan University of Bradford, UK
Bernhard Bauer University of Augsburg, Germany
Russell Beale University of Birmingham, UK
Christophe Birkeland NorCERT, Norway
Jürgen Branke Karlsruhe Institute of Technology, Germany
Sergey Bratus Dartmouth College, USA
Uwe Brinkschulte Universität Karlsruhe, Germany
Lawrie Brown ADFA, Australia
Tony Chan The University of Akureyri, Iceland
Yuanshun Dai Indiana University-Purdue University, USA
Olivia Das Ryerson University, Canada
Murat Demirbas SUNY Buffalo, USA
Feico Dillema University of Tromsø, Norway
Dietmar Fey Friedrich Schiller University of Jena, Germany
Noria Foukia University of Otago, New Zealand
Xinwen Fu Dakota State University, USA
Silvia Giordano University of Applied Science, Switzerland
Bok-Min Goi Multimedia University, Malaysia
Jinhua Guo University of Michigan-Dearborn, USA
Tor Helleseth University of Bergen, Norway
Jiman Hong Soongsil University, Seoul, Korea
Runhe Huang Hosei University, Japan
Michel Hurfin Irisa, INRIA, France
Jörg Hähner Leibniz University of Hannover, Germany
Xiaolong Jin University of Bradford, UK
Audun Jøsang Queensland University of Technology, Australia
Hidenori Kawamura Hokkaido University, Japan
Engin Kirda TU Wien, Austria
Satoshi Kurihara Osaka University, Japan
Geir Køien Telenor, Norway
Jiang (Leo) Li Howard University, USA
Zhuowei Li Indiana University at Bloomington, USA
Maria B. Line SINTEF ICT, Norway
Luigi Lo Iacono NEC Laboratories Europe, Germany
Seng Wai Loke La Trobe University, Australia
Antonio Maña Gomez University of Malaga, Spain
Geyong Min University of Bradford, UK
Chris Mitchell RHUL, UK
Alberto Montresor University of Trento, Italy
Gero Mühl Technical University of Berlin, Germany
Simin Nadjm-Tehrani Linköping University, Sweden

X Organization

Program Committee(continued)

Nidal Nasser University of Guelph, Canada
Dimitris Nikolopoulos Virginia Tech, USA
Jong Hyuk Park Kyungnam University, Korea
Günther Pernul University of Regensburg, Germany
Huaifeng Qin Platform Computing, China
Aaron Quigley University College Dublin, Ireland
Indrakshi Ray Colorado State University, USA
Wolfgang Reif University of Augsburg, Germany
Burghardt Schallenberger Siemens CT IC 6, Germany
Ali Shahrabi Glasgow Caledonian University, UK
Kuei-Ping Shih Tamkang University, Taiwan, Taiwan
Einar Snekkenes Gjøvik University College, Norway
Luca Spalazzi Universitá Politecnica delle Marche, Italy
Gritzalis Stefanos University of the Aegean, Greece
Ketil Stølen SINTEF ICT/UiO, Norway
Willy Susilo University of Wollongong, Australia
Wolfgang Trumler University of Augsburg, Germany
Peter Urban Google Inc., USA
Athanasios Vasilakos University of Western Macedonia, Greece
Javier Garca Villalba Complutense University of Madrid, Spain
Antonino Virgillito Istat, Italy
Guojun Wang Central South University, China
Xingang Wang University of Plymouth, UK
Yan Wang Macquarie University, Australia
Thomas J. Wilke Technische Agentur Lehr, Germany
Liudong Xing University of Massachusetts Dartmouth, USA
Lu Yan University College London, UK
Shuang-Hua Yang Loughborough University, UK
George Yee National Research Council, Canada
Noriaki Yoshikai Nihon University, Japan
Sherali Zeadally University of the District of Columbia, USA
Zonghua Zhang INRIA POPS Research Group, Lille, France
Sheng Zhong SUNY Buffalo, USA
Norbert Zisky PTB, Germany
Deqing Zou Huazhong University of Science and Technology,

China

Table of Contents

Keynote Speech

Sensor Network Applications Implemented by Industry and Their
Security Challenges . 1

Erdal Cayirci

Regular Papers

Intrusion Detection

Detecting Stepping-Stone Intrusion and Resisting Evasion through
TCP/IP Packets Cross-Matching . 2

Jianhua Yang and Byong Lee

Preventing DDoS Attacks Based on Credit Model for P2P Streaming
System . 13

Jun Yang, Ying Li, Benxiong Huang, and Jiuqiang Ming

Design, Prototype, and Evaluation of a Network Monitoring Library 21
Karl-André Skevik, Vera Goebel, and Thomas Plagemann

Real-Time IP Checking and Packet Marking for Preventing ND-DoS
Attack Employing Fake Source IP in IPv6 LAN . 36

Gaeil An and Kiyoung Kim

Trust

A Semantic-Aware Ontology-Based Trust Model for Pervasive
Computing Environments . 47

Mohsen Taherian, Rasool Jalili, and Morteza Amini

Using Automated Planning for Trusted Self-organising Organic
Computing Systems . 60

Benjamin Satzger, Andreas Pietzowski, Wolfgang Trumler, and
Theo Ungerer

A Trusted Group Signature Architecture in Virtual Computing
Environment . 73

Deqing Zou, Yunfa Li, Song Wu, and Weizhong Qiang

SepRep: A Novel Reputation Evaluation Model in Peer-to-Peer
Networks . 86

Xiaowei Chen, Kaiyong Zhao, and Xiaowen Chu

XII Table of Contents

Trusted Systems and Crypto

Off-Line Keyword Guessing Attacks on Recent Public Key Encryption
with Keyword Search Schemes . 100

Wei-Chuen Yau, Swee-Huay Heng, and Bok-Min Goi

An Integrated Solution for Policy Filtering and Traffic Anomaly
Detection . 106

Zhijun Wang, Hao Che, and Jiannong Cao

Secure Safety: Secure Remote Access to Critical Safety Systems in
Offshore Installations . 121

Martin Gilje Jaatun, Tor Olav Grøtan, and Maria B. Line

SEMAP: Improving Multipath Security Based on Attacking Point in
Ad Hoc Networks . 134

Zhengxin Lu, Chen Huang, Furong Wang, and Chunming Rong

Autonomic Computing

Scheduling for Reliable Execution in Autonomic Systems 149
Terry Tidwell, Robert Glaubius, Christopher Gill, and
William D. Smart

Measuring and Analyzing Emerging Properties for Autonomic
Collaboration Service Adaptation . 162

Christoph Dorn, Hong-Linh Truong, and Schahram Dustdar

Artificial Immune System Based Robot Anomaly Detection Engine for
Fault Tolerant Robots . 177

Bojan Jakimovski and Erik Maehle

Maximising Personal Utility Using Intelligent Strategy in Minority
Game . 191

Yingni She and Ho-fung Leung

Organic Computing

Simulation-Based Optimization Approach for Software Cost Model
with Rejuvenation . 206

Hiroyuki Eto, Tadashi Dohi, and Jianhua Ma

Organic Control of Traffic Lights . 219
Holger Prothmann, Fabian Rochner, Sven Tomforde, Jürgen Branke,
Christian Müller-Schloer, and Hartmut Schmeck

Concepts for Autonomous Control Flow Checking for Embedded
CPUs . 234

Daniel Ziener and Jürgen Teich

Table of Contents XIII

Knowledge and Patterns

Autonomous Querying for Knowledge Networks . 249
Kieran Greer, Matthias Baumgarten, Chris Nugent,
Maurice Mulvenna, and Kevin Curran

Discovery of Useful Patterns from Tree-Structured Documents with
Label-Projected Database . 264

Juryon Paik, Junghyun Nam, Hee Yong Youn, and Ung Mo Kim

Pervasive Systems

Using Multiple Detectors to Detect the Backoff Time of the Selfish
Node in Wireless Mesh Network . 279

Furong Wang, Yipeng Qu, Baoming Bai, Fan Zhang, and
Chen Huang

Self-reconfiguration in Highly Available Pervasive Computing Systems . . 289
Hadi Hemmati and Rasool Jalili

Modeling Modern Social-Network-Based Epidemics: A Case Study of
Rose . 302

Sirui Yang, Hai Jin, Xiaofei Liao, and Sanmin Liu

An Evaluation Study of the Effectiveness of Modeling NASA
Swarm-Based Exploration Missions with ASSL . 316

Mike Hinchey and Emil Vassev

Special Session Papers

Organic Computing

Distributed Performance Control in Organic Embedded Systems 331
Steffen Stein and Rolf Ernst

An Operating System Architecture for Organic Computing in
Embedded Real-Time Systems . 343

Florian Kluge, Jörg Mische, Sascha Uhrig, and Theo Ungerer

Towards an Autonomic Peer-to-Peer Middleware for Wireless Sensor
Networks . 358

Reinhard Mörgenthaler, Markus Zeller, and Josef Jiru

Embedding Dynamic Behaviour into a Self-configuring Software
System . 373

Paul Ward, Mariusz Pelc, James Hawthorne, and Richard Anthony

XIV Table of Contents

Service Discovery of IP Cameras Using SIP and Zeroconf Protocols 388
Yi-Chih Tung, Chien-Min Ou, Wen-Jyi Hwang, and Wei-De Wu

Adaptability of the TRSIM Model to Some Changes in Agents
Behaviour . 403

Alberto Caballero, Juan A. Botia, and Antonio Gómez-Skarmeta

Trust

Trusting Groups in Coalition Formation Using Social Distance 418
Peter Shaw, Paul Sage, and Peter Milligan

Adjustable Trust Model for Access Control . 429
Maryna Komarova and Michel Riguidel

Towards Trustworthiness Establishment: A D-S Evidence Theory Based
Scorer Reliability Tuned Method for Dishonest Feedback Filtering 444

Chunmei Gui, Quanyuan Wu, Huaimin Wang, and Jian Qiang

A User Behavior Based Trust Model for Mobile Applications 455
Zheng Yan, Valtteri Niemi, Yan Dong, and Guoliang Yu

Managing Contracts in Pleiades Using Trust Management 470
Christoffer Norvik, John P. Morrison, Dan C. Marinescu, Chen Yu,
Gabriela M. Marinescu, and Howard Jay Siegel

Trust and Dependable Systems

A Semantic Foundation for Trust Management Languages with
Weights: An Application to the RT Family . 481

Stefano Bistarelli, Fabio Martinelli, and Francesco Santini

Annotation Markers for Runtime Replication Protocol Selection 496
Hein Meling

Enhanced Three-Round Smart Card-Based Key Exchange Protocol 507
Eun-Jun Yoon and Kee-Young Yoo

Assertions Signcryption Scheme in Decentralized Autonomous Trust
Environments . 516

Mingwu Zhang, Bo Yang, Shenglin Zhu and Wenzheng Zhang

A Study of Information Security Practice in a Critical Infrastructure
Application . 527

Martin Gilje Jaatun, Eirik Albrechtsen, Maria B. Line,
Stig Ole Johnsen, Irene Wærø, Odd Helge Longva, and
Inger Anne Tøndel

Table of Contents XV

Web Search Results Clustering Based on a Novel Suffix Tree
Structure . 540

Junze Wang, Yijun Mo, Benxiong Huang, Jie Wen, and Li He

Routing and Reliable Systems

Di-GAFR: Directed Greedy Adaptive Face-Based Routing 555
Tao Yang, Ye Huang, Jianxin Chen, Geng Yang, and
Chunming Rong

Cooperative Management Framework for Inter-domain Routing
System . 567

Ning Hu, Peng Zou, PeiDong Zhu, and Xin Liu

Performance Problem Determination Using Combined Dependency
Analysis for Reliable System . 577

Shunshan Piao, Jeongmin Park, and Eunseok Lee

A Free-Roaming Mobile Agent Security Protocol Based on Anonymous
Onion Routing and k Anonymous Hops Backwards 588

Xiaogang Wang, Darren Xu, and Junzhou Luo

Secure Ethernet Point-to-Point Links for Autonomous Electronic Ballot
Boxes . 603

Armando Astarloa, Unai Bidarte, Jaime Jiménez,
Jesús Lázaro, and Iñigo Martinez de Alegŕıa

Special Session on Sensor Networks, VoIP, and Watermarking

Wireless Sensor Network Assisted Dynamic Path Planning for
Transportation Systems . 615

Yue-Shan Chang, Tong-Ying Juang, and Chen-Yi Su

A Recoverable Semi-fragile Watermarking Scheme Using Cosine
Transform and Adaptive Median Filter . 629

Shang-Lin Hsieh, Pei-Da Wu, I-Ju Tsai, and Bin-Yuan Huang

Intelligent VoIP System in Ad-Hoc Network with Embedded Pseudo
SIP Server . 641

Lin-huang Chang, Chun-hui Sung, Shih-yi Chiu, and Jiun-jian Liaw

A Weighted Routing Protocol Using Grey Relational Analysis for
Wireless Ad Hoc Networks . 655

Hung-Chi Chu, Yi-Ting Hsu, and Yong-Hsun Lai

Author Index . 665

Sensor Network Applications Implemented by

Industry and Their Security Challenges

Erdal Cayirci

NATO JWC & University of Stavanger, Norway

Wireless sensor networks (WSN) have many security and safety applications.
BODAS, TADAS and TEDAS are three examples for WSN security applications
implemented and deployed recently.

BODAS detects threats against the security and safety of pipelines. TADAS is
a tactical sensing system to detect and classify the intruders. It is developed for
surveillance along borders, through approach routes and around critical facilities.
Finally TEDAS detects the intruders passing over, through or under a perimeter
fence. All three applications are based on the deployment of a large number of
unattended nodes for extended time periods. Therefore, scalability and power
awareness are critical design parameters for them. They are also susceptible to
security threats different from typical military and commercial systems.

We first introduce briefly these applications, and then elaborate the security
threats and required security mechanisms for them. We also give our practical
solutions for some of these security challenges and experimental results for them
obtained through the implementation and deployment of BODAS, TADAS and
TEDAS.

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, p. 1, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 2–12, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Detecting Stepping-Stone Intrusion and Resisting Evasion
through TCP/IP Packets Cross-Matching

Jianhua Yang and Byong Lee

Department of Mathematics & Computer Science, Bennett College for Women,
900 E. Washington St., Greensboro, NC 27401, USA

{jhyang,blee}@bennett.edu

Abstract. In this paper, we propose a cross-matching algorithm that can detect
stepping-stone intrusion. The theoretical analysis of this algorithm shows that it
can completely resist intruder’s time-jittering evasion. The results of the ex-
periments and the simulation show that this algorithm can also resist intruders’
chaff-perturbation with chaff-rate up to 80%. Compared with A. Blum’s ap-
proach, which can resist chaff-perturbation with every x inserted packets out of
8*(x+1), this approach has promising performance in terms of resistance to in-
truders’ manipulation.

1 Introduction

It is not a secret that intruders usually attack other computers through stepping-stones
[1]. One obvious reason is that using stepping-stone could make the intruders safe from
being detected, even captured. Along with the development of computer technologies
many approaches to detect stepping-stone intrusion were proposed [1]. Some of the
known approaches are Content-Based Thumbprint [3], Time-Based Approach [1], De-
viation-Based Approach [4], Round-Trip Time Approach [5, 2], and Packet Number
Difference-Based Approach [6, 7]. Usually intruders take advantage of the vulnerabili-
ties of TCP/IP in manipulating TCP sessions in order to avoid detection. Most com-
monly used manipulation methods are time-jittering and chaff-perturbation [6].

Staniford-Chen and Heberlein proposed a method that identifies intruders by com-
paring different sessions for suggestive similarities of connection chains [3]. The
major weakness of this method is that it cannot be applied to encrypted sessions in
which the contents that are crucial for making thumbprint are not available. Zhang
and Paxson proposed the Time-Based Approach that can be used to detect stepping-
stone or trace back intrusion even if a session is encrypted [1]. However, this method
has three major problems. First, it can be easily manipulated by intruders. Second, it
requires that the packets of connections have precise and synchronized timestamps in
order to correlate them properly. This makes it difficult or impractical to correlate the
measurements taken at different points in the network. Third, it is observed that a
large number of legitimate stepping-stone users routinely traverse a network for a
variety of purposes. Yoda and Etoh proposed the Deviation-Based Approach, a net-
work-based correlation scheme [4]. It defines the deviation as the minimum average
delay gap between the packet streams of two TCP connections. This method is based

 Detecting Stepping-Stone Intrusion and Resisting Evasion 3

on the observation that the deviation of two unrelated connections is large enough to
be distinguished from that of connections in the same connection chain. The Devia-
tion-Based Approach has the following problems in addition to the problems that the
Time-Based Approach has: 1) computing deviation is not efficient; 2) it is not appli-
cable for a compressed session because it depends on the size of a packet; 3) it cannot
correlate connections where padding is added to the payload because it can correlate
only the TCP connections that have one-to-one correspondences in their TCP se-
quence numbers; 4) correlation measurements are applicable only to the post-attack
traces because the correlation metrics are defined over the entire duration of the con-
nections. The Round-Trip Time (RTT) approach proposed by Yung [2] detects step-
ping-stone intrusion by estimating the downstream length using the gap between a
request and its corresponding response, and the gap between the request and its corre-
sponding acknowledgement. The problem of the RTT approach is that it makes inac-
curate detection because it cannot compute the two gaps precisely.

The Packet Number Difference-Based Approach (PND-based) proposed by Blum
[7] detects stepping-stones by checking the difference between the Send packet num-
bers of an incoming connection and those of an outgoing connection. The method is
based on the idea that if the two connections are relayed, the difference should always
be bounded, otherwise, it should not. It is claimed that this method can resist intrud-
ers’ evasions such as time-jittering and chaff-perturbation to an extent. Donoho, et al.
[6] showed that there are theoretical limits on the ability of attackers to disguise their
traffics using evasions during a long interactive session. Using wavelet and multi-
scale methods they proved that even if the session is jittered by time and chaff pertur-
bation, stepping-stone detection is still possible by monitoring a session for a long
time. However, Donoho, et al. did not show how much time a session needs to be
monitored in order to detect a stepping-stone. Blum [7] continued Donoho’s work and
proposed a PND-based algorithm for stepping-stone detection using Computational
Learning Theory. Blum achieved provable upper bounds on the number of packets
required to be monitored in an interactive session in order to achieve a given confi-
dence. A major problem with the PND-based approach is due to the fact that the up-
per bound of the number of packets required to monitor is large, while the lower
bound of the amount of chaff needed to evade this detection is small. This fact makes
Blum’s method weak in terms of resisting intruders’ chaff evasion. J. Yang proposed
a couple of methods that match TCP/IP packets to detect stepping-stone intrusion
[5, 8, 9]. The main idea of these methods is to detect stepping-stone intrusion by esti-
mating the length of a connection chain between the stepping-stone and the victim
host. The longer the connection chain is, the higher the probability that the session is a
stepping-stone intrusion.

As we can see, most approaches that have been developed to detect stepping-stone
intrusion are vulnerable in resistance to intruders’ evasion. In this paper, we propose a
new algorithm, TCP/IP Packets Cross-Matching, to detect stepping-stone intrusion and
to resist intruders’ time-jittering and chaff-perturbation evasions. The main idea of the
TCP/IP Packet Cross-Matching is to match the send and echo packets of not only the
same session, but also the different sessions. To determine whether a stepping-stone
intrusion occurs, the TCP/IP packet matching rates between different sessions are com-
pared. The results of the experiments and the simulations we conducted showed that this

4 J. Yang and B. Lee

method can not only detect stepping-stone intrusion, but also resist intruders’ evasions
such as time-jittering and chaff-perturbation to a significant extent.

Section 2 introduces intruders’ evasion approaches; time-jittering, and chaff-
perturbation, and our assumptions. Section 3 explains TCP/IP Packets Matching
method and the TCP/IP Packet Cross-Matching Algorithm. Section 4 covers the ex-
perimental setup, simulation, and the analysis of the experimental and simulation
results. Section 5 summarizes our work with a conclusions and possible directions for
the future work.

2 Intruder’s Evasion Approaches and Assumptions

As we discussed before, intruders usually evade stepping-stone detection by manipu-
lating the TCP session. The purpose of the manipulation is either to make two unre-
lated connections look like related or two unrelated connections look like related.
Time-jittering and chaff-perturbation are the methods most frequently used by intrud-
ers to manipulate TCP sessions. Before we discuss the TCP/IP Packet Cross-
Matching Algorithm, we would like to explain these two evasion approaches first.

2.1 Time-Jittering

Intruders can evade detection by holding some of the Send packets of a session. This
method is called time-jittering. Different packets are held for different time gaps.
Usually intruder’s randomly generates time gaps for the Send packet delays. But the
Send packets original order must be kept and guaranteed. Suppose we have n send
packets {s1, s2, s3, …, sn} and their corresponding time stamps are: {t1, t2, t3, …, tn}.
The following relations must be satisfied if these packets belong to one interactive
session,

 tn >tn-1 >…> t3 > t2 > t1 (1)

If the ith packet is held for a time gap Δti, the time stamps of the jittered Send packets
would be: {t1 + Δt1, t2 + Δt2, t3 + Δt3, …, ti + Δti …, tn + Δtn }. Regardless of the size
of Δti, the following relations must be satisfied to guarantee the original send packets’
order,

tn + Δtn > tn-1 + Δtn-1 >… > t3 + Δt3 > t2 + Δt2 > t1 + Δt1 (2)

This is required by TCP/IP protocol. Many of the approaches proposed to detect step-
ping-stone [1, 3, 4] are vulnerable in terms of resistance to Time-Jittering evasion.

Intruders could manipulate either incoming connections or outgoing connections
using time-jittering. Generally, intruders cannot hold Echo packets. The reason is that
each Echo packet is the response to a Send packet and holding an Echo packet may
cause resending the corresponding Send and this complicates the network communi-
cation beyond the control. That is why holding Send packet is the usual way used to
manipulate an interactive session by intruders. Another fact is that intruders cannot
hold Send packets indefinitely. In other words, an intruder can hold a Send packet
only for a limited time [6]. Therefore, we can make the following two assumptions:

 Detecting Stepping-Stone Intrusion and Resisting Evasion 5

Assumption 1: Intruders can apply time-jittering manipulation to Send packets only.

Assumption 2: The time that an intruder can hold a Send packet must be bounded,
i.e. Δti < Tb, where Tb represents an upper boundary.

2.2 Chaff-Perturbation

Another way to evade detection is to insert meaningless packets to an interactive
session. This method is called chaff-perturbation. With chaff-perturbation, intruders
can manipulate connections, either making two relayed connections un-relayed or
making two un-relayed connections relayed. The methods that detect stepping-stone
intrusion by counting the number of Send packets fail to resist this chaff-perturbation
evasion because the packet number could be easily changed with the chaff-
perturbation. Chaff-perturbation is more difficult to implement than time-jittering.
There are two issues to consider in chaff-perturbation evasion. They are chaff rate and
chaff removing.

Intruders usually do not insert too many packets into an interactive TCP/IP session
for two reasons: It is difficult to control and it is inefficient. The purpose of chaff-
perturbation is to evade detections by the methods in which the number of Send pack-
ets in incoming connection and the one in outgoing connection are compared to see if
the two numbers are close enough. In other words, it checks if the relative difference
(the rate between the difference of the two numbers and the minimum of the two
numbers) is within ε where 0 < ε < 1. If we use δ to represent the relative difference,
then the following equation must be satisfied,

| δ |< ε (3)

The smaller the ε is, the more accurate the detection. If an intruder wants to evade
the detection, he/she would chaff the session with a rate that is just a little bit higher
than ε. Our conclusion is that intruders do not need to insert a large number of packets
into a session to evade the detection.

Another important fact is that intruders must remove all the chaffs before they reach
the target host of an interactive session because the meaningless packets cannot be exe-
cuted at the end host. Further more if the chaffs arrive at the end host, they will interfere
with the execution of the normal packets. So we make the third and fourth assumptions.

Assumption 3: All the chaffs do not have any corresponding Echo packets because
the chaffs will be removed before it goes to the end host.

Assumption 4: Intruders can chaff any send or echo packets, and if the chaffs are
removed, they will be removed completely rather than partially.

3 TCP/IP Cross-Matching Algorithm

3.1 Motivation

The basic idea employed in the algorithms that detect stepping-stone intrusion is to com-
pare a feature of an incoming connection with the same feature of the corresponding
outgoing connection to see if the two features are the same or close enough. The main

6 J. Yang and B. Lee

reason why the previous approaches are weak or fail in resisting intruders’ evasion is that
the features used in those approaches are easy to be manipulated by either delaying send
packets or inserting some meaningless packets. For example, the ON-OFF feature used
by Zhang [1] is easy to be changed by holding different send packets for different time
gaps; the send packet number used by A. Blum [7] is also uncomplicated to be changed
by inserting some meaningless packets even though A. Blum proved that his method
would work if less than x packets are inserted in 8*(x+1) packets.

We believe that only the methods that use a characteristic that is not easy to be
manipulated will have the ability to resist intruders’ evasion. The method proposed by
J. Yang [8] to detect stepping-stone intrusion uses an estimation of the length of the con-
nection chain. Unlike other approaches that use only send packets, J. Yang used send and
echo packets together to detect stepping-stone. The key to estimate the length of a con-
nection is to match the send and echo packets of an outgoing connection. J. Yang [8]
showed that the matched packets always form the largest cluster, i.e. among the clusters
formed the matched packets produce the highest matching rate, which is defined as the
ratio between the number of element of a cluster and the number of send packets. We
found that matching rate is very promising indicator to determine if two connections are
relayed. If two connections are not relayed, the matching rate between the send packets
of one connection and the echo packets of the other connection is close to zero. However,
if two connections are relayed, that rate would be close to one. The most important fact
regarding this matching rate is that it is not inclined to be affected by manipulation. That
is, the probability that chaff packets are involved in a matched cluster is very low unless
they are strictly controlled. Even if some chaffed packets are involved in a matched clus-
ter, it still cannot affect the matching result significantly unless all the chaffed packets
form a new cluster which has the matching rate higher than the real one. To make this
happen, the intruder would need to insert more than 100% meaningless packets into an
interactive session. It is not easy for an intruder to implement it as what Donoho [6]
proved. The TCP/IP Cross-Matching algorithm is based on the packets matching idea
proposed by J. Yang [8].

3.2 TCP/IP Packets Cross-Matching Algorithm

In the cross-matching algorithm the send packets of an outgoing connection is
matched to the echo packets of the same connection and to the echo packets of an
incoming connection, and then the two matching rate are compared to see how close
they are. We use matching rates of an incoming connection and its corresponding
outgoing connection as the bench mark to decide if a stepping-stone intrusion occurs.
Fig. 1 illustrates this idea.

hi 2

iC
1
iC

)1(
iS

)2(
iE)1(

iE

Fig. 1. Illustration for Cross-Matching

)2(
iS

 Detecting Stepping-Stone Intrusion and Resisting Evasion 7

As Fig.1 shows, hi is a host to be determined if it is a stepping-stone. This host has

two connections; 1
iC and 2

iC . 1
iC is the incoming connection that contains two

streams: the send packet stream)1(
iS , and the echo packet stream)1(

iE . 2
iC is the

outgoing connection that also includes the send packet stream)2(
iS and the echo

packet stream)2(
iE .

The packets in)2(
iS are matched to the packets in)2(

iE using the packet matching

method in [8] and produce a matching rate
22ρ . The packets in)2(

iS match the packets

in)1(
iE and produce a matching rate

21ρ . If the two connections 1
iC and 2

iC are re-

layed, the following inequality must be satisfied.

ερρ <− || 2221
,

where 10 << ε The lower the value of ε is, the higher probability that the two
connections are relayed. The ideal value of || 2221 ρρ − is equal to zero.

In addition to the matching rate difference, we also check the similarity between
two matched sequences. The two packet matching rates ρ21 and ρ22 come from one
send packet sequence. Not always all the packets of)2(

iS match all the echo packets in

sequence)2(
iE , as well as those packets in sequence)1(

iE . We define
22S as the set of

the packets in)2(
iS that match with)2(

iE and
22N as the number of packets in

22S ;

21S as the set of the packets in)2(
iS that match)1(

iE and
21N as the number of pack-

ets in
21S . The similarity between two sequences can be measured by checking how

many packets are the same between
21S and

22S . We use λ to represent the similarity

and then λ is defined as follow.

Similarity:
),max(2221 NN

Δ=λ , where Δ is the number of the packets in the intersec-

tion of
21S and

22S .

3.3 Resistance Analysis

3.3.1 Time-Jittering
An intruder could perform time-jittering either in the incoming connections by hold-
ing)1(

iS or in the outgoing connections by holding)2(
iS as Fig.1 shows. Based on As-

sumption 1, an intruder cannot hold Echo packets. To simplify our analysis, we
assume that the Send packets)2(

iS in outgoing connection are held randomly. We

assume there are n Send packets S: {s1, s2, s3, …, sn } with time stamps { ts1, ts2, ts3,
…, tsn } passing through the outgoing connection before time-jittering is implemented.
We also assume that there are m Echo packets E: { e1, e2, e3, …, em } with time
stamps{ te1, te2, te3, …, tem } generated by the target host of the session in the incoming
connection. We also assume that si with time stamp tsi matches ej with time stamp tej if

8 J. Yang and B. Lee

the two connections are relayed. After time-jittering, the two time stamps should
become to tsi + Δt, and tej + Δt , where Δt is the time-jittering. The round-trip time
(RTT) before time-jittering is RTT1 = tej - tsi, and after time jittering is RTT2 = (tej +
Δt) - (tsi + Δt) = tej - tsi. Therefore, we can say that time-jittering does not affect the
round-trip time which is used to match Send and Echo packets. Consequently, we can
conclude that the matching rate cannot be affected by time-jittering. Therefore, we
can justify the Assumption 1: an intruder will hold Echo packets. It means that the
time stamps of packets in)1(

iE are very close to the ones in)2(
iE . The matching rate

21ρ is also not affected by the time-jittering imposed on the send packets of the out-

going connection. If the two connections are relayed, these two matching rate should
be very close. In other words, if

21ρ and
22ρ are very close, we may induce that the

possibility that the two connections are relayed is very high. So cross-matching can be
used to detect stepping-stone intrusion, and can resist intruder’s time-jittering evasion.

3.3.2 Chaff-Perturbation
To determine if cross-matching could resist intruders’ chaff-perturbation evasion, we
need to analyze the effect of chaff-perturbation on packet matching rate or on RTT
which is used to match Send and Echo packets. Unlike time-jittering, intruders can
perform chaff-perturbation on Send packets, on Echo packets, or on both. We ana-
lyzed two cases. First, chaff-perturbation is performed in only Send packets. Second,
chaff-perturbation is performed in both Send and Echo packets. The analysis was
based on the Assumption 4: when the chaffs are removed, they must be removed
completely, rather than partially.

Case 1: Chaff on Send packets only
We assume that the Send packet stream has n packets {s1, s2, s3, …, sn } with time
stamps { ts1, ts2, ts3, …, tsn }, and Echo packet stream has m packets { e1, e2, e3, …, em }
with time stamps{ te1, te2, te3, …, tem } before chaff perturbation. If a packet (we call it
kth packet with time stamp tsk) is inserted between ith and (i+1)th Send packets, then
this Send packet will not have corresponding Echoed packet because this kth packet
will be removed before it goes to the end host (Assumption 3). When tsk is very close
to tsi, this packet will merge to the ith packet. When tsk is very close to tsi+1, this packet
will merge to the (i+1)th packet.. If it is close to neither ith packet nor (i+1)th packet,
this packet will exist independently and match nothing. Therefore, theoretically the
round-trip time cannot be affected by chaffs inserted in Send packets. Obviously
packet matching rate cannot be affected either. So cross-matching can resist intruders’
evasion with only Send packets chaffed.

Case 2: Chaff on both Send and Echo packets
Assume that two Send packets si, si+1 are matched by two Echo packets ej, ej+1, respec-
tively before chaff-perturbation. After chaff-perturbation, they become si, sp, si+1, and
ej, eq, ej+1, where sp and eq are chaffs. If sp is either close to si or to si+1, it would not
affect the round trip time computation as shown in the Case 1. If sp is close to neither
si nor si+1, then eq may match sp to form a different RTT and interfere the packet
matching. As a result it may make either two un-relayed connections look like re-
layed or two relayed connections look like un-relayed. This happens only when the
following two conditions are met. First, there are a large number of chaffs and second,

 Detecting Stepping-Stone Intrusion and Resisting Evasion 9

the chaffs can form RTTs which are very close and these RTTs can interfere with the
real RTTs. This, however, happens with very low probability because it is almost
impossible to meet the both conditions. For the first condition, as we stated before it
is impractical and inefficient to insert a large number of meaningless packets into an
interactive session. For the second condition, even if an intruder could handle every-
thing and would not care about the efficiency of the network communication, it is still
very hard to affect the packet matching rate because the intruder must control the
interactive session so that all the packets inserted can be matched and form a different
set of fake RTTs that can interfere with the real RTTs. The more packets are inserted,
the more difficult for intruders to control. The point is that a small number of packets
inserted does not affect packet matching rate significantly. If intruders randomly in-
sert some meaningless packets into an interactive session, it is unlikely that the chaffs
matched each other. Our conclusion is that packet matching rate cannot be affected by
randomly inserted chaff and therefore, the cross-matching method can resist chaff-
perturbation to an extent.

3.4 The Algorithm

Based the discussions we had in the previous sections, we propose the cross-matching
algorithm that could detect stepping-stone intrusion, as well as resisting time-jittering
and chaff-perturbation evasions. We assume there are n Send packets captured and ε
is a given threshold which determines the detection accuracy. This threshold is deter-
mined by the tradeoff between the false positive rate and the false negative rate of
intrusion detection.

Cross-Matching ()1(
iS ,)1(

iE ,)2(
iS ,)2(

iE ,ε):

1. Call the matching algorithm in [8] to match the packet between)2(
iS and)1(

iE ,

as well as)2(
iS and)2(

iE , and compute the matching rate
21ρ and

22ρ , respec-

tively;
2. Determine if ερρ <− 2221

 is satisfied. If it is, then got to Step 3, otherwise

go to Step 4;
3. Check the similarity λ. If it is over 90%, then terminate and output “stepping-

stone intrusion”; if it is over 60%, then terminate and output “highly doubted”;
otherwise, go to Step 4.

4. If the inequality in Step 2 is not satisfied, then change the incoming connec-
tion and repeat Steps 1 to 3 until all the incoming connections are checked.

End

The computation cost of this algorithm is dominated by the computations in Step 1
which is used to match Sends and Echoes. J. Yang pointed out that the time complex-
ity of the efficient clustering algorithm is O(nm2), where n is the number of Sends,
and m is the number of Echoes [8]. If there are p incoming connections and q outgo-
ing connections at a host, in the worst case, the time complexity of detecting stepping-
stone would be 4*O(nm2)*p*q ≈ O(pqnm2) [8].

In this algorithm, we employed the thresholds for the similarity; 90% to indicate
stepping-stone intrusion and 60% to indicate highly doubted stepping-stone intrusion.

10 J. Yang and B. Lee

These two numbers were selected purely based on our experience and our experimental
context. Different similarity threshold may be selected based on the detecting context.

4 Experimental Results

4.1 Experimental Setup

We established two connections using OpenSSH. They went through the host com-
puter at Bennett College. One connection connects to Mexico, and the other connects
to California. We have two incoming connections 1

1C and 1
2C , and two outgoing

connections 2
1C and 2

2C . 1
1C and 2

1C are relayed and 1
2C and 2

2C are relayed. We

monitored these four connections, and collected the send and echo packets from the
outgoing connections 2

1C and 2
2C , as well as the echo packets from the incoming con-

nections 1
1C and 1

2C . We call the cross-matching algorithm to compute the matching

rates and the similarities. Obviously, the experimental results showed that 1
1C and 2

1C

, 1
2C and 2

2C are in the same session respectively. We do not want to get in details at

this point, but we want to show how the cross-matching algorithm behaves when the
connections are manipulated. Is it strong in resisting intruders’ evasion? We justify
this through simulation with ε = 0.1.

4.2 Resisting Time-Jittering and Its Analysis

As we discussed in section 3.3.1, what we monitor is the timestamps of the send packets
of the outgoing connections. Whatever how long an intruder holds the send packets, it
does not affect the timestamps of the packets. That is it does not affect the matching
rates if Assumption 1 is met. So we do not have to do any justification at this point.
Under Assumption 1, cross-matching can resist intruders’ time-jittering completely.

4.3 Resisting Chaff-Perturbation and Its Analysis

In this section, we ponder two questions. First, when the two connections are relayed,
is it possible to make them not relayed by chaff-perturbation? Second, when the two
connections are not relayed, is it possible to make them relayed by chaff-perturbation?
We took the packet sequence as the mother sample, and inserted some meaningless
packets into both echo and send sequences with the different ratios, 10%, 20%,
…100%. Here we assumed that the original timestamps would not be changed with
chaff inserted. For each inserting ratio, we simulated 100 times, and took the worst
result. Fig. 2 shows the matching rate difference and the matching rate similarity at
different inserting rates under the assumption that the two connections are relayed.

According to Fig. 2 the two connections are in highly doubted relayed status when the
chaff-rate is over 80% because the similarity is lower than 90% but higher than 60%. The
cross-matching can resist intruders’ chaff-perturbation with chaff-rate up to 80%.

 Detecting Stepping-Stone Intrusion and Resisting Evasion 11

Fig. 3 shows the case when two connections are not relayed. We chaffed both the
send and echo sequence with different chaff-rate from 10% to 100%. The simulation
results show that the similarities are always under 10% whatever how the connections
were chaffed. And the matching rate difference is always over 90%. The results drive us
to believe that chaff-perturbation cannot escape from the detection of cross-matching.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Chaff-Rate

P
er

ce
n

ta
g

e

Cross-Matching Similarity

Fig. 2. Two relayed connections with Chaff-Perturbation

Fig. 3. Two unrelayed connections with Chaff-Perturbation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Chaff-Rate

P
er

ce
n

ta
g

e

Cross-Matching Similarity

12 J. Yang and B. Lee

5 Conclusions and Future Work

In this paper we proposed a cross-matching approach that detects stepping-stone in-
trusion by utilizing the TCP/IP packet matching algorithm proposed by Yang, et al.
[8]. The analysis shows that this new approach can resist intruders’ time-jittering
evasion, and also resist intruders’ chaff-perturbation. The experimental results and the
simulation showed that cross-matching can resist intruder chaff-perturbation with
chaff-rate up to 80%. Compared with A. Blum’s approach, which can resist chaff-
perturbation with every x inserted packets out of 8*(x+1) [7], this approach has better
performance in terms of resistance to intruders’ manipulation.

Although the result of testing is very promising, the algorithm was tested in small
scale due to the limited UNIX accounts we have. To verify the effectiveness of the
cross-matching algorithm in resisting intruders’ evasion, the algorithm needs to be
tested more extensively in various contexts.

References

[1] Zhang, Y., Paxson, V.: Detecting Stepping Stones. In: Proc. of the 9th USENIX Security
Symposium, Denver, CO, USA, pp. 171–184 (2000)

[2] Yung, K.H.: Detecting Long Connecting Chains of Interactive Terminal Sessions. In:
Wespi, A., Vigna, G., Deri, L. (eds.) RAID 2002. LNCS, vol. 2516, pp. 1–16. Springer,
Heidelberg (2002)

[3] Staniford-Chen, S., Todd Heberlein, L.: Holding Intruders Accountable on the Internet. In:
Proc. IEEE Symposium on Security and Privacy, Oakland, CA, USA, pp. 39–49 (1995)

[4] Yoda, K., Etoh, H.: Finding Connection Chain for Tracing Intruders. In: LCTES 2000.
LNCS, vol. 1985, pp. 31–42. Springer, Heidelberg (2000)

[5] Yang, J., Huang, S.: Matching TCP Packets and Its Application to the Detection of Long
Connection Chains. In: Proceedings (IEEE) of 19th International Conference on Advanced
Information Networking and Applications (AINA 2005), Taipei, Taiwan, China, pp. 1005–
1010 (2005)

[6] Donoho, D.L., et al.: Detecting Pairs of Jittered Interactive Streams by Exploiting Maxi-
mum Tolerable Delay. In: Proceedings of International Symposium on Recent Advances in
Intrusion Detection, Zurich, Switzerland, pp. 45–59 (2002)

[7] Blum, A., Song, D., Venkataraman, S.: Detection of Interactive Stepping-Stones: Algo-
rithms and Confidence Bounds. In: Proceedings of International Symposium on Recent
Advance in Intrusion Detection (RAID), Sophia Antipolis, France, pp. 20–35 (2004)

[8] Yang, J., Huang, S., Wan, M.: A Clustering-Partitioning Algorithm to Find TCP Packet
Round-Trip Time for Intrusion Detection. In: Proceedings of 20th IEEE International Con-
ference on Advanced Information Networking and Applications (AINA 2006), Vienna,
Austria, vol. 1, pp. 231–236 (2006)

[9] Yang, J., Huang, S.: Probabilistic Analysis of an Algorithm to Compute TCP Packet
Round-Trip Time for Intrusion Detection. Journal of Computers and Security, Elsevier
Ltd. 26, 137–144 (2007)

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 13–20, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Preventing DDoS Attacks Based on Credit Model for
P2P Streaming System

Jun Yang1, Ying Li2, Benxiong Huang1, and Jiuqiang Ming1

1 Dept. of E. I. E, Huazhong University of Science and Technology, Wuhan, China
cody.yang@gmail.com, huangbx@mail.hust.edu.cn,

mingjiuqiang@hotmail.com
2 State Key Lab. of ISN, Xidian University, Xi’an, China

yli@mail.xidian.edu.cn

Abstract. Distributed Denial of Service (DDoS) attack is a serious threat to the
Internet communications especially to P2P streaming system. P2P streaming
system is vulnerable to DDoS attacks due to its high bandwidth demand and
strict time requirement. In this paper, we propose a distributed framework to
defense DDoS attack based on Credit Model(CM) which takes the
responsibility to identify malicious nodes and categorize nodes into different
credit level. We also introduce a Message Rate Controlling Model (MRCM)to
control the message rate of a node according to its credit level. Combining CM
and MRCS together, our framework can improve the resistibility against DDoS
for P2P streaming system.

Keywords: Distributed Denial of Service (DDoS), peer-to-peer (P2P), Credit.

1 Introduction

Peer-to-peer networks, especially P2P file sharing networks, have been quickly
adopted by many Internet communities in the past few years. Recently, the popularity
of P2P streaming service demonstrates its ability to deliver high quality media
streams to a large number of audiences. The Thriving of P2P networks starts to attract
distributed denial of service (DDoS) attacks. Compared with the widely applied file-
sharing networks[1][2], P2P streaming networks are more vulnerable to DDoS attacks
for the following three reasons. Firstly, streaming usually requires high bandwidth
such that a certain amount of data loss could make the whole stream useless.
Secondly, Streaming applications require their data to be delivered before a deadline.
Otherwise data with a missed deadline is useless. Thirdly, a streaming network
usually consists of a limited number of data sources which are easily attacked[3].

In P2P streaming network, the attacks on data sources and part of the network may
cause DDoS. A P2P streaming network consists of a limited number of data sources
which are easily attacked by some malicious nodes when they send amounts of
requests[4]. Then other well-behaving nodes will not download media stream from
data sources which means a DDoS attack to data sources has happened. On the other
hand, since receivers can make unrestricted requests in such a system, if many nodes
request a large number of media streams and consume too much bandwidth that all of

14 J. Yang et al.

the available upload bandwidth in part of P2P media streaming system is
exhausted[5]. A DDoS attack to part of the network has happened because other well-
behaving nodes will be prevented from downloading media streams.

In this paper we propose a generic DDoS resilience framework for preventing both
attacks to data sources and part of the network. To identify DDoS attackers and
prevent the system from being corrupted by malicious nodes, our framework employs
a CM to allow nodes to evaluate other nodes’ behaviors and introduces a MRCM to
control the message rate of a node according to its credit level MRCM accomplishes
prevention of DDoS by enforcing maximum message rate (the numbers of requests a
node sends in a time unit) limits for each participating node. Each node in the P2P
streaming network has different message rate limits according to its credit level. In
order to prevent both attacks to data sources and part of the network we limit the total
message rate and the message rate to data sources for each node. In this framework,
MRCM consists of a subset of trusted nodes from the P2P streaming network. The
nodes in MRCM will dynamically store message rate information about each node in
the P2P streaming network. When the message rate of a node surpasses its message
rate limit, MRCM will prevent it from sending more requests until the message rate is
below its limit.

Nodes in MRCM are also participants in the underlying P2P streaming overlay.
Unlike a solution that uses a central database sever[6] to control nodes’ message rate,
we provides an approach that avoids a central bottleneck, avoids a central point of
failure[7] and provides scalability. According to limiting each node’s message rate to
data sources and part of the network, we can detect malicious nodes immediately and
control the system efficiently. The network can recover quickly even if a few of
DDoS attacks have happened.

The rest of the paper is structured as follows: We first introduce the categorization
of DDoS attacks in P2P streaming network and propose a novel framework to solve
these security problems in Section 2. Section 3 discusses the performance of our
framework at preventing DDoS attacks. Section 4 presents a brief summery of this
paper.

2 System Design

In this section we first introduce the categorization of DDoS attacks in P2P streaming
network. Then we propose a novel framework to prevent these DDoS attacks and then
present its two key components: CM and MRCM.

We categorize the DDoS attacks in P2P streaming networks into attacks to data
sources and attacks to part of the network. Attacks to data sources may happen
because P2P streaming network consists of a limited number of data sources. It is
easy to attack data sources for some malicious nodes by sending amounts of requests
to data sources. Then other well-behaving nodes will not download media stream
from data sources. Attacks to part of the network happen since users can make
unrestricted requests in such a system, if many nodes behave selfishly by requesting a
large number of media streams and consuming too much bandwidth, then well-
behaving nodes might not be able to access media streams that would otherwise be
available if all nodes were well-behaved. When one or more nodes exhaust all of the

 Preventing DDoS Attacks Based on Credit Model for P2P Streaming System 15

available upload bandwidth in part of P2P media streaming system due to malice, a
DDoS attack has occurred because other well-behaving nodes will be prevented from
downloading media streams.

In order to prevent both attacks to data sources and attacks to part of the network
we propose an interconnection framework consists of CM and MRCM. As shown in
Fig. 1, the credit model nodes (CMNs) collect the credit information of each node and
inform the information to the MRCM nodes (MRCMNs). The MRCM nodes control
the behaviors of the P2P streaming nodes (PSNs) based on their credit level obtained
from CMNs. We will discuss CM and MRCM in detail in the following sections.

Data source

CMN
CMN CMN

MRCMN MRCMN MRCMN

PSN
PSN PSN PSN PSN

Fig. 1. Internet Interconnection Framework

2.1 Framework

As mentioned above it is important to realize that DDoS could exist in a large-scale
P2P media streaming system where attackers are capable of consuming a lot of
resources with just a small amount of effort, that is, sending a few requests that take a
small amount of bandwidth could lead to receiving several high bandwidth streams
that exhaust resources. In order to solve this problem we can maintain a decentralized
database that stores the current aggregate message rate of each node in the system as
well as the maximum message rate allowed for each node in the system. Meanwhile,
we introduce a CM to evaluate the behaviors of each node and calculate their credit
level. The node whose credit level is below some value will be referred to as a
malicious node. Finally, the essential idea of our proposed framework is to combine
an existing credit system to limit the message rate of each node. In our framework,
nodes have different maximum message rate based on their credit level. The higher
the credit level, the larger the maximum message rate a node can have. Then ill-
behaving nodes can not send amounts of requests to both data sources and other
nodes.

16 J. Yang et al.

Our framework consists of two key components: CM and MRCM. CM defines the
interface between overlay events or transactions and the underlying credit system. It
evaluates each node’s credit level dynamically based on some principles which will
be described later and informs this value to MRCM. MRCM defines credit-
constrained node control mechanism. It maintains a database which stores each
node’s maximum message rate based on its credit level obtained from CM. When a
node A joins the overlay, it first obtains a list of nodes with low credit from a
bootstrap mechanism. After joining the overlay, A accumulates credit by fulfilling its
duties. When A sends a request to data sources or other nodes, MRCM nodes
compute the current aggregate message rate of A and compares it with the maximum
message rate of A in the database. If the current aggregate message rate is lower than
the maximum message rate then request will be allowed, otherwise it will be cut off.

Nodes in CM and MRCM are also participants in the underlying P2P streaming
overlay which means they can also upload and download media objects. Both CM and
MRCM use decentralized approach instead of using a central database server to
manage the overlay which can avoid a central bottleneck, avoid a central point of
failure, and provide scalability.

2.2 Credit Model (CM)

We use an existing credit system to identify ill-behaving peers which mentioned
in[8][9][10]. To achieve this goal, the credit management component needs to
translate a user’s behavior to its credit value. PeerTrust 1 which employs DHT to
store and look up the credit peers can fulfill the requirement of our framework. In
PeerTrust, a node’s trustworthiness is defined by an evaluation of the node it receives
in providing service to other nodes in the past. Such reputation reflects the degree of
trust that other nodes in the community have on the given node based on their past
experiences. It identifies five important factors for credit evaluation: the feedback a
node obtains from other nodes, the feedback scope, such as the total number of
transactions that a node has with other nodes, the credibility factor for the feedback
source, the transaction context factor for discriminating mission-critical transactions
from less or noncritical ones and the community context factor for addressing
community related characteristics and vulnerabilities. PeerTrust defines the following
trust metric:

()

1

() * (,)* ((,))* (,) * ()
I u

i

T u S u i Cr p u i TF u i CF uα β
=

= +∑

(1)

In this equation, ()T u denotes the credit of node u , ()I u is the total number of

transactions performed by u , (,)S u i is the normalized amount of satisfaction u gets

from transaction i , (,)p u i represents the other peer in transaction i , and ()Cr p stands

for the credibility of feedbacks from node p . (,)TF u i is the transaction context

factor. ()CF u is the community factor of node u , andα and β are normalized weight

factors for the collective evaluation and the community context factor.

 Preventing DDoS Attacks Based on Credit Model for P2P Streaming System 17

CM is the fundamental defense mechanism of MRCM. It requires nodes to report
their experience to CM. CM works with the underlying overlay to aggregate nodes’
experience and calculates their credibility. The credibility will be used by MRCM to
classify nodes into different level.

2.3 Message Rate Control Model (MRCM)

The main idea behind MRCM is that selfishness and DDoS attacks in P2P media
streaming systems can be prevented by consisting of a subset of trusted nodes form a
separate overlay that stores node request information objects. These trusted nodes will
be referred to as MRCM nodes and the remaining nodes will be referred to as ordinary
nodes. We assume that each ordinary node knows the IP address of the MRCM node
that stores its request information. Treating node identifiers from the streaming
application overlay as node request information object keys in MRCM, Mj (current

message rate for node j) and jMmax (maximum message rate for node j) for node

j will be stored at the MRCM node to which key j maps according to the P2P lookup

protocol. When a node i sends a streaming request, it must query its known MRCM
node c about whether or not the request should be allowed. MRCM node c will
retrieve Mj and jMmax from either its local database of node request information

objects or retrieve those values by requesting the node request information object from
the MRCM node c ’ responsible for storing key j . The underlying P2P lookup protocol

can be used to locate and retrieve these objects. Upon receiving Mj and jMmax ,

MRCM node c will only gives permission to node j to upload the media object if the

additional stream’s message rate will not cause Mj to exceed jMmax .

MRCM consists of a separate overlay of trusted nodes. How can we determine
whether or not a node can be trusted to be a MRCM node? In our framework CM is
used to evaluate each node’s reputation. At the beginning a single node could be the
first MRCM node. As time goes on, the MCRM node could collect information from
CM that would allow it to determine whether or not other untrusted nodes could be
upgraded to trusted node status in order to participate in the MRCM overlay. MRCM
nodes may be degraded to ordinary nodes when their credit level becomes lower than
some value.

3 Performance Evaluation

In this section, we evaluate the performance of our framework with respect to its
effectiveness at preventing DDoS attacks. To evaluate the performance of our
framework, we execute two types of simulations of a P2P media streaming
application: one where our framework is used and another one where our framework
is not used. In each simulation, we observe the ratio of requests allowed for benign
and malicious nodes when our framework is used and compare that to the ratio of
requests allowed for benign and malicious nodes when our framework is not used.
When our framework is not used, each node decides whether or not to grant a request
based on whether its upload limit will be exceeded.

18 J. Yang et al.

In our simulations, we assume that each media object request has a data rate of
400Kbps. We chose to give each node an upload limit of 1 Mbps. Each benign node
makes five total requests at most for media objects during each simulation. These
requests are spaced between three and five minutes apart. The number of requests
from each benign node, the spacing between requests, and the media object keys
requested are all random values. Each attacker makes 10 requests for random media
object keys that are spaced 100 milliseconds apart. Based on these specified behaviors
in our simulation, no benign node will attempt to exceed its message rate limit and
every attacker will attempt to exceed its message rate limit.

For the results that appear in Fig. 2, the P2P network had a total of 200 nodes with
10 of those 200 nodes being MRCM nodes. For the results that appear in Fig. 3, the
P2P network had a total of 400 nodes with 10 of those 400 nodes being MRCM
nodes. In both cases, we varied the number of attackers in our simulations to see how
they would affect the fraction of requests allowed for the following categories:

NRA = ratio of normal requests allowed for benign nodes without our framework
NRAF = ratio of normal requests allowed for benign nodes with our framework
MRA = ratio of malicious requests allowed for attackers without our framework
MRAF = ratio of malicious requests allowed for attackers with our framework

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 R
eq

ue
st

s
A

llo
ve

d

Number of Attackers

NRA

NRAF
MRA

MRAF

Fig. 2. 200 Total Nodes, 10 MRCM Nodes

As Fig. 2 and Fig. 3 show, a larger ratio of well-behaving nodes’ requests are
allowed when our framework is used compared to when our framework is not used.
More importantly, Fig. 2 and Fig. 3 show that our framework only limits malicious
requests from attackers compared to when our framework is not used.

 Preventing DDoS Attacks Based on Credit Model for P2P Streaming System 19

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
of

 R
eq

ue
st

s
A

llo
ve

d

Number of Attackers

NRA

NRAF
MRA

MRAF

Fig. 3. 400 Total Nodes, 10 MRCM Nodes

Fig. 2 and Fig. 3 also indicate that not all of benign nodes’ requests are allowed.

This case happens because each has and upload limit of 1 Mbps which can not be
exceed. If three benign nodes simultaneously request media objects that happen to be
stored at the same node, then at least one benign node will be denied due to upload
rate limits.

4 Conclusion

In this paper we present a credit-based supporting framework, which includes CM and
MRCM for limiting nodes’ message rate to both data source and P2P streaming
network. CM and MRCM are implemented decentralized over a structured P2P
overlay net work. The benefit of our framework is that it provides a scalable solution
while also avoiding the drawbacks of having a bottleneck and central point of failure.

As our simulation shows, these benefits come at the cost of increased overhead
because nodes in CM and MRCM must store node credit and request information.
However, the benefit of paying these costs is preventing malicious nodes from
exhausting the resources of and entire P2P media streaming system. Our evaluations
show that our framework can effectively stabilize the overlay and improve the
streaming quality under DDoS attacks.

Acknowledgement

This work was supported by National Natural Science Foundation of China under
Grant No.60572047, China Hubei Science & Technology Department through project

20 J. Yang et al.

SBC in 3G CN(2006AA102A04), Program for new Century Excellent Talents in
University NCET-06-0642.1 and the National High Technology Research and
Development Program ("863" Program) of China under Grants No.2006AA01Z267
and No. 2007AA01Z215.

References

1. Dumitriu, D., Knightly, E., Kuzmanovic, A., Stoica, I., Zwanenepoel, W.: Denial of
Service in Peer to Peer File sharing Systems. In: International Conference on Measurement
and Modeling of Computer Systems - Proceedings, pp. 38–49 (2005)

2. Liang, J., Kumar, R., Xi, Y., Ross, K.: Pollution in P2P File Sharing Systems. In: Proc. of
IEEE INFOCOM 2005, Miami, FL, USA (March 2005)

3. Nicolosi, A., Mazieres, D.: Secure Acknowledgment of multicast messages in open peer-
to-peer networks. In: Voelker, G.M., Shenker, S. (eds.) IPTPS 2004. LNCS, vol. 3279, pp.
259–268. Springer, Heidelberg (2005)

4. Wang, W., Xiong, Y., Zhang, Q., Sugih, J.: Ripple-stream: Safeguarding P2P streaming
against DoS attacks. In: 2006 IEEE International Conference on Multimedia and Expo,
ICME 2006 Proceedings, vol. 2006, pp. 1417–1420 (2006)

5. William, C., Klara, N., Indranil, G.: Preventing DoS attacks in peer-to-peer media streaming
systems. In: Proceedings of SPIE-IS and T Electronic Imaging, p. 607–610D (2006)

6. Cao, F., Bryan, D., Lowekamp, B.: Providing secure services in peer-to-peer communications
networks with central security servers. In: Proceedings of the Advanced International
Conference on Telecommunications and International Conference on Internet and Web
Applications and Services, AICT/ICIW 2006, p. 105 (2006)

7. Wang, H., Zhu, Y., Hu, Y.: An efficient and secure peer-to-peer overlay network. In:
Proceedings of The IEEE Conference on Local Computer Networks - 30th Anniversary,
LCN 2005, pp. 764–771 (2005)

8. Sorge, C., Zitterbart, M.: A reputation-based system for confidentiality modeling in Peer-
to-Peer networks. In: Stølen, K., Winsborough, W.H., Martinelli, F., Massacci, F. (eds.)
iTrust 2006. LNCS, vol. 3986, pp. 367–381. Springer, Heidelberg (2006)

9. Yu, B., Singh, M.P., Sycara, K.: Developing trust in large-scale peer-to-peer systems. In:
2004 IEEE 1st Symposium on Multi-Agent Security and Survivability, pp. 1–10 (2004)

10. Xiong, L., Liu, L.: PeerTrust: Supporting Reputation-Based Trust for Peer-to-Peer Electronic
Communities. IEEE Transactions on Knowledge and Data Engineering 16(7), 843–857
(2004)

Design, Prototype, and Evaluation of a Network

Monitoring Library

Karl-André Skevik, Vera Goebel, and Thomas Plagemann

Department of Informatics, University of Oslo,
P.O. Box 1080 Blindern, N-0316 Oslo, Norway

{karlas,goebel,plageman}@ifi.uio.no

Abstract. This article describes a library for customization of overlays.
The custcom library optimizes and maintains the results of network mea-
surement operations, allowing applications to specify requests for how to
prioritize overlay nodes in an abstract manner, without having to im-
plement network measurements operations in order to achieve network
awareness.

The library is used in the context of the Autonomic Network Archi-
tecture (ANA) project where application functionality is implemented in
independent units called bricks. A network latency measurement brick
and a node monitoring brick have been implemented using the custcom
library. The custcom optimization code has been tested with a real-world
dataset, demonstrating how it can reduce network overhead and measure-
ment time.

1 Introduction

Overlay networks can be constructed from geographically distributed nodes with
possibly highly variable link and CPU capacity. For applications where network
parameters such as peer throughput, latency, or link error rate are important for
performance, nodes need some way of obtaining information about the network.
The current Internet does not provide any mechanisms for doing this in a simple
and reliable manner; applications need to either actively or passively probe the
network. Many techniques, some of which are listed below, have been proposed
for obtaining these values for Internet applications, but these techniques gener-
ally require applications to implement code that makes significant assumptions
about network behavior and does not relate to the purpose of the application.

This article describes the core of a monitoring system for the Autonomic
Network Architecture (ANA) project[1]. The custcom library allows customiza-
tion of overlay networks based on application specified criteria for ordering and
prioritizing participating nodes.

Section 2 gives an overview of work related to network monitoring and peer
selection techniques. Section 3 introduces relevant ANA concepts. Section 4
presents the design of the custcom library that allows applications to integrate

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 21–35, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

22 K.-A. Skevik, V. Goebel, and T. Plagemann

network awareness and application level information without implementing net-
work monitoring directly in the application. Section 5 describes how the custcom
library can be integrated into the ANA system. An evaluation of the core opti-
mization function of the custcom library is given in Section 6. Section 7 concludes
this article.

2 Related Work and Network Awareness

Overlay networks can consist of many nodes, of which a client is only interested
in communicating with a small subset based on criteria such as latency or node
throughput. Identifying this subset will often involve the same challenges as
the peer selection and server selection problem. A look at research in this field
reveals the complexity that network aware Internet based applications need to
implement.

Popular content is often replicated on multiple servers, and the goal of server se-
lection is to identify the server that offers the shortest download time. Randomly
selecting a server is possible but inefficient [2,3]. Instead, many server selection
techniques use active probing, and these can be divided into three categories [3]:
static, statistical and dynamic. Static server selection techniques use network char-
acteristics that stay relatively stable over time, such as hop count, geographic dis-
tance, or Autonomous System (AS) count. These values are generally not affected
by current network conditions, causing static server selection techniques to be in-
efficient [2,4,5]. Statistical approaches consider past behavior, but while they may
generally have good performance [5], they do not adapt well to variable network
conditions [3]. Best performance is achieved with a dynamic approach, but at the
cost of high network overhead and time spent on active probing.

The most direct approach for dynamic selection is to download some data from
all available servers and then choose the server with shortest download time.
However, because transmitting data is time consuming and not scalable to a
large number of servers, many dynamic techniques use latency estimation rather
than data transfers. Simply using the mean latency of five 100 Byte ping packets
can work well according to Carter et al. [2]. Latency estimation is efficient, but
there is no reliable correlation between the measured latency and the transfer
time of files larger than 1 MB [4]. The same is the case for estimation techniques
based on the transfer of short files: results cannot be assumed to apply for larger
files [4]. The difficulty lies in finding an appropriate trade-off between accuracy
and overhead.

There are many similarities between server selection and peer selection in P2P
networks, but there are also some important differences. Dedicated servers are
more likely to be always available, whereas clients in a P2P system may only
be active for a few hours. Certain characteristics of end user access technologies
are another source of potential problems. The relationship between RTT and
throughput for machines using broadband Internet connections is less reliable
than for well-connected servers [6]. However, the RTT value, especially the last-
hop RTT value, can give an accurate estimate of peer access speeds for access
technologies such as dial-up modems, ADSL modems, and cable connections [7].

Design, Prototype, and Evaluation of a Network Monitoring Library 23

Work on peer selection includes that by Ng et al.[7], who have examined the
efficiency of RTT probing, 10 KB TCP transfers, and bottleneck bandwidth
probing in P2P streaming systems. These lightweight techniques can be used
to identify fast peers, but they are less effective with respect to differentiating
between peers when used alone. The best results were found to be obtainable by
combining multiple techniques, such as first using RTT estimation to find the five
closest peers and then using bottleneck bandwidth probing or 10 KB transfers to
choose from these peers. A similar approach is recommended by Zhang et al. [8].
The authors observe that relying solely on latency distance prediction can lead
to significantly reduced application performance. Instead, a subset of close peers
is chosen, and then active probing is used on this subset. With this combination
of techniques, even simple distance estimation algorithms work well.

It is evident that network monitoring is nontrivial and dependent upon chang-
ing factors such as node and link hardware; having code related to this in applica-
tions would in the worst case require updates to be made as network technologies
change. As discussed below, application design for ANA leads itself naturally to
having these operations implemented as services used by network aware appli-
cations rather than as part of an application.

The Network Weather Service[9] offers similar functionality as our solution,
but the custcom library makes it possible to combine application level and net-
work level information in order to achieve network awareness efficiently. The
large number of participants in some overlay networks make optimization of ac-
tive measurements important and the custcom library can achieve this while
simultaneously reducing application complexity.

3 ANA: Autonomic Network Architecture

ANA is a project that examines legacy free future networking architectures, with
a focus on autonomicity. The programming model used in ANA dispenses with
the rigid layers of the OSI model and instead uses bricks that can be combined
to build a compartment offering the functionality required by an application.
Restrictions such as TCP always being layered on top of IP do not exist, with
e.g., arbitrary bricks offering transport functionality being usable to communi-
cate with other nodes in a compartment. Application functionality is divided
among specialized bricks, giving a clean and non-monolithic design. This arti-
cle describes a library that has been designed to be used both in applications
directly, and in a specific brick for network monitoring.

4 Library Design

The custcom C library is designed for applications that require network aware-
ness and can be used to manage a set of nodes on behalf of an application. Ap-
plication requirements are specified via a high level query language. The library
hides the implementation of network measurement and monitoring operations
from applications, but can still be integrated with application specified func-
tions. Since there is no need for applications to implement network awareness,

24 K.-A. Skevik, V. Goebel, and T. Plagemann

code development is simplified and the library can optimize the order and type
of monitoring operations performed. The library has been designed to be usable
both with ANA and the current Internet, but only the ANA part has been fully
developed at the time of writing.

4.1 Library Interface

An application that uses the custcom library first specifies the nodes that con-
stitute the nodeset that it wishes to operate on. It is possible for an application
to specify multiple different queries that manipulate the nodes in the nodeset.
The following pseudocode illustrates these steps:

cc_nodeset cc;
cust_init(&cc);

cust_addnode(&cc, "foo.org", "www", NULL);
...

cc_query query;
cust_queryinit(&query, "sort node_rtt;");

cust_ordernodes(&cc, &query);

The nodeset is initialized with the function cust init() and one or more nodes
are added to the nodeset with cust addnode(). The nodes are initialized with the
node identity (“foo.org” in the example above), a service name (“www”), and an
optional pointer to a data structure maintained by the application, in this case
NULL. The cust queryinit() function initializes a query for the nodeset, and the
cust ordernodes() function arranges the nodes in the nodeset according to the
specified query. The query is submitted by the application as a text string with
one or more query statements. In this example, the query specifies that the nodes
are to be sorted based on the ordering specified by the function node rtt. The
library supplies several predefined functions for ordering nodes, but applications
can provide their own functions using cust funcadd(). The query can include
both application supplied functions and library functions in the same query,
allowing nodes to be ordered based on both application and network parameters
in a single query.

4.2 Query Specification

Each line of the query specification contains a single semicolon terminated com-
mand. Three different commands are currently supported. The sort command
orders all nodes in the nodeset using the specified sorting function. Sorting func-
tions consist of three different types, depending on how they sort nodes: rank
sorting, value sorting, or full sorting. A rank sorting function gives each node an
integer rank value that is used to order the nodes. A value based sorting function

Design, Prototype, and Evaluation of a Network Monitoring Library 25

sorts nodes by comparing e.g., the latency of each node. A full sorting function
is free to order the nodes in any way.

The most significant difference between rank and value sorting is that a rank
based sorting can result in many nodes with the same rank. The subsort com-
mand can then be used to rearrange the order of nodes with the same rank
value based on another criteria. By combining sort and subsort operations it is
possible to rank nodes based on multiple criteria. An application that wishes
to identify nodes with low latency and a high available bandwidth value might
specify a ranking function that gives nodes a rank value between zero and three,
based on whether the ranking function deems the node to be on the same LAN,
in the same neighborhood, in the same country, or further away. As long as there
are more than four nodes there will in this example be multiple nodes with the
same rank. For example, the following query can be used to order nodes based
on throughput and an application defined node ranking function:

sort app:node_rank;
subsort node_throughput;

The third command that can be used in queries is trim, and as the name
indicates, this command results in a subset of the nodes being returned. The
format of a trim command is “trim param op val”, where param is a parameter
such as RTT or throughput, op is an operation such as less than (<) or greater
than (>), and val is a numeric value. To eliminate slow nodes from the ordered
set, the query above can be extended as follows:

sort app:node_rank;
subsort node_throughput;
trim mbps < 0.1;

The trim command only reduces the number of nodes that is returned by
a query, it does not change the composition of the full nodeset specified with
cust init().

4.3 Network Measurements

The preceding examples use values such as node throughput and RTT to order
nodes, but this cannot be done without obtaining these values in some way.
The library keeps track of measurement data for each node, and it can either
obtain these values itself through network measurements, or the information can
be provided by the application. Typically, the library will obtain the necessary
network information by itself using measurement functions implemented in the
library, but an application can provide additional values1. In the case of ANA,
these functions are wrappers around calls to bricks that implement the network
measurement operations.
1 Applications that perform operations such as file transfers obtain information about

peer throughput during normal program execution. This information can be added
to the data maintained by the library.

26 K.-A. Skevik, V. Goebel, and T. Plagemann

4.4 Optimizations

The custcom library gives applications a simple interface for choosing among
a potentially large number of nodes based on criteria such as throughput or
latency, but obtaining these values can be time and resource consuming. As
discussed in Section 2, there is neither any guarantee that the result will be
accurate. The library hides these details, but the measurement operations still
need to be performed, ideally as efficiently as possible. To reduce query time and
network overhead, the library attempts to optimize submitted queries.

The cust ordernodes() function can be used to sort all the nodes in the nodeset,
but for an application that is only interested in, for example, the single node with
most available bandwidth, or the ten nodes with lowest latency, the exact ordering
of the other nodes is not interesting. The trim command can be used to remove
uninteresting nodes and, by examining the trim commands in a query, the library
can in many cases reduce the number of measurement operations needed.

sort app:node_rank;
subsort node_throughput;
trim index > 10;

For example, in the query above the nodes are first sorted by rank, then the
ordering of the nodes with the same rank are sorted internally. Finally, all but
the ten first nodes are removed. The resulting ordering gives the ten nodes with
lowest latency and highest throughput, but executing these steps sequentially
results in a large number of wasted measurement operations if the number of
nodes is large. Avoiding the first sorting operation is not possible in this case
because RTT information is required for all nodes2, but the second command
can be optimized.

With subsort, nodes with a different rank value cannot change place, meaning
that in this case it is only necessary to obtain node throughput information for
the nodes that can appear among the first ten nodes. If the rank values of the
first 20 nodes are as specified below, the nodes with rank three or higher can
never be returned, so it is not necessary to perform an internal ordering of these
nodes. As a result, the library can reduce the number of required operations
quite significantly if there are many nodes in the nodeset.

0123456789 0123456789
0001111222|2222333344

^^^^^^^^

This trim index optimization looks at the effect of the trim statement on the
preceding commands, but in some cases it is possible to reorder commands in
order to obtain the same result. The statement below sorts the nodes in the node-
set by throughput and eliminates the nodes slower than 100 Kbit/s. The trim
statement is placed at the end, but it is possible to perform this operation first
2 By using an Internet coordinate latency estimation system such as Vivaldi[10], it

is possible to obtain these values arithmetically, if the coordinates of all nodes are
known.

Design, Prototype, and Evaluation of a Network Monitoring Library 27

without changing the result; nodes that have an estimated throughput of less
than 100 Kbit/s will never be returned and it is not necessary to include these
nodes during sorting. Furthermore, it is possible to use a latency based TCP
model[11] to eliminate nodes without actually estimating the node throughput,
if the application is willing to sacrifice accuracy for speed. For real-time appli-
cations such as VoD streaming systems, a fast answer might be preferable to a
very accurate answer.

sort node_throughput;
trim mbps < 0.1;

An application can still specify queries that cannot be optimized, or queries
that will take a long time to complete with a large number of nodes. By itself,
the library does not currently provide an interface that allows applications to
specify statements such as “return the fastest/closest node”. Programmers of
applications that use the library still need an understanding of network issues
and the potential cost of queries, but the library is designed to be a building
block for providing this kind of high level interface.

4.5 Examples

There are many different application types that can benefit from network aware-
ness and that can use the custcom library to achieve this. Server selection is one
of the more simple scenarios, with a client choosing between a small number of
servers offering the same service. For transfers of large files from FTP servers,
throughput is the most interesting parameter, so the query below can be used
in this case. For server selection, measurement time will not be a problem unless
there is a high number of servers.

sort node_throughput;

BitTorrent and similar P2P file distribution applications generally try to re-
quest the rarest blocks of a file first, but using fast peers will usually result
in shorter download time. Assuming that the application provides a function
app:rank blockfreq that ranks nodes based on the rarity of the blocks on a given
node, it is possible to construct the following query, which uses throughput in-
formation in order to prefer the fastest nodes that have the rarest blocks.

sort app:rank_blockfreq;
subsort node_throughput;

4.6 Implementation

The primary challenge for implementing the library is the need to present a
simple interface to applications while at the same time being able to perform
the necessary measurement operations in an unobtrusive way. For the Inter-
net, measuring network parameters such as throughput, latency, and router hop
counts requires the transmission of data, maintenance of timers and timeouts,

28 K.-A. Skevik, V. Goebel, and T. Plagemann

and possibly blocking operations such as DNS lookups. Furthermore, the node
data must be accessible to application provided functions in order to be able to
integrate both application level and network level information in queries.

This problem is somewhat similar to the one faced by implementations of
Secure Sockets Layer (SSL), such as OpenSSL3. Establishing and maintaining a
SSL protected stream over an already existing connection can involve data being
transmitted over the connection in both directions, independently of the data
transmitted by the application. A non-blocking socket will require testing for
both readability and writeability depending on the SSL state. The SSL library
functions handle this by returning an error when an operation would block. Ap-
plications can then obtain a status value which indicates whether the SSL library
needs to wait for the socket to become readable or writable. The custcom library
can use a similar approach, but might additionally need to perform operations
such as the simultaneous initiation of multiple connections, which cannot be
done through the testing of only a single descriptor in a single process.

Instead, the custcom implementation has been structured to use a separate
process for operations that cannot be performed in a simple manner from the
application process. This extra worker process initiates connections, maintains
timers, etc., but is controlled by the custcom library which is executed in the
application process. To initiate an operation in the worker process the library
obtains a control socket to the worker process and sends the request over this
socket. Control is then returned to the application with a request for testing of
readability on the supplied descriptor, in a manner similar to the operation of the
OpenSSL library. When the worker process has completed the submitted task
it sends the results over the control socket to the application process where the
application again calls the library. This separation results in a tight integration
between the application and the library that allows application supplied func-
tions that access application state to be used by the library, while still isolating
potentially timing sensitive operations from the application.

The design of ANA gives a more natural division of code elements and sim-
pler code. Rather than implementing the monitoring operations directly in the
library, they are accessed via bricks that perform these operations. For applica-
tions, the benefits from the optimizations described in Section 4.4 will be less
directly observable as ANA is designed to have monitoring as a integral function
of the system. This is however only as the library can be used at two levels; as
a general monitoring brick used to optimize monitoring operations by all bricks,
and inside applications, in order to integrate application level and network level
information through a high-level interface.

4.7 Summary

The custcom library gives applications a simple interface to network level in-
formation about nodes. However, the primary strength of the library is not in
simply removing the need for implementing techniques for estimating latency or
available bandwidth, even though this also is beneficial.
3 Seehttp://www.openssl.org

See http://www.openssl.org

Design, Prototype, and Evaluation of a Network Monitoring Library 29

The library allows network measurement operations implemented in the li-
brary to be combined with application specified functions in the same query
specification. The resulting query can then be optimized by the library in order
to reduce the number of measurement operations and the total execution time.
Furthermore, the text based query specification is simple to modify, simplifying
experimentation with different ordering mechanisms in order to achieve better
application performance.

5 Custcom Monitoring Brick

To demonstrate how custcom can be integrated in an ANA monitoring architec-
ture we have implemented a monitoring brick that can be used by other bricks
to monitor or perform custcom queries on a specified nodeset. As there is cur-
rently no available ANA brick that offers network transport service, apart from
an Ethernet brick for LAN communication4, it is still not possible to build a
system where the custcom optimization features can be put to proper use, but
we have created an implementation based on a brick offering Ethernet based
communication to verify that it is possible to integrate the custcom library in
ANA. As more ANA functionality becomes available, more complicated usage
scenarios will be tested.

Ethernet brick

nodelat brickMRP brickClient brick

Ethernet brick

nodelat brick

Node A Node B

Fig. 1. Brick structure

The brick composition has the structure given in Figure 1. The nodelat brick
offers a simple latency estimation service on top of the Ethernet brick. The
nodelat brick is called by the Monitoring Request Protocol (MRP) brick, which
contains the custcom functionality. A simple client brick makes application-like
requests from the MRP brick.

5.1 MRP Overview

The Monitoring Request Protocol allows clients to request monitoring or or-
dering of a set of nodes using the following seven commands: DEFINESET,
ORDER, MONITOR, STATUS, ADDNODES, RMNODES, DELETESET.
4 The drawback with a legacy free, start-from-scratch approach to network research

is that all the functionality that is taken for granted on the current Internet must
be reimplemented.

30 K.-A. Skevik, V. Goebel, and T. Plagemann

The client application lists the nodes in the nodeset and specifies how they
are to be monitored. In ANA, there is currently no generic way of obtaining a
list of nodes participating in a compartment, but support for compartments that
support this might be added later, removing the need for applications to specify
each node.

A set of nodes is defined with the DEFINESET command along with a node-
set name. The ADDNODES and RMNODES commands modify the members
of a named nodeset, and DELETE removes the defined nodeset entirely. The
ORDER command is used to request an ordering of nodes, based on either a
named function for node ordering or using a custcom query directly. Long-term
monitoring of nodes based on various criteria such as node availability (liveli-
ness), RTT, and transfer rate can be requested using the MONITOR command.
The STATUS command returns a text listing of the status of each node.

5.2 MRP Syntax

The statements below show the syntax of the MRP commands. The general
syntax is similar to the HTTP protocol. Lines are terminated by two carriage
return and newline characters and a blank line ends a request. Supplementary
data can follow some of the commands, with the length of this data given by a
Content-Length header.

ADDNODES <nodeset-name> MRP/1.0\r\n
Content-Length: <len>\r\n
\r\n
node1 [serv]
...\r\n

DEFINESET <nodeset-name> MRP/1.0\r\n
Content-Length: <len>\r\n
\r\n
node1 [serv]\r\n
node2 [serv]\r\n
...\r\n

DELETESET <nodeset-name> MRP/1.0\r\n
\r\n

MONITOR <nodeset-name> MRP/1.0
Value: liveliness|rtt|rate|hops\r\n
Interval: <seconds>
\r\n

ORDER <nodeset-name> MRP/1.0
Rank: lowest-rtt <N>|highest-rate <N>\r\n
\r\n

Design, Prototype, and Evaluation of a Network Monitoring Library 31

ORDER <nodeset-name> MRP/1.0
Rankspec: "sort by rank_rtt;

trim index > 10;"\r\n
\r\n

RMNODES <nodeset-name> MRP/1.0\r\n
Content-Length: <len>\r\n
\r\n
node1 [serv]
...\r\n

STATUS <nodeset-name> MRP/1.0\r\n
\r\n

5.3 MRP Brick Implementation

An MRP brick has been implemented which supports latency based monitoring,
ordering, and status reporting of a specified set of nodes. The functionality is
demonstrated in a MRP client brick that uses broadcast via the Ethernet brick
to discover the members of the nodelat compartment. This discovery operation
is performed at regular intervals and the discovered nodes are added to a nodeset
defined at the MRP brick. At regular intervals the client brick requests a status
report and a latency based ordering of the compartment nodes. Nodes that
become unavailable are eventually marked as down if they fail to reply to multiple
latency requests.

6 Evaluation

The current lack of WAN network transport functionality in ANA makes it
difficult to test the MRP brick in any meaningful environments, but we have
tested the core of the custcom library which is used in the MRP brick.

6.1 Library Optimizations

To illustrate the operation of the optimization function in the custcom library,
we have used latency data from the Hourglass project5. The first node in this
dataset is used to represent a client node running the custcom library, and the
432 other nodes represent the other participants in the overlay network. The
distribution of RTT values from the client node to these nodes is shown in
Figure 2. The figure also shows the ranking values given by a custcom ranking
function, where each increase in rank roughly corresponds to a 50% reduction
in the throughput predicted by a TCP model[12], assuming low packet loss and
an MSS of 1448 bytes.

Table 1 shows the results of using optimization for the trim index command
in following query:
5 http://www.eecs.harvard.edu/∼syrah/nc/

http://www.eecs.harvard.edu/~syrah/nc/

32 K.-A. Skevik, V. Goebel, and T. Plagemann

sort rank_rtt;
subsort node_throughput;
trim index > 10;

The number of RTT estimates cannot be reduced but the optimization is
able to eliminate almost 90% of the throughput measurement operations. The
benefits from the custcom optimization technique will clearly depend on the
contents of a given query statement and the node composition of the overlay,
but the results show the potential for reducing the query execution time and the
resources spent on measurements.

6.2 MRP Brick

Section 5.3 describes the MRP demo brick, which locates and monitors ANA
nodes on an Ethernet. Every 11 seconds it requests an RTT based node ordering
from the MRP brick, and every 13 seconds it requests the current status of the
known nodes. Table 2 shows the status output from the demo brick, generated
during an experiment on April 1, 2008. The values correspond to the RTT in
microseconds.

The test network was configured with the ANA software running on three
nodes: the node running the demo brick, Node A, and Node B. The ANA software

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350

C
D

F

RTT (ms)

Node latency distribution

latency
rank

2

3

4

5

6

7

Fig. 2. Node latency distribution

Table 1. Optimization effects

Optimization Node total RTT estimates Throughput estimates

None 432 432 432
Enabled 432 432 45

Design, Prototype, and Evaluation of a Network Monitoring Library 33

Table 2. MRP brick status output

Node A - - - - - - 11 .00
Node B UNKNOWN 148.00 148.00 349.00 349.00 494.00 494.00

Node A (cont.) 11.00 319.00 319.00 352.00 352.00 364.00 364.00
Node B (cont.) 494.00 370.00 370.00 345.00 345.00 373.00 373.00

Node A (cont.) 364.00 14.00 14.00 10.00 10.00 11.00 11.00
Node B (cont.) 373.00 373.00 373.00 373.00 373.00 DOWN DOWN

Node A (cont.) 250.00 250.00 250.00
Node B (cont.) DOWN DOWN DOWN

on Node B is already running when the demo brick is started, while Node A is
started after the demo brick. Node B is terminated at the end of the session.
The four rows show the status values for the entire run. The UNKNOWN value
indicates that the first status output is requested before the monitoring has
started, while the DOWN values indicate that the MRP brick has detected
the brick as being unavailable. This occurs after the timeout of multiple RTT
estimation attempts.

The MRP demo requests monitoring of the known nodes every 15 seconds.
The same values are repeated several times in the table because the status output
is requested more frequently than the nodes are monitored.

The limitations of the test environment prevent any extensive experiments,
but the results serve to demonstrate a simple application based on the custcom
library.

6.3 Compartments

The compartment concept is central to ANA and the MRP brick is meant to
utilize this by allowing applications to rank compartment nodes. A practical
problem encountered during design of the MRP brick was the need to have
the client brick manage the list of nodes in a compartment. This requires the
client brick to notify the MRP brick of changes in the compartment, resulting
in increased client complexity and potentially runs the risk of having the MRP
brick operate on outdated information.

The ideal solution would be to have the node composition of a compartment
available to the MRP brick on demand, allowing it to be requested only when
needed. We plan to examine possible ways of achieving this, either through a
generic interface, or if this is not possible, by adding a specific interface for
compartments that can benefit from use of the MRP brick.

7 Conclusion

It is not trivial to add support for network awareness in Internet applications.
The custcom library described in this article represents a way of optimizing
network measurement operations in applications, whether on the Internet or in
ANA. We have implemented an ANA brick that accepts requests for monitoring

34 K.-A. Skevik, V. Goebel, and T. Plagemann

operations. The brick does not implement these operations itself, but optimizes
requests in order to limit the total number of measurement operations that are
performed. The brick can be used by any other brick that needs network in-
formation, leading to reduced overhead when similar operations are requested
from different bricks. The MRP brick stores the results of measurement opera-
tions and can reuse this information in multiple requests. The MRP brick is not
needed on all nodes in order to use this system, only monitoring bricks such as
nodelat must run on all nodes.

The current implementation and evaluation shows that it is possible to inte-
grate the custcom library in ANA, but more work is planned in this area. Two
main directions are planned for further work. First, on the custcom code, in
order to examine the possibility of simplifying the query language by allowing
more abstract queries by application. Second, through the implementation and
testing of a WAN overlay video streaming application scenario where network
awareness is important for performance.

Acknowledgment

This work has been funded by the EC-funded ANA Project (FP6-IST-27489),
and supported by the CONTENT Network-of-Excellence.

References

1. Sestinim, F.: Situated and autonomic communication an ec fet european initiative.
SIGCOMM Computer Communication Review 36(2), 17–20 (2006)

2. Carter, R.L., Crovella, M.E.: Server selection using dynamic path characterization
in wide-area networks. In: INFOCOM 1997: Proceedings of the Sixteenth Annual
Joint Conference of the IEEE Computer and Communications Societies. Driving
the Information Revolution, p. 1014 (1997)

3. Dykes, S.G., Robbins, K.A., Jeffery, C.L.: An empirical evaluation of client-side
server selection algorithms. In: INFOCOM 2000: Proceedings of the Nineteenth
Annual Joint Conference of the IEEE Computer and Communications Societies,
pp. 1361–1370 (2000)

4. Hanna, K.M., Natarajan, N., Levine, B.N.: Evaluation of a novel two-step server
selection metric. In: ICNP 2001: Proceedings of the 9th International Conference
on Network Protocols, pp. 290–300 (2001)

5. Sayal, M., Breitbart, Y., Scheuermann, P., Vingralek, R.: Selection algorithms for
replicated web servers. SIGMETRICS Performance Evaluation Review 26(3), 44–
50 (1998)

6. Lakshminarayanan, K., Padmanabhan, V.N.: Some findings on the network perfor-
mance of broadband hosts. In: IMC 2003: Proceedings of the 3rd ACM SIGCOMM
conference on Internet measurement, pp. 45–50. ACM Press, New York (2003)

7. Ng, T.S.E., Chu, Y.H., Rao, S.G., Sripanidkulchai, K., Zhang, H.: Measurement-
based optimization techniques for bandwidth-demanding peer-to-peer systems. In:
INFOCOM 2003: Proceedings of the Twenty-Second Annual Joint Conference of
the IEEE Computer and Communications Societies (2003)

Design, Prototype, and Evaluation of a Network Monitoring Library 35

8. Zhang, R., Tang, C., Hu, Y.C., Fahmy, S., Lin, X.: Impact of the inaccuracy of
distance prediction algorithms on internet applications: an analytical and compar-
ative study. In: INFOCOM 2006: Proceedings of the 25th Annual Joint Conference
of the IEEE Computer and Communications Societies (April 2006)

9. Wolski, R., Spring, N.T., Hayes, J.: The network weather service: a distributed
resource performance forecasting service for metacomputing. Future Generation
Computer Systems 15(5-6), 757–768 (1999)

10. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: a decentralized network
coordinate system. SIGCOMM Computer Communication Review 34(4), 15–26
(2004)

11. Mathis, M., Semke, J., Mahdavi, J.: The macroscopic behavior of the tcp congestion
avoidance algorithm. SIGCOMM Computer Communication Review 27(3), 67–82
(1997)

12. Padhye, J., Firoiu, V., Towsley, D., Kurose, J.: Modeling tcp throughput: a simple
model and its empirical validation. SIGCOMM Computer Communication Re-
view 28(4), 303–314 (1998)

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 36–46, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Real-Time IP Checking and Packet Marking for
Preventing ND-DoS Attack Employing Fake Source IP

in IPv6 LAN

Gaeil An and Kiyoung Kim

Network Security Research Division,
Electronics and Telecommunications Research Institute (ETRI),

161 Gajeong-dong, Yuseong-gu, Daejon, 305-350, Korea
{fogone,kykim}@etri.re.kr

Abstract. IPv6 has been proposed as a basic Internet protocol for realizing a
ubiquitous computing service. An IPv6 LAN may suffer from a Neighbor Dis-
covery-Denial of Service (ND-DoS) attack, which results in network congestion
on the victim IPv6 LAN by making a great number of Neighbor Discovery proto-
col messages generated. A ND-DoS attacker may use a fake source IP address to
hide his/her identity, which makes it more difficult to handle the attack. In this
paper, we propose an IP checking and packet marking scheme, which is applied to
an IPv6 access router. The proposed scheme can effectively protect IPv6 LAN
from ND-DoS attack employing fake source IP by providing the packets sus-
pected to use fake source and/or destination IP addresses with a poor QoS.

1 Introduction

IPv6 has been proposed as a basic Internet protocol for realizing a ubiquitous comput-
ing service [1]. Even though IPv6 is much better than IPv4 in the point of view of
network scalability and functionality such as address space, routing, QoS, and etc.,
IPv6 is not stronger than IPv4 in the point of view of security [2].

For example, one of the most common forms of network attacks is an IP spoofing
attack [3] in which an attacker forges the source IP address of a network packet, the
destination IP, or both of them. As a way for preventing the attack, an ingress filtering
scheme [4] has been popularly used in current IPv4 networks. The schemes check the
validity of the source IP address of an incoming packet at an edge router. The demerit
of the ingress filtering scheme is that it can not detect an attack packet spoofed to the
source IP address of any other node on the same local area network (LAN) as the
attacker. This is because the schemes use a routing table that stores location informa-
tion not by a host, but by a group of hosts, thereby allowing an attacker to spoof a
packet to the IP address of a non-working host on the same LAN (i.e., unoccupied IP
address). As it is well known, the address space of IPv6 is still larger than that of IPv4
because IPv6 uses 128-bit IP address while IPv4 uses 32-bit IP address. So, the num-
ber of IP addresses unoccupied by an IPv6 LAN will be greater than by a IPv4 LAN.
This makes the schemes used in IPv4 more difficult to protect IPv6 LAN from IP
spoofing attack.

 Real-Time IP Checking and Packet Marking 37

IP spoofing attack has been typically used being combined with Denial of Service
(DoS) attack [5]. In IPv6 LAN, there is an attack called Neighbor Discovery-DoS
(ND-DoS) attack [6][7], which is a kind of IP spoofing attack combined with DoS
attack and can cause more severe damage to a victim IPv6 LAN. An attacker can
result in ND-DoS attack by fabricating attack packets composed of the randomly
generated suffix IP part and the right prefix IP part of the victim IPv6 LAN and by
continuously sending the packets to the victim IPv6 LAN. The last IPv6 access router
is obligated to resolve these abnormal IP addresses by broadcasting a Neighbor
Discovery protocol (NDP) [8][9] message on the victim IPv6 LAN. The enormous
number of ND protocol messages result in consuming network resources, thereby
degrading the quality of service (QoS) for normal network traffic. A ND-DoS attacker
may use a fake source IP address to hide his/her identity, which make it more difficult
to detect the attack.

This paper focuses on ND-DoS attack employing fake source IP address. In this
paper, we propose an IP checking and packet marking scheme, which is applied to an
IPv6 access router to effectively prevent ND-DoS attack from paralyzing an IPv6
LAN. The IP checking is used to check if the IP address of an incoming packet is a
working or a non-working IP. In our architecture, the packet with working IP gets a
high-priority of service while the packet with non-working IP get low-priority of
service in packet forwarding service. The packet marking is used to mark a packet
with non-working IP as a suspicious packet at the ingress IPv6 access router. The
marked packet may be discarded or forwarded using low-priority of service by the
egress IPv6 access router.

The rest of this paper is organized as follows. Section 2 introduces IP spoofing at-
tack and ND-DoS attack. Section 3 describes our scheme. The performance of the
proposed scheme is evaluated in section 4. Finally, conclusion is given in section 5.

2 IP Spoofing Attack and ND-DoS Attack

An IP spoofing attack is one of the most common forms of network attacks. An IP
spoofing attack can be divided by a source IP spoofing attack [3] that forges a source
IP address and a network scan attack [10] that forges a destination IP address.

The source IP spoofing attack is generally done to hide attacker's identity. It can be
commonly found in DoS attack that generates a huge volume of traffic to paralyze a
victim system or network. To check if a source IP address is valid, an ingress filtering
technology has been currently used in edge router. The technology checks the validity
of the source IP address of a packet coming from a LAN by using a routing table. The
demerit of the technology is that it can not detect an attack packet spoofed to the
source IP address of any other node on the same LAN as the attacker. This is because
the technology uses a routing table that stores location information not by a host, but
by a group of hosts.

A network attacker may accidentally spoof the destination IP address in the process
of a network scan attack, which is used to know the configuration of a victim network
because an attacker is interested in identifying active hosts and application services
that run on those hosts. For example, a worm virus, such as Limda and Slammer,
randomly scans a network to find victim systems with weak point. To detect the

38 G. An and K. Kim

network scan attack, the previous research has observed whether TCP connection
request succeeds or fails [11]. If the failure count/rate of the connection requests initi-
ated by a source is very high, then the source is regarded as the network scanner. The
approach is a kind of passive defense scheme in that it could not notice the network
scan attack until the failure count/rate of the connection requests is calculated. So it is
not easy to provide a real-time reaction against the attack because an attacker can
generate attack packets using each different abnormal IPs including fake source IP.

A network scan attack may cause more severe damage to a victim network in case
that it is combined with DoS attack. There is a Neighbor Discovery Protocol (NDP)
[8][9], which is known as one of the most significant protocols in IPv6 because it
provides IP auto-configuration [1]. NDP is used by IPv6 nodes on the same link to
discover each other's presence and link layer addresses, to find default routers, and to
maintain reachability information about the paths to active neighbors. NDP defines
five types of messages, Neighbor Solicitation (NS), Neighbor Advertisement (NA),
Router Solicitation (RS), Router Advertisement (RA), and Redirect. NS message is
used to request link-layer address of a neighbor node. The node that receives a NS
message sends back a NA message giving its link-layer address. RS message is used
to discover default routers and to learn the network prefixes. The router that receives a
RS message sends back a RA message. Redirect message is used by router to inform
other nodes of a better first hop toward a destination.

Internet
L2 addr.
found ?

Packet Buffer

NDP Table

NDP

Outgoing
Queue

NDP message

yes

manageno

IP1

IP2

IPv6
Wired/Wireless

LAN

IP3

IPv6 Access Router

lookup
manageND-DoS Attacker

Normal User

IP5

IP1

Internet
L2 addr.
found ?

Packet Buffer

NDP Table

NDP

Outgoing
Queue

NDP message

yes

manageno

IP1

IP2

IPv6
Wired/Wireless

LAN

IP3

IPv6 Access Router

lookup
manageND-DoS Attacker

Normal User

IP5

IP1

Fig. 1. Architecture of IPv6 access router and ND-DoS attack: ND-DoS attack raises conges-
tion in the packet buffer and the outgoing queue

The NDP is very vulnerable to a mutative network scan attack called ND-DoS at-
tack despite having defined a Secure Neighbor Discovery (SEND) protocol [12][13]
proposed to protect the NDP from attacks to spoof NDP messages. In the ND-DoS
attack, an attacker continuously sends a great number of packets with fake destination
IP address of which prefix address is a real prefix address of the victim IPv6 LAN,
but suffix address is a fake. The access router of the victim IPv6 LAN is obligated to
resolve these fake addresses by broadcasting NDP signaling messages on the LAN.
The enormous numbers of NDP messages cause network congestion on the LAN,
thereby degrading QoS for the normal network traffic.

Fig. 1 shows the architecture of an IPv6 access router for processing NDP. When
an IPv6 access router receives a data packet, if the link-layer address of the packet is
founded in NDP table, then the router just forwards the packet to its destination node
using its link-layer address. Otherwise, the router stores the packet in a packet buffer,

 Real-Time IP Checking and Packet Marking 39

sends out a NS message, and waits for a NA message. If the router receives a NA
message, it looks for the packets in the packet buffer that correspond to the link-layer
address included in the NA message, forwards them to their destination nodes. For
example, in Fig. 1 when a IPv6 access router receives a packet with destination IP
address IP1, if it does not know its link-layer address then it stores the packet in the
packet buffer and performs NDP. Subsequently, NDP sends out a NS message and
after a while it receives a NA message from the IP1 node. The NA message includes
the link-layer address of IP1 node. Finally, the router forwards the packet with the
destination IP address, IP1 to the IP1 node using its link-layer address.

The attacker can execute a ND-DoS attack on an IPv6 wire/wireless LAN by
bombarding the IPv6 access router with packets with fictitious destination addresses,
causing the router to busy itself by performing address resolution for non-working
destination IP addresses. For example, in Fig. 1 when the IPv6 access router receives
a packet with destination IP address IP5, it sends out a NS message to discovery the
link-layer address of the packet. But, the router will never receive any NA message in
response to the NS message because the destination IP address of the packet is a ficti-
tious address that does not exist on the IPv6 LAN.

ND-DoS attack results in congestion at the following two points: packet buffer and
outgoing queue. Generally, an attacker brings about a great number of NS messages
on the target IPv6 LAN by generating a large number of abnormal data packets with
non-working destination IP address and by sending them to the target IPv6 LAN. A
large number of abnormal data packets may make the packet buffer of the IPv6 access
router full, causing drop of normal data packets that waits for NA message. A great
number of NS message may also result in network congestion on the target IPv6 LAN
and cause normal data packet to experience congestion at outgoing queue. As a result,
the QoS for the normal data packet is degraded.

There have been proposed a rate-limit scheme [14] and a compact neighbor discov-
ery scheme [7], which are able to prevent outgoing queue congestion by reducing the
volume of NS messages. The rate-limit scheme limits the bandwidth for NDP messages
to a threshold. But, the scheme is likely to have a problem that normal packets are
dropped because not only NS message for abnormal packet but also NS message for
normal packet can be dropped under ND-DoS attack. The compact neighbor discovery
scheme uses only a single NS message instead of multiple NS messages in discovering
the link-layer addresses of multiple packets. It is said that the scheme can achieve a
bandwidth gain around 40 percent in the target IPv6 LAN. However, this scheme does
not address the issue of protecting normal packets from congestion.

3 Prevention of ND-DoS Attack Employing Fake Source IP

In this session, we propose an IP checking and packet marking scheme that is able to
effectively defeat ND-DoS attack employing fake source IP.

3.1 Real-Time IP Checking and Packet Marking

In dealing with ND-DOS attack, one of the most important things is to draw a clear
line between a normal packet and an abnormal. We pay attention to a fact that a non-
working (unoccupied) IP is occasionally used in an IP spoofing attack. This happens

40 G. An and K. Kim

because an attacker has no perfect knowledge on topology of his/her own LAN and
the victim's LAN. Our strategy for detecting ND-DoS attack is to check whether the
source and the destination IP addresses of the incoming packet really exist on the
source and the destination LANs, respectively. If yes, the packet is regarded as a nor-
mal packet. Otherwise, it is suspected as an abnormal packet. To collect the topology
information of the source and the destination LAN, the IPV6 access router of each
LAN monitors all the packets coming from its own LAN.

MaxRTT

IPv6 Access Router

SrcIP DstIP

SrcIPDstIP

if (NITable.IP(DstIP).working == ‘No’) then
NITable.IP(DstIP).exist = ‘Yes’;
NITable.IP(DstIP).time = now_time();

else if (now_time() - NITable.IP(DstIP).time ≤ RefreshPeriod) then
NITable.IP(DstIP).working = ‘No’
NITable.IP(DstIP).time = now_time();

end if

if (NITable.IP(SrcIP).exist == ‘Yes’ &&
now_time() – NITable.IP(SrcIP).time ≤ MaxRTT) then

NITable.IP(SrcIP).working = ‘Yes’;
end if

Internet

Packet from Internet

Packet from IPv6 LAN

IP Learning

IP Checking

IP Learning

if (NITable.IP(ipAddr).exist == ‘Yes’ && now_time() - NITable.time(ipAddr) ≤ MaxRTT) then
return ‘Yes’; // Working IP.

else return (NITable.IP(ipAddr).working)
end if

Node
IP

Table

IPv6 LANMaxRTT

IPv6 Access Router

SrcIP DstIPSrcIP DstIP

SrcIPDstIP SrcIPDstIP

if (NITable.IP(DstIP).working == ‘No’) then
NITable.IP(DstIP).exist = ‘Yes’;
NITable.IP(DstIP).time = now_time();

else if (now_time() - NITable.IP(DstIP).time RefreshPeriod) then
NITable.IP(DstIP).working = ‘No’
NITable.IP(DstIP).time = now_time();

end if

if (NITable.IP(SrcIP).exist == ‘Yes’ &&
now_time() – NITable.IP(SrcIP).time MaxRTT) then

NITable.IP(SrcIP).working = ‘Yes’;
end if

Internet

Packet from Internet

Packet from IPv6 LAN

IP Learning

IP Checking

IP Learning

if (NITable.IP(ipAddr).exist == ‘Yes’ && now_time() - NITable.time(ipAddr) MaxRTT) then
return ‘Yes’; // Working IP.

else return (NITable.IP(ipAddr).working)
end if

Node
IP

Table

Node
IP

Table

IPv6 LAN

Fig. 2. Real-time IP learning and checking at IPv6 access router

In this paper, we propose algorithms for a real-time IP learning and checking as
shown in Fig. 2. The IP learning is used to allow an IPv6 access router to construct a
Node IP table composed of the IP addresses of the working nodes on the LAN and to
check the validity of the IP address of an incoming packet by looking up the Node IP
table. If an IPv6 access router receives a packet from an external network (i.e., Inter-
net), it register its destination IP in the node IP table because it makes sure that the
destination IP exists on the LAN, even if it has no idea whether there is a real owner
of the destination IP on the LAN. If the IPv6 access router find that the registered
destination IP is used as the source IP of a packet coming from the LAN within a
predefined time (i.e., MaxRTT: a maximum round trip time between the IPv6 access
router and the IPv6 LAN), then it regards the destination IP as a working IP being
actually used by someone on the LAN. To handle the case that working nodes become
not working, the IP learning algorithm refreshes the Node IP table every predefined
time period, RefreshPeriod, as shown in Fig. 2.

The packet using a working IP is regarded as a normal packet and the packet using
a non-working IP as a suspicious packet. Our IP checking scheme is not a hundred
percent correct because it requires IP learning. To weaken the problem, we use a
differentiated packet forwarding service and a packet marking when handling the
suspicious packets. In our scheme, IPv6 access router provides the normal packet with
a high-priority packet forwarding service and the suspicious packet with a low-
priority service. At the same time, the suspicious packet is marked by an ingress IPv6

 Real-Time IP Checking and Packet Marking 41

access router to notify the egress IPv6 access router which one is a suspicious packet
with fake source IP.

To support our packet-marking concept proposed in this paper, we need a field in IPv6
header. There is a 'traffic class' field in IPv6 header to show priority or class for a packet.
The six most signification bits of the 'traffic class' byte are now used by Differentiated
Service (DiffServ) [15]. The last two bits are now reserved for use of Explicit Congestion
Notification (ECN) [15]. Until now, DS5 in DiffServ has been always 0 [16]. We are
thinking that to use the DS5 bit as a marking is better than to use the ECN bit.

3.2 Architecture of IPv6 Access Router Supporting Our Scheme

Fig. 3 shows the architecture of an IPv6 access router supporting our scheme, which
can defeat ND-DOS attack. Our architecture consists of an IP learning module that
collects the IP addresses of the working nodes and constructs the Node IP table intro-
duced in section 3.1, a packet marking that marks a suspicious packet with a non-
working source IP address, a NDP modified by this paper, and a packet buffer that
stores a NDP-requested data packets and its priority.

Access
Router

Access
Router

Internet

Packet in from LAN

Packet in from
External Network

(Internet) yes

no

yes

no

yes

no

construct
lookup

NDPNDP

Packet
Buffer
Packet
Buffer

Packet
Marking
Packet

Marking

SRC IP
working ?

Outgoing
HPQ

Outgoing
HPQ

Outgoing
LPQ

Outgoing
LPQ

Outgoing
HPQ

Outgoing
HPQ

Outgoing
LPQ

Outgoing
LPQ

Node
IP

Table

Node
IP

Table
IP

Learning
IP

Learning

L2 addr.
found ?

if yes,p=1
else, p=0 no

yes

NDP messages

manage

To External
Network

To LAN

DST IP
working ?

Marked
packet ?

IPv6 LANIPv6 LAN

Fig. 3. Architecture of IPv6 access router supporting our scheme against ND-DoS attack

A ND-DoS attacker may spoof the source IP address of the attack packets to hide
his/her identity. To detect such source IP spoofing attack, if an ingress IPv6 access router
receives an IP packet from its own LAN, it checks whether the source IP address of the
incoming packet is a working IP or a non-working by looking up the node IP table. If its
source IP is a working IP, it is regarded as a normal packet, otherwise it is regarded as a
suspicious packet with fake source IP address. The suspicious packets are forwarded to
the next node using the low-priority queue after being marked as 'suspicious' while the
normal packets are forwarded using the high-priority queue. The marked packet may be
differently handled according to the security policy of its destination IPv6 access router.
For example, an IPv6 access router might discard the marked packet in case of network
congestion or forward it using a low-priority of queue. In this paper, we provide the
marked packet with a low-priority of queue, instead of discarding it.

The egress IPv6 access router takes the responsibility of mitigating the ND-DoS at-
tack by checking the destination of an incoming packet and by checking whether it is

42 G. An and K. Kim

marked. From now, we will explain how the egress IPv6 access router supporting our
scheme operates to prevent ND-DoS attack, in details. As shown in Fig. 3, when the
egress IPv6 access router receives a packet from the external network, if it does not
know the link-layer address of the packet, then it checks whether the destination IP
address of the packet is a working by looking up the Node IP table. If yes, the packet is
regarded as a high-priority packet. Otherwise, it is regarded as a low-priority packet and
dealt badly by NDP. NDP stores the packet in the packet buffer until it knows its link-
layer address. The Packet buffer may experience congestion which results in dropping
normal packets. To prevent it, we employ a priority-based buffer management in which
if the packet buffer is full, NDP discards the oldest one among low-priority packets.
Subsequently, NDP needs to broadcast a NDP signaling message including the destina-
tion IP address of the packet to know the link-layer address of the packet. The signaling
message for a high-priority packet is sent out using high-priority of queue while the
signaling message for a low-priority packet is sent out using low-priority of queue.
Finally, if NDP receives a replay message, it sends out all the data packets correspond-
ing to the link-layer address that the reply message includes.

4 Simulation and Performance Evaluation

This section discusses the performance of our scheme. To measure it, we have extended
ns-2 network simulator [17] by adding our architecture shown in Fig. 3 to ns-2 node.

Fig. 4 is a simulation result for the detection performance against a source IP
spoofing attack. For the simulation, we have constructed a network environment
shown in Fig. 1. The attack network and the victim network consist of 500 nodes,
each. The attack nodes on the attack network executes a source IP spoofing attack that
repeats generating an IP address randomly, spoofing the source IP of an attacking
packet to it, and finally sending out the packet to the victim network. The attackers
generate three kinds of fake IPs: non-working IP, working IP, and forbidden IP. The
non-working IP is a fake IP that no one on the attack network uses. The working IP is
a fake IP that someone on the attack node is currently using. Finally, the forbidden IP
is a fake IP which can not be definitely used in the attack network, such as a private
IP or an IP being used in other networks.

0

20

40

60

80

100

0 10 20 30 40 50 60 70

Portion of non-working nodes (%)

A
tt

ac
k

 D
et

ec
ti

on
 R

at
e

(%
)

Ingress filtering

Our scheme

0

20

40

60

80

100

0.1 3.1 6.1 9.1 12.1 15.1 18.1

Time (sec)

R
at

e
(%

)

Detection
precision

False-
Positive

(a) Attack detection (b) Precision and False-positive

Ingress filtering

Ingress filtering

Our scheme

Fig. 4. Detection performance against source IP spoofing attack

 Real-Time IP Checking and Packet Marking 43

Fig. 4-(a) shows the detection rate of the ingress filtering scheme and our scheme
against a source IP spoofing attack of when we increase the portion of the non-working
IP address among the fake IP addresses. Our scheme is better than the ingress filtering
scheme in detection rate and its performance is directly proportional to the number of the
non-working nodes. This is because our scheme can detect an attack packet spoofed to a
non-working IP. When the portion of non-working nodes is zero percent in Fig. 4-(a), the
detection rate of our scheme is not same as that of the ingress filtering. This is because in
the experiment some of the 500 nodes started network communication late, and their IP
was late registered in the Node IP table. For this reason, our scheme could detect attack
packets spoofed to even working IP, even though the ability did not last long.

As explained in the previous section, our IP checking scheme needs IP learning to con-
struct the node IP table. So, our scheme suffers from false-positive error (i.e., to judge a
normal packet to be an attack packet) and is worse than the ingress filtering scheme in
detection precision, as shown in fig. 4-(b). However, the more IP learning time our scheme
has, the more the false-positive error of our scheme decrease and the more the detection
rate of our scheme increase. Moreover, our scheme marks packets judged suspicious
instead of dropping them. This can make it possible to weaken the false-positive problem.

Fig. 5 and Fig. 6 are simulation results for the reaction performance of our scheme
against a ND-DoS attack using fake source IP address. As the network topology for
the simulation of ND-DoS attack, we have constructed the networks shown in Fig. 1.
In the simulation networks, a ND-DoS attacker and normal users are connected to an
external network using a link with the bandwidth of 3Mbps and the delay of 5ms. The
victim LAN has the bandwidth of 3Mb and the delay of 20ms, and uses a MAC 802.3
Ethernet protocol. The access router on the victim LAN is connected to the external
network using a link with the bandwidth of 3Mbps and the delay of 2ms. Even though
the default queue of the router is FIFO queue, when it employs our scheme it uses a
priority queue instead of FIFO. In the simulation, normal users generate UDP packets
at 1 Mbps, and then send them to the victim LAN. A malicious user generates UDP
packets of which source IP and/or destination IP is spoofed increasing by 6Kbit per
second, and then sends them to the victim LAN to results in ND-DoS attack.

0

100

200

300

0 10 20 30 40 50 60 70 80 90 100

Strenth of ND-DoS attack (time)

T
hr

ou
gh

p
ut

 (
K

b)

Ingress Filtering

Our schme
without marking
Our schme
with marking

300

400

500

600

0 10 20 30 40 50 60 70 80 90 100

Strenth of ND-DoS attack (time)

(a) NDP for attack packets using (b) NDP for attack packets using
non-working destination IP working destination IP

Fig. 5. NDP messages under ND-DoS attack employing fake source IP

44 G. An and K. Kim

Fig. 5 shows the throughput of NDP messages triggered by attack packets. Fig. 5-
(a) and (b) are the simulation results of when attack packets are spoofed to non-
working destination IP and when attack packets are spoofed to working destination
IP, respectively. Once ND-DoS attack starts, it cause a great number of NDP mes-
sages to be generated on the victim LAN. The ingress filtering scheme does not con-
trol the NDP messages for the ND-DoS attack, as shown in Fig. 5-(a), because it can
not detect attack using non-working IP. On the other hand, our scheme distinguishes
whether the IP address of an incoming packet is a non-working or a working, and also
provides the NDP message for a suspicious packet using non-working IP with a low-
priority of service and the NDP message for a normal packet using working IP with a
high-priority of service. Our scheme chocks the throughput of the NDP messages for
the ND-DoS attack, as shown Fig. 5-(a).

In case of the ND-DoS attack that attack packets are spoofed to working destina-
tion IP, even though our scheme can not defeat it perfectly, it can block or weaken the
attack. If the ND-DoS attack node does not spoof its source IP, it is not difficult to
find out who the attack node is because the attack node among source nodes is typi-
cally one who generates the most packets. If the ND-DoS attack employs source IP
spoofing attack, our scheme can weaken the attack by using packet marking proposed
in this paper, as shown in Fig. 5-(b). The packet marking scheme improves the secu-
rity performance of our scheme by notifying the access router which one is a suspi-
cious packet with fake source IP.

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80 90 100

Strenth of ND-DoS attack (time)

T
hr

ou
gh

p
u

t
(K

b
)

(a) Normal data packet requesting NDP (b) Normal data packet not requesting NDP

400

450

500

550

0 10 20 30 40 50 60 70 80 90 100

Strenth of ND-DoS attack (time)

Ingress Filtering

Our schme
without marking
Our schme
with marking

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80 90 100

Strenth of ND-DoS attack (time)

T
hr

ou
gh

p
u

t
(K

b
)

(a) Normal data packet requesting NDP (b) Normal data packet not requesting NDP

400

450

500

550

0 10 20 30 40 50 60 70 80 90 100

Strenth of ND-DoS attack (time)

Ingress Filtering

Our schme
without marking
Our schme
with marking

Fig. 6. Data Traffic under ND-DoS attack employing fake source IP

Fig. 6 shows the throughput of normal traffic by schemes under ND-DoS attack.
Fig. 6 indicates that ND-DoS attack degrades not only the QoS of normal packets
requesting NDP, but also that of normal packets not requesting NDP. The perform-
ance of the ingress filtering scheme is worse in proportion to the degree of the
strength of ND-DoS attack. Our scheme is even better than the ingress filtering
scheme in the protection of normal traffic. When the marking scheme is applied to our
scheme, the performance of our scheme is much improved, as shown in Fig. 6. Even
though our scheme is able to defeat ND-DoS attack using non-working IP address, it

 Real-Time IP Checking and Packet Marking 45

does not perfectly guarantees the bandwidth of the normal data traffic requested, as
shown in Fig. 6-(a). This is because the ND-DoS attacker in this simulation has used
not only a non-working IP, but also a working IP.

5 Conclusion

IPv6 has been proposed as a basic Internet protocol for realizing a ubiquitous comput-
ing service.

This paper deals with ND-DoS attack employing fake source IP address, which can
give an IPv6 LAN trouble. In this paper, we have proposed and simulated the real-
time IP checking and packet marking scheme that can effectively protect IPv6 LAN
from ND-DoS attack employing fake source IP by providing the packets suspected to
use fake source and/or destination IP addresses with a poor QoS. The simulation re-
sults demonstrates that our scheme protect QoS of normal packet from not only a
simple ND-DoS attack, but also a crafty ND-DoS attack employing fake source IP
address.

Even though our scheme can defeat ND-DoS attack using abnormal IP very excel-
lently, it is weak in handling DoS attack using working IP. Our future work is to make
our scheme stronger so as to be able to mitigate such DoS attack.

Acknowledgement

This work was supported by the IT R&D program of MIC/IITA [2007-S-023-01,
Development of the threat containment for all-in-one mobile devices on convergence
networks]".

References

1. Altug, R.O., Akinlar, C.: Unique Subnet Auto-configuration in IPv6 Networks. In: Parr,
G., Malone, D., Ó Foghlú, M. (eds.) IPOM 2006. LNCS, vol. 4268, pp. 108–119. Springer,
Heidelberg (2006)

2. DeNardis, L.: Questioning IPv6 Security. Business Communications Review Magazine,
51–53 (2006)

3. Templeton, S.J., Levitt, K.E.: Detecting Spoofed Packets. In: Proc. Of DISCEX 2003, pp.
164–175 (2003)

4. Ferguson, P., Senie, D.: Network Ingress Filtering: Defeating Denial of Service Attacks
which employ IP Source Address Spoofing. IETF, RFC 2827 (2000)

5. Geng, X., Whinston, A.B.: Defeating Distributed Denial of Service Attacks. IT Profes-
sional 2(4), 36–41 (2000)

6. Nikander, P., Kempf, J., Nordmark, E.: IPv6 Neighbor Discovery (ND) Trust Models and
Threats. IETF, RFC 3756 (2004)

7. Mutaf, P., Castelluccia, C.: Compact Neighbor Discovery: a Bandwidth Defense through
Bandwidth Optimization. In: Proc. of INFOCOM 2005, pp. 2711–2719 (2005)

8. Narten, T., Nordmark, E., Simpson, W.: Neighbor Discovery for IP Version 6 (IPv6).
IETF, RFC 2461 (1998)

46 G. An and K. Kim

9. Tseng, Y., Jiang, J., Lee, J.: Secure Bootstrapping and Routing in an IPv6-Based Ad Hoc
Network. In: Proc. of ICPP Workshops, pp. 375–383 (2003)

10. Leckie, C., Kotagiri, R.: A Probabilistic Approach to Detecting Network Scans. In: Proc.
NOMS 2002, pp. 359–372 (2002)

11. Schechter, S., Jung, J., Berger, A.W.: Fast Detection of Scanning Worm Infections. In:
Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp. 59–81.
Springer, Heidelberg (2004)

12. Arkko, J., Kempf, J., Zill, B., Nikander, P.: SEcure Neighbor Discovery (SEND). IETF,
RFC 3971 (2005)

13. Arkko, J., Aura, T., et al.: Securing IPv6 Neighbor and Router Discovery. In: Proc. of the
3rd ACM workshop on Wireless security, pp. 77–86 (2002)

14. Cisco Systems: Strategies to Protect Against Distributed Denial of Service (DDoS) At-
tacks. White paper (2000), http://www.cisco.com/warp/.../newsflash.
html

15. Bradner, S., Paxson, V.: IANA Allocation Guidelines For Value. In: the Internet Protocol
and Related Headers. IETF, RFC 2780 (2000)

16. Grossman, D.: New Terminology and Clarifications for Diffserv. IETF, RFC 3260 (2002)
17. UCB/LBNL/VINT: ns Notes and Documentation, http://www.isi.edu/nsnam/ns

A Semantic-Aware Ontology-Based Trust Model

for Pervasive Computing Environments�

Mohsen Taherian, Rasool Jalili, and Morteza Amini

Network Security Center, Department of Computer Engineering,
Sharif University of Technology, Tehran, Iran

{taherian,m amini}@ce.sharif.edu,
jalili@sharif.edu

Abstract. Traditionally, to handle security for stand-alone computers
and small networks, user authentication and access control mechanisms
would be almost enough. However, considering distributed networks such
as the Internet and pervasive environments, these kinds of approaches
are confronted with flexibility challenges and scalability problems. This
is mainly because open environments lack a central control, and users
in them are not predetermined. In such ubiquitous computing environ-
ments, issues concerning security and trust become crucial. Adding trust
to the existing security infrastructures would enhance the security of
these environments. Although many trust models are proposed to deal
with trust issues in pervasive environments, none of them considers the
semantic relations exist among pervasive elements and especially among
trust categories. Employing Semantic Web concepts, we propose a com-
putational trust model based on the ontology structure, considering the
mentioned semantic relations. In this model, each entity can calculate its
trust in other entities and use the calculated trust values to make deci-
sions about granting or rejecting collaborations. Using ontology structure
can make the model extendible to encompass other pervasive features
such as context awareness in a simple way.

1 Introduction

Nowadays, with the immense growth of available data and information which
motivates moving toward distributed environments, security of users and in-
formation is getting more important than ever. With these distributed envi-
ronments, existing challenges about security and data integrity in centralized
environments, must be investigated more extensively. Many authentication and
access control mechanisms have been proposed to deal with security issues in dis-
tributed environments. However, by increasing the distribution of information,
and the arising open environments such as pervasive computing environments,
existing security infrastructures are not adequate for new requirements of users
from now on [6,14].
� This research is partially supported by Iran Telecommunication Research Center

(ITRC).

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 47–59, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

48 M. Taherian, R. Jalili, and M. Amini

Pervasive computing environments, as a new generation of computing envi-
ronments after distributed and mobile computing, were introduced in 1991 with
a new look at the future of computing environments. The aim of pervasive com-
puting is to move computers and computing devices to the background and
place them in human living environments such that they were hidden from hu-
mans. To this aim, computing devices must be designed in small sizes to locate
in apartments, walls, and furnitures [15]. In pervasive computing environments,
users expect to access resources and services anytime and anywhere, leading to
serious security risks and problems with access control as these resources can
now be accessed by almost anyone with a mobile device. Adding security to such
open models is extremely difficult with problems at many levels. An architecture
with a central authority can not be assumed and access control is required for
external users. The portable hand-held and embedded devices have severe lim-
itations in their processing capabilities, memory capacities, software support,
and bandwidth characteristics. Existing security infrastructures deal with au-
thentication and access control. These mechanisms are inadequate due to the
increasing flexibility required by pervasive environments.

Trust, which is similar to the way security is handled in human societies, plays
an important role in enhancing security of pervasive environments. However, it
is not considered in traditional access control models seriously [7]. Till now,
several trust models have been proposed for pervasive environments including
computational models and none-computational ones. In a computational trust
model, the entity’s trust to another one is estimated. On the other hand, the
aim of a non-computational trust model is only to find out if an entity is trusted
or not. It is worthwhile to note that an entity can trust another one in different
categories. For example, the device A may trust the device B in the category
of reading a file, but A may give up trusting B in the category of writing a
file. The semantic relations exist among pervasive devices and specially trust
categories may significantly affect security policies. For instance, if we know a
special device belongs to the family of PDAs, and also if we have a subsumption
relation between PDAs and mobile devices, we can generalize the security rules
defined for mobile devices to this particular device. Semantic relations among
trust categories mean the security relevance of categories to each other. For
example, If an entity A has a high degree of trust to an entity B in getting a
web service, we expect A to have a high degree of trust to B in getting a mail
service as a consequence.

None of published trust models for pervasive environments have considered
the mentioned semantic relations yet. Employing ontology structure propounded
in Semantic Web, we propose a new trust model for pervasive environments. This
model, in addition to being a computational trust model, considers semantic re-
lations among devices and among trust categories. Each entity can calculate its
trust degree to other entities and make security decisions based on the calcu-
lated trust values. In fact, each entity can accept or reject collaboration with
other entities with regard to their trust values. Also, each entity can vote for an-
other entity after a direct collaboration with it. Furthermore, this model satisfies

A Semantic-Aware Ontology-Based Trust Model 49

autonomy which is an important property of pervasive entities. A pervasive de-
vice can define its security rules independently using the SWRL language [1],
which is a semantic language for defining rules on ontology structures. The use
of ontology structure, makes the model capable of encompassing other pervasive
concepts such as context awareness in a simple way.

The rest of the paper is organized as follows; In section 2, previous trust
models proposed for pervasive environments are reviewed. The structure of our
trust model and its main components are discussed in section 3. Section 4 is
devoted to explain the trust inference protocol and updating trust values. Finally,
we conclude the paper and introduce some future work in section 5.

2 Related Work

Many trust models have been proposed for distributed environments. A small
number of them, such as the one proposed by Abdul-Rahman in [3], were designed
with such generality to be applicable in all distributed environments. Other cases
concentrated on a particular environment. The trust models for web-based social
networks [8,9,12] and the ones for peer-to-peer networks [10,16] are examples of
these trust models. In this section, our review focuses on the trust models have
been already suggested for pervasive computing environments. In almost all dis-
tributed trust models, there must be some basic services and facilities. Trust in-
ference and trust composition are examples of such facilities. By trust inference,
we mean calculating our belief to a statement based on the believes of some other
people to whom we trust. Trust composition is a necessary part of a trust inference
algorithm to combine the believes obtained from different sources.

The trust model proposed by Kagal et al. in 2001 [13,14] is one of the well-known
trust models for pervasive computing environments. This model is not a computa-
tional trust model and uses certificates to determine whether an entity is trusted
or not. In the Kagal’s suggested architecture, each environments is divided into
some security domains and for each security domain a security agent is leveraged.
The security agent is responsible for defining security policies and applying them
in the corresponding domain. Interfaces of available services in a domain are also
provided by its security agent. When an external user requests a service offered in
a domain, he must provide a certificate from the agents which are trusted for the
security agent of the domain. Then, he must send its request accompanying the
acquired certificates to the security agent. The security agent checks the validity
of the certificates and responses the user’s request. In fact, the Kagal’s trust model
is more likely to be a certificate-based access control model. In this model, an en-
tity can be trustworthy or not from the security agent’s point of view. An entity
is not capable of calculating trust values of other entities and collaboration with
inter-domain entities which are trusted for a security agent are not supervised.

Among the existing trust models for pervasive environments, the model pro-
posed by Almenarez et al. in [4,5], called PTM 1, is so popular. This trust
model is a computational trust model and it is implemented on a wide range of

1 Pervasive Trust Management.

50 M. Taherian, R. Jalili, and M. Amini

pervasive devices. Considering two kinds of trust, direct trust and recommenda-
tion trust [4], the architecture of this model is divided into two parts; 1) belief
space, which assigns an initialize trust value to new arriving entities, and 2)
evidence space, which updates the trust values of entities with respect to their
behaviors over the time. To combine trust values, the weighted average opera-
tor (WAO) is used and values in the belief space are presented as fuzzy values.
A recommendation protocol is defined to recommend an entity the trust values
of other entities. If an entity wishes to collaborate with another one, it uses this
protocol to acquire that entity’s trustworthy degree. In the first collaboration
of an entity, its initial trust value, which is assigned in the belief space, is con-
sidered. However, over the time, the entity’s trust value changes with respect
to the entity’s behavior. The implementation of this model is added to security
infrastructure of some pervasive devices to enhance their security [2].

The above mentioned approaches present drawbacks for open pervasive envi-
ronments. Perhaps, the main drawback of them is not taking into account the
semantic relations among pervasive devices and among trust categories. We have
defined a pervasive trust model based on ontology structure between autonomous
entities without central servers. Considering mentioned semantic relations makes
the model capable of defining security rules with more flexibility. The model is
also simple enough to implement in the very constrained devices which have
strict resource constraints.

3 The Trust Model

In our proposed model, in addition to calculating the trust values from each
entity to other entities, the semantic relations among pervasive devices and trust
categories are considered using an ontology structure. In this section, the basic
components of this model are introduced.

3.1 Trust Ontology

In this model, to represent trust relations among pervasive devices, a particular
ontology is defined, called trust ontology. As known, each ontology O contains
a set of concepts (classes) C and a set of properties P . The formal notation of
trust ontology is defined as follows:

O={C,P}

C={Device, Category, TrustValue, DirectTrust, RecTrust,
CategoryRelation, RelevanceValue, Time}

P={hasDirectTrust, hasRecTrust, initialTrustValue,
trustedDevice, trustedCategory, hasTrustValue,
trustRelated, relatedCategory, hasRelevanceValue,
updateTime, collaborationNo}

A Semantic-Aware Ontology-Based Trust Model 51

Classes of the Trust Ontology. The class Device represents the available
devices of pervasive environment such as users, sensors and PDAs. The class
Category includes individuals which represent trust categories, e,g., login access
or reading file. In fact, the trust category describes the semantics of a trust
relation. The class TrustV alue contains the valid values of trust degrees. The
float numbers in the range of [0..1] can be an example of these values.

Similar to many other trust models, two kinds of trust are considered in our
model. First, direct trust which is given by the knowledge of an entitys nature
or its past interactions in the physical world, without requesting information
from other entities. Second trust type is indirect trust or recommendation trust.
When two entities, unknown to each other, are willing to interact, they can
request other entities to give information about the other party. This process
of asking other entities and calculating the final trust value from the received
answers is called trust inference.

To model the trust relations, for both direct trust and recommendation trust,
some properties must be defined in the ontology. These properties have some
attributes themselves. In Semantic Web languages, such as RDF and OWL, a
property is a binary relation; it is used to link two individuals or an individual
and a value. However, in some cases, the natural and convenient way to represent
certain concepts is to use relations to link an individual to more than just one
individual or value. These relations are n-ary relations. For instance, it might
be required to represent properties of a relation, such as our certainty about it,
relevance of a relation, and so on. One solution to this problem is creating an
individual representing the relation instance itself, with links from the subject of
the relation to this instance and with links from this instance to all participants
that represent additional information about the instance. In the class definition
of the ontology, an additional class is required to include instances of this n-ary
relation itself. Classes DirectT rust and RecTrust are of such classes.

One of the main features of our model is considering semantic relations among
trust categories. Like direct trust and indirect trust relation, the semantic re-
lation among trust categories is n-ary relation. The class CategoryRelation is
defined to include instances of this n-ary relation.

The class RelevanceV alue defines the valid values for the relevance values
among trust categories. Finally, the class T ime characterizes the time values in
the model. Individuals of this class are used to hold the time of inferring trust
values.

Properties of the Trust Ontology

– initialTrustValue: An instance of this property assigns to a new arriving
entity an initial trust value. This assignment is done by special agents called
trust managers which are described in the next section. One way is to assign
different initial trust values to the new entity corresponding to different
trust categories. Another way is to assign only one initial trust value for all
trust categories. Concentrating on simplicity of the model, the latter one is
considered in this paper. The criteria of assigning this value is dependent to

52 M. Taherian, R. Jalili, and M. Amini

Fig. 1. initialT rustV alue property

the policies of the trust manager. The schema of this property is shown in
Fig. 1.

– hasDirectTrust: When an entity collaborates with another one, it gains a
degree of trust about that entity. This type of trust is called direct trust. Since
this relation is not a binary relation and it has some attributes, the pattern
described before to define n-ary relations is used. Fig. 2 shows the schema
of hasDirectT rust property. The class DirectT rust includes instances of
the relation. The property trustedDevice determines the device that the
trust relation is established with. The class N includes the natural numbers
and the property collaborationNo identifies number of collaborations which
are already done between these two entities. The property hasT rustV alue
assigns a trust value to the trust relation and the property trustedCategory
characterizes the trust category in which the trust relation is set up.

– hasRecTrust: If an entity wants to begin a collaboration with another one,
it may want to know the opinions of other entities about the other party.
The trust value derived in this way is called indirect trust or recommenda-
tion trust. Like hasDirectT rust, this relation is also an n-ary relation. The

Fig. 2. hasDirectT rust property

A Semantic-Aware Ontology-Based Trust Model 53

Fig. 3. hasRecTrust property

Fig. 4. trustRelated property

schema of this relation is illustrated in Fig. 3. The class RecTrust includes
individuals of the relation. All attributes of this relation is similar to the
direct trust relation except that instead of property collaborationNo, the
property updateT ime is added. This property determines the time of last
trust inference. Details of the inference algorithm is discussed in section 4.

– trustRelated: The semantic relation between two categories of trust is mod-
eled with this property. According to Fig. 4, the class CategoryRelation
contains individuals of the relation itself. The property trustedCategory

54 M. Taherian, R. Jalili, and M. Amini

represents the related category and the property hasRelevanceV alue as-
signs a relevance value to this relation. The class RelevanceV alue consists
of the valid values for this relevancy.

3.2 Trust Manager

A pervasive environment, is divided into different domains and each domain has
a trust manager. The trust manager is responsible for assigning the initial trust
values, defining semantic relations among trust categories, defining a hierarchy
of devices, and holding the base trust ontology. The hierarchy of devices can
be defined with using the subClassOf property of an ontology. The base trust
ontology, contains the relations among trust categories and hierarchy of pervasive
devices. These relations can be defined by the security manager of each domain.

When a new entity enters a domain, it sends a message to the domain’s trust
manager and declares its physical specifications. According to these specifica-
tions and its own policies, the trust manager finds out if this new entity is an
individual of the class Device or one of its subclasses. Then, an initial trust value
is assigned to the entity. After updating the ontology, trust manager sends the
file of ontology to the new entity. Thus, all entities receive the domain’s base
trust ontology when they enter the domain. The trust manager also broadcasts a
new massage to update the ontologies of already existing entities. The structure
and format of the alert message are out of this paper’s scope.

3.3 Security Rules

The autonomy of pervasive devices is a basic property of them. In our model,
each entity is independent of the other ones in defining security rules. The poli-
cies are described in the SWRL language, a language to process and to query
the ontologies which are written in the OWL language. Although formats and
patterns of defining security rules are not explained here, an example is given
to understand the concept. Note that instead of SWRL syntax, a pseudocode
syntax is used in order to make it more legible. Suppose that entity e1 begins a
collaboration with entity e2 in the trust category c1. A security rule for e1 can
be represented as:

if e2 is a sensor
and

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎣
hasDirectTrust(e1)=X and
trustedDevice(X)=e2 and
trustedCategory(X)=c1 and
hasTrustValue(X)≥ 0.6

⎤
⎥⎥⎦ and

⎡
⎢⎢⎢⎢⎣

hasRecTrust(e1)=Y and
trustedDevice(Y)=e2 and
trustedCategory(Y)=c1 and
hasTrustValue(X)> 0.7 and
updateTime(Y)≥ (now-20s)

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

then collaboration with e2

in the category c1 is granted.

A Semantic-Aware Ontology-Based Trust Model 55

Before beginning the collaboration, e1 looks up in its security rules to find
the matching rules. In this case, the mentioned security rule is matched with the
collaboration properties. If the found rules are satisfied, the entity begins the
collaboration. If no rule is matched with an interaction, granting or denying
the interaction can be decided according to the security policies. In this approach,
a possible problem is conflicting the rules, matched with a collaboration. Conflict
resolution is out of the scope of this paper.

4 Trust Inference

In any trust model, one of the main parts is the algorithm of inferring trust.
Trust inference means calculating indirect trust value (or recommendation trust
value). In addition to indirect trust, the way in which direct trust values are
created is important too. In this section, trust inference protocol and the method
of updating both direct and indirect trust values are discussed. The approach
of applying semantic relations among trust categories is also described in the
following subsections.

4.1 Trust Inference Protocol

Suppose that device e1 does not have any information about entity e2 and it is
willing to interact with e2. Consider that this type of interaction needs a degree
of trust in the trust category c1. Now, e1 needs to derive the trust value of e2 by
asking other entities. Thus, e1 broadcasts a query message to other entities. The
query part of this message is expressed in the SWRL language. Although the
format and structure of messages are not discussed in this paper, an example of
broadcasting query is illustrated below using pseudocode.

hasDirectTrust(x)=X and trustedDevice(X)=e2 and
trustedCategory(X)=c1 and hasTrustValue(X)= ?

In the above query, x matches with each entity that receives the message.
It is clear that to answer the sender, address of sender must be located in the
message. Also, a timeout must be declared by sender to ignore indefinite waiting.
Each entity which has a direct trust to e2 in the category c1, replies e1. After
finishing the declared timeout, e1 calculates the derived trust value with respect
to delivered answers. The equation 1 shows this operation.

Tinfer(e1, e2, c1) =
∑n

i=1 T (ei, e2, c1)× T (e1, ei, c1)
T (e1, ei, c1)

(1)

The entities who reply e1 are denoted by ei. T (ei, e2, c1) is the value of di-
rect trust from entity ei to e2 in the trust category c1 and T (e1, ei, c1) is the
direct trust value from e1 to ei in the trust category c1. Considering trust value of

56 M. Taherian, R. Jalili, and M. Amini

sender to repliers causes that answers from more reliable entities, having more
impact on the inferred trust value. Note that if e1 does not have a direct trust to
ei (e1 has not done any interaction with ei in the trust category c1 yet.), it con-
siders the initial trust value of ei (initialT rustV alue(ei)) instead of T (e1, ei, c1).
As it is mentioned before, this initial trust value is assigned by the trust manager.
It is obvious that the inferred trust value will be located in the valid range of
trust values defined by class TrustV alue of trust ontology. After computing the
inferred trust value, e1 updates its ontology. The time of inferring trust (tinfer)
will be also located in the ontology using updateT ime property. Updating the
trust ontology of e1 includes the following items:

hasRecTrust(e1)=X and trustedDevice(X)=e2 and
trustedCategory(X)=c1 and updateTime(X)=tinfer and
hasTrustValue(X)=Tinfer(e1,e2,c1)

In our inference method, the weighted average operator (WAO) is used to
combine the trust values. Although other distributed trust models use alterna-
tive operators to combine trust values which may cause getting more accurate
results, like the consensus operator [11] used in [12], for pervasive devices which
have considerable limitations on battery life, memory capacities, size, and per-
formance, the simplicity is preferred to accuracy.

4.2 Updating the Trust Values

To update indirect trust values, different approaches can be used. One way is
that each entity recalculates its trust value to another entity after a predefined
time periods. Another way is to derive the trust value whenever a rule consisting
the time constraint is fired up. A combination of these two approaches can be
used too. In a pervasive domain, the security manager can choose one of the
above methods.

Now, the question is that how direct trust values can change. In this model,
after completing a transaction, entities can vote for each other. The new direct
trust value can be computed by the equation 2.

Tnew(e1, e2, c1) =
Told(e1, e2, c1)× collaborationNo + vote(e1, e2, c1)

collaborationNo + 1
(2)

In this equation, Told(e1, e2, c1) represents the direct trust value from e1 to
e2 in the category c1 before beginning the transaction. The term vote(e1, e2, c1)
represents the opinion of e1 about e2 in the category c1 after completing the
transaction and collaborationNo is the number of transactions between e1 and e2

which have taken place in the category c1 before this transaction. Tnew(e1, e2, c1)
is the new direct trust value from e1 to e2 in the category c1. Updating the trust
ontology of e1 includes the following items:

A Semantic-Aware Ontology-Based Trust Model 57

hasDirectTrust(e1)=X and trustedDevice(X)=e2 and
trustedCategory(X)=c1 and
collaborationNo(X)=collaborationNo(X)+1 and
hasTrustValue(X)=Tnew(e1,e2,c1)

Note that the new direct trust values can be alerted to the trust manager to
take these values into account in its later decisions.

4.3 Semantic Relations among Trust Categories

Defining the trustRelated property in the trust ontology provides this possibil-
ity for the trust model to represent semantic relations among trust categories.
Considering these relations, provide us security rules with more flexibility and
higher security level. For example, assume that e1 wishes to begin an interaction
with e2 which requires satisfaction of the following security rule:

hasDirectTrust(e1)=X and trustedDevice(X)=e2 and
trustedCategory(X)=c1 and hasTrustValue(X)≥ 0.6

Now, suppose that e1 would collaborate with e2 if it has the same degree of
trust to e2 in other categories which are related to c1 with the relevancy value
of 0.8. The security rule to support this requirement is shown below:

hasDirectTrust(e1)=X and trustedDevice(X)=e2 and
trustedCategory(X)=Y and trustRelated(Y)=Z and
relatedCategory(Z)=c1 and hasRelevanceValue(Z)> 0.8
hasTrustValue(X)≥ 0.6

5 Conclusions and Future Works

In this paper, we have introduced a new semantic-aware trust model for perva-
sive environments based on ontology concepts. A standard ontology, called trust
ontology, is defined to support trust in pervasive environments. The trust ontol-
ogy is represented with the OWL language and queries on the ontology can be
expressed in existing rule languages such as SWRL. Using the ontology structure,
the model provides a standard trust infrastructure for pervasive devices.

Using the weighted average operator (WAO), a simple inference protocol is
proposed to calculate the indirect trust values. For pervasive devices which have
significant limitations on battery life, memory capacities, size, and performance,
the simplicity of inference protocol offers many benefits to calculate the indi-
rect trust values. Another advantage of the model is taking into account the
autonomy of pervasive devices. Each device can define its private security rules
independent of other devices. There exist such flexibility for devices to employ
both direct and indirect trust values in defining their security policies.

58 M. Taherian, R. Jalili, and M. Amini

Considering the semantic relations among trust categories and defining hi-
erarchical structure of pervasive devices, provides us more flexibility to define
security rules. With this feature, a wide range of security policies can be ex-
pressed in a simple way. Adding more attributes of pervasive environments such
as context-awareness is possible with making a little extension to the model. For
example, suppose that we want to add a context variable such as the location.
The property hasLocation and a class validP laces can be defined in the trust
ontology to support this context variable. New security rules can use this new
concept to enhance their expressiveness.

Future work includes defining the structure of messages and patterns of se-
curity rules. Moving toward implementing this model on pervasive devices like
PDAs and evaluating the performance impacts are also in our future plans.

References

1. Swrl: A semantic web rule language combining owl and ruleml,
http://www.w3.org/Submission/SWRL

2. Ubisec project, pervasive trust management model (ptm),
http://www.it.uc3m.es/∼florina/ptm

3. Abdul-Rahman, A., Hailes, S.: A distributed trust model. In: New Security
Paradigms Workshop, pp. 48–60. ACM Press, New York (1998)

4. Almenarez, F., Marin, A., Campo, C., Garcia, C.: Ptm: A pervasive trust man-
agement model for dynamic open environments. In: First Workshop on Pervasive
Security, Privacy and Trust PSPT (2004)

5. Almenarez, F., Marin, A., Diaz, D., Sanchez, J.: Developing a model for trust man-
agement in pervasive devices. In: Fourth Annual IEEE International Conference on
Pervasive Computing and Communications Workshop (PERCOMW 2006) (2006)

6. Blaze, M., Feigenbaum, J., Keromyts, A.D.: The role of trust management in dis-
tributed systems security. In: Secure Internet Programming, pp. 185–210 (1999)

7. English, C., Nixon, P., Terzis, S., McGettrick, A., Lowe, H.: Dynamic trust models
for ubiquitous computing environments. In: Ubicomp Security Workshop (2002)

8. Golbeck, G.A.: Computing and Applying Trust in Web-Based Social Networks.
PhD thesis, University of Maryland (2005)

9. Golbeck, G.A., James, H.: Inferring binary trust relationships in web-based social
networks. ACM Transactions on Internet Technology 6(4), 497–529 (2005)

10. Griffiths, N., Chao, K.M., Younas, M.: Fuzzy trust for peer-to-peer systems. In:
P2P Data and Knowledge Sharing Workshop (P2P/DAKS 2006), at the 26th In-
ternational Conference on Distributed Computing Systems (ICDCS 2006), Lisbon,
Portugal, pp. 73–73. IEEE Computer Society Press, Los Alamitos (2006)

11. Josang, A.: The consensus operator for combining beliefs. Artificial Intelligence
Journal 142(1-2), 157–170 (2002)

12. Josang, A., Hayward, R., Pope, S.: Trust network analysis with subjective logic.
In: Australasian Computer Science Conference (ACSC 2006), Hobart, Australia,
pp. 85–94 (2006)

13. Kagal, L., Finin, T., Joshi, A.: Trust-based security in pervasive computing envi-
ronments. IEEE Computer 34(12), 154–157 (2001)

http://www.w3.org/Submission/SWRL
http://www.it.uc3m.es/~florina/ptm

A Semantic-Aware Ontology-Based Trust Model 59

14. Kagal, L., Finin, T., Joshi, A.: Moving from security to distributed trust in ubiq-
uitous computing environments. IEEE Computer (2001)

15. Satyanarayanan, M.: Pervasive computing: Vision and challenges. IEEE Personal
Communications 8(4), 10–17 (2001)

16. Wang, Y., Vassileva, J.: Trust and reputation model in peer-to-peer networks. In:
3rd International Conference on Peer-to-Peer Computing (P2P 2003), pp. 150–157.
IEEE Computer Society, Los Alamitos (2003)

Using Automated Planning for Trusted

Self-organising Organic Computing Systems

Benjamin Satzger, Andreas Pietzowski, Wolfgang Trumler, and Theo Ungerer

Department of Computer Science
University of Augsburg,

D-86135 Augsburg, Germany
{satzger,pietzowski,trumler,ungerer}@informatik.uni-augsburg.de

http://www.informatik.uni-augsburg.de/sik

Abstract. The increasing complexity of computer-based technical sys-
tems require new ways to control them. The initiatives Organic Comput-
ing and Autonomic Computing address exactly this issue. They demand
future computer systems to adapt dynamically and autonomously to
their environment. In this paper we propose a new approach based on
automated planning to realise self-organising capabilities for complex dis-
tributed computing systems. The user/administrator only defines objec-
tives describing the conditions which should hold in the system, whereas
the system itself is responsible for meeting them using a planning en-
gine. As many planning algorithms are known to be sound and complete,
formal guarantees can be given. Thus we aim at building trusted self-
organising distributed computer system which are suitable to control real
technical systems. Our approach is demonstrated and evaluated on the
basis of a simulated production cell with robots and carts. We propose
and evaluate two optimisations.

Keywords: Organic Computing, self-organisation, automated planning.

1 Introduction

Organic Computing (OC) [14,12,15] and Autonomic Computing (AC) [8,10,9]
both identified the increasing complexity of distributed computing systems as a
major challenge to future management of computer systems and postulate so-
called self-x properties (i.e. self-organisation, self-configuration, self-optimisation,
self-healing, and self-protection) for these systems. Thus, the system is able to
manage itself in order to hide the complexity from users, administrators, and
programmers. In highly complex systems it is unfeasible or even impossible for
humans to care about details. A way to manage such systems is to use policies
describing just their objectives. These objective policies only specify what is ex-
pected from the system - the way it should behave. The way how this is managed
should be determined automatically. Policies are an important technique used to
specify the desired behaviour of AC and OC systems, respectively. Policies nor-
mally are rules consisting of a condition and zero or more actions [1]. During run-
time, a policy engine will verify the conditions and take the stipulated action.

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 60–72, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.informatik.uni-augsburg.de/sik

Using Automated Planning for Trusted Self-organising OC Systems 61

However, for self-organisation in distributed systems the enumeration of all con-
ditions, e.g. all possible types of failures is often impracticable. Also, the actions
to recover the system can be too arduous to be specified manually. Furthermore
many different ways to reconfigure a system from one certain fail state may exist
what raises the complexity even more.

A methodology that is better in line with the visions of OC and AC is policies
only describing the desired conditions of a system, leaving it to the system itself
to meet these conditions. Automated planning is a concept to enable computer
systems to reason about actions in order to automatically compute plans to fol-
low the policies. This has also been identified by Srivastava et al. [16] who argue
that planning is an evolutionary next step for AC systems that use procedural
policies. Other approaches used to develop self-organising computer systems like
AI-learning or bio-inspired techniques with emergent effects are too unreliable
for many domains. The behaviour of such systems often cannot be predicted nor
understood. In contrast, planning is similar to human reasoning and thus more
comprehensible. Actually, many planning algorithms are known to be formally
sound and complete.

The contributions of this work are the proposal of a new approach for trusted
self-organising distributed systems, based on an automated planning engine we
have developed to guide self-healing after a component failure in an OC-managed
system. Our approach is explained, demonstrated, and evaluated on the basis of
a simple scenario, a small production cell. This scenario has been introduced by
Güdemann et al. [7] to motivate their work.

The paper is subdivided into seven sections. Section 2 gives a short introduc-
tion to automated planning and related work. Section 3 describes our scenario, a
self-organising production cell. Then, Section 4 clarifies how the self-organisation
process works while Section 5 proposes some optimisations for that process. Sec-
tion 6 presents the results of the conducted evaluation. Finally, Section 7 gives
an overview of future work and concludes the paper.

2 Automated Planning

Automated planning is a branch of artificial intelligence. The primary problem
of planning is the computation of sequences of actions which will achieve speci-
fied objectives from specified initial conditions. Domain-independent planning is
concerned with the fundamental principles of planning as an activity. Basically,
an automated planning problem can be described as follows: Given a description
of the domain and the initial state, find a sequence of actions that transforms the
system from the initial state to a state that satisfies defined objectives. A for-
malisation provides a formal description of all relevant information of planning
problems. The system’s state, the objectives, the actions, and its causalities have
to be covered by such a formalisation. The Strips (STanford Research Institute
Problem Solver) [4] representation has been devised by Fikes and Nilsson. Strips
is probably the most famous planning language and is still widely used today.
Pddl [11] is an attempt to standardise planning languages and was developed

62 B. Satzger et al.

primarily to make planning competitions possible. Pddl is inspired by the
Strips formulation, and basically a first-order logic language. The syntax is
inspired by Lisp, so much of the structure of a domain description is a Lisp-like
list of parenthesised expressions.

Basically, planning can be seen as a search problem. Planning algorithms
vary in the space that is searched, how the search is performed, in which way
the plans are constructed, and so on. In the following an overview of different
planning techniques is given. The simplest classical planners are based on state
space planning where the search space is a subset of the state space. A state
space planning problem can be represented as a graph: Every node is an element
of the set of states of the system. The edges are elements of the set of possible
actions. The edges connect a state and the state that results from the application
of the corresponding action at this state. A plan can be represented as a path
within the graph. A path from the initial state to a goal state is a solution of the
planning problem. It is possible that multiple paths lead from the initial to a goal
state. An alternative to the search through the state space is to search through
the space of plans, called plan space planning. In this space, the nodes represent
partially specified plans, the start node is an empty plan which has no actions.
The edges correspond to refinements of the partial plans, called plan refinements,
that expand them until a complete plan has been created that solves the stated
planning problem. For a more detailed introduction in the field of automated
planning see [6].

Distributed and coordinated planning problems have been studied within the
context of multi-agent systems (MAS). Multi-agent planning can be seen as
planning together with coordination. Partial Global Planning (PGP) [3] is per-
haps one of the most influential approaches in distributed AI [2]. In contrast to
most MASs where agents are self-interested, PGP uses cooperative agents. It is
particularly suited for the use in sensor networks and is applied to distributed
vehicle monitoring, whereby the goal is to provide a consistent view of vehicle
movement.

For this work, a planner has been developed in JAVA, based on a plan space
planning approach [18] which has been extended to work with numerical re-
sources. It takes a subset of PDDL as input, and uses heuristics to guide the
search. Furthermore a technique has been incorporated to allow distributed plan-
ning, i.e. the coordinated planning of entities within a distributed system. We
chose to build our planner based upon a plan space planning approach, because
it performs very effectively in parallel, distributed domains and the generated
plans have a better execution flexibility compared with other approaches [13].
The high execution flexibility is mainly based on the fact that e.g. state based
planners typically output a totally ordered plan what means that all plans have
to be executed sequentially also in distributed domains. However, our planner
outputs partially ordered plans which allow a parallel execution of actions. This
makes plan execution much more efficient and flexible, especially in distributed
systems.

Using Automated Planning for Trusted Self-organising OC Systems 63

3 Self-organising Production Cell

In this section, first the production cell scenario is introduced, then it is presented
how it can be controlled by our approach.

3.1 Scenario

The scenario we are using to demonstrate and evaluate our planner, a small
automated production cell, has been introduced by Güdemann et al. [7]. It con-
sists of three robots and two carts. Each robot has three tools which can be
switched during runtime: (1) a drill to drill holes into workpieces, (2) an inserter
to insert a screw into a drilled hole, and (3) a screw driver to tighten an inserted
screw. The carts transport workpieces from one robot to another. All workpieces
must be processed in the order drill, insert, and tighten. Figure 1 illustrates this
scenario. The arrows represent the flow of the workpieces, the tools below the
robots are the available tools for the robot, tools marked with a dot indicate the
robot’s tasks, i.e. the processing steps it is responsible to execute.

Now, this scenario is mapped to our approach. The robots and carts of the pro-
duction cell are understood as nodes of a special distributed system. As a prereq-
uisite, these nodes need to be able to send messages and it is assumed that each
of them runs an instance of our planning engine. The planning is distributed over
the entities, however, in an instance only one entity is coordinating the planning.
There are three different scopes, information are needed about. The first one is
knowledge about the current state of the system. In order to control the system
properly, it is of course necessary to know about its current condition. The system
state is gathered from a constant monitoring process of the nodes of the system.

Fig. 1. Production cell

64 B. Satzger et al.

The objectives define desired system properties whereas it is the task of the system
to meet these properties. The objectives determine the behaviour of the system.
The third component is an action description which basically informs every entity
of the distributed system which actions it is able to perform and what effects they
have. In the following, these three topics are introduced in more detail.

3.2 System State

Based on monitoring and potentially previous knowledge all entities form their
view of the world. With entities, we denote all components of the system able
to perform actions. In the production cell example robots and carts form these
entities. The state of the world is composed of the relevant objects and their
states which are expressed with predicates.

The production cell consists of three robots r1, r2, and r3, two carts c1 and
c2, and three tools drill, inserter, and screw_driver. The entities represent
these objects as follows, whereas the source of this information is either previous
knowledge or monitoring of the environment:

r1 r2 r3 - robot
c1 c2 - cart
drill inserter screw_driver - tool

It is supposed that all three robots have the tools drill, inserter, and
screw_driver, whereas r1 is currently using the drill, r2 the inserter, and
r3 the screw_driver. Furthermore assume that c1 is transporting workpieces
from the robot using the drill to the robot using the inserter and c2 is trans-
porting workpieces from the robot using the inserter to the robot using the
screw_driver. The representation of these conditions is based on the predicates
having, using, and transporting.

(having r1 drill) (having r1 inserter) (having r1 screw_driver)
(having r2 drill) (having r2 inserter) (having r2 screw_driver)
(having r3 drill) (having r2 inserter) (having r3 screw_driver)

(using r1 drill)
(using r2 inserter)
(using r3 screw_driver)

(transporting c1 drill inserter)
(transporting c2 inserter screw_driver)

With this formalism all entities represent their view of the system. The in-
formation are gathered from own monitoring activities or communication with
other entities of the distributed system.

3.3 Objectives

An objective is defined by a user/administrator and distributed to the nodes
of the system. It provides a statement of the requirements about the system’s

Using Automated Planning for Trusted Self-organising OC Systems 65

condition and determines its behaviour. Thus, one instance exists whose change
yields a behavioural change in the whole system. An objective defines which
conditions always should hold within the system. The planning engine is respon-
sible to control the system in order to meet these conditions. In the scenario
of the production cell a reasonable objective is: For every tool (drill, inserter,
screw driver) a robot is required using this tool. Furthermore carts are required,
first a cart transporting workpieces from the robot using the drill to the robot
using the inserter, and a second cart transporting workpieces from the robot
using the inserter to the robot using the screw driver. This objective is shown
in the following:

(forall (?t - tool) (exists (?r - robot) (using ?r ?t)))
(exists (?c - cart) (transporting drill inserter))
(exists (?c - cart) (transporting inserter screw_driver))

However, the above objectives do not cover the equal distribution of tasks,
i.e. it is also a valid configuration if one robot is using all three tools whereas
the others are doing nothing. To prevent such situations the objectives can be
extended as follows:

(forall (?r - robot) (<= (#tools ?r) N))
(forall (?c - cart) (<= (#paths ?c) M))

where N = � 3
#robot� and M = � 2

#carts�. Thus, no robot is allowed to use more
than N tools, no cart is allowed to serve more than M paths. If everything in
the production cell is working properly then N = 1 and M = 1. If e.g. one cart
fails then M = 2 and the remaining cart is allowed to serve two paths. Now, at
last the action description is discussed.

3.4 Action Description

Each entity needs information about what it is able to do, i.e. what actions it
can execute and how these actions affect the system. The two fundamentally
different types of entities - robots and carts of the production cell scenario -
result in two different types of action descriptions. The action description for
robot r1 looks as follows, whereas the descriptions for the robots r2 and r3 are
defined analogue:

:action startTool
:parameters (r1 ?t - tool)
:precondition (and (having r1 ?t)
:effect (and (using r1 ?t))

:action stopTool
:parameters (r1 ?t - tool)
:precondition (and (using r1 ?t))
:effect (and (not (using r1 ?t)))

66 B. Satzger et al.

Thus, robots can start and stop tools. Being able to start a tool ?t the corre-
sponding tool must be available for the robot (having r1 ?t). The effect of the
action startTool is that the robot is using the tool afterwards (using r1 ?t).
A robot can also use two tools simultaneously what is especially important if
another robot completely fails and the remaining ones have to take over its tasks.
The action stopTool can be seen as the complementary action to startTool
and stops using a tool. Carts transport workpieces from one robot to another.
Similar to robots they also start and stop these tasks.

:action startTransport
:parameters (c1 ?from ?to - robot)
:precondition ()
:effect (and (transporting c1 ?from ?to))

:action stopTransport
:parameters (c1 ?from ?to - robot)
:precondition (and (transporting ?c ?from ?to))
:effect (and (not (transporting ?c ?from ?to)))

4 Planning Process

In this section the planning process is explained which is the core of the self-
organisation feature. All entities in the distributed system, in our case the pro-
duction cell, constantly monitor their environment. If one entity observes a
violation of an objective it initiates a reconfiguration process. This entity now
serves as coordinator for a distributed planning process with the goal to recover
the system to a state in line with the system’s objectives. In a nutshell, the
coordinator manages an agenda with open conditions that have to be addressed
in order to recover the system. The open conditions are announced, while all
entities communicate what they can contribute to resolve an open condition to
the coordinator. Thus, the coordinator is able to generate a plan where the abil-
ities of other entities are included. The result is a parallel executable plan that
recovers the system from the unwanted state.

Consider an example where all robots have all tools while r1 is using the drill,
r2 the inserter, and robot r3 the screw driver. Unfortunately, the inserting tool
of r2 is breaking. This situation, shown in Figure 2(a), results in a violation of
the objectives as no robot is using the inserter. It is reasonable to assume that
r2 is the first to detect this violation. Therefore it initiates the reconfiguration
process starting with an initial partial order plan. The initial plan consists of
two dummy steps representing the current state of the system and the goal state
of the system. During the planning process the initial plan is refined until a valid
plan, as illustrated in Figure 2(c), is found that transforms the invalid state into
a goal state. Figure 2(b) represents the system after the reconfiguration process.

Using Automated Planning for Trusted Self-organising OC Systems 67

(a) Invalid situation due to broken inserter (b) Valid situation after planning/plan
execution

(c) Plan transforming in-
valid situation to valid sit-
uation according to the ob-
jectives

Fig. 2. Recovery process of the production cell

Note that the resulting plan is a partial ordered plan which allows a
parallel execution of the actions. During the planning process the coordinator an-
nounces open conditions, e.g. the condition not (exists (?r - robots) (using
(?r inserter))).Based on the responses and its own capabilities the coordinator
computes all possible refinements of the current plan. These refined plans are the
successors of the current plan. Thus, the planning process can be seen as a special
tree search within the space of plans. The initial plan is the root node of the search
tree, refinements lead to children, the search ends when a valid plan is found.

If such a plan has been generated it needs to be executed in order to recover
the system. The plan contains a set of steps S and a partial ordering on this
steps O:

68 B. Satzger et al.

S = {stopTool(r1, drill), startT ool(r1, inserter), startT ool(r2, drill)}
O = {stopTool(r1, drill) < startT ool(r1, inserter)}
The plan coordinator sends these information to all nodes which are sched-

uled to execute an action. In our example r2 is the plan coordinator and r1
and r2 participate in the plan execution. To initiate the plan execution the
plan scheduler sends an “init-execution” notification to all entities whose step
is allowed to be executed immediately. After the execution of a step each en-
tity sends a notification message with an id of the executed step to all en-
tities which are an executor of a subsequent step. Each entity knows about
all steps it is scheduled to execute and waits until it has received an execu-
tion confirmation message from all predecessors. If a step has no successors a
notification is sent to the plan coordinator. Thus, the coordinator gets feed-
back whether the plan execution has been ended successfully or not. In the ex-
ample above, r2 sends an “init-execution” message to r1 and itself executes
step startTool(r2, drill). After the receipt of this message, r1 executes
stopTool(r1, drill) and startTool(r1, inserter) afterwards. Then, r1
sends a message to r2 indicating that it has executed startTool(r1, inserter)
(cp. Figure 2(c)). Now the plan coordinator knows that the plan execution is
completed successfully.

In the next section some optimisation approaches are presented, which aim
at speeding up the planning process and to reduce its complexity.

5 Optimisations

The standard partial order planning (POP) algorithm uses a breadth first ap-
proach to search through the space of partial plans. The planner we have de-
veloped incorporates a number of additional searching algorithms. Using an A∗

search algorithm, a heuristic function f(P) can be used to guide the search. This
distance-plus-cost heuristic function consists of two parts: the costs from the ini-
tial plan to the currently examined partial plan P , called g(P), and an estimate of
the distance of P from the final plan, called h(P). As an estimate for h the num-
ber of open conditions in the agenda is used, which is a well-known approach [5].
To compute g(P) every step of the plan must have a value assigned representing
the step costs, i.e. the costs it takes an entity to execute a step. When an entity re-
ceives a request containing an open condition, it checks whether it can contribute
to solve this open condition. If it is able to contribute it sends an offer back to the
plan coordinator consisting of an action together with the costs that are caused
by its execution. This costs are set according to the principle: “The more tasks
an entity is already executing the more expensive is it to take on another one”.
For example, consider the two robots r1 and r2 are asked to contribute to solve
the open condition not (exists (?r - robots) (using(?r drill))) while
r1 uses the tools inserter and screw_driver and r2 nothing. Then r1 sends
as his contribution [startTool(r1, drill), 4] where the latter are the costs.
Node r2 sends [startTool(r2, drill), 1] which is interpreted as a step with
less costs. The cost heuristic function g(P) is set as the sum of the step costs of

Using Automated Planning for Trusted Self-organising OC Systems 69

a plan. Thus, the A∗ search ranks plans with a balanced burden-sharing higher
than unbalanced ones. If the reasoning of automated planning is compared to
human reasoning a heuristic function can be seen as experience that also allows
to rank options of actions.

Another approach which we consider crucial to enable scalable systems based
on automated planning is to form groups. The planning within each group works
independently from the other groups. Only if a group is unable to find a valid
plan to reconfigure the group properly, members of other groups are requested
to help. This has the advantage that nodes only need to know about the current
state within the scope of their group which represents an enormous reduction in
complexity if applied to more complex distributed systems.

6 Evaluation

This section presents results of performance measurements of our distributed
planning approach. As testbed a distributed system with five nodes has been
used to model the production cell. The nodes can communicate by passing mes-
sages, which has been realised using a middleware called “Organic Computing
Middleware for Ubiquitous Environments” OCµ, formerly called AMUN [17],
which is based on Java and JXTA. But note that any other environment/setting
that allows to pass messages could have been used equally.

As objectives the following requirements have been stated which do not only
ensure the functional correctness but also the fair sharing of tasks.

(forall (?t - tool) (exists (?r - robot) (using ?r ?t)))
(exists (?c - cart) (transporting drill inserter))
(exists (?c - cart) (transporting inserter screw_driver))
(forall (?r - robot) (<= (#tools ?r) N))
(forall (?c - cart) (<= (#paths ?c) M))

To investigate the behaviour of the planner under all circumstances, a script
has been written which puts the system into a random state. It simulates the
outage of robots and carts, broken tools, and unbalancedly assigned tasks, but
is restricted to states where it is at least possible to recover the system. With
this approach 1000 random states have been generated where it has been the
task of our self-organisation approach to recover the system. Three variations of
the underlying planning engine have been tested:

Basic algorithm: The planning is based on the standard POP algorithm with
breadth first search. Additional features, compared to standard POP, are
basically planning with resources, distributed planning, and a richer input
language.

Heuristic: This variation refers to the application of an A∗ together with the
heuristic function stated in Section 5.

Heuristic & Grouping: Additional to the usage of a heuristic guided search,
two groups have been formed what refers to the second proposed optimisa-
tion in Section 5. One group consists of the three robots the other consists
of the two carts. The robot group has the objectives:

70 B. Satzger et al.

(forall (?t - tool) (exists (?r - robot) (using ?r ?t)))
(forall (?r - robot) (<= (#tools ?r) N))

while the cart group has the objectives:

(exists (?c - cart) (transporting drill inserter))
(exists (?c - cart) (transporting inserter screw_driver))
(forall (?c - cart) (<= (#paths ?c) M))

Thus the maintenance of the objectives has been shared among the groups.
Because the planning is based on the POP algorithm, which is sound and

complete, the system could obviously find a valid plan in all cases. Furthermore,
we assumed that the plan execution does not fail. This could happen in real
systems, if e.g. the startTool action fails because an arm of the robot is locked.
In this case a replanning had to occur incorporating this information. However,
such scenarios have been neglected. Table 1 gives indicators for the efficiency of
the self-organisation process. It contains the average number of visited partial
plans until a final valid plan has been found. Each refinement of a plan leads to
a successor plan. These refinements can be the addition of a step offer received
from another node but also internal changes of a partial plan like a different
ordering of steps and so on. Lower numbers of visited partial plans are better
and represent a more efficient and sophisticated planning process.

Table 1. Average number of visited partial plans

Basic algorithm Heuristic Heuristic & Grouping

144.644 17.853 13.247

The results show that the usage of heuristics in the distributed planning pro-
cess dramatically reduce the costs for the planning process. The grouping of
robots and carts into two groups further improves the performance. By the way,
to have an idea about the temporal dimensions to generate a plan, using the
basic algorithm it took in our setting on average 2.3 seconds to generate a plan,
communication time included.

7 Conclusions and Outlook

We have presented a planning-based approach to enable self-organisation of dis-
tributed systems. Therefore, objectives are provided to the system which defines
its desired properties. Thus, the administrator/user only has to define what must
hold in the system. It is left to the planning engine to generate plans how to
recover the system if necessary. As the planning engine is based on a sound and
complete algorithm it can be trusted in the behaviour of the system: If there
exists a solution it is guaranteed that the system finds it, and all successful execu-
tions of generated plans lead to a desired state. The functionality of the proposed

Using Automated Planning for Trusted Self-organising OC Systems 71

self-organising approach has been applied to a production cell. The evaluation
showed that the approach is suitable to autonomically manage such a production
cell. Using heuristics and grouping, the efficiency of the self-organisation could
be dramatically improved.

We are planning to apply and evaluate our approach within much more com-
plex domains. Furthermore we are working on extensions to integrate our planner
into an organic controller geared amongst others to human perception, decision
processes, and social communities/capabilities to cope with highly complex, dy-
namic, and distributed domains.

References

1. Bahat, R.M., Bauer, M.A., Vieira, E.M., Baek, O.K.: Using policies to drive auto-
nomic management. In: WOWMOM 2006: Proceedings of the 2006 International
Symposium on on World of Wireless, Mobile and Multimedia Networks, Washing-
ton, DC, USA, pp. 475–479. IEEE Computer Society, Los Alamitos (2006)

2. de Weerdt, M., ter Mors, A., Witteveen, C.: Multi-agent planning: An introduction
to planning and coordination. In: Handouts of the European Agent Summer School,
pp. 1–32 (2005)

3. Durfee, E.H., Lesser, V.R.: Partial global planning: A coordination framework for
distributed hypothesis formation. IEEE Transactions on Systems, Man, and Cy-
bernetics 21(5), 1167–1183 (1991)

4. Fikes, R., Nilsson, N.J.: STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence-4, 1971 2, 189–208 (1971)

5. Gerevini, A., Schubert, L.K.: Accelerating partial-order planners: Some techniques
for effective search control and pruning. CoRR cs.AI/9609101 (1996)

6. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice.
Morgan Kaufman, San Francisco (2004)

7. Güdemann, M., Ortmeier, F., Reif, W.: Formal modeling and verification of systems
with self-x properties. In: Yang, L.T., Jin, H., Ma, J., Ungerer, T. (eds.) ATC 2006.
LNCS, vol. 4158, pp. 38–47. Springer, Heidelberg (2006)

8. Horn, P.: Autonomic computing: Ibms perspective on the state of information
technology (2001), http://www.research.ibm.com/autonomic/

9. Kephart, J.O.: Research challenges of autonomic computing. In: Inverardi, P., Jaza-
yeri, M. (eds.) ICSE 2005. LNCS, vol. 4309, pp. 15–22. Springer, Heidelberg (2006)

10. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

11. McDermott, D.: Pddl — the planning domain definition language (1998)
12. Müller-Schloer, C., von der Malsburg, C., Würtz, R.P.: Organic computing. Infor-

matik Spektrum 27(4), 332–336 (2004)
13. Nguyen, X., Kambhampati, S.: Reviving partial order planning. In: Nebel, B. (ed.)

Proceedings of the seventeenth International Conference on Artificial Intelligence
(IJCAI 2001), August 4–10, 2001, pp. 459–466. Morgan Kaufmann, San Francisco
(2001)

14. Schmeck, H.: Organic computing-vision and challenge for system design. In: Pro-
ceedings of the Parallel Computing in Electrical Engineering, International Con-
ference on (PARELEC 2004), Washington, DC, USA, pp. 3–3. IEEE Computer
Society Press, Los Alamitos (2004)

http://www.research.ibm.com/autonomic/

72 B. Satzger et al.

15. Schmeck, H.: Organic computing. Künstliche Intelligenz 05(3), 68–69 (2005)
16. Srivastava, B., Kambhampati, S.: The case for automated planning in autonomic

computing. In: ICAC, pp. 331–332. IEEE Computer Society, Los Alamitos (2005)
17. Trumler, W., Bagci, F., Petzold, J., Ungerer, T.: AMUN - autonomic middleware

for ubiquitous environments applied to the smart doorplate. ELSEVIER Advanced
Engineering Informatics 19(3), 243–252 (2005)

18. Weld, D.S.: An introduction to least commitment planning. AI Magazine 15(4),
27–61 (1994)

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 73–85, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Trusted Group Signature Architecture in Virtual
Computing Environment∗

Deqing Zou, Yunfa Li, Song Wu**, and Weizhong Qiang

Services Computing Technology and System Lab, Cluster and Grid Computing Lab,
School of Computer Science and Technology,

Huazhong University of Science and Technology, China

Abstract. Nowadays coordinated applications become more and more popular
in network computing environments, and group is the basic unit of task
processing for such applications. Members in a group exchange data with each
other. Group signature is used to guarantee the integrity of exchanged data and
provide source authentication. In a Virtual Machine (VM) based computing
system, a Virtual Machine Monitor (VMM) allows multiple applications to run
in different virtual machines, and each virtual machine runs in its own hardware
protection domain, and is strongly isolated from each other. A Trusted VMM
can provide stronger security protection to build group signature architecture
than traditional computing platforms. In this paper, we first introduce a trusted
group signature architecture in virtual computing environment and how the
Trusted VMM (TVMM) provides security guarantee for group signature
components. Then we propose a group signature scheme with the function of
message checking based on the discrete logarithm problem (DLP). Finally, we
prove the security of the group signature scheme and architecture.

1 Introduction

Nowadays coordinated applications become more and more popular in network
computing environments. Several entities are required to be involved in a task at the
same time, and group is the basic unit of task processing for such applications. Group
security is one of the most important issues for some important coordinated
applications, such as e-commerce, military command system. In traditional computing
environments, an operating system directly runs on the hardware, and it is hard for the
operating system to protect itself from being attacked because of its complication and
vulnerability. Applications running on an untrusty operating environment might be
attacked. In addition, a suspicious application can easily attack other applications
because there is no effective isolation mechanism among them. Consequently, if
coordinated applications with group security function is implemented on an untrusty
operating environment, sensitive information will be easily disclosed by the attackers
even if group management itself can provide strong security functions.

 ∗ The project is supported by National Base Research Program of China (2007CB310900),

and National Natural Science Foundation of China (60503040, 60673174). The project is
also supported by Program for New Century Excellent Talents in University honored by
Chinese Ministry of Education (NECT-07-0334).

** Corresponding author.

74 D. Zou et al.

In a Virtual Machine (VM) based computing system, a Virtual Machine Monitor
(VMM) allows multiple applications to run in different virtual machines, and each
virtual machine runs in its own hardware protection domain, providing strong isolation
between virtual machines. Furthermore, migration can be easily implemented based on
the VMM architecture. As the main work of the VMM platforms, such as VMWare and
XEN, is virtual machine management and physical resource allocation for each virtual
machine, they are more simple and with less vulnerability than traditional operating
systems. With the development of information technology, the trusted computers, taking
advantage of the functions of the underlying trusted computing hardware, become more
and more important to provide security support for applications. Based on the VMM
architecture, the trusted computers can provide a more flexible, isolated environment for
each application than the ones based on the traditional architecture.

Group signature technology is adopted to guarantee the integrity of exchanged data
and provide source authentication. There are a lot of group signature schemes, such as
the group signature scheme based on the discrete logarithm [13], the threshold group
signature scheme [14], the group blind signature scheme [15] and the forward-secure
group signature scheme [16]. Although these group signature schemes can meet the
security requirement of coordinated applications in different aspects, they didn’t
consider the situation of the underlying platform. For some coordinated applications,
the group signature method that only one member is responsible for group signature is
more efficient and secure than the one that several members are needed for group
signature if the member of the front method and its platform are trusty. Based on the
discrete logarithm problem (DLP), we propose a group signature scheme with the
function of message checking, which allows an individual group member to sign a
message on behalf of the group and only the specified receiver can recover, verify and
check the message. Moreover, in case of disputes, the group controller can reveal the
identity of the signer. Although the existing group signature schemes can be used for
group-oriented communication, they do not provide the checking function. The group
controller and group members are required to be located on a trusted platform, and its
sensitive information, such as private key, can be protected by the platform.

The rest of this paper is organized as follows: we discuss the related work in
section 2. In section 3, we mainly introduce the group signature architecture in the
virtual computing environment. In section 4, we present a group signature scheme
with the function of message checking. We proof the correctness and security of this
group signature scheme in section 5. Finally, the conclusions and future work are
drawn in section 6.

2 Related Work

In 1970s, virtual machine concept was proposed and defined in [1], which is a software
replica of an underlying real machine and multiple virtual machines can operate on the
same host machine concurrently, and be isolated from each other [1] [2]. In the past
several years, with the appearance of muti-core technologies, virtual machines have
gained a lot of attention again. In [3], the VM/370 Time-Sharing System was proposed
by Creasy. In the VM/370 environment, an exclusive environment was created as a

 A Trusted Group Signature Architecture in Virtual Computing Environment 75

virtual machine for each user. With the progress of virtual machine technology, the
virtual machine monitor (VMM) comes into being as a software-abstraction layer that
partitions a hardware platform into one or more virtual machines [4]. In fact, a virtual
machine environment is created by a Virtual Machine Monitor (VMM), also called an
“operating system for operating systems” [5]. The monitor creates one or more virtual
machines on top of a single real machine. Each VM provides facilities for an application
or a “guest system” that believes to be executing on a normal hardware environment.

There are two different methods to build a virtual machine system. One is that the
virtual machine monitor is implemented between the hardware and the guest systems,
such as Xen [6] and VMware ESX Server [7]. The other is that the virtual machine
monitor is implemented as a normal process of an underlying real operating system,
such as VMware Workstation [8] and User-Mode Linux [7]. Some security research
work was conducted based on the VMM architecture, for example, an experience of
use of virtual machines for the security of systems was described in [9]. In the paper,
Revirt is defined as an intermediate layer between the monitor and the host system,
and the captured data is sent to the host system through the syslog process (the
standard UNIX logging daemon) of the virtual machine. However, if the virtual
system is compromised, the log messages can be manipulated by the invader and
consequently are no more reliable. A VMI-IDS (Virtual Machine Introspection
Intrusion Detection System) is described for searching intrusion evidences in [10]. In
the system, the virtual machine executes directly on top of the hardware and the
intrusion detection system executes in a privileged virtual machine and scans data
extracted from the other VMs. The Secure Hypervisor (sHype) project [11] aims to
support controlled sharing of resources between VMs on a platform, such as memory,
CPU cycles, and network bandwidth. The above mentioned projects didn’t consider
the security of the VMM itself.

The Trusted Computing Group (TCG) is an international industry organization to
define a set of specifications aiming to provide hardware-based root of trust and a set
of primitive functions to propagate trust to application software as well as across
platforms [12], [13]. The root of trust in TCG is a hardware component on the
motherboard of a platform called the Trusted Platform Module (TPM). TPM provides
protected data (cryptographic secrets and arbitrary data) by never releasing a root key
outside the TPM. In addition, TPM provides some primitive cryptographic functions,
such as random number generation, RSA key generation and RSA asymmetric key
algorithms. Most important, a TPM provides mechanism of integrity measurement,
storage, and reporting of a platform, from which strong protection capabilities and
attestations can be achieved. To utilize the functions provided by TPM, TCG set TSS
specification [14]. This specification defines a TCG Software Stack (TSS) that is an
integral part of each platform, and provides functions that can be used by enhanced
operating systems and applications. TSS supplies one entry point for applications to
the TPM functionality.

In [15], the design and implementation of a virtual trusted platform Module (TPM)
facility is presented. In this Module, TPM is virtualized and can supports higher-level
services. Moreover, it can also support suspend and resume operations, as well as
migration of virtual TPM instances with their corresponding virtual machine across
platforms. In [16], a flexible architecture for trusted computing is presented that is
called Terra. On Terra, applications with a wide range of security requirements are

76 D. Zou et al.

allowed to run simultaneously on commodity hardware. At the same time, Terra
supports today’s operating systems and applications. Terra realizes this union with a
trusted virtual machine monitor (TVMM), that is, a high-assurance virtual machine
monitor that partitions a single tamper-resistant, general-purpose platform into
multiple isolated virtual machines.

Group signature is first introduced by Chaum and van Heyst in [17], allows each
group member to sign messages on behalf of a group anonymously and unlinkably.
However, in case of later disputes, a designated group manager can open a group
signature and then identify the true signer.

In 1998, Lee and Chang presented an efficient group signature scheme based on the
DLP [18]. Since two same pieces of information are included in all group signatures
generated by the same group member, their scheme is obviously linkable. Therefore,
although this scheme is efficient, it needs to be improved. To provide unlinkability, an
improved group signature scheme is proposed in [19]. Regretfully, the improved group
signature scheme is still linkable [20]. Therefore, based on Shamir’s idea of identity
(ID)-based cryptosystems [21], Tseng and Jan proposed an ID-based group signature
scheme in [22]. In this ID-based group signature scheme, anyone (not necessarily a
group member) is able to generate a valid group signature on any message, which
cannot be opened by the group manager. Therefore, this scheme is forgeable. In order to
solve the question, in [23] and [24], Tseng and Jan revised their schemes, and Popescu
presented a modification to the Tseng-Jan ID-based scheme [25]. After that, Xian and
You proposed a new group signature scheme with strong separability [26] such that the
group manager can be split into a membership manager and a revocation manager. In
addition, based on the above group signature schemes, Wang presented a security
analysis for these group signature schemes [27]. In this paper, we design a trusted VMM
based group signature schemes, and propose a group signature scheme with the function
of message checking.

3 Trusted VMM Based Group Signature Architecture

In this section, we will describe Trusted VMM (TVMM) based group signature
architecture, as depicted in Figure 1, and introduce a group signature scheme. The
TVMM is the heart of the system architecture, and it can virtualize machine resources
and allow VMs to run independently and concurrently.

3.1 Group Signature Architecture

We will introduce the main components of group signature architecture based on
TVMM in this sub-section.

 Hardware Platform
Hardware is the basement of TVMM. In the process of attestation, hardware embedded
with cryptographic keys is the trust base of the attestation chain. Furthermore, hardware
also assists in following aspects: Hardware Support for Virtualization; Hardware
Support for Secure I/O; Secure Counter (against roll back or re-play attack); and Device
Isolation. In order to prevent leaking of privacy through the hardware private key in the
process of attestation, it’s suggested that the hardware vendor signs their products.

 A Trusted Group Signature Architecture in Virtual Computing Environment 77

Normally, security chipsets, such as TPM, are embedded in the platform. This module is
a security specification defined by the Trusted Computing Group. It provides
cryptographic operations such as asymmetric key generation, decryption, encryptions,
signing and migration of keys between TPMs, as well as random number generation and
hashing. It also provides secure storage for small amounts of information such as
cryptographic keys. Because the TPM is implemented in hardware and presents a
carefully designed interface, it is resistant to software attacks.

Fig. 1. TVMM based group signature architecture

 Trusted Virtual Machine Monitor
The VMM provides the VM management with interfaces to create and manage VMs,
and to connect them through virtual devices. Besides the functions of the VMM, the
TVMM provide functions as Interposition, I/O Sealing, isolation, and attestation for
VM security considerations. We introduce these functions in detail as follows:

1) Interposition mechanism. This mechanism intercepts all kernel-user transitions for
the TVMM to protect sensitive information. In the mechanism, the VMM interposes
all the transition between user space and kernel space in order to protect CPU context.
Upon the interception of a transition, the VMM is responsible for saving and restoring
the CPU context owned by a trusted process. The VMM also conceals some general
purpose registers from the OS kernel. No replay attack is possible since the OS kernel
cannot set malicious CPU context that resumes the execution of a trusted process in a
previous execution.

2) I/O Sealing mechanism. From the start, the TVMM must allocate the physical
storage (i.e. hard disk space) into different parts and distribute them to VMs. This
mechanism transparently encrypts and decrypts sensitive I/O data to prevent the OS
kernel from observing the data. Sensitive data of a trusted process, when to be input
from or output to persistent storage, will be protected by cryptographic means. In the
TVMM layer, sensitive I/O data can be transparently encrypted. Generally, I/O
operations are made using system calls or memory-mapped I/O. For system calls, the
TVMM intercepts each I/O related system call and encrypts the data before passing it

78 D. Zou et al.

to the OS kernel. For memory-mapped I/O, the TVMM intercepts the page table
updating requests and decrypts the data on the first page fault.

3) Isolation mechanism. The TVMM allows multiple applications to run in different
virtual machines. Each virtual machine runs in its own hardware protection domain,
providing strong isolation between virtual machines. Therefore, secure isolation is
essential for providing the confidentiality and integrity required by VMs. Also, the
abstraction of separate physical machines provides an intuitive model for
understanding the isolation properties of the platform.

4) Attestation mechanism. This mechanism can be used to convince remote parties
that the VM or an application is not tampered with. In addition, an application
running in a VM is allowed to authenticate itself to a remote party, that is, it allows
the remote party to put trust in the application, and to have faith that the application
will behave as desired. By this mechanism, our proposed group signature mechanism
can provide application dependent attestation among the group controller and the
group members.

 Secured Virtual Machine for group signature components
The open virtual machine can provide the semantics of today’s open platforms and
run operating systems. The TVMM provides strong security functions for all the VMs
running on the TVMM. Operating systems that run in VMs may be as simple as a
bootstrap loader plus application code or as complex as a commodity operating
system that runs only one application. Applications can completely tailor the OS to
their security needs.

There are two kinds of VMs, including privileged VM and normal VM, for example,
Dom 0 is a privileged VM and Dom U is a normal VM in the virtual machine platform,
XEN. The privileged VM can manage other normal VMs, for example, a privileged VM
can create, pause, resume, and destroy a normal VM. Normally, the privileged VM
utilizes a tailored OS, and an application with high-security requirements runs in a
normal trusted VM with an embedded, tailored OS.

Group signature is implemented to provide message integrity and source authentica-
tion for coordinated applications. The normal trusted VM provides a secure environ-
ment for group signature components, including group signature controller, and group
signature management. Normally, group signature controller is used to support coordi-
nated application server, and group signature management is used to support coordi-
nated application client. A group member of the client side can join a group managed by
the group controller in the server side. If peer-to-peer architecture is adopted for a
coordinated application, the above two components can be located at the same VM, and
any peer can be selected to take the functionality of a group controller. Group signature
management can be used by group members to sign or verify the message. Group
signature controller can be used by the group controller to manage the message
exchanged among the group members.

 Secure Migration for group signature controller
In order to guarantee the availability of group controller, the VM where the group
controller is located should be migrated from one trusted platform to another trusted
platform securely. In our secure migration mechanism, we enable VM secure
migration by using asymmetric and symmetric keys to encrypt the image file on the

 A Trusted Group Signature Architecture in Virtual Computing Environment 79

source platform, and decrypt and resume it in the destination. There are four steps: 1)
Attestation between the two platforms, with the trusted computing technology,
platforms can authenticate each other with Attestation Identity Certificates; 2) VM
image secure transportation, after VM image data with group signature controller has
been serialized and a symmetric key created, the image encrypted with this symmetric
key is then retrieved from the source platform. For integrity validation on the target
side, an internal migration digest is updated with the data’s hash and embedded.
Besides the encrypted VM image, the symmetric key encrypted with the public key of
the destination platform also needs to be migrated; 3) Verify VM image in the target
side, after the decryption of the symmetric key and the VM image on the destination
platform, the source VM image is retrieved and the migration digest recalculated; 4)
Restart the VM image after the verification in the target side. XEN supports live
migration that shortens downtimes by replicating the running system’s image on a
destination machine. We extend its migration function with our secure migration
protocol, but will extend the downtime of the migrated system a little longer than the
original.

3.2 Group Signature Scheme

Based on the architecture in section 3, we propose a group signature scheme in this
section, which contains four phases, including the parameters generating phase, the
signature generating phase, the verification signature phase and the opening signature
phase. The group signature scheme is described in detail as follows:

(1) The parameters generating phase
Suppose p and q are two large prime numbers such that q|p-1, and g is a generator
with order q in GF(p).

Step 1: Each group member GMi randomly chooses an integer xi and computes the

public keys yi= ixg mod p (i=1, 2, 3,…, n).

Step 2: The group controller randomly chooses an integer xc and computes the public

key yc= cxg mod p.

Step 3: For each group member GMi, the group controller randomly chooses an

integer ai in *
qZ , and computes ri=ai*IDi-xc mod q, pys ia

ii mod= (i=1, 2, 3,…, n).

Step 4: The group controller sends (ri, si) to the group member GMi secretly.

Step 5: After receiving (ri, si), GMi verifies the validity by checking the following
equation

pygs iii IDx
c

r
i mod)*(/=

(1)

(2) The signature generating phase
Step 1: The GMi computes M=Mcheck||Moriginal, where Mcheck is a short checking
message, Moriginal is the message that the group member GMi wants to sign, and ||
denotes the concatenation.

80 D. Zou et al.

Step 2: The GMi randomly chooses three integers b1, b2 and b3 in *
qZ .

Step 3: The GMi computes

β=xi*b1 mod q (2)

δ= iIDb
is *1 mod p (3)

ξ= 2bg mod p (4)

ψ=M* 31 b)||||(
jy ∗∗∗− ξδββ hb

mod p (5)

ρ=b1-ri*h(ψ)-b2 mod p (6)

Where h() is a publicly known hash function

Step 4: The group signature for message M is η, where η={β, δ, ξ, ψ, ρ, Mcheck}.

(3) The verification signatures phase
The group member GMj can verify the validity of the group signature by using the
following steps.

Step 1: Recover the message

pygM hhh
c mod])[(3j b)||||(*x)()(∗− ∗∗∗∗= ξδβψβψρ δξψ (7)

Step 2: Check the following congruence relation

Mcheck=head(M, L) (8)

Where L is the bit number of the checking message Mcheck and head(M, L) is a
function which returns the first L bits of M. If the above relations hold, GMj accepts
the group signature η. Otherwise, the group signature η is rejected by GMj.

(4) The opening signature phase
In case of a dispute, the signature must be opened to reveal the identity of the signer.
Because the group controller has an access to the (IDi, yi, ai) of each group member
GMi, the group controller can acquire the (IDi, yi, ai) of GMi. So, in case of disputes,
the group controller can reveal the identity of the signer by using the equation

pg ii IDa mod∗∗= βδ .

4 The Analysis of Group Signature Scheme in Virtual Computing
Environment

In this section, we will analyze the security of our group signature scheme first, and
we will analyze the security of group signature architecture based on TVMM.

 A Trusted Group Signature Architecture in Virtual Computing Environment 81

4.1 Security Analysis of Group Signature Scheme

The security of our proposed scheme is based on the DLP. In this section, we will
analyze the security of our proposed scheme. Some possible attacks against the
proposed scheme are presented below.

Attack 1: If an adversary intercepts a valid membership (ri, si), he/she tries to forge a
group signature.

Analysis of Attack 1: If an adversary intercepts a valid membership (ri, si), he/she
can compute δ and ξ by Equation (3) and (4). Although he/she can forge an integer

∗
ix to compute β, ψ, and ρ by Equation (2), (5) and (6), he/she can not forge a group

signature making Equation (7) and (8) holds. The main reason is he/she does not have
the secret key xi. Therefore, even if an adversary intercepts a valid membership (ri, si),
he/she does not forge a group signature.

Attack 2: If an adversary does not intercept any information, he/she tries to forge a
group signature.

Analysis of Attack 2: If an adversary does not intercept any information, he/she who
tries to forge a group signature will have to face the DLP. For the adversary who does
not intercept any information, there are five situations if he/she wants to forge a group
signature. The analyses about the five situations are described as follows:

1. An adversary chooses a message M=Mcheck||Moriginal and randomly selects β, δ, ξ, ψ.
According to the DLP, it is difficult to calculate parameter ρ in Equation (7) when
ψ, A, B, θ and g are knowable

2. An adversary chooses a message M=Mcheck||Moriginal and randomly selects β, δ, ξ, ρ.
According to the DLP, it is difficult to calculate parameter ψ in Equation (7) when
we know A, B, D, β, θ and g.

3. An adversary chooses a message M=Mcheck||Moriginal and randomly selects β, δ, ψ, ρ.
According to the DLP, it is difficult to calculate parameter ξ in Equation (7) when
A, B, ψ, β and θ are knowable.

4. An adversary chooses a message M=Mcheck||Moriginal and randomly selects δ, ξ, ψ, ρ.
According to the DLP, it is difficult to calculate parameter β in Equation (7) when
A, δ, ξ, ψ and θ are knowable.

5. An adversary chooses a message M=Mcheck||Moriginal and randomly selects β, ξ, ψ, ρ.
According to the DLP, it is difficult to calculate parameter δ in Equation (7) when
A, β, ξ, ψ and θ are knowable.

Based on the above analyses, we can conclude if an adversary does not intercept
any information, it is difficult for the adversary to forge a group signature.

Attack 3: The verifier GMj who does not have any information except his/her secret
key xj tries to forge a group signature.

Analysis of Attack 3: If the verifier GMj does not have any information except
his/her secret key xj, he/she tries to forge a group signature. For the verifier GMj,
there are five situations if he/she wants to forge a group signature.

82 D. Zou et al.

1. The verifier GMj chooses a message M=Mcheck||Moriginal and randomly selects β, δ,
ξ, ψ. It is difficult to calculate parameter ρ in Equation (7) when ψ, A, B, θ and g
are knowable.

2. The verifier GMj chooses a message M=Mcheck||Moriginal and randomly selects β, δ,
ξ, ρ. It is difficult to calculate parameter ψ in Equation (7) when A, B, D, β, θ and g
are knowable.

3. The verifier GMj chooses a message M=Mcheck||Moriginal and randomly selects β, δ,
ψ, ρ. It is difficult to calculate parameter ξ in Equation (7) when A, B, ψ, β and θ
are knowable.

4. The verifier GMj chooses a message M=Mcheck||Moriginal and randomly selects δ, ξ,
ψ, ρ. It is difficult to calculate parameter β in Equation (7) when A, δ, ξ, ψ and θ
are knowable.

5. The verifier GMj chooses a message M=Mcheck||Moriginal and randomly selects β, ξ,
ψ, ρ. It is difficult to calculate parameter δ in Equation (7) when A, β, ξ, ψ and θ are
knowable.

Based on the above analyses, we know: if the verifier GMj does not have any
information except his/her secret key xj, it is very difficult for the verifier to forge a
group signature.

Attack 4: If an adversary intercepts a valid group signature η={β, δ, ξ, ψ, ρ, Mcheck},
he/she tries to identity the actual signer.

Analysis of Attack 4: If an adversary intercepts a valid group signature η={β, δ, ξ, ψ, ρ,
Mcheck}, he/she will have to compute yi by Equation yi= ixg mod p and

pys ia

ii mod= in order to find out the identity of actual signer. But b1 is an

unknown number, the adversary can not find out the signer. In addition, ai, b1 and IDi

are unknown. Based on Equation pys ia

ii mod= and ps iIDb

i mod*1=δ , It

is very difficult to calculate parameter IDi. Therefore, the adversary can not find out the
identity of actual signer.

Attack 5: If an adversary intercepts two valid group signatures, he/she tries to identity
whether the two group signatures were generated by the same signature or not.

Analysis of Attack 5: Assume an adversary intercepts two valid group signatures
η={β, δ, ξ, ψ, ρ, Mcheck} and η’={β’, δ’, ξ’, ψ’, ρ’, Mcheck’}, he/she can compute

p mod
g

g

g

g
'b*x

b*x

' 1i

1i

=β

β

and p mod
)g(

)g(

s

s

' ii1i

ii1i

i1

i1

ID*a'b*x

ID*ab*x

ID'*b

i

ID*b

i ==
δ
δ

. Thus, he/she can get

p mod
)g(

)g(

s

s

' ii

ii

i1

i1

ID*a'

ID*a

ID'*b

i

ID*b

i
β

β

δ
δ == and check whether the equation holds or not. If the

equation holds, the two valid group signature η and η’ were generated by the same
signer. But the integer ai and IDi are unknown, hence, the adversary can not identity
whether the two group signatures were generated by the same signature or not.

Based on the above analytic results, we can draw a conclusion: our proposed
scheme satisfies the requirement of unforgeability, anonymity, unlinkability and
exculpability [27]. In addition, the group controller can acquire the (IDi, yi, ai) of GMi

 A Trusted Group Signature Architecture in Virtual Computing Environment 83

because he/she has an access to the (IDi, yi, ai) of each member GMi. So, the group
controller can determine the signer. Therefore, our proposed scheme also satisfies the
requirement of traceability [27].

4.2 Security Analysis of Group Signature Architecture

Sensitive information of a group member or group controller, when to be input from or
output to persistent storage, will be protected by cryptographic means. For coordinated
applications, the TVMM intercepts each related system call and encrypts the data before
passing it to the OS kernel. On fetching these data from the OS kernel, the TVMM will
also decrypt the data before passing them to the user spaces. Moreover, in order to
prevent information leakage during the process that the coordinated applications are
loaded, a key provided by the TVMM platform is used to encrypt the relation program
code and data. Meanwhile, the TVMM assists the process creation to decrypt the code
and data. In addition, the architecture can transparently encrypt sensitive information
above the TVMM layer by using our proposed group signature mechanism. Because
there are the TVMM and our proposed group signature mechanism that can decrypt the
code and data during process creation, there is no leakage of sensitive information
during this process. So, it is very secure for sensitive information of group member and
group controller.

In this TVMM, attestation enables a coordinated application to authenticate themselves
to remote parties. The group controller can judge for itself the correctness and security of
each group member, which is based on the trusted platform. By receiving the attestation,
the group controller can know the remote party which group member was started to send a
message on the TVMM platform. In this TVMM, a certificate chain is first build for the
attestation. This chain begins with the hardware, whose private key is permanently
embedded in a tamper resistant chip and signed by the vendor providing the machine. The
tamper-resistant hardware certifies the system firmware (e.g. PC BIOS). The firmware
certifies the system boot loader, which certifies the TVMM, which in turn certifies the
VMs that it loads. In the following step, a group certificate is built for the group
attestation. In the group certificate, the group controller uses the group private to sign a
message, and each group member can use the group public to verify the correctness and
security of the message. By using the certificate chain and the group certificate, the group
controller can judge for itself the correctness and security of each group member.

In this trusted VMM based group signature architecture, the group controller first
chooses a public key for the coordinated applications and sends the message (ri, si) to
the group member GMi secretly. The message (ri, si) and the corresponding VM
image data are encrypted by the symmetric key, which is created by the source
platform. Then, the encrypted messages are sent to the destination and only the
destination platform can resume it by using TPM. Thus, it is impossible for any
adversary to decrypt these messages. So, it is secure when the key component
migrates from the source platform to the destination platform.

5 Conclusions and Future Work

In this paper, we propose a TVMM based group signature architecture, and design
a novel group signature scheme with the function of message checking. Under this
architecture, coordinated applications with high-security requirement can be supported.

84 D. Zou et al.

We analyze how the TVMM provides security guarantee for group signature
components. In order to provide the availability of the coordinated application server
and group signature controller, secure migration is adopted. We analyze the security of
our proposed group signature scheme, and the security of the group signature architec-
ture. In our future work, we will integrate our group signature architecture into some
coordinated application with high-security requirement, such as online game, coordinated
military command system.

References

[1] Popek, G., Goldberg, R.: Formal Requirements for Virtualizable Third Generation
Architectures. Communications of the ACM 17(7), 412–421 (1974)

[2] Goldberg, R.P.: Survey of Virtual Machine Research. Computer, 34–45 (June 1974)
[3] Creasy, R.J.: The Origin of the VM/370 Time-Sharing System. IBM J. Research and

Development, 483–490 (September 1981)
[4] Whitaker, A., Shaw, M., Gribble, S.D.: Denali: lightweight virtual machines for distributed

and networked applications., University of Washington (Technical Report 02-02-01)
[5] Kelem, N., Feiertag, R.: A Separation Model for Virtual Machine Monitors. In: Research

in Security and Privacy. IEEE Computer Society Symposium, pp. 78–86 (1999)
[6] Barham, P., Dragovic., B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt,

I., Warfield, A.: Xen and the Art of Virtualization. In: 9th ACM Symposium on
Operating Systems Principles – SOSP 2003, October 19-22, 2003, pp. 164–177 (2003)

[7] VMware Inc. VMware Technical White Paper, Palo Alto–CA-USA (1999)
[8] Dike, J.: A User-mode port of the Linux Kernel. In: Proceedings of the 4th Annual Linux

Showcase & Conference, Atlanta – USA, pp. 63–72 (2000)
[9] Dunlap, G., King, S., Cinar, S., Basrai, M., Chen, P.: ReVirt: Enabling Intrusion Analysis

through Virtual-Machine Logging and Replay. In: Proceedings of the 2002 Symposium
on Operating Systems Design and Implementation (OSDI) (December 9-11, 2002)

[10] Garfinkel, T., Rosenblum, M.: A Virtual Machine Introspection Based Architecture for
Intrusion Detection. In: Proceedings of the Network and Distributed System Security
Symposium (NDSS) (2003)

[11] Sailer, R., Jaeger, T., Valdez, E., Caceres, R., Perez, R., Berger, S., Griffin, J.L., van
Doorn, L.: Building a mac-based security architecture for the xen open-source hypervisor.
In: Proceeding of the 2005 Annual Computer Security Applications Conference,
December 2005, pp. 276–285 (2005)

[12] Trusted Computing Group, TCG Specification Architecture Overview, Version1.2
(2003), April 2004, http://www.trustedcomputinggroup.org

[13] Trusted Computing Group, Trusted Platform Module Main Specification, Part 1: Design
Principles, Part 2: TPM Structures, Part 3: Commands, March 2006, Version 1.2,
Revision 94 (2003)

[14] Trusted Computing Group (2003), TCG Software Stack (TSS) Specification, Version 1.2
(January 6, 2006)

[15] Berger, S., Caceres, R., Goldman, K.A., Perez, R., Sailer, R., van Doorn, L.: vTPM:
Virtualizing the Trusted Platform Module. In: Proceedings of the 15th conference on
USENIX Security Symposium, July 31-August 4, Vancouver, B. C, Canada (2006)

[16] Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: a virtual machine-
based platform for trusted computing. In: Proceedings of the 19th ACM Symposium on
Operating Systems Principles 2003 (SOSP 2003),October 19-22, 2003, Bolton Landing,
NY, USA, pp. 193–206 (2003)

 A Trusted Group Signature Architecture in Virtual Computing Environment 85

[17] Chaum, D., van. Heyst, E.: Group Signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

[18] Lee, W., Chang, C.: Efficient Group Signature Scheme Based on the Discrete Logarithm.
In: IEE Proceedings Computers & Digital Techniques, January 1998, vol. 145(1), pp. 15–
18 (1998)

[19] Tseng, Y.M., Jan, J.K.: Improved Group Signature Based on Discrete Logarithm
Problem. Electronics Letters 35(1), 37–38 (1999)

[20] Sun, H.: Comment: Improved Group Signature Scheme Based on Discrete Logarithm
Problem. Electronics Letters 35(16), 1323–1324 (1999)

[21] Shamir, A.: Identity-based Cryptosystem and Signature Schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

[22] Tseng, Y.M., Jan, J.K.: A Novel ID-based Group Signature. In: International Computer
Symposium, Workshop on Cryptology and Information Security, Tainan, pp. 159–164
(1998)

[23] Tseng, Y.M., Jan, J.K.: Reply: improved group signature scheme based on discrete
logarithm problem. Electronics Letters 35(20), 1324 (1999)

[24] Tseng, Y.M., Jan, J.K.: A Novel ID-based Group Signature. Information Sciences 120(1-
4), 131–141 (1999)

[25] Popescu, C.: A Modification of the Tseng-Jan Group Signature Scheme. Studia
Universitatis Babes-Bolyai Informatica XLV(2), 36–40 (2000)

[26] Xia, S., You, J.: A group signature scheme with strong separability. The Journal of
Systems and Software 60(3), 177–182 (2002)

[27] Wang, G.L.: Security Analysis of Several Group Signature Schemes. In: Johansson, T.,
Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, Springer, Heidelberg (2003)

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 86–99, 2008.
© Springer-Verlag Berlin Heidelberg 2008

SepRep: A Novel Reputation Evaluation Model
in Peer-to-Peer Networks

Xiaowei Chen, Kaiyong Zhao, and Xiaowen Chu

Department of Computer Science, Hong Kong Baptist University
{xwchen,kyzhao,chxw}@comp.hkbu.edu.hk

Abstract. In a heterogeneous peer-to-peer network, different peers provide
different qualities of service. It will be very helpful if a peer can identify which
peers can provide better services than others. In this paper, we design a novel
reputation model which enables any peer to calculate a reputation value for any
other peer that reflects the quality of service provided by that peer, so as to
differentiate peers providing good quality of service from those peers providing
poor service. Furthermore, to overcome the problem of malicious recommenda-
tions, we propose an auxiliary trust mechanism which calculates a trust value
for each peer. Experimental results show that our reputation model achieves a
fast convergence speed, and it is also robust against a large portion of malicious
peers that provide fraud recommendations.

1 Introduction

Network development shows a new trend towards large scale content distribution,
global computing, and global storage. Meanwhile, the networking system has been
shifting from Client/Server model to the Peer-to-Peer (P2P) model. The large-scale
deployment of P2P software (such as KaZaA, BitTorrent, eMule, Skype, etc.)
provides strong evidence to the success of P2P model, especially in the area of
content distribution. Recent Internet traffic statistics indicate that P2P traffic accounts
for more than 60% of the total Internet traffic since 2004 [1]. Along with the
popularity of P2P model, many problems are becoming more complex and different
from Client/Server computing environment, due to the anarchic nature of P2P systems
such as decentralization, autonomous, and dynamics. In this paper, we are specifically
interested in the issue of reputation and trust management in P2P networks.

1.1 Background

The objective of reputation and trust system in P2P network is to allow two sides of a
transaction to judge the reliability and/or quality of transaction by studying the peer’s
history behavior. As pointed out by Jøsang, the efficiency of a trust mechanism
should cover three factors: long time availability of attribution-entity object,
acquirement and distribution of trust information, and decision-making by creditable
information [2].

Currently, a number of reputation models or systems have been proposed to
enhance the robustness, scalability and efficiency of P2P computing model, such as

 SepRep: A Novel Reputation Evaluation Model in Peer-to-Peer Networks 87

EigenTrust [3], P2Prep [4], Credence [5], NICE [6], PeerTrust [7], LIP [8], P-Grid [9]
and PowerTrust [10]. In reality, Amazon, eMule, eBay, Epinions and BitTorrent, etc.
are using their proprietary P2P reputation systems. In fact, the origin of reputation and
trust in P2P comes from free-riding [11]. Recent research results also indicate that it is
not uncommon to see bad behaviors in P2P systems due to the lack of efficient
incentive and reputation mechanism [12]. Examples of bad behaviors are spreading
virus, worm and Trojan horse [13], dissemination of fake files into P2P file-sharing
network [14], index poisoning in P2P file-sharing network [15].

1.2 Motivation

The concepts of reputation and trust are always ambiguous in the research literature.
Different people have different understandings on the terms “reputation” and “trust”.
Some researchers take them as the same meaning, while some others think they are
quite different.

We should take a new perspective to see what a peer really needs. In a P2P content
distribution network, a peer wants to retrieve genuine files with fastest speed, so it is
apt to choose peers which can provide high quality of service (QoS). It is worthwhile
to point out that a high QoS implicitly means a successful service. E.g., providing a
fraud file is regarded as the worst service. Traditionally, the reputation or trust
systems are built to detect which peers fail to provide genuine files. But, the quality of
the service has not been considered into the reputation system. Consider another
scenario: a peer M intentionally sets the outbound bandwidth to be very low, and it
takes several days for other peers to download a small file from peer M, then the
quality of service of M is very low. If this information is publicly available, other
peers would avoid acquiring services from M, and as a penalty, they may stop
providing services to M.

In this paper, we propose a novel reputation model named SepRep that explicitly
defines reputation as the quality of service provided by a peer. A peer keeps a reputation
value for every other peer. Every time a peer X has received a service from peer Y, X
updates the reputation value of Y based on the quality of this service. If we assume that
every peer consistently provides the service around a quality level in a time window, it
will be critical to converge the calculated reputation values in a short time. Obviously it
is not efficient to update reputation values only through direct transaction. A peer can
actually ask other peers about the reputation of some peer to speed up the convergence.
In the course of gathering reputation values from the P2P network, some malicious
peers may collude to provide fraud recommendations for the purpose of increasing
someone’s reputation or decreasing someone’s reputation adversely. To resolve this
issue, we propose to deploy an auxiliary trust system that measures the trustworthiness
of peers when propagating reputation values. It is worthwhile to clarify that the trust
system is used to detect malicious peers that report fraud reputation values, not for
detecting peers that provide fraud services. The peers providing fraud services can be
detected as peers providing very low quality of service.

We designed and implemented a simulation model to evaluate the performance of
our SepRep reputation model. The experimental result validates that SepRep reputation
model can converge quickly and it is robust against a large portion of malicious peers.

88 X. Chen, K. Zhao, and X. Chu

The remaining parts of this paper are organized as follows: Section 2 reviews
existing work on P2P reputation and trust systems. In Section 3, we present the SepRep
model in detail. We evaluate the performance of SepRep model in section 4. Finally,
Section 5 concludes the paper.

2 Related Works

Many literatures try to exactly define the concepts of reputation and trust. Due to the
universality of the concepts, the understandings to them appear diversity. According
to the ITU-T X.509, Section 3.3.54, trust is defined as follows: “Generally an entity
can be said to ‘trust’ a second entity when the first entity makes the assumption that
the second entity will behave exactly as the first entity expects.” That means, trust is
an indicator of credibility to content, and it is comparable. Another very similar
concept is reputation. According to a formal definition of reputation given by Wilson
[16], together with P2P environment, it is “a characteristic or attribute ascribed to one
peer (or peers) A by another person (or peers) B". On the other hand, the reputation is
also considered as a service provider which can be formed by means of a collection of
ratings by different users, each such rating is intuitively equivalent to user
satisfaction. Besides, Jøsang distinguishes the trust and reputation: trust is divided
into reliability trust and decision trust, and reputation is viewed as a collective
measure of trustworthiness based on the referrals or ratings from members in a
community [2].

Though reputation and trust have various definitions, they are interrelated tightly,
have some common features, so some researchers take the two concepts as the same
meaning. But the biggest difference between reputation and trust is that reputation is
an objective concept, and that trust is a subjective concept. We can use one sentence
to describe them: I trust you because you have good reputation; I trust you despite
your bad reputation [2].

There are some new reputation systems in P2P in recent years. They provide
different approaches to evaluate reputation.

Credence is a subjective, independent and local reputation mechanism based on
Gnutella. It defines polling mechanism, which let users vote for whether the sharing
file matches the file description or not. Credence exchanges reputation table among
the selected high reputation value users, extends reputation relationship by reputation
transitivity, and chooses the path with highest reputation value as the peer’s reputation
value. Credence uses file as the basis of building reputation relationship. It can avoid
dynamic feature of users’ behaviors and can judge the essential attribution of file. But
peer’s reputation value will be affected in users’ voting because of users’ subjectivity,
especially in collusion attack. And it needs to solve the problem about how to prompt
users’ spontaneity.

TrustGuard is a secure reputation mechanism framework based on PeerTrust. The
major goal of TrustGuard focuses on the vulnerabilities of a reputation system itself.
The authors identify three types of threats, that is, strategic oscillations, fake transaction
and dishonest feedback, and provide corresponding countermeasures. In this framework,
each peer has a transaction management unit, a reputation evaluation engine and a
feedback data storage unit. The three components’ computing uses strategic oscillation

 SepRep: A Novel Reputation Evaluation Model in Peer-to-Peer Networks 89

guard and dishonest feedback guard to ensure the correctness. TrustGuard uses modular
design, it does not need to worry about the other parts of system when adding new guard
module or modifying current module.

LIP is an objective, global reputation mechanism. LIP discovered and proved that
“users are apt to remain real files in a long time, and delete polluted files in a short
time”. It gives statistics automatically about file’s remaining time in each user’s
computer, and then computes the number of holders to each file and the file’s average
remaining time in user’s computer. The objective statistics feature of LIP can make it
get more reliable information, and it can collect complete information without
adopting incentive mechanism.

PowerTrust is a global, robust and scalable reputation system based on power-law. It
uses trust overlay network (TON) model to analyze the power-law distribution of peer
feedbacks. The system offers very fast global reputation aggregation, ranking and
updating, together with robustness and wide applicability. PowerTrust does not solve
collusion problem well and it has not supported unstructured P2P system currently.

3 SepRep Model Methodology

3.1 The SepRep Model Concept

In SepRep model, reputation is an objective concept. It is a measure of quantified
Quality of Service (QoS) provided by a peer to another peer in P2P networks, which
can be formed by all the aspects of service quality. For file-sharing applications, QoS
can be evaluated by considering a peer’s available outbound bandwidth, the number
of sharing contents, content validity, the online duration time, etc. For P2P computing
applications, QoS can be evaluated by the time of completing the computing task. In
the following, we consider a P2P network with n nodes which are labeled from 1 to n.

Each peer has an inherent global reputation (GR) which depends on that peer’s
characteristics such as CPU and dedicated network bandwidth for this P2P system.
The GR determines the level of QoS provided by a peer. For simplicity, we further
make the following assumptions: (1) a peer’s GR is constant in a long time window;
(2) The value of GR ranges between 0 and 1, where a higher value of GR means a
higher QoS; (3) the QoS received by a peer is GR plus a random disturbance; this
requires that all the peers agree with a set of rules for quantifying the QoS. This issue
is important but beyond the scope of this paper.

Each peer keeps a local reputation (R) for every other peer: Ri->j represents the
opinion of peer i on peer j's reputation in the P2P system. It is this set of local
reputations that provides useful references for the action of a peer, e.g., how to select
the peer(s) for a service. To calculate the values of local reputations, we make use of
direct reputation (DR) and indirect reputation (IR). Direct reputation DRi->j represents
the direct opinion of peer i on peer j’s service in a transaction. As mentioned
previously, we assume that DRi->j is close to the value of GRj. It will be very slow to
get all the local reputation values convergent by using direct reputations only. Hence
we incorporate the indirect reputation IRi->j which represents the opinions collected by
peer i from other peers on peer j’s reputation, in order to speed up the convergence.

90 X. Chen, K. Zhao, and X. Chu

If a reputation system is deployed in the P2P networks, it is not uncommon that
some malicious nodes will try to adversely increase or decrease other peer’s
reputation value, by reporting fraud reputation values when they are consulted. To
overcome this issue, we incorporate a trust system into SepRep. We define trust as the
quantified credibility hold by a peer to another peer in P2P networks. The credibility
represents the opinion of a peer on how honest another peer is in the propagation of
reputation values. The trust value is also ranged from 0 to 1: a higher value means a
higher credibility. The trust value of peer i on j is denoted by Ti->j.

In summary, each peer i maintains two rating vectors, namely, the reputation rating
R[Ri->1, Ri->2, … , Ri->n] and the trust rating T[Ti->1, Ti->2, … , Ti->n]. We can therefore
build a hybrid reputation and trust overlay network (HRTON) on top of the physical
network, as shown in Fig. 1.

HRTON

Physical Network

Fig. 1. Hybrid Reputation and Trust Overlay Network

Globally we have two matrices, reputation matrix MR and trust matrix TR:

1 1 1 2 1

2 1 2 2 2

1 2

...

...

...

...

n

n

n n n n

R

R R R

R R R

R R R

M

−> −> −>

−> −> −>

−> −> −>

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 ,

1 1 1 2 1

2 1 2 2 2

1 2

...

...

...

...

n

n

n n n n

R

T T T

T T T

T T T

T

−> −> −>

−> −> −>

−> −> −>

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

In the above two matrices, we can ignore the values of Ri->i and Ti->i. Our SepRep
model updates the two matrices after each transaction, and the matrix MR converges
to the global reputation matrix.

3.2 Initial Reputation and Trust Model

In HRTON, all peers are not familiar with each other at the beginning. Their reputations
will be set an initial value and their trust values will also be set to some initial value.

Then we will explain the computing model in detail. First, we consider a simple
situation. In one transaction, there exist three kinds of peers: service receiver peer i,
service provider j, consultant peer k. Figure 2 is the sketch map.

 SepRep: A Novel Reputation Evaluation Model in Peer-to-Peer Networks 91

peer k<2>

… …

peer k<n>

peer k<1>

peer i peer j

Fig. 2. Transaction between peer i and j

Peer i receives a service from peer j. It will give evaluation to j according to j’s
QoS. If necessary, it will consider peer k’s suggestion to judge whether it should
transact with j or not. In fact, peer i can consult a set of random peers about peer j’s
reputation. After the transaction, peer i will compare the recommendations from the
consultant peers with the direct reputation, and adjust the trust values on these
consultant peers accordingly.

Initial reputation computing will combine the direct transaction evaluation and
indirect evaluations from agency peers. Direct reputation is calculated as follows:

1() (1 ())n n n
i j i j EvaluationDR t DR t Rα α< > < − > < >
−> −>= + − (1)

n
i jDR< >
−> means the n-th direct reputation of i on j. The above formula means the

current direct reputation will be decided by the last direct reputation, time factor
()tα and the current evaluation REvaluation. Obviously, if the transaction scale is the

same, then the reputation of a peer in a transaction a year ago should be lower than in
a transaction a week ago, so time is the necessary factor.

Next we will compute the indirect reputation. Peer i will ask peer k to about peer
j’s reputation. Peer k’s trust will be counted in it. It is calculated as follows:

i j i k k jIR T R−> −> −>= ⋅ (2)

Apparently, it is not sufficient to ask only peer j, so we will ask multiple peers.
Here we define a set K<n> to denote peer i’s random neighbors. Instead of simple
addition, we adopt a normalized integration as follows:

n
i j k j i k

k K

IR R t
< >

−> −> −>
∈

= ⋅∑
(3)

/
n

i k i k i k
k K

t T T
< >

−> −> −>
∈

= ∑ (4)

After we get DRi->j and IRi->j, we can calculate local reputation Ri->j as follows:

(1)i j i j i jR DR IRβ β−> −> −>= + − ⋅ (5)

92 X. Chen, K. Zhao, and X. Chu

β is a weight balance parameter. It denotes the proportion of direct reputation and

indirect reputation. It lies on a peer prefer trusting itself transaction records or other
peers’ recommendation reputation values.

Then we will calculate the trust value. According to the trust definition given in
this model, trust is the opinion of peer on how honest another peer is in the distributed
computing of the reputations, peer i only can give j’s reputation evaluation, but not
the trust. We can use the similar way to get the peer i to peer j’s trust. We can
calculate peer k’s trust value in this transaction. During the transaction between peer i
and j, we can get the i to k’s indirect trust ITi->k by asking j about k’s trust. It is
calculated as follows:

i k j k i jIT T T−> −> −>= ⋅ (6)

Then the local trust Ti->k is calculated as follows:

1() (1 ())
i k

n n n
i k i kT t T t ITγ γ

−>

< > < − > < >
−> −>= + − ⋅ (7)

()tγ has the same purpose as ()tα . In order to fasten the convergence speed, we

add feedback function to make the trust value reach the real value faster. So the trust
value is updated as follows:

'

1
i ktransaction

i k

transaction

T feedback
T −>

−>

+
=

+
∑

∑
 (8)

1 2 | | | | 0.5

0 | | 0.5

i j k j i j k j

i j k j

R R if R R
feedback

if R R

−> −> −> −>

−> −>

⎧ − − − ≤⎪= ⎨
− >⎪⎩

 (9)

The feedback function is to update Ti->k according to the difference between Ri->j
and Rk->j. The bigger the difference value is, the smaller the Ti->k will be.

3.3 Reputation Propagation Model

We then discuss our reputation propagation model. Based on the above explanation,
the second hand reputation is defined as 2

i j k j i kk
R R t< >

−> −> −>= ⋅∑ , i.e., RTR ⋅=><2 .

Similarly, the h-th reputation is defined as follows:

>−<>< ⋅= 1hh RTR (h>2) (10)

This approach guarantees that the learned reputation ><
→
h

kiR of peer i on any peer k

(via at most h-hop queries) is bounded by max kiR → .

This reputation model has the “loss goes shares” effect. Let peer j be a malicious
peer that offers high quality services with 10% probability. If peer i requests direct
transaction with j, then the interactive times will be at least 10 to get j’s correct
reputation value, and i will get 9 low quality services (or suffer losses) in the 10

 SepRep: A Novel Reputation Evaluation Model in Peer-to-Peer Networks 93

transactions. But by taking our approach, i only needs to use information provided by
10 trust buddies who have transaction history with j. The difference is that loss goes
shares by other 9 peers.

4 Experiment and Analysis

4.1 Simulation

For ease of presentation, in all our simulations we assume peers provide either “high”
quality of service or “low” quality of service. Normal peers have a “high” trust value,
whereas malicious peers will result in a “low” trust value. In our simulations, the
mapping of reputation value and trust value to the rank is shown in Table 1. Hence we
can classify all peers as four kinds in HRTON:

− HRHT: an HRHT peer can provide high quality of service, and its recommendations
are trustful.

− HRLT: an HRLT peer can provide high quality of service, but its recommendations
are not trustful.

− LRHT: a LRHT peer can only provide poor quality of service, but it can provide
trustful recommendations.

− LRLT: a LRLT peer can only provide poor quality of service, and its recommendations
are not trustful.

Considering about the social network in real world, people tend to distrust more
than trust when they have no transaction at the beginning. So we assign 0.4 as the
initial reputation value and trust value.

We conduct four different experiments, as shown in Table 2. In the first
experiment, we assume 30% of the peers provide high quality of service and 70% of
peers provide low quality of service, 80% of the peers are trustful peers and 20% of
the peers are malicious peers. This configuration simulates a healthy P2P system that
only a small portion of peers does not provide genuine information. According to
[11], large proportion of the user population, upwards to 70%, enjoys the benefits of
the system without contributing too much. In the second and the third experiments,
we increase the ratio of malicious nodes to 50% and 80% respectively. These two
experiments are used to check the robustness of our reputation model. The fourth
experiment simulates a simple reputation model that only direct reputations are used
in the calculation of local reputations. In this case, the trust system is disabled because
peers do not query reputation values from other peers at all. The purpose of this
experiment is to show the effectiveness of our SepRep model in the sense that SepRep
model achieves a much faster convergence.

We simulate the behavior of 500 peers with 5000 iteration processes. In a single
iteration, each peer executes a transaction with another random peer. In each transaction,
peer i asks 20 random peers to get the indirect reputation. Other simulation parameters are
shown in Table 3.

94 X. Chen, K. Zhao, and X. Chu

Table 1. HRTON Initial Real Value

Peer Type Value Range
High Reputation (HR) [0.75, 0.85]
Low Reputation (LR) [0.15, 0.25]
High Trust (HT) [0.75, 0.85]
Low Trust (LT) [0.15, 0.25]

Table 2. Experiment Configuration

Type Rep. Type Rep. Ratio Trust Type Trust Ratio
HR 30% HT 80% 1
LR 70% LT 20%
HR 30% HT 50% 2
LR 70% LT 50%
HR 30% HT 20% 3
LR 70% LT 80%
HR 30% 4
LR 70%

N.A.

Table 3. Experiment Parameters

Parameters Value
Peer number 500
Iteration time 5000
β 0.6

()tγ 0.4
Neighbor number of a peer 20

4.2 Analysis

We use error sum of squares (SSE) to measure the accuracy of SepRep model. It
indicates the reputation discrepancy to the global reputations in each iteration process,
as shown in Eq. 11, where a lower SSE error indicated higher accuracy:

2

1

1
()

1

n

iteration i j i
i j i

SSE GR R
n −>

= ≠

= −
−∑ ∑ (11)

where GRi represents peer i’s real global reputation value.
First, we use Experiment 1 to test SepRep’s convergence speed and stability with

different settings of ()tα . For simplicity, we set ()tα as a constant value, α , that

does not change with time. We conduct four different simulations, with different
values of α : 0.2, 0.4, 0.6 and 0.8. The experimental results are shown in Fig. 3. We

 SepRep: A Novel Reputation Evaluation Model in Peer-to-Peer Networks 95

can see that the system converges the fastest when α is 0.2. With the increment of
α , it takes more and more time for the system to converge. This is reasonable since
α determines how important the latest direct transactions are in the calculations of
local reputation. But on the other side, if α is too small, history information will not
count too much and the local reputation values will be too variant. To achieve a stable
and fast convergence, we set α to 0.4 in all the remaining experiments.

Fig. 3. Reputation SSE with different values of α

Fig. 4, 5, and 6 show changing of reputation values of six random peers, three HR

peers and three LR peers, for Experiment 1, 2, and 3 respectively.
Note that Fig. 4 shows the results of a P2P network with 80% creditable peers, Fig. 5

shows the results of a P2P network with 50% creditable peers, and Fig. 6 shows the
results of a P2P network with only 20% creditable peers. In all three cases, our SepRep
system can distinguish HR peers and LR peers very quickly. The curves in Fig. 5 and 6
are not as smooth as those in Fig. 4. This is because the disturbance caused by malicious
peers becomes more and more significant as the ratio of malicious peers increases from
20% to 80%.

Fig. 7 shows the SSE of global reputations for Experiments 1, 2, 3, and 4. Because
Experiment 4 does not use reputation propagation, the system takes a very long time
to converge. This validates that SepRep model achieves much faster convergence
speed. We also observe that the reputation SSE becomes larger with the ratio of
malicious nodes increase from 20% to 80%. However, even in the worst situation
(Experiment 3), the discrepancy to real value keeps around 0.2, which is still an
acceptable level.

96 X. Chen, K. Zhao, and X. Chu

Fig. 4. Reputation Values: Experiment 1

Fig. 5. Reputations Values: Experiment 2

 SepRep: A Novel Reputation Evaluation Model in Peer-to-Peer Networks 97

Fig. 6. Reputation Values: Experiment 3

Fig. 7. SSE of Experiments 1-4

98 X. Chen, K. Zhao, and X. Chu

5 Conclusions

In this paper, we proposed a robust and fast reputation model SepRep for general P2P
networks. We redefined the reputation as the quality of service provided by a peer. To
facilitate the calculation of reputation values, we introduced a reputation propagation
model along with an auxiliary trust model to resolve fraud recommendations.
Experimental results show that our model has fast convergence speed and is robust
even with large amount of malicious peers.

Acknowledgement

This work was supported by Hong Kong RGC under grant HKBU 210406.

References

1. Meeker, M., Joseph, D.: State of the Internet – Web 2.0. In: Web 2.0 Conference, San
Francisco (2006)

2. Jøsang, A., Ismail, R., Boyd, C.: A Survey of Trust and Reputation Systems for Online
Service Provision. Decision Support Systems 43(2), 618–644 (2007)

3. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The EigenTrust Algorithm for
Reputation Management in P2P Networks. In: Proceedings of the Twelfth International
World Wide Web Conference, Budapest, Hungary (2003)

4. Cornelli, F., Damiani, E., De Capitani, S.: Choosing Reputable Servents in a P2P Network.
In: Proceedings of the 11th World Wide Web Conference, Hawaii, USA (2002)

5. Walsh, K., Sirer, E.G.: Fighting peer-to-peer SPAM and decoys with object reputation. In:
Applications, Technologies, Architectures, and Protocols for Computer Communication,
pp. 138–143 (2005)

6. Lee, S., Sherwood, R.: Cooperative peer groups in NICE. In: Proceedings of IEEE
Infocom 2003, San Francisco, USA (2003)

7. Xiong, L., Liu, L.: A Reputation-Based Trust Model for Peer-to-Peer eCommerce
Communities. In: IEEE International Conference on E-Commerce (CEC 2003), Newport
Beach, CA, USA (2003)

8. Feng, Q., Dai, Y.: LIP: A LIfetime and Popularity Based Ranking Approach to Filter out
Fake Files in P2P File Sharing Systems. Peking University (2006)

9. Aberer, K., Despotovic, Z.: Managing trust in a peer-2-peer information system. In: 10th
Intl Conference on Information and Knowledge Management (CIKM), Atlanta, USA
(2001)

10. Zhou, R., Hwang, K.: PowerTrust: A Robust and Scalable Reputation System for Trusted
Peer-to-Peer Computing. IEEE Transactions on Parallel and Distributed Systems 18(4),
460–473 (2007)

11. Adar, E.: Free Riding on Gnutella (2000), http://www.hpl.hp.com/research/
idl/papers/gnutella/gnutella.pdf

12. Feng, Q.-y., Dai, Y.-f.: P2P network trust mechanism review. Communication of CCF 3,
31–40 (2007)

13. Zhou, L., Zhang, L., McSherry, F., Immorlica, N., Costa, M., Chien, S.: A First Look at
Peer-to-Peer Worms: Threats and Defenses. In: Castro, M., van Renesse, R. (eds.) IPTPS
2005. LNCS, vol. 3640, Springer, Heidelberg (2005)

 SepRep: A Novel Reputation Evaluation Model in Peer-to-Peer Networks 99

14. Christin, N., Weigend, A.S., Chuang, J.: Content availability, pollution and poisoning in
file sharing peer-to-peer networks. In: Proceedings of the 6th ACM conference on
Electronic commerce (EC 2005), Vancouver, Canada, pp. 68–77 (2005)

15. Liang, J., Naoumov, N., Ross, K.W.: The Index Poisoning Attack in P2P File-Sharing
Systems. In: Proceedings of IEEE Infocom 2006, Barcelona, Spain (2006)

16. Wilson, R.: Reputation in games and markets. In: Roth, A. (ed.) Game-theoretic models of
bargaining, pp. 65–84. Cambridge University Press, New York (1985)

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 100–105, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Off-Line Keyword Guessing Attacks on Recent Public
Key Encryption with Keyword Search Schemes*

Wei-Chuen Yau1, Swee-Huay Heng2, and Bok-Min Goi1

1 Centre for Cryptography and Information Security (CCIS),
Faculty of Engineering, Multimedia University,

Jalan Multimedia, 63100 Cyberjaya, Selangor Darul Ehsan, Malaysia
{wcyau,bmgoi}@mmu.edu.my

2 Centre for Cryptography and Information Security (CCIS),
Faculty of Information Science and Technology, Multimedia University,

Jalan Ayer Keroh Lama, 75450 Melaka, Malaysia
shheng@mmu.edu.my

Abstract. The Public Key Encryption with Keyword Search Scheme (PEKS) was
first proposed by Boneh et al. in 2004. This scheme solves the problem of search-
ing on data that is encrypted using a public key setting. Recently, Baek et al.
proposed a Secure Channel Free Public Key Encryption with Keyword Search
(SCF-PEKS) scheme that removes the secure channel for sending trapdoors. They
later proposed another improved PEKS scheme that integrates with a public key
encryption (PKE) scheme, called PKE/PEKS. In this paper, we present off-line
keyword guessing attacks on SCF-PEKS and PKE/PEKS schemes. We demon-
strate that outsider adversaries that capture the trapdoors sent in a public channel
can reveal encrypted keywords by performing off-line keyword guessing attacks.
While, insider adversaries can perform the attacks regardless the trapdoors sent in
a public or secure channel.

Keywords: Searching on encrypted data, off-line keyword guessing attack,
public key encryption, database security, privacy.

1 Introduction

The Public Key Encryption with Keyword Search Scheme (PEKS) [3] proposed by
Boneh et al. is intended to solve the problem of searching on data that is encrypted
using a public key setting. Consider an e-mail system that consists of three entities,
namely a sender (Bob), a receiver (Alice), and a server (email gateway). Let (pk, sk)
be Alice’s public and private key pair. Bob sends an encrypted message m to Alice
with keyword w in the following format:

E(pk, m) || PEKS(pk, w)

Alice sends a trapdoor Tw for the keyword w to the email gateway. The PEKS scheme
enables the gateway to test whether w is a keyword in the email but learns nothing
else about the email.

* This research was supported by the Malaysia e-Science Fund (01-02-01-SF0048).

 Off-Line Keyword Guessing Attacks on Recent Public Key Encryption 101

Boneh et al.’s PEKS scheme (BDOP-PEKS) does not support a conjunctive keyword
search. For example, Alice may want to search for “Urgent” emails from “Bob” about
“Finance”. This problem was solved by Park et al. in [6]. They proposed two types
Public Key Encryption with Conjunctive Field Keyword Search (PECK) schemes.

One of the limitations of BDOP-PEKS is that the scheme requires secure channel
for sending trapdoors. This is to prevent an eavesdropper (Eve) from capturing the
trapdoors and thus ensure that only the server has the capability to test emails for
certain keywords. In [1], Baek et al. proposed a Secure Channel Free Public Key
Encryption with Keyword Search (SCF-PEKS) scheme to solve the problem. In this
scheme, the server has to keep its own private and public key pair. The sender creates
a PEKS ciphertext using the server’s public key as well as the receiver’s public key.
The testing algorithm requires the server’s private key as an input. Since Eve does not
have the server’s private key, she cannot test emails for certain keywords even she has
the trapdoor. Therefore, the trapdoor can be sent over a public channel.

Baek et al. also presented a scheme that combines PKE and PEKS. They proposed
a provably secure PKE/PEKS scheme based on ElGamal, BDOP-PEKS and the ran-
domness re-use technique [2]. This scheme is a countermeasure of “swapping attack”
where the attacker interchanges PEKS ciphertext so that Alice does not receive the
correct message that Bob has sent to her. Also, the scheme can prevent attacker from
modifying E(pk, m) || PEKS(pk, w).

Recently, Byun et al. pointed out that BDOP-PEKS [3] and PECK [6] schemes are
susceptible to an off-line keyword guessing attack [4]. This attack exploits the low-
entropy characteristic of keywords. In general, keywords are chosen from a much
smaller space than passwords. This is the fact that users usually choose well-known
keywords to search for their documents. For example, a sender may use “Urgent” in
the “Title” field as a keyword of an email. In this case, attackers are able to guess
some candidate keywords and verify the correctness of their guesses in an off-line
manner. This may result the leak of relevant information of encrypted emails as well
as the breach of user’s privacy.

This research is inspired by the work in [4]. We present off-line keyword guessing at-
tacks on the SCF-PEKS [1] and PKE/PEKS [2] schemes. We demonstrate that outsider
adversaries that capture the trapdoors sent in a public channel can reveal encrypted
keywords by performing off-line keyword guessing attacks. While, insider adversaries
can perform the attacks regardless the trapdoors sent in public or secure channel.

The rest of the paper is organized as follows: In Section 2, we present a brief de-
scription of the keyword search scheme proposed in [1], and follow by demonstrating
the off-line keyword guessing attack on the scheme. We then briefly review the
PKE/PEKS scheme [2] and perform the corresponding off-line keyword guessing
attack in Section 3. We compare the consequences of off-line keyword guessing at-
tacks on various PEKS schemes in Section 4. We conclude our paper in Section 5.

2 Attacks on BSS’s SCF-PEKS Scheme

Throughout this paper, (G1, +) and (G2, •) denote two cyclic groups of prime order q.
A bilinear map, e: G1 × G1 → G2 satisfies the following properties:

102 W.-C. Yau, S.-H. Heng, and B.-M. Goi

1. Bilinearity: For all P, Q, R ∈ G1, e(P+Q, R) = e(P, R) e(Q, R) and e(P, Q+R) =
e(P, Q) e(P, R).

2. Non-degeneracy: There exists P, Q, R ∈ G1 , such that e(P, Q) ≠1.
3. Computability: There is an efficient algorithm to compute e(P, Q) for any

P, Q ∈ G1.

2.1 Review of SCF-PEKS Scheme

Baek et al. proposed a PEKS scheme that does not require a secure channel to send
the trapdoor [1]. The secure channel free PEKS (SCF-PEKS) scheme consists of the
following algorithms:

− KeyGenParam(k):
Take a security parameter k, generate a group G1 = <P> whose order is prime q ≥ 2k.
Construct a bilinear pairing e: G1 × G1 → G2, where G2 is a group of order q.
Choose hash functions H1 : {0, 1}* → G1

* and H2 : G2 → {0, 1}k.
Output a common parameter cp = (q, G1, G2, e, P, H1, H2, dW), where dW denotes a
description of a keyword space.

− KeyGenServer(cp):
Select a random x ∈ Zq

* and compute X = xP.
Select a random Q ∈ G1

*.
Generate the server’s public key pkS = (cp, Q, X) and private key skS = (cp, x).

− KeyGenReceiver(cp):
Select a random y ∈ Zq

* and compute Y = yP.
Output the receiver’s public key pkR = (pkS, Y) and private key skR = (pkS, y).

− SCF-PEKS(cp, pkS, pkR, w):
Select a random r ∈ Zq

* and output a PEKS ciphertext S = (U, V) = (rP, H2((e(Q,
X)e(H1(w), Y))r)).

− Trapdoor(cp, skR, w):
Output trapdoor Tw = yH1(w).

− Test(cp, Tw, skS, S):
Check if H2(e(xQ + Tw, U)) = V . If so output ‘yes’; if not, output ‘no’.

2.2 Off-Line Keyword Guessing Attacks on SCF-PEKS Scheme

An attacker A can perform an off-line keyword attack as follows:

− Step 1: A first captures a valid trapdoor Tw = yH1(w).
− Step 2: A guesses an appropriate keyword w’, and computes H1(w’).
− Step 3: A takes the receiver’s public key Y and the hash of the guessed keyword

H1(w’), and checks if e(Y, H1(w’)) = e(P, Tw). If so, the guessed keyword is a valid
keyword. Otherwise, go to Step 2.

 The equation hold for w’ = w, i.e., e(Y, H1(w’)) = e(yP, H1(w’)) = e(P, yH1(w)) =
e(P, Tw).

Since a trapdoor is sent without a secure channel, an outsider adversary is able to
capture the trapdoor and performs the off-line keyword guessing attack. The attacker

 Off-Line Keyword Guessing Attacks on Recent Public Key Encryption 103

may reveal the encrypted keyword w that used by the receiver to search for a docu-
ment. Similarly, an insider adversary (malicious server) can perform the attack to
reveal the keyword in the trapdoor. In addition, the insider adversary can proceed to
run the Test algorithm in order to find out which PEKS ciphertext contains the key-
word. While, the outsider adversary is unable to distinguish a PEKS ciphertext is the
result of encrypting which keyword, as the Test phase requires server’s private key.

3 Attacks on BSS’s PKE/PEKS Scheme

3.1 Review of PKE/PEKS Scheme

Baek et al. proposed an integrated PKE and PEKS scheme that consists of the follow-
ing algorithms [2]:

− KeyGen(k):

Take a security parameter k, construct a group G1 of prime order q, generated by
g ∈ G1.
Construct a bilinear pairing e: G1 × G1 → G2, where G2 is a group of order q.
Select hash functions H1: G1 → {0, 1}l1; H2: {0, 1}* → G1

* ; H3: G2 → {0, 1} l3;
H4: {0, 1}* → {0, 1}l4 , where l1, l3 and l4 are respectively the binary output size of
H1, H3 and H4.
Select a random x ∈ Zq

* and compute X = gx.
Output the public key pk = (k, q, g, e, G1, G2, X) and the private key sk = (pk, x).

− ENC-PKE/PEKS(pk, w, m):
 Select a random r ∈ Zq

* and compute c1 = gr and c2 = H1(X
r) ⊕ m

 Compute a PEKS ciphertext S = H3(e(H2(w), X) r)
 Compute a tag σ = H4(X

r, m, c1, c2, S)
 Output (c1, c2, S, σ)
− Trapdoor(sk, w):
 Output trapdoor Tw = H2(w)x.
− Test(Tw, c1, c2, S, σ):
 Check if H3(e(Tw, c1)) = S. If so, output (c1, c2, S, σ); if not, output ‘no’.
− DEC-PKE/PEKS(sk, c1, c2, S, σ):
 Compute m = H1(c1

x) ⊕ c2.
 Check if H4(c1

x, m, c1, c2, S) = σ. If so, output m. Otherwise, output ‘reject’.

3.2 Off-Line Keyword Guessing Attacks on PKE/PEKS Scheme

An attacker A can perform an off-line keyword attack as follows:

− Step 1: A first captures a valid trapdoor Tw = H2(w)x.
− Step 2: A guesses an appropriate keyword w’, and computes H2(w’).
− Step 3: A takes the public key X and the hash of guessed keyword H2(w’), and

checks if e(X, H2(w’)) = e(g, Tw). If so, the guessed keyword is a valid keyword.
Otherwise, go to Step 2.

104 W.-C. Yau, S.-H. Heng, and B.-M. Goi

The equation hold for w’ = w, i.e., e(X, H2(w’)) = e(gx, H2(w’)) = e(g, H2(w)) x =
e(g, H2(w) x) = e(g, Tw).

In this attack, both insider adversary and outsider adversary may reveal the key-

word in the trapdoor. They can then further determine a PEKS ciphertext is the result
of encrypting which keyword via Test algorithm. Similarly, this attack works on the
two extensions of the PKE/PEKS scheme to the multi-receiver and multi-keyword
settings [2].

4 Comparison of Off-Line Keyword Guessing Attacks on Various
PEKS Schemes

Table 1 summarizes consequences of off-line keyword guessing attacks on various
PEKS schemes. The direct consequence is that the attackers may reveal the keyword
that the receiver searches for. In general, all the current off-line keyword guessing
attacks on various PEKS schemes need to obtain a trapdoor in the first stage. Since

Table 1. Summary of consequences of off-line keyword guessing attacks

PEKS Schemes
Without Secure

Channel
With Secure Channel Consequences

Type of
Adversary

A B C D A B C D

Insider X X X X X X X X
Reveal a key-
word sent in

Trapdoor
Outsider X X X X

Insider X X X X X X X X
Determine a

PEKS cipher-
text is the result

of encrypting
which keyword
via Test phase

Outsider X X X

 A = BDOP-PEKS[3], B = PECK[6], C = SCF-PEKS[1], D = PKE/PEKS[2].

the trapdoor is generated by combining receiver’s secret key and the keyword, the
attacker can exploit the bilinear property of pairing and relates the combination with
the public key using pairing operation. A trivial solution for preventing the attacker
from capturing the trapdoor is to provide a secure channel for sending the trapdoor.
We argue, however, that the secure channel can only prevent the outsider adversary
from performing the attacks. The solution cannot resist attacks by the insider adver-
sary. Therefore, we should take special consideration on the trapdoor generation as
well as the bilinear property in designing a PEKS scheme that is secure against off-
line keyword guessing attacks.

 Off-Line Keyword Guessing Attacks on Recent Public Key Encryption 105

Once the attacker obtains the correct guessed keyword, he/she can proceed to run
the Test algorithm. Consequently, the attacker may determine which PEKS cipher-
texts containing the keyword. We note that only SCF-PEKS can avoid such conse-
quence, as the outsider adversary does not have the server’s private key to perform the
Test algorithm. This, however, does not apply to the insider adversary (malicious
server) who possesses the server key.

5 Conclusion

In this paper, we presented off-line keyword guessing attacks on SCF-PEKS and
PKE/PEKS schemes. We also pointed out that secure channel is still needed for SCF-
PEKS in order to prevent off-line keyword guessing attacks by outsider adversaries.
However, even these two schemes apply secure channel they are still susceptible to
the attacks by insider adversaries. We observe that most of the current off-line key-
word guessing attacks work on public key keyword search encryption schemes based
on pairing. In future, we would like to know whether or not public key keyword
search schemes that are not based on pairing are susceptible to off-line keyword
guessing attacks (e.g., the scheme proposed in [5]). Also, it would be nice to come up
with a security model against an off-line keyword guessing attack.

References

1. Baek, J., Safavi-Naini, R., Susilo, W.: Public Key Encryption with Keyword Search Revis-
ited. Cryptology ePrint Archive (2005), http://eprint.iacr.org/2005/191

2. Baek, J., Safavi-Naini, R., Susilo, W.: On the Integration of Public Key Data Encryption
and Public Key Encryption with Keyword Search. In: Katsikas, S.K., López, J., Backes, M.,
Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 217–232. Springer, Heidel-
berg (2006)

3. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption with
Keywrod Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

4. Byun, J.W., Rhee, H.S., Park, H.-A., Lee, D.H.: Off-Line Keyword Guessing Attacks on
Recent Keyword Search Schemes over Encrypted Data. In: Jonker, W., Petković, M. (eds.)
SDM 2006. LNCS, vol. 4165, pp. 75–83. Springer, Heidelberg (2006)

5. Khader, D.: Public Key Encryption with Keyword Search Based on K-resilient IBE. In:
Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y.,
Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3982, pp. 298–308. Springer, Heidelberg (2006)

6. Park, D.J., Kim, K., Lee, P.J.: Public Key Encryption with Conjunctive Field Keyword
Search. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 73–86. Springer,
Heidelberg (2005)

An Integrated Solution for Policy Filtering and

Traffic Anomaly Detection

Zhijun Wang1, Hao Che2, and Jiannong Cao1

1 Department of Computing, The Hong Kong Polytechnic University, Hong Kong
2 Department of Computer Science and Engineering

The University of Texas at Arlington, Arlington, TX 76019, USA

Abstract. In this paper, we propose a Ternary Content Addressable
Memory (TCAM) coprocessor based solution for high speed, integrated
policy filtering and TCP flow anomaly detection. In the proposed solu-
tion, the TCP flow anomaly is detected through two dimensional (2D)
matching. The key features of the solution include: (1) setting flag bits
in TCAM action code to support various packet treatments; (2) man-
aging TCP flow state in pair to do 2D matching. The solution’s ability
for detecting TCP-based flooding attacks based on real-world-trace sim-
ulations are conducted. The results show that the proposed solution can
match up OC-192 line rate while doing the integrated tasks.

1 Introduction

The future Internet has to address both performance and security issues to sur-
vive. On one hand, it is under great stress to meet ever growing/changing appli-
cation demands while having to sustain multi-gigabit forwarding performance.
On the other hand, the Internet becomes more and more vulnerable due to fast
spreading malicious attacks.

The fast growing application requirements need the network to provide various
types of services. To support differential services, different packets may need to
be treated differently based on, e.g., quality-of-service requirements or other poli-
cies. To this end, packet classification [2][13][19] based on a set of policy filtering
rules must be performed in a router interface to identify the needed treatment
of individual packets. Traditional policy filters treat each packet individually,
and does not attempt to associate the packet with other packets belonging to
the same flow. Flow classification is a stateful packet classification, generally
known as packet classification, which tracks the flow state by identifying every
packet in every flow. Packet/flow classification has long been identified as the
most critical data path function, creating potential bottlenecks for high speed
packet forwarding.

One of the major threats to the Internet is Distributed Denial of Service
(DDoS) attacks [10]. In DDoS attacks, attackers send a large amount of attacking
packets using spoofed source IP addresses to a victim server which eventually
runs out of its resources and degrades the performance of legitimate packets. IP
traceback [3][5][8][14] [15][16][17][18] is considered as one effective way to defend

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 106–120, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Integrated Solution for Policy Filtering and Traffic Anomaly Detection 107

against DDoS attacks. Using IP traceback, the attackers can be identified and
punished through tracing their physical locations. However, effectively detecting
attackers is difficult due to the stateless property of Internet routers/switchs.

The traditional approach to enable security functions is generally separated
from the approach that implements typical packet forwarding functions. For ex-
ample, hash-based IP traceback [17] is generally implemented using dedicated
chips for computing hash functions. Packet classification is typically performed
as part of the packet forwarding functions in a router interface card, e.g., using
a network processor and its associated Ternary Content Addressable Memory
(TCAM) coprocessor. Due to its high speed performance, TCAM coprocessor
is widely used as packet classifier in industry. However, the separated solutions
add the complexity and integration costs to the next-generation Internet design.
Hence, it is of both technological and economical importance to develop inte-
grated solutions to enable security functions and high speed forwarding, match-
ing multiple gigabit line rate.

In this paper, we propose a TCAM coprocessor based solution for high speed,
integrated policy filtering and TCP traffic anomaly detection. The TCP-based
DDoS attacks using spoofed source IP addresses are detected in the edge router
through two dimensional (2D) matching [7]. 2D matching means a normal TCP
flow generated from one end host to another should have a corresponding flow
from the other direction. The key features of the solution are: (1) setting flag
bits in TCAM action code to support various packet treatments in the network
processor and the local CPU; (2) managing TCP flow state in pair to do 2D
matching. In the solution, when a TCP flow has not been matched after a period
of time Talm, the flow is considered to have high probability to be an attacking
flow. Hence an alarm message composed of the flow identities is sent to the
destination server, which in turn can use the information to do IP traceback.
Based on the real Internet traffic analysis, the proposed solution requires about
5 Mbits TCAM memory to support OC-192 line rate for the integrated tasks.
Such TCAM is available in today’s market. We also discuss how to handle TCAM
table overflow and analyze the solution’s performance in case of table overflow.
The simulations based on the real world traffic traces are conducted to evaluate
the performance on the detection of TCP-based flooding attacks. The results
show that the proposed solution can handle OC-192 line rate.

The rest of the paper is organized as follows: Section II describes the TCP
traffic anomaly detection through 2D matching. The details of the integrated
solution is presented in Section III. The performance of the proposed solution is
evaluated by simulations in Section IV. Section V briefly describes the related
work. Finally, Section VI concludes the paper and discusses some future work.

2 Two Dimensional Matching

In this section, we first give the needed definitions and then discuss how to detect
anomalous TCP flows through two dimensional (2D) matching.

108 Z. Wang, H. Che, and J. Cao

Flow
Outbound Inbound

FLow

Edge Router 2

Edge Router 3

Core network
 1Edge Router

AS 3

AS 2

AS 1

A

B
10

10

10

Fig. 1. Internet Architecture

A flow is a set of packets which have the same identity. The identity is ex-
tracted from the packet header. In this paper, the following five tuples: source IP
address (SIP), destination IP address (DIP), source port number (SPN), desti-
nation port number (DPN), and protocol (PRO) are used as the flow identity.
In other words, a flow is uniquely determined by the five tuples <SIP, DIP, SPN,
DPN, PRO>.

TCP is a two-way communication protocol. A normal TCP flow generated
from one end host (e.g., A) to another (e.g., B) should have a corresponding
flow from the other direction (i.e., from B to A). Fig. 1 shows a general In-
ternet architecture. Assume host A in Autonomous System 1 (AS1) sends a
SYN packet to host B located in AS2 to initiate a TCP session. After receiving
the SYN packet, host B sends a SYN+ACK packet back to host A to establish
the session. In this case, the edge router 1 can detect both flows coming from
AS1 (called outbound flow) and into AS1 (called inbound flow). For an out-
bound flow with flow identity <SIP, DIP, SPN, DPN, PRO>, the corresponding
inbound flow identity is <DIP, SIP, DPN, SPN, PRO>. The feature of an out-
bound flow having a corresponding inbound flow is called two dimensional (2D)
matching [7]. An outbound (inbound) flow is called an unmatched flow if no
corresponding inbound (outbound) flow arrives within a period of time Talm. An
inbound (outbound) flow is called the matching flow of its outbound (inbound)
flow.

2D matching can be effectively applied to detect TCP-based attacks using
spoofed IP addresses. For attacking packets using spoofed source IP addresses,
the responding packets are routed to the spoofed IP addresses which may be dif-
ferent from the original AS. Thus the edge router at the attackers’ AS may only
detect the outbound flow, and hence an unmatched flow is detected. Based on
these observations, one can do 2D matching at the edge routers for TCP traffic
anomaly detection. When an unmatched flow is detected, the router sends an
alarm message (e.g., ICMP message) including the flow identity to the destina-
tion for possible IP traceback.

An Integrated Solution for Policy Filtering and Traffic Anomaly Detection 109

The most popular TCP based DDoS attacks are TCP SYN and RESET flood-
ing attacks. In these attacks, the SYN or RESET flag bit is set. To detect these
attacks, we only need to maintain all the flows start with SYN and RESET
packets. However, there are other types of TCP based attacks [10] which have
ACK bit set or no flag bit set. Hence, any TCP packet can be an attack packet.
In our solution, if a packet does not belong to any existing flow, the packet is
considered to be a new flow and will be monitored in the flow table to allow 2D
matching.

Except the attacking packets, unmatched flows may be caused by: (1) the
destination server is down; (2) the destination server has changed its IP address,
but a cache entry of the old server IP address is still in the domain name server
(DNS). In these cases, the destination is unreachable and the flows sent to the
destination server can be viewed abnormally.

In the following sections, we will present the details on how to integrate 2D
matching and policy filtering using TCAM coprocessors.

3 Integrated Solution of Policy Filtering and Anomaly
Detection

This section first gives a brief review of policy filtering using a network proces-
sor and its TCAM coprocessor, and then presents the details of the proposed
solution.

3.1 TCAM Coprocessor

Packet classification (e.g., policy filtering, IP forwarding table lookup) is one of
the most critical data path functions in high speed packet forwarding. TCAM
coprocessors are widely used as packet classifiers in today’s industry. Fig. 2
shows a system architecture of a network processor using a TCAM coprocessor
[20] for packet classification. A TCAM coprocessor stores self-addressable rules
which map to different memory addresses in an associated memory (normally
an SRAM) containing the corresponding actions.

In particular, a typical rule for policy filtering is composed of 104-bit five-
tuple: <SIP, DIP, SPN, DPN, PRO>, same as the flow identity. The rules are
usually arranged in an ordered list, with lower memory locations having higher
matching priorities. When a packet arrives at the network processor, a search
key composed of the same set of five-tuple, extracted from the packet header is
passed to the TCAM coprocessor for lookup. The action code in the associated
memory corresponding to the matched rule with the highest match priority is
returned to the network processor. There is an identical copy of the rule table in
the local CPU in charge of rule management. The rule update in TCAM is done
through the interface between the TCAM coprocessor and the local CPU. In the
proposed solution, when a new flow is detected, its identity serves as a new rule
to be added to the rule table, meaning that the rule table for flow classification
is combined with the policy filtering table for packet classification. In addition,

110 Z. Wang, H. Che, and J. Cao

...

TCAM Co−processor

...

Rule n−1

Rule n

Rule 2

Rule 1

MAC Framer

Frame

Rule Update

Line Card

Action n

Action 1

Action 2

Action n−1

Network

Processor

Switch Fabric/other interface

Local CPU

Flow tableRule table

Fig. 2. TCAM coprocessor architecture

a flow table in the local CPU is introduced to store active TCP flow states for
2D matching.

A general rule usually has some wildcarded bits in some tuples, whereas the
identity of a specific flow has no wildcarded bits in any tuple. For example,
a policy filtering rule may be: <x.x.x.x, x.x.x.x, 128 - 256, 80, 6>. Here ’x’
represents a wildcarded byte. A flow identity may be <1.2.3.4, 5.6.7.8, 1028, 80,
6>. A flow identity has higher matching priority than a policy filtering rule. So
a flow identify must be located at a lower TCAM memory address than a policy
filtering rule.

3.2 Data Structure

The policy filtering rules and the flow identities share the same format. Hence,
the integrated approach does not require any modification to the rule table
format in TCAM. To support IP traceback, however, the action codes need to
be extended to allow flow detection. Before giving the details of the solution, we
first present the data structures of the action code and flow table entry.

Fig. 3 (a) shows the format of the action code. The action code is set to 32
bits in length such that the code can be returned in one clock cycle through a
32-bit interface bus. The action code includes one flag bit which indicates if a
rule is a policy filtering rule (value 0) or a flow identity (value 1). One forward
bit is used to indicate if the action code needs to be passed (value 1) to the
local CPU or not (value 0). The following 8 bits indicate the forwarding action
associated with the policy filtering, such as the best effort forwarding, dropping
the packet and so on. 8 bits can express 256 different actions which are enough
to include all possible forwarding actions in today’s Internet. The last 22 bits
are the flow index which specifies the location of a flow state in the flow table
located in the local CPU. 22 bits can represents 4 millions different entries. For
a policy filtering rule, all index bits are set to 0. The last two bits are free bits,
and always set to zero. In the following, we use a-b-x-y-00 to represent an action

An Integrated Solution for Policy Filtering and Traffic Anomaly Detection 111

flag

(b) Format of flow table in local CPU

(a) Format of action code

1−bit

forward action

1−bit 8−bit

flow index free

2−bit 32−bit

flag Timer

1−bit 1−bit

FIN ACK Tlocation

22−bit

22−bit 2−bit

Fig. 3. Data structures

code. Here a and b represent the binary values of the first two bits, respectively.
x the decimal value of the action, and z the decimal value of the flow index. For
example, (0-0-5-0-00) represents the action code of a policy filtering rule with
action 5; and (1-1-6-234-00) is the action code of a flow identity with action 6, it
locates at entry 234 in the flow table, and the forward bit set means the action
code needs to be passed to the local CPU.

Fig. 3 (b) gives the data structure of an entry in the flow table. The first 2 bits
are flags. The bits 00 indicate an empty entry; 01 an unmatched existing flow; 10
an expected flow; and 11 a matched existing flow. FIN and ACK bits are used to
terminate a pair of completed flows. Tlocation is the flow location in the TCAM
rule table. Timer is used to trigger an event. There are three timers: Talm, Tidl

and Trmv. Talm detects an unmatched flow, an alarm message is triggered if a
flow has not been matched after Talm time. Tidl is used to check if a matched flow
is still active. If a pair of flows are not terminated after Tidl time, the forward
bits corresponding to them are set to check if they are still active. Trmv is used
to remove incompletely terminated flows. Similarly, ab-c-d-x-y is used to express
a flow entry. a, b, c and d are the binary values of the first four bits, x and y are
decimal values of Tlocation and timer, respectively.

To do 2D matching, the flow entries in the flow table are managed in pair.
When a new flow arrives, the index is always set to an even number, and the
expected matching flow has the index equal to the even number plus one. An
index list is used to manage the available indices. The number of entries in the
flow table is set to be the number of total TCAM entries allocated for flow
identities. Initially, all even indices are on the list. When a new flow is detected,
an index on the list is removed and assigned to the new flow. When a pair of
flows are finished and removed from the flow table, the corresponding even index
is returned to the list.

The rule table in the local CPU is in charge of the TCAM rule table man-
agement. It stores the same rules (including both policy filtering rules and flow
identities) as those in the TCAM rule table. The management of the two rule
tables are the same, hence in the following of the paper, the rule table refers to
the rule tables in both local CPU and TCAM.

112 Z. Wang, H. Che, and J. Cao

3.3 Description of the Integrated Solution

In the proposed solution, the local CPU processes packet flows at per flow level
while the TCAM coprocessor processes packet flows at per packet level. When
a packet arrives at the network processor, the search key composed of five tu-
ples extracted from the packet header is passed to the TCAM coprocessor. The
action code (a-b-x-y-00) corresponding to the matched rule with highest match-
ing priority is returned back to the network processor. The network processor
forwards the packet based on the action code value. For a non-TCP packet, no
extra processing is introduced. For a TCP packet, the action code a-b-x-y-fk is
passed to the local CPU for the following three cases: (1) the packet belongs to
a new flow (i.e., a=0); (2) the packet belongs to an existing flow but the forward
bit is set (i.e., a=1 and b=1); (3) the packet with FIN bit set (i.e., a=1, b=0 and
FIN bit=1). The two free bits f and k are set to be the bit values of FIN and
ACK bits in the packet, respectively. In the case of the arrival packet belonging
to a new flow, the flow identity is also passed to the local CPU for process.

The local CPU is in charge of adding new flows, testing flow activity, removing
completed and inactive flows, and triggering unmatched alarms. Now we describe
how the local CPU handles different packets and timer timeouts.

Packet in new flow: When a packet belonging to a new flow arrives, if no
free entry is available in the rule table, the action code and the flow identity are
simply dropped. Otherwise, the new flow (F) and its expected matching flow
(E) are added to both the flow and rule tables. In the flow table, suppose the
index of F is IN , then the index of E is IN+1. The first two flag bits are 01 at
entry IN implying that F is an existing unmatched flow and 10 at entry IN+1
indicating that E is an expected matching flow. The flag bits in the action codes
of both flows are set to 1, and the forward bit corresponding to E is set to 1.
Hence the action code of the upcoming packet in E will be passed to the local
CPU to do 2D matching. The forward bit of F is 0, implying that the upcoming
packets in F do not need to be processed in the local CPU. The timer Talm is
set for F in the flow table.

Packet in expected flow: If a packet belonging to an expected flow E arrives,
the two flag bits in the flow entries for both E and its matching flow F are set
to 11 indicating that the two flows are matched. The forward bit in the action
code corresponding to E is reset to 0. Then the upcoming packets in the pair of
flows will not be processed in the local CPU. Hence a timer Tidl is set for both
flows E and F . If no FIN bit is detected within Tidl time, the forward bits for
both flows will be set to test if they are still active.

Packet in matched flow: The forward bits for a pair of matched flows are set
after Tidl expires. This means that the action codes of the upcoming packets in
the pair of flows will be passed to the local CPU. If such a packet arrives, it
implies that the pair of flows are still active. Hence the timer Tidl is set again for
the next check. Then the forward bits in the action codes for the pair of flows
are reset to 0.

An Integrated Solution for Policy Filtering and Traffic Anomaly Detection 113

Packet with FIN and/or ACK bit set: If a packet of F with FIN bit set
arrives, the FIN bit for its entry in the flow table is set. The forward bits in the
action code for the pair of flows are also set, meaning that the action codes of
the upcoming packets in the pair of flows will be processed in the local CPU. If
a FIN+ACK packet of F comes, the FIN bit is set for entry F . If its matching
flow E has FIN bit set, the packet is an acknowledgement packet of the FIN
packet in E, and hence the ACK bit in the entry of E is set. If an ACK packet
of E comes after both FIN bits set, this acknowledges FIN packet in F , hence
the ACK bit in the flow entry of F is set. If the FIN and ACK bits are set
for both flows, this implies that the two flows have been completed and hence
to be removed from the flow and rule tables. In order to remove incompletely
terminated (without FIN and/or ACK packets) flows, when the FIN bit is set
for an entry, timer Trmv is also set for the pair of flows. If no more packet arrives
within Trmv time, the flow pair is forced to be removed.

Timer timeout: If the timer Talm times out, it implies that an unmatched flow
is detected, an alarm message including the flow identity is generated and sent
to the destination server for possible IP traceback. If the timer Tidl is triggered,
it indicates that no FIN packet in the pair of flows arrives in the past Tidl time.
However, that does not ensure that the flow pairs are still active, because some
flows may be terminated incompletely. Hence it needs to check if they are still
active, so the forward bits in their action codes are set, and the timer Trmv is
also set. If no packet for the pair of flows arrives within Trmv time, the flows
are considered to be inactive and removed from the tables. In this case, if some
packets in the removed flows come later, they will be treated as new flows.

3.4 Computational Load on Local CPU

The local CPU processes packet at per flow level. For each flow, the first, FIN
and final ACK packets are processed. In addition, 1 packet needs to be processed
every Tidl time. The real traffic measurement at OC-192 (see Section IV) shows
that the average new TCP flows are about 5K per second, and the concurrent
active flows are usually less than 50K. That means a flow lasting less than 10
seconds on average. If Tidl is set to 5 seconds, then each flow has about 5 packets
or 0.2 packets per second to be processed. The local CPU needs to process about
20K packets per second which is not difficult to be handled by a 100MHz CPU.

3.5 Rule Update

The TCAM rule table update is through the interface between the local CPU and
the TCAM coprocessor. A consistent rule update algorithm [20] which can update
the rule table without interruption of TCAM lookup process is used. A flow iden-
tity has higher matching priority than that of policy filtering rules and hence it
is added to a TCAM memory location lower than the policy rules. All the flow
identities can be stored independently, because a packet cannot match more than
one flow identity simultaneously. We keep all the empty entries above the general
rules so that for each flow identity addition or deletion, no movement is needed for

114 Z. Wang, H. Che, and J. Cao

other rules. Adding one rule takes 5 (a rule plus the action code have 104 + 32 bits,
(104+32)/32<5) clock cycles by assuming a 32-bit interface bus. Deleting a rule
only takes 1 clock cycle by reset the valid bit of the entry [20]. To update a flow
identity, a flow identity is first written and validated in a new location and then
the flow identity in the old location is deleted. It takes one rule write and one rule
deletion. To process 20K packets, maximum 40K TCAM writes/updates (assume
the action code changes before and after the packet being processed) are needed.
40K TCAM writes and deletion only take about 240K clock cycles, this is a very
small portion of the processing time for a 100 MHz CPU.

3.6 Table Overflow

There are two critical issues using TCAM for packet/flow classification. One
is the TCAM lookup speed, and the other is the memory space. The proposed
solution does not introduce any extra TCAM lookups. Hence we only focus on the
discussion of TCAM memory space. TCAM coprocessors have limited memory
storage. The maximum TCAM memory in today’s market is 18 Mbits [4]. A
TCAM is usually shared by multiple tables such as longest prefix matching and
policy filtering tables. Hence the TCAM memory storage capacity is a critical
issue for the proposed solution. A critical concern is that if the TCAM table
cannot store all the concurrent active flows, does the solution still work well? In
the following, we discuss the performance impacts in case of table overflow.

When the local CPU detects a new flow, it checks if there are a pair of free
entries in the TCAM rule table. The flow state is monitored only if a pair of
free entries are available. That means an attacking packet may not be moni-
tored immediately in case of table overflow, and hence it may not detect attacks
with single attacking packet. But it can still detect the attacks with a large
amount attacking packets. In case of table overflow, each coming packet in an
un-monitored flow has some probability to be monitored, hence it takes some
time to monitor a packet from an attack. The following theorem gives the aver-
age time an attack to be monitored.

Theorem I: Assume a TCAM rule table has N entries. There are nc > N
number of concurrent active normal TCP flows, each flow has nf packets per
second, and the TCAM accepts ns number of new flows per second. Then an at-
tacker sending na attacking packets per second can be monitored in (nc−N)nf−ns

nans

time on average.

Proof: The total number of arriving packets per second is ncnf , among these
packets, Nnf packets belong to the flows monitored in the TCAM rule ta-
ble. The number of packets belonging to the flows which are not monitored
is (nc − N)nf , so each packet has probability p = ns

(nc−N)nf
to be monitored.

For the attack, each attacking packet has p probability to be monitored, the
packet inter arrival time is 1/na. So the average time an attack to be monitored
is tp =

∑∞
k=1[(1 − p)k−1p × k−1

na
] = 1−p

pna
= (nc−N)nf−ns

nans
�

An Integrated Solution for Policy Filtering and Traffic Anomaly Detection 115

Theorem I shows that the detection time of an attack is inversely proportional
to the attacking rate (i.e., the number of attacking packets per second). The
time to be monitored of an attack with 1 packet per second is 10 times of an
attack with 10 packets per second on average. This is verified in the simulations
(see next Section).

In case of table overflow, every packet in a flow can be the first packet to
be monitored. For a pair of TCP flows, if the last packet of these two flows is
monitored, the flow will never be matched because both flows are completed. In
this case, a normal TCP flow is considered to be an attacking packet, and a false
alarm will be generated. The following theorem gives the false alarm probability
of a pair of flows with total n number of packets.

Theorem II: Assume there are a total of n packets in a pair of flows, each
packet has probability p to be monitored, then the false alarm probability is
pfalse = (1 − p)n−1p.

Proof: The false alarm happens if the first n−1 packets are not monitored and the
last one is monitored. So the probability of a false alarm is pfalse=(1 − p)n−1p.�

4 Performance Evaluation

This section evaluates the performance of the proposed solution in the case of
table overflow. If the TCAM rule table can monitor all the concurrent active TCP
flows, the system can detect attacks even with single attacking packet, while the
normal TCP flows are not falsely alarmed. In the case of TCAM rule table
overflow, it takes some time to monitor an attack; a normal flow may be falsely
alarmed; and some packets belonging to un-monitored flows are dropped by the
local CPU. These are quantitatively studied by simulations. In the simulations,
four performance metrics: the average time (tAm) an attack to be monitored, the
number (nfalse) of false alarm flows per second, the number of TCAM writes
per second, and the number of un-monitored packets per second are measured.
tAm is the average time difference between the arrival time of the first attacking
packet in an attack and the arrival time of the attacking packet in that attack
being monitored. The time an attack to be monitored is zero if the first attacking
packet in an attack is monitored.

The simulations are conducted based on the real router traces downloaded
from Abilene-IV Trace Data [9]. These traces are captured from OC-192 back-
bone Abilene router to and from Kansas city. Each trace includes 90-second traf-
fic on both inbound and outbound links. We have tested more than 10 traces,
and selected one trace with average statistics (Trace 1) and one with maximum
number of packets (Trace 2). Table 1 shows the basic statistics of the two traces.
In both traces, the TCP packets account for more than 80% of the total pack-
ets. We also note that the number of new TCP flows per second is about 5K,
and the number of maximum concurrent active flows is less than 30 K which
map to less than 4Mbits TCAM memory (assume each rule takes 128 bits in the

116 Z. Wang, H. Che, and J. Cao

Table 1. Statistics of real traffic trace

Trace 1 Trace 2

Total number of packet 12,746,894 14,494,880

Number of TCP packets 9,217,812 11,138,762

Average number of new
TCP flows per second

4381 5181

Average number of concur-
rent active flows

19423 24476

Maximum number of con-
current active flows

21030 26718

TCAM rule table). We suggest to use 4 Mbits TCAM rule table to store flow
identities to avoid table overflow. Usually there are thousands of policy filtering
rules which takes less than 1 Mbits TCAM memory. Hence a TCAM rule table
with 5 Mbits memory is enough to do the integrated tasks in OC-192 line rate
in today’s Internet.

We evaluate the performance of the proposed solution in case of TCAM table
overflow by set a small TCAM rule table. In the simulations, the number of
entries in the TCAM rule table varies from 5K (640 Kbits) to 25 K (3.2 Mbits).
The attacking packets are generated starting at the 15th second. Three attacking
rates (R): 20, 100 and 500 packets per second are simulated. In the simulations,
a pair of matched flows are tested every 5 seconds (Tidl=5) to check if they are
still active. A pair of flows are removed from all the three tables if they are
completely finished or inactive for a time period longer than 5 seconds since it
was tested, i.e., Trmv = 5. An unmatched flow is considered to be an attacking
flow if it exits for a time period longer than 10 second, i.e., Talm = 10.

Figs. 4 and 5 show the average time an attack to be monitored (tAm) varying
with the TCAM rule table size. tAm in Trace 1 (2) is within 11 (20) seconds in the

5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

11

Number of entries in TCAM rule table (x1000)

A
ve

ra
ge

 ti
m

e
to

 b
e

m
on

ito
re

d
(s

ec
on

ds
)

R=20
R=100
R=500

Fig. 4. Average time an attack to be
monitored in Trace 1

5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

20

Number of entries in TCAM rule table (x1000)

A
ve

ra
ge

 ti
m

e
to

 b
e

m
on

ito
re

d(
se

co
nd

s)

R=20
R=100
R=500

Fig. 5. Average time an attack to be mon-
itored in Trace 2

An Integrated Solution for Policy Filtering and Traffic Anomaly Detection 117

5 10 15 20 25
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of entries in TCAM rule table (x1000)

N
um

be
r

of
 T

C
A

M
 w

rit
es

 p
er

 s
ec

on
d

Trace−1
Trace−2

Fig. 6. Number of TCAM writes per second

5 10 15 20 25
0

50

100

150

Number of entries in TCAM rule table (x1000)

N
um

be
r

of
 fa

ls
el

y
al

ar
m

ed
 fl

ow
s

pe
r

se
co

nd

Trace−1
Trace−2

Fig. 7. Number of falsely alarmed flows
per second

entire range of rule table sizes. For rule table with 5K entries, tAm in trace 1 (2) is
about 11 (19.5), 2.2 (4), and 0.4 (0.8) seconds for R =20, 100, 500, respectively.
tAm in Trace 2 is greater than that in Trace 1, because Trace 2 has more new
flows per second and more concurrent active flows. From the results, we note that
tAm is inversely proportional to the attacking rate, verifying Theorem I. So for
R = 1, tAm is about 20 times of that for R = 20, i.e., about 220 (400) seconds. tAm
reduces fast as the number of rule entries increases. This is because the TCAM
rule table can accept more rules and hence each packet has higher probability to
be monitored. These results show that the proposed solution can quickly detect
the attacks even if the attacking rate is low and the TCAM rule table is small.

Fig. 6 shows the number of TCAM writes including adding new flows and
update flow entries per second in both traces. The number of writes per second
increases from about 1.5K to about 10K as the number of TCAM rule entries
increases from 5K to 25K. This is due to the fact that more flows are added to
the rule table when the TCAM table size increases. When the number of TCAM
entries increases from 20K to 25K, the number of writes per second in Trace 1
increases slowly. This is because almost all TCP flows are monitored in the rule
table at 20K, and hence only a few more TCP flows can be added by further
increasing the TCAM table size.

The number of false alarm flows per second (nfalse) is given in Fig. 7. nfalse

increases as the rule table size increases when the table size is small. It then
decreases as the table size increases when the table size is over a certain value.
The maximum nfalse in Trace 1 (2) is about 100 (150) at the rule table size 15K
(20K). When the number of rule entries is 5K, nfalse is about 10. As shown in
Theorem II, nfalse depends on the probability (p) of a packet to be monitored.
p increases as the rule table size increases, and results in the first increasing and
then decreasing behavior.

From these results, we suggest to use either a large (4 Mbits or above) or
small (640 Kbits) TCAM rule table to accommodate flow identities. For a large

118 Z. Wang, H. Che, and J. Cao

Table 2. Number of TCP Packets belonging to un-monitored flows per second

TCAM size 5K 10K 15K 20K 25K

Trace 1 19294 13655 9155 1565 0

Trace 2 23160 15613 11279 7189 1726

one, no table overflow exists, and hence no falsely alarmed flows. For a small
one, the number of falsely alarmed flows is small and also the number of TCAM
writes is small, but the attack detection time is long. For a middle sized TCAM,
when the number of alarms is high, a small monitoring probability can be set
for each new flow even if there are some free entries. In other words, a new flow
may not be monitored even if the free entries are available in the rule table. This
can reduce the number of falsely alarmed flows.

The network processor passes the action code of all packets belonging to un-
monitored flows to the local CPU. Some of these packets are simply dropped
due to lack of free rule entries. Table 2 shows the number of the dropped packets
per second at various rule table sizes. The average number of TCP packets per
second in trace 1(2) is 102,420 (123,764), the number of packets per second in
un-monitored flows are only about 19K (23K) even using a very small TCAM
rule table. It reduces quickly as the table size increases.

Through these results, we conclude that the proposed integrated solution can
effectively perform the two tasks even using a small TCAM. The proposed solu-
tion can be implemented in router/switch which use TCAM coprocessors in its
router interface cards.

5 Related Work

The DDoS attacks are the major threat to today’s Internet. One effective way
to defend against such attacks is to identify and punish the attackers through
tracing their physical locations. IP traceback schemes have been extensively
studied in the past decade. These schemes includes statistical filtering, hop-
by-hop tracing, ICMP messaging based, hash-based and probabilistic packet
marking. Statistical filtering [5] [15] drops most likely attacking packets based
on the statistics of packet header information such as IP address, port number,
protocol type etc.. Hop-by-hop tracing scheme [11] uses a pattern-based scheme
to track in progress attacks. ICMP messaging based scheme [3] sends additional
ICMP packet to the destination for path reconstruction. Hash-based solution
[17] computes and stores a Bloom filter digest of every packet for IP traceback.
Probabilistic packet marking solution [8][14] [16][18] marks each packet with
partial path information probabilistically. The attacking path is reconstructed
using the marking information extracted from a large number of packets.

There are other schemes for DDoS attacks and/or traffic anomaly detection.
[12] proposed a general method to diagnose traffic anomaly by measuring traffic
volume. [7] designed a bloom filter array for traffic anomaly detection through

An Integrated Solution for Policy Filtering and Traffic Anomaly Detection 119

2D matching. In [1], a DDoS defense system based on the packet score has been
developed. The bad packets with score less than the threshold are discarded.

TCAM has been widely used for longest prefix matching and policy filtering
table matching [13][19] in industry. Except the longest prefix matching and policy
filtering, another promising application of TCAM coprocessors is high-speed
signature matching for intrusion detection [6]. However, there is no application
of TCAM coprocessor to enable integrated security and packet classification
tasks.

6 Conclusions

In this paper, we propose an integrated solution for TCP-based traffic anomaly
detection and policy filtering based on TCAM coprocessors. The DDoS attacks
using spoofed source IP address are detected through two-dimensional (2D)
matching. The key features of the proposed solution are: (1) setting flag bits
in TCAM action code to support various packet treatments; (2) managing TCP
flow state in pair to do 2D matching. The performance of the proposed solution
has been analyzed and tested by simulation based on the real world traffic traces.
The results show that the proposed solution can handle OC-192 line rate.

Acknowledgement

This work is supported by the UGC of Hong Kong under the CERG grant PolyU
5293/06E.

References

1. Ayres, P.E., Sun, H., Chao, H.J.: A High-Speed PacketScore DDoS Defense System.
IEEE Journal on Selected Areas in Communications 24(10), 1864–1876 (2006)

2. Baboesu, F., Varghese, G.: Scalable Packet Classification. In: Proceedings of ACM
SIGCOMM (2001)

3. Bellovin, S.: ICMP Traceback Messages. Work in Progress, Internet Draft draft-
bellovin-itrace-00.txt (2000)

4. Cypress Ayama 10K/20K NSE Series TCAM products, http://www.cypress.com
5. Duan, Z., Yuan, X., Chandrashekar, J.: Constructing Inter-Domain Packet Filters

to Control IP Spoofing Based on BGP Updates. In: Proceedings of IEEE INFO-
COM (2006)

6. Yu, F., Katz, R.H., Lakshman, T.V.: Gigabit Rate Packet Pattern Matching with
TCAM. In: IEEE ICNP (2004)

7. Fan, J., Wu, D., Lu, K., Nucci, A.: Design of Bloom Filter Array for Network
Anomaly Detection. In: Proceedings of IEEE GLOBECOM (2006)

8. Goodrich, M.T.: Efficient Packet Marking for Large-Scale IP Traceback. In: Pro-
ceedings of ACM Conference on Computer and Communications Security (CCS)
(2002)

9. http://pma.nlanr.net/Specical/ipsl4.html

http://www.cypress.com
http://pma.nlanr.net/Specical/ipsl4.html

120 Z. Wang, H. Che, and J. Cao

10. Hussain, A., Heidemann, J., Papadopoulos, C.: A Framework for Classifying Denial
of Service Attacks. In: ACM SIGCOMM (2003)

11. Joannidis, J., Bellovin, S.M.: Implementing Pushback: Router-ased Defense
Against DDoD Attacks. In: Network and Distributed System Security Symposium
(2002)

12. Lakhina, A., Crovella, M., Diot, C.: Diagnosing Network-Wide Traffic Anomalies.
In: Proceedings of ACM SIGCOMM (2004)

13. Lakshminarayanan, K., Rangarajan, A., Venkatachary, S.: Algorithms for Ad-
vanced Packet Classification with Ternary CAMs. In: Proceedings of ACM SIG-
COM (2005)

14. Li, J., Sung, M., Xu, J., Li, L.: Large-Scale IP Traceback in High-Speed Inter-
net: Practical Techniques and Theoretical Foundation. In: Proceedings of IEEE
Symposium on Security and Privacy (2004)

15. Li, Q., Chang, E., Chan, M.: On the Effectiveness of DDoS Attacks on Statistical
Filtering. In: IEEE INFOCOM (2005)

16. Savage, S., Wetherall, D., Karlin, A., Anderson, T.: Network Support for IP Trace-
back. IEEE/ACM Transactions on Networkng 9(3), 226–237 (2001)

17. Snoeren, A.C., Partridge, C., Sanchez, L.A., Jones, C.E.: Hash-Based IP Traceback.
In: Proceedings of ACM SIGCOMM (2001)

18. Song, D.X., Perrig, A.: Advanced and Authenticated Marking Schemes for IP
Traceback. In: Proceedings of IEEE INFOCOM (2001)

19. Spitznagel, E., Taylor, D., Turner, J.: Packet Classification Using Extended
TCAMs. In: Proceedings of International Conference of Network Protocol (ICNP)
(September 2003)

20. Wang, Z., Che, H., Kumar, M., Das, S.: CoPTUA: Consistent Policy Table Update
Algorithm for TCAM Without Locking. IEEE Transactions on Computers 53(12),
1602–1614 (2004)

Secure Safety: Secure Remote Access to Critical

Safety Systems in Offshore Installations

Martin Gilje Jaatun1, Tor Olav Grøtan2, and Maria B. Line1

1 SINTEF ICT
2 SINTEF Technology and Society

{Martin.G.Jaatun,tor.o.grotan,maria.b.line}@sintef.no

Abstract. Safety Instrumented Systems (SIS) as defined in IEC 61508
and IEC 61511 are very important for the safety of offshore oil & nat-
ural gas installations. SIS typically include the Emergency Shutdown
System (ESD) that ensures that process systems return to a safe state
in case of undesirable events. Partly as a consequence of the evolving
“Integrated Operations” concept, a need is emerging for remote access
to such systems from vendors external to the operating company. This
access will pass through a number of IP-based networks used for other
purposes, including the open Internet. This raises a number of security
issues, ultimately threatening the safety integrity of SIS.

In this paper we present a layered network architecture that repre-
sents current good practice for a solution to ensure secure remote access
to SIS. Also, a method for assessing whether a given solution for remote
access to SIS is acceptable is described. The primary objective with the
specification of the remote access path is to defend the Safety Integrity
Level (SIL) of SIS from security infringements. It also accommodates the
special case when security functions have to be implemented within SIS.

Keywords: Process Control, Offshore, Secure remote access, Safety In-
strumented Systems.

1 Introduction

The concept of Integrated Operations (IO) is emerging as the preferred way
of working in the oil and gas industry. Real-time cooperation between on- and
offshore staff is required in order to optimize production, and new technologies
and new work processes enable this.

Commercial-off-the-shelf (COTS) hardware and software and Internet con-
nections are among the new technologies introduced, where “new” means that
they have not been widely used in the context of process control before. The ap-
plication area is remote operation, which enables onshore staff to log on to, and
perform operations on, process control systems (PCS) and Safety and Automa-
tion Systems (SAS) offshore. This opens for a whole new set of threats related
to information security that need to be considered.

Safety Instrumented Systems (SIS) are crucial subsystems offshore. According
to the IEC 61508/61611 series of standards [1] [2] and the PDS method [3],

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 121–133, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

122 M.G. Jaatun, T.O. Grøtan, and M.B. Line

they are of paramount importance for the safety of an offshore installation. SIS
typically include the Emergency Shutdown System (ESD), which often is the
ultimate guarantor for fail-safe properties at such installations.

The use of new technologies must be trusted to not have any negative im-
pact on SIS; i.e. impact that could raise significant doubt on its claimed Safety
Integrity Level (SIL) [1]. This means that the communication channels used
during remote operations must be technically secure, such that they can not be
tampered with, misused or in other ways used to compromise SIS.

Information security is usually defined by the three terms confidentiality, in-
tegrity and availability [4]. In this paper the scope is limited to integrity concerns
for SIS, which means that the objective of the “good practice for remote access”
is to prevent unauthorized changes to SIS.

Industrial safety and information security issues are two related – but still rather
different – fields of theory and practice [5]. In some application areas it is useful
to seek to combine the two, and process control is an example of such an area.
Combination will not be unproblematic, and some problems are already manifest
in the mixed vocabulary that needs to be employed when we are addressing safety
and security, respectively. Practitioners within both fields are concerned about
this challenge. As further discussed in [6], combining these two approaches into
a coherent whole is not achieved solely through a technical report, but a modest
hope is that this paper may contribute to such a development.

In this paper, a network topology for secure remote access to SIS is presented.
The solution includes contractor’s network, operator’s office network and process
control network, and security mechanisms. Also, a method is described that can
be used to assess whether a given network solution for remote access to SIS is
acceptable. The paper is based on results from the Secure Safety (SeSa) project,
funded by the Norwegian Research Council and PDS Forum.

The remainder of this paper is structured as follows: Section 2 refers to re-
lated work, and our research method is briefly described in section 3. The good
practice network topology is presented in section 4 and section 5. The method
for assessing the impact on SIL is described in section 6. We give our conclusion
in section 7 and suggest further work in section 8.

2 Related Work

The background and approach for the SeSa project was documented in [7]. Line et
al. [5] discuss general challenges in considering both safety and security in a given
situation. Schoitsch [8] and Kosmowski et al. [9] explore relationships between tra-
ditional “security” assurance and “safety assurance” as exemplified by SIL.

The UK Centre for the Protection of National Infrastructure (formerly NISCC)
has published guidelines on security of SCADA systems in general [10], and on
firewall deployment in such networks in particular [11]. The US National Insti-
tute of Standards and Technology (NIST) has also released a preliminary guide to
SCADA security [6]. Naedele [12] presents insights on IEC standardization efforts
in industrial IT security, although it does not appear that the IEC today is any
closer to a finalized standard.

Secure Safety: Secure Remote Access to Critical Safety Systems 123

The Norwegian Oil Industry Association (OLF) has published a set of Infor-
mation Security Baseline Requirements [13] which all operators on the Norwegian
Continental Shelf eventually will have to comply with.

The SeSa project has not significantly extended the good practices mentioned
above, but ventures to combine them into a coherent whole for the specific case
of secure remote access to SIS.

3 Method

The SeSa project studied a small number of Norwegian offshore operators and
contractors, and participated in two sessions of PDS Forum in 2006 [3]. The
PDS Forum meetings have a broad participation of experts from the Norwegian
process control community.

The interviews and the PDS Forum discussions contributed to the survey
on how the communication networks are implemented today within the process
control domain. This includes the operator’s office network, the contractor’s net-
work and their solutions for remote control, the process control systems offshore,
and the security mechanisms in use. Possible improvements were then identified,
based on state of the art and earlier experiences, regarding structure of the net-
work topology and security mechanisms to be added or modified. The network
topology presented in this paper therefore (in similarity with many other “good
practice” efforts) represents a synthesis of how it is actually implemented in the
offshore industry today and the ideal solution.

4 Structuring the Remote Access Path

A basis for ensuring secure remote operation is that the networks that constitute
the remote access path are organized in a manner that adheres to the principle of
“defense in depth”1, and that suitable access control mechanisms are employed.

4.1 The “Onion Model”

The left side of Fig. 1 depicts a layered access model from an operator’s point
of view. This model is based on two demilitarized zones (DMZ); one serving
as a buffer between the operator’s network and “the outside world”, while the
other separates the operator’s administrative network (which may span several
installations) from the process network (which typically is restricted to a single
installation).

All contractors must be considered “external” just like the rest of the Inter-
net, since the operator has no physical control over the contractor’s networks
(operators may impose contractual restrictions with respect to how and with
what equipment contractors are allowed to access the operators’ networks, but
will have limited means of verifying these arrangements on a continuous basis).
1 This is the opposite of the “Maginot line” principle of relying on a single point of

failure.

124 M.G. Jaatun, T.O. Grøtan, and M.B. Line

Protected

1

2

Office

Internet

3

SIS

1

2

SAS

Admin.

Process

DMZ

4

3

5

6

I-1 (a)

I-1 (b)

II-2 (c)

II-2 (d)

II-2 (e)

outer DMZ

Fig. 1. Layered model with allowed and rejected access attempts

The layered model of Fig. 1 can be argued on several levels. First, the sep-
aration of layers 1-3 from the surrounding is based on the requirement for SIS
autonomy, as stated in [14]. Furthermore, the separation of the process network
from the administrative network is as recommended in the NISCC good practice
guide [10]. Finally, the outer DMZ protects against all external actors, with spe-
cial mechanism to allow authorized contractors to access the appropriate parts
of the operator’s network.

As the operator has no physical control over the contractors’ networks, the
latter are likely to differ from installation to installation. By contractual obliga-
tions, operators should mandate a minimum layering as illustrated in the right
side of Fig. 1, where equipment used to access the operator’s network is placed
in a zone separated from the general office network. Note that since access in
this model conceptually always originates from the contractor, there is no need
from our point of view for the contractor to have a DMZ between its office net-
work and the internet - a single barrier (i.e. firewall) is sufficient. This is also
illustrated in Fig. 2.

4.2 Threats and Countermeasures

As part of the SeSa method, we have compiled a list of common threats and
countermeasures that are applicable to the access model in Fig. 1. This list is
based on sources like [15] and [10]. Space does not permit the reproduction of the
full list here, but identified threats originating from “the outside” (zone 7) are
listed in Table 1. The physical configuration suggestion that is described in the
following sections represents a response to the identified threats and necessary
countermeasures.

We have as a rule described the threats as originating from an adjoining zone,
but the ultimate goal for a given attack may be to traverse all interfaces to affect

Secure Safety: Secure Remote Access to Critical Safety Systems 125

Table 1. Threats originating from zone 7

From
Zone

To
Zone

Threat
Ultimate
impact on
zone

Countermeasure

7 c1 Attack on contractor’s zone
1

1

Configuration control, admini-
strative measures (Specifically:
Not allowed to access c1 from c2),
Firewalls and c1 tightly configured,
hardened

Malware planted in con-
tractor’s “secure zone”

1
Configuration control, administra-
tive measures

7 7 Manipulation of legitimate
traffic

1 Encrypt and authenticate

7 6 Attack on firewall A 6
Firewalls must be tightly configured
and patched

Attack on other resource in
zone 6

6

Don’t have other resources in DMZ,
Other resources that have to be in
the DMZ must be tightly configured
(hardened)

7 6 Attack on DMZ gateway 5

Tight configuration and hardening,
Strong authentication, Restrict ac-
cess to DMZ GW to pre-defined ad-
dresses

the innermost zone, e.g. in order to illegitimately shut down an oil installation2.
Note that no pre-compiled list of threats can ever be considered “complete”
for any real networked system; the threats we have identified must be treated
as a starting point that as a minimum must be compared with the network to
be studied. Threats that are found to be not applicable or irrelevant must be
documented as such, and a site-specific analysis must be performed to uncover
additional threats.

A conservative threat analysis must adhere to Kerckhoffs’ principle [16], and
assume that an attacker has access to all pertinent information regarding a
system (network topology, configuration) except passwords, encryption keys, etc.

4.3 Access Modes

If a substantial part of the need for remote access is to read status information
without making any changes, it is strongly recommended to consider a technical
solution that offers such “read only” access (see 5.1). A “read-only” solution
will in itself be easier to verify than a “full” solution. If read-only and read-
write solutions need to coexist, a “double” solution will imply that the entry to
the latter solution may be even more restrictive, thus increasing the chance for

2 From a safety point of view, the threat would have been the reverse, i.e., preventing
a necessary shutdown from taking place.

126 M.G. Jaatun, T.O. Grøtan, and M.B. Line

success in the “1st round” in Fig. 3. Furthermore, a read-only solution may also
potentially be reachable from a wider (looser) set of operational contexts on the
vendor side, as indicated in Fig. 1.

Hence, for a further reduction of complexity in solutions, we propose that
remote access is divided into three coarse categories:

0 No access
I Read-only access
II Full read/write access to SIS

These can be further refined as shown in Table 2.

Table 2. Access modes

I-1

Snapshots of SIS state (via “information
diode” - see section 5.1). In principle, this
is the equivalent of a CCTV transmission
of the terminal display.

I-2
Real time readout of SIS with possibility
of specifying parameters.

II-1

Real time data transmission between in-
stallations, e.g. from a Process Station
(PS) on one platform to a PS on another.
This implies machine-machine communica-
tion without user intervention.

II-2 Interactive read/write access to SIS

4.4 Access Examples

The various access options described in section 4.3 can now be mapped to the
layered models as illustrated by the arrows in Fig. 1, where it is assumed that
“information diode” functionality (see 5.1 for details) is available.

a) Allowed access from contractor’s office network to DMZ (e.g. to read
historical data from SIS)

b) Allowed access from internet to DMZ
c) Rejected (blocked) access from contractor’s office network to process

network
d) Rejected (blocked) access from internet to process network
e) Allowed access from contractor’s protected network to process network

(via broker function in DMZ)

Note that prevention of access from contractor’s office network cannot be
done reliably by packet filtering alone. Also note that the outer DMZ will have
additional access control mechanisms that are not explicitly described here.

Secure Safety: Secure Remote Access to Critical Safety Systems 127

4.5 Physical Mapping

An example of how the layered “onion” models presented above may be trans-
lated into a physical network configuration is presented in Fig. 2. Note that
while the doctrine of ”defense in depth” mandates that each of the firewalls A-D
should be implemented as separate units, a functionally equivalent configuration
using only two units with three interfaces each is possible.

SAS network (duplicated)

Administrative Network

VxWorks

WinXP

Process network

SIS

DMZ

HSOSOS

Zone 1

Zone 4Zone 3

Zone 2

PS
ESD

InternetControl room

Office network

Protected network

Contractor

OPC
server

OPC Klient

Access
approval

Zone 6

Work
permit

PCS

Zone 5

A

B
C

D

SAS

E

Fig. 2. Case for remote access

We repeat that although not shown explicitly, some sort of access control
mechanism is assumed to be placed in the outer DMZ (zone 6).

4.6 Barriers between Zones

Barriers between zones 7-2 are implemented using firewalls A-E. Additionally,
there is a manual “access approval” application in the inner DMZ (zone 4), where
an operator can grant (or deny) access attempts originating e.g. from onshore
contractors. Technically, this may be implemented as part of a terminal server
application. Good practice would in this case indicate that all such accesses
should be in accordance with a formal work permit.

There is no separate barrier between SAS (Safety and Automation System)
and SIS; this implies that the barrier(s) is (are) represented by the command
interface offered by the units that straddle the zone boundary, e.g. the ESD. To
access the ESD user interface, a remote user must as a minimum authenticate to
both the “access approval” application, as well as conventional authentication
to log onto the Operator Station.

128 M.G. Jaatun, T.O. Grøtan, and M.B. Line

If the protection against i.e. PCS access to the ESD is insufficient, accessing
the PCS is also critical.

Firewall E is shown as a barrier between the process network (zone 3) and
SAS (zone 2); it may also serve as a barrier between different SAS segments (if
appliccable).

4.7 Security Mechanisms in Individual Zones

As a rule, equipment in the inner zones exhibit “special purpose” properties to
a greater extent than equipment in the outer zones. Thus, the equipment in the
inner zones also generally has fewer configurable security mechanisms.

SIS (Zone 1):
– All PS units must be stripped of unnecessary functionality (“system

hardening”)
SAS (Zone 2):

– All PCS units must be stripped of unnecessary functionality (“system
hardening”)

Process network (Zone 3):
– All Operator Station (OS) units must be stripped of unnecessary func-

tionality (“system hardening”)
– Logon verified by domain controller
– Restricted traffic from this zone to zone 2 by firewall

Inner DMZ (Zone 4):
– Strong authentication

Administrative network (Zone 5):
– Domain controller for access to network resources
– General computer security measures (out of scope for this paper)

Outer DMZ (Zone 6):
– Access control on various levels;

• The general public
• Guests/contractors
• Own employees

4.8 OPC Communication

A common way of transferring process control information is by the use of the
“OLE for Process Control” protocol. OPC was designed for communication over
local area networks, which has created a demand for OPC tunnelling solutions
when OPC data needs to be transferred from one process network to another.
OPC tunnelling is frequently merely a bundling-unbundling operation, in which
case it has no added security value as such. Specifically, there is no confidentiality
or integrity protection of the tunnelled data.

Based on the dubious security property of OPC, we consider an OPC tun-
nel between two process networks to be an implicit interconnection of these
two networks. Furthermore, it is important that the tunnel is protected against

Secure Safety: Secure Remote Access to Critical Safety Systems 129

unauthorised modification or disclosure along the transmission path. This im-
plies that the tunnel must be encrypted, and that the plaintext data must have
a cryptographically strong message integrity check added before encryption.

Even though newer equipment frequently has incorporated OPC server/client
functionality, a configuration that enables a PS to establish OPC communica-
tion with any PS in a different installation should be discouraged. This can be
regulated using firewall E.

Since it is not known beforehand where an OPC tunnel will go, it must be
assumed (as a “worst case”) that it also passes through the open internet at
some point between the two process networks.

5 Additional Mechanisms

In the previous section, recommendations for structuring the remote access path
were described. In certain situations, it may be possible to further mitigate a
large number of threats by architectural choices. Two such options are described
below.

5.1 Read-Only Status Server

It is possible to configure a read-only status server e.g. by connecting a special
device (which we can call “information diode”) between the Safety and Automa-
tion System and a status server in the inner DMZ. The information diode can be
realized by sending UDP data enhanced with extra integrity checksum, ensuring
that the receiver has significantly higher bandwidth capacity than the sender,
etc. Since UDP does not acknowledge each packet, it is possible to create a device
that physically only can transmit information in one direction, e.g. by cutting
the “receive” wire on an Unshielded Twisted Pair (UTP) cable3. There are also
commercially available products (e.g. [17]) that offer this functionality.

The status server is here placed in the inner DMZ based on the premise that
the operator will want to retain a certain control over who gets access to this
information, and also takes into account that having a single centralized status
server for all operations, is likely to introduce too long delays in the system.
Having said this, technically there should be nothing to prevent the status server
from being placed e.g. in a given installation’s administrative network (i.e. on the
outside of Firewall D), if this is more in line with the operator’s requirements.

Ideally, the status server should receive every conceivable piece of data obtain-
able in the process/SAS/SIS networks. It must be determined whether this is
practically possible, e.g. a new unit may be introduced that is capable of query-
ing every valve, sensor, etc., and push this information through the diode to the
status server. The bandwidth requirements must be assessed based on the size
of the total data to be monitored.
3 Of course, there are a few more practical problems that must be solved in an imple-

mentation of this concept - which also explains why there are commercial alternatives
available.

130 M.G. Jaatun, T.O. Grøtan, and M.B. Line

5.2 Inner DMZ Proxy Functionality

In addition to providing a read-only status server, a finer granularity in access
control can be achieved by not granting full “remote desktop” access to an
Operator Station, but rather having a special-purpose application running in the
DMZ (e.g. on the terminal server) which contains options for executing specific
operations on SAS (and SIS) devices. Taken to its ultimate conclusion, this idea
would imply having a large number of distinct applications to which contractors
would be granted time-limited access by use of the work permit access approval
regime illustrated in Fig. 2.

It would also be possible to create a single, big “granular access” application,
but that would require a separate interface for configuring access rights, and
such a large application would be more difficult to verify for correctness.

6 The SeSa Method

Use of the SeSa method on a given case is illustrated in the flow-chart of Fig. 3.
In short, the method comprises the following steps:

1. Establish overview of threats and known weaknesses
2. Develop requirements specification of the “security value chain” [7] for the

remote access path
3. Determine the impact on SIS/SIL through a HAZOP-oriented analysis
4. If impact cannot be ruled out, try another round based on updated threat/

weakness picture and additional requirements (first round)
5. If impact still cannot be ruled out, identify additional security functions

within SIS, and assess through HAZOP whether this will provide sufficient

Establish overview over

assumed threats and

known weaknesses

Detail requirements

according to chapter 5

Assign reponsibilities for

security functions

HAZOP:

SIL impact ?

Specification of ”security value-chain” for remote access ”ready” for implementation

HAZOP:

Sufficient to handle

residual threat ?

Revise threats and

weaknesses.

Introduce new functions

ENTER

1s
t r

ou
nd

2nd round

no
yes

yes

Identify

additional

security

function

in SIS

TERMINATE

no

Fig. 3. The SeSa method

Secure Safety: Secure Remote Access to Critical Safety Systems 131

protection vs the residual threat (second round). If confidence in security
functions within the SIS perimeter is needed according to the previous step,
assess whether the assurance level implicitly carried by the specified SIL
level, is sufficient

6. If “success” is not achieved after the second round, the proposed solution
should be discarded.

The HAZOP (Hazard and Operability Analysis) [18] technique is frequently
used and well-established in industrial safety. In the SeSa method we use HA-
ZOP to identify threats and verify whether these threats are mitigated by the
proposed design of the remote access path. The SeSa use of HAZOP means that
if no “problem” remains after all explicitly known possibilities have been exam-
ined exhaustively, the “conclusion” must be that the proposed solution is per
definition “secure”. However, there will always be a possibility that something
is overlooked, or that new threats and vulnerabilities emerge or is revealed at a
later time. The SeSa method cannot account for this type of (epistemic) uncer-
tainty. Such potential “flaws” in the judgement must be handled in retrospect,
when they are revealed.

It may be difficult to gauge the assurance consequences of adding a COTS
component to a system that has a given SIL. Kosmowski et al. [9] argue for a
mapping between SIL and Common Criteria Evaluation Assurance Levels (EAL)
[19]. However, it should be noted that a given EAL only says something about
our assurance that the mechanisms defined in the appropriate Protection Profile
have been properly implemented; if these are insufficient to guarantee our de-
sired SIL, a mapping between EAL and SIL is meaningless. On the other hand,
if the mechanisms we rely on to provide our given SIL is included in the compo-
nent’s Protection Profile, we believe that the mapping proposed in [9] may be
appliccable.

7 Conclusion

In this paper, we have presented good practice for secure remote access to Safety
Instrumented Systems in an offshore process control system. Furthermore, we
have introduced the SeSa method for assessing whether a given network solution
is acceptable when it comes to ensuring the integrity of SIS.

The network solution presented complies with advice and guidance given by
several actors in the industry. This fact contributes to assurance that the solution
is acceptable and ensures an appropriate level of security for SIS.

8 Further Work

Further work needs to be done along the following lines:

a) Further trial of the method on “real” cases
b) Extending the scope to broader “SAS” contexts

132 M.G. Jaatun, T.O. Grøtan, and M.B. Line

c) Development of schemes to update “approved” solutions in light of new
knowledge of threats and vulnerabilities

d) Operation and implementation of the “value-chain” that is the result of
a successful use of the SeSa method.

The latter is considered the most urgent. First, because of the limited scope of
the SeSa method presented herein (providing a functional requirement specifica-
tion), of which implementation and management across organisational borders
is not included. Second, because a dynamic environment, both technically and
organisationally, is expected to be a central characteristic of the Brave New
World of Integrated Operations. The “value-chain” has to be re-constructed and
updated rather frequently.

Acknowledgments

This paper has presented results from the SeSa research project funded by the
Norwegian Research Council and PDS Forum. We are grateful for the participa-
tion of Tor Onshus (NTNU), Knut Øien (SINTEF T&S), Stein Hauge (SINTEF
T&S) and all PDS Forum attendees.

Also thanks to Odd Nordland, SINTEF ICT, who made helpful comments on
a previous version of this paper.

References

1. Functional safety of E/E/PE safety-related systems, IEC Std. 61 508 (1998)
2. Functional safety - Safety Instrumented systems for the process industry sector,

IEC Std. 61 511 (2003)
3. The PDS webpage. Visited, 2007-03-09,

http://www.sintef.no/static/tl/projects/pds/www/

4. Information technology - Security techniques - Information security management
systems - Requirements, ISO/IEC Std. 27 001 (2005)

5. Line, M.B., Nordland, O., Røstad, L., Tøndel, I.A.: Safety vs Security?. In: Pro-
ceedings of PSAM 8, New Orleans (2006)

6. Guide to Supervisory Control and Data Acquisition (SCADA) and Industrial
Control Systems Security, NIST special publication 800-82 (initial public draft)
(September 2006),
http://csrc.nist.gov/publications/drafts/800-82/Draft-SP800-82.pdf

7. Grøtan, T.O.: Secure Safety in Remote Operations. In: Proceedings of ESREL
2006, Estoril, Portugal (2006)

8. Schoitsch, E.: Design for safety and security of complex embedded systems: A
unified approach. In: Cyberspace Security and Defense: Research Issues. NATO
Science Series II - Mathematics, Physics and Chemistry, vol. 196 (2006)

9. Kosmowski, K., Sliwinski, M., Barnert, T.: Functional safety and security assess-
ment of the control and protection systems. In: Proceedings of ESREL 2006, Es-
toril, Portugal (2006)

10. NISCC Good Practice Guide - Process Control and SCADA Security, PA Consult-
ing Group on behalf of NISCC, Tech. Rep. (October 2005),
http://www.cpni.gov.uk/docs/re-20051025-00940.pdf

http://www.sintef.no/static/tl/projects/pds/www/
http://csrc.nist.gov/publications/drafts/800-82/Draft-SP800-82.pdf
http://www.cpni.gov.uk/docs/re-20051025-00940.pdf

Secure Safety: Secure Remote Access to Critical Safety Systems 133

11. Byres, E., Karsch, J., Carter, J.: Good Practice Guide - Firewall Deployment for
SCADA and Process Control Networks. British Columbia Institute of Technology,
on behalf of NISCC, Tech. Rep. (2005),
http://www.cpni.gov.uk/docs/re-20050223-00157.pdf

12. Naedele, M.: Standardizing industrial IT security - a first look at the IEC approach.
In: Proceedings of 10th IEEE Conference on Emerging Technologies and Factory
Automation, vol. 2, p. 7 (2005)

13. OLF Guideline 104: Information Security Baseline Requirements for Process Con-
trol, Safety, and Support ICT Systems (2006), http://www.olf.no/?35820.pdf

14. Forskrift om styring i petroleumsvirksomheten (Styringsforskriften), Norwegian
Petroleum Directorate, §1 (December 2004)

15. IT Grundschutz Manual. Bundesamt für Sicherheit in der Informationstechnik
(2004), http://www.bsi.de/english/gshb/manual/

16. Kerckhoffs, A.: La cryptographie militaire. Journal des sciences militaires IX, 5–38
(1883)

17. Whitepaper: Tenix Interactive Link Data Diode. Tenix America (a subsiduary of
Tenix pty). Visited 2007-03-16 (2006),
http://www.tenixamerica.com/images/white papers/TenixIL DataDiode.pdf

18. Hazard and operability studies (HAZOP studies) - Application guide, IEC Std. 61
882 (2001)

19. Information technology - Security techniques - Evaluation criteria for IT security,
ISO/IEC Std. 15 408 (2005), http://www.commoncriteriaportal.org/

http://www.cpni.gov.uk/docs/re-20050223-00157.pdf
http://www.olf.no/?35820.pdf
http://www.bsi.de/english/gshb/manual/
http://www.tenixamerica.com/images/white_papers/TenixIL_DataDiode.pdf
http://www.commoncriteriaportal.org/

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 134–148, 2008.
© Springer-Verlag Berlin Heidelberg 2008

SEMAP: Improving Multipath Security Based on
Attacking Point in Ad Hoc Networks

Zhengxin Lu1, Chen Huang1, Furong Wang1, and Chunming Rong2

1 Dept. of E. I. E, Huazhong University of Science and Technology, China
luzx@mail.hust.edu.cn, szo094@hotmail.com,

wangfurong@mail.hust.edu.cn
2 Dept. of E. C. E., University of Stavanger, Norway

chunming.rong@uis.no

Abstract. In hostile Ad hoc network, the possibility of being attacked or attack-
ing others can’t be avoided. Most current intrusion detection systems and secure
routing protocols only focus on concrete attacking behaviors while neglecting
the underlying attacking threat. So it’s inevitable to choose malicious nodes
during routing establishment. To construct a secure multipath route, we present
SEMAP, a secure enhancement mechanism based on Attacking Point (AP)
which converts the possibility of security threat to a concrete metric. AP is a de-
scription of security status of a node. AP of a node can be easily extended to
that of link, path and path set, which provides an important reference in route
selection. Our design can exclude the nodes that will be the objects of adversar-
ies from the network before actual routing process. Simulation results show that
SEMAP provides an effective security enhancement without compromising the
efficiency of original routing protocol.

Keywords: Attack, Possibility, Metric, Multipath, Ad hoc.

1 Introduction

Mobile Ad hoc networks have received tremendous attention in recent years. On one
hand, rapid deployment ability, self-organizing configuration and other attracting
features make Ad hoc network popular in tactical and military applications; on the
other hand, the inherent characteristics of Ad hoc networks, such as open wireless
channel, limited computation power and highly dynamic topology also make Ad hoc
network vulnerable to malicious attacks.

Constructing a secure route from source to destination is a basic service in Ad hoc
networks as well as in any other networks. A secure route should be composed by
reliable nodes or the nodes that are not likely to be the objects of adversaries. That’s
to say, non-reliable nodes and the nodes with hidden trouble should be isolated from
the network. Conventionally, Ad hoc network must rely on intrusion detection system
(IDS) [1,2] to exclude internal malicious members, and also resort to secure routing
protocols [3~7] to make sure that the successful exchange of routing information is
among legitimate participants. However, both IDS and secure routing protocol have
their limitations: for IDS, as pointed out in [8], adversaries may try to hide their

 SEMAP: Improving Multipath Security Based on AP in Ad Hoc Networks 135

attacks under protocol-compliant behaviors. For example, it is not easy to distinguish
between packet loss caused by normal network congestion and that caused by selfish
and malicious behaviors. Additionally, most IDS mechanisms only focus on the dis-
covery of attackers while ignoring the nodes being attacked or the ones that will be
the objects of adversaries. These ignored nodes should also be excluded because they
may become the weak point of following routing process; for the secure routing pro-
tocols, they can’t guarantee that they won’t select a compromised node as intermedi-
ate node during message forwarding, nor do they provide an explicit approach for
comparing the security among nodes. IDS and secure routing protocol also have a
common short-age that they are lack of prediction for the underlying attacking threat.
Before any reaction/recovery mechanism takes effect, the established route may have
been disrupted. And route re-construction not only brings significant communication
overhead, but also increases end-to-end delay.

From the above analysis, we can get the conclusion that, constructing an absolute
secure path is impractical especially in a hostile and unstable environment. Every
node has the possibility of attacking others or being attacked. Therefore, designing a
flexible secure routing enhancement mechanism which can take the difference of
security status of each node into account is crucial. Even when a proportion of nodes
suffer from serious security threat, this secure mechanism can make the best choice of
path selection to provide a reliable routing service.

(1) Content of this paper
In this paper, we propose a security enhancement mechanism for multipath routing
protocols of Ad hoc network, SEMAP, to provide a more reliable end-to-end routing
service. SEMAP is compatible with both single path and multipath routing. The fun-
damental idea of SEMAP is based on a new proposed concept “Attacking Point”.
Attack Point (AP) is a metric for evaluating the security status of nodes, which is the
combination the possibilities of attacking, being attacked and being attacked in the
future. Each node will present an abnormal status in its performance while it suffers
from attack. But as mentioned above, this status may also a result of the decline of its
own capability. No matter which reason causes this phenomenon, this node is not
suitable to be a part of routing process in some extent. To concrete this extent, we
convert it to AP as a security metric through specific algorithm. AP is the complete
evaluation of security status of a node, but a single node only plays a tiny roll in the
whole routing process. So after obtaining AP of a single node, we extend it to a path
and a path set for obtaining a general security evaluation on an end-to-end connection.
By this means, when multiple paths have been established, we have sufficient confi-
dence to choose a suitable path set based on pre-defined AP requirement.

(2) Challenge of SEMAP
We address three major design issues:

1) How to convert the possibilities of attacking others, being attacked and being at-
tacked in the future to the AP of node;

2) How to integrate SEMAP to current multipath routing protocol seamlessly;
3) How to make a decision on selecting a secure communication channel based on

AP of a path set developed from that of a node.

136 Z. Lu et al.

(3) Contribution of this paper
SEMAP brings the following improvements on current security mechanisms for Ad
hoc networks:

1) Detecting misbehavior and abnormal status of nodes before actual routing estab-
lishment;

2) Developing a novel concrete metric for security evaluation in path selection;
3) Integrating AP based security with conventional routing protocols seamlessly

with compromising the efficiency.

The following paper is organized as follows: In section 2, we present the related
works on multipath routing protocol. In section 3, we provide the details of SEMAP,
which includes the three major design issues. Simulation results are given in section 4
and section 5 concludes the whole paper.

2 Related Works

Multipath routing has shown its effectiveness in coping with the frequent topology
changes and improving resilience to node/link failures in Ad hoc network [9~12].

Split Multipath Routing (SMR) [9] first establishes a shortest delay route between
source and destination. Then it creates a maximum path set whose member path is
disjoint from the shortest delay route. SMR relies on RREQ flooding to the entire
network to search maximal disjoint paths, which brings considerable communication
overhead to the network.

A multipath extension to DSR is proposed in [10]. Source node floods routing re-
quest queries to destination node. When intermediate node receives a query, they will
duplicate this query and re-broadcasts it. Queries arrive at destination nodes through
different paths and only the ones that are disjoint with others will be replied by the
destination node.

A multipath extension to AODV (AODVM) [11] is proposed for finding reliable
routing paths. Intermediate nodes not only duplicate RREQ during forwarding them,
but also preserve these packets. It is obvious that this approach will consume enor-
mous memory and communication overhead.

AOMDV is proposed in [12], which is an extension to AODV for computing mul-
tiple loop-free and link disjoint paths. A new concept of “advertised hop count” is
introduced to make sure that routing controlling messages won’t travel back to origi-
nal. Intermediate node will guarantee link disjoint when they re-flood routing control-
ling messages.

3 Security Enhancement Mechanism Based on Attacking Point

3.1 Assumption

(1) Cryptographic method
SEMAP employ asymmetric encryption method. Each node joining the network gen-
erates a pair of public and private keys;

 SEMAP: Improving Multipath Security Based on AP in Ad Hoc Networks 137

(2) Key server
There is a key server in the network. This key server doesn’t authenticate any network
members, and only provides a storage space for preserving public keys. In our design,
this key server is equipped with sufficient storage capability and under strong protection;

(3) Underlying routing protocol
We employ multipath routing protocol AOMDV to establish path set between source
and destination. Other protocols are also compatible with SEMAP;

(4) Radio radius and communication channel
The radio radius of node is time-invariant and the wireless channel is bidirectional.
The wireless network cards of nodes are all in promiscuous model, which makes
neighboring nodes within transmission range can monitor the communication status
of each others.

3.2 The Design Details of SEMAP

There are three main components of SEMAP. First of all, an extensible model of AP
calculation is the precondition of SEMAP design; the second is the proper integration
of AP and underlying routing protocol; finally a path selection policy is set for con-
structing the most secure path set. This section will provide the details.

3.2.1 The Overview of SEMAP
The concept of “Attacking Point” comes from the observation that, in a hostile and
unstable network environment, security threat can’t be avoided for any network
member. We call this phenomenon as “Pervasive Security Threat”. From this concept,
possible existing attacks, potential possibility to be attacked and suspicious misbehav-
ior should be all taken into account. Behind the above three security threats, we as-
sume that there exists a “virtual attacker” with a possibility, and we convert this
possibility to the new security metric – Attacking Point (AP). Then determining
whether a node is suitable for joining routing process or not, can simply compare the
value of its AP with pre-defined security requirement.

SEMAP explores the relationship between AP and current multipath routing proto-
cols. As shown in Figure 1. There are four main procedures related with AP: evaluat-
ing AP, collecting AP, analyzing AP and monitoring AP. Each procedure can be
mapped to corresponding stage of the routing process.

1) Evaluating AP needs the up-to-date operation information of nodes. The period
exchange of Hello message can take the responsibility to collect such information,
which won’t bring additional communication overhead;

2) The first procedure only obtains AP of a single node. To give a security estimate
of a whole path, all the AP of nodes along the path should be obtained. Then as rout-
ing controlling messages travel along the path, each intermediate node can attach its
security evaluation (AP) on its neighboring node on these messages;

3) Based on the analyzing result of AP of each path set, source node will the final
decision on path selection;

4) Conventional routing maintenance is based on the availability detection and it
can be updated to AP monitoring of neighboring nodes during packet forwarding.

138 Z. Lu et al.

Collecting AP Analyzing AP Monitoring AP

Routing
Request/Response

Message

Path
Construction

Routing
Maintenance

Path
Selection

SEMAP

Routing Protocol

Evaluating AP

Hello Message

Secure Mutipath
Routing Protocol

Fig. 1. The Relationship between SEMAP and Routing Protocol

3.2.2 Mathematic Model of Attacking Point
Operation information reflects three kinds of security statuses of node, which include
being attacked, being attacked in the future and attacking others. Each status provides
a part of reference to form the final AP. So we define three sub-APs to represent their
possibilities separately, which are Attacking Influence Point (AIP), Attacking Tempt-
ing Point (ATP) and Attacking Launching Point (ALP).

The conversion procedure from the original operation information to the final AP
is as follows: collecting the statistic data of performance status in a short time window
-> making a contrast between current data with the pre-defined standard data -> esti-
mating the security status from comparison result in the view of possibility -> con-
verting the security status to a concrete value of AP.

(1) Attacking Influence Point (AIP)
The weakness in conventional secure routing protocols is that they seldom consider
the influence imposed to network performance from varieties of attack. Node will
present diversity in its performance more or less after attack. So a deeper understand-
ing based upon such diversity should be achieved. AIP indicates the possibility of
being attacked according to the performance decline and we employ several perform-
ance metrics recommended by ITU-T and IETF as follows:

1) IPTD (IP Packet Transfer Delay);
2) IPLR (IP Packet Loss Rate);
3) IPER (IP Packet Error Rate).

It should be pointed out that, the decline of above performance metrics doesn’t indicate
that node is under attack. For example, the increase of IPTD may be the result of network
congestion or shortage of computational power. PIPTD, PIPLR and PIPER are the possibilities
of being attacked deduced from each performance decline, as shown in Formula 1~3:

,

0 ,

IPTD IPTD

IPTD

S C

S IPTD IPTD
IPTD

IPTD IPTD

e C SP
C S

−−⎧⎪ >= ⎨
⎪ ≤⎩

 (1)

,

0 ,

IPLR IPLR

IPLR

S C

S IPLR IPLR
IPLR

IPLR IPLR

e C SP
C S

−−⎧⎪ >= ⎨
⎪ ≤⎩

 (2)

 SEMAP: Improving Multipath Security Based on AP in Ad Hoc Networks 139

,

0 ,

IPER IPER

IPER

S C

S IPER IPER
IPER

IPER IPER

e C SP
C S

−−⎧⎪ >= ⎨
⎪ ≤⎩

 (3)

Where CIPTD, CIPLR and CIPER are the current values of performance metrics; SIPTD,
SIPLR and SIPER are the pre-defined standard values of performance metrics. AIP can
be calculated with Formula 4:

1 2 3

1 2 3

* * *

1

IPTD IPLR IPERAIP P P Pα α α
α α α

= + +⎧
⎨ + + =⎩

 (4)

Where 1α , 2α and 3α are the influence coefficients of each performance metric in
AIP and can be adjusted according to practical requirement. For example, in real-time
critical environment, the proportion of IPTD will be increased while that of IPLR and
IPER can be reduced.

(2) Attacking Tempting Point (ATP)
Ad hoc network is a completely distributed network in its definition. However the
degree of node activity is not uniform across the network in fact. To achieve a maxi-
mum damage effect, adversaries will seek for the most desired objects which are the
“hop spot” of network, which means that the node has taken part in multiple network
activities. For pre-caution, the tempting factors of attack should be extracted to pre-
dict the probability of coming threat. We conclude three characteristic tempting fac-
tors as follows:

1) NIN (Number of Immediate Neighbors): It reflects the density of an area and the
opportunity of being connected with others. Attacking such node will result the de-
struction of a whole local area;

2) NRP (Number of Routing Process): It is probable that a node belongs to several
routing process at the same time, which makes it as the traffic center of network. The
failure of such node will result the breakage of multiple paths;

3) LTQ (Length of Task Queue): This indicates the congestion status of node.
Node of heavy load intrigues attackers more easily for its failure will bring serious
packet loss.

Calculation of the components of ATP employs an experiential model based on seg-
ment, as illustrated in Figure 2.

Fig. 2. A Segment Model for ATP Calculation

140 Z. Lu et al.

For example, the possibility of being attacked in the future deduced from the value
of NIN is as follows:

1 NIN 1

2 1 NIN 2

2 NIN 3

, 0 V

, V

3, V

.......

NIN

P Value

P Value Value
P

P Value Value

≤ ≤⎧
⎪ < ≤⎪= ⎨ < ≤⎪
⎪⎩

 (5)

PNRP and PLTQ can be also obtained through the same model. Then ATP is calcu-
lated just as AIP.

1 2 3

1 2 3

* * *

1

NIN NRP LTQATP P P Pβ β β
β β β

= + +⎧
⎨ + + =⎩

 (6)

Where 1β , 2β and 3β are the proportion of each tempting factor in ATP and can be

also adjusted according to security requirement.

(3) Attacking Launching Point (ALP)
An Adversary may possess several misbehaviors simultaneously. The more its misbe-
haviors, the more threat it will bring to the network. So the calculation of ALP, the
possibility of attacking others, is an accumulative model, as shown in Formula 7.

, 0

0 , 0

Nke N
ALP

N

−−⎧ ≠⎪= ⎨
=⎪⎩

 (7)

Where 0<k<1 and N is the number of misbehaviors. The misbehavior list can be seen
in [13], which include Unusual Traffic Attraction (UTA), Lack of Error Messages
(LEM) and Frequent Route Updates (FRU) and so on. Figure 3 shows that as the
increase of misbehaviors, ALP is close to 1.

Fig. 3. The Relationship between ALP and Misbehaviors

(4) Attacking Point (AP)
After obtaining AIP, ATP and ALP, finally AP is calculating through Formula 8.

1 2 3

1 2 3

* * *

1

AP AIP C ATP C ALP C

C C C

= + +⎧
⎨ + + =⎩

 (8)

 SEMAP: Improving Multipath Security Based on AP in Ad Hoc Networks 141

C1, C2 and C3 are ratios of AIP, ATP and ALP in AP, which are system parame-
ters. As shown in Figure 4, the mathematic model of AP is extensible and new secu-
rity related components can be easily added. The only change is internal relationship
of the series ofα , β and k.

The higher security threat a node has, the higher its AP is. So the goal of SEMAP
is to make the routing process away from the nodes with high AP.

Fig. 4. The Extensible Model of AP

3.2.3 Integration of AP and Routing Protocol

(1) AP evaluation process
Nodes exchange their status information with immediate neighbors periodically and
evaluate their AP through the model in 3.3.2. Then as show in Figure 5, nodes classify
their neighbors into two categories, suspicious and eligible. Based on the pre-defined
AP threshold APT, each node maintains an Eligible Neighbor Table (ENT) to record
the neighbors whose AP is lower than APT for message forwarding.

Fig. 5. Node Classifying

(2) Routing controlling message
To integrate AP into current routing protocol, two new fields are added to conven-
tional routing controlling messages such as Routing Request Message (RREQ) and
Routing Response Message (RREP): AP List and AP Hash. AP List records AP of
nodes along the paths; AP Hash is the Hash value of AP List. Routing controlling
messages in SEMAP take the responsibility of colleting AP of nodes along the path.

142 Z. Lu et al.

(3) Routing request procedure
In routing request procedure, RREQ collects AP from source side.

A. Source node generating RREQ
Source node generates a secret random number R and encrypts it with the public key
of destination node got from the key server. RE is the encryption result.

Source node unicasts RREQ to the nodes in its ENT without employing the con-
ventional broadcast. AP List field of each RREQ is filled with AP of corresponding
neighboring node. Then the initial AP Hash field is obtained through Hash function as
Formula 9. Hash function and the encrypted R will together prevent AP from mali-
cious modification during message forwarding. Then new RREQ packet format is
<RREQ, AP List, AP Hash, RE>.

(,)APH hash R AP= (9)

B. Intermediate node forwarding RREQ
When an intermediate node receives RREQ, it first checks whether it comes from a
member in its ENT. If not, this RREQ will be abandoned; otherwise the intermediate
node extracts AP Hash field from RREQ and calculates new AP Hash based on AP of
next hop as Formula 10.

_ _(,)AP new AP old nxethopH hash H AP= (10)

AP of next hop and new HAP will be attached after the previous fields of AP List
and AP Hash. Then the updated RREQ is re-forwarded to eligible neighbors. As
RREQ travels through the network, AP from source side is collected. When RREQ
reaches destination node, it will contain a chain of AP and HAP, as shown in Figure 6.

S 1 2 n D…

AP1 AP2 APN

HAP1 HAP2 HAPN

…

…

AP List =

AP Hash =

Fig. 6. The chains of AP and HAP

C. Destination node checking RREQ
Intermediate node may secretly decrease its AP value given by its previous hop during
message forwarding, which makes it seem more secure. To make sure that AP List is
not maliciously modified, destination node will perform the following checking steps:

Step1: Decrypting RE with its private key and obtaining R;
Step2: Calculating HAP’ recursively as Formula 11 and compare each HAP’ with HAP in
corresponding position of AP Hash chain. If they are not equal, we can deduce that inter-
mediate node in that position is malicious. The path this node belongs to will be discarded.

 SEMAP: Improving Multipath Security Based on AP in Ad Hoc Networks 143

1

1

2 1

1

2

' (,)

' (,)

...

' (,)n n n

AP

AP AP

AP AP

H hash R

H hash H AP

H hash H AP

AP

−

=

=

=

⎧
⎪⎪
⎨
⎪
⎪⎩

 (11)

(4) Routing response procedure
In routing response procedure, RREP collects AP from destination side. The basic
process of generating and processing the fields of AP List and AP Hash is same as
that of routing request procedure, which will not be described again.

A. Destination node generating RREP
In a pre-defined time limit, destination node collects sufficient RREQ from source
node and constructs disjoint path sets from the paths that RREQ has transmitted
along. Disjoint path set can be denoted as {

}
1 2, ,..., |

m

m

ii

DisjiontSet Path Path Path
Path

=
∩ = ∅ . The information of disjoint set and AP chain of source side are

 attached on RREP. RREP will be sent back to source node back along the route
RREQ has travelled through.

B. Source node processing RRSP
When source node receives RREP, it obtains AP chain of both source side and desti-
nation side, as shown in Figure 7. Then source node can employ the mean value of
AP from these two sides as the final and complete security estimation of an interme-
diate node through Formula 12.

2

sourceside detinationside
finalAP

AP AP
=

+
 (12)

S 1 2 n D…

AP1 AP2 APn

AP1' AP2' APn'

RREQ

RREP

Fig. 7. AP of source side and destination side

3.2.4 Security Analysis Based on AP

(1) The extending concept of AP
When source node gets multiple disjoint paths from destination node, it needs to de-
termine which one is most suitable for final communication channel. To evaluate the
security of a path set, we convert AP of a node to AP of a path set. The conversion
order is node->link->path->path set.

144 Z. Lu et al.

To estimate path robustness, [14] offers two metrics: the number and the length of
disjoint paths. More intermediate nodes and less disjoint paths make end-to-end con-
nection apt to break. From this concept, AP of a path should be higher than that of any
intermediate node while AP of a path set should be lower than that of any single path.

AP is the probability that a node is in danger status. So AP is lower than 1. We de-
fine AP of a link between node ni and nj as

1 (1)(1) Link i j i j i j i jAP AP AP AP AP AP AP AP and AP= − − − = + − >

We define AP of a path consisting of p links as

1

1 (1) 1 (1)
p

path linkm linkm linkm

m

AP AP AP AP
=

= − − < − − =∏

We define AP of a path set consisting of q disjoint path as

1

q

set pathm pathm

m

AP AP AP
=

= <∏

(2) Further optimization
Source node set a security requirement setτ , and AP of path set should not ex-
ceed setτ . There may be two conditions:

1) There are more than one path set satisfying the security requirement. Then
source node chooses the path set with the lowest AP as the final channel;

2) There is no path set satisfying the security requirement. Source node will exe-
cute the following steps:

Step1: Choosing the path set with the lowest AP;
Step2: Deleting the path with the highest AP from this path set and calculating AP

of new path set;
Step3: Comparing AP of new path set with setτ , if new AP is lower than setτ , this

new path set will be the final channel; otherwise go back to step1 until suitable path
set is found.

After suitable path set is found, source node can send data packets to destination
node along it. Source node makes the final decision, which can confuse the object of
adversaries. Because even adversary intercepts the information of path set in routing
response procedure, it can’t figure out whether it is the final communication channel.

4 Simulation

We construct the simulation environment using NS2. The simulation object is to
compare the performance of AOMDV with and without SEMAP. As we have pointed
out at the beginning of this paper that SEMAP is protocol independent. Then other
multipath routing protocols can be also employed in our simulation. We only choose
AOMDV as an example. In the simulation, the MAC layer is the IEEE 802.11 proto-
col with DCF. 200 nodes are placed randomly within a 1000m × 1000m area. The
channel capacity is 2Mbps. The maximum node speed is 50m/s and the minimum

 SEMAP: Improving Multipath Security Based on AP in Ad Hoc Networks 145

speed is 1m/s. The simulation time is 600 seconds. We set nodes in high security
threat as the nodes whose AP are higher than APT. And the ratio of nodes in high
security threat can be adjusted according to simulation requirement. Other simulation
parameters related with SEMAP is listed in table 1.

Table 1. Simulation Parameters

APT 0.3
setτ 0.45

1α , 2α , 3α 0.33

1β , 2β and 3β 0.33

k 0.6
C1, C2, C3 0.33

We compare the performance of AOMDV with and without SEMAP at the follow-
ing three aspects:

1) Packet delivery ratio: The ratio of the amount of packets received by the desti-
nation to the total number of packets sent by the source;

2) Average delay: In our simulation, we treat average delay as the average time
from the moment of source node sending RREQ to that of destination node receiving
the first data packet;

3) Average re-establishment overhead: The average number for source node re-
establishing route because of the failure of intermediate nodes.

Fig. 8. Comparison on Packet Delivery Ratio

Figure 8 shows that as the increase of the ratio of nodes in high security, packet de-

livery ratio of AOMDV decreases sharply. When the ratio of nodes in high security
reaches 90%, AOMDV nearly loses the routing ability while AOMDV with SEMAP
can keep a high packet delivery ratio exceeding 60%. This is because that SEMAP

146 Z. Lu et al.

provides a concrete metric for evaluating the security of a node, which can success-
fully exclude malicious node from routing establishment process. These malicious
nodes may bring continuous damage to the network such as dropping packs silently.

Fig. 9. Comparison on Average Delay

Figure 9 shows that AOMDV with SEMAP also represents a better performance than
AOMDV without SEMAP in average delay. The main component of average delay is the
time spent in constructing the path. In conventional routing request procedure and routing
response procedure, nodes with hidden trouble may not be completely exposed. When
the forwarding of data packet begins, these nodes are apt to launch various attacks which
bring frequent route re-establishment. One character of SEMAP, which is also a contri-
bution of this paper, is that SEMAP can discovery node with hidden trouble before actual
routing establishment, which can maintain average delay in a low level.

Fig. 10. Comparison on Average Re-establishment Overhead

 SEMAP: Improving Multipath Security Based on AP in Ad Hoc Networks 147

Figure 10 shows that, there is only a small amount of link breaks in the network em-
ploying AOMDV with SEMAP. So communication overhead for route re-establishment
can be greatly reduced. As pointed out in the contribution of this paper, SEMAP can be
integrated with multipath routing protocol seamlessly, which doesn’t any additional
message to the network. So SEMAP provides a security enhancement without compro-
mising the efficiency of normal routing protocols.

5 Conclusion

This paper explores the useful information of performance status of nodes in Ad hoc
network and presents a secure enhancement mechanism SEMAP which can convert
the possibility of security threat to a concrete metric. Then the comparison of security
status among nodes is available, which can assist nodes to make the best choice in
message forwarding and path selection. Simulation results have proved some attrac-
tive features of our mechanism in three aspects: packet delivery ratio, average delay
and average route re-establishment overhead. Therefore, autonomic healing cell can
be used as a practical solution for securing current multipath routing protocols.

Acknowledgement

This work is supported by National Natural Science Foundation of China under Grant
No.60572047 and Program for new Century Excellent Talents in University NCET-
06-0642.

References

1. Wei, D.: Research on Intrusion Detection in Ad Hoc Network, PHD thesis, College of
Automation ChongQin University, 5 (2006)

2. Zhang, Y., Lee, W., Huang, Y.: Intrusion detection technqiues for mobile wireless net-
works. ACM Wireless Networks 5, 545–556 (2003)

3. Fei, W., Yijun, M., Benxiong, H.: COSR: Cooperative On-Demand Secure Route Protocol
in MANET. In: Proceedings of ISCIT 2006, pp. 890–893 (2006)

4. Guerrero, M.: Securing ad hoc routing protocols. IETF Internet Draft, 06 (2006)
5. Seung, Y., Prasad, N., Robin, K.: Security-aware ad hoc routing for wireless networks. In:

Proceedings of MobiHoc 2001, pp. 299–302 (2001)
6. Yih-Chun, H., Adrian, P., Johnson David, B.: Ariadne: A secure on-demand routing proto-

col for ad hoc networks. Wireless Networks 11(1-2), 21–38 (2005)
7. Papadimitratos, P., Haas, Z.: Secure routing for mobile ad hoc networks. In: Commun.

Networks and Distributed Systems Modeling and Simulation Conference (CNDS) (2002)
8. Aad, I., Hubaux, J.-P., Knightly, E.W.: Denial of Service Resilience in Ad Hoc Networks.

In: ACM MOBICOM, pp. 202–215 (2004)
9. Lee, S.J., Gerla, M.: Split Multipath Routing with Maximally Disjoint Paths in Ad Hoc

Networks. In: Proceedings of the IEEE ICC, pp. 3201–3205 (2001)
10. Nasipuri,, Das, S.R.: On-Demand Multipath Routing for Mobile Ad Hoc Networks. In:

Proceedings of IC3N (1999)

148 Z. Lu et al.

11. Ye, Z., Krishnamurthy, S.V., Tripathi, S.K.: A Framework for Reliable Routing in Mobile
Ad Hoc Networks. In: IEEE INFOCOM (2003)

12. Marina, M.K., Das, S.R.: On-demand Multipath Distance Vector Routing in Ad Hoc Net-
works. In: Proceedings of the 9th IEEE International Conference on Network Protocols
(ICNP) (2001)

13. Wang, F., Huang, C., Zhao, J., Rong, C.: IDMTM: A Novel Intrusion Detection Mecha-
nism Based on Trust Model for Ad Hoc Networks. In: Proceeding of The IEEE 22nd In-
ternational Conference on Advanced Information Networking and Applications, AINA
2008 (2008)

14. Goyal., D., Caffery Jr., J.: Partitioning Avoidance in Mobile Ad hoc Networks Using Net-
work Survivability. In: Proceedings ISCC 2002, pp. 553–558 (2002)

Scheduling for Reliable Execution in Autonomic
Systems�

Terry Tidwell, Robert Glaubius, Christopher Gill, and William D. Smart

Department of Computer Science and Engineering
Washington University, St. Louis, MO, USA

{ttidwell,rlg1,cdgill,wds}@cse.wustl.edu

Abstract. Scheduling the execution of multiple concurrent tasks on shared re-
sources such as CPUs and network links is essential to ensuring the reliable oper-
ation of many autonomic systems. Well known techniques such as rate-monotonic
scheduling can offer rigorous timing and preemption guarantees, but only under
assumptions (i.e., a fixed set of tasks with well-known execution times and in-
vocation rates) that do not hold in many autonomic systems. New hierarchical
scheduling techniques are better suited to enforce the more flexible execution
constraints and enforcement mechanisms that are required for autonomic sys-
tems, but a rigorous foundation for verifying and enforcing concurrency and tim-
ing guarantees is still needed for these approaches. The primary contributions of
this paper are: (1) a scheduling policy design technique that can use different de-
cision models across a wide range of systems models, and an example of how
a specific (Markov Decision Process) decision model can be applied to a basic
multi-threaded system model; (2) novel model checking techniques that can eval-
uate the behavior of the system model when it is placed under the control of the
resulting scheduling policy; and (3) an evaluation of those scheduling policy de-
sign and model checking techniques for a simple but representative example of
the kinds of execution scenarios that can arise in autonomic systems.

1 Introduction

An autonomic computing system must respond adaptively to varying operating con-
ditions, automatically and without external intervention. The adaptive behaviors that
allow such a system to continue to perform under dynamic conditions in turn place
varying demands on shared system resources, and the capacities of the system’s re-
sources constrain the possible behaviors of the system. Furthermore, to verify that an
autonomic computing system can manage its resources both feasibly and adaptively at
run-time, checkable models of the interactions among (1) the system’s resource man-
agement policies and mechanisms, (2) the system’s resources, and (3) the adaptive de-
mands that system activities place on the resources, must be developed. How to ensure

� This research was supported in part by NSF grant CNS-0716764 (Cybertrust) titled “CT-ISG:
Collaborative Research: Non-bypassable Kernel Services for Execution Security” and NSF
grant CCF-0448562 (CAREER), titled “Time and Event Based System Software Construc-
tion”.

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 149–161, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

150 T. Tidwell et al.

reliable execution of autonomic computing system activities is thus an important and
challenging research problem.

Existing approaches to ensuring the verifiably feasible use of system resources on-
line often employ some kind of reference monitor [1], which mediates all requests for
access to system resources according to specified policies. Although reference moni-
tors have been considered most extensively in the contexts of data security and network
security, separation kernels [2,3] for partitioning resource use, and user level sand-
boxes [4,5,6,7] that intercept system calls made by application programs, illustrate the
applicability of resource monitors to managing the execution of system activities.

Limitations of Existing Approaches: As we discuss in further detail in Section 2,
while the user level sandbox and separation kernel approaches offer important features
for ensuring feasible use of resources by system activities, each of the approaches has
important limitations. For the sandbox approach the crucial limitation is in how pre-
cisely (especially with reference to timing) the desired execution semantics can be en-
forced, while for the separation kernel approach the limitation is the burden placed on
system developers to encode the nuances of complex system dependences according to
strict resource separation semantics.

Real-time schedulers [8] offer what amounts to a kind of (admittedly bypassable) re-
source monitor by ensuring resource feasibility of a set of system tasks. Although they
can offer strong guarantees under non-adversarial conditions, such classical scheduling
approaches only apply under very constrained assumptions that do not pertain in many
autonomic computing contexts. Hierarchical schedulers [9,10,11,12] offer greater flexi-
bility in enforcing less constrained scheduling policies precisely, and our previous work
has shown that integrating hierarchical thread-level scheduling mechanisms within a
kernel-level resource monitor is a useful step towards non-bypassable control over the
execution of system activities [13,14]. However, rigorous analysis of these more ad-
vanced scheduling approaches remains a largely open problem, so that for the most part
analytical guarantees of resource feasibility under those policies currently are not avail-
able. Furthermore, it is difficult to apply standard verification techniques such as model
checking without exploiting knowledge about the specific scheduling policy, which we
have also investigated in our prior work [15].

Solution Approach and System Model: To overcome the limitations of existing ap-
proaches for ensuring the verifiably feasible use of system resources, we are developing
new techniques (1) that are flexible in the policies they can enforce, and (2) within which
particular resource monitors can be customized according to their intended use. In this
paper, we consider only a very basic and abstract system model in which:

– multiple threads of execution require mutually exclusive use of a single common
resource (i.e., a CPU) in order to run;

– whenever a thread is granted the resource, it occupies the resource for a finite and
bounded subsequent duration;

– the duration for which a thread occupies the resource may vary from run to run of
the same thread but overall obeys a known independent and bounded distribution
over any reasonably large sample of runs of that thread;

Scheduling for Reliable Execution in Autonomic Systems 151

– a scheduler initially chooses which thread to run according to a given scheduling
policy, dispatches that thread, waits until the end of the duration during which the
thread occupies the resource, and then repeats that sequence perpetually.

This basic system model serves to illustrate simple but representative examples of the
kinds of scheduling enforcement problems that can arise in autonomic systems built
atop commonly used operating systems such as Linux or VxWorks. For example in
Linux every dispatch of an application thread occupies the CPU for at least a jiffy
and the scheduler only preempts threads at jiffy boundaries. Within the Linux kernel,
our previous work has considered how hard and soft interrupts also may be threaded
and placed under scheduler control [15], with different resulting durations of resource
occupation for the different kinds of interrupts.

In Section 3 we present a method for scheduling policy design that can be tailored to
specified workloads, which is based on a Markov Decision Process (MDP) approach.
The MDP approach is an illustrative example of a more general class of scheduling
policy design approaches that could be used in our solution approach, though we de-
fer consideration of other relevant techniques, such as reinforcement learning, to future
work. In Section 4 we present a novel model checking approach that makes use of finite
execution histories. This approach can be used for exhaustive exploration of possible
system traces, to verify properties such as the feasible use of resources under a schedul-
ing policy designed according to the approach in Section 3. In Section 5 we evaluate the
application of our approach to a sample system configuration, based on threads being
scheduled to maximize adherence to a target utilization for each thread. The results of
this evaluation show that these techniques can be practically applied. Finally, in Section 6
we summarize the contributions of this paper, and describe planned future work.

2 Related Work

Reference Monitor Approaches: User-level sandboxes have been used to intercept
system call requests and may record, deny, reorder, replace, or dispatch any request.
This approach offers significant flexibility because all system calls can be subjected
to arbitrary handling by the sandbox. However, sandboxes that do this entirely within
user space have difficulty supporting standard features like safe and efficient multi-
threading [5]. Hybrid interposition architectures [6] therefore move part of the sandbox
into the kernel. However, this approach still relies on the kernel’s native scheduling
policies and mechanisms, which do not offer sufficient control over system components
such as interrupts [14], and thus leave system activities vulnerable to accidental or ad-
versarial interference through interaction channels (such as resources shared among
threads) that do not pass explicitly through the system call interface.

Separation kernels can provide more stringent enforcement of system policies, but
unfortunately existing approaches do so inflexibly, by segregating resources into dis-
crete partitions, and strictly controlling communication and other interactions among
different partitions [2,3]. For example, the MILS kernel [3] partitions memory and CPU
resources into separate virtual machines on which processes then execute, controlling
not only access to resources, but also communication between processes running in

152 T. Tidwell et al.

different partitions. Through such strict separation, these approaches allow formal spec-
ification and verification [16] of resource isolation between the partitions.

The main limitation of existing separation kernel approaches is that application de-
velopers must assign processes to resource partitions correctly, so that independent sys-
tem activities are isolated, but system activities that have inherent dependences can
still interact appropriately. This obligation places a significant burden on system de-
signers, and examples of non-adversarial interference between activities of complex
autonomous systems, such as the Mars Pathfinder priority inversion problem [17], illus-
trate that identifying all dependences up front in real-world systems is a daunting task.

Scheduling Policy Design: Many thread scheduling policies have been designed and
analyzed to ensure guaranteed feasibility of resource use in closed real-time systems [8].
Most of those approaches assume that the number of tasks accessing system resources,
and their invocation rates and execution times, are all well characterized. Real-time
systems approaches that allow even such basic extensions such as asynchronous task
arrival must depend on special services (e.g., admission control [18]) to maintain re-
source feasibility at run-time.

Hierarchical scheduling techniques [9,10,11,12] offer greater flexibility in their
ability to enforce scheduling policies adaptively at run-time, according to multi-faceted
scheduling decision functions that are arranged hierarchically into a single system
scheduling policy. However, there has been little prior work on verification of what
guarantees can be made by such hierarchical scheduling policies. Furthermore, ver-
ification of scheduling policies that induce thread preemption and require reasoning
about continuous time may encounter problems with decidability [19], so that special
techniques that exploit knowledge about the structure of the specific scheduling prob-
lem [15,20] may be needed before the techniques we are developing can be applied to
systems with more nuanced execution semantics than the basic system model described
in Section 1 (e.g., systems in which an actuator or sensor could be triggered arbitrarily
on a continuous time line).

Dynamic programming has long been used for large-scale scheduling problems, such
as those encountered in large machine shops [21]. A related technique, Reinforcement
Learning (RL) [22] (often called Approximate Dynamic Programming), has been iden-
tified as a learning technology that holds great promise for the autonomic computing
community [23]. It has been successfully been applied to several domains, includ-
ing computer cluster management [24] and network configuration repair [25], and job
scheduling [26]. However, RL algorithms are typically iterative and, in practice provide
an approximation to the optimal solution. This approximation improves over time, as
the algorithm sees more training data but, for realistic problems, convergence to the
optimal is often slow.

3 Scheduling Policy Design

The scheduling decision model consists of sequentially deciding to dispatch one of
n threads whenever the CPU is available. Threads may release the CPU after a non-
deterministic duration, that as we noted in Section 1 falls within a known and bounded
distribution. A dispatched thread always executes for at least one time quantum. The

Scheduling for Reliable Execution in Autonomic Systems 153

scheduler’s objective is to maintain the relative resource utilization for each thread near
some target utilization vector u.

We represent this scheduling decision model as a Markov Decision Process (MDP)
[27]. In general, an MDP is a four-tuple (X, A, R, T). X is the set of process states,
and A is the set of available actions. The transition function T describes the dynamics
of the system as a conditional probability measure P (y|x, a) of transitioning from state
x to y on action a. The real-valued reward function R(x, a, y) describes the immediate
cost or benefit for transitioning from state x to y on action a. In the discounted reward
setting, future rewards are weighted by a factor of γ ∈ (0, 1], which weights rewards by
temporal proximity.

A policy π recommends an action in each state. An optimal policy, π∗, maximizes
the expected sum of discounted rewards observed as the system executes. Finding π∗

reduces to computing the optimal state-action value function Q∗. Q∗(x, a) is exactly the
sum of discounted rewards obtainable by taking action a from state x, then executing the
optimal policy thereafter. Q∗(x, a) is the solution to the system of Bellman equations

Q∗(x, a) =
∑
y∈X

P (y|x, a) [R(x, a, y) + γV ∗(y)] , (1)

where V ∗(x) = maxa∈A {Q∗(x, a)} is the optimal state value function. Given Q∗,
π∗(x) = argmaxa∈A {Q∗(x, a)}.

In the scheduling MDP, each action corresponds to the choice to dispatch a particular
available thread. The MDP’s states are identified by the time quanta utilized by each
thread. These are integer-valued vectors x = (x1, . . . , xn) ∈ N

n for a system with n
threads. In order to bound the number of states, we introduce a termination time τ , so
that the state set X = {x ∈ N

n : ‖x‖ ≤ τ} where ‖ · ‖ denotes the 1-norm. We treat
the boundary states x such that ‖x‖ = τ as absorbing states, so that further actions
do not change the state of the system. The parameter τ defines the extent to which the
scheduler looks into the potential future evolutions of the system’s execution state when
making a decision.

The MDP’s transition function is defined in terms of the run-time distribution for
each thread. Let Δi = (δi1, . . . , δin) be the change in state after thread i executes for
a single time quantum; δij is the Kronecker delta (δij = 1 when i = j, otherwise
δij = 0). The transition probability of the system moving from state x to state y after
dispatching thread i can be non-zero only when y and x differ only in element i, i.e.,
only when y = x+ tΔi for some positive integer t. If y is non-absorbing, the transition
probability is exactly Pi(t), the probability that thread i executes for t time quanta. If
y is absorbing, then P (y|x, i) is the cumulative probability of executing for t or more
time steps,

∑∞
s=t Pi(s) = 1−∑t−1

i=1 Pi(s). To summarize,

P (y|x, i) =

⎧⎨
⎩

Pi(t) ∃t > 0, y = x + tΔi and ‖y‖ < τ

1−∑t−1
s=1 Pi(s) ∃t > 0, y = x + tΔi and ‖y‖ = τ

0 otherwise.
(2)

We define the reward function R(x, i,y) in terms of a per-state cost function C.
The cost of a state x, C(x), is the squared Euclidean distance between x and the target
utilization at time ‖x‖, ‖x‖u:

154 T. Tidwell et al.

C(x) = −
n∑

i=1

(xi − ui‖x‖)2 . (3)

Since actions only change one component of the state vector, we define R(x, i,y) only
when y = x + tΔi for some t. In order to encourage the scheduling policy to maintain
target utilizations while threads execute as well as when decisions are made, we define
the reward as the discounted sum of the costs of states from x to y, excluding y.

R(x, i,y) = R(x, i,x + tΔi) =
t−1∑
s=0

γsC(x + sΔi) (4)

Figure 1 depicts the utilization state space and its transition function for a problem
with two threads and a termination time of three quanta. Each thread in this example
has a deterministic run-time of one quantum.

0,0 2,0 3,0

0,1

0,2

0,3

1,1

1,2

2,1

1,0

Fig. 1. Transition graph for a scheduling MDP with τ = 3 and two threads. Each thread has a
deterministic single quantum run time. Right arrows indicate the change in state as thread 1 runs,
up arrows show the state transition when thread 2 runs.

Excluding absorbing states, the scheduling MDP transition graph is acyclic. The fu-
ture expected rewards of states depend only on states with greater cumulative utilization.
This enables us to solve for the value function directly by working backwards from the
absorbing states, as long as n and τ are sufficiently small.

We first compute the future expected reward of each absorbing state x. The future
expected rewards of these states are the costs of remaining in them forever,

V ∗(x) = −
∞∑

t=0

γtC(x) = −C(x)/(1− γ). (5)

Next we iterate over non-absorbing states, working backwards from states with high to
low utilization. Let T = τ −‖x‖ be the number of remaining quanta before termination
from one such state. The future expected reward of dispatching thread i in state x is

Q∗(x, i) =
T∑

s=1

P (x + sΔi|x, i) [R(x, i,x + sΔi) + γV ∗(x + sΔi)] . (6)

Scheduling for Reliable Execution in Autonomic Systems 155

Computing the value function in this case takes O(nτ |X |) time. The τ term arises be-
cause the future expected reward of a state is the weighted average over possible future
states. Computing V ∗ in the recursion requires maximizing over all n actions from
each potential future state. If we know that a thread can only occupy the resource for at
most k time steps, then we can replace the τ term with k by restricting the summation
in Equation 6 to only the possible run-times. In this paper we consider only problems
where n and τ are small enough to allow exact computation of the value function as
detailed above. The number of states grows quickly, as |X | = ∑τ

t=0

(
n+t−1
n−1

)
, so even-

tually we would need to approximate the value function as n and τ increase.

4 Verification

Model checking has been applied to the offline verification of a wide range of systems.
Model checking verifies systems by first exhaustively enumerating all reachable states
and the transitions among them. Specifically, given a transition and a predecessor state,
the next state represents the possible values the system variables can take on. To differ-
entiate these states from the utilization states in the MDP described in Section 3, we call
these states verification states. The verification states capture the possible evolutions of
the system’s utilization state.

Safety properties are specified as temporal logic expressions evaluated over the ver-
ification state space. A system is verified if, during exhaustive enumeration, no ver-
ification state is found where that expression is false. In this paper we do not detail
how to evaluate particular temporal logic expressions, but rather describe the strategies
for the exhaustive enumeration of the verification state space induced by a particular
scheduling policy.

Verification State Representation: When timing constraints must be verified, timed
automata are commonly used for modeling systems [28]. Two limitations inherent to
timed automata prevent us from using this typical approach for verification of schedul-
ing policies produced by the approach presented in Section 3.

The first limitation is the state representation used by timed automata. Timed au-
tomata use continuous clock variables to abstract the passage of time. Verification states
are represented as a set of constraints of the form: c − d < x, where c and d are clock
variables and x is an integer value. Given an arbitrary policy generated by our adaptive
approach, there is no guarantee that a particular verification state can be represented
using only constraints of this form. In particular, the dividing line between decision
regions will most likely parallel the utilization vector. Only in the special case of two
threads given equal utilization targets will it be possible to represent the decision bound-
ary as a constraint of this form.

The second limitation precluding the use of of timed automata is the way in which
verification states are propagated. Each verification state only captures the relative off-
set of the individual system clocks, abstracting away total elapsed system time. Timing
properties of the system are encoded as guards that govern what conditions must be sat-
isfied for state transitions to occur. These guards are expressed as inequalities between
a clock and an integer. Because these inequalities are specified in the model, there is a
threshold over which differences between clocks need not be tracked, therefore ensuring

156 T. Tidwell et al.

the number of possible verification states is finite. This property guarantees state prop-
agation will terminate.

However, in a system that must track utilization, as in the method presented in
Section 3, there is no such guarantee. With variables representing a thread’s utilization
there is no bound on the size of the representation needed to track the changes made by
later actions. Total system time and the time spent running any single thread both can
grow without bound, and with them the number of bits needed to track utilization by a
thread accurately.

Therefore, new methods to represent verification state and to perform verification
state propagation are needed. We first consider how our scheduling policies will be
implemented. One reasonable implementation is to deal with only a manageable finite
history when evaluating the next action as the scheduler has finite memory. Based on
this observation, the verification state becomes simply a history that encodes the last n
actions.

Verification State Propagation: We then must deal with the problem of how to prop-
agate verification states. Given the minimum and maximum execution times for each
thread dispatch and a history of the last n actions, we can determine what subsets of
utilization states are reachable. A simple decision procedure is then available for ver-
ification state propagation: iterate over the current set of utilization states and add the
action given by the policy to the set of possible actions. As the results of our evaluation
presented in Section 5 demonstrate, significant optimizations to this simple decision
procedure may be available for certain scheduling policies.

This representation guarantees coverage of all possible verification states, and also
guarantees that verification state space propagation terminates. This follows because
the verification state space is finite (there are

∑n
i=0 ti possible histories where t is the

number of threads and n is the maximum history length).

0,1 1,1 2,1 3,1 4,1

4,03,02,01,00,0

Fig. 2. Example state space exploration

Figure 2 shows the beginning of state space exploration for a simple two thread
system. In this example thread one has a deterministic run time of 1 time unit, while
thread two runs for either 1 or 2 time units. The variability of thread two’s utilization
induces (1) multiple possible utilization states in each verification state (except for at the
origin), and (2) many utilization states that belong to multiple verification states. The
boxes in Figure 2 show how the verification states are overlayed on the set of utilization
states from the scheduling policy.

Scheduling for Reliable Execution in Autonomic Systems 157

At first the verification state (corresponding to a null history) only includes the origin.
However after the first decision, which is to dispatch thread one, the verification state
now includes two utilization states, labeled (1,0) and (2,0). After two more decisions
the verification state includes three of the underlying utilization states. State exploration
continues until no transitions to unexplored verification states can be found.

However, this method is also pessimistic, allowing series of transitions that in prac-
tice are not possible. This means that systems positively verified are truly safe, but
systems where error states are reachable relative to a given query, are not necessar-
ily unsafe. The pessimism arises because each decision induces constraints on what the
possible values of the utilizations are, over the n actions for which the decision was eval-
uated. As such we can create an increasingly optimistic model by continuously adding
another action to the history. However, this leads to more complicated decision proce-
dures. In order to show the applicability of this technique we will use the pessimistic
method for full state space enumeration. This gives a good estimate to the relative costs
of the search and can provide safety guarantees because of coverage.

5 Evaluation

We demonstrate these techniques on a small example problem with two threads and
termination time τ = 512. The resulting MDP has 131,882 states.

The thread run-time distributions are shown in Figure 3. These were generated by
sampling Erlang distributions at the integers in the range from 1 to 16 inclusive, then
normalizing the results to obtain discrete run-time distributions. The Erlang distribution
for thread one has rate λ = 1 and shape k = 2 (mean 2), while the distribution for thread
two has λ = 2 and shape k = 18 (mean 9). These distributions illustrate differences
we expect to see in real systems, where user threads may be CPU-bound for long but
highly variable periods of times while low-level event handlers occupy relatively short,
fairly predictable intervals. The scheduling policy must therefore balance the need to
maintain temporal predictability (and therefore its bias is toward thread one’s smaller
mean), with the enforcement of the desired utilization.

The optimal policy for the example problem is shown in Figure 4. The policy rec-
ommends dispatching thread one in the dark gray regions, which advances the state

 0

 0.1

 0.2

 0.3

 0.4

 0 2 4 6 8 10 12 14 16

P
(t

)

t

Thread 1

 0

 0.1

 0.2

 0.3

 0.4

 0 2 4 6 8 10 12 14 16

t

Thread 2

Fig. 3. Example problem run-time distributions

158 T. Tidwell et al.

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

10 20 30

10

20

30

190 200 210 220

290

300

310

Fig. 4. Left: Optimal policy for this example problem. The ray shown in black shows the target
utilization. The policy dispatches thread one (move right) in dark gray states and thread two (move
upwards) in light gray states. Bottom Right: Close-up at the origin. The decision boundary runs
roughly parallel to the target utilization ray. Top Right: Close-up at the terminal states near target
utilization. Notice the protrusion of dark gray where the policy deviates from parallel.

along the horizontal axis. Thread two is dispatched in light gray states, advancing the
state vertically. The target utilization is shown by the black ray. The decision boundary,
best seen in the inset figures on the right in Figure 4, is parallel to target utilization,
but translated to the right. In this interval it is better to execute thread one even though
it is guaranteed to move the system away from target utilization. The alternative is to
execute thread two, likely overshooting the target utilization and likely resulting in a
net higher cost state because of the longer expected run-time. There is also an edge
effect near the decision boundary due to the termination time. In the neighborhood of
x = (210, 310), both actions lead to states that are quite close together because of the
proximity of absorbing states. This leads to a short interval where the decision boundary
lines up with the target utilization ray. Immediately prior to this interval is a protrusion
where it is better to dispatch thread one. Doing so is likely to put the system into a state
where dispatching thread two transitions the system directly to a good absorbing state.
Due to the relatively small variance of thread one, the system can accurately aim for a
good absorbing state a couple of decisions in advance.

Verification of properties in the state space induced by this scheduling policy can
be significantly optimized over the simple decision procedure explained in section 4.
Because of the decision boundary is mostly linear, most verification states need only
determine the action suggested at the utilization states obtained by simply alternately
maximizing and minimizing the share of the utilization received by each thread in the
history.

Exploration of the resulting state space for offline verification is summarized in
Table 1. For comparison, two different state space exploration techniques were used.
First, the unconstrained state space was explored. In unconstrained exploration (sum-
marized in the rightmost columns) any thread can be executed from any state. This
results in a finite state machine with transitions connecting every possible decision
history.

Scheduling for Reliable Execution in Autonomic Systems 159

Table 1. Summary of Verification State Space Enumeration with Different History Sizes

Under Scheduling Policy Unconstrained
History Size States Transitions Time States Transitions Time

1 11 12 00:00:00 13 16 00:00:00
2 22 25 00:00:00 29 39 00:00:00
3 45 53 00:00:00 61 76 00:00:00
4 89 108 00:00:00 125 156 00:00:00
5 177 218 00:00:00 253 316 00:00:00
6 353 438 00:00:00 509 636 00:00:00
7 705 878 00:00:00 1021 1276 00:00:00
8 1409 1758 00:00:00 2045 2556 00:00:00
9 2817 3518 00:00:00 4093 5116 00:00:00

10 5633 7038 00:00:00 8189 10236 00:00:00
11 11265 14078 00:00:00 16381 20476 00:00:01
12 22529 28158 00:00:02 32765 40956 00:00:03
13 45057 56318 00:00:09 65533 81916 00:00:13
14 90096 112607 00:00:38 131069 163836 00:00:52
15 180205 225241 00:04:28 262141 327676 00:05:31
16 360420 450509 00:10:20 524285 655356 00:15:04
17 720851 901047 00:38:07 1048573 1310716 00:53:41
18 1441714 1802125 02:36:04 2097149 2621436 03:29:34
19 2883441 3604283 10:47:04 − − −

The second state space exploration was informed by the scheduling policy described
above. Only a subset of the states reachable in the unconstrained case is reachable in
this case, since the policy may be homogeneous over the set of utilization states un-
derlying a particular validation state. Results for the exploration of this state space are
summarized in the leftmost columns. As expected, the state space exploration guided
by our scheduling policy is smaller and thus faster to compute than the full state space.

6 Conclusions and Future Work

We have described an approach to system verification given a rational scheduler that
maximizes a weighted fairness criterion given complete knowledge of distributions of
thread execution times. With this knowledge about the system, we are able to derive an
optimal policy for each utilization state up to some maximum system termination time.
This is a step toward designing verified autonomic systems with specialized scheduling
policies.

In practice, the scheduling policies derived from our system model have produced
decision surfaces that partition the utilization space into linearly separable segments (up
to edge effects). We have empirical evidence suggesting that this is a persistent effect;
we are currently attempting to determine formally whether or not this is always the
case. If policies are linearly separable, even only in special cases, then in those cases
we can apply the simpler decision procedure described in Section 5.

The MDP analysis of the scheduler is a critical component to discovering its be-
havior at a quantum-by-quantum level. However, this requires explicitly tabulating the

160 T. Tidwell et al.

possible utilization states of the system, which scales poorly with the number of threads.
More importantly, the utilization state space is unbounded, which necessitates the intro-
duction of absorbing states in the model that inadequately express the concerns of the
original system that we are modeling. Eliminating termination time from the model is
an essential next step towards broadening the applicability of this modeling approach.

It seems possible to eliminate the termination time from the MDP model by taking
advantage of the self-similarity of the system dynamics from each utilization state. We
can define equivalence classes over utilization states based on the displacement from
zero cost states. By establishing a transition function over these equivalence classes we
can capture the dynamics of the original system model without relying on some fixed
termination time. As time increases the number of equivalence classes also increases,
since it is possible to get farther and farther from target utilization. This can be handled
by introducing absorbing states. Unlike the absorbing states described in this work,
these states would likely be homogeneous with respect to the optimal policy.

One of the key limitations of the verification state spaces presented in this paper is
their pessimism. In order to improve upon this, more complicated decision procedures
are needed at each step of state propagation in model checking. While general and pow-
erful decision procedures such as those proposed in [29] seem applicable, the resulting
increase in the complexity of state propagation may make them intractable in practice.

References

1. Irvine, C.E.: The reference monitor concept as a unifying principle in computer security
education, http://citeseer.ist.psu.edu/299300.html

2. ARINC Incorporated Annapolis, Maryland, USA: Document No. 653: Avionics Application
Software Standard Inteface (Draft 15) (1997)

3. Vanfleet, W.M., Luke, J.A., Beckwith, R.W., Taylor, C., Calloni, B., Uchenick, G.:
MILS: Architecture for High-Assurance Embedded Computing (Crosstalk: the Journal of
Defense Software Engineering (August (2005), http://www.stsc.hill.af.mil/
crosstalk/2005/08/0508Vanfleet etal.html

4. Goldberg, I., Wagner, D., Thomas, R., Brewer, E.A.: A secure environment for untrusted
helper applications. In: Proceedings of the 6th Usenix Security Symposium, San Jose, CA,
USA (1996)

5. Garfinkel, T.: Traps and pitfalls: Practical problems in in system call interposition based
security tools. In: Proc. Network and Distributed Systems Security Symposium (2003)

6. Garfinkel, T., Pfaff, B., Rosenblum, M.: Ostia: A delegating architecture for secure system
call interposition. In: Proc. Network and Distributed Systems Security Symposium (2004)

7. Provos, N.: Improving host security with system call policies. In: 12th USENIX Security
Symposium, Washington, DC (2003)

8. Liu, J.W.S.: Real-time Systems. Prentice Hall, New Jersey (2000)
9. Goyal, Guo, Vin.: A Hierarchical CPU Scheduler for Multimedia Operating Systems. In: 2nd

Symposium on Operating Systems Design and Implementation, USENIX (1996)
10. Regehr, Stankovic.: HLS: A Framework for Composing Soft Real-time Schedulers. In: 22nd

IEEE Real-time Systems Symposium, London, UK (2001)
11. Regehr, Reid, Webb, Parker, Lepreau.: Evolving Real-time Systems Using Hierarchical

Scheduling and Concurrency Analysis. In: 24th IEEE Real-time Systems Symposium, Can-
cun, Mexico (2003)

http://citeseer.ist.psu.edu/299300.html
http://www.stsc.hill.af.mil/crosstalk/2005/08/0508Vanfleet_etal.html
http://www.stsc.hill.af.mil/crosstalk/2005/08/0508Vanfleet_etal.html

Scheduling for Reliable Execution in Autonomic Systems 161

12. Aswathanarayana, T., Subramonian, V., Niehaus, D., Gill, C.: Design and performance of
configurable endsystem scheduling mechanisms. In: Proceedings of 11th IEEE Real-time
and Embedded Technology and Applications Symposium (RTAS) (2005)

13. Migliaccio, A., Tidwell, T., Gill, C., Aswathanarayana, T., Niehaus, D.: Group scheduling in
selinux to mitigate cpu-focused denial of service attacks. Technical Report WUCSE-2005-
55, Department of Computer Science and Engineering, Washington University, St.Louis
(2005)

14. Tidwell, T., Watkins, N., Subramonian, V., Niehaus, D., Gill, C., Migliaccio, A.: The design,
modeling, and implementation of group scheduling for isolation of computations from adver-
sarial interference. Technical Report WUCSE-2006-34, Computer Science and Engineering
Department, Washington University, St.Louis (2006)

15. Tidwell, T., Gill, C., Subramonian, V.: Scheduling induced bounds and the verification of
preemptive real-time systems. Technical Report WUCSE-2007-34, Computer Science and
Engineering Department, Washington University, St.Louis (2007)

16. Martin, W., White, P., Taylor, F.S., Goldberg, A.: Formal construction of the mathematically
analyzed separation kernel. In: ASE 2000: Proceedings of the 15th IEEE international con-
ference on Automated software engineering, Washington, DC, USA, p. 133. IEEE Computer
Society, Los Alamitos (2000)

17. Jones, M.: What really happened on Mars (1997), www.research.microsoft.com/∼
mbj/Mars Pathfinder/Mars Pathfinder.html

18. Zhang, Y., Lu, C., Gill, C., Lardieri, P., Thaker, G.: Middleware support for aperiodic tasks
in distributed real-time systems. In: RTAS 2007: Proceedings of the 13th IEEE Real Time on
Embedded Technology and Applications Symposium, Washington, DC, USA, pp. 497–506.
IEEE Computer Society, Los Alamitos (2007)

19. Kesten, Y., Pnueli, A., Sifakis, J., Yovine, S.: Decidable integration graphs. Information and
Computation 150(2), 209–243 (1999)

20. Huang, H.M., Gill, C.: Modeling timed component-based real-time systems. Technical Re-
port WUCSE-2008-1, Computer Science and Engineering Department, Washington Univer-
sity, St.Louis (2008)

21. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. Journal
of the Society for Industrial and Applied Mathematics 10(1), 196–210 (1962)

22. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge
(1998)

23. Tesauro, G.: Reinforcement learning in autonomic computing: A manifesto and case studies.
IEEE Internet Computing 11(1), 22–30 (2007)

24. Tesauro, G., Jong, N.K., Das, R., Bennani, M.N.: On the use of hybrid reinforcement learning
for autonomic resource allocation. Cluster Computing 10(3) (2007)

25. Littman, M.L., Ravi, N., Fenson, E., Howard, R.: Reinforcement learning for autonomic net-
work repair. In: Proceedings of the 1st International Conference on Autonomic Computing
(ICAC 2004), pp. 284–285 (2004)

26. Whiteson, S., Stone, P.: Adaptive job routing and scheduling. Engineering Applications of
Artificial Intelligence 17(7), 855–869 (2004)

27. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley Interscience, Chichester (1994)

28. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–
235 (1994)

29. Andrei, S., Cheng, A.M.: Verifying Linear Real-Time Logic Specifications. In: 28th IEEE
International Real-Time Systems Symposium, Tuscon, AZ (2007)

file:www.research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html
file:www.research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html

Measuring and Analyzing Emerging Properties
for Autonomic Collaboration Service Adaptation

Christoph Dorn, Hong-Linh Truong, and Schahram Dustdar�

Distributed Systems Group, Vienna University of Technology, Austria
{dorn,truong,dustdar}@infosys.tuwien.ac.at

Abstract. Dynamic collaboration environments in which team member
utilize different pervasive collaboration services for their collaborative
work pose many challenges for service adaptation. Given a team, the un-
derlying collaboration services must fulfil the team’s goal. Thus, it is not
enough to adapt collaboration services to the context of an individual.
One needs to understand the behavior of the team and the collaboration
services in order to adapt these services. Though many research efforts
aim at understanding team behavior at the human level, there is no such a
framework that focuses on adapting collaboration services for teamwork.

In this paper, we introduce a set of novel metrics that characterizes
emergent behavior of teams. We present a team analysis and adapta-
tion framework (TAAF) which monitors diverse collaboration services,
analyzes and provides relevant metrics for understanding dynamic teams
and for continuous team and service adaptation. This paper also discusses
how TAAF can be used to support self-management of collaboration ser-
vices for collaborative teams.

1 Introduction

Recent advances in pervasive technologies have fostered the collaborative ac-
tivities of knowledge workers across spatial, organizational, and professional
boundaries [1,2]. Those activities are performed in a distributed and dynamic
environment comprising of a variety of collaboration services used in different
ways. In such an environment, pervasive collaboration services need to continu-
ously adapt to the change of team context which is strongly dependent on the
activities of team members. Existing autonomic adaptation approaches, however,
concentrate on the adaptation of services to only the context of individuals [3,4].
Given a team of knowledge workers that utilize various collaboration services,
a whole new level of complexity emerges when the adaptation needs to incor-
porate the behavior of the whole team. In this paper, we present a framework
enabling adaptation of pervasive collaboration services based on a set of novel
team metrics.

1.1 Motivation

Although, each member of a team uses collaboration services in a different way,
the underlying services must fulfil the collaborative goal of the team. As a

� Part of this work was supported by the EU FP6 project inContext (IST-034718).

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 162–176, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Measuring and Analyzing Emerging Properties 163

result, adapting collaboration services only to the context of an individual is not
enough. We need to understand the behavior of the team in order to adapt these
services. For example, understanding team execution phases will help reconfig-
uring service provisioning strategies: a pervasive document management service
initially deployed for a small team should adapt its behavior when the team
grows. Team resource usage patterns might reveal which services are relevant
and should be selected for particular activities. This would significantly enhance
current SOA-based approaches — such as in [3] — achieving self-adaptation.
In short, if we need to support team-centric self-management of collaboration
services, we must be able to understand the complex relations between the team
and its utilization of services.

The complexity arising from dynamic teams operating in a heterogenous envi-
ronment demands for a support framework to aid collaboration services adapting
to emerging team behavior. To our best knowledge, there is no such a frame-
work that focuses on adapting collaboration services for teamwork, though many
research efforts aim at understanding team behavior at the human level [5]. Cur-
rent scientific approaches to autonomic service adaptation focus on the system
level and limited service consumer context [4,6]. Although research on context-
aware systems [7] provides methodologies and frameworks to capture dynamic
behavior, previous work consider merely the dynamics of individual humans.
This lack of quantitative metrics and framework to provide data on emerging
behavior motivates our work in this paper.

To tackle the above-mentioned issues, we apply the autonomic computing
paradigm to the adaptation of collaboration services used in teamwork. Our
ultimate goal is to develop a supporting software framework for the adapta-
tion of collaboration services for teamwork. In our view, this requires a multi-
disciplinary research effort where we need to combine research approaches from
multiple domains, such as Computer Supported Cooperative Work (CSCW),
context-awareness, autonomic computing, and SOA. However, providing such a
framework for emergence-based autonomic adaptation is challenging. We need
to characterize the behavior of team collaboration in terms of metrics that can
be used by software, and to gather information from heterogeneous services and
devices by means of monitoring. Based on that we can analyze the behavior of
a team and its collaboration services to develop adaptation strategies.

1.2 Contributions

Our salient contributions of this paper are:

– A novel set of metrics characterizing emerging team behavior that can be
used for service adaptation.

– An advanced set of analysis techniques for understanding emerging team
behaviors in pervasive collaboration environments.

– The design and implementation of a novel framework for measuring and
providing team metrics during runtime.

The work presented in this paper results in the Team Analysis and Adap-
tation Framework (TAAF). To our best knowledge, it is the first attempt to

164 C. Dorn, H.-L. Truong, and S. Dustdar

combine delivery of runtime characteristics and context awareness techniques to
achieve emergence-based autonomic adaptation. This paper concentrates on the
definition, monitoring and analysis of metrics for service adaptation. The subse-
quent steps of planning and execution to achieve adaptation inside the pervasive
collaboration services remain outside the scope of this paper.

Paper Structure: The remainder of this paper is organized as follows. Section 2
discusses team properties and adaptation. Section 3 introduces a set of novel
team metrics. The design and implementation of TAAF is detailed in Section 4.
We present experiments illustrating TAAF in Section 5. Related work is given
in Section 6, followed by the conclusion and future work in Section 7.

2 Team Properties and Adaptation

Our objective is to support autonomic collaboration services. Figure 1 depicts a
dynamic collaboration environment in which teams utilize different collaboration
services for their collaborative work. Given the complexity of dynamic collabo-
rations among team members, shown in the upper part of Figure 1, pervasive
collaboration services (meeting scheduling, notification, document repository,
etc.), shown in the lower part of Figure 1, should be adaptive.

Our approach is to define metrics characterizing teams to understand the dy-
namics services are confronted with. Based on that, we monitor team behavior,
capturing the required data to determine and manage team metrics. This is the
first step in the autonomic cycle focusing on observable complex relations be-
tween team members and their environment. We deliberately do not consider
cognitive or psychological properties of the individual team members, as these
properties do not constitute emerging team properties. Then, we analyze snap-
shot metrics and time-series to detect situation requiring adaptation. Threshold
analysis, team lifetime phase detection, team comparison, and metric correlation
are some supported techniques.

We have to consider several properties of the dynamic collaboration environ-
ment to understand how emerging team behavior affects service adaptation.

Fig. 1. Dynamic collaboration environment

Measuring and Analyzing Emerging Properties 165

Location. Indynamiccollaborationenvironments, teammembersaredistributed
andmobile.Theyneed to access services andcommunicate independentof their
respective position. Furthermore, services provided by the team members’
organizations are equally distributed. Example self adaption strategies ben-
efiting from analyzing the complete set of member movements are content dis-
tribution or service replication algorithms.

Organization. Team members originate from various organizations. Monitor-
ing organizational structures and roles as well as dependencies across the
whole team will enable the evaluation of the impact of each organization on
the services and resources available to the team. For example, scheduling or
communication services equipped with self-adaptive behavior can limit the
team’s dependency on a single organization.

Coordination. Members are coordinated based on goals, tasks, assignments,
project-related roles, and skills. Analyzing individual properties is insufficient
to understand their relevance in the overall team context. Collaboration
services - such as a meeting scheduling service - that monitor coordinative
metrics at a team level can self-adapt to select the most relevant meeting
participants.

Interaction. Effective communication between distributed team members is vi-
tal. Analyzing scope (two members vs. the whole team) or type (synchronous
vs. asynchronous) allows selecting the most suitable communication services
- email, instant messaging, virtual conferences, mailing lists, or blogs. For
example, as the team evolves, monitoring emerging interactions allows a
communication recommendation service to continue recommending the most
suitable form of communication.

Resources. Team members access a vast number of resources - distributed
across a pervasive environment - from a multitude of devices. Rather than
analyzing individual resource statistics, focusing on combined resource uti-
lization at team level provides significant potential for adaptation. Example
applications are resource monitoring services prioritizing the availability and
reliability of the most vital resources.

By studying these properties, we develop and quantify metrics associated with
teams. Specifically, we focus on metrics that describe emerging properties, arising
from the relation between team members.

Terminologies and Notations: In the scope of this paper, teamwork is any
work performed by a team to achieve a goal (defined by a Project). A Team con-
sists of a set of members (more than one) engaging in teamwork, each Member
being a human resource. Different members belong to different organizations,
while a person can be a member of multiple teams. An Organization is a (le-
gal) entity which defines the professional/employment background from which
members engage in team work. Organizations can range in size from a single
person, a dozen of people, to thousands of people. A Project consists of a goal to
achieve, work steps specified to a certain degree of formalization, and constraints
for achieving the goal. Teamwork consists of a set of Activities that describe the
work actually performed by members to complete the project. By definition,

166 C. Dorn, H.-L. Truong, and S. Dustdar

Table 1. Notations

Notation Description
teami team i

mi member i
size(teami) the number of members assigned to teami

ai activity i
A(teami) the number of activities executed by teami

ci interaction i, a subclass of activity
ri resource i

orgi organization i assigning members to a team
ORG(teami) the list of organizations involved in teami

l(mi) location of member i
|X| number of elements in list or set X

Interactions are a subclass of activities, having multiple members involved, uti-
lizing resources of type communication service, and being short-lived. A Resource
is any computing, information, or communication service in pervasive environ-
ments that is used by team members in order to fulfil teamwork. Team members
use resources to communicate, collaborate, and coordinate teamwork. Table 1
presents notations used in this paper.

3 Team Metrics

From the analysis of team properties we have developed a set of metrics char-
acterizing relations between team members and collaboration services. Table 2
lists main metrics.

Team Location Entropy, TLE(teamk), describes whether teamk members’
movements result in spatial clusters of workers or not, by determining the prob-
ability of all members being colocated.

TLE(teamk) =
∑n

i=1

(
li(teamk)

2

)
(
size(teamk)

2

) (1)

where li(teamk) is the number of members in teamk at location li.

Table 2. Overview of main team metrics

Properties Metrics
Location Team Location Entropy TLE(teamk)

Team Mobility Entropy TME(teamk)
Organization Organization Harmonic Mean OMh(teamk)

Organization Arithmetic Mean OMa(teamk)
Organization Membership Stability OMS(teamk)

Coordination Team Size size(teami)
Team Stability TS(teamk)
Activity Participation Harmonic Mean APh(teamk)
Activity Participation Arithmetic Mean APa(teamk)

Interaction Interaction Participation Harmonic Mean IPh(teamk)
Interaction Participation Arithmetic Mean IPa(teamk)

Resource Resource Access Harmonic Mean, RAh(teamk)
Resource Access Arithmetic Mean, RAa(teamk)
Resource Access Distribution, RAD(teamk)
Resource Utilization, RU(teamk)

Measuring and Analyzing Emerging Properties 167

Team Mobility Entropy, TME(teamk), describes whether team members of
teamk relocate jointly or individually by determining the probability of the whole
team being colocated before and after relocation.

TME(teamk) =

∑n
i=1

∑n
j=1 reloci,j(teamk)

mob(teamk)
∀ i �= j (2)

where reloci,j(teamk) determines the number of members in teamk that have
relocating from location li to location lj and mob(teamk) computes the total
number of members in teamk that have moved. Thus, members remaining at
their location are not taken into consideration for calculating the TME.

Colocation and joint movements reveal tight interdependencies between mem-
bers. TME and TLE specifically focus on the spatial relations between team
members thus indicate the presence of similar needs and contexts. At the same
time colocation and co-mobility reflect the complexity of providing communica-
tion and collaboration services. The higher TME and TLE values are, the less
effort is required.

The Organization Harmonic Mean, OMh(teamk), is the harmonic mean of
member count per organization within teamk and is defined as:

OMh(teamk) =
size(teamk)∑|ORG(teamk)|

i=1
1

|orgi(teamk)|
∀ orgi ∈ ORG(teamk) (3)

Organization Membership Stability, OMS(teamk), is derived by observing
changes in the number of participating organizations. Each joining or leaving
organization, determined by function changeOrg(orgi), results in a change of
value 1.

OMS(teamk) =
∑|ORG(teamk)|

i=1 (changeOrg(orgi))
|ORG(teamk)| (4)

Organization-related metrics provide an indicator of effort to provide services in
a uniform manner. Multiple organizations in the same project may have, e.g.,
conflicting data representations forms or incompatible security policies.

Having an entire organization join or leave or having an unequal distribution of
members across organizations has significant impact on the team’s performance
due to complex coordination and resource provisioning challenges.

Team Stability1, TS(teamk), is derived by observing changes in the number of
team members. The sum of joining members and leaving members is determined
by changeMjoint(teami), respectively changeMleft(teami).

TS(teamk) =

⎧⎪⎪⎨
⎪⎪⎩

changeMjoint(teamk)
size(teamk) if changeMjoint > changeMleft

changeMjoint(teamk)
size(teamk)+changeMleft

if changeMjoint = changeMleft

changeMleft(teamk)
size(teamk)+changeMleft(teamk) if changeMjoint < changeMleft

1 Answers.com defines team stability as “the degree to which the membership of a
team remains the same. Team stability can be defined in terms of length of time
that the team members remain together”.

168 C. Dorn, H.-L. Truong, and S. Dustdar

Team stability reflects membership dynamics within a team and provides, to-
gether with team size, insightful information for determining suitable resource
allocation strategies.

Activity Participation Harmonic Mean, APh(teamk), specifies the harmonic
mean over all activity involvements and is defined by:

APh(teamk) =
|Ak|

size(teamk) ∗∑|Ak|
i=1

1
inv(ai)

∀ ai ∈ teamk (5)

where inv(ai) returns the number of members involved in activity ai.
Interaction Participation Harmonic Mean, IPh(teamk), specifies the harmonic

mean over the cardinality of all interactions and is defined by:

IPh(teamk) =
|Ck|

size(teamk) ∗∑|Ck|
i=1

1
card(ci)

∀ ci ∈ teamk (6)

where card(ci) returns the cardinality (number of participants) of interaction ci.
Whether interactions tend to include the whole team or just a small subset

of members reflects the scope of required interoperability between the employed
collaboration and communication services. The same property determines to
which extent self-adaptation algorithms will affect the overall team.

Resource Access Harmonic Mean, RAh(teamk), is the harmonic mean of re-
source access by members of teamk.

RAh(teamk) =
|Rk|∑|Rk|

i=1
1

use(ri)

∀ ri ∈ teamk (7)

where use(rk) returns the amount of times resource rk is used within teamk.
Resource Access Distribution, RAD(teamk), is the average reuse indication

how often resources are accessed by different members on average in teamk.

RAD(teamk) =
DRA(teamk)
|Rk| (8)

where the Distributed Resource Access DRA(teamk) sums up the total amount
of times resources Rk are accessed within teamk by different members mi. The
Distinct Resource Access, DRA(teamk), is defined as:

DRA(teamk) =
|Rk|∑
i=1

useset(ri) ∀ ri ∈ teamk (9)

where useset(ri) denotes the count of distinct members having used resource ri.
In contrast to Resource Access, Resource Utilization, RU(teamk) is the reuse

indication how long the average resource has been reused.

RU(teamk) =
∑|r|

s=1 t(rs)
t ∗ |r| (10)

Measuring and Analyzing Emerging Properties 169

where t(r) indicates the duration in which resource rs is used within interval
t. Resource Access Distribution enables identification of the commonly used re-
sources and services. Subsequently this metric facilitates focusing adaptation
efforts on these significant team resources.

The above discussed metrics provide insight into the dynamic properties of
teams. These metrics characterize emerging behavior arising from indirect and
direct interaction, activity, communication, and resources in teams. While these
metrics provide only a snapshot of the team’s status at a specific time, temporal
analysis of these metrics can detect the effects of preceding adaptation efforts.

4 The Team Analysis and Adaptation Framework

Figure 2 describes TAAF (Team Analysis and Adaptation Framework) which
consists of middleware services and tools for monitoring and analyzing team
metrics at runtime and utilizing metrics for service adaptations. The Event Col-
lection gathers monitoring data related to teams from different collaboration
services. Events will be pre-processed to extract the main relevant information
which is the input for Metric Calculation. Metrics associated with teams are
determined during runtime and the resulting metrics are stored into the Team
Data Store. Based on that, Metric Provisioning provides, during runtime, met-
rics to Team Analysis tools and Service Adaptation components which require
the metrics for adapting collaboration services.

4.1 Monitoring Team Behavior

Our work is focused on analyzing and managing the metrics reflecting prop-
erties and changes of teamwork. Thus, we have to cope with the complexity of
diverse sources providing data required for team analysis. These data sources are
collaboration services deployed on dynamic, heterogeneous hosts in a pervasive
environment. In our work, these services are assumed to interact with TAAF

Fig. 2. TAAF architecture and data flow

170 C. Dorn, H.-L. Truong, and S. Dustdar

Table 3. Examples of Event sources

Event Source Deployment Event type
Notification Service Static Interaction
User & Team Management service Static MembershipChangeEvents
Calendar Service Static ResourceAccessEvent
Activity & Project Service Static ActivityActionEvent
Context Provisioning Service Mobile/Static (Re)LocationEvent, InteractionEvent, Re-

sourceAccessEvent
Document Repository Service Mobile/Static ResourceAccessEvent
Position Service Mobile Location

Table 4. Examples of events encapsulating team data

Events Description Frequency
MembershipChange contains the list of user having joined or left the team Weekly/Monthly
ResourceAccess provide details on which member accesses which resource,

optionally stating the duration of utilization
Hourly

ActivityAction inform about members engaging in an activity Hourly
Interaction contain tuples of members communicating with each other Minute/Hourly
Location hold the current location of members Minute/Hourly
Relocation inform about the movement of members from one location

to another location
Minute/Hourly

via a well-known interface. Such an assumption can be achieved via Web service
standards. To obtain the data, TAAF relies on WS-Notification which is widely
supported in pervasive environments, including constraint devices [8].

To describe data that TAAF can process, we have specified an XML schema for
describing generic collaboration metadata and specific collaboration data. This
schema allows the exchange of data relevant to teams by representing various
types of data, such as a team identifier, an event identifer, URI of collaborative
services, timestamp, and location information.

TAAF obtains relevant data from collaboration services based on push and
publish/subscribe event delivery. Thus, TAAF can support various services with
different capabilities. Dedicated collaboration services such as the User & Team
Management service or the Notification service integrate collaboration sensors
and provide a subscribe/notification interface. However, personal and highly
dynamic sources, such as services on smartphones or PDAs equipped with lo-
cation sensors, require the user to manually configure TAAF as a notification
endpoint. This eliminates the challenge to locate and access volatile sensors for
subscription and enables users to protect their privacy. Table 3 lists exemplary
collaboration services from which TAAF retrieves relevant data whereas Table 4
presents examples of events provided by these collaboration services.

When the Pre-Processing component receives an event from the Event Col-
lection, it verifies threshold values for event confidence and timestamp. Subse-
quently, the overall team structure is updated because TAAF needs to keep track
of the overall team structure. The underlying team status is updated only once
as a single event may be input to multiple metric calculations.

4.2 Analysis and Management of Team Metrics

Team metrics are determined during runtime. To achieve flexibility, metric
calculation is performed within multiple subcomponents that register with the

Measuring and Analyzing Emerging Properties 171

Pre-Processing component; each subcomponent retrieves pre-processed data ac-
cording to its subscription. However, in TAAF, tightly connected metrics — such
as Team Location Entropy and Team Mobility Entropy — are determined in a
joint fashion in order to improve performance. In addition, which metrics should
be computed and the schedule of the computation can be defined in advance.
Depending on configuration, metrics can be saved in the Team Data Store.

To facilitate the exchange of team metrics, we have defined an XML schema
for representing metrics associated with teams. This representation can be used
to describe various types of information such as metric identifier, and current
and previous metric values. Listing 1 gives an excerpt of the metric XML schema.

1 <xs:complexType name="tMetric">
2 <xs:sequence >
3 <xs:element name="URI" type="xs:string" minOccurs="1" maxOccurs="1"/>
4 <xs:element name="CurrentValue" type="tValue" minOccurs="1" maxOccurs="1"/>
5 <xs:element name="History" type="tHistory" minOccurs="0" maxOccurs="1"/>
6 </xs:sequence >
7 <xs:attribute name="enabledHistory" type="xs:boolean"/>
8 </xs:complexType >
9 <xs:complexType name="tTeamSizeValue">

10 <xs:complexContent >
11 <xs:extension base="tValue">
12 <xs:sequence >
13 <xs:element name="Value" type="xs:positiveInteger"/>
14 </xs:sequence >
15 </xs:extension >
16 </xs:complexContent >
17 </xs:complexType >

Listing 1. Excerpt of metric specification

Metrics provide the fundamental data required for understanding teams, de-
tecting correlations, and ultimately taking action to counter steer negative ten-
dencies or amplify positive effects. Based on team metrics, we have developed
various team analysis features which have been incorporated into a team analysis
GUI that allows any user understanding the team metrics and their relevance
to subsequent adaptation actions. Self-adaptive collaboration services subscribe
at the Team Analysis component in order to receive notifications when metric
analysis detects relevant metric values.

Threshold Analysis: detects metrics violating a predefined condition over a
period of time. This analysis is used together with a notification mechanism to
enable runtime reaction in critical situations.

Team Phase Analysis: evaluates general trends in a metric’s timeline that in-
dicate several phases, such as project kick-off, execution, and completion phases.
Duration and structure of phases provides insightful information for autonomic
services making decisions on whether additional or available members and re-
sources should be deployed or reduced.

Multi-team Analysis: compares metric timelines of different teams. With this
analysis, we are able to observe teams over time and detect emerging differences.
Similar team configurations, such as size and member distribution, can lead to

172 C. Dorn, H.-L. Truong, and S. Dustdar

significantly different emergent behavior. Comparing the structure of two teams
reveals how the same adaptation decisions — such as deploying or reducing
resources — result in different outcomes. In addition, similar patterns in different
teams can indicate the occurrence of team transformations.

Correlation Analysis: reveals correlation among multiple metrics. This ana-
lyzes relations between metrics, giving more meaning to individual metrics.

4.3 Prototype Implementation

We are currently implementing our framework based on Java. The Team Data
Store is based on the eXist database2. The following collaboration services are
currently being integrated with TAAF: User & Team Management Service, Con-
text Provisioning Service, Calendar Service, Document Repository Service, No-
tification Service, and Activity & Project Service.

The above-mentioned services are part of the Pervasive Collaboration Service
Architecture (PCSA) deployed at multiple sites across Europe, including Vienna,
Milan, Genoa, and Aachen, within the inContext3 project. Inside TAAF, we
use OpenJMS4 to pass events between components. In addition to the existing
message header information provided by JMS, we provide extended header fields
for storing information on event type, team identifier, activity, user, and source
thus enabling efficient intra-framework event selection. Of the metrics described
in Section 3 we implemented all except Resource Utilization (RU). We clustered
related metrics together such as arithmetic and harmonic mean, or size and
stability. For visualizing metrics, we utilize the JFreeChart framework5. The user
can select the number of desired metrics to be displayed at the same time (see
Figure 3). The current prototype uses JMS queues for delivering metric updates.
However, we are going to support this kind of update via WS-Notification.

5 Experiments

5.1 Testbed

Section 4.3 introduced the hosting environment for the pervasive collaboration
services required for running our experiments; these services are based on the
inContext’s PCSA. The PCSA is currently being used for project developments
only, therefore, we have not been able to obtain enough live data for our ex-
periments. As our main goal is demonstrating how to exploit emerging behavior
for autonomic adaptation, we simulate the emerging team behavior arising from
a dynamic collaboration environment as depicted in Figure 1 (upper part). We
implemented a team simulation based on the concepts introduced in Section 2
to achieve various emerging behavior.

2 http://exist.sourceforge.net/
3 http://www.in-context.eu/
4 http://openjms.sourceforge.net/
5 http://www.jfree.org/jfreechart/

Measuring and Analyzing Emerging Properties 173

To simulate the team behavior, we adapted the model by Barabási and Albert
[5] to create a scale free, directed, acyclical graph (DAG) of interdependent
activities which are managed by the Activity & Project Service. In this DAG,
the vertices represent activities and the edges represent the dependency between
two activities. Each activity is associated with the following properties:

– Duration: indicates the amount of time required to complete this activity
– Location: indicates the location at which the activity is performed.
– Cost: specifies the cost associated with an activity.
– Priority: specifies the priority of an activity
– Activity status: is either pending, available, work in progress, or completed.

The User & Team Management Service is then enabled to assign each team
member to an organization which provides a set of resources. Initially these re-
sources are available only to members of that organization. Calendar Service,
Document Repository Service are providing resources in the form of calender
entries and documents, respectively. During collaboration, these resources are
shared between interacting members. The Notification Service provides commu-
nication in the form of instant messaging, SMS, and email. Organizations assign
new members to a team or withdraw active members from the team. In addition,
each member is able to spend a certain amount of time on an activity. Finally,
the Context Provisioning Service provides details on member mobility.

The data generator then simulates the invocation of our pervasive collabo-
ration services. These collaboration services in turn deliver the actual events.
When the simulated project begins, each member selects an available activity to
work on, that is any activity which has all previous activities completed. An ac-
tivity is completed once members have jointly spent enough time/effort to cover
the activity’s duration.

In each simulation round, we receive the set of collaboration events. Each
member’s selection results in an activity and location event. Additionally, for
members engaging in the same activity at the same time, we receive an interac-
tion event. Finally, interacting members utilize a subset of resources from their
combined pool of resources, while members without interaction select resources
only from their organization’s resource pool. In both cases, services fire respective
resource access events.

5.2 Examples for Emergence-Based Adaptation

For the adaptation example in this section, we created an activity graph of
200 nodes with activities spread across 10 different locations. The simulated
team consists of 30 members from 4 organizations each providing 5 resources.
Figure 3 presents an excerpt of the team analysis GUI visualizing the Activity
Participation metric (Left) and Interaction Participation metric (Right) over
the team’s lifetime. Each graph includes harmonic and arithmetic mean. The
meaning of the values are the same for both metrics: a value close to 1 indicates
that (almost) all members participate in an activity, respectively an interaction,
while a value close to 0 denotes a lack of collaboration as members work mostly
alone on different assignments.

174 C. Dorn, H.-L. Truong, and S. Dustdar

Fig. 3. Team Analysis GUI excerpt: The left graph provides Activity participation
metrics while the right graph displays Interaction participation metrics for a team of
30 members working on 200 activities

Threshold analysis is a basic, albeit very useful technique enabling self-
adaptive behavior. An exemplary project escalation service can utilize the sub-
scription request in Listing 2 to receive alerts when the Activity Participation
metric falls below 0.33. The simulated team crosses this threshold at the end of
the kick-off phase (Figure 3 Left).

1 <subscription >
2 <type>
3 http://www.vitalab.tuwien.ac.at/projects/taaf/threshold_lowerbound
4 </type>
5 <teamuri >
6 http://www.vitalab.tuwien.ac.at/projects/taaf/teams#demoteam1
7 </teamuri >
8 <metricuri >
9 http: //www.vitalab.tuwien.ac.at/projects/taaf#ActivityParticipationHMean

10 </metricuri >
11 <threshold >0.33</threshold >
12 <notificationendpoint >
13 ... [WS-Addressing Endpoint Reference] ...
14 <notificationendpoint >
15 <subscription >

Listing 2. Subscribing to threshold analysis

Other examples of potential self-adaptive behavior are:

Threshold Analysis: an autonomic content distribution service can decide to
spawn extra distribution nodes when a team features decreasing team location
entropy, or reduce the number of nodes when the team becomes more collocated.

Team Phase Analysis: a task scheduling service can ignore team instability at
the beginning of a project, but starts to assign backup workers on critical tasks
when the team remains instable during its execution phase.

Multi-team Analysis: a recommendation service can compare the effect of
selecting the same communication service in different teams to adapt its selection
strategy.

Measuring and Analyzing Emerging Properties 175

Correlation Analysis: Let us assume an inverse correlation of team location
entropy and team interaction coverage. In this case, a meeting scheduler can
suggest members from all locations to participate in a physical meeting.

6 Related Work

In our previous work, we analyzed teams with respect to impact on service
requirements, resulting in a set of team forms and views [9]. Metrics associated
with teams, however, have not been defined and quantified.

Scientists have invested great effort in providing concepts and tools for team
based adaptation in the scope of context-aware devices and services. Vieira et al.
[10] include interaction and organization aspects in their context ontologies but
neglect emerging properties. Sterritt et al. [11] make the case for behavioral
knowledge from which to compute metrics, but they remain at a general activity-
focused level, not considering other teamwork aspects. Work on context gather-
ing prior to these efforts generally focus on individual context neglecting team
context altogether.

Current generic autonomic techniques and toolkits such as [4], [6], or [12] do
not monitor the context of individual users, respectively limit monitoring to in-
dependent user properties such as location or device. De Wolf and Holvoet point
out the potential of emergence for autonomic behavior [13] and also discuss the
concept of emergence for engineering self-organizing systems [14]. They main-
tain, however, a pure system-centric view, applying emergent properties only to
the autonomic system. In contrast, Bird et al. [15] apply email mining to discover
emerging interaction patterns between users, but other major team properties
are left aside. In a similar attempt, Valverda and Solé [16] investigate emerging
self-organization in large open source social networks based on email repositories.
However, such communities feature different characteristics compared to teams.
TAAF specifically collects data about emerging properties from a wide range of
sources and thus delivers more reliable and expressive data.

TAAF differs from the above-mentioned work in many aspects as it explores
emergent team properties for the self-adaptive collaboration services.

7 Conclusion and Future Work
Understanding and detecting emerging behavior, patterns, and transformations
in teams ultimately enables team-centric self-adaptation of collaboration ser-
vices. In this paper, we tackled issues related to team metrics, since runtime
information on emerging team properties and team transformations is the key
to service adaptation for pervasive collaboration environments. This has not
been well addressed until now. We have presented a novel set of team metrics
and described TAAF which is a framework for analyzing, managing and pro-
viding team metrics for service adaptation during runtime. TAAF can uncover
associations between various metrics, notify collaboration services when thresh-
olds are reached, visualize team life-time phases, and compare multiple teams,
thus providing necessary features for achieving autonomic collaboration services.

176 C. Dorn, H.-L. Truong, and S. Dustdar

Our future work includes the further development of metric monitoring and
analysis parts of TAAF. Furthermore, we will concentrate our work on advanced
service adaptation techniques for teamwork in pervasive environments.

References

1. Ferscha, A., Holzmann, C., Oppl, S.: Context awareness for group interaction sup-
port. Mobility Management & Wireless Access Protocols, 88–97 (2004)

2. Patterson, D.J., Ding, X., Noack, N.: Location by, for, and of crowds. In: Proceed-
ings of International Workshop on Location- and Context-Awareness (LoCA), pp.
186–203 (2006)

3. Fournier, D., Mokhtar, S.B., Georgantas, N., Issarny, V.: Towards ad hoc contex-
tual services for pervasive computing. In: MW4SOC 2006: Proceedings of the 1st
workshop on Middleware for Service Oriented Computing (MW4SOC 2006), pp.
36–41. ACM Press, New York (2006)

4. Sterritt, R., Smyth, B., Bradley, M.: Pact: personal autonomic computing tools.
In: EASe Workshop at ECBS 2005, pp. 519–527 (2005)

5. Barabasi, A., Albert, R.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

6. Bigus, J.P., Schlosnagle, D.A., Pilgrim, J.R., Mills, W.N., Diao, Y.: Able: A toolkit
for building multiagent autonomic systems. IBM Systems Journal 41(3) (2002)

7. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context aware systems. In-
ternational Journal of Ad Hoc and Ubiquitous Computing 2(4), 263–277 (2007)

8. Aiello, M., Dustdar, S.: Are our homes ready for services? a domotic infrastructure
based on the web service stack. Pervasive and Mobile Computing (2008)

9. Dorn, C., Schall, D., Gombotz, R., Dustdar, S.: A view-based analysis of dis-
tributed and mobile teams. In: Proceedings of the 5th International Workshop
on Distributed and Mobile Collaboration (DMC 2007) at WETICE-2007, IEEE
Computer Society, Los Alamitos (2007)

10. Vieira, V., Tedesco, P.A., Salgado, A.C.: Towards an ontology for context represen-
tation in groupware. In: Proceedings of the International Workshop on Groupware,
CRIWG, pp. 367–375 (2005)

11. Sterritt, R., Mulvenna, M.D., Lawrynowicz, A.: Dynamic and contextualised be-
havioural knowledge in autonomic communications. In: Proceedings of the 1st In-
terational Workshop on Autonomic Communication, WAC, pp. 217–228 (2004)

12. IBM: Autonomic computing toolkit: Developer’s guide (2004),
http://www128.ibm.com/developerworks/autonomic/books/fpy0mst.htm

13. Wolf, T.D., Holvoet, T.: Emergence Versus Self-Organisation: Different Concepts
but Promising When Combined. In: Brueckner, S., Di Marzo Serugendo, G., Kara-
georgos, A., Nagpal, R. (eds.) Engineering Self Organising Systems: Methodologies
and Applications (2005)

14. Wolf, T.D., Holvoet, T.: Towards a methodolgy for engineering self-organising
emergent systems. In: Proceedings of the Int. Conference on Self-Organization and
Adaptation of Multi-agent and Grid Systems, pp. 18–34 (2005)

15. Bird, C., Gourley, A., Devanbu, P., Gertz, M.: Swaminathan, A.: Mining email
social networks. In: MSR 2006: Proceedings of the 2006 international workshop on
Mining software repositories, pp. 137–143. ACM Press, New York (2006)

16. Valverde, S., Solé, R.V.: Self-organization and hierarchy in open source social net-
works. Technical report, DELIS - Dynamically Evolving, Large-Scale Information
Systems (2006)

http://www128.ibm.com/developerworks/autonomic/books/fpy0mst.htm

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 177–190, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Artificial Immune System Based Robot Anomaly
Detection Engine for Fault Tolerant Robots

Bojan Jakimovski and Erik Maehle

Institute of Computer Engineering, University Luebeck, Germany
{bojan,maehle}@iti.uni-luebeck.de

www.iti.uni-luebeck.de

Abstract. Robot anomaly detection method described in this paper uses an
approach inspired by an immune system for detecting failures within autonomous
robot system. The concept is based on self-nonself discrimination and clonal
selection principles found within the natural immune system. The approach
applies principles of fuzzy logic for representing and processing the information
within the artificial immune system. Throughout the paper we explain the
working principle of RADE (Robot Anomaly Detection Engine) approach and we
show its practical effectiveness through several experimental test cases.

Keywords: Robot anomaly detection, robot fault detection, artificial immune
system, clonal selection, self-healing, self-reconfiguration, fault tolerant robot,
six legged robot.

1 Introduction

Autonomous mobile robots are complex technical systems which are capable of
carrying out predefined tasks without human intervention. In order to fulfil the
proposed requirements, they consist of various software and hardware processing
units, sensors, actuators. Due to their high complexity, modelling, development and
maintenance of such systems is often a tedious and time consuming task.

Declaring them as autonomous means that the robots should operate and complete
their tasks under various given scenarios and unforeseen conditions. Additionally they
should be reliable and tolerant to system malfunctions such: components failures,
parts aging or any other external influences like object collisions. Therefore, they
should correctly detect their anomalies and dynamically reconfigure themselves in
these situations in order to properly continue executing the predefined mission.

But building a full failure model for robot systems is often an exhaustive process
[1]. To overcome this constraint the robots should poses so called self-x properties.
These properties, like self-healing, self-reconfiguration, self-learning and the like
would aid introducing more robust and reliable robots. In that sense this methodology
will directly contribute towards shortening their development and maintenance time.

Biological systems on the other hand have effectively demonstrated to poses the
above mentioned self-x features. Such phenomena seen in natural systems have often
provided inspiration for their metaphoric implementation in the domain of engineering.

178 B. Jakimovski and E. Maehle

Artificial Immune System (AIS) is one of such successfully applied paradigms we
have considered for building our RADE (Robot Anomaly Detection Engine) for fault
tolerant robots. RADE introduces a robust concept for anomaly detection which aims
to decrease the engineering effort in building fault tolerant autonomous robots.
Additionally it also opens the possibility for the system through learning to find and
resolve errors, which is going to be realized in the next stage of the RADE project.
The paper is organized as follows. In section 2 we give a short introduction on AIS as
natural immune system inspired paradigm used in RADE. In section 3 we describe
RADE and its principle of operation in more detail. In section 4 we discuss several
experimental test cases made with RADE on the robot demonstrator.

2 Artificial Immune System

Artificial Immune System (AIS) is directly inspired by the natural immune system as
important biological defence mechanism which is able to recognize and defend our
organisms from bacteria and viruses.

The natural immune system generally consists of two types of defence mechanisms:
innate immune system and the adaptive immune system. Innate immune system is
directly involved in providing immediate defence against pathogens and in recognizing
them in a generic way. The adaptive immune system defence mechanism instead
provides more specific response to the pathogenic antigens. It recognizes and
memorises specific antigen signatures so it can rapidly and more effectively react next
time it encounters such antigens. The adaptive immune system generally consists of
two types of cells: T-cells and B-cells. T-cells are helper cells and are related to
activation of the response of the immune system, while B-cells have receptors which
detect antigens and are associated with production of antibodies (self) for detecting the
antigens (non-self). An important characteristic of the adaptive immune system is the
immune response to antigens. This response is well explained through clonal selection
theory [2] which states that those cells which are able to recognize the antigenic
stimulus will be selected and will proliferate (divide) and differentiate into plasma cells
(as antibody secretors) and memory cells. Such process of clonal selection and
proliferation is represented on Figure 1.

Fig. 1. Clonal selection and proliferation

 Artificial Immune System Based RADE for Fault Tolerant Robots 179

When memory cells are exposed to a secondary antigenic stimulus, they
differentiate into plasma cells and produce high amount of specialized antibodies
which bind to the antigens and therefore result in faster secondary response to a
particular antigen. Such rapid secondary and subsequent responses are represented on
Figure 2. [3].

Fig. 2. Secondary and subsequent responses to particular antigen

Similar to the natural immune system, AIS also introduces a metric that allows the
system to distinguish between self (correctly functioning system) and non-self
(anomaly in the system) and also to memorize and detect specific patterns. Therefore
main properties of AIS are: recognition, identification, adaptation, self-organization.
It has been successfully applied for various domains: pattern recognition [4], data
mining [5], network security [6], robotics [7], [8], [9], [10], [11], and others. There
exist several different approaches [12] for AIS. However, the most commonly found
in literature are: negative selection [13], positive selection [14], artificial immune
networks (AIN) [15] and clonal selection [3].

Negative selection mechanism is based on the ability of the immune system to
learn to categorize between non-self and self by providing tolerance for the self. The
negative selection consists of generating a set of detectors and evaluation of those
detectors. Only the detectors that detect non-self, but do not react to self are
considered for further detection. The positive selection, on the other hand, generates,
evaluates and enables those detectors that can detect only the non-self. The clonal
selection within AIS is based on the proliferation mechanism where self, upon
recognizing non-self, starts to proliferate by cloning itself and also memorizing the
pattern of the non-self (immune memory), so it has better responsiveness for the next
encounter with such a particular non-self pattern.

3 Robot Anomaly Detection Engine (RADE)

For the detection of an anomaly within robot systems different immune system
approaches have been considered, like inflammation [9], or usage of negative
selection [10]. For our RADE anomaly detection approach we are using the clonal
selection method in combination with fuzzy logic for representing the information
within the AIS.

180 B. Jakimovski and E. Maehle

Before proceeding further with the discussion on anomaly detection within RADE,
we are first going to introduce our experimental hexapod robot OSCAR(Organic Self
Configuring and Adapting Robot) [16], [17] shown in Figure 3 on which the RADE
experiments are made with.

Fig. 3. Experimental hexapod robot OSCAR (Organic Self Reconfiguring and Adapting Robot)
has six legs, with three motors per leg. Going from the body – alpha, beta and gamma.

Robot OSCAR has six legs, with three motors per leg, which are named alpha, beta
and gamma (going from the body), feet pressure sensors, acceleration sensors and
onboard control hardware. With an additional data acquisition setup, we are able to
monitor the immediate values of currents and positions of the motors as well as
pressure readings from the robot’s six foot sensors.

At a given instance of time the robot executes one or several behaviours like
walking, standing, going left or right, etc. These behaviours are then related to some
movements of actuators within the robot and as result the robot realizes particular
behaviour actions. For detecting if an anomaly situation has appeared within the robot
system, there are monitor units within the robot control architecture where RADE is
situated. Depending on its implementation, within the robot’s control model several
behaviors (behavior units), several monitors and number of sensors and actuators can
be present. This is represented on Figure 4.

Fig. 4. Monitors (RADE) are related to anomaly detection within the robot control concept

 Artificial Immune System Based RADE for Fault Tolerant Robots 181

RADE uses fuzzy logic for representing information because an exact recognition is
not necessary for triggering of an anomaly response. It is also similar to the way the
association is made within the immune system, where given a similar (but not
necessarily identical) stimulus, the response can be initiated. In a practical
implementation, this would mean for example: if the behavior is walking then the
acceleration level should not be low. Or in monitoring the servo’s motor status, this can
be interpreted as: by normal walking, the servo’s current should not be high. In RADE
such generalized self / non-self situations can be defined by fuzzy rules which are part
of self / non-self sets. The rules in the non-self set detect when there is some anomaly
present within the system, and the rules in the self set detect when the situation is not
characterised as anomalous. The rules of both sets have the following structure:

IF X1&X2&…Xn THEN Anomaly is Y WITH WEIGHT_FACTOR Z

The “X1&X2&…Xn” represents the premise part which constitutes of monitored
behaviours: walking, standing, etc.; and particular some characteristics like: current,
acceleration, etc. The “Y” is the consequence part and can have two types of values:
“anomaly is present” or “anomaly is absent”. The weight factor “Z” represents the clonal
proliferation within AIS, and is in a range from 0.0 to 1.0. The “Z” value will increase
for some constant value (for example: 0.1) if the rule has “fired”. In parallel to that the
weights will decrease in all the rules belonging to the opposite set, just as the
concentration of self/non-self drops being influenced by an increased concentration of
non-self/self within the immune system. The firing level of each rule is therefore always
adjusted, depending on the value of “Z”. The weight factor “Z” has also another positive
characteristic for the anomaly detection engine. Namely we want to reduce the factor of
hand coded elements in RADE, and let the system dynamically adjusts itself to the
situation. For example in case we have coded fuzzy rules without using weights,
depending on the manually pre-designed fuzzy membership sets for the premise parts of
the rules, the rules can have an optimal response for some situation and perhaps a not
satisfying response for other unforeseen situations. In case the fuzzy rules have weights,
this would introduce two new features:

− The premise parts of the rules do not require any additional handcrafting and
expert designing for their fuzzy membership sets. Therefore they can have
some automatically generated “standard” triangular fuzzy membership sets,
normally distributed within a valid range for the observed variable. For
example such fuzzy membership sets for monitored variable “Current” having
values in the range from min 0 to max 3 Amperes can be represented as:

Fig. 5. Fuzzy membership set for monitored variable “Current”

182 B. Jakimovski and E. Maehle

The other membership sets for other monitored variables (for example:
acceleration) are going to have the same “standard” triangular fuzzy membership
normally distributed for their input range. The nice thing for having such
“standard” generated fuzzy membership sets is that they can be part of the
learning process, which we plan to introduce in the next step of development of
our anomaly detection engine. Having the “standard” fuzzy membership sets for
every of the observed parameters, we may build up a rule based learning system
which incorporates only new situations since the fuzzy membership sets for the
observed parameters are not going to be changed, and so it will be possible to
distinguish between what has been already learned and what can be learned.

– The weight factors for such rules having the “standard” generated fuzzy
membership sets allow the rule to adapt to the situation even without the rule
being optimally pre-designed at start, i.e. having its membership sets optimally
pre-designed. Therefore the changes of the weights depend on the particular
situation and therefore contribute for the dynamics of overall system.

The previously discussed self and non-self rule sets and the dynamical change of
their weights can be visually represented as in Figure 5.

Fig. 6. Functioning principle of RADE and the dynamically changing weights within the self
and non-self rule sets (for clearness, here only monitoring parameter “Current” is represented,
although additional monitored parameter, like “Acceleration” can be considered as well)

As illustrated in the figure, when the premise within a rule belonging to the non-
self set is satisfied, the rule “fires” and its weight is also increased by some constant
value, e.g. by 0.1 from 0.3 to 0.4. In the same time, the weights of rules belonging to
another set are decreased with the same constant value of 0.1. In such way they lower
their value from 0.4 on 0.3 or from 0.6 on 0.5 and so on.

In every computation step, a weighted output is calculated from such a fuzzy system
which contains two membership functions: self and non-self. The value is in the range

 Artificial Immune System Based RADE for Fault Tolerant Robots 183

from 0.0 (no anomaly) to 1.0 (full anomaly) and represents the output of the RADE
method. The output of RADE is computed in a defuzzification process as a centroid of
fuzzy outputs of the “fired” rules. Therefore the output of RADE is influenced by the
weight factor of each of the firing rules. The weight factor acts in the similar way as the
secondary and subsequent responses within the immune system, i.e. the more the weight
is associated to some rules, the more significant will be the response of those rules to the
output of RADE in the next moment of their firing.

The change of weights therefore acts as some sort of short memory for events that
occurred some moments ago. In such way RADE demonstrates its self-adapting
property, where the anomaly output level of RADE depends on its short history and
also on actual system’s state.

4 Results of Experimental Test Cases

We have made several experiments with RADE on real data acquired from several
test cases conducted with our robot demonstrator. The measurements are done
considering the following scenarios: normal robot walking (Figures 7a, 7b), obstacle
collisions (Figures 8a, 8b), a servo joint motor gets disconnected (Figures 9a, 9b),
mechanical problem - a screw on joint is falling off (Figures 10a, 10b).

The output of the fuzzy system has two membership functions: absent and present,
which correspondingly represent the absence or presence of anomaly in the system.
For the measurement tests we have assumed that the behaviour is walking and we
have initialized RADE with several fuzzy rules, which have “standard” triangular
membership sets, equally distributed over the valid range for the observed parameters.
These rules with their weights factoring can be represented as following:

RULE 1: IF accel IS zero THEN anomaly IS present WEIGHT 0.1;
RULE 2: IF accel IS small THEN anomaly IS absent WEIGHT 0.1;
RULE 3: IF accel IS medium THEN anomaly IS absent WEIGHT 0.1;
RULE 4: IF accel IS big THEN anomaly IS absent WEIGHT 0.1;
RULE 5: IF accel IS verybig THEN anomaly IS absent WEIGHT 0.1;
RULE 6: IF scurrent IS zero THEN anomaly IS present WEIGHT 0.1;
RULE 7: IF scurrent IS small THEN anomaly IS absent WEIGHT 0.1;
RULE 8: IF scurrent IS medium THEN anomaly IS absent WEIGHT 0.1;
RULE 9: IF scurrent IS big THEN anomaly IS absent WEIGHT 0.1;
RULE 10: IF scurrent IS verybig THEN anomaly IS present WEIGHT 0.1;

The parameter accel in the rules stands for acceleration of the robot and the
scurrent stands for the servo current. The weights of the rules are initially set on 0.1
at the start and change dynamically during the runtime of RADE. Such manual pre-
initialization of fuzzy rules can be overcome in future with introducing learning
within RADE. However the purpose of these tests is to prove the concept by
introducing clonal proliferation inspired change of the weights of fuzzy rules and their
online adaptation to the situation. The fuzzy rules without weights factoring are the
same as mentioned above, but with static weights defined to 0.5.

In Fig. 7 to 10 we are presenting the experimental results. On the horizontal axis we
have the time units (seconds). On the vertical axis we can observe the following
parameters: servo joint current with values between 0 and 3 Amperes; normalized
acceleration level with values between 0 and 1.5 gravity acceleration units; anomaly
level with values between 0 and 1, where 0 means no anomaly and 1 is the maximum
level of anomaly.

184 B. Jakimovski and E. Maehle

For each scenario, we have conducted experiments with two different types of
fuzzy rules:

– fuzzy rules without weights factoring (static weights); (case a)
– fuzzy rules with weights and clonal proliferation inspired dynamics; (case b)

In order to estimate the effectiveness of our clonal proliferation inspired approach for
anomaly detection we have made a comparison between these two types of rules.

The first described scenario is normal walking of the robot.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129
Time (sec)

M
o

to
r

cu
rr

en
t

(A
),

 a
cc

el
er

at
io

n(
g

),
an

o
m

al
y

le
ve

l

Joint motor current Acceleration Anomaly level (min 0 to max 1)

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129
Time (sec)

M
ot

or
 c

ur
re

nt
 (

A
),

 a
cc

el
er

at
io

n(
g)

,
an

om
al

y
le

ve
l

Joint motor current Acceleration Anomaly level (min 0 to max 1)

(b)

Fig. 7. (a) Normal robot walking; Fuzzy rules with static weights. (b) Normal robot walking;
Fuzzy rules with clonal proliferation dynamics for the weights.

 Artificial Immune System Based RADE for Fault Tolerant Robots 185

0

0.5

1

1.5

2

2.5

3

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120
Time (sec)

M
ot

or
 c

ur
re

nt
 (

A
),

 a
cc

el
er

at
io

n(
g)

,
an

om
al

y
le

ve
l

Joint motor current Acceleration Anomaly level (min 0 to max 1)

(a)

0

0.5

1

1.5

2

2.5

3

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113
Time (sec)

M
ot

or
 c

ur
re

nt
 (

A
),

 a
cc

el
er

at
io

n
(g

),
an

om
al

y
le

ve
l

Joint motor current Acceleration Anomaly level (min 0 to max 1)

(b)

Fig. 8. (a) Robot hits obstacle with its leg at time moments 12, 18 and 105; Fuzzy rules with
static weights. (b) Robot hits obstacle with its leg at time moments 12, 18 and 105; Fuzzy rules
with clonal proliferation dynamics for the weights.

For normal walking of robot we observe that the typical level for the anomaly in
the both cases is within range of 0.1 and 0.5. In the case where the fuzzy system has
static weights the anomaly level does not change much. However, we can observe that
for fuzzy rules with dynamic weights, the anomaly level is not that steady in the
observed domain from 0.1 up to 0.5, which illustrates how RADE adapts even to the
smallest perturbations in the monitored parameters.

186 B. Jakimovski and E. Maehle

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129
Time (sec)

M
ot

or
 c

ur
re

nt
 (

A
),

 a
cc

el
er

at
io

n(
g)

,
an

om
al

y
le

ve
l

Joint motor current Acceleration Anomaly level (min 0 to max 1)

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129
Time (sec)

M
ot

or
 c

ur
re

nt
 (

A
),

 a
cc

el
er

at
io

n(
g)

,
an

om
al

y
le

ve
l

Joint motor current Acceleration Anomaly level (min 0 to max 1)

(b)

Fig. 9. (a) Servo joint is switched off at time 56 to simulate some electrical failure; Fuzzy rules
with static weights. (b) Servo joint is switched off at time 56 to simulate some electrical failure;
Fuzzy rules with clonal proliferation dynamics for the weights.

In Figures 8a, 8b we observe a scenario where the robot hits some obstacles with its

parts (legs). We can identify two bigger spikes that represent the current values of a
servo joint which appear when the leg hits some obstacle. The comparative differences
to the normal walking situation are also recognizable within the values for acceleration
level and also in the computed anomaly level, which dynamically rise up in two
different time moments. These levels may indicate that some temporal problem has
appeared and for example may be an indication for changing the walking gait pattern.

 Artificial Immune System Based RADE for Fault Tolerant Robots 187

As can be seen from the tests done, within the fuzzy system based on statical
weights, when the leg hits the obstacle, the anomaly level rises up in two cases to 0.5
and 0.6 respectively. This may not indicate some particular anomaly in the system
which as a consequence may denote that the robot does not properly react to the
particular situation. Such an anomaly level computed in the fuzzy logic system using
the static weights comes out from the fact that “standard” triangular membership sets
may not be best suited for producing optimized reaction for such a situation.

However, in case of fuzzy logic system utilizing the clonal proliferation change of its
weights, the anomaly level rises up in three different moments of time to values of 0.85,
0.85 and 0.9 respectively. This clearly indicates that the anomaly detection engine
dynamically adapts to the situation even with “standard” triangular membership sets and
produces an output correctly recognizing the situation.

On Figures 9a, 9b, a scenario is presented where a servo is switched off in order to
simulate some broken contact or similar electrical failure within robot. The servo joint
is switched off at time 56, and therefore its current drops to 0 Amperes.

Such a situation where the current value and acceleration level drops very low should
result in some anomaly situation. In case of a fuzzy system utilizing static weights only,
we can see that the computed anomaly level slowly rises after that moment and at time
98 it goes on level of 0.55 where it persists till time 114, when it goes up to value of
0.75 and stays persistently on that level. This may be not that optimal output for
anomaly level in order to detect some severe anomaly. This kind of reaction may be
tracked back again to the predefined “standard” triangular membership sets which are
perhaps not suited to produce optimal result for every situation.

For the same scenario and input data, we conducted an experiment with fuzzy rules
with clonal proliferation dynamics for the weights and same “standard” triangular
membership sets as in previous case. We can observe a different output of the
anomaly detection method in comparison to the former case with static weights.
Namely, after the servo joint gets disconnected at time 56, the anomaly level rises up
more rapidly than in the previous experiment with static weights. We can also observe
a small disturbance of the anomaly level rising (in time domain 67 to 72), which is
due to the acceleration level which rises a bit, as result of the robot’s declining on the
side on which the servo is disconnected. After that, the anomaly level rises to level of
0.9 where it persists constantly. Such particular reaction would clearly indicate that
the robot should reconfigure itself in that case (for example: spatial reconfiguration of
the legs). From the comparison of the case with static and with clonal proliferation
dynamics for the weights we can observe that the anomaly detection engine in the
second case performs much faster and gives a better estimation of the situation.

In Figures 10a, 10b, a scenario is presented where a screw is falling off from a
servo joint at time 105 and simulates some sort of mechanical error within the robot.
As can be seen from the figures, after the screw has fallen off, the servo joint becomes
non-functional and therefore the acceleration of the robot gradually drops down. The
level of the servo current in that situation is also very low. As a result from these
circumstances, the anomaly level rises up to indicate some anomaly situation.

188 B. Jakimovski and E. Maehle

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154
Time (sec)

M
ot

or
 c

ur
re

nt
 (

A
),

 a
cc

el
er

at
io

n(
g)

,
an

om
al

y
le

ve
l

Joint motor current Acceleration Anomaly level (min 0 to max 1)

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151
Time (sec)

M
ot

or
 c

ur
re

nt
 (

A
),

 a
cc

el
er

at
io

n(
g)

,
an

om
al

y
le

ve
l

Joint motor current Acceleration Anomaly level (min 0 to max 1)

(b)

Fig. 10. (a) Mechanical problem - screw is falling off of one servo joint at time 105; Fuzzy
rules with static weights. (b) Mechanical problem - screw is falling off of one servo joint at
time 105; Fuzzy rules with clonal proliferation dynamics for the weights.

In case of fuzzy system utilizing static weights we can observe that the anomaly
level initially rises up to value of 0.55 till time 138, and then rises again and persists
on value 0.75.

In the case of a fuzzy system utilizing clonal proliferation with dynamics for the
weights we can observe that the anomaly level rises rather very quickly to value of
0.9 and persists on that value. With such a reaction, the robotic system can clearly

 Artificial Immune System Based RADE for Fault Tolerant Robots 189

better identify the anomaly situation than in the case with static weights and would
therefore appropriately reconfigure itself in order to continue its mission.

5 Conclusions

In this paper we have introduced RADE as a new robust concept for anomaly
detection for autonomous robots based on Artificial Immune System with clonal
proliferation dynamics for the fuzzy rules. Throughout the paper we have explained
its characteristics; its principle of functioning and presented results of the experiments
done. The test cases demonstrated the practical effectiveness of this approach.
Therefore in the next stage of the RADE project we are planning to expand this
approach and to introduce a learning feature within the rule based system and to
demonstrate its on-line learning potential. In this way RADE will directly contribute
towards practical realization of self-healing autonomous robots.

References

1. Haldar, B., Sarkar, N.: Robust fault detection and isolation in mobile robot. In:
Proceedings of IFAC, Beijing, China (2006)

2. Forsdyke, D.R.: The Origins of the Clonal Selection theory of Immunity. FASEB.
Journal 9, 164–166 (1995)

3. De Castro, L.N., Von Zuben, F.J.: Learning and Optimization using the clonal selection
principle. IEEE Transaction on Evolutionary Computation, 239–251 (2002)

4. Cao, Y., Dasgupta, D.: An Immunogenetic Approach in Chemical Spectrum Recognition.
In: Ghosh, Tsutsui (eds.) Advances in Evolutionary Computing, Springer, Heidelberg
(2003)

5. Nasraoui, O., Cardona, C., Rojas, C.: Using retrieval measures to asses similarity in
mining dynamic web clickstreams. In: Proceeding of the eleventh ACM SIGKDD
International Conference on Knowledge Discovery in Data Mining KDD (2005)

6. Pagnoni, A., Visconti, A.: An innate immune system for the protection of computer
networks. In: Proceedings of the 4th international symposium on information and
communication technologies. ACM International Conference Proceeding Series, vol. 92,
pp. 63–68 (2005)

7. Michelan, R., Von Zuben, F.J.: Decentralized control system for autonomous navigation
based on an evolved artificial immune network. In: CEC apos 2002. Proceedings of the
2002 Congress on Evolutionary Computation, vol. 2, pp. 1021–1026 (2002)

8. Singh, C.T., Nair, S.B.: An Artificial Immune System for a MultiAgent Robotics System.
Transactions of Engineering, Computing and Technology 6, 308–311 (2005)

9. Sathyanath, S., Sahin, F.: AISIMAM – An Artificial Immune System Based Intelligent
Multi Agent Model and its Application to a Mine Detection Problem. In: 1st International
Conference on Artificial Immune Systems, Canterbury, UK (2002)

10. Neal, M., Feyereisl, J., Rascuna, R., Wang, X.: Don’t Touch Me, I’m Fine: Robot
Autonomy Using an Artificial Innate Immune System. In: 5th International Conference on
Artificial Immune Systems, Oeiras, Portugal (2006)

11. Canham, R., Jackson, A.H., Tyrrell, A.: Robot Error Detection Using an Artificial Immune
System. In: Proceedings of the 2003 NASA/DoD Conference on Evolvable Hardware
(2003)

190 B. Jakimovski and E. Maehle

12. De Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational
Intelligence Approach, pp. 36–46. Springer, Heidelberg (2002)

13. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-Nonself Discrimination in a
Computer. In: Proceedings of the 1994 IEEE Symposium on Research in Security and
Privacy, IEEE Computer Society Press, Los Alamitos (1994)

14. Nino, F., Beltran, O.: A change detection software agent based on immune mixed
selection. Evolutionary Computation. In: Proceedings of the 2002 Congress on CEC 2002,
vol. 1, pp. 693–698 (2002)

15. Galeano, J.C., Veloza-Suan, A., Gonzalez, F.A.: A comparative analysis of artificial
immune network models. In: Proceedings of the Conference on Genetic and Evolutionary
Computation, Washington DC, USA, pp. 361–368 (2005)

16. El Sayed Auf, A., Mösch, F., Litza, M.: How the six-legged walking machine OSCAR
handle leg amputations. In: Workshop on Bio-inspired Cooperative and Adaptive
Behaviours in Robots, Rome, Italy (2006)

17. Jakimovski, B., Litza, M., Mösch, F., El Sayed Auf, A.: Development of an organic
computing architecture for robot control. In: Informatik 2006 Workshop on Organic
Computing - Status and Outlook, Dresden (2006)

Maximising Personal Utility Using Intelligent

Strategy in Minority Game

Yingni She and Ho-fung Leung

Department of Computer Science and Engineering
The Chinese University of Hong Kong, Hong Kong

{ynshe,lhf}@cse.cuhk.edu.hk

Abstract. In the traditional minority game, each agent chooses the
highest-score strategy at every time step from its initial strategies which
are allocated randomly. How can one agent manage to outperform its
competitors and maximise its own utility in this competing and dynamic
environment? In this paper, we study a version of the minority game in
which one privileged agent is allowed to join the game with larger mem-
ory size and free to choose any strategy, while the other agents own small
number of strategies. Simulations show that the privileged agent using
the intelligent strategy outperforms the other agents in the same model
and other models proposed in previous work in terms of individual pay-
off. We also investigate how the number of strategies and the length of
memory affect the privileged agent’s performance.

Keywords: Minority game, Symmetric phase, Asymmetric phase.

1 Introduction

Inspired by Arthur’s ‘El Farol Bar’ problem [2], the minority game [6] is intro-
duced as a model for adaptive systems of interacting agents. It consists of an
odd number of N agents playing the game. At each time step, each of the N
agents independently decides to join one of the two groups, labeled 0 or 1. After
all agents have made their decisions, those who are on the minority group win,
while the other agents belonging to the majority group lose. In the traditional
method, each agent makes the decision based on the prediction of a strategy
chosen from its S strategies (or predictors), each of which maps the recent M
winning history records to a prediction. All agents always use the highest-score
strategy to decide their action. They learn and adapt by evaluating the per-
formance of their strategies. A strategy of memory size M is a lookup table
consisting of 2M entries and two columns, ‘history’ and ‘prediction’ respectively.
Each entry prescribes which group to join in according to the information gath-
ered from the recent winning history of last M time steps, thus there are 2M

entries in each strategy. The prediction at each entry is either 0 or 1, so the
total number of strategies is 22M

. Each agent is randomly assigned S strategies
from the 22M

possible strategies at the beginning of the game. After all agents
have made their decisions, traditionally, those who are on the minority group are

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 191–205, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

192 Y. She and H. Leung

rewarded one point, while the other agents belonging to the majority group get
nothing or lose one point. All strategies which have made the correct prediction
are also rewarded one point. All agents keep updating the history dynamically
according to the outcome of winning side at every time step.

It has been shown that the fluctuations σ of the attendance size depends on
the ratio ρ = 2M/N between the number 2M of possible histories and the number
N of agents [5]. The length of the possible history is also referred as memory
size M . There exists a phase transition of changing direction of σ2 located at
the point ρc where σ2 attains its minimum [3]. When ρ < ρc, the phase is called
the symmetric phase. When ρ > ρc, the phase is called the asymmetric phase.
For small values of M , the strategy space is small and there is much overlap of
strategies among agents, hence a crowd of agents behave similarly and decide
the same action. This situation is called the ‘crowd effect’. Due to limited space,
we refer the interested readers to the book of Minority Games [5] for further
details.

Because of the ‘crowd effect’, the winning outcome of an even occurrence of
any history is most likely opposite to that of the odd occurrence of this history
[20][13] in the case of small ρ. Assuming that every history is equally likely to
occur [7], when a particular history occurs for the first time, all agents decide
randomly because there is no previous history at the beginning of the game. After
the first occurrence of the history, agents learn that the winning outcome is a
better choice. In the next occurrence of the same history, a crowd of agents make
the same decision as the winning outcome in the last occurrence. This leads to the
winning outcome is opposite to that in the last occurrence of the same history.
So, at the end of 2 × 2M time steps, all the strategies gain the same point on
average. For the next occurrence of the same history, the situation is equivalent
to a new start of the game, similar to that of the first occurrence. Therefore, the
minority game appears the quasi-periodic structure with a periodicity of length
2× 2M in the symmetric phase [13].

In the minority game with the ‘crowd effect’, how an individual agent can
escape from the crowd and maximise its own utility is of great interest. In this
paper, we focus on how a privileged agent outperforms its competitors and ob-
tains maximal utility. The only available information for the privileged agent
is the history information and its own strategies. We find that the privileged
agent with larger memory size than others and all its possible strategies can
achieve far larger payoff than the average payoff of the other agents for almost
all values of M . In the next section, we introduce some related work in details.
In Section 3, firstly, we introduce the inefficient information that the privileged
agent can make use of to maximise its own utility. Secondly, we propose an in-
telligent strategy for the privileged agent. Finally we evaluate the performance
of the privileged agent. In Section 4, we further investigate the effects that the
parameters M and S have on the privileged agent’s payoff and compare the
agent’s performance using the intelligent strategy with other models’. Then we
present an Experience method for the agent using the traditional method with

Maximising Personal Utility Using Intelligent Strategy in Minority Game 193

all possible strategies. In the last section, we come up with some conclusions
about the paper and suggest some future work.

2 Related Work

For the traditional agents, each of them is assigned S strategies arbitrarily at the
beginning of the game and then chooses the highest-score strategy among them
at every time step. There exists some similar work focusing on how individual
agents outperform their competitors in the minority game. Liu and Liaw [14]
consider the gain of a special agent. They propose the ‘opposite strategy’ for a
special agent to maximise its personal gain. It is to use the highest-score strategy
among all 22M

possible strategies when ρ is larger than ρc, and use the opposite
strategy when ρ is smaller than ρc. The opposite strategy is to use the prediction
in each entry opposite from that of the highest-score strategy. It is shown that
the winning probability of this special agent using the ‘opposite strategy’ can be
larger than 0.5 for almost all values of ρ. The reason that the ‘opposite strategy’
can enhance the winning probability lies in that it makes use of the quasi-periodic
structure of the game: the winning outcome of an even occurrence of any history
is most likely opposite to that of the odd occurrence of this history in the case
of small ρ.

Yip et al. [19] consider special agents who participate in the game with a
probability q per turn. That means these agents have a probability q of joining
the game in each turn and a probability of 1 − q of staying out of the game
in a turn. The other agents participate in the game every turn. For all agents,
they choose the highest-score strategies to make the decisions. Besides joining
the game only with probability q, the special agents differ from the other agents
in that they only assess the performance of their strategies in the turns that
they participate. For the turns that the special agents decide not to play, they
do not reward or subtract points to their strategies, regardless of the outcome.
They find that these special agents with q < 1 achieve higher success rate than
the average of all other agents when ρ is small. The success rate is the ratio
of the number of winning turns to the number of turns the agent has actually
participated. Because the special agents do not participate in the game every
turn, they can avoid the ‘crowd effect’. However, this method is a passive one
because the special agents do not participate in the game for all turns. They
only enhance their winning probability, but not enhance their overall payoffs.

Sometimes it pays to increase the agent’s memory size M . Johnson et al. [9]
study a mixed population of adaptive agents with small and large memory sizes,
but all agents own the same number of strategies and choose the highest-score
one to make decisions. They find that the average success rate of the large-
memory agents within a mixed-ability population can be greater than 0.5 by
uncovering and exploiting hidden information in the system’s recent history. The
hidden information is the system’s history information which agents can make
use of. Challet et al. [4] point out that the special agent with larger memory
size can obtain larger gain than all of the other agents in the symmetric phase

194 Y. She and H. Leung

but the gain cannot be increased further more if the agent increases memory
size. Furthermore, in the asymmetric phase the special agent receives a lower
payoff than the average payoff of the other agents. Both of these two pieces of
work demonstrate the importance of memory size in the minority game, but they
ignore the influence of the number of strategies.

Lam and Leung [11] propose an adaptive behavioral strategy for the minority
game according to the winning histories h and the net payoff u for choosing side
0 or 1. Each agent has two initial attitudes ax towards choosing side 0 or 1 and
two respective adaptive parameters. At each time step, each agent calculates the
attractiveness (= (1− ax)× h + ax × u) of side 0 and 1 to make the prediction.
If side 0’s attractiveness is larger than side 1’s, it will choose side 0, and vice
versa. At the end of each round, each agent updates its attitudes: if it has cho-
sen side 0 and wins, then its attitude towards side 0 will be increased by the
increasing adaptive parameter; if it has chosen side 0 and loses, then its attitude
towards side 0 will be decreased by the decreasing adaptive parameter. Effec-
tively, these agents do not use explicit predictors. Simulations show that agents
with the adaptive behavioral strategy perform well. However, the performance
of the agents with the adaptive behavioral strategy relies on each other because
of the limitation of the strategy itself. The strategy can work well only if there
are enough agents using it, because the agents update their attitudes according
to the winning outcome. The winning outcome need enough agents using the
adaptive behaviorial strategy to affect itself so that the agents can update their
attitudes in the right way.

3 An Intelligent Strategy

3.1 Motivation

The motivation of the work is that there is a common phenomenon: ‘crowd
effect’ in the minority game when ρ is small (N � 2M). The problem for agents
is how to escape from the ‘crowd effect’ and maximise personal utilities based
on the history information and their own strategies. What will happen if the
agent is more intelligent, i.e. having larger memory size or more strategies? In
previous studies as described in Section 2, [4][19][9][14] propose different methods
to escape from the crowd and enhance the winning probability. Based on the
previous work that the agent has longer memory [4][9], we anticipate that if
a privileged agent has larger memory size M ′ than the other agents and is
free to choose any strategy at every time step while the other agents are using
their highest-score strategies drawn randomly from the 22M

possible strategies,
then the privileged agent can also escape from the crowd and hence enhance the
success rate. Intuitively, this mechanism can achieve the performance because the
privileged agent with longer memory and more strategies is more intelligent than
the other agents. The resource allocation problem can be modeled as minority
games [8][12]. However, the application of minority games is not included in the
domain of this paper.

Maximising Personal Utility Using Intelligent Strategy in Minority Game 195

In order to study the information content of the minority game, we consider
P (1|hk), the conditional probability to have a winning outcome of side 1 imme-
diately following some specific history string hk of k bits [18][16]. That means
when the history string hk with length of k occurs, the probability of the win-
ning outcome to be side 1 is P (1|hk). Yip et al. [19] define the inefficiency ε as
follows:

ε =
1

2M

2M−1∑
i=0

|P (1|i(hk))− 1
2
| (1)

where the sum is over all 2M possible winning history strings of M bits and i(hk)
is the corresponding integer value of the binary history string hk of length k.
The inefficiency ε measures the information left in the winning history strings
that a privileged agent uses to assess its strategies. If P (1|hk) is larger than 0.5,
then the strategies with the prediction of side 1 at that specific history hk are
rewarded more points. If P (1|hk) is smaller than 0.5, then the strategies with
the prediction of side 0 at that specific history hk are rewarded more points. The
agent decides whether to reward points to its strategies based on the winning
outcome at the past winning history and chooses the highest-score strategy to
make the decision.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

i(u
k
): k=4

P
(1

|i(
u k))

Fig. 1. A histogram of the condi-
tional probability P (1|i(hk)) with
k = 4 for the game played with
M = 3

0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

i(h
k
): k=4

P
(1

|i(
h k))

Fig. 2. A histogram of the condi-
tional probability P (1|i(hk)) with
k = 5 for the game played with
M = 3

The predictive information is about which will be the minority group at the
next time step. Manuca et al. [18][16] have shown that in the symmetric phase of
the minority game, the winning history strings with length less than or equal to
the memory size contain no predictive information. That means P (1|hk) = 0.5
for any history and hence ε = 0. In Figures 1 and 2, we plot P (1|i(hk)) generated
by a game with N = 101. One is the privileged agent with larger memory size
and all possible strategies and the others have M = 3 and S = 2. Figure 1 shows
the histogram of P (1|i(hk)) for the privileged agent having one longer memory
than the memory other agents have, i.e. k = M + 1 = 4. Figure 2 shows the

196 Y. She and H. Leung

histogram of P (1|i(hk)) for the privileged agent having two longer memory than
the memory other agents have, i.e. k = M + 2 = 5. From the histograms we
can see that the distinguished hidden information becomes clearer when having
longer memory, because P (1|i(hk)) for k = 5 is more approaching to 1 when it
is above 0.5 and more approaching to 0 when it is below 0.5. Using the figures in
Figures 1 and 2 and Eq. (1), we can get the numerical results of the inefficiency
ε: ε1 = 0.154 for Figure 1 and ε2 = 0.299 for Figure 2. Obviously, ε2 > ε1.

Thus we are led to the intriguing idea that an individual agent can make good
use of this information to maximise its own utility by having longer memory and
owning all its possible strategies. At each time step, the side within the highest-
score strategy at that specific history is selected to make the decision. After
each time step, if the winning outcome is side 1, then the strategy’s score with
side 1 at that specific history is increased by one. If the winning outcome is side
0, then the strategy’s score with side 0 at that specific history is increased by
one. The theoretical analysis is as follows: the probability P (1|hk) > 0.5 means
that the winning outcome to be side 1 occurs more often than side 0. After
some learning steps, the strategy’s score with side 1 at that specific history will
be greater than the strategy’s’ score with side 0 at that specific history and
this situation lasts through the game. So the agent with longer memory and all
possible strategies will always choose side 1 if P (1|hk) > 0.5. This implies that
the probability Pwin that the agent will win through the game is approximately
equal to P (1|hk). Conversely, the agent will always choose side 0 if P (1|hk) < 0.5,
because the winning outcome to be side 0 occurs more often than side 1. The
probability Pwin that the agent will win is approximately equal to 1− P (1|hk).
Concluding the above analysis, we can get the following equation:

Pwin �
{

P (1|hk) P (1|hk) ≥ 0.5
1− P (1|hk) P (1|hk) < 0.5 (2)

Combining Eqs. (1) and (2), we have

Pwin � 1
2

+ ε (3)

Therefore the probability that the privileged agent wins for all occurrences of
histories will be greater than 0.5 if ε �= 0. The larger inefficiency ε is, the larger
winning probability is. From these two figures, we can conclude that the privi-
leged agent can lengthen the memory size to get more inefficient information.

3.2 An Intelligent Strategy

In the traditional minority game, all agents keep the same memory size M and
the same number of strategies S. As described in Section 1, there is ‘crowd
effect’ in the symmetric phase, all agents behave similarly and obtain similar
payoff. So it is hard to distinguish one from others. How can one agent manage
to outperform the other agents in terms of individual payoff? Intuitively, the
agent should be intelligent enough to avoid the ‘crowd effect’. The only available

Maximising Personal Utility Using Intelligent Strategy in Minority Game 197

information it can use is the history information and its strategies. So how can
the agent make good use of the information to maximise its payoff? Does it need
to increase its memory size or the number of strategies it owns?

In the work of Challet et al. [4], they suggest that the payoff of the agent with
M ′ = M + 1 and S′ = 2 cannot be increased furthermore if the agent increases
M ′. This result is applicable when the agent has the same number of strategies
as the other agents but longer memory than the others. However, in addition to
having longer memory than the others, if the agent also has greater number of
strategies, the situation maybe change.

Inspired by the inefficient information described in Section 3.1, we propose an
intelligent strategy for the privileged agent to maximise its own payoff. That is
the privileged agent with larger memory size M ′ than the other agents and free
to choose any strategy at each time step. In the present model, we consider a
population of N agents in which there is a privileged agent using the intelligent
strategy. The other agents have the same memory size M (M ′ > M) and are
only assigned S strategies drawn randomly from all the 22M

possible strategies.
For all agents, they choose the highest-score strategies to make the decisions.
For tie strategies, the agents make a random choice. After each time step, the
winning outcome is announced to the public. Each agent’s payoff is increased by
one if it makes the accurate decision. All the strategies’ score are also updated.
If the prediction at the specific history in one strategy is the same as the winning
outcome, then the strategy is rewarded one point.

3.3 Experiment Results

In Figure 3 and Figure 4, we plot the payoff of the privileged agent using the
intelligent strategy versus the average payoff of the other agents as a function
of different memory sizes M . The experiment setting is as follows: the number
of total agents is N = 101 for Figure 3 and N = 1001 for Figure 4, the number
of strategies each traditional agent owns is S = 2, the range of the memory
size M is the integer value between 1 and 15. The memory M ′ of the privileged
agent ranges among M + 1, M + 2, M + 3, M + 4, M + 5, M + 7 and M + 10
independently. Note that the memory the privileged agent has is longer than the
other agents’ memory. All agents are using the highest-score strategy in hands.
For each value of M , each data point is the average of 10 independent runs with
different initial random distributions of strategies and each runs 106 rounds. The
purpose for doing so is to cover as many situations as possible because the initial
strategies are randomly generated.

From Figure 3 and Figure 4, we can see that the privileged agent with longer
memory performs significantly better than the average of the other agents for
almost all values of M , no matter whether it is in the symmetric phase (ρ < ρc)
or asymmetric phase (ρ > ρc). That means the privileged agent can outperform
others for almost all values of ρ (ρ = 2M/N). The phase transition occurs at
Mc = 5 and Mc = 8 respectively. Qualitatively, the maximal utility of the
privileged agent comes from a successful escape in fully adapting to the history
information created by the other agents, and hence it does not become part of

198 Y. She and H. Leung

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3

4

5

6

7

8

9

10
x 10

5

M

Pa
yo

ff

M+1

M+2

M+3

M+4

M+5

M+7

M+10

M~M+1

M~M+2

M~M+3

M~M+4

M~M+5

M~M+7

M~M+10

Fig. 3. The privileged agent’s payoff

with M ′ and S′ = 22M′
versus the

average payoff of the other agents
with M and S = 2 as a function of
M . (N = 101).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3

4

5

6

7

8

9

10
x 10

5

M

Pa
yo

ff

M+1

M+3

M+5

M+7

M+10

M~M+1

M~M+3

M~M+5

M~M+7

M~M+10

Fig. 4. The privileged agent’s payoff

with M ′ and S′ = 22M′
versus the

average payoff of the other agents
with M and S = 2 as a function of
M . (N = 1001).

the crowd. Furthermore, the interesting result is that in the symmetric phase, the
agent with longer memory obtains more payoff. As described in Section 3.1, the
inefficient information ε is larger for the privileged agent with longer memory.
According to Equation (3), the privileged agent’s winning probability Pwin is
larger, so it is able to obtain larger payoff. However, in the asymmetric phase,
the privileged agent with smaller memory size performs better than the one with
larger memory size. In this phase, the memory size M is larger, so the strategy
space 22M

is larger, thus the other agents do not behave similarly. So there is no
‘crowd effect’ in this phase. The privileged agent cannot make use of any further
information by increasing memory size.

Therefore, we can conclude that the privileged agent using the intelligent
strategy can maximise its personal utility with larger memory size M ′ in the
symmetric phase and smaller memory size M ′′ in the asymmetric phase. Both
M ′ and M ′′ are larger than the others agents’.

4 Discussions and Analysis

4.1 Impact of M and S

In this section, we discuss the impact of M and S on the privileged agent’s
payoff. In Figure 5, we plot the payoff of two kinds of privileged agents with
M ′ = M +1 versus the average payoff of the other agents with M and S = 2 for
N = 101: the first privileged agent with all the 22M′

possible strategies, and the
second privileged agent with S′ = 2. We can see that the first privileged agent
always outperforms the second privileged one. The only difference between the
two privileged agents is the difference between the number of strategies they

Maximising Personal Utility Using Intelligent Strategy in Minority Game 199

1 2 3 4 5 6 7 8 9 10
3

4

5

6

7

8

9

10
x 10

5

M

P
ay

of
f

the privileged agent’s payoff with M’=M+1,S=22

M
’

the privileged agent’s payoff with M’=M+1,S=2

average payoff of other agents with M,S=2

average payoff of other agents with M,S=2

Fig. 5. The privileged agent’s payoff

with M ′ = M+1 and S′ = 22M′
and

another one with M ′ = M + 1 and
S′ = 2 versus the average payoff of
the other agents with M and S = 2
as a function of M . (N = 101).

10
1

10
2

10
3

10
4

10
5

3

4

5

6

7

8

9

10
x 10

4

S

P
ay

of
f

the privileged agent’s payoff with M’=M+1=4, S’
average payoff of other agents with M=3, S=2

Fig. 6. The privileged agent’s pay-
off M ′ = M + 1 = 4 and S′ ver-
sus the average payoff of the other
agents with M = 3, and S = 2 as a
function of S′. (N = 101, S′ ranges

from 2 to 224
and samples 16 values

by multiplying 2 every time).

have. So it is the difference of the number of strategies that has caused the
first privileged agent to be able to achieve higher payoff. Therefore, we need to
do further investigation of the impact of S on the privileged agent’s payoff. In
Figure 6, we plot the privileged agent’s payoff with M ′ = M + 1 and S′ versus
the average payoff of the other agents with M = 3 and S = 2 as a function of S′

for N = 101. We can see that the larger the number of strategies the privileged
agent has, the more payoff it obtains. The reason is that if an agent has more
strategies, it has more opportunity to explore in the strategy-space and thus
predict more accurately. We can also observe that the privileged agent’s payoff
may decrease as the number of strategies increases. The reason is that the agent
behaves based on its strategies, so its payoff is strongly related to the initial
distribution of the strategies. If the initially assigned strategies do not predict
well, the agent will not perform well. However, this does not affect the principal
changing trend: the larger the number of strategies the privileged agent has, the
more payoff it obtains.

Next we investigate how the length of memory the privileged agent owns
affects its performance. In Figure 7, we plot the privileged agent’s payoff with
all the 22M′

possible strategies and M ′ ranging among M +1, M , M −1, M −2,
and M − 3 independently versus the average payoff of the other agents with M
and S = 2 as a function of M for N = 101. For each value of M , the data point
is the average of 10 independent runs with different initial random distributions
of strategies and each runs 106 rounds. From this figure, we can get three results
in the symmetric phase. The first one is that the privileged agent with M ′ = M
performs the worst and even achieves less payoff than the average payoff of the
other agents. The reason is that the privileged agent has a memory of the same
length as the other agents but owns all the possible strategies. That means the

200 Y. She and H. Leung

3 4 5 6 7 8 9 10 11 12 13 14 15
2

3

4

5

6

7

8

9

10
x 10

5

M

P
ay

of
f

M+1

M

M−1

M−2

M−3

M~M+1

M~M

M~M−1

M~M−2

M~M−3

Fig. 7. The privileged agent’s payoff

with M ′ and S′ = 22M′
versus the

average payoff of the other agents
with M and S = 2 as a function of
M . (N = 101).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3

4

5

6

7

8

9

10
x 10

5

M

P
ay

of
f

the privileged agent’s payoff with with M’=M+1,S’=22

M
’

average payoff of other agents with M,S=3

Fig. 8. The privileged agent’s payoff

with M ′ = M+1 and S′ = 22M′
ver-

sus the average payoff of the other
agents with M and S = 3 as a func-
tion of M . (N = 101).

privileged agent will always follow the crowd and become a loser most of the
time. The second result is that the payoff of the privileged agent with shorter
length of memory than the other agents is smaller than the average payoff. The
reason is similar to that of the first one. The third result is that the privileged
agent with shorter length of memory than the other agents, such as M ′ = M−1,
behaves better than the privileged one with M ′ = M . The reason is that the
privileged agent with M ′ < M does not fully adapt to the history information
created by the other agents. So it is able to not be in the crowd sometimes. Thus
its payoff is a little larger than the one with M ′ = M . In the asymmetric phase,
there is no ‘crowd effect’. The agent with M ′ < M gets less history information
about the game than the agent with M ′ ≥M . This is not good for predictions,
so it gets less payoff.

Lastly, we investigate the effects that the parameters M and S have on the
dynamic phase transition point Mc of such a system with a population with a
memory M and one privileged agent with longer memory M ′ and all its possible
strategies. From Figure 3 and Figure 4, we can see that the privileged agent’s
payoff drops as M increases and reaches a minimum around Mc = 5 for N = 101
and Mc = 8 for N = 1001. Then it increases with M again for M > Mc. This
implies that when N increases, Mc increases. To test whether the dependence
of payoff of the privileged agent on M is intrinsic, we carried out simulations
for a system with N = 101 plotted in Figure 8, in which one privileged agent
has M ′ = M + 1 and S′ = 22M′

while others have M and S = 3. The phase
transition for N = 101, S = 3 occurs when Mc = 6. The result suggests that
when S increases, Mc increases. From these two pairs of comparisons, we can
conclude that the relationship between Mc and N or S is when N increases or
S increases, it leads to increasing Mc.

Maximising Personal Utility Using Intelligent Strategy in Minority Game 201

4.2 Comparisons with Related Work

In this section, we discuss some simulation results using different approaches
which all enhance individual agents’ utility. These agents all escape from the
‘crowd effect’. The model proposed by Yip et al. [19] is a passive way to avoid
the overadaptation to the history produced by the collective behavior of the other
agents. It assumes that the particular agent decides to whether to participate in
the game with a probability q and assesses the performance of its strategies only
in the turns that it participates. So, the particular agent’s payoff is at most half
of the total turns when q = 0.5, so the success rate for q = 0.5 is at most 0.5.
In addition, Yip et al. [19] also show that the enhanced success rate for q �= 1
takes on similar values, so the success rate is at most 0.5 even if q is close to 1.
Thus, the payoff is at most half of the number of the total turns for any q. The
achievable payoff is not large enough.

In Figure 9, we compare the payoff of the privileged agent using the intelligent
strategy with the payoff of another agent using the adaptive behavioral strategy
proposed by Lam and Leung [11]. The experiment setting is as follows: the
number of total agents is N = 101, the number of strategies each of the other
agent owns is S = 2, the range of the memory size M is the integer values between
1 and 15. The memory M ′ of the agent using the intelligent strategy is M + 1.
The agent’s initial attitude towards side 0 and 1 and adaptive parameters using
the adaptive behavioral strategy are randomly generated at the beginning of the
game. The other agents are using the highest-score strategy in hands. For each
value of M , the data point is the average of 10 independent runs with different
initial random distributions of strategies and each runs 106 rounds. This figure
illustrates that the privileged agent using the intelligent strategy achieves larger
payoff than the agent using the adaptive behavioral strategy for all most values
of M . The reason why the agent using the adaptive behavioral strategy does
not obtain large enough payoff is as described in Section 2. There is only one
agent using the adaptive behavioral strategy in the experiment, so its decision
affect little on the winning outcome. So the agent will update its attitudes in
the wrong way.

In Figure 10, we compare the payoff of the privileged agent using the intelligent
strategy with the payoff of another agent using Liu and Liaw’s [14] ‘opposite
strategy’. The experiment setting is the same as the previous one. The memory
M ′ of the agent using the intelligent strategy is M + 10 when M ≤ 5 and
M +1 when M > 5. We can see from Figure 3, the agent with M + 10 performs
better in the symmetric phase and the agent with M + 1 performs better in the
asymmetric phase. For the agent using the ‘opposite strategy’, it uses the highest-
score strategy when M > 5 and uses the opposite strategy when M ≤ 5. The
opposite strategy is the one with the prediction opposite from that of the highest-
score strategy at any entry. From this figure, we can see that the agent using the
intelligent strategy obtains more payoff than the one using the ‘opposite strategy’
in the symmetric phase. In the asymmetric phase, the payoff of the agent using
the intelligent strategy and the payoff of the agent using the ‘opposite strategy’
are more or less the same. In fact, as described in Section 1, the winning outcome

202 Y. She and H. Leung

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3

4

5

6

7

8

9

10
x 10

5

M

P
ay

of
f

the privileged agent’s payoff with the intelligent strategy

the privileged agent’s payoff with the adaptive behavioral strategy

average payoff of other agent with M,S=2

Fig. 9. The privileged agent’s payoff

with M ′ = M + 1 and S′ = 22M′

and the adaptive behavioral agent’s
payoff versus the average payoff of
the other agents with M and S = 2
as a function of M . (N = 101).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3

4

5

6

7

8

9

10
x 10

5

M

P
a
yo

ff

the privileged agent’s payoff with Liu−Liaw strategy

the privileged agent’s payoff with the intelligent strategy

average payoff of other agents with M, S=2

average payoff of other agents with M, S=2

Fig. 10. The privileged agent’s pay-
off with the intelligent strategy and
the one with the opposite strat-
egy versus the average payoff of the
other agents with M and S = 2 as a
function of M . (N = 101).

of an even occurrence of any history is most likely opposite to that of the odd
occurrence of this history [20][13] in the symmetric phase. Since the agent using
the ‘opposite strategy’ use the prediction opposite from that of the highest-score
strategy, so it can almost wins for the even occurrence of any history. For the
odd occurrence of any history, it has a probability of 0.5 to win. So its winning
probability on average will be approximately equal to 0.75. On the other hand, in
Section 3.1, statistical results reveal that the inefficient information contained in
M +2 is ε > 0.25. Since longer memory can lead to larger inefficient information
ε, so the inefficient information ε contained in M + 10 is greater than 0.25.
Then according to the relationship Pwin � 1

2 +ε, the winning probability will be
greater than 0.75. Therefore, the agent using the intelligent strategy can obtain
more payoff than the agent using the ‘opposite strategy’.

From these comparisons, we can conclude that the privileged agent using the
intelligent strategy is able to make more accurate decisions with larger memory
size in the symmetric phase. However, if the agent does not know when the
phase transition will occur, it can just lengthen its memory size by one, i.e. keep
longer memory than the other agents’ by one, no matter in the symmetric phase
or the asymmetric phase. It is because the agent with M + 1 performs well for
all most values of M . If the agent knows where the phase transition occurs, it
can lengthen its memory size more than one in the symmetric phase.

4.3 Equivalence to the Experience Method

Obviously, if an agent owns all 22M

strategies, the number of strategies will be
too large for the agent to handle even when M is moderate. In this section, we
present a simple Experience method, and show that agents employing Experience

Maximising Personal Utility Using Intelligent Strategy in Minority Game 203

method have the same behavior as agents employing the traditional method with
all 22M

strategies.
The Experience method is as follows. Instead of using any of the 22M

strate-
gies, an agent simply records, for each immediate past history of length M , the
number of times side 0 has won and the number of times side 1 has won. The
number of times side 0 or 1 has won is said to be the score of the respective
side. To make a decision given an immediate past history of length M , an agent
chooses the side with the highest score, and makes random choice at ties.

Let Ei
x(h) denote the score of side x (0 or 1) at time step i for an immediate

past history h of length M . Formally, the experience method can be expressed
as follows:

Ei
x(h) =

⎧⎨
⎩

0 i = 0
Ei−1

x (h) i > 0 and side x loses at time step i
Ei−1

x (h) + 1 i > 0 and side x wins at time step i
(4)

At time step i, if the immediate past history is h, an agent chooses side 0
if Ei

0(h) > Ei
1(h), or side 1 if Ei

0(h) < Ei
1(h), or a random choice between 0

and 1 if Ei
0(h) = Ei

1(h). This Experience strategy is intuitively simple and easy
to implement. However, the following theorem proves that agents employing
such an Experience method are behaviorally equivalent to agents employing the
traditional method with all strategies.

Theorem: The behavior of an agent using the Experience method is equivalent to
the behavior of an agent using the traditional method with all possible strategies.

Proof: Consider an agent using the traditional method, which has all 22M

strategies. For any strategy P , let P (h) denote the prediction made by strat-
egy P with history h. Choose any two strategies P1 and P2. Suppose at time
step i with history h, P1 has the highest score Si

1 and P2 has the score Si
2

(Si
1 ≥ Si

2). Then we have Ei
P1(h)(h) ≥ Ei

P2(h)(h) for the following reason. Suppose
Ei

P1(h)(h) < Ei
P2(h)(h). As the agent has all possible strategies, there must exist

a strategy P3 with the same prediction in P2 at the history h (P3(h) = P2(h))
and with the same predictions in P1 at all the other histories (P3(h′) = P1(h′)
iff h′ �= h). So P3’s score Si

3 = Si
1 − Ei

P1(h)(h) + Ei
P2(h)(h). Then Si

3 > Si
1,

which contradicts to the fact that Si
1 is the highest score. Therefore, we have

Ei
P1(h)(h) ≥ Ei

P2(h)(h). In other words, P1 scores weakly better than any other
strategy P2 for each h.

If both P1 and P2 are highest-score strategies at time step i (Si
1 = Si

2), then
we have Ei

P1(h)(h) ≥ Ei
P2(h)(h) and Ei

P1(h)(h) ≤ Ei
P2(h)(h), hence Ei

P1(h)(h) =
Ei

P2(h)(h).
In summary, Si

1 ≥ Si
2 if and only if Ei

P1(h)(h) ≥ Ei
P2(h)(h), and vice versa.

Therefore, the agent that uses the Experience method and chooses the side with
the highest score at each history is actually using the traditional method with
all possible strategies. So their behaviors are equivalent. ��

204 Y. She and H. Leung

5 Conclusions and Future Work

In this paper, we study the performance of one privileged agent with larger
memory size M ′ and free to choose any possible strategy in a population with
a memory M and S = 2. We find some significant results. The present results
demonstrate that the privileged agent outperforms the other agents for almost
all values of M . Moreover, another feature of the results is that in the symmetric
phase, the privileged agent with larger memory size can obtain more payoff than
the one with smaller memory size but still larger than the others’.

In addition, we compare the payoff the privileged agent using the intelligent
strategy with the payoff of another agent using the adaptive behavioral strategy
proposed by Lam and Leung[11]. The result shows that the privileged agent can
outperform the agent using the adaptive behavioral strategy for all most values
of M . We also compare the payoff of the agent using the intelligent strategy
with the payoff of another agent using the ‘opposite strategy’ proposed by Liu
and Liaw [14]. The result also shows that the intelligent agent can outperform
the agent using the ‘opposite strategy’ in the symmetric phase. Therefore, the
privileged agent using the intelligent strategy we propose outperforms the other
agents in the same model and other models proposed in previous work in terms
of individual payoff.

We also investigate how the number of strategies and the length of memory
affect the privileged agent’s performance. We have two conclusions. First, the
larger the number of strategies the privileged agent with larger memory size
has, the more payoff it obtains. Second, in the symmetric phase, the privileged
agent with all strategies and memory size smaller than or equal to the other
agents’ memory size gets less payoff than the average payoff of the other agents.
In the asymmetric phase, the privileged agent with all strategies and memory
size smaller than the other agents’ memory size gets less payoff than the privi-
leged agent with all strategies and memory size larger than or equal to the other
agents’. Finally, we present a simple Experience method for agents with all pos-
sible strategies, and prove that agents employing Experience method have the
same behavior as agents employing the traditional method with all strategies.

There are some aspects for future work. First, if we allow additional commu-
nication between agents or the strategies the agents own is evolutionary [1][10],
how will agents make good use of the property to make more accurate decisions?
Second, we are interested in applying the intelligent strategy to the resource al-
location problem modeled as the extended minority game. There may be not
only one resource. The resource capacity may vary over time. Agents may need
bundles of resources. So agents do not make a binary decision, but need to pre-
dict the resource load to decide which resource to choose. We can also extend
the model to more complicated multi-agent systems in real-world environment,
such as applications in sensor network [15] and grid computing [17].

Acknowledgments. The work described in this paper was supported by a grant
from the Research Grants Council of the Hong Kong Special Administrative
Region, China (Project No. 413306).

Maximising Personal Utility Using Intelligent Strategy in Minority Game 205

References

1. Araujo, R.M., Lamb, L.C.: Towards understanding the role of learning models in
the dynamics of the minority game. In: Proceedings of the 16th IEEE International
Conference on Tools with Artificial Intelligence, pp. 727–731 (2004)

2. Arthur, B.W.: Inductive reasoning and bounded rationality. The American Eco-
nomic Review 84(2), 406–411 (1994)

3. Challet, D., Marsili, M.: Phase transition and symmetry breaking in the minority
game. Physical Review E 60(6), 6271(4) (1999)

4. Challet, D., Marsili, M., Zhang, Y.C.: Modeling market mechanism with minority
game. Physica A 276, 284–315 (2000)

5. Challet, D., Marsili, M., Zhang, Y.C.: Minority Games. Oxford University Press,
Oxford (2005)

6. Challet, D., Zhang, Y.C.: Emergence of cooperation and organization in an evolu-
tionary game. Physica A 246, 407–418 (1997)

7. D’hulst, R., Rodgers, G.J.: Strategy selection in the minority game. Physica A 278,
579–587 (2000)

8. Galstyan, A., Kolar, S., Lerman, K.: Resource allocation games with changing
resource capacities. In: AAMAS 2003: Proceedings of the second international joint
conference on Autonomous agents and multiagent systems, pp. 145–152 (2003)

9. Johnson, N.F., Hui, P.M., Zheng, D., Hart, M.: Enhanced winnings in a mixed-
ability population playing a minority game. Physica A, 427–431 (1999)

10. Kimura, H., Akiyama, E.: Grand canonical minority games with variable strategy
spaces. In: Proceeding of the 19th Workshops of the Japanese Society for Artificial
Intelligence, pp. 291–301 (2005)

11. Lam, K.M., Leung, H.F.: An adaptive strategy for minority games. In: AAMAS
2007: Proceedings of the sixth international joint conference on Autonomous agents
and multiagent systems, pp. 1176–1178 (2007)

12. Lam, K.M., Leung, H.F.: An adaptive strategy for resource allocation modeled
as minority game. In: SASO 2007: Proceedings of the First IEEE International
Conference on Self-Adaptive and Self-Organizing Systems, pp. 193–204 (2007)

13. Liaw, S.S., Liu, C.: The quasi-periodic time sequence of the population in minority
game. Physica A 351, 571–579 (2005)

14. Liu, C., Liaw, S.S.: Maximize personal gain in the minority game. Physica A 360,
516–524 (2006)

15. Mainland, G., Parkes, D.C., Welsh, M.: Decentralized, adaptive resource alloca-
tion for sensor networks. In: NSDI 2005: Proceedings of the 2nd conference on
Symposium on Networked Systems Design and Implementation, p. 23 (2005)

16. Manuca, R., Li, Y., Riolo, R., Savit, R.: The structure of adaptive competition in
minority games. Physica A 282, 559–608 (2000)

17. Manvi, S.S., Birje, M.N., Prasad, B.: An agent-based resource allocation model for
computational grids. Multiagent and Grid System 1(1), 17–27 (2005)

18. Savit, R., Manuca, R., Riolo, R.: Adaptive competition, market efficiency, and
phase transitions. Physical Review Letters 82, 2203–2206 (1999)

19. Yip, K.F., Lo, T.S., Hui, P.M., Johnson, N.F.: Enhanced winning in a competing
population by random participation. Physical Review E 69(4), 46120(7) (2004)

20. Zheng, D.F., Wang, B.H.: Statistical properties of the attendance time series in
the minority game. Physica A 301, 560–566 (2001)

Simulation-Based Optimization Approach for

Software Cost Model with Rejuvenation

Hiroyuki Eto1, Tadashi Dohi1, and Jianhua Ma2

1 Department of Information Engineering, Graduate School of Engineering
Hiroshima University, 1–4–1 Kagamiyama, Higashi-Hiroshima, 739–8527 Japan

2 Graduate School of Computer and Information Sciences, Hosei University
3-7-2 Kajino-cho, Koganei, Tokyo, 184-8584 Japan

Abstract. Software rejuvenation is a preventive and proactive main-
tenance solution that is particularly useful for counteracting the phe-
nomenon of software aging. In this paper we consider an operational
software system with multiple degradations and derive the optimal soft-
ware rejuvenation policy minimizing the expected operation cost per unit
time in the steady state, via the dynamic programing approach. Espe-
cially, we develop a reinforcement learning algorithm to estimate the
optimal rejuvenation schedule adaptively and examine its asymptotic
properties through a simulation experiment.

Keywords: Software aging, software rejuvenation, semi-Markov decision
process, Q-learning, adaptation, non-parametric statistics, simulation-
based optimization.

1 Introduction

When software application is executed continuously for long periods of time,
some of the faults cause it to age due to error conditions that accrue with time
and/or load. Software aging will affect the performance of the application and
eventually cause it to fail [2, 7, 9]. Software aging has also been observed in
widely-used communication software like Internet Explorer, Netscape and xrn as
well as commercial operating system and middleware [9]. A complementary ap-
proach to handle software aging and its related transient software failures, called
software rejuvenation, has been becoming popular [14]. Software rejuvenation is
a preventive and proactive solution that is particularly useful for counteracting
the phenomenon of software aging. It involves stopping the running software
occasionally, cleaning its internal state and restarting it. Cleaning the internal
state of a software might involve garbage collection, flushing operating system
kernel tables, reinitializing internal data structures, or hardware reboot.

Huang et al. [14] considered a degradation phenomenon as a two-step stochas-
tic process in order to represent the uncertain behavior of a telecommunication
billing application. From the clean state the software system jumps into a de-
graded state from which two actions are possible: rejuvenation with return to the
clean state or transition to the complete system failure state. They modeled a
four-state process as a continuous-time Markov chain (CTMC), and derived the
steady-state system availability and the expected operation cost per unit time in

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 206–218, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Simulation-Based Optimization Approach 207

the steady state. Avritzer and Weyuker [3] discussed the aging in a telecommu-
nication switching software where the effect manifests as gradual performance
degradation. Garg et al. [11] introduced an idea of periodic rejuvenation (deter-
ministic interval between successive rejuvenations) into the Huang et al.’s model
[14] and represented the stochastic behavior by using a Markov regenerative
stochastic Petri net. Dohi et al. [8] and Suzuki et al. [19] extended the seminal
two-step software degradation models in Huang et al. [14] and Garg et al. [11],
respectively, by using semi-Markov processes (SMPs).

As another example, it may be interesting to consider both effects of aging
as crash/hang failure, referred to as hard failure, and of aging as soft failure
that can lead to performance degradation. Pfening et al. [17] modeled a per-
formance degradation process by the gradual decrease of the processing rate
in a non-stationary Markovian queueing system, and formulated a determina-
tion problem of the cost-optimal software rejuvenation schedule by a Markov
decision process. Garg et al. [12] analyzed a transaction-based software system,
which involves arrival and queueing of jobs, and examined both effects of ag-
ing; hard failures that result in an unavailability and soft failures that result
in performance degradation. Recently, Eto and Dohi [10] considered the similar
but somewhat different multistage degradation models from Pfening et al. [17]
via a semi-Markov decision process, by taking account of the presence of system
failure. They proved that the control-limit type of software rejuvenation policy
should be optimal among all the Markovian stationary policies in a simple mul-
tistage degradation model. Bobbio et al. [5] introduced a cumulative process to
describe the temporal damage resulted by software aging.

In this paper we consider the same software cost model as Eto and Dohi [10],
but focus on a statistical estimation problem. As discussed in Dohi et al. [8]
and Suzuki et al. [19], a non-parametric estimation scheme is quite useful to
rejuvenate the operational software, because it enables us to trigger the software
rejuvenation at the asymptotically optimal timing without specifying the sys-
tem failure time distribution. Since the approach taken in the references [8, 19] is
based on the fixed complete sample that relies on observing system failure times
without truncations and its empirical distribution, it would be quite difficult to
acquire the complete sample data in an operational phase of software system,
and to apply the same technique to an adaptive situation. In other words, for
software systems which are long-lived and costly, the luxury of obtaining a sam-
ple of complete lifetimes before a rejuvenation policy is implemented may not be
available in many cases. Hence, an adaptive non-parametric estimation scheme
should be definitely developed to trigger the software rejuvenation in an on-line
way. In this paper, a reinforcement learning algorithm, called Q-learning, is used
for developing an on-line adaptive algorithm (see [18]). In this estimation frame-
work, it is guaranteed that the optimal software rejuvenation schedule can be
estimated adaptively without the complete knowledge on system failure (degra-
dation) time distribution in the operational phase, even if the underlying state
transition of software is governed by CTMCs or SMPs. The most attractive point
is that the resulting estimator can converge to the real (but unknown) optimal

208 H. Eto, T. Dohi, and J. Ma

solution almost surely. In that sense, our method can provide an asymptotically
optimal software rejuvenation schedule with the incomplete knowledge on the
system failure (degradation) time distribution.

The rest part of the paper is organized as follows. In Section 2, we describe
the multistage degradation software system by means of CTMC and define the
notation and underlying assumptions. The formulation is still valid for an SMP
model, where each state transition obeys a non-exponential probability distribu-
tion. Section 3 is related to the semi-Markov decision process under the expected
operation cost per unit time in the steady state. We formulate the Bellman
equation and give the corresponding value iteration algorithm to compute the
optimal software rejuvenation timing which minimizes the expected operation
cost per unit time. In Section 4, we introduce the Q-learning algorithm as a
typical example of reinforcement learning algorithms, and develop a simulation-
based adaptive algorithm to trigger the rejuvenation. Since this can guarantee a
statistically consistent property, the resulting solution converges to the real op-
timal solution even if the system failure time distribution is unknown. Section 5
is devoted to given an illustrative example, where we examine the convergence
property of the Q-learning algorithm proposed in this paper. Finally, the paper
is concluded with some remarks in Section 6.

2 Multistage Degradation Software System

Consider a single use software system which deteriorates with time. State of
the software system deteriorates stochastically and changes from i to j (i, j =
0, 1, · · · , s+1, i < j), where state 0 and state s+1 are the normal (robust) state
and the system down state, respectively. Suppose that the state of software
at time t, {N(t), t ≥ 0}, is described by a right-skip free CTMC with state
space I = {0, 1, · · · , s + 1} and that the transition rate from i to j is given by
γi,j (> 0), where

∑s+1
j=i+1 γi,j = Γi for all i (= 0, 1, · · · , s) (see Fig. 1). When

the system failure occurs, then the system is down (j = s + 1) and the recovery
operation immediately starts, where the time to complete the recovery operation
is an independent and identically distributed (i.i.d.) random variable having the
cumulative distribution function (c.d.f.) Hs+1(x) and mean 1/ωs+1(> 0).

On the other hand, one makes a decision whether to trigger the software
rejuvenation at the time instant when the state of software system changes from
i to j (= i + 1, i + 2, · · · , s). If one decides to continue operation, the state is
monitored until the next change of state, otherwise, the software rejuvenation
is preventively triggered, where the time to complete the rejuvenation is also an
i.i.d. random variable with the c.d.f. Hi(x) and mean 1/ωi (> 0), depending on
the state i (= 0, 1, · · · , s). Let x1 (> 0) and x2 (> 0) be the rejuvenation cost
per unit time and the recovery cost per unit time, respectively. In both periods
of rejuvenation and recovery operation, the system operation is stopped. Also, it
is assumed that the state-dependent cost ai is incurred per unit operation time
for i = 0, 1, · · · , s.

Simulation-Based Optimization Approach 209

10 2
γ0,1 s s+1

γ1,s+1

γ1,2 γs,s+1

γ2,s+1

γ0,s+1

γ0,2

γ0,s

γ1,s

γ2,s

............

....

Fig. 1. Semi-Markovian transition diagram of software degradetion level

Note that the system state can be described by only the index j (0 < j ≤ s+1).
At each time instant when the state changes from i to j, one has an option to
choose Action 1 (rejuvenation) or Action 2 (continuation of processing). When
the system failure occurs, i.e., the state of system becomes j = s+1, the recovery
operation (Action 3) is taken. Let q(δ)(i, j) denote the probability that the state
changes from i to j under Action δ (= 1, 2, 3). Then it can be seen that

(i) Case 1 (rejuvenation):

q(1)(i, 0) =
∫ ∞

0

dHi(t) = 1, i = 0, 1, · · · , s, (1)

where the mean rejuvenation time (overhead) is given by

hi =
∫ ∞

0

tdHi(t). (2)

(ii) Case 2 (continuation of processing):

q(2)(i, j) = γi,j/Γi, i, j = 0, 1, · · · , s + 1, i < j. (3)

(iii) Case 3 (recovery from system failure):

q(3)(s + 1, 0) =
∫ ∞

0

dHs+1(t) = 1, (4)

where the mean recovery time (overhead) is given by

hs+1 =
∫ ∞

0

tdHs+1(t). (5)

210 H. Eto, T. Dohi, and J. Ma

After completing rejuvenation and recovery operations, the state of software
system becomes as good as new, i.e., j = 0 in Eqs. (1) and (4), and the same cycle
repeats again and again over an infinite time horizon. We define the time interval
from the initial point of system operation to the completion of rejuvenation or
recovery operation whichever occurs first, as one cycle.

3 Semi-Markov Decision Process

Observing the state of software system, we sequentially determine the optimal
timing to trigger the software rejuvenation so as to minimize the expected op-
eration cost per unit time in the steady state. Define the following notation:

δ(i): action taken at state (decision point) i, where

δ(i) =

⎧⎨
⎩

1 : 0 ≤ i ≤ s
2 : 0 ≤ i ≤ s
3 : i = s + 1.

(6)

G(i, δ(i)): mean cost between two successive decision points, when action δ(i)
is taken at state i, i.e.,

G(i, δ(i)) =

⎧⎨
⎩

x1hi : δ(i) = 1
0 : δ(i) = 2
x2hs+1 : δ(i) = 3.

(7)

πi(δ(i)): expected total time between two successive decision points, when action
δ(i) is taken at state i, i.e.,

πi(δ(i)) =

⎧⎨
⎩

hi : δ(i) = 1
1/Γi : δ(i) = 2
hs+1 : δ(i) = 3.

(8)

U(i): action space at state i, i.e., δ(i) ∈ U(i).
v(i): ralative value function in the semi-Markov decision process at state i ∈ I.
z∞: expected operation cost per unit time in the steady state, where z∗∞ denotes

the minimum one.

From the preliminary above, the Bellman equation based on the principle of
optimality, is given by

v(i) = min
δ∈U(i)

[
G(i, δ)− z∞πi(δ) +

s+1∑
j=0

qi,j(δ)v(j)
]
. (9)

It is well known that the software rejuvenation policy satisfying Eq. (9) is al-
ways optimal among all the Markovian stationary policies [20]. To solve the
above functional equation numerically, we can easily develop the well-known
value iteration algorithm for the semi-Markov decision process. Define:

w(i, δ(i)): relative value function when action δ(i) is taken at state i,
A(n): = mini∈I{vn(i)− vn−1(i)},
B(n): = maxi∈I{vn(i)− vn−1(i)},

Simulation-Based Optimization Approach 211

ε: tolerance level for iterative calculations,
τ : design parameter in the value iteration algorithm which satisfies 0 ≤ τ/hr,

0 ≤ τΓi ≤ 1 and 0 ≤ τ/hf ≤ 1 for all i (see [20]),

where wn(i, δ(i)) and vn(i) denote the n-th iteration of the relative value function
and its minimum one, respectively. Then the value iteration algorithm for the
Bellman equation in Eq. (9) is given in the following:

Value Iteration Algorithm:

Step 1: n := 0, v0(i) := 0.
Step 2:

wn+1(i, 2) := ai +
s+1∑
j=0

τγi,jv
n(j)

Γi
+
(
1−

s+1∑
j=0

τγi,j

Γi

)
vn(i),

wn+1(i, 1) := x1 +
(τ

hi

)
vn(0) +

(
1− τ

hi

)
vn(i),

vn+1(i) := min{wn+1(i, 1), wn+1(i, 2)},
vn+1(s + 1) := x2 +

(τ

hs+1

)
vn(0) +

(
1− τ

hs+1

)
vn(s + 1),

Step 3: If 0 ≤ B(n) −A(n) ≤ εA(n), then stop the procedure, otherwise, n :=
n + 1 and go to Step 1.

Although we describe the multistage degradation phenomenon of an operational
software system by a CTMC, it can be easily extended to an SMP with non-
exponential transition rates. Eto and Dohi [10] proved in the somewhat different
modeling framework that the control-limit type of software rejuvenation policy
is always optimal under mild conditions. Also, they gave an explicit form of the
expected operation cost per unit time in the steady state, and provided a sim-
ple calculation method without using the value iteration algorithm. However,
it is worth mentioning that the analytical approach and/or the value iteration
algorithm are effective only for the case where the system failure time distribu-
tion is completely known. In addition, when the transition rates are unknown in
the CTMC case or the transition probability distributions are unknown in the
SMP case, one must spend much time and effort to the statistical estimation
and test, in order to validate any parametric model. In the following section,
we develop a simulation-based adaptive optimization approach to estimate the
optimal software rejuvenation schedule.

4 Reinforcement Learning Algorithm

The reinforcement learning is a simulation-based optimization algorithm, where
the optimal value function is approximated with the sample or simulation of
observations. In general, the reinforcement learning scheme consists of (i) an
environment, (ii) a learning agent with its knowledge base, (iii) a set of different
actions taken by the agent and (iv) responses from the environment to different

212 H. Eto, T. Dohi, and J. Ma

response

ENVIRONMENT

AGENT

action

Fig. 2. Configuration of reinforcement learning algorithm

actions in different states (see Fig. 2). That is, the agent learns an interac-
tion from the environment itself. Also, the agent receives the information called
reward from the environment, and learns the parameters which govern the en-
vironment. In this paper we focus on the representative reinforcement learning,
called Q-learning [18], which consists of the following three factors:

Observation of state: Observe the current state,
Selection of actions: Select the best action from possible ones at the cur-

rent state, where the best action is taken based on an estimate of reward
(Q-value),

Learning from environment: Update Q-value with both the current Q-value
and the reward earned by the selected action.

The Q-learning has been discussed more specifically within the framework of
Markov and/or semi-Markov decision processes. Abounadi et al. [1] improved the
classical Q-learning algorithm and showed that it can converge to the optimal
relative value function in the dynamic programing equation almost surely. Borkar
and Meyn [6] and Konda and Bokar [15] proved some convergence properties on
the Q-learning based algorithms with the ordinary differential equation (O.D.E.)
method and the martingale convergence theorem, respectively. Mahadevan [16]
paid his attention to the numerical calculation in the Q-learning. For the good
survey on the Q-learning algorithms in Markov/semi-Markov decision processes,
see Bertsekas and Tsitsiklis [4] and Gosavi [13].

Define the following notation:

Q(i, δ(i)): estimate of future cumulative cost just after the action δ(i) is taken
in state i,

t(i, δ(i), j): transition time to state j just after the action δ(i) is taken in state
i,

r(i, δ(i), j): cost until the state transition to j occurs just after the action δ(i)
is taken in state i,

REWARD∞: cumulative cost in the steady state, provided that an agent selects
the action δ(i) with smaller Q-value, with probability 1/|U(i)|,

Simulation-Based Optimization Approach 213

TIME∞: cumulative operation time in the steady state, provided that an agent
selects the action δ(i) with smaller Q-value, with probability 1/|U(i)|,

REWARDt: cumulative cost at each decision point,
TIMEt: cumulative operation time at each decision point,
φ: design parameter in the Q-learning algorithm,
k: number of iterations,
zt: transient (instantaneous) operation cost per unit time, i.e.,

zt = REWARDt/T IMEt, (10)

where limt→∞ zt = z∞.

We derive the Q-factor version of the value iteration algorithm mentioned in
Section 3. In the first phase of Q-learning algorithm (Step 1 ∼ Step 5 below),
the agent learns the Q-value as an estimate of future cumulative cost based
on a probabilistic action, and adapts the environment through the update of
Q-value. In the second phase (Step 6 ∼ Step 9 below), the decision maker (DM)
regards the first phase as a simulator, and selects the optimal action based on
the updated Q-value by the agent. Although the DM’s action at each decision
point does not influence neither the agent nor the environment, he or she can
behave optimally in the sense of minimization of the Q-value, and can estimate
the updated Q-value, say, estimates of the cumulative cost and cumulative total
operation time from the history. The estimates in this stage is transient, i.e.,
they can function to check the convergence.

Q-Learning Algorithm:

Step 1: Agent observes the current state i of software system. Set k = 0, φ = 1,
REWARD∞ = 0, TIME∞ = 0, REWARDt = 0 and TIMEt = 0.

Step 2: For a sufficient large iteration number kz (e.g., kz = 10, 000), if k ≤ kz

at each observation point with state i (= 1, 2, · · · , s), then the agent uses
a probabilistic strategy, i.e., take an action δ(i); rejuvenation (δ(i) = 1) or
continuation of process (δ(i) = 2) with probability 1/|U(i)|. Further, if the
action taken by the agent minimizes the Q-value, then φ = 0, otherwise
φ = 1. On the other hand, if k ≥ kz , then the agent takes the optimal action
which minimizes the Q-value and stop the procedure.

Step 3: After observing the transition from state i to j, the agent updates the
Q-value with the probabilistic strategy δ according to the following formula:

Q(i, δ)←− (1− α)Q(i, δ) + α
{

r(i, δ, j)− z∞t(i, δ, j) + min
´δ′∈U(j)

Q(j, δ′)
}

,

where α ∈ (0, 1] is the learning rate (free parameter).
Step 4: If φ = 0, then update REWARD∞ and TIME∞ as shown below:

REWARD∞ ← REWARD∞ + r(i, δ, j),
T IME∞ ← TIME∞ + t(i, δ, j).

214 H. Eto, T. Dohi, and J. Ma

Step 5: Update the minimum operation cost per unit time in the steady state
z∞ by

z∞ ← REWARD∞/T IME∞.

Step 6: The DM selects the optimal action at state i, minimizing the Q-value
updated by

δ(i) = argmin ´δ(i)∈U(i)
Q(i, δ(i)).

Step 7: Update REWARDt and TIMEt by

REWARDt ← REWARDt + r(i, δ(i), j),
T IMEt ← TIMEt + t(i, δ(i), j).

Step 8: Update zt by

zt ← REWARDt/T IMEt.

Step 9: Set k = k + 1 and i← j, and go to Step 2.

In the actual implementation of the above algorithm, it should be noted that the
action whether to trigger the software rejuvenation or not at each decision point
is taken in Step 6. Then, an estimate of the expected operation cost per unit
time in the steady state is equivalent to that estimated by the agent in Step 5
and is independent of the DM’s action. On the other hand, when z∞ ≈ zt

at the maximum iteration number kz, then one can check that the Q-learning
algorithm converges and as the result the minimum operation cost per unit time
in the steady state can be achieved in the software operation with rejuvenation.
In the following section, we give an illustrative example and investigate the
convergence properties of the Q-learning algorithm.

5 An Illustrative Example

In this section, we consider the case where the state transition is governed by
an SMP. For better understanding the situation, we do not use the notation of
transition rate γi,j(t), but, instead, the following one:

exp(λ): exponential distribution with mean 1/λ,
Wei(η, m): Weibull distribution with scale parameter η and shape paramete m.

Figure 3 depicts the SMP with respective transition probabilities, where x1 =
8, x2 = 15, a0 = 1, a1 = 3, a2 = 5, a3 = 7, ω0 = 0.20, ω1 = 0.15, ω2 = 0.12, ω3 =
0.10, ω4 = 0.02. If one can know all the information on the SMP, it is quite easy
to make the so-called decision table by solving numerically the value iteration
algorithm (see [10]). In this case, the optimal control limit is given by N∗(t) = 2
and the corresponding operation cost per unit time in the steady state is z∗∞ =
4.3223, so that it is optimal to trigger the rejuvenation at the first passage time
inf{t ≥ 0 : N(t) = 2}.

Simulation-Based Optimization Approach 215

10
exp(0.04)

2 3 4

exp(0.04) exp(0.04)

exp(0.04)

Wei(0.03,2)

Wei(0.02,2)

Wei(0.01,2)

Wei(0.02,2)

Wei(0.06,2) Wei(0.1,2)

Fig. 3. An example with three degradation levels

1

3

6

8

200 400 600 800
number of processes

0

7

5

4

2

steady-state expected
operation cost (z)

α = 0.20

α = 0.01

α = 0.50

Fig. 4. Asymptotic behavior of operation cost per unit time in the steady state based
on Q-learning for varying learning rate

Of our concern is the investigation of convergence properties of the Q-learning
algorithm. We perform the Monte Carlo simulation with pseudo random numbers
for the exponential and Weibull distributions with the same parameters in Fig.3,
and observe realizations of state deterioration time and system failure time.
At each decision (observation) point, we behave so as to minimize the Q-value
and estimate both z∞ and zt. Throughout this paper, we fix the upper limit

216 H. Eto, T. Dohi, and J. Ma

Table 1. Dependence of learning rate on estimation of the operation cost per unit time
in the steady state with Q-learning

number of processes

α 200 400 800

0.01 6.86 4.41 0.56

0.05 8.91 6.45 0.66

0.10 11.77 7.71 1.00

0.20 16.90 10.27 2.11

0.30 17.33 11.01 2.48

0.40 17.39 11.03 3.08

0.50 17.55 12.32 4.02

2

4

6

8

10

200 400 600 800

transient expected operation cost (zt)

Q-learning

N*=4

N*=2
N*=1

N*=3

number of processes

Fig. 5. Comparison of Q-learning rejuvenation policy with some control-limits

of iteration number as kz = 10, 000. Figure 4 shows the asymptotic behavior
of estimates of the operation cost per unit time in the steady state for varying
learning rate, α = 0.01, 0, 02 and 0.50, where the horizontal line denotes the real
optimal value, z∗∞ = 4.3223. In the figure, we define the unit of a process by the
time length of one cycle. From this result, it is seen that estimates of the expected
operation cost per unit time in the steady state asymptotically converges to the
real optimal value z∗∞ = 4.3223 as the number of processes increases. Hence, the
statistically consistent property could be checked numerically.

Note again that this can be achieved with the probabilistic action by the
agent. If the learning rate is given by α = 0.10 and α = 0.50, when the number of
processes is fixed as 200, the relative error with respect to z∗∞ becomes 6.86% and
17.55%, respectively. In general, though the smaller error α leads to much more

Simulation-Based Optimization Approach 217

computation cost, it dose not always guarantee the smaller error. For instance,
when the number of processes is 800 with α = 0.01, the relative error is given by
0.56%. That is , the careful adjustment of the learning rate would be important to
realize the effective estimation. In Table 1, we calculate the estimation errors (%)
between estimate and the real optimal value. As the learning rate decreases, the
estimation error decreases and afterward the Q-learning tends to underestimate
the operation cost per unit time in the steady state.

Next, we examine the asymptotic behavior of the transient cost based on the
DM’s action. In this example, if the complete information on the system de-
terioration/failure time distributions is available, as mentioned before, one can
know that the optimal threshold level is given by N∗(t) = 2. Then, our concern
here is to examine the performance of the Q-learning characterized by choosing
the minimum Q-value. That is, how close is the estimate of transient expected
cost z(t) to the real optimal solution z∗∞? In Fig.5, we carry out the Monte
Carlo simulation and compare the Q-learning algorithm with the rejuvenation
schedule with fixed threshold level N(t) = 1, 2, 3, 4, where N(t) = 4 implies no-
rejuvenation policy. In this simulation experiment, it can be easily expected that
the simulation result with N∗(t) = 2 approaches to z∗∞ = 4.3223. On the other
hand, the rejuvenation schedule based on the Q-learning gives the fluctuated
results in earlier phase, and latter converges to the real optimal as the number
of processes increases. It is evident that the simulation-based optimization algo-
rithm used here can never outperform the really optimal rejuvenation solution
with N∗ = 2 under the incomplete information. However, in the situation where
no statistical information on the system deterioration/failure time distributions
is available, this non-parametric estimation scheme would be effective.

6 Concluding Remarks

In this paper we have developed an adaptive estimation scheme to trigger the
software rejuvenation for operational software systems. The resulting algorithm
has several theoretical advantages; non-parametric method without specifying
the system failure/degradation mechanism and statistical consistency. As men-
tioned in Section 1, these seem to be essentially important to construct adaptive
preventive maintenance framework for software systems which are long-lived and
costly, because the luxury of obtaining the complete sample of system failure
times before a rejuvenation policy is implemented may not be available in prac-
tice. The algorithm proposed in this paper has been based on a reinforcement
learning and been classified into a simulation-based optimization approach.

However, as we have shown the asymptotic behavior of the value function
in a numerical example, the convergence speed is never satisfactory, so that we
need a number of process executions to achieve the nearly optimal solution. For
instance, in our example, over 200 process executions will be needed to get the
good performance. This is, of course, a weak point for the reinforcement learning
approach under the incomplete knowledge on system failure/degradation mech-
anism. In the future, the non-parametric adaptive algorithm provided in this
paper should be improved in terms of the convergence speed.

218 H. Eto, T. Dohi, and J. Ma

References

1. Abounadi, J., Bertsekas, D., Borkar, V.S.: Learning algorithms for Markov decision
processes with average cost. SIAM J. Control and Optimization 40, 681–698 (2001)

2. Adams, E.: Optimizing preventive service of the software products. IBM J. Re-
search & Development 28, 2–14 (1984)

3. Avritzer, A., Weyuker, E.J.: Monitoring smoothly degrading system for increased
dependabulity. Empirical Software Eng. 2, 59–77 (1997)

4. Bertsekas, D.P., Tsitsiklis, N.J.: Neuro-Dynamic Programming. Atheena Scientific
(1996)

5. Bobbio, A., Sereno, M., Anglano, C.: Fine grained software degradation models for
optimal rejuvenation policies. Performance Evaluation 46, 45–62 (2001)

6. Borkar, V.S., Meyn, S.P.: The O.D.E method for convergence of stochastic ap-
proximation and reinforcement learning. SIAM J. Control and Optimization 38,
447–469 (2000)

7. Castelli, V., Harper, R.E., Heidelberger, P., Hunter, S.W., Trivedi, K.S.,
Vaidyanathan, K.V., Zeggert, W.P.: Proactive management of software aging. IBM
J. Research & Development 45, 311–332 (2001)

8. Dohi, T., Goševa-Popstojanova, K., Trivedi, K.S.: Estimating software rejuvenation
schedule in high assurance systems. The Computer Journal 44, 473–485 (2001)

9. Dohi, T., Goševa-Popstojanova, K., Vaidyanathan, K.V., Trivedi, K.S., Osaki, S.:
Software rejuvenation modeling and applications. In: Pham, H. (ed.) Handbook of
Reliability Engineering, pp. 245–268. Springer, Heidelberg (2003)

10. Eto, H., Dohi, T.: Determining the optimal software rejuvenation schdule via semi-
Markov decision process. J. Computer Science 2, 528–534 (2006)

11. Garg, S., Telek, M., Puliafito, A., Trivedi, K.S.: Analysis of software rejuvenation
using Markov regenerative stochastic Petri net. In: Proc. 6th Intl Symp. on Software
Reliab. Eng., pp. 24–27 (1995)

12. Garg, S., Pfening, S., Puliafito, A., Telek, M., Trivedi, K.S.: Analysis of preventive
maintenance in transactions based software systems. IEEE Trans. on Comput-
ers 47, 96–107 (1998)

13. Gosavi, A.: Simulation-Based Optimization: Parametric Optimization Techniques
and Reinforcement Learning. Kluwer Academic Publishers, Dordrecht (2003)

14. Huang, Y., Kintala, C., Kolettis, N., Fulton, N.D.: Software rejuvenation: analysis,
module and applications. In: Proc. 25th Intl Symp. on Fault Tolerant Computing,
pp. 381–390 (1995)

15. Konda, V.R., Borkar, V.S.: Actor-critic-type learning algorithms for Markov deci-
sion processes. SIAM J. Control and Optimization 38, 94–123 (1999)

16. Mahadevan, S.: Average reward reinforcement learning: foundations, algorithms for
Markov decision processes. SIAM J. Control and Optimization 38, 94–123 (2000)

17. Pfening, S., Garg, S., Puliafito, A., Telek, M., Trivedi, K.S.: Optimal rejuvenation
for toleranting soft failure. Performance Evaluation 27/28, 491–506 (1996)

18. Sutton, R.S., Barto, A.: Reinforcement Learning. MIT Press, Cambridge (1998)
19. Suzuki, H., Dohi, T., Goševa-Popstojanova, K., Trivedi, K.S.: Analysis of multi

step failure models with periodic software rejuvenation. In: Artalejo, J.R., Kr-
ishnamoorthy, A. (eds.) Advances in Stochastic Modelling, pp. 85–108. Notable
Publications (2002)

20. Tijms, H.C.: Stochastic Models: An Algorithmic Approach. John Wiley & Sons,
Chichester (1994)

Organic Control of Traffic Lights

Holger Prothmann1, Fabian Rochner2, Sven Tomforde2,
Jürgen Branke1, Christian Müller-Schloer2, and Hartmut Schmeck1

1 Karlsruhe Institute of Technology (KIT)
Univ. Karlsruhe (TH) – Institute AIFB

76128 Karlsruhe, Germany
{prothmann,branke,schmeck}@aifb.uni-karlsruhe.de

2 Leibniz Univ. Hannover
Institute of Systems Engineering

Appelstr. 4, 30167 Hannover, Germany
{rochner,tomforde,cms}@sra.uni-hannover.de

Abstract. In recent years, Autonomic and Organic Computing have
become areas of active research in the computer science community. Both
initiatives aim at handling the growing complexity in technical systems
by creating systems with adaptation and self-optimisation capabilities.
One application scenario for such “life-like” systems is the control of road
traffic signals in urban areas. This paper presents an organic approach
to traffic light control and analyses its performance by an experimental
validation of the proposed architecture which demonstrates its benefits
compared to classical traffic control.

1 Introduction

In recent years, Autonomic [1] and Organic Computing [2] have become areas
of active research in the computer science community. Both initiatives aim at
handling the growing complexity in today’s technical systems. The focus is on
principles that enable the creation of systems with “life-like” properties. Such
systems are capable of adapting to changing environments and handling un-
foreseen situations. They exhibit self-x properties including self-configuration,
self-optimisation, self-protection, or self-healing capabilities. While Autonomic
Computing has a strong focus on server architectures, Organic Computing in-
vestigates self-organising technical systems in general.

Urban traffic networks are one promising application domain for Organic
Computing. The traffic volume in cities and on highways is constantly rising
worldwide, leading to serious congestion problems. In many cities, these rising
demands cannot be counteracted by further extending the existing road infras-
tructure due to the limited space available. Therefore, it is especially important
to use the existing road network efficiently. Traffic lights are a vital factor in
achieving efficient networks since good control strategies are often capable of
improving the network-wide traffic situation (within certain limits). The envi-
ronmental and economic importance of traffic control systems combined with the

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 219–233, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

220 H. Prothmann et al.

distributed nature of traffic nodes and their constantly changing traffic demands
make traffic light control an ideal test case for Organic Computing approaches.

In the remainder of this paper, an organic traffic control (OTC) approach
is presented. Section 2 briefly reviews existing control concepts for (isolated)
traffic nodes and gives a short introduction to evolutionary techniques relevant
for the novel approach proposed in this work. Existing literature on the appli-
cation of these techniques to traffic control is presented. Section 3 presents an
implementation of the generic observer/controller architecture for Organic Com-
puting introduced in [3]. The generic architecture is adopted to create an adap-
tive, learning node controller. Results comparing a “conventional” system and
the organic version including an observer/controller component are presented in
Sect. 4 and show the benefits of the OTC approach. Section 5 concludes with a
summary of the presented concepts and results and gives an outlook to future
work.

2 State of the Art

The approach to traffic control introduced in this paper touches a number of
topics of different research disciplines including computer science and civil engi-
neering. The following sections give a brief introduction to the relevant state of
the art.

2.1 Traffic Control

Urban areas suffer from increasingly congested road traffic networks. The nodes
or intersections are the bottlenecks determining the capacity of the network.
Traffic lights are used to allocate the limited resource of space within the in-
tersection needed by conflicting traffic streams by activating the corresponding
phase, i. e. switching traffic lights to green. The simplest way to control an in-
tersection – called fixed-time control – is to fix the sequence of phases and their
durations. Thus, the actual traffic situation does not influence the behaviour of
the controller, but it can be optimised to fit the traffic situation expected on
average while the controller is active. This approach can be enhanced by switch-
ing between pre-optimised parameter sets at fixed times of day (e. g. to consider
different traffic patterns during the morning and afternoon peak periods).

The advantage of fixed-time control is that the hardware needed to run such
a controller is very simple and the number of parameters to be tuned is limited:
cycle time, split, phase sequence, and offset. The cycle time determines how
long it takes until all phases have been activated and the cycle is restarted. The
sequence of all phases to be considered is used to split this cycle into fractions of
appropriate lengths. Finally, if the intersection should synchronise its operation
with neighbouring nodes (to generate a progressive signal system), a global timer
is used and the starting point of the cycle is shifted by a certain offset. While
fixed-time controllers are relatively simple, avoidable delays are induced as the
controller does not react on the actual traffic situation (e. g. by cutting short an
unused phase).

Organic Control of Traffic Lights 221

The performance of a controlled intersection is often measured in terms of
the “Level of Service” (LOS) [4], which is in fact the average delay per vehicle
passing the intersection, mapped to a discrete scale of six levels labelled A (no
delay) to F (heavy congestion). Other measurements like number of stops per
vehicle or queue length are sometimes incorporated into a performance index to
represent optimisation goals.

To improve performance, sensors can be installed to provide data on the cur-
rent situation. Inductive loops or infrared sensors are widely used for vehicle
detection today and are only slowly replaced by modern video detectors. Traffic-
responsive control may use the provided data to determine when to terminate
or extend a phase or which phase to activate next. To set up such a controller
several parameters for every phase of a node have to be defined. The parameters
specify minimum and maximum green times and determine conditions for the
traffic-dependent extension of a phase. Synchronisation of such a controller is a
dynamic problem, so most controllers run without it.

The significantly enlarged complexity of traffic-responsive control leads to an
improved performance, but as the load on the network increases, this advantage
decreases. This is due to the fact that traffic-responsive strategies tend to re-
semble fixed-time controllers when large queues are constantly detected for all
intersection approaches. For the SCOOT system (Split Cycle Offset Optimisation
Technique, see e. g. [5]), Bretherton reports that at a utilisation of about 80% of
the maximum capacity, there is no difference in performance between SCOOT
and a fixed-time strategy [6]. The additional complexity gives no advantage in
this situation.

In urban areas, it is not sufficient to look at a single node only, but to es-
pecially consider the coordination of multiple nodes. The obvious approach to
coordination is to establish a single central controller for all intersections. Besides
SCOOT, SCATS (Sydney Coordinated Adaptive Traffic System, see e. g. [7]) is a
prominent example following this approach. However, such systems are difficult
to set up and maintain and demand significant computing power. Therefore, hi-
erarchically structured approaches like “Balance” have been developed [8]. The
question whether such coordination is possible using a completely decentralised
approach remains unanswered, though.

2.2 Evolutionary Computation

Evolutionary computation is a research area in computer science that investi-
gates the application of nature-inspired problem-solving techniques to a wide va-
riety of optimisation and adaptation problems. Evolutionary computation tech-
niques include Evolutionary Algorithms and Learning Classifier Systems.

Evolutionary Algorithms (EA). Are randomised optimisation heuristics that
mimic biological evolution to tackle optimisation problems. Their general scheme
is simple: Starting with a set (called population) of randomly generated initial
solutions, an EA selects solutions with a relatively high quality from its popula-
tion as parents, which are then combined and locally modified by crossover and

222 H. Prothmann et al.

mutation operators to form new offspring solutions. Based on their quality, some
of the parents and offspring are selected to form the next generation of solutions
that replaces the old population. This process is repeated until a stopping crite-
rion (usually a maximum number of generations, a time limit, or some quality
level) is reached. Selection, crossover, and mutation are randomised operations,
but good solutions have a higher probability to survive and generate offspring.
Therefore, the overall quality of solutions is likely to improve over time while the
random influence of mutation helps to prevent premature convergence on some
local optimum.

Due to their simple working principle and the fact that EAs are black box
algorithms that can be applied to any problem where a quality (or fitness) can
be assigned to a solution, EAs are widely used in many real world optimisation
problems. They also have been applied in the off-line optimisation of traffic light
controllers (see Sect. 2.3 for a brief review).

Learning Classifier Systems (LCS). Are closely linked to EA. Their goal is to
learn the “right” or “best” response to any stimulus they get. They are applicable
to all problems where an action leads to some kind of numerical reward. The
core component of an LCS is a rule base, where each rule consists of three parts:
condition, action and value. This structure is called a classifier. The selection of
an appropriate action is a two-step process. From the rule base of all classifiers
a subset called “match set” is built containing all classifiers whose condition
matches the current stimulus. For all distinct actions present in the match set
the average value of all classifiers advocating that action is computed. The action
with the highest value is selected for execution and all classifiers in the match
set advocating that action form the “action set”. The reward received from the
environment is subsequently used to update the value of all classifiers in the
action set.

New classifiers are generated in two different ways: Whenever the match set
is empty, a classifier consisting of a condition matching the current input, a
random action and a default value is inserted into the rule base (“covering”).
Furthermore, occasionally, some classifiers are selected to be the “parent indi-
viduals” for a reproduction cycle. Genetic operators like crossover and mutation
are applied to copies of the parents to form offspring which are inserted into the
rule base.

A wide variety of different LCS implementations has been proposed, most of
which are based on work done by Wilson [9,10]. While Wilson used a binary
coding of the stimuli for these rather simple LCSs, different approaches to repre-
sent real-valued input have been examined (e. g. [11,12,13]). The representation
and update of the value of a classifier plays a major part in adapting an LCS
to a given problem, therefore the emphasis is not always just on maximisation
of obtained reward, but in many cases rather on reliability. Most problems in-
vestigated in LCS research involved conditions of only limited size and a limited
number of actions to choose from.

Organic Control of Traffic Lights 223

2.3 Evolutionary Computation in Traffic Control

Both Evolutionary Algorithms and Learning Classifier Systems have been ap-
plied to problems related to traffic control. This section presents and discusses
relevant work in this area.

EAs in traffic control. The first work that used EAs for signal timing de-
termination known to the authors was published in 1992 by Foy et al. in [14].
In a simulated Manhattan-type network of four simple two-phase intersections,
cycle length and green time splits were optimised for a fixed traffic situation.
The minimisation of the resulting delays served as the objective. According to
Foy et al. their EA found near-optimal solutions which proved the feasibility of
EAs for the task.

In the following years, other authors applied EAs to traffic control problems.
The considerable number of publications on the topic can be grouped with re-
spect to the following criteria:

– Fixed-time vs. traffic-responsive controllers: In general, the optimisation of
traffic-responsive controllers is more complex due to the larger number of
available parameters. Therefore, publications dealing with fixed-time con-
trollers should be distinguished from those optimising traffic-responsive
controllers.

– Isolated intersections vs. networks: While some publications focus on single
intersections, others consider networks. In general, the optimisation of net-
works is more complex, since the necessary coordination among the network’s
intersections induces additional parameters.

– Single- vs. multi-objective optimisation: While in single-objective optimisa-
tion only one criterion is considered for optimisation, multi-objective ap-
proaches deal with several (usually contradicting) objectives. The goal is to
find optimal trade-off solutions (called Pareto-optima), i. e. solutions that
cannot be improved in any objective without worsening at least one other
objective. In traffic control, delay times and the resulting number of stops
induced by a signal program are often used as contradicting objectives since
delay minimisation leads to shorter cycles while the minimisation of stops
tends to increase the cycle length.

The remainder of this section presents selected publications, starting with
the recent work of Stevanovic et al. [15] who focus on the optimisation of traffic
networks:

Their test case was an arterial road of twelve intersections in Park City, USA.
They optimised cycle length, offsets, phase sequences, and green splits of the net-
works’ intersections, trying to minimise their performance index that combines
delay and the resulting number of stops into a single objective. The controller
considered in their work was a traffic-responsive NEMA controller that is com-
mon in the US. Solutions discovered by this approach outperformed timing plans
found by SYNCHRO – a traditional optimisation tool – by at least 8%.

224 H. Prothmann et al.

Multi-objective approaches are discussed by Sun et al. and Branke et al. among
others: Sun et al. investigated the use of NSGA-II – a multi-objective EA – for
signal timing optimisation in [16]. Delay times and the resulting number of stops
were minimised for a two-phase isolated intersection controlled by a fixed-time
controller. Approximation formulas by Webster and Akçelik served as objective
functions in their experiments.

Branke et al. used NSGA-II for the optimisation of an isolated intersection
at Karlsruhe, Germany, that was equipped with a traffic-responsive controller
[17]. Again, delay time and number of stops served as objectives, but controller
settings were evaluated with the help of a microscopic traffic simulation software.
Solutions found by NSGA-II outperformed a reference solution provided by a
traffic-engineer with respect to the considered objectives.

In the references mentioned above, EAs have been used for the off-line op-
timisation of traffic light controller settings, i. e. the controller parameters are
optimised before they are applied, but no further on-line optimisations take place
when the parameters are used in the traffic system. Therefore, the parameters’
quality runs the risk of being decreased over time due to changing traffic demands
(an effect called “ageing” for fixed-time controllers). To avoid this problem, pa-
rameters can be adapted on-line, but the on-line usage of EAs is challenging due
to their run-time requirements.

LCS in traffic control. Although LCSs are on-line learning systems, the au-
thors are aware of only few recent publications discussing the application of
LCSs to traffic control [18,19]. These publications investigate the use of an
LCS as an intersection controller in small networks of two-phased intersec-
tions. An LCS is used to adapt the phase durations at each intersection based
on detected queues, but the investigated intersection model is fairly simple.
The approaches should not be applicable to a real intersection without major
extensions.

The OTC approach presented here uses an EA for off-line parameter opti-
misation but combines it with an LCS that selects and evaluates parameters
on-line. Details are presented in Sect. 3.

3 Architecture

This section presents the OTC architecture for the control of signalled intersec-
tions. An industry-standard traffic light controller (TLC) – the System under
Observation and Control (SuOC) in terms of Organic Computing – is extended
by an observer/controller component that reconfigures the TLC depending on
current traffic conditions. The architecture – which is an implementation of the
generic observer/controller architecture presented in [3] – is depicted in Fig. 1.
The resulting traffic control system is self-configuring and self-optimising.

Organic Control of Traffic Lights 225

3.1 Overview

The SuOC consists of a parametrisable TLC responsible for physically set-
ting the intersection’s traffic lights. Different industry-standard TLCs may be
implemented in the SuOC, the only precondition being that the controller is
parametrisable, i. e. that its behaviour can be specified by a set of parameters
which can be varied by the observer/controller. Possible controllers include sim-
ple fixed-time controllers (FTC) or more complex traffic-responsive variants like
VS-Plus [20] or NEMA controllers [21]. A good setup of the TLC’s parameters
that matches the current traffic conditions has an important influence on the
resulting delay times and number of stops for these systems.

Fig. 1. The OTC architecture for traf-
fic light control

The TLC’s parameters are adapted by
an additional observer/controller compo-
nent introduced with the OTC architec-
ture. In Fig. 1, this component is split
into two separate layers according to the
different tasks performed by the observ-
er/controller. Layer 1 is responsible for
the on-line selection of TLC parameters
depending on local traffic conditions. An
observer component monitors the traffic
flows crossing the intersection, combines
the determined flow values into a vec-
tor representing the local traffic situation,
and provides this information regularly to
a modified real-valued LCS. The LCS se-
lects appropriate parameters from its rule
base. New classifiers for unforeseen traf-
fic conditions are created on Layer 2 by
off-line optimisation. Here, an EA evolves
TLC parameters for a specified traffic situation and evaluates the parameters’
quality using a simulation component. Important architectural aspects are dis-
cussed in the remainder of this section, further details can be found in [3,22].

3.2 On-Line Selection of TLC Parameters

The traffic-dependent selection of TLC parameters is performed by a modified
real-valued LCS. For an intersection with n turnings, the system input consists
of an n-dimensional real-valued vector containing the traffic flows measured in
vehicles per hour (veh/h) for each of the intersection’s turnings. The condition
part of the classifiers accordingly consists of n interval predicates forming an
n-dimensional hyperrectangle containing all inputs matched by the classifier,
while the action part contains a TLC parameter set. For a given input, the LCS
determines all matching classifiers. One of the TLC parameter sets present in
this match set is selected as with standard LCS (see Sect. 2.2 for details) and
used to configure the TLC of the intersection.

226 H. Prothmann et al.

Although LCSs are evolutionary on-line learning systems, some modifications
are necessary before using them for the control task. Existing systems like XCS –
which is used as a basis for the modified version presented here – create classi-
fiers in a stochastic process and evaluate their quality by applying their actions
directly in the environment. For the task of traffic control, these systems would
test and evaluate arbitrary TLC parameters directly at the controlled intersec-
tion. Since the use of inappropriate parameters leads to long average delays and
a large number of stops, this approach is infeasible.

In the OTC architecture, new classifiers – or more precisely their action parts
containing the TLC parameters – are evolved by an EA that uses a traffic sim-
ulation software to evaluate the parameters’ quality with respect to a specific
traffic situation. Using this off-line simulation-based approach, an approximate
quality of a classifier is known even if it has not been previously applied at the
intersection. Small imprecisions induced by the simulation-based evaluation are
corrected on-line by the LCS when the classifier’s action containing the TLC
parameters is applied in the SuOC and its impact is evaluated later on by de-
termining its reward value.

Unfortunately, evolving good parameters based on simulations takes some
time while an LCS is expected to react on new traffic situations immediately.
If the rule base of the LCS does not contain classifiers matching an observed
traffic situation, a classifier located most “closely” to the unmatched situation is
selected and its condition is widened as far as necessary to match the situation.
The distance between a traffic situation and a classifier condition is measured
by calculating the Manhattan distance between the point of the hyperrectangle
located closest to the situation and the point representing the situation. Other
distance measures are possible but should not significantly influence the system’s
behaviour. The widening of existing classifiers that are located close to an un-
matched situation enables an immediate response of the LCS while on the other
hand the situation-dependent quality of TLC parameters remains (somewhat)
predictable.

A

B

Condition part 1

Co
nd

iti
on

 p
ar

t 2

Fig. 2. A situation is matched by a
widened classifier A, but not by a more
specific classifier B

In test runs, the modifications
described in the previous paragraphs
resulted in a weak competition among
existing classifiers: In many cases an ex-
tensively widened classifier A matches a
situation while a more specific but not
matching classifier B is located close by.
In these cases, the parameters proposed
by classifier A are used in the SuOC
although the parameters advocated by
B would often exhibit a better perfor-
mance since they were originally created
for a situation closer to the current in-
put. The problem is illustrated in Fig. 2
for the 2-dimensional case.

Organic Control of Traffic Lights 227

Fig. 3. Overview of the modified
match set creation process

To improve the performance of the LCS,
the match set creation has been modified
further: If the set of classifiers matching a
situation does not contain at least d dis-
tinct TLC parameter sets, widened copies of
not matching classifiers in the proximity of
the situation are included in the match set
(but not yet in the rule base) until the re-
quired number of d distinct parameter sets
is reached or no more classifiers are avail-
able. Based on this match set, the action
set is formed and TLC parameters for the
SuOC are returned. If the action set contains
a widened copy of an originally not match-
ing classifier it is included in the rule base.
The overall process is shown in Fig. 3.

Reconsidering the constellation depicted
in Fig. 2, both classifiers A and B will now
be included in the match set, and depend-
ing on their quality, B’s parameters might
be used in the SuOC. In the performed test
runs, this modified selection process resulted in significantly better performance
of the controlled intersection.

4 Results

The OTC architecture presented in the previous section has been evaluated for
different three- and four-armed traffic nodes. This section provides details of the
experimental setup and presents the obtained results.

4.1 Experimental Setup

To perform the experiments, simulation models of existing traffic nodes have
been built using the microscopic traffic simulator Aimsun [23]. The models
(called K3 and K7) are based on maps of intersections located at Hamburg,
Germany. They are depicted in Fig. 4. While K7 is a three-armed intersec-
tion allowing six turning manoeuvres, K3 is four-armed and consists of eleven
turnings.

For both nodes a fixed-time signal program used in reality was available and
is used as a reference controller in the evaluation. Traffic demands are modelled
according to data taken from a traffic census. In the census, cars and trucks
passing the intersection were counted and documented for each turning with a
time resolution of 15 minutes.

Experiments were conducted for a simulated period of six hours starting at
6 a. m. This period was chosen because it starts with a phase of low traffic density
that is quickly replaced by the morning peak hour (lasting approximately from

228 H. Prothmann et al.

(a) K3 (b) K7

Fig. 4. Simulation models of the intersections K3 and K7

0

1000

2000

3000

4000

5000

6000

7000

8000

#v
eh

/h

K3 - trucks K3 - cars K3 - all vehicles K7 - trucks K7 - cars K7 - all vehicles

Fig. 5. Traffic demands for K3 and K7

7.30 a.m. to 8.30 a.m.) with high traffic demands. Till noon, traffic settles down
to a medium level. The total number of vehicles passing K3 and K7 are depicted
in Fig. 5.

To compare the performance of different traffic light controllers, the intersec-
tion’s average delay is used. It is defined as

∑
t∈T ft · dt∑

t∈T ft
,

where T is a set containing all turnings of the intersection. The variables ft and
dt denote the flow and the average delay for a turning t ∈ T . The intersection’s
average delay is the basis for the established Level of Service classification (see
Sect. 2.1) and should be minimised by a traffic light controller. Delays have been
measured using the microscopic traffic simulator Aimsun (version 5.1), which
was used to simulate the SuOC and to provide a fitness evaluator for the EA on
Layer 2 of the OTC architecture.

Organic Control of Traffic Lights 229

The OTC approach was evaluated in three consecutive experiments (labelled
Day 1, Day 2, and Day 3). At the beginning of Day 1, the rule base of the
LCS was empty. For Day 2 and Day 3 the rule base that evolved on the previous
day(s) was used. Simulations of each day have been repeated at least three times
using different random seeds. The EA optimised cycle length and phase splits
for the intersections while using the phase sequence from the reference TLC.

After some preliminary testing, the configuration listed in Table 1 was used in
the experiments. Most parameters are standard for LCSs and EAs, respectively,
but some need explanation: For the LCS, no rule base size limit has been imple-
mented to avoid bad system performance due to a limited rule base capacity. No
subsumption or deletion of classifiers has been performed. The interval width for
new classifiers defines the initial width of the intervals used in the condition of
new classifiers created by Layer 2. While the initial width should be preferably
small to keep the EAs quality prediction accurate, larger intervals can reduce the
number of EA activations especially on the first day of simulation. The number
d of distinct actions needed in the match set has been introduced in Sect. 3.2.

For the EA, the parameters warm-up and simulation duration define the sim-
ulated duration of evaluation runs used to determine the quality of TLC param-
eters. While the traffic can build up during the warm-up period of an evaluation,
delay statistics are only gathered for the simulation duration. Shorter simulations
allow for a faster evaluation of TLC parameters, but longer simulations reduce
the variance of the quality estimates. For the selected durations, an optimisation
run takes about 4 to 6 minutes on a recent standard processor, depending on
the simulated node and traffic demands.

Table 1. Configuration used for the experiments

Layer 1 (LCS)

rule base size limit N none
learning rate β 0.2
initial prediction error εI and fitness FI 50, 0.01
accuracy determination param. α, ε0, ν 0.1, 1.5, 5
interval width for new classifiers 120
d of distinct actions in match set 3

Layer 2 (EA)

population size 10
generations 10
offspring 5
warm-up duration 900 sec.
simulation duration 3600 sec.

4.2 Simulation Results

This section presents results of the simulation study, comparing the average
vehicle delay resulting from the reference solution and the OTC approach. Fur-
thermore, some statistics on the development of the LCS rule base are included.

Results for K7. Results of the experiments for K7 are depicted in Fig. 6. For
Day 1, the OTC approach can quickly improve the average vehicle delay com-
pared to the reference solution for the low traffic period preceding the morning
peak. In this period, TLCs found by the EA can easily outperform the reference
solution that was designed to suit higher traffic volumes. During the morning

230 H. Prothmann et al.

peak, the OTC approach performs slightly better than the reference solution.
Due to the quickly rising traffic demand at the intersection, Layer 2 is heavily
used during this period and existing classifiers need to be widened frequently
since the initially empty rule base does not contain appropriate classifiers. After
the morning peak, the OTC approach leads to smaller delays than the refer-
ence solution. Overall, the average improvement for Day 1 with respect to the
reference solution is about 10%.

10

12

14

16

18

20

22

24

6:15 6:45 7:15 7:45 8:15 8:45 9:15 9:45 10:15 10:45 11:15 11:45

av
g.

 d
el

ay
 [s

ec
]

time

Reference OTC - Day 1 OTC - Day 2 OTC - Day 3

Fig. 6. Comparison of OTC approach and reference solution for K7

For Day 2 and 3, the OTC approach can outperform the reference solution for
the whole simulation period. The system has learned appropriate TLC parame-
ters for most traffic situations recognised by the observer, therefore appropriate
TLC parameters are often available instantly or existing classifiers need to be
widened only to a small extent. The average improvement with respect to the
reference solution is about 12%.

Results for K3. Results obtained for intersection K3 are depicted in Fig. 7.
The results resemble the simulations for K7 presented above: For Day 1, an
improvement of about 6% could be obtained in comparison to the reference
controller despite the initially empty LCS rule base. For Days 2 and 3, the system
profits from is populated rule base, handling especially the morning peak better
than on Day 1. This results in an average delay reduced by 8 % compared to the
reference solution for both days.

The presented results for K3 and K7 indicate that the OTC approach is capa-
ble of autonomously improving the performance of signalised intersections. The
system’s self-optimisation capabilities allow the continuous on-line adaptation
to changing traffic demands, thereby easing the job of a traffic engineer. Since
the OTC architecture represents a novel approach, further improvements of its
optimisation and adaptation capabilities can be expected in the future.

Organic Control of Traffic Lights 231

10

12

14

16

18

20

22

24

26

28

30

6:15 6:45 7:15 7:45 8:15 8:45 9:15 9:45 10:15 10:45 11:15 11:45

av
g.

 d
el

ay
 [s

ec
]

time

Reference OTC - Day 1 OTC - Day 2 OTC - Day 3

Fig. 7. Comparison of OTC approach and reference solution for K3

LCS statistics. For both intersections, statistics on the number of classifiers,
the number of classifiers with distinct TLC parameters, and the number of op-
timisations performed by Layer 2 were gathered. The average of these measures
for the repetitions of each simulated day are shown in Table 2.

Table 2. LCS statistics

K3 K7
Day 1 Day 2 Day 3 Day 1 Day 2 Day 3

classifiers in rule base 230 415 577 248 424 574
optimisations 120 77 65 123 69 53
distinct TLC parameters in rule base 97 142 174 105 152 187

For both nodes, several new classifiers are created each day by widening op-
erations or EA optimisations. While the new classifiers initially lead to a rapidly
growing rule base, more and more typical traffic situations are covered by clas-
sifiers, resulting in a smaller number of optimisations and a reduced rule base
growth on subsequent days. Accordingly, the number of distinct TLC parameters
is rising slowly after a large number of parameters has been created on Day 1.
Their absolute number is relatively large since even slightly different parameter
sets are counted separately.

5 Summary and Outlook

This paper presented traffic control as an interesting application for Organic Com-
puting. A brief introduction into existing traffic control systems was given and
Evolutionary Algorithms and Learning Classifier Systems – two Evolutionary

232 H. Prothmann et al.

Computation techniques – were presented. After summarising existing traffic-
related applications of these techniques, a novel architecture for traffic light con-
trollers has been presented. Using the OTC approach that extends the traffic light
controller with an observer/controller architecture, the average delay time at the
controlled intersection could be reduced.

Future work focuses on the extension of the OTC architecture to make it
better suited for the application in larger traffic networks. Although the pre-
sented approach can be applied in a network setting without changes, it cur-
rently includes no explicit mechanism that synchronises neighbouring nodes. In
urban networks, synchronisation among nodes is usually established to achieve
smoother traffic flows (e. g. by establishing a progressive signal system on an
arterial road). Future work will investigate possibilities to dynamically establish
synchronised traffic lights depending on the network’s traffic flows by providing
a communication mechanism among the nodes. It will be investigated if a de-
centralised approach of local interactions between neighbouring nodes is feasible
to establish useful synchronisations or if an additional coordination component
is needed to perform this task.

Acknowledgement

We gratefully acknowledge the financial support by the German Research Foun-
dation (DFG) within the priority programme 1183 “Organic Computing”.

References

1. Kephart, J.O., Chess, D.M.: The vision of Autonomic Computing. IEEE Com-
puter 36(1), 41–50 (2003)

2. Schmeck, H.: Organic Computing – A new vision for distributed embedded systems.
In: Proceedings of the 8th IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC 2005), pp. 201–203 (2005)

3. Branke, J., Mnif, M., Müller-Schloer, C., Prothmann, H., Richter, U., Rochner,
F., Schmeck, H.: Organic Computing – Addressing complexity by controlled self-
organization. In: Margaria, T., Philippou, A., Steffen, B. (eds.) Proceedings of
the 2nd International Symposium on Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA 2006), pp. 200–206 (2006)

4. Transportation Research Board Washington, D.C.: Highway Capacity Manual
(2000)

5. Robertson, D.I., Bretherton, R.D.: Optimizing networks of traffic signals in real
time – the SCOOT method. IEEE Transactions on Vehicular Technology 40(1),
11–15 (1991)

6. Bretherton, R.D., Rai, G.I.: The use of SCOOT in low flow conditions. Traffic
Engineering & Control 23(12), 574–576 (1982)

7. Sims, A.G., Dobinson, K.W.: The Sydney Coordinated Adaptive Traffic (SCAT)
System – Philosophy and Benefits. Proceedings of the International Symposium
on Traffic Control Systems 29(2), 19–41 (1980)

Organic Control of Traffic Lights 233

8. Friedrich, B.: Ein verkehrsadaptives Verfahren zur Steuerung von Lichtsignalanla-
gen. Veröffentlichung des Fachgebiets Verkehrstechnik und Verkehrsplanung. Tech-
nische Universität München (1999)

9. Wilson, S.W.: ZCS: A zeroth level classifier system. Evolutionary Computa-
tion 2(1), 1–18 (1994)

10. Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computation 3(2),
149–175 (1995)

11. Wilson, S.W.: Get real! XCS with continuous-valued inputs. In: Lanzi, P.L., Stolz-
mann, W., Wilson, S.W. (eds.) IWLCS 1999. LNCS (LNAI), vol. 1813, pp. 209–219.
Springer, Heidelberg (2000)

12. Dam, H.H., Abbass, H.A., Lokan, C.: Be real! XCS with continuous-valued inputs.
In: Rothlauf, F., et al. (eds.) Proceedings of the 2005 Workshops on Genetic and
Evolutionary Computation (GECCO 2005), pp. 85–87 (2005)

13. Stone, C., Bull, L.: For real! XCS with continuous-valued inputs. Evolutionary
Computation 11(3), 299–336 (2003)

14. Foy, M.D., Benekohal, R.F., Goldberg, D.E.: Signal timing determination using
genetic algorithms. In: Transportation Research Record No. 1365, Transportation
Research Board, pp. 108–115 (1992)

15. Stevanovic, A., Martin, P.T., Stevanovic, J.: VISGAOST: VISSIM-based genetic
algorithm optimization of signal timings. In: Proceedings of the 86th Transporta-
tion Research Board Meeting (2007)

16. Sun, D., Benekohal, R.F., Waller, S.T.: Multi-objective traffic signal timing op-
timization using non-dominated sorting genetic algorithm. In: Proceedings of the
IEE Intelligent Vehicles Symposium, pp. 198–203 (2003)

17. Branke, J., Goldate, P., Prothmann, H.: Actuated traffic signal optimization us-
ing evolutionary algorithms. In: Proceedings of the 6th European Congress and
Exhibition on Intelligent Transport Systems and Services (ITS 2007) (2007)

18. Cao, Y.J., Ireson, N., Bull, L., Miles, R.: Distributed learning control of traffic
signals. In: Oates, M.J., Lanzi, P.L., Li, Y., Cagnoni, S., Corne, D.W., Fogarty,
T.C., Poli, R., Smith, G.D. (eds.) EvoIASP 2000, EvoWorkshops 2000, EvoFlight
2000, EvoSCONDI 2000, EvoSTIM 2000, EvoTEL 2000, and EvoROB/EvoRobot
2000. LNCS, vol. 1803, pp. 117–126. Springer, Heidelberg (2000)

19. Bull, L., Sha’Aban, J., Tomlinson, A., Addison, J.D., Heydecker, B.: Towards dis-
tributed adaptive control for road traffic junction signals using learning classifier
systems. In: Bull, L. (ed.) Applications of Learning Classifier Systems, pp. 276–299.
Springer, Heidelberg (2004)

20. Swiss Verkehrs-Systeme AG: VS-Plus webpage, http://www.vs-plus.de
21. National Electrical Manufacturers Association: NEMA Standards Publication TS

2-2003 v02.06 – Traffic Controller Assemblies with NTCIP Requirements (2003)
22. Rochner, F., Prothmann, H., Branke, J., Müller-Schloer, C., Schmeck, H.: An or-

ganic architecture for traffic light controllers. In: Hochberger, C., Liskowsky, R.
(eds.) Informatik 2006 – Informatik für Menschen. LNI, vol. P-93, pp. 120–127.
Köllen Verlag (2006)

23. TSS Transport Simulation Systems: Aimsun webpage, http://www.aimsun.com

http://www.vs-plus.de
http://www.aimsun.com

Concepts for Autonomous Control Flow

Checking for Embedded CPUs�

Daniel Ziener and Jürgen Teich

Hardware/Software Co-Design
Department of Computer Science

University of Erlangen-Nuremberg, Germany
{daniel.ziener,teich}@cs.fau.de

Abstract. In this paper, we introduce new concepts and methods for
checking the correctness of control flow instructions during the execution
of programs in embedded CPUs. Detecting and avoiding the execution of
faulty control flow instructions is a problem of growing importance w.r.t.
reliability and security. On the other hand, hardware cost overheads and
an easy integration into the design flow are of utmost important for
cost sensitive embedded systems. Our proposed methodology is able to
monitor all direct jumps and branches as well as calls and returns form
subroutines autonomously during program execution. Furthermore, we
propose and evaluate an implementation of an autonomous checker unit
which is closely coupled to the processor and can detect and even avoid
the execution of a faulty control flow instruction. Upon detection of a
faulty instruction, we propose a method to refetch and reexecute the
incorrect jump or branch instruction. Other benefits of this novel ap-
proach are that the application code must not be changed or augmented
by signatures or additional instructions, and that there is no measurable
performance impact in terms of execution latency. From the user point
of view, our approach is completely transparent to a program developer.

1 Introduction

Modern electronic systems are integrated more and more together with com-
munication devices. In the past, aero planes were steered by cables, axes and
hydro pneumatic systems. Now, planes become fitted with ”fly-by-wire” systems
without any direct mechanical coupling between the pilot’s control elements and
the actuators. Clearly, such systems require a very high standard of reliability.
The Airbus A380, for instance, has reached a new dimension on integration of
wire-based and wireless communication components [1].

Thus, from the researcher’s point of view, the focus is constantly shifting from
the integration of new technologies to the effort to increase the reliability and
security of existing systems.

� This work has been supported by BMBF project 01 M 3083 “Autonome Integrierte
Systeme.”

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 234–248, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Concepts for Autonomous Control Flow Checking for Embedded CPUs 235

Fig. 1. Concepts of autonomously interacting control flow checker that can monitor
the program counter and detect false jumps or branches based on information of the
compiled code. Moreover, the checker should also be able to correct false jumps or
branches.

Robustness, reliability and security are essential requirements of todays SoCs
(Systems on Chips). Modules and their integration in the system have to be
designed to be still operational also in difficult and inference-prone areas as well
as insecure environments.

In this paper, our goal is to investigate methods to recognize, analyze, and
correct sporadic and/or permanent errors occurring in the control paths of em-
bedded RISC-CPUs. Our vision thereby is to define autonomously behaving el-
ements to resolve functional errors of a RISC-CPU-Core locally inside the core.

These autonomous elements called control flow checkers are supposed to recog-
nize, evaluate, and correct errors during the program execution of the processor.
In particular, soft errors [2] as well as malign security attacks [3] are in the focus
of this paper.

In the following, we propose such concepts and an implementation of a cor-
responding control flow checker hardware (see Figure 1). The main task of the
control logic in a CPU is to control the program flow. The actual state of execu-
tion of a program is, in general, given by the value of the program counter and
the CPU registers. Usually, the next instruction to fetch is given by an increment
of the program counter, but also branches and jumps may occur.

Sources of errors that we want to autonomously detect and correct include
accidental sporadic, permanent, or intended errors caused by local attacks that
try to manipulate the program execution. These errors can effect a wrong pro-
gram counter value. Errors may also be caused by pure software means such as
buffer overflows. Here, a wrong jump destination or a wrong return address from
a subroutine might cause an execution of infiltrated code. If an error is detected,
the control flow checker should be able to initiate the reexecution of the control
flow instruction.

Definition 1. Control flow checking denotes the task to test whether a sequence
of program counter values is correct with respect to a given program specification.

The paper is structured as follows: In Section 2, a general overview of related
work is given. In Section 3, we present a classification of control flow instructions.
Subsequently, in Section 4, two different methodological concepts for control flow
checking are introduced. Architectural concepts for implementing these ideas

236 D. Ziener and J. Teich

present the focus of Section 5. Finally, in Section 6, we present an implementation
of an autonomous control flow checker for a given real Leon3 [4] CPU and analyze
the corresponding overheads for control flow checking in Section 7. Section 8
concludes the work.

2 Related Work

Error detection and correction methods have important roots in the area of
fault-tolerance. Here, one of the most familiar method for error detection is the
duplication of a given processor core with subsequent comparison of the results
[5]. Duplication of processing units is, however, too cost-intensive and thus often
prohibitive due to cost (area) and power consumption. Hence, these approaches
are only used in safety-critical systems with a high demand on reliability.

In the following, we first define relevant criteria when comparing different
methodologies for control flow checking quantitatively. Here, the following crite-
ria will be used: Error coverage denotes the degree of faults that can be detected
by a method. For example, some methods for control flow checking discussed
in the following can only detect a certain type of control flow instructions (e.g.,
direct branches and jumps). Some may detect not 100% of all control flow errors.
Another criterion for comparison is the detection latency. The detection latency
denotes the time between occurrence of a fault and its detection. This time is
important to prevent a system failure. Only if an error is detected with a low
latency, the error handling can react to transfer the system into a secure state or
to trigger error correction measures. On the other hand, the following overheads
may be caused: execution time overheads (CPU time), memory overheads and
area overheads (hardware cost overheads).

Related work on control flow checking can be divided into approaches using
an additional hardware checker unit or a watchdog processor [6,7,8,9,10], and
approaches which are completely software-based [11]. In these approaches, the
program code is first structured into basic blocks1.

Control Flow Checking using Assertions (CCA) [11] denotes a software-based
approach. After creating a basic block graph, a sequence of special control in-
structions is inserted into the program code at the beginning as well as at the end
of each basic block. These additional instructions verify that only legal branch
or jump destinations according to the specification, given by the basic block
graph is taken. The advantage is that no additional hardware (area overhead)
is required, but this approach has an obvious impact on the performance of
the program code (execution time overhead). Undesired jumps caused by faults
occurring on instructions inside a basic block cannot be detected at all.

1 A basic block is a sequence of code which is executed successively without any jumps
or branches except at the end. The basic block can only be left at the end of a block
and can only be entered at the beginning. Only the last instruction can be a jump
or branch and only the first instruction can be a jump or branch destination (see
Section 4.1).

Concepts for Autonomous Control Flow Checking for Embedded CPUs 237

A good overview over software methods for control flow checking for security
and fault tolerance is given in [12].

To check all types of instructions, a signature (hash or a CRC value) of all
instructions of a basic block can be calculated offline (at compile time). At run-
time, a hardware checker can calculate the signature of the executed instruction
in a basic block. When leaving a basic block, the signatures can be compared
and errors inside the basic block can be found. Signature methods can be di-
vided into two groups, namely Embedded Signature Monitoring (ESM) [6,7,8]
and Autonomous Signature Monitoring (ASM) [9,10].

In the ESM methods, the offline calculated signature (golden signature) is
stored in the program code with additionally inserted instructions at the end
of each basic block. These instructions read out the calculated signature of the
executed instructions from the checker unit and compare it to the golden sig-
nature. The advantage of these methods is that all types of instructions can be
checked and a new program contains already the corresponding signature. The
disadvantages are a significant performance impact (execution time overhead)
and that a fault can only be detected at the end of a basic block which may
be too late to prevent a system failure (detection latency). Also, a single event
upset during the execution of the additionally inserted instruction can lead to a
false detection or spoofing of an error.

In the ASM methods, the golden signature is stored in a separate memory
belonging to the checker unit. Also, the comparator for the golden and the cal-
culated signature is implemented in hardware. The information of the basic block
graph is mapped into microinstructions, located inside the instruction memory
of the checker. Jumps and branch destinations can thus also be checked. The
advantages are that the program code must not be altered and that there is no
performance impact. Also, all types of instructions can be monitored. The dis-
advantages are that an extra memory for the checker unit is required (memory
overhead) and that synchronization between the CPU and the checker unit is dif-
ficult. So, interrupts, multi threading, and indirect jumps cannot be completely
covered.

An ASM approach for security applications is described in [10]. The Intra-
Procedural Control Flow Checking is similar to our method. The advantages of
our methods however is, that we are a) more flexible in using memories to store
the control flow (instruction) graph instead of a finite state machine in logic.
Moreover, we have b) no performance impact in the error free case, and c) our
checker unit is simpler and thus requires less resources.

Finally, the Diva approach [13] describes a pipeline which accepts only checked
results for the further processing after the commit phase. A redundant second
pipeline is a simple rudimentary pipeline, where the results of arithmetic func-
tions are recalculated with a separate checker, and memory items are refetched.
The weakness is that the second pipeline is assumed to be fault-free, which might
not be the reality in today’s deep submicron designs. The area overhead of Diva
is lower than in the case of fully redundant units, but also performance reduction
exists due to a longer pipeline.

238 D. Ziener and J. Teich

3 Branches and Jumps

Control flow instructions (CFI) can be categorized into conditional branches and
unconditional jumps. Conditional branches depend on the result of a logical or
arithmetic operation.

Both groups of control flow instructions can be subdivided into direct (static)
and indirect (dynamic) jumps or branches. The destination of direct branches or
jumps is fixed at compile time and is encoded into the jump or branch instruction
in an absolute or relative address. For indirect jumps or branches, the destination
address is determined during program execution. The destination address is given
by either a register value or as the result of an operation with registers or the
result of an operation with a register and a constant value which is encoded into
the instruction. Absolute or relative addressing modes can be used there.

Summarizing, four types of control flow instructions exist: (Unconditional)
direct jumps (e.g., call, goto), (Conditional) direct branches (e.g., if .. then
.. else), (Unconditional) indirect jumps (e.g., return from subroutine), and
(Conditional) indirect branches.

Furthermore, the class of unconditional indirect jumps can be subdivided into
returns from subroutine, register indirect calls and other jumps. A return from
subroutine is an example of an indirect jump, because the program counter
jumps to the address where the routine is called from, and this address is only
known at runtime. Register indirect calls are calls where the address of called
subroutine is determined at runtime.

Finally, also jumps which are not triggered by an instruction can occur such
as interrupts and traps. The destinations of interrupts are typically given by
the start address of the main interrupt service routine, and so, interrupts are
direct jumps. Traps occur on exception conditions (like divide by zero). Here,
the program jumps to the address of an exception handler, and so, traps can be
treated as direct jumps.

Table 1 presents an analysis of the occurrence rates of these different types
of branches and jumps on the SPARC architecture for the SPEC CINT2000

Table 1. Accumulated number of control flow instructions of benchmarks of the SPEC
CINT2000 test suite [14] when compiled to the SPARC [15] architecture

SPEC direct indirect
program branches jumps returns calls other jumps

gzip 1426 599 111 4 0
gcc 54676 22340 2188 140 273
vpr 2810 2065 248 2 7
mcf 288 82 26 0 0

crafty 4544 3848 77 0 11
parser 3189 1703 320 0 2
gap 18733 4158 828 1262 5

vortex 12537 8491 913 15 21
bzip2 748 380 73 0 0
twolf 5701 2060 189 0 2

Concepts for Autonomous Control Flow Checking for Embedded CPUs 239

benchmark [14] for a given list of programs. As been seen, indirect calls and
jumps occur relatively rarely as opposed to direct branches and jumps.

4 Methods for Autonomous Control Flow Checking

In SoCs, a CPU often executes only a few specified programs over lifetime. This
holds true particularly for embedded applications where the system is often only
programmed once, and the code is never changed during the lifetime of the
product, except for the update of the SoC with a new firmware and software.
Furthermore, it is well known that in many computational intensive problems,
most of the execution time is spent in only few subroutines. So, it is beneficial
to analyze these subroutines for branches and jumps statically.

If we assume that only direct jumps and branches exists in a given code seg-
ment, we are able to check the control flow of this code by verifying the correct
execution of each direct control flow instruction as well as the (successively)
linear execution of all the other instructions (the program counter value is in-
cremented by one word address after each instruction).

To check the correct execution of control flow instructions, we need to check
the correct address of the control flow instruction and the correct target address.
The program counter value before and after the execution of a control flow
instruction can be compared to these addresses. If there is a mismatch, an error
signal may be raised.

In the following, we propose two alternative methods to obtain the correct
addresses of control flow instructions of a given machine program and the cor-
responding targets.

The first method is called basic block or control flow method (CF). The second
method is called control flow instruction method (CFI).

4.1 Control Flow (CF) Method

First, a given compiled machine code is separated into a set of basic blocks
BB. The following instructions define the begin of a basic block: a) the first
instruction in a program or segment, b) the instruction following a control flow
instruction, c) instructions which are destinations of control flow instructions.

From this information, the control flow graph CFG(BB, T) is built: Each
node BBi ∈ BB of the control flow graph represents a basic block. The nodes are
sorted with increasing start address of the corresponding basic block in ascending
address order. Each edge t ∈ T represents a transition of the control flow from
one basic block to another. If the last instruction of a basic block BBi is a direct
branch instruction, the basic block has two successors. One is the basic block
next in the list BBi+1 (if the branch is not taken), and to a basic block where the
first instruction is the branch destination (if the branch is taken). Jumps have
only one successor, and if the last instruction is not a control flow instruction,
the successor basic block is always the next basic block BBi+1. An example
program is shown in Figure 2 which is separated into basic blocks. Also, the
corresponding CFG is shown.

240 D. Ziener and J. Teich

Fig. 2. An example program code is given on the left side with the corresponding
assembler code. The CFIs are denoted A to C, and the CFI destinations with a to c.
D denotes the end of the program or segment to be checked. Furthermore, the code is
divided into basic blocks, denoted with 1 to 6. In the middle, the corresponding CFG
and on the right side, the corresponding CFIG are shown.

With the given CFG, we have all information to check a sequence of pro-
gram counter values for correctness as follows: The information of the CFG
can be either used to directly define a finite state machine (FSM) to check the
correctness of control flow instructions. Alternatively, an implementation using
microinstructions of a microprogrammed circuit can be deducted from the CFG.

For an implementation of a microprogrammed circuit, the information of the
CFG can be stored inside memories. We need for each basic block, the start and
the end address and also the successors basic blocks indexes. The start address
of a basic block is the end address of the previous basic block incremented by
one. To minimize the memory overhead, we need only the end address and a
global start address. Also, we need to store only one successor of the basic block
for branches because if the branch is not taken, always the basic block with the
next index (BBi+1) is the successor.

The correct control flow instruction address may directly be stored inside the
memory (basic block end address). The corresponding target address is the start
address of the successor basic block, given by its index. To get this address, the
end address of the basic block with the previous index is fetched and the address
is incremented (BBi−1 +1). Having both addresses, the control flow instruction
can be verified.

For example, [10] describes a CF method, where the CFG is implemented in
a FSM and the lookup table for resolving the control flow instruction addresses
and indexes is implemented in memories.

4.2 Control Flow Instruction (CFI) Method

In case of direct branches and jumps, the start and target address is known at
compile time. So, it is possible to extract this information from the binary or

Concepts for Autonomous Control Flow Checking for Embedded CPUs 241

the disassembled program code by decoding the instructions. The control flow
instructions are then sorted by increasing addresses in ascending address order.

Then, the control flow instruction graph (CFIG(CFI, T)) is built: Here, each
control flow instruction in the code which should be checked represents a node
(CFIi ∈ CFI). The edges of the CFIG denote transitions t ∈ T to the following
control flow instruction.

Like in a CFG, each node can have a maximum of two successors: two for a
branch instruction and one in case of a jump instruction. For a branch instruction
CFIi, one successor is CFIi+1 (branch is not taken). The other successor of
a direct branch and jump instruction is CFIn which is the next control flow
instruction in the program code after the branch destination (branch is taken).
The CFIG from the example program code is shown on the right side in Fig. 2.

Like in the CF method, the information of the CFIG can be used as a specifi-
cation of a control flow checker unit and implemented either directly by a FSM
or as microinstructions of a microprogrammed circuit. For the microprogrammed
circuit, we store for each CFI the start and the target address in memory. Also
the index of the successor CFI must be stored inside this memory. For direct
branches, we store the successor CFI for taken branches. If the branch is not
taken, the successor CFI is CFIi+1.

4.3 Methods Conclusions

Both introduced methods can only check direct branches and jumps, where start
and destination address can be extracted from the compiled code. For indirect
control flow instructions, we will present extensions for both methods. Some of
these extensions are discussed later.

The advantage of the CF method is that in the most cases, fewer additional
memory resources are needed than the CFI method. Furthermore, we can extend
this method to check the integrity of all types of instruction sequence inside a
basic block with a CRC or hash value. This value can be run time calculated
from the executed instructions and can be compared at the end of a basic block
with a precalculated value [9].

The disadvantage of the CF method is that we need two times access to the
memory for each control flow instruction. One access for the end address of the
basic block and one for the start address of the successor basic block. To ensure
that on a branch or jump the correct start and destination address is available,
we can preread both values. But this preread can only be done if the basic block
has more than one instruction. If a basic block consists only of one instruction,
we must stall the processor pipeline to verify the control flow instruction.

The advantages of the CFI method are that the checker unit is very simple
and uses only few logic resources. Also we have no performance impact, because
the correct control flow instruction address and target address may be loaded
from the memory in a single clock cycle. The disadvantages are that usually
more memory resources are needed as for CF method, and that we are not able
to check the integrity of non-control flow instructions.

242 D. Ziener and J. Teich

5 An Architecture for Lightweight Control Flow
Checking

In the following, we introduce an architecture of a lightweight control flow checker
to monitor and to correct the executed control flow instructions of a RISC CPU.
Our approach can monitor direct jumps and branches as well as call and re-
turns from subroutine. To achieve a correction of a corrupt program, a detected
incorrect jump or branch can be reexecuted. Our checker is called lightweight,
because with little area overhead, we can detect and correct many though not all
errors. Our architecture concept is modular in the sense that coverage aspects
can be treaded off with implementation overheads.

5.1 Handling of Direct Jumps/Branches

We are using the CFI method described in Section 4.2 to check direct jumps and
branches where the CFIG is implemented in a dedicated memory. The checker
must know the instruction’s program address and the address of the next in-
struction to execute. Since most CPU architectures today are pipelined, these
addresses can easily be taken from successive pipeline stages of the program
counter.

If no jump or branch instruction occurs, the next instruction address PCn+1

is typically one instruction word higher than the value of the current program
counter PCn. So, an incremented instruction address can be compared to the
address after the instruction (see comparator a in Figure 3). If the current in-
struction is a direct jump or branch instruction, the next program counter is the
jump destination, or, in the case of a branch the branch destination, or, if the
branch is not taken, the next address in the program code.

Each pair of control flow instruction address and target address is stored in
two RAMs of the checker unit, one for the start and one for the target address
(see Figure 3). The addresses of the branch or jump instructions are stored
successively in the start address RAM (sAdrRam) and the corresponding targets
in the jump address RAM (jAdrRam). Also, a checker unit program counter
(CUPC) is needed which points in these RAMs to the cell, where the address
of the next direct branch or jump is stored. This start address is compared to
the current program counter to determine when the branch or jump instruction
is executed (comparator b). In this case, the following program counter value is
compared to the address of the jump address RAM to verify the correct execution
of the branch or the jump (comparator c). Now, the CUPC must point to the
next branch or jump address. This can be achieved by introducing a third RAM
(ctrlRam) where the next CUPC is stored for each branch or jump. In the case of
a branch, it must also be determined if the branch is taken or not. If the branch
is taken, the next CUPC has the value which is stored in the ctrlRam. If the
branch is not taken, then the CUPC can be incremented. The CUPC and the
ctrlRam presents a microprogrammed architecture which implements the CFIG.
The CUPC can be compared with the index of the CFI. The transitions of the
CFIG are stored in the ctrlRam.

Concepts for Autonomous Control Flow Checking for Embedded CPUs 243

Fig. 3. Architecture for control path checker with the three Rams and comparators.
Also, the control unit program counter (CUPC) is shown.

Also, control flags are stored in the ctrlRam. So, the checker unit can distin-
guish between jumps or branches or can activate or deactivate the checker unit
based on specific program addresses. This can be done by storing the checking
start or end address in the sAdrRam and setting the checking start or end flag in
the corresponding cell in the ctrlRam. If the program flow reaches the starting
address, the checker unit will be activated, or, if the checking end address is
reached, the checker unit deactivates itself. Finally, parts of the program flow,
e.g., non-critical sections or sections which can not be checked due to not sup-
ported indirect jumps, might be excluded from the checking process by setting
the checking start and end flags.

5.2 Handling of Calls and Returns

The most frequent use of indirect jumps occur in the form of returns from sub-
routine. By executing a return from subroutine instruction, the program counter
jumps to the next address after the instruction from where the subroutine was
called from. The return address is typically stored in a CPU register, so the
return instruction is a special indirect jump. Returns can be verified also in our
approach by introducing an additional hardware stack. Upon a call (direct or in-
direct), the return address is stored in the stack and when the return instruction
is executed, the target address can be verified.

5.3 Correction by Reexecution

If a faulty jump or branch instruction occurs, this instruction will be reexecuted
as follows: The error can be detected fast enough to ensure that the state of the
CPU is not altered by the faulty instruction execution. To guarantee this, the

244 D. Ziener and J. Teich

Fig. 4. The checker unit is placed between the first pipeline stages of the Leon core [4].
All bold lines denote new paths for monitoring and reexecution of jump and branch
instructions.

checker must monitor the program counter in the first pipeline stage of a CPU.
Unfortunately, in most architectures, the jump or branch instructions need more
than one cycle to execute. So, until the error is detected, some other instructions
after the jump might be executed. After error detection, the program counter is
reset to a value previous the error occurs by looping back the program counter
value from a subsequent pipeline step. The details of the reexecution process
depends highly on the processor architecture and design.

The SPARC architecture allows to execute one instruction after a branch
instruction or two instructions after a jump instruction before the branch or jump
is performed (see [15]). If an error is detected and the jump or branch instruction
must be reexecuted, also these following instructions must be reexecuted. It must
also be ensured that these instruction cannot alter the state (e.g., register content
or memory operations) of the CPU before reexecution (see Section 6).

6 Implementation

We implemented and analyzed our methods of lightweight control flow checking
for the open source SPARC CPU Leon3 from Gaisler Research [4] in a Virtex 4
FPGA from Xilinx. The checker can monitor direct branches, jumps and calls as
well as indirect returns and has also the possibility to reexecute a corrupted jump
or branch instruction by fetching it again from the memory. Other features of
the checker are the support of the activate and deactivate procedures described
in Section 5.1. The complete methodology for control flow checking consists of
the concept of checking of direct jumps and branches (Section 5.1), the return
stack (Section 5.2) and the repair mechanism (Section 5.3). To minimize the
resource overhead, some features can be disabled (see Section 7). Indirect jumps
which are not returns, are not supported so far, but many application programs
or routines in embedded systems have none of these instructions.

Concepts for Autonomous Control Flow Checking for Embedded CPUs 245

The checker is placed between the first pipeline stages of the Leon3 core (see
Figure 4). The current program counter for the checker is the program counter in
the decode pipeline step and the next program counter is the program counter of
the fetch pipeline step. For reexecuting a jump or branch, the program counter
of the memory step is looped back to the program counter generation (a step
prior to the fetch step), and the instructions are annulled after the memory
step, so the incorrect instructions are not executed and no registers or memories
are written. Because of the loop back, the jump is executed again, and if this
execution is correct, the program is continued normally.

To prepare an application, the compiled code is analyzed by a program which
decodes the instructions and searches for jumps, branches, calls and returns
(see Figure 5). The addresses of these instructions are stored in the sAdrRam
initialization file and the destination address, except for the return instruction,
is stored in jAdrRam initialization file. Also, the initialization file for the control
Ram (ctrlRam) is generated, and the activate and deactivate instructions for
the checker unit are inserted. The original program of the application remains
completely unchanged.

The memory initialization files can be used for the synthesis of the checker
unit, or the content of the rams can be initialized directly in the bitfile of the
FPGA with the Xilinx tool ”data2mem”. For future FPGA and ASIC versions
of the checker, the memories could be initialized also at runtime over a memory
bus or the processor.

Fig. 5. From the compiled code, the program analyzer extracts all branches, calls, and
returns and generates the memory initialization files for the sAdrRam, jAdrRam, and
ctrlRam. The checker rams can be initialized during the synthesis or later in the bitfile
with the data2mem tool.

7 Overhead Analysis

Next, we analyze the number of entries of the checker rams (sAdrRam, jAdr-
Ram, and ctrlRam) and the area overhead of the checker for different supported
features. Furthermore, the verification process of the checker unit is described
in this section.

We analyze the number of required entries of the checker ram for the SPEC
CINT2000 benchmark [14] compiled to the Leon processor. Table 2 shows the

246 D. Ziener and J. Teich

Table 2. Number of required entries in the checker rams for different programs of the
SPEC CINT2000 benchmark [14]

SPEC program gzip gcc vpr mcf crafty parser gap vortex bzip2 twolf

checker ram entries 2138 79206 5125 398 8471 5214 23721 21943 1203 7952

Table 3. Area overheads of different checker unit versions for a Leon3 core without
PCI and Ethernet. The area and memory overhead of the full version C and the reduced
versions (A and B) and for different checker ram sizes are shown.

Overhead Leon3 Version A Version B Version C

checker rams with 512 entries

LUTs % 17031 106 0.62% 242 1.42% 259 1.52%
Flip Flops % 5412 11 0.20% 17 0.31% 20 0.37%
BRAMs % 50 3 6% 3 6% 3 6%

checker rams with 1024 entries

LUTs % 17031 111 0.65% 248 1.46% 265 1.56%
Flip Flops % 5412 12 0.22% 18 0.33% 21 0.39%
BRAMs % 50 5 10% 5 10% 5 10%

checker rams with 2048 entries

LUTs % 17031 112 0.66% 250 1.47% 267 1.57%
Flip Flops % 5412 13 0.24% 19 0.35% 22 0.41%
BRAMs % 50 8 16% 8 16% 8 16%

checker rams with 4096 entries

LUTs % 17031 105 0.62% 251 1.47% 268 1.57%
Flip Flops % 5412 14 0.26% 20 0.37% 23 0.42%
BRAMs % 50 10 20% 10 20% 10 20%

number of checker ram entries of different programs of the benchmark. Operating
system routines and standard library functions are not included in this analysis.

Next, we provide different versions of the checker which support different jump
instructions and error detection features resulting in different area overheads.

The smallest version of the checker (version A) can only monitor direct jumps
or branches. All indirect jumps are not supported and not allowed in the code,
but it is allowed that indirect jumps can occur in the unchecked code. This
includes also returns from subroutine, so this technique can only be used for a
single procedure or function. But many of these procedures and functions can
be checked if the checker unit is deactivated at calls and returns, and activated
inside the function.

The second version (version B) is version A with an additional 32 entry return
stack. With this version, we can also monitor calls and returns, so the most
application programs can be fully monitored.

The last version (version C) has the additional capability of repeating an
incorrect jump or branch instruction as described in Section 5.3 and Section 6.

Table 3 shows the overhead of different versions, synthesized and implemented
on a Virtex 4 with ISE 8.2 with different checker ram sizes. The results show
that the area overhead for logic (lookup tables and Flip Flops) is very small. If

Concepts for Autonomous Control Flow Checking for Embedded CPUs 247

more control flow instructions shall be monitored and more checker ram entries
are needed, only the overhead of the block rams increases. A qualitatively com-
parison of the overhead to other approaches is difficult due to different target
architectures.

The verification of the checker has been performed by simulation and the
Leon in-circuit debugger. Instruction faults are simulated between the instruc-
tion cache and the integer unit by an XOR with an error mask, read in from a
file. With the in-circuit debugger, control flow instructions can be altered inside
the memory (for example the jump destination encoded inside the instruction).
With these techniques, the checker and the correction of incorrect jump instruc-
tion has been verified.

8 Conclusions and Future Work

We introduced a systematic methodology for autonomous control flow checking
for embedded RISC CPUs which can monitor direct jump and branches as well as
returns from subroutine. Experimental results show that the additional hardware
overhead is small. In particular, lookup tables and Flip Flops overhead amount
to an overhead of less than 2% in all cases. So, the only overhead results from the
additional memory needed to monitor the control flow instructions. A modular
concept for generation of checker units has been proposed, so the area overhead
can be further reduced, by removing some functions. The detection of faults is
very fast, so we have the possibility to react immediately during the execution
of a faulty instruction and are able to prevent incorrect instructions from being
executed. Furthermore, an incorrect jump or branch instruction can be refetched
and reexecuted. With this technique, we therefore have no performance impact
on the CPU and the compiled program code remains unchanged.

We introduced a second independent program counter CUPC with its own
state machine and own microcode with own microinstructions (ctrlRam). The
checker program code is based on the extracted branch and jump instructions
from the program code at compile time. This reduced code covers only direct
branches or jumps without the instructions between two branch points. With
this technique, we enhanced the CPU with a reduced second independent pro-
gram counter and instruction unit at minimum additional hardware cost and
full control of the program flow.

Further extensions can be the support of indirect jumps, multi threading, and
the check of the conditionals of branches. Also, an interface to the OS could be
usefully to count the errors and to report the reliability of the CPU.

Finally, if the checker unit has a bus interface, the contents or part of the
content of the checker rams may be stored in the system memory. Only the
content for checking the current part of program (e.g. the current function or a
set of functions which are current in use) may be hold in the local checker rams.
If the checker needs informations which are not stored inside the local checker
rams, the checker can generate a page-fault-like event to signal the operating
system to reload the checker rams with the needed contents. This concept of
caching can reduce the the among of memory overhead significantly.

248 D. Ziener and J. Teich

References

1. Ziegler, B.B.P.: Fliegendes Rechnernetz. In: CT, Heise Verlag (2005)
2. Lee, K., Shrivastava, A., Issenin, I., Dutt, N., Venkatasubramanian, N.: Mitigat-

ing soft error failures for multimedia applications by selective data protection. In:
CASES 2006: Proceedings of the 2006 International Conference on Compilers, Ar-
chitecture and Synthesis for Embedded Systems, pp. 411–420. ACM, New York
(2006)

3. US-CERT: Vulnerability notes database CERT Coordination Center,
http://www.kb.cert.org/vuls/

4. Gaisler Research: LEON3 SPARC V8 Processor core, http://www.gaisler.com
5. Mueller, M., et al.: RAS strategy for IBM S/390 G5 and G6. IBM J. RES. DE-

VELOP 43(5/6) (1999)
6. Lu, D.J.: Watchdog processors and structural integrity checking. IEEE Trans. Com-

puters 31(7), 681–685 (1982)
7. Schuette, M.A., Shen, J.P.: Processor control flow monitoring using signatured

instruction streams. IEEE Trans. Comput. 36(3), 264–277 (1987)
8. Majzik, I., Pataricza, A., Cin, M.D., Hohl, W., Honig, J., Sieh, V.: Hierarchical

checking of multiprocessors using watchdog processors. In: European Dependable
Computing Conference, pp. 386–403 (1994)

9. Michel, T., Leveugle, R., Saucier, G.: A new approach to control flow checking
without program modification. In: FTCS, pp. 334–343 (1991)

10. Arora, D., Ravi, S., Raghunathan, A., Jha, N.K.: Hardware-assisted run-time mon-
itoring for secure program execution on embedded processors. In: IEEE Trans-
actions on VLSI Systems, Washington, DC, USA. IEEE Computer Society, Los
Alamitos (2006)

11. Goloubeva, O., Rebaudengo, M., Reorda, M.S., Violante, M.: Soft-error detection
using control flow assertions. In: DFT 2003: Proceedings of the 18th IEEE Inter-
national Symposium on Defect and Fault Tolerance in VLSI Systems, Washington,
DC, USA, p. 581. IEEE Computer Society, Los Alamitos (2003)

12. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: Control-flow integrity. In: CCS
2005: Proceedings of the 12th ACM Conference on Computer and Communications
Security, pp. 340–353. ACM Press, New York (2005)

13. Austin, T.M.: DIVA: A reliable substrate for deep submicron microarchitecture
design. In: International Symposium on Microarchitecture, pp. 196–207 (1999)

14. Standard Performance Evaluation Corporation (SPEC): SPEC CPU, V1.3. (2000),
http://www.spec.org

15. SPARC: The SPARC Architecture Manual V8,
http://www.sparc.com/standards/V8.pdf

http://www.kb.cert.org/vuls/
http://www.gaisler.com
http://www.spec.org
http://www.sparc.com/standards/V8.pdf

Autonomous Querying for Knowledge Networks

Kieran Greer1, Matthias Baumgarten1, Chris Nugent1, Maurice Mulvenna1,
and Kevin Curran2

1 School of Computing and Mathematics and Computer Science Research Institute,
University of Ulster, Northern Ireland, UK

2 School of Computing and Intelligent Systems and Computer Science Research
Institute, University of Ulster, Northern Ireland, UK

Abstract. A knowledge network is a construct that will organise knowl-
edge in a way that allows it to be efficiently retrieved and used. While
an Internet-based network is the obvious application area, the system
would also be suitable for pervasive sensorised environments. Key ele-
ments thereof are its lightweight, reference-based structure and its au-
tonomous nature. This paper is concerned with describing the querying
process that will be used to retrieve information from the network. For
this process, the network metadata will act as a lightweight and dis-
tributed ontology, where the hierarchical structures of the network will
describe the main relationships and guide the search. Then, using au-
tonomous querying, the ontology can be updated with personal refer-
ences between sources, allowing for semantically unrelated concepts to
also be linked together. A novel linking mechanism is described that is
shown to be effective, dynamic and adaptive, and could be particularly
useful in tomorrow’s Semantic Web environment.

Keywords: Autonomous, Knowledge, Query, Network, Stigmergy.

1 Introduction

A knowledge network is a generic structure that organises distributed knowl-
edge of any format into a system that will allow it to be retrieved efficiently.
The rationale of the knowledge network is to act as a middle layer that connects
to a multitude of sources, organises them based on various concepts and finally
provides well-structured, pre-organised knowledge to individual services and ap-
plications. Baumgarten et al. 2006 and Mulvenna et al. 2006 have described the
initial philosophy behind this network concept in their earlier works. The term
‘knowledge network’ has nonetheless been used by different researchers; see for
example Lee et al. 2004. For the context of this paper, a knowledge network
could be understood to be a network that organises information sources through
the use of ontologies and intelligent links, to provide some sort of meaning to the
associations. By meaningful it is meant that the associations will be understood
by the user of the network. The network can also be loaded with any number of
services that can intelligently process or reason over the stored information. This

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 249–263, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

250 K. Greer et al.

sounds a lot like the Web 3.0 and is a reasonably good generic definition. How-
ever, this work would extend the definition to also accommodate the pervasive
sensorised environments. The sensors would act as data sources, providing infor-
mation to a more intelligent system that could combine such information with
heterogeneous data sources found on the Internet, for example. Thus dynamic
and real-time aspects of an environment can also be used to answer queries and
can also be combined with existing knowledge sources.

The knowledge can be represented by understanding the context in which
each node is used. For example, the metadata describing a node can be used
to compare and link the node with other nodes. However, this cannot provide a
complete organisation, as in a dynamic environment everything cannot be known
beforehand. There is also the problem of distriminating between several nodes
of the same type. Thus temporary overlay views are required to further optimise
and these can dynamically change over time to reflect the use of the system. The
mechanism that is used to optimise and generate these views is by stigmergically
linking sources that are related through the querying process. If we consider the
ant colony optimisation algorithm (ACO) (Dorigo and Di Caro, 1999), then with
this algorithm, pheromone trails between nodes in a network can be strengthened
or weakened to define a route through them. A similar strengthening/weakening
mechanism is used to link the sources related to each other through the queries.

The semantically related organisation (see Fig. 1 in section 4) and reasoning
is new work on the system that is being presented in this paper. The main focus
however is the query process that will be used to query the knowledge. It is
possible to use the querying mechanism as an additional part of the knowledge
organisation mechanism, to autonomously create the temporary views that re-
flect the use of the system. The challenges faced for querying this knowledge can
therefore be identified as follows:

1. Ontologies are typically used to represent knowledge as they allow for a
richer set of querying operations, but the knowledge needs to be represented
in a relatively lightweight way.

2. The querying construct should also be lightweight. However, complex sources
are allowed, when they would also need to be queried.

3. The querying is distributed, retrieving information from several sources. This
requires the query to be constructed dynamically from partial results as it
is executed.

4. The knowledge organisation must be autonomous and does not assume any
prior knowledge of the environment. The system is to be generic, dynamic
and self-organising.

5. The potential size of the network could be huge, therefore some query op-
timisation, directing the search to the most relevant sources, would make a
querying process more practical.

The rest of the paper is organised as follows: Section 2 describes related work.
Section 3 describes the problems faced in querying the network and introduces a
proposed solution. Section 4 describes the query process in more detail. Section 5

Autonomous Querying for Knowledge Networks 251

describes details of the implemented system, while section 6 discusses the paper’s
findings and presents the conclusions of the work.

2 Related Work

In this section some related methods for representing and storing knowledge are
discussed, as well as some related work on autonomous querying.

2.1 Knowledge Representation

This section describes the usage of some XML-based knowledge representation
methods used in distributed network environments. There is a strong emphasis
on Semantic Web technologies in this area, where knowledge representation is an
important topic. Knowledge representation generally deals with using ontologies.
There are different definitions of what an ontology is depending on what subject
area you are dealing with. Gruber 1993 gives the following definition for the area
of ‘AI and knowledge representation’, which is suitable for this work:

‘An ontology is an explicit specification of a conceptualisation. The term is
borrowed from philosophy, where an ontology is a systematic account of Exis-
tence. For knowledge-based systems, what ‘exists’ is exactly that which can be
represented. When the knowledge of a domain is represented in a declarative
formalism, the set of objects that can be represented is called the universe of
discourse. This set of objects, and the describable relationships among them,
are reflected in the representational vocabulary with which a knowledge-based
program represents knowledge. Thus, we can describe the ontology of a program
by defining a set of representational terms. In such an ontology, definitions as-
sociate the names of entities in the universe of discourse (e.g., classes, relations,
functions, or other objects) with human-readable text describing what the names
are meant to denote, and formal axioms that constrain the interpretation and
well-formed use of these terms.’

With the Semantic Web, the relations between concepts need to be deduced
automatically. This can be achieved by semantic mapping, or it can also be
achieved by examining the context in which different elements are used. This
could be compared to knowledge or experience-based approaches. Due to the
large amount of literature on knowledge representation and management, this
topic is only briefly mentioned here, however RDF 2008 and languages derived
from it such as OWL 2008 are popular standards for representing the knowledge.

Cuzzocrea 2005 addresses the issue of peer-to-peer processing of knowledge.
He suggests a knowledge representation model in the form of a Semantic Rela-
tionship Matrix (SRM). The SRM for a peer is a 2-D matrix, having as rows
the neighbouring peers and as columns the set of neighbouring concepts. This
adds semantics to a p2p IS (peer-to-peer information system), giving a peer the
knowledge it needs to query its neighbours. Sartiani et al. 2004 have also worked
in the area of p2p systems. They suggest a p2p system called XPeer that con-
tains super-peers that aggregate or organise other peers. The super-peers also

252 K. Greer et al.

combine the schema of the other peers automatically, allowing the system to be
queried without the need for human administration. Dragan et al. 2005 also use
the super-peer system. They allow peers to become super-peers if they continu-
ally reroute queries. The network structure described in this paper is essentially
the same, with aggregated nodes referenced by other nodes and a lightweight
linking mechanism based on flat or nested hashtable structures. This structure
will be described in more detail in later sections.

2.2 Autonomous Querying

There has not been a lot of work presented on autonomous querying and pub-
lished research seems to be different to the stigmergic linking methodology pro-
posed in this paper. Mano et al. 2006 discuss the main mechanisms used in this
paper for ‘linking’ (stigmergy, self-organisation, reinforcement). Stigmergy has
now been used widely to self-organise in distributed mobile or ad-hoc networks
(MANETs). These networks are highly dynamic and need a flexible and robust
mechanism that can adapt and allow them to self-organise. As these systems
can be on a massive scale, some centralised controlling mechanism may not be
practical. Babaoglu et al. 2006 and Breukner and Parunak 2004 are papers that
discuss this problem. Dragan et al. 2005 is also relevant, as the dynamic link-
ing of sources will also in effect reroute queries. Another example can be found
in Raschid et al. 2006. They apply linking to the problem of optimising routes
through Web resources in the area of Life Sciences. In this set of resources, there
are known to be different routes to different resources that may answer the same
query and so one route can be more optimal than another. An example of link-
ing based purely on the query experiences includes Koloniari et al. 2005. They
try to cluster nodes in a p2p network based on query workloads. They try to
cluster nodes with similar workloads together, which will maximise the number
of relevant nodes that can be visited in a time period to answer a particular
query, by having them just a few links apart. They describe that the mechanism
for calculating the workload value is still an open issue and could be based on a
node storing statistics on the queries that pass through it.

There are also several self-organising systems of other types. Construct
(Stevenson et al., 2006), for example, is a self-aggregating system, where informa-
tion from sources can be aggregated to provide higher levels of abstraction as re-
quired by the application. Construct is a service-based context-aggregationsystem
that is self-organising.Pitoura et al. 2003 describe a service-orienteddata manage-
ment system that also queries massively distributed and autonomous p2p systems.
They use ontologies to organise metadata describing the services and use filters to
route the queries to the appropriate services. They also create user profiles that de-
scribe the user’s use of the system. De Meo et al. 2003 and Marrow and Koubarakis
2005 also self-organise based on user profiles. The system to be described in this
paper does not organise users, although it does globally organise the results of the
users’ requests. Hence the results are available to anyone who uses the network and
not only to the specific users that performed the queries. This has advantages and
disadvantages depending on what the individual users’ want. A user new to the

Autonomous Querying for Knowledge Networks 253

network may find the results of previous users to be helpful, whereas an experi-
enced user with specific criteria may find this generalisation less useful. Neverthe-
less, the system does not prevent user profiles from also being used, for example,
local views of the network can also be generated using the same linking mechanism
and could be tailored to each individual user.

3 The Querying Problem

To retrieve the information that is contained in the knowledge network requires
an efficient querying mechanism. This query mechanism should take maximum
advantage of the relations already built by the knowledge network, but also, it
should not alter them for each request. Therefore, the scope of the querying sys-
tem is to build a temporary view of individual components without altering the
structure of the underlying network. The architecture is intended to be generic
allowing any type of source and any size of network. The knowledge represented
by the network will be stored in XML format, where RDF or XML only will be
allowed at the sources.

The ontology information can be distributed over the whole network, when
the subclass or more obvious relations can be represented at each node. This
provides a more lightweight structure than a large centralised repository. Then
through the experience of the query results, other less obvious relations in the
knowledge can be discovered that will be used to direct the search process more
efficiently. These links are temporary and can complement the permanent or-
ganisation provided by the hierarchical network structure and help to create the
views of the request layer. As will be explained in section 4, these links are cre-
ated in a stigmergic way. Stigmergy uses changes in the environment rather than
some knowledge-based approach to derive information and so tends to be more
lightweight. Fig. 1 is an example of a hierarchical network related to weather
and clothes concepts. The hierarchy associates concepts with sub-concepts, end-
ing with instances of particular leaf concepts. The semantics or keywords that
describe each node can thus be used as a lightweight ontology. In the figure,
the solid arrows are semantically-based organisation, while the dashed lines are
stigmergic links between specific source nodes.

4 The Query Process

To try and keep the network as lightweight as possible there will be two initial
phases to the querying. The first phase is a search through the network to find
the most suitable sources. This can also be used by itself as a search engine.
The second phase is then to actually query those sources. The query search and
execution is performed through the network structure itself. This is in keeping
with a distributed system. The two phase approach, retrieving only source ad-
dresses in the first phase, also means that these addresses can be stored locally
and the sources queried at any later time to retrieve information that might
dynamically change. Thus the system can cope with more dynamic information

254 K. Greer et al.

Fig. 1. Hierarchical network with experience-based linking

as well. There can then be a third phase that autonomously updates the knowl-
edge based on the query process. The nodes in the network used for navigation
(the higher level aggregating nodes) will store and process metadata, in RDF
format, for example. There are then a set of source nodes at the leaf positions
that access the sources directly. These do not perform any extra navigation but
rather query a source to retrieve some information. These nodes do not have to
process RDF but can be heterogeneous with respect to the query language and
so should store a query engine suitable to the source. If there is a complex XML
document, then the query engine might be something like XQuery (Chamberlin,
2002) or Xcerpt 2008. If there is a simple sensor, then an RDF query engine
could be stored. A Query Mediator can convert the query request into the form
suitable for the source. The source can then executes the query and returns the
result to the mediator, which converts it back and combines it with all the other
replies.

The following scenario will describe what this heterogeneous approach would
allow: Consider the case where there are a number of distributed weather sen-
sors and there is an XML document with knowledge on the clothes that people
wear in different weather conditions. The query is ‘retrieve what to wear when
temperature and wind sensors indicate good conditions’. The query in the form
of a typical ‘select-from-where’ statement may look like:

Select clothes.what to wear, From clothes, weather station Where (clothes.
weather Equals weather station.conditions) and (weather station.temperature
sensor Equals hot) and (weather station.wind force sensor Equals light)

Thus both sensors and knowledge sources can be used and combined to answer
a dynamic query based on current conditions.

4.1 Autonomic Knowledge Updating

So the user submits a query and initiates a query process. The nodes visited
to answer the query are recorded, which can be defined by the paths through
the network. These nodes can then be informed of the query parts that they
answered and form links between each other. This will in effect create temporary

Autonomous Querying for Knowledge Networks 255

views to reflect the current network use. If the network use changes, then so will
these views. Weighted values can be updated for links between sources that
consistently answer the same types of query. If the weight values reach a certain
threshold then the use of the system suggests that these sources are now related.
This has the advantage of linking separate sources and not whole groups of
sources. For example, if we have 100 temperature sensors and only 1 is used as
part of a query, then only that single sensor could be linked to another part
of the network while the other sensors are not included. This may also help
to group nodes in a situational sense, as particular areas of the network may
typically answer the same query. In Fig. 1 for example, when the Raincoat node
is queried again with relation to Rain and Wind, the query engine can look at
just the nodes R1 and WF2, omitting R2 and WF1. The linked paths are shown
by the dashed lines and this would achieve some degree of optimisation.

This kind of linking is in line with the lightweight approach the knowledge
network wishes to adopt. The nodes used to answer the query are informed and
they strengthen their related links. If other sources are not used, their links may
be weakened, until they are removed altogether. In this system, the exact node
that should be visited to answer the first part of the query will not be indicated
by the linking mechanism, however, local views of the whole network structure
can also be constructed that will indicate nodes most commonly visited by the
local application. This can be constructed using the same linking mechanism and
will reduce the search to the first node type visited. The aim is then to indicate
the other nodes for the rest of the query through related links, to try to reduce
query time and improve the quality of service (or answer). For example, if the
following query is executed:

Select budget.available, clothes.cost, clothes.what to buy, From budget, clothes,
weather station Where (budget.available Greater Than clothes.cost) and (clothes.
weather Equals weather station.conditions)

Then the first part of the query that is solved is ‘clothes.weather Equals
weather station.conditions’. The weather stations to look at could be indicated
by a local view and resolved with clothes sources through comparisons or related
links. Then, only these selected clothes sources are used to answer the second
part of the query ‘budget.available Greater Than clothes.cost’, which would also
retrieve links to any related budget sources.

This is like the ACO method, where relations (pheromone trails) between
nodes are strengthened/weakened. Because this weight updating is calculated
through changes in the environment (nodes visited) and not by any knowledge-
based process, it can be called stigmergic. It is also possible to include learning
algorithms or fix and redistribute the total amount of allowed memory, ensuring
that the structure stays lightweight. Work has also revealed levels of reasoning
that can be obtained from the linking mechanism, by aggregating values based
on the links (Greer et al., 2007b). For example, several linked source values could
be averaged to give a ‘best’ value. Thus the knowledge of the users of the system
(who create the links) can be used to perform some levels of reasoning over the
contained information.

256 K. Greer et al.

4.2 Test Results

A substantial amount of testing has demonstrated that the linking mechanism
is indeed very effective. Tests have been conducted to try and determine the
amount of variability that the linking mechanism will be able to cope with. For
example, if all queries are the same then it should be easy to link the appropri-
ate sources, while if they are always different then the linking mechanism will
not work. To investigate these concepts further, random networks and queries
were generated, with the queries being skewed towards certain types. The data
generated was of the numerical type and so a metric could try to maximise the
sum total for the answer to determine what the best answer would be. It is only
important to specify in some way that one source is better than another. Then
the linking mechanism must try to learn this relation.

The skewing was performed by placing source or value types into probabil-
ity bands and then selecting from a band depending on a random number. For
example, a 90:10 split would place certain source or value types in a 90% proba-
bility band with the rest in the 10% probability band. When retrieving a source
or value type, the 90% band would be visited much more often, skewing the
queries towards the types in that band. Statistics are compared between a full
search that is guided only by the hierarchy and a linked search that also uses
links between the source nodes. Node count and quality of answer are measured.
The full search has access to all source nodes and so will always return the best
answer. The linked search will not visit all source nodes. If the linking is correct
however, linking the appropriate sources, it will still return a good answer. If it
is not correct, then it will return a poorer answer. Greer et al. 2007a 2007b gives
some more information on the testing procedure and potential for the linking
mechanism. Greer et al. 2007a showed the result that the querying mechanism
needed to be supervised as too many links could in fact be added. When this
happened the linking mechanism would need to be adapted to improve per-
formance again. So as well as self-organisation through the linking mechanism,
self-supervision would also be necessary. The values for this evaluation were for
a split of 90:10 and one would expect to obtain an effective performance from
the linking mechanism with this amount of variability. However, down to a 70:30
split could also be effective. Table 1 gives some indication of performance levels
for the linked search compared to a full search for different levels of skewing.

For these tests, the random network was constructed from the following pa-
rameters: There were a total of 10 different source types and 5 different value
types. For the skewing, the source types were split 3:7, while the value types
were split 2:3. Each value type was assigned a random value in the range 1 to

Table 1. Example of possible search reduction with related loss of QoS values for
different query skewing

70:30 - EO 80:20 - EO 90:10 - EO 70:30 - AC 80:20 - AC 90:10 - AC

Search Reduction 89% 86% 87% 92% 92% 94%

Loss of QoS 11% 9% 5% 13% 11% 7%

Autonomous Querying for Knowledge Networks 257

10. For the random network there were 30 instances of each source type and
thus 300 sources nodes with 315 nodes in total. Thus a 70:30 skew indicates 3
source types and 2 value types in the 70% band, with the other 7 source types
and 3 value types in the 30% band. Queries that used the equivalence only (EO)
comparison or used all comparison (AC) operators were tested and the results
are an average over 3 test runs. The results show that while the search reduction
remains relatively constant for each query type, the greater skewing significantly
improves the quality of answer. The equivalence only queries also have an im-
proved quality of answer over the all comparison queries, as you would expect,
due to the smaller variability in possible query types.

5 System Details

The knowledge network concepts have been implemented as an integral com-
ponent of a larger system. This system includes a communication package, the
knowledge network components and an admin/user application. The communi-
cation package is a separate package designed on the XML-RPC mechanism.
This package has been given the name ‘licas’ (lightweight communication for
autonomic services). The packages allow for networks of nested services to be
built and stored on distributed servers. The licas package also contains the link-
ing package used to dynamically link the different services (or nodes) based on
the query feedback. This server-side p2p framework is then extended by the
knowledge network components themselves, which are used to build the actual
network. Data is provided by an internal structure in each source node that stores
XML values, although some sensors have also been accessed by the software1.
The knowledge network package also contains the functionality to generate ran-
dom networks and queries, the ability to test these and also measure statistics
based on the querying process. Thus a reliable evaluation of the linking mech-
anism can be obtained. The client side consists of an admin/user application.
This acts both as an admin gui and also as a practical application with which
to query the network.

All queries are of the ‘select-from-where’ type, while the data is in XML for-
mat. Currently the query engine can perform either a search or a full evaluation
of source nodes. All of the metadata used to describe the services is retrieved
when a network is loaded and so when using the search engine, this can then be
used to identify which services to access. For example, if considering Fig. 1, the
user could ask for nodes (or services) relating to Raincoat or Wind, etc. Then
addresses to the relevant nodes can be found and returned, together with some
metadata describing the service. If the queries specify specific values for specific
nodes, then an evaluation of the node values is also performed and the resulting
best value returned as the answer. Depending on what sort of query is being
executed, some amount of query re-writing is performed to provide a standard
‘select-from-where’ format to process. All of the main functionality is held in
different services that are loaded as and when needed. For example, a statistics
1 Nicola Bicocchi, University of Modena and Reggio Emilia.

258 K. Greer et al.

service will store statistics for each node, or a linking service will store and up-
date the linking structure. The main focus of the work to date has been on the
autonomic and stigmergic aspects, but now work is also focusing on semantic
evaluations. A metadata service already exists that is used to process the query
request by matching it to the metadata held at each node. While the system is
very much a prototype, the metadata service even allows pattern matching of
XML fragments, as you would expect in an XML-based query language. Now
also, RDF schema can be parsed and the network structure constructed from
the schema contents.

The RDF parser can also read SWRL rules and use them to answer queries
not directly answerable by the network semantics. The RDF parser has read
an OWL ontology called ‘myfamily.rdf’ (this can be found at http://www.ag-
nbi.de/research/swrlengine/#why%20additional%20rules) and constructed the
network from that. This ontology also contains a number of rules that describe
relations between the different family members. Fig. 2 shows the admin/user
application after a reasoning query has been performed. This is a new query
process recently added to the system. The reasoning process shows how the
stigmergic links and the semantics can be combined to answer queries that each
could not answer individually. The links can be entered manually for testing, but
would occur naturally through the use of the system in a real environment. An
example of a link can be seen in the top half of the Knowledge Network window.
The links represent the relations built up between the network components by
the users of the system. The semantics then represent the knowledge that is
already known about the network. The query being executed is asking if a child
called ‘Charlie’ has an uncle. For testing purposes concepts can be removed from
the network construction, so that they have to be answered using rules. The rule
used to answer this links the concepts ‘Child’ with ‘hasParent’ and ‘hasParent’
with ‘hasBrother’. The query can be constructed as shown in the Query Client
window. A standard ‘select-from-where’ query is constructed, but the question is
added to the front of the query. The standard query is processed and this returns
an answer, finding a child source with a value of ‘Charlie’. The source used to
answer this is taken to be the starting point to process the rule. The rule states
that you have an uncle if you have a parent and your parent has a brother. The
rule looks for stigmergic links from the starting source to the related sources to
determine if a path exists that will satisfy the question. All rules can be parsed
and only the ones that contain the appropriate concepts need to be traced. In
this case a path does exist and the name of the uncle is ‘Jack’. You could imagine
nested select statements with additional questions, where the select clause would
provide the starting point for a rule search that would provide further starting
points for further select clause queries, etc. This could provide quite a powerful
reasoning engine. The knowledge network that is constructed can be seen in the
bottom right panel of the Knowledge Network window. The structure is to have
a flat repository of sources and then to create the hierarchy through referencing
the different source types. The values are single XML elements. The bottom left
panel shows the results of a reasoning query.

Autonomous Querying for Knowledge Networks 259

Fig. 2. Application GUI showing the result of a reasoning query. The network is con-
structed from the ‘myfamily.rdf’ schema.

5.1 Autonomic Aspects

The developed system shows several autonomic features. The querying process
has already been described. This is related to dynamic/adaptive systems, emer-
gence and self-organisation. It is autonomic because it can self-organise based on
the feedback from the query process. The links are dynamic and can change over
time, thus it is the system itself, based on its use, that determines what links
are constructed. Self-supervision based on measuring the linking performance
is also possible (Greer et al. 2007a). The licas system has security features in
the form of password protection. Nevertheless it is also expected that the indi-
vidual services will negotiate with each other to determine if they can use each
other. Specific functionality for this is not in place and it would be very much
application dependent. Method skeletons exist however for agent-like communi-
cation, when a service can also decide to give its password based on a descrip-
tion of the asking service. The system is completely open. Once a password has
been given any service is free to call any other service. Thus it is expected that

260 K. Greer et al.

intelligence will be coded into the services themselves and trust between services
will be a key consideration.

6 Discussion

This paper has outlined a new approach for querying a network of knowledge.
Previous work has focused strongly on the stigmergic and dynamic organisational
aspects of the system. This paper tries to focus more on the knowledge-based as-
pects of the system. Some related work has been described, but it is clear that the
linking mechanism being suggested, along with the type of query being executed,
is new. The architecture is lightweight because the main linking mechanism is a
stigmergic link. This can be simply a reference and weight between two nodes
and does not require any heavyweight knowledge-based algorithms to work. The
number of allowed links can also be controlled. The communication framework
(licas) is built using only JDOM and Apache HttpCore third party components.
The whole package is only approximaely 240 kb in size, although it would require
Java Reflection to act as a server. The lightweight architecture allows for smaller
devices, such as in the pervasive environment, to operate. However, these could
also be peripheral devices connecting to the Internet. Traditional searches of the
Internet try to retrieve single Web pages that satisfy a user’s request. With the
Semantic Web however, the additional knowledge will allow queries to be an-
swered from several related Web pages. The type of query that has been tested,
with sources related to each other through value types, has particular relevance
in this domain, although this paper provides more of a vision than a concrete
system. An overall system has been implemented based on autonomic principles,
the main ones being self-organisation and self-supervision. The self-organisation
is controlled by the linking mechanism and will emerge through the results of the
query requests. The ontology information may be integrated into the network
itself, making use of the elements that already exist.

The licas package is generic, but the knowledge network and client packages
rely on the knowledge network components. However, there is nothing special
about the organisational structure or type of data that is stored and so the basic
organisation and querying principles are also generic and could be applied to
many different systems. The organisation could be obtained from an algorithm,
or thorugh reading XML schemas. Previously constructed schemas should, in
theory, provide a correct hierarchical organisation of the knowledge. Because
the potential size of the network can be huge, the stigmergic links can then
prune most of the nodes from the search process, making querying of larger
networks more practical. The architecture is one of distributed networks that
talk to each other, but the query process has a certain amount of sequential
processing that would slow down the query process. This is due to comparisons
between specific values of specific nodes. Thus while the node count can be shown
to be dramatically reduced, no claims about overall search time are being made.
However, the same process without the stigmergic linking would be much slower.

Autonomous Querying for Knowledge Networks 261

The querying process suggests two initial stages - one to traverse the network
and one to query the sources. The search will be largely guided by the hierarchical
structure, which is permanent. Given that the main navigation is accounted for,
the query process can try to improve the network performance in an experience
based way by directly linking semantically unrelated sources for certain query
types. Thus if many source instances of the same type exist, optimisation can
indicate only specific ones to look at. This is performed in a stigmergic and
autonomic manner and will allow temporal and situational factors to be included.
Tests have then shown that the query performance can be improved further
through supervising it to adapt the linking mechanism when performance begins
to drop again. It is also clear that a complete organisation of the network requires
both semantics and experience-based techniques and so semantic processing is
now also being looked at.

The problems that needed to be solved at the end of the Introduction section
can now be addressed as follows:

1. Ontologies - the hierarchical structure, together with the metadata stored
at each node, represents sufficient ontology information to allow for a search
through the network. The network acts like an indexing system and for the
search the essential relation would be the subclass relation. This is provided
by the hierarchical links.

2. Lightweight - the main architecture is lightweight, but it is also flexible,
allowing for more heavyweight components/services if required.

3. Distributed querying - the query process is a 2-stage process to answer the
query and a third stage to update the linking structures. The search is per-
formed in a distributed manner, through the individual nodes. Also, any
evaluation that can be executed locally at a source is performed there. For
example, a value type compared to an actual value will be evaluated at the
source and the source address returned only if the evaluation is true. Com-
paring different source types must be performed sequentially, however, as we
need all sources first to make the comparison. The rest of the query eval-
uation then also requires the related linked nodes from the previous parts
before it can be performed.

4. Knowledge organisation - the static organisation is not dynamic but per-
manent based on semantics. The stigmergic linking however is autonomous
and dynamic, providing temporary overlay views. This allows the knowledge
organisation to adapt to the changing use of the system.

5. Query optimisation - both the hierarchical structure and the stigmergic links
will provide for optimisation of the search process. The hierarchy provides
clear paths to the source nodes while the links can select individual source
nodes of the same type. Tests have shown that the stigmergic linking can
improve search over using just the hierarchy by 80 - 90%, while the hierarchy
will obviously improve over searching the whole network by a very large
amount.

262 K. Greer et al.

Acknowledgements

This work has been carried out in the project CASCADAS (IST-027807), which
is supported by the European Framework VI FET Proactive Initiative IST-2004-
2.3.4 programme of the European Commission.

References

Babaoglu, O., Canright, G., Deutsch, A., Di Caro, G.A., Ducatelle, F., Gambardella,
L.M., Ganguly, N., Jelasity, M., Montemanni, R., Montresor, A., Urnes, T.: De-
sign Patterns from Biology for Distributed Computing. ACM Transactions on Au-
tonomous and Adaptive Systems 1(1), 26–66 (2006)

Baumgarten, M., Bicocchi, N., Curran, K., Mamei, M., Mulvenna, M., Nugent, C.,
Zambonelli, F.: Towards Self-Organizing Knowledge Networks for Smart World In-
frastructures. In: Invited Session on Service Development and Provisioning through
Situated and Autonomic Communications at International Conference on Self-
Organization and Autonomous Systems in Computing and Communications (SOAS
2006), September 18-21, 2006, Erfurt, Germany (2006)

Breukner, S.A., Van Dyke Parunak, H.: Self-Organising MANET Management. In:
Di Marzo Serugendo, G., et al. (eds.) AAMAS 2003 Ws ESOA. LNCS (LNAI),
vol. 2977, pp. 20–35. Springer, Heidelberg (2004)

Chamberlin, D.: X Query: An XML query language. IMB Systems Journal 41(4), 597–
615 (2002)

Cuzzocrea, A.: Towards a Semantics-based Framework for KD- and IR-style Resource
Querying on XML-based P2P Information Systems. In: Proceedings of the 2005
IEEE/WIC/ACM International Conference on Web Intelligence (WI 2005) (2005)

De Meo, P., Mbale, J., Terracina, G., Ursino, D.: An XML-based multi-agent system
for the user-oriented management of QoS in telecommunications networks. In: 2003.
IAT 2003. IEEE/WIC International Conference on Intelligent Agent Technology,
October 13-16, 2003, pp. 96–102 (2003)

Dorigo, M., Di Caro, G.: Ant colony optimization: a new meta-heuristic, Evolutionary
Computation 2. In: Proceedings of the 1999 Congress on CEC 1999, p. 1477 (1999)

Dragan, F., Gardarin, G., Yeh, L.: MediaPeer: a safe, scalable P2P architecture
for XML query processing. In: Proceedings, Sixteenth International Workshop on
Database and Expert Systems Applications, August 22-26, 2005, pp. 368–373 (2005)

Greer, K., Baumgarten, M., Mulvenna, M., Curran, K., Nugent, C.: Autonomic Su-
pervision of Stigmergic Self-Organisation for Distributed Information Retrieval. In:
Workshop on Technologies for Situated and Autonomic Communications (SAC),
at 2nd International Conference on Bio-Inspired Models of Network, Information,
and Computing Systems, BIONETICS 2007, Budapest, Hungary, December 10-13
(2007)

Greer, K., Baumgarten, M., Mulvenna, M., Nugent, C., Curran, K.: Knowledge-Based
Reasoning through Stigmergic Linking. In: Hutchison, D., Katz, R.H. (eds.) IWSOS
2007. LNCS, vol. 4725, pp. 240–254. Springer, Heidelberg (2007)

Gruber, T.: A translation approach to portable ontology specifications. Knowledge
Acquisition 5, 199–220 (1993)

Autonomous Querying for Knowledge Networks 263

Koloniari, G., Petrakis, Y., Pitoura, E., Tsotsos, T.: Query workload-aware overlay
construction using histograms. In: Proceedings of the 14th ACM International Con-
ference on Information and Knowledge Management, pp. 640–647 (2005)

Karvounarakis, G., Christophides, V., Plexousakis, D., Alexaki, S.: Querying commu-
nity web portals, Technical Report, Institute of Computer Science, FORTH, Herak-
lion, Greece (2000)

Lee, M., Stanley, Y., Su, W., Lam, H.: Event and rule services for achieving a Web-
based knowledge network. Knowledge-Based Systems 17, 179–188 (2004)

Mano, J.-P., Bourjot, C., Lopardo, G., Glize, P.: Bio-inspired Mechanisms for Artificial
Self-organised Systems. Informatica 30, 55–62 (2006)

Marrow, P., Koubarakis, M.: Self-organising Applications Using Lightweight Agents.
Engineering Self-Organising Systems, 120–129 (2005)

Mulvenna, M.D., Zambonelli, F., Curran, K., Nugent, C.D.: Knowledge Networks. In:
Stavrakakis, I., Smirnov, M. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 99–114.
Springer, Heidelberg (2005)

OWL, Web Ontology Language Reference (last accessed on 10/1/08),
http://www.w3.org/TR/owl-ref/

Pitoura, E., Abiteboul, S., Pfoser, D., Samaras, G., Vazirgiannis, M.: DBGlobe: a
service-oriented P2P system for global computing. ACM SIGMOD Record 32:3,
SPECIAL ISSUE: Special topic section on peer to peer data management, 77–82
(2003)

Raschid, L., Wu, Y., Lee, W.-J., Vidal, M.-E., Tsaparas, P., Srinivasan, P., Sehgal,
A.K.: Ranking Target Objects of Navigational Queries. In: 8th ACM International
Workshop on Web Information and Data Management WIDM 2006, pp. 27–34
(2006)

RDF, Resource Description Framework (RDF) (last accessed on 10/1/08),
http://www.w3.org/RDF/

Sartiani, C., Manghi, P., Ghelli, G., Conforti, G.: XPeer: A Self-organising XML p2p
Database System (last accessed on 10/1/08),
http://www.di.unipi.it/∼ghelli/papers/SarManGhe04-p2pdb.pdf

Stevenson, G., Nixon, P., Dobson, S.: Towards a reliable wide-area infrastructure for
context-based self-management of communications. In: Stavrakakis, I., Smirnov, M.
(eds.) WAC 2005. LNCS, vol. 3854, pp. 115–128. Springer, Heidelberg (2006)

Xcerpt, Xcerpt - Rule-Based Querying and Reasoning on the (Semantic) Web (last
accessed on 10/1/08), http://www.xcerpt.org/

Discovery of Useful Patterns from

Tree-Structured Documents with
Label-Projected Database�

Juryon Paik1, Junghyun Nam2, Hee Yong Youn1, and Ung Mo Kim1

1 Dept. of Computer Engineering, Sungkyunkwan University, Republic of Korea
quasa277@gmail.com, youn@ece.skku.ac.kr, umkim@ece.skku.ac.kr

2 Dept. of Computer Science, Konkuk University, Republic of Korea
jhnam@kku.ac.kr

Abstract. Due to its highly flexible tree structure, XML data is used
to capture most kinds of data and provides a substrate in which almost
any other data structure may be presented. With the continuous growth
of XML tree data in electronic environments, the discovery of useful
knowledge from them has been a main research area in the information
retrieval community. The mostly used approach to this task is to ex-
tract frequently occurring subtree patterns from a set of trees. However,
because the number of frequent subtrees grows exponentially with the
size of trees, a more practical and scalable alternative is required, which
is the discovery of maximal frequent subtrees. The maximal frequent
subtrees hold all the useful information, though, the number of them
is much smaller than that of frequent subtrees. Handling the maximal
frequent subtrees is an interesting challenge, and represents the core of
this paper. As far as we know, this is one of the first studies to directly
discover maximal frequent subtrees without any candidate sets gener-
ations as well as eliminating the process of useless subtree pruning. To
this end, we define and use a new type of projected database to represent
XML tree data efficiently. It significantly improves the entire process of
mining maximal frequent subtree patterns. We study the performance
and the scalability of the proposed approach through experiments based
on synthetic datasets.

1 Introduction

With the ever-increasing amount of XML data in electronic environments, the
ability to extract valuable knowledge from them becomes increasingly important
and desirable, because a data-rich environment does not mean an information-
rich environment. This caused that the data mining community has been chal-
lenged to come up with an efficient and scalable method for uncovering useful
� This work was supported in part by the Ubiquitous Autonomic Computing and Net-

work Project, 21st Century Frontier R&D Program, and by the ITRC(Information
Technology Research Center) support program supervised by the IITA(Institute of
Information Technology Advancement) (IITA-2008-C1090-0801-0028), both funded
by the MKE(Ministry of Knowledge Economy), Korea.

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 264–278, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Discovery of Useful Patterns from Tree-Structured Documents 265

information from a large collection of XML data, where the problem of find-
ing information from XML data has not been very well studied, in spite of its
applicability to a broad variety of problems in XML world. Since XML has
tree structure, traditional extraction methods which are typically applied to flat
structure cannot be used directly to XML data. Even though XML data can be
flattened out into a set, this may result in loss of significant structural informa-
tion. It is not trivial work to discover useful information from XML trees. With
increasing demands, however, it is necessary to develop new extraction methods
or adjusting the existing ones for the data of XML. Various works have been
proposed.

The most common approaches are apriori [2]-based and frequent-pattern-
growth(FP) [5]-based techniques. The apriori-based algorithms extract frequent
subtrees by the well known anti-monotone property, every non empty subtree
of a frequent tree is also frequent, for candidate-generate-and-test. Since it pro-
vides significant reduction of the number of candidate sets and leads to good
performance gain, various techniques, such as mining of path, enumeration tree,
prefix subtree, scope of nodes, least general generalization, have been issued
[11,1,14,4,9].

However, apriori-based algorithms suffer from two high computational costs:
generating a huge number of candidate subtrees and scanning a same database
repeatedly for the frequency counting of candidate sets. To solve such problems,
FP-growth is extended to mine tree patterns. The algorithms [10,15] which base
on the FP-growth avoid candidate sets generation. Instead, they construct a
concise in-memory data structure that preserves all necessary information related
to the frequent subtrees, recursively partition an original database into several
conditional databases and search for local frequent subtrees to assemble larger
global frequent subtrees, which is that the strategy of divide-and-conquer. A
potential problem with this approach, however, is that the recursive projection
may again lead to a lot of pointer chasing and poor cache behavior.

The goal of all the mentioned approaches above is to discover frequent sub-
trees from a database of trees. However, as observed in Chi et al’s papers [4],
the number of frequent subtrees usually grows exponentially with the size of
trees due to the combinatorial explosion in candidate subtrees generation. This
causes severe problems with the completion time of mining algorithm and the
huge amount of potentially uninteresting patterns. Therefore, finding all frequent
subtrees becomes infeasible for a large number of trees.

The more practical and scalable alternative is to mine maximal frequent sub-
trees, which was presented by Xiao et al. [12] and Chi et al. [4]. A maximal
frequent subtree is a frequent subtree for which none of its proper supertrees
are frequent, and the number of them is much smaller than that of frequent
subtrees. However, finding maximal frequent subtrees is still in the immature
stage and needs to be further researched, compared to the substantial achieve-
ments in finding frequent subtrees. Handling the maximal frequent subtrees is
an interesting challenge, thought, and represents the core of this paper.

266 J. Paik et al.

As a step toward this direction, from the perspective of the design of knowl-
edge extraction algorithm, we consider the challenging problem of efficient reduc-
tion of subtree generation for finding maximal frequent subtrees. The proposed
solution relies on a newly introduced concept of label-projected database, and
it leverages the properties of the proposed approach that is inherently list-based
as opposed to tree-based. The proposed method not only gets rid of the process
for infrequent tree pruning, but also totally eliminates the problem of generating
candidate subtrees. Hence, it significantly improves the whole mining process. To
the best of our knowledge, the algorithm proposed in this paper is the first one
directly discovering maximal frequent subtrees without any subtree generation.

2 Problem Definition

XML represents data as trees, and makes no requirement that the trees be bal-
anced. Indeed, XML is remarkably free-form, with the only requirements being
that it has to be rooted and labeled.

General tree concepts. A rooted tree is directed acyclic graph satisfying (1)
there is a special node called the root that has no entering edges, (2) every other
node has exactly one entering edge, and (3) there is a unique path from the
root to each node. A tree is a labeled tree if there exists a labeling function that
assigns a label to each node of a tree. Let T = (r, N, E,L) be a rooted labeled
tree, where r ∈ N is the root node, N is a set of nodes, E is a set of edges, and L
is a labeling function for nodes in the tree; for any node v ∈ N , L(v) assigns the
label of v. Any node u on the unique path from r to v is called an ancestor of v.
If u is an ancestor of v, then v is a descendant of u. If u is an immediate ancestor
of v, then u is called the parent of v, and v is the child of u. Each node v has
only one parent while a node u can have one or more children. Nodes that share
the same parent are siblings. A node with no children is a leaf node; otherwise, it
is an internal node. For brevity, in the remaining of this paper, unless otherwise
specified, we call a rooted labeled tree as simply a tree.

Tree inclusion has been suggested as an important primitive for expressing
queries on structured document databases [6]. A structured document database
is considered as a collection of trees. The tree inclusion is used as a means of
retrieving information from them [3]. The general tree inclusion problem given a
pattern tree S and a target tree T is to find the subtrees of T that are instances
of S. The subtree is said to occur or match at the root of the trees that are
instances of the pattern. The subtree discovery from a set of trees, however, is
not trivial because of the hierarchy of tree.

Embedded subtrees. Given a tree T = (r, N, E,L), we say that a labeled
rooted tree S = (r′, NS , ES ,L′) is included as an embedded subtree of T , denoted
S � T , iff (1) NS ⊆ N , (2) for all edges (u, v) ∈ ES such that u is the parent of
v, u is an ancestor of v in T , (3) the label of any node v ∈ NS, L′(v) = L(v).
The tree T must preserve ancestor relation but not necessarily parent relation
for nodes in S.

Discovery of Useful Patterns from Tree-Structured Documents 267

The primary goal of finding valuable knowledge from some set of data is
to provide information often occurred in the dataset. Roughly speaking, often
occurred information means some data patterns which are frequently used by
various users or applications. However, it is not straightforward in the case for
trees unlike the case for traditional item data.

Support and frequent subtree. Let D = {T1, T2, . . . , Ti} be a set of trees and
|D| be the number of trees in D, where 0 < i ≤ |D|. Given a tree S, the frequency
of S with respect to D, freqD(S), is defined as ΣTi∈DfreqTi(S), where freqTi(S)
is 1 if S is a subtree of Ti and 0, otherwise. The support of S with respect to
D, supD(S), is the fraction of the trees in D that have S as a subtree. That is,
supD(S) = freqD(S)

|D| . A subtree is called frequent if its support is greater than
or equal to a minimum value of support specified by users or applications. This
user-specified minimum value is often called the minimum support (minsup or
σ). The problem of mining frequent subtrees is defined as to uncover all pattern
trees S, such that supD(S) = ΣTi∈DfreqTi

(S)

|D| ≥ minsup.
The discovery of frequent subtrees appearing in a large set of trees, however,

is not easy task to do. As explained in the earlier pages, to get frequent subtrees
are generated first candidate subtrees by repeatedly joining nodes. The combi-
natorial time for subtree generation becomes an inherent bottleneck of frequent
subtree extraction and it causes that finding all frequent subtrees is impossi-
ble. The maximal frequent subtree is one of frequent subtrees which none of its
proper supertrees are frequent. Thus, there are fewer maximal frequent subtrees
than the number of frequent subtrees. In addition, by uncovering only maximal
frequent subtrees, we do not lose other frequent information by the fact that the
set of maximal ones subsumes all frequent subtrees.

3 Scheme of SEAMSON

In this section, we introduce a new algorithm SEAMSON (Scalable and Efficient
Algorithm for Maximal frequent Subtrees extractiON) appropriate for use as
the core of discovering valuable information from a database of rooted labeled
trees, where data not only exhibit heterogeneity but also are distributed. The
suggested approach is inspired by the mining algorithms, such as FP-Tree mining
[5], FST-Forest [12], and EXiT-B [7,8]. Especially, SEAMSON mainly adopts
the fundamental idea of FP-tree, which is to devise a compact database that
preserves all necessary information.

3.1 Label-Projected Database

Given a tree database D, trees are originally stored based on their relating
documents; each document is treated as a transaction. The database is organized
as a set of rows, with each row representing a tree in terms of the nodes that
are labeled with rich set of labels in a tree. The data layout is document-driven.
Finding frequently occurred subtrees is actually to discover the subtrees whose

268 J. Paik et al.

nodes are assigned by the frequently occurring labels. In order to check a label is
frequent or not, the frequency of a given label has to be computed. In document-
driven layout, the entire trees are scanned whenever frequency of a label is
computed. This work computationally requires O(|D||N ||L|) time complexity to
get frequencies of the whole labels. It is not serious problem if the total number
of trees (|D|) and number of nodes of a tree (|N |) are small. However, it becomes
infeasible to compute the frequency of labels efficiently, because both are usually
large in real world.

What if the database was organized in a label-driven layout? That means
each label plays a key role which has been generally taken by tree indexes or
transaction indexes. All the tree information in D are rearranged according to
labels. During scan of the trees in D, all nodes with the same label are grouped
together. The nodes composed of the same tree form a member of the group
and the number of members actually determines the frequency of the given
label; the maximum number of members is a number of trees in D, which is
called label-projection. After all labels are projected, the document-driven
layout is changed into label-driven layout in which the time complexity to check
labels’ frequency requires at most O(|L||D|). If hash-based search is used, the
complexity is reduced up to O(|D|). Apparently, the label-driven layout shows
much less computational cost than that of document-driven layout in obtaining
the label frequency. SEAMSON applies the concept of label-projection for storing
original input trees in a new compact database in space efficient way and easy
to manipulate need to be constructed. The database will also need to handle the
structural semantic information inherent in tree data. List representation is one
of the simple empirical ways of representing tree. With the practical union of
the list representation and the concept of label-projection, we build a collection
of list-based units from a set of trees, and make the units store crucial and
quantitative information for potentially maximal frequent subtrees.

Starting from the organization of a label-projected database, SEAMSON con-
sists of 3 main phases: (1) Construction phase – a label-projections are per-
formed and a set of list-based structures is constructed. (2) Refinement phase—
frequently used labels and its related information, such as nodes indexes, par-
ent nodes, and trees indexes, are remained in the lists. (3) Derivation phase—
maximal frequent subtrees are discovered.

3.2 Construction Phase

Construction phase is initiated by scanning a trees database, D, and results
in generating a label-projected database within the memory. We refer to this
new database as a dictionary, more specifically label-dictionary, and denote L-
dictionary. The dictionary is composed of several linked list-like structures. For
each one of the lists, followings are mainly stored: a projected label, node indexes,
and tree indexes.

Definition 1 (label list). Let l be a label in L. During pre-ordered scanning
trees, tree indexes and node indexes which are projected by l construct a single
linked list. It is called a label list of the label l and is denoted �l-list.

Discovery of Useful Patterns from Tree-Structured Documents 269

The �-list provides some perspectives on the appropriate uses of the list, espe-
cially when each �-list is required to be distinguished apart from other �-lists
and to access all the relevant information about a given label. According to dif-
ferent requirement of the different perspectives, the structure of �-list contains
two separate divisions.

Definition 2 (head & body). A part whose purpose is to clearly identify
each �-list leads the �-list, thus, it is called head of �-list, notated �-list.h. The
other part concerns about how many times the projected label is occurred and
where the nodes assigned by the label are placed in original tree structures. Since
this part directly follows its corresponding head part, it is called body of �-list,
notated �-list.b.

With regards to the intended purposes, the head and body parts have different
kinds of data. A head is composed with one key field, one satellite data of the key,
and one link field, which are a projected label, node indexes being mapped the
label, and a link pointing to its body1, respectively. The purpose of head part,
identification of �-list, is envisaged by the labels in key fields because there is
no duplicated label-projection in more specifically label-dictionary, and denote
L-dictionary. Node indexes in the satellite data field are those nodes whose
labels in trees are exactly same as the label in the key field.

The body of �-list follows its head immediately. The main concerns of the
body is to evaluate how many trees have the same label in its pairing head
and to remember parents indexes of the nodes in the head. The former is for
dealing with the frequencies of each label, while the latter is for handling the
hierarchical information of the label. To achieve such intentions the structure of
body is a sequence of elements which is arranged in a linear order. Each element
is an object with a key field, one link field pointing to the next element, and one
satellite data field. One tree index number is stored in as a key of an element
and this indicates that the projected label in its corresponding head is used in
the tree. Because only the trees which assign the projected label to their nodes
are eligible to create the element, the total number of elements in a body is the
number of trees that contains the label in the head. During pre-ordered scanning
trees, the element is generated and inserted into the bodies of �-lists. The newly
inserted element is added to the end of a proper body and the link field of its
previous element points this new element.

Definition 3 (size of �-list). The body of �-list provides the method we can
judge how many trees have the projected label, and this is supported by a num-
ber of elements. We define the number of elements as size of �-list because it
determines the occurrence number of each label-projection. For a given label l,
its size is notated |�l-list|. The size of each �-list mainly used to determine if a
current �-list is frequent or not.

The satellite data used in an element is related to the node indexes in head
because it is the positions of their parent nodes in the tree whose index is the
1 More accurately, it points to the first element of a body.

270 J. Paik et al.

key of the element. Since a same label can be assigned to several different nodes
within a same tree, there definitely exist several parent nodes. By storing parent
node indexes in elements, it is feasible to induce the relations between nodes
without tree structure. Note that we use a special node index 0 to represent zero
parent node because of the root node. Even more, based on such information, we
can eliminate the burdensome candidate subtrees generation. It will be discussed
later in this paper how the time consuming subtree generation has been removed
from our approach and what the alternative way is.

-list

label
node

indexes
body

Parents
position

tree index
1

next
Parents
position

tree index
2

next
Parents
position

tree index
m

…

element
head body

Fig. 1. Structure of a single �-list

The structure of a �-list is illustrated in Fig. 1. Compared to the original linked
list structure, the role of head has been extended to deal with the identification
of �-lists. As shown in the picture, a number of trees which include the projected
label of this �-list is m, because |�-list| is same as the number of elements,
m. Fig. 2 shows a depicted example of how L-dictionary and its �-lists are
constructed and managed from the database D. Each alphabet represents the
projected labels. As explained in the previous pages, the bodies of �-lists decide
the frequencies of corresponding labels. For instance, the label A is only occurred
one time, while the other labels are occurred three times. Consequently, the label
A does not satisfy the given minimum value which is set 2

3 .

3.3 Refinement Phase

The complete L-dictionary produced by the construction phase contains less
than or equal to |L|, because the purpose of the first phase is just to convert
the whole tree structured data in D into a label projected database according
to the distinct labels which are used by nodes. Therefore, the firstly obtained
L-dictionary contains all the �-lists whose labels appeared in trees at least one
time. It will not cause any problem for us to manage the current L-dictionary
only if a given minimum support is 1

|�−list|max
; |�−list|max is that the maximum

number of elements which a �-list can have is |D|. Since in such case the maximum
number of trees being frequent is 1, every label is eligible to be frequent.

In most cases, however, the minimum number of occurrence is more than 1.
Therefore, �-lists of the projected labels in L-dictionary have to be verified if
they are frequent or not, because some labels may be frequent but some are not.
This procedure is seemed to be analogous that if the first step in apriori-based
techniques. Because the initial L-dictionary is similar to the set of single-node
trees, those �-lists whose sizes do not confirm the condition of being frequent

Discovery of Useful Patterns from Tree-Structured Documents 271

A

C

D B E

FG F

1

2,9,(16,17)

3,10,22

5,12,(18,23)

(6,8),(11,13),(19,24)

A

C

D

G

B

F

E

4,15,21

7,4,(20,25)

0 T1

1 T1

2 T1

3 T1

2 T1

5,7 T1

2 T1

0 T2

9 T2

14 T2

9 T2

10,12 T2

9 T2

0,16 T3

16 T3

20 T3

17,16 T3

18,23 T3

17,16 T3

-list

head part body part

T1 T2 T3

1

2

53 7

4 8

C

BD E

FF G

9

1210 14

1311 15

C

C D B

6

E

B E

F G

F

16

2217 23

18 20

19 21

24

25

Fig. 2. L-dictionary after the construction phase

have to be eliminated from the dictionary. Furthermore, every �-list itself in
L-dictionary should be frequent (we will describe the meaning of frequent �-list
in the following paragraph) to extract maximal frequent subtrees. This is the
purpose of the refinement phase and it will explained how this second phase
works.

Definition 4 (frequent head). Given a minimum support σ, a �l-list is said
to have a frequent-head iff |�l−list| is greater than or equal to |�−list|max × σ.
Otherwise, it is said to have an infrequent-head.

The �-lists contained in the initial L-dictionary are required to verify if they
have a frequent-head. If a �-list has an infrequent-head, it is filtered out from
the L-dictionary. Such pruned �-lists organize some table by themselves in order
to support another pruning process. The detailed explanation will be given later.
After every �-list in L-dictionary is checked for its frequent head, only the �-lists
which have frequent heads are left in L-dictionary. The state of L-dictionary
is changed from having all �-lists to having all the �-lists with frequent heads.
Because the �-lists with infrequent heads are filtered out from the initial
L-dictionary, we denote the current state of L-dictionary simply LF-dictionary,
and the �-lists in LF-dictionary can be parallel to the frequent single-node sub-
trees in which their nodes are labeled by the projected labels of frequent heads.

Definition 5 (frequent �-list). Given an arbitrary label list �l-list in
LF-dictionary is said to be a frequent �-list iff it satisfies the following con-
ditions: (1) the list �l-list has a frequent-head. (2) For every parent index p in

272 J. Paik et al.

T1 /C 2,9,(16,17) T2/ T3
/
16

T12 /D 3,10,22 T29 T316

T13 /G 4,15,21 T214 T320

T12 /B 5,12,(18,23) T29 T3
17
16

T1 /F
(6,8),(11,13),

(19,24)
T2 T3

18
23

5
7

10
12

T12 /E 7,14,(20,25) T29 T3
17
16

/

Fig. 3. LR-dictionary after processing the refinement phase

all the elements of �l-list.h, the label of L(p) was already projected and has its
�L(p)-list. (3) �L(p)-list has also a frequent-head.

The first condition indicates that only frequent labels have to be used in order
to grow �-lists. The focus of the second and third conditions is about parent
indexes in elements. Based on the definition of embedded subtree and support,
all labels which are used in a tree should be frequent in order the tree becomes a
frequent tree. And the maximal frequent tree is produced by repeatedly growing
smaller frequent subtrees. When a frequent single-node tree S1 is joined by a
node n, the label of n should be frequent if let the grown tree S2 want to be
frequent.

Within a single �-list are actually contained several subtrees whose sizes are
k = 2 where k is a number of nodes. Due to the structure of �-list’s body,
especially parent indexes in elements, a �-list implicitly includes subtrees as many
as the number of parent indexes in it. With regards to a current LF-dictionary,
it is guaranteed that the node indexes in �-list.h have frequent labels, however,
it is not in case of the parent indexes in �-list.b. In spite of the fact that a
parent index is a member of the �-list which has a frequent-head, it is uncertain
whether the label of that parent index forms a corresponding �-list which also
has frequent-head. Because LF-dictionary has been produced by considering the
frequency of labels, only the heads part were concerned. The label of parent node
p has to be frequent in order that a subtree made by joining p is qualified for
being frequent. To resolve the mentioned problem we refine every parent node
p in LF-dictionary by following procedures: (1) a parent index p in elements is
tested by means of a candidate hash table 2 to determine a given node index
has a frequent label or not. If its label is found in the table, it means that the
label is infrequent, because it is not in LF-dictionary. (2) If L(p) is found in the
table, p is marked by ‘replace’ and its record is retrieved to search an alternative
node index which has a frequent label. (3) Step(1) and (2) continue until the
alternative node index is found. (4) p is replaced by the found node index which
is actually an ancestor node index of p. (5) Through step(1) to (3), thought, if
the alternative node index is not found, p is replaced by 0.

After the replacement according to the procedure, finally all the �-lists in LF-
dictionary satisfy the conditions of Definition 5. The �-lists in LF-dictionary

2 This table is constructed with the �-lists which could not included in the LF-
dictionary.

Discovery of Useful Patterns from Tree-Structured Documents 273

are all frequent label lists and this makes the state of current LF-dictionary is
different from that of LF-dictionary which is the one before refining. Thus, we
denote the refined LF-dictionary as LR-dictionary. Fig. 3 presents LR-dictionary
obtained from the LF-dictionary on Fig. 2 which has all the �-lists except �A-list.

Parent nodes in a same element may have different labels, or share a same
label. As an example, we compare the indexes in �F -list’s first element and
those in the third element. The former is in case of having different labels,
L(5) = B and L(7) = E. The latter is, however, in case of having the same
labels, L(18) = L(18) = B. It is waste of memory to store several nodes having
a same label in the same tree. Hence, all nodes in an element which are assigned
by the same label are removed from the element except only one node which is a
representative of the label. The final outcome of the end of the refinement phase
is shown on Fig. 4. Note that a dummy list is inserted to LR-dictionary, which
is the special label list of the symbolic label /. It is for representing and setting
the root of some tree including the goal of this paper.

2,9,(16,17)

3,10,22

5,12,(18,23)

(6,8),(11,13),(19,24)

C

D

G

B

F

E

4,15,21

7,4,(20,25)

0 T1

2 T1

3 T1

2 T1

5,7 T1

2 T1

0 T2

9 T2

14 T2

9 T2

10,12 T2

9 T2

0,16 T3

16 T3

20 T3

17,16 T3

18,23 T3

17,16 T3

X

X

X

0 dummy -list/

Fig. 4. LR-dictionary after removal of the parent node indexes having same label

3.4 Derivation Phase

The last state of LR-dictionary contains all �-lists whose projected labels are
frequently occurred and all paths which could possibly be frequent in original
trees. It is, however, not guaranteed that paths are always frequent, even though
all nodes of the paths are labeled by the frequent labels. This stems from the fact
that a path is a sequence of edges, p = e1e2 . . . ei, and an edge is a line segment
joining two nodes in a tree, e = (a, b). Therefore, two nodes composing an edge
should have frequent labels and appear together as many as σ · |D| if the edge
wants to be frequent, and all edges composing a path should be frequent and
they also appear together as many as σ · |D| if the path wants to be frequent.
Even though a and b are labeled by the frequent labels, the edge cannot be
frequent if both a and b do not occur together. This causes a path cannot be
frequent if all edges are not frequent.

To verify paths frequencies, explicit edges between any two nodes have to
be unveiled from LR-dictionary. During the read of �-lists, edges are formed
by joining symbolic nodes whose labels are the projected labels of �-lists and
symbolic nodes of parent indexes in �l-list.b. Unveiling edges totally relies on
every frequent label lists because the symbolic nodes of parent indexes’ labels

274 J. Paik et al.

have also their frequent label lists. The hidden paths between �-list and other
label lists are discovered by extending the node of label in �-list.h with the nodes
of the labels in other �-lists.

Definition 6 (label list extension). Given LR-dictionary, let a frequent label
list be �l-list and p be one of parent indexes in its elements. For �l-list, firstly
a symbolic node whose label is l is set and the node is prepared to join with
its parent. The second symbolic node is set from the parent index p. Its label
is easily obtained by L(p) and the corresponding �L(p)-list is in LR-dictionary
due to the definition 5. Consequently, the node labeled by l is joined to the node
labeled by L(p). We call this operation label list extension and denote �← L(p)
where ‘←’ indicates the direction of parent to child.

Note that the extension is performed with labels not the node indexes in �-lists.
The node index is used to just get label or its corresponding �-list. A symbolic
node is created whenever a label requires it. The fundamental method is actually
to extend labels, thus, we say label list extension is essentially performed by label
extension.

label seed #

/ 100

B 200

C 300

D 400

E 500

F 600

G 700

100

300 100 3

400 300 3 300 1

500 300 3

200 300 3

600 200 3

500 1

400 1

700 400 1

500 2

pptr cnt suc

seed # label

100 /

200 B

300 C

400 D

500 E

600 F

700 G

Fig. 5. The derived PMP-tree from LR-dictionary

The label list extension is committed to each label list in LR-dictionary. Af-
ter completing the work of extension, the projected labels of frequent �-lists are
joined together via symbolic nodes. The structure of the result is a tree whose
root is labeled by /. This tree contains all of potentially maximal frequent sub-
trees and thus is named Potentially Maximal Pattern tree (PMP-tree in short).
The tree3 is actually derived from LR-dictionary, where each edge has its own
count to keep how many often it is occurred in the derived tree (TreeHeaderTable
supports to build the tree; the detailed explanation is omitted due to the space).
Based on those counts, the edges whose counts are less than a given σ · |D| are
cleared off from PMP-tree. After deleting such edges and rearranging the tree,
the goal of this paper is produced. The final result from LR-dictionary in Fig. 5
is shown in the following illustration.
3 We duplicate the nodes shared by different parents/ancestors to avoid deriving a

graph. The duplicated nodes are marked with dotted bold lines.

Discovery of Useful Patterns from Tree-Structured Documents 275

Theorem 1. After pruning infrequent edges and theirs entering nodes, the num-
ber of children of PMP-tree’s root is the same as the one of maximal frequent
subtrees.

Proof. Let �α-list, �β-list, �γ-list be the arbitrary frequent label lists in LR-
dictionary. Let |�α-list| = |�β-list| = 2, |�γ-list| = 4, and the given σ · |D| = 2.
We assume each element of them has only one parent index, for the sake of sim-
plicity. The elements of �α-list and �β-list have the parent index 0, which means
the actual parent indexes are empty and they have the symbolic labels /. Let the
parent indexes in elements of �γ-list be p1, p2, p3, and p4. Then, we can consider
the following three cases:

– Case I. (L(p1) = L(p2) = α and L(p3) = L(p4) = β) : Two nodes labeled
by α and β are direct children of the root, because both edge frequencies
satisfy 2. The node labeled by γ is clones to prevent being a graph since
both edge frequencies of different parents also satisfy 2. Therefore, total
two maximal frequent subtrees, one is (α, {α, γ}, {(α, γ)},L)4 and the other
(β, {β, γ}, {(β, γ)},L), are obtained.

– Case II. (L(p1) = L(p2) = L(p3) = α and L(p4) = β) : The number of
children of the root is same as the one of case I, which is two. The edge (α, γ)
satisfies the threshold as 3, but the edge (β, γ) is not. Therefore, the actual
maximal frequent subtrees are (α, {α, γ}, {(α, γ)},L) and (β, {β}, {φ},L),
which is total two.

– Case III. (L(p1) = L(p2) = / and L(p3) = L(p4) = α or β) : The root
has total three children whose labels are α, β, and γ. By the second con-
dition, α‖5β is joined with γ. Therefore, the maximal frequent subtrees are
(α/β, {α/β}, {φ},L), (α/β, {α/β, γ}, {(α/β, γ)},L), and (γ, {γ}, {φ}, L),
total three.

In each case, the number of maximal frequent subtrees are exactly same as the
total number of children of the root of PMP-tree.

4 Experimental Evaluation

We performed several experiments to evaluate the performance of SEAMSON
algorithm using synthetic datasets. All experiments were done on a 2.2GHz AMD
Athlon 64 3500+ PC with 1GB main memory, running Windows XP operating
system. All algorithms were implemented by Java.

The synthetic datasets are generated by the tree generation program whose
underlying ideas are inspired by Termier [9] and Zaki [14]. The generator con-
structs a set of trees, D, based on some parameters supplied by the user: T : the
number of trees in D, L : the set of labels, f : the maximum branching factor of
a node, d : the maximum depth of a tree, ρ : the random probability of one node
in the tree to generate children or not, η : the average number of nodes in each
4 T = (r,N, E,L).
5 or.

276 J. Paik et al.

100

101

102

103

10-410-310-210-1100101

R
un

ni
ng

 ti
m

e
(s

ec
)

Minimum Support (%)

T = 10000
T = 15000

(a) Support vs. time

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 1⋅103 2⋅103 3⋅103 4⋅103 5⋅103 10⋅103 15⋅103

R
un

ni
ng

 T
im

e
(s

ec
)

Number of Input Trees (T)

minsup = 0.2%
minsup = 0.15%
minsup = 0.1%

(b) Input trees vs. time

100

101

102

 2 4 6 8 10

R
un

ni
ng

 T
im

e
(s

ec
)

Fixed depth

T = 10,000 and minsup = 0.2%

(c) Depth vs. time

100

101

102

 2 3 4 5 6 7 8 9

R
un

ni
ng

 T
im

e
(s

ec
)

Fixed branch

T = 10,000 and minsup = 0.2%

(d) Branch vs. time

Fig. 6. Scalability and sensitivity

tree in D. We used the following default values for the parameters: the number
of trees T = 10, 000, the number of labels L = 100, the maximal branch factor
f = 5, and the maximum depth d = 5.

In the following experiment, we want to evaluate the scalability of our algorithm
with varying minimum support and the number of trees T , while other parame-
ters are fixed as: L = 100, f = 5, d = 5, ρ = 20%, η = 13.8 and 20.5 (when
T = 10, 000 and 15,000, respectively). Fig. 6 shows several results, where the
minimum support is set from σ = 10% to σ = 0.0001%. In this figure, both
X- and Y-axis are drawn on a logarithmic scale for the convenience of observation.

From Fig. 6(a), we can find that the running time increases when the num-
ber of trees T increases, however, both running times are rarely affected by the
decrease of the minimum support. With the σ becoming smaller, there is no
big difference in execution time for both datasets. This is because SEAMSON
relies on the number of labels not the number of nodes. Thus it is very effi-
cient for datasets with varying and growing tree sizes. Then, Fig. 6(b) shows the
scalability with size of dataset – the number of input trees. The parameter T
varies from 1,000 to 15,000 with η = 20. We evaluated three different minimum
support, 0.2%, 0.15%, and 0.1%. The corresponding graphs show considerable
similarity which slowly increases until T = 11, 000 and suddenly go up between
T = 11, 000 and T = 13, 000. Afterwards, the graphs are started to rapidly dete-

Discovery of Useful Patterns from Tree-Structured Documents 277

riorate. Our understanding of this phenomena is that the sizes of LR-dictionary
and its �-lists are maximized with 100 distinct node labels when the number of
input trees reaches at 12,000 and 13,000.

Next, we want to check how sensitive the running time is to the depth and
the branching factors of the dataset. We generated a set of databases with the
same number (T = 10, 000) of trees embedded. With L = 100, ρ = 50%, η =
15, minsup = 0.2%, we changed two factors that determine the depth of each
tree and the fanout of each node. In Fig. 6(c), we only vary d from 3 to 10. The
trend of the graph gradually increases until d = 9 and goes up quickly from 9
to 10. Afterwards, it gently slopes. In Fig. 6(d), the performance of the different
branching factors is similar to the case of depths, except that the slope of the
graph is more steep than that of the graph in Fig. 6(c).

5 Conclusion

We presented a new and simple lists and labels based approach to extract maxi-
mal frequent subtrees from a database of trees. Unlike the traditional approaches,
the proposed method did not perform any candidate subtree generation. To this
end, we devised both a special database L-dictionary which introduced the con-
cept of label-projected database, and its basic unit �-list which preserved all
necessary information to discover maximal frequent subtrees.

The beneficial effect of our method is that it not only got rid of the process
for infrequent tree pruning, but also eliminated totally the problem of candidate
subtrees generation. Hence, we significantly improved the whole mining process,
especially when the minimum supports are small and dynamic, which made
SEAMSON be L-dependent not σ-dependent.

References

1. Asai, T., Abe, K., Kawasoe, S., Arimura, H., Satamoto, H., Arikawa, S.: Efficient
Substructure Discovery from Large Semi-Strucutured Data. In: Proceedings of the
2nd SIAM International Conference on Data Mining, pp. 158–174 (2002)

2. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large
Databases. In: Proceedings of the 20th International Conference on Very Large
Databases (VLDB 1994), pp. 487–499 (1994)

3. Chen, Y., Chen, Y.: A New Tree Inclusion Algorithm. Information Processing
Letters 98, 253–262 (2006)

4. Chi, Y., Yang, Y., Muntz, R.R.: Canonical Forms for Labeled Trees and Their Ap-
plications in Frequent Subtree Mining. Knowledge and Information Systems 8(2),
203–234 (2005)

5. Han, J., Pei, J., Yin, Y.: Mining Frequent Patterns without Candidate Generation.
In: Proceedings of 2000 ACM SIGMOD International Conference on Management
of Data (ICMD 2000), pp. 1–12 (2000)

6. Mannila, H., Raiha, K.-J.: On Query Languages for the P-String Data Model. In:
Information Modelling and Knowledge Bases, pp. 469–482. IOS Press, Amsterdam
(1990)

278 J. Paik et al.

7. Paik, J., Shin, D.R., Kim, U.M.: EFoX: a Scalable Method for Extracting Frequent
Subtrees. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.)
ICCS 2005. LNCS, vol. 3516, pp. 813–817. Springer, Heidelberg (2005)

8. Paik, J., Won, D., Fotouhi, F., Kim, U.M.: EXiT-B: a New Approch for Extracting
Maximal Frequent Subtrees from XML Data. In: Gallagher, M., Hogan, J.P., Maire,
F. (eds.) IDEAL 2005. LNCS, vol. 3578, pp. 1–8. Springer, Heidelberg (2005)

9. Termier, A., Rousset, M.-C., Sebag, M.: TreeFinder: a First Step towards XML
Data Mining. In: Proceedings of IEEE International Conference on Data Mining
(ICDM 2002), pp. 450–457 (2002)

10. Wang, C., Hong, M., Pei, H., Zhou, H., Wang, W., Shi, B.: Efficient Pattern-Growth
Methods for Frequent Tree Pattern Mining. In: Dai, H., Srikant, R., Zhang, C.
(eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 441–451. Springer, Heidelberg
(2004)

11. Wang, K., Liu, H.: Schema Discovery for Semistructured Data. In: Proceedings of
the 3rd International Conference on Knowledge Discovery and Data Mining (KDD
1997), pp. 271–274 (1997)

12. Xiao, Y., Yao, J.-F., Li, Z., Dunham, M.H.: Efficient Data Mining for Maximal Fre-
quent Subtrees. In: Proceedings of IEEE International Conference on Data Mining
(ICDM 2003), pp. 379–386 (2003)

13. Zaki, M.J.: Scalable Algorithms for Association Mining. IEEE Transactions on
Knowledge and Data Engineering 12(3), 290–372 (2000)

14. Zaki, M.J.: Efficiently Mining Frequent Trees in a Forest: Algorithms and Appli-
cations. IEEE Transactions on Knowledge and Data Engineering 17(8), 1021–1035
(2005)

15. Zou, L., Lu, Y., Zhang, H.: Mining Frequent Induced Subtrees by Prefix-Tree-
Projected Pattern Growth. In: Yu, J.X., Kitsuregawa, M., Leong, H.-V. (eds.)
WAIM 2006. LNCS, vol. 4016, pp. 18–25. Springer, Heidelberg (2006)

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 279–288, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Using Multiple Detectors to Detect the Backoff Time of
the Selfish Node in Wireless Mesh Network*

Furong Wang1, Yipeng Qu1, Baoming Bai2, Fan Zhang1, and Chen Huang1

1 Dept. of E. I. E, Huazhong Univ. of Sci. & Tech., Wuhan, Hubei, China
2 State Key Lab. of ISN, Xidian University, Xi’an, Shaanxi, China
wangfurong@mail.hust.edu.cn, cathyqyp@163.com,

bmbai@mail.xidian.edu.cn
zhangview@163.com, szo094@hotmail.com

Abstract. The security of wireless mesh network has been more and more
important these days. Although many works have been done to analyze the
MAC layer misbehavior such as the selfish node which changes its backoff time
to make itself more profits in 802.11 DCF mechanisms, most of them are under
the assumption that the backoff time of the sender can be correctly detected.
However because of the hidden node problem, misdiagnosing occurs fre-
quently. In this paper, we propose a method to detect the backoff time of the
sender using multiple detectors. It can avoid the misdiagnosing due to the
hidden node problem. We also propose an algorithm to calculate the detection
results using weighting parameters get by the probability that the detect nodes
will suffer from the hidden node problems. The simulation result shows that the
proposed method has a better performance in detecting the backoff time.

Keywords: Wireless mesh network, MAC layer, selfish node, multiple detectors.

1 Introduction

Recently, much work has been done to improve the security of wireless mesh
networks. Due to the lack of routing infrastructure, cooperation of both routers and
terminals becomes an important part in maintaining the reliable communication in
mesh networks. In the Medium Access Control (MAC) layer, 802.11 based wireless
mesh networks use distributed coordination function (DCF) for sharing the wireless
channel[1]. The DCF mechanism is based on fully cooperation and trust between each
node. However, in real world networks, not all of the nodes can be trusted and some
nodes may misbehave by deviating from the mechanism.

There are two kinds of misbehaviors, one is selfish misbehavior and the other is
malicious misbehavior. The selfish nodes aim at improving there own preferment

* This work was supported by National Natural Science Foundation of China under Grant

No.60572047, Program for new Century Excellent Talents in University NCET-06-0642, and
the National High-Tech Research and Development Program ("863"Program) of China under
Grants No.2006AA01Z267 and No. 2007AA01Z215.

280 F. Wang et al.

such as to gain more chance to access the channel, more bandwidth and more
throughput. On the other side, the malicious nodes aim at disrupting the normal
functions of the network.

In DCF, the sender should wait for a random chosen backoff before the competition
for the channel. The backoff time is randomly chosen in a range [0, CW-1], where CW
is the contention window size. After an unsuccessful approaching to the channel, the

contention window size is doubled until it reaches the upper bound maxCW . A selfish

sending node, who wants to improve its own performance, however may not follow the
DCF mechanism honestly. It always chooses smaller backoffs than the honest nodes
instead of randomly choose the backoffs, or simply do not double the contention widow
size after the failure. By doing these, the selfish nodes would have more chance to
access the channel and get more throughput or bandwidth, but the performance of the
performance of the honest nodes and the equality of the network would be severely
degraded.

On the other side, malicious nodes, they focus on destroy the normal functions of
the networks [2]. The malicious nodes may refuse to forward the packets from other
nodes in order to destroy the routing of the network or continuously send data to the
other nodes causing the power exhaust. This attack would cause a denial of service
(DoS) and so degrade the performance of the whole networks. A new type of
vulnerabilities was raised in [3], time out attack, that a node can change the SIFS
value in 802.11 to cause the data transmission to be time out.

In this paper we only focus on the detection of the selfish nodes.

2 Related Work

For the selfish nodes, what they want is to improve their own performance to the
maximum extend. They only interested in their own throughput, latency, energy and
so on. They don’t especially focus on degrade other nodes’ performance. Up on this,
Game-theoretic techniques have been used to consider the problem [4][5][6]. The
protocol developed from the Game-theoretic are designed to reach a fair equilibrium
called “Nash equilibrium” that the selfish nodes can not get more advantage than the
well-behaved nods. But the assumption in the Game-theoretic protocols that all the
nodes can observe all others’ actions can not always be reached. So it can not solve
the selfish misbehavior problems.

Since the aim of the selfish nodes is known, direct methods to detect the
misbehaving nodes is raised. In [7], A. Cardenas and S. Radosavac have raised a
method to detect it. The method is to direct test the backoff time for the nodes each
time. There are two algorithms: one is to test for the change in the mean, the other is
to estimate the entropy of the backoff time. Since the selfish nodes always have
smaller mean backoff times so that they can access the channel more easily. And the
entropy is one of the most used measures of randomness. For the nodes those are
smart who knows the test threshold, they can choose specific backoff windows to
avoid be detected.

In order to eliminate the selfish senders, the method that the receivers choose
backoff time was introduced [7][8]. After finding a node may be a misbehavior node,
some extra time can be added in the backoff time. This can mitigate some bad impact

 Using Multiple Detectors to Detect the Backoff Time of the Selfish Node 281

of the selfish node if the node does not want to be detected. However, this is based on
that the receivers are well behaved nodes. But in the real mesh networks any node can
be a receiving node, so not all of the receivers can be trusted.

Lei Guang and Chadi Assi have raised another method to mitigate the selfish
misbehavior in MAC layer[9]. It is called Predictable Random Backoff (PRB)
algorithm. The idea of it is to get a lower limit for the backoff time, so that a node can
not always choose a small backoff time.

3 Problem Statement

In all of the diagnosis methods, the real backoff time that the sender takes should be
detected. Most of the researchers does not focus on how to get the exact backoff time
and always simply assume that it can be easily detected. However it is not the truth.

Most of the algorithms use the receiver to detect the backoff time of the sender.
After sensed the channel to be idle the receiver starts its timer. The time between the
start of the timer and the receiving of the RTS sent by the sender is the estimation of
the backoff time of the sender. But whether the times of the two nodes are
synchronized is the problem.

Fig. 1. Occurrence of misdiagnosis

Consider the following case. As shown in figure 1, the nodes P and Q are
continuous sending data. The node S wants to access the channel to communicate
with the node R. For the sending node S, it is out side of the transmission range of the
nodes P and Q, so it can not sense the transmission of between them and it will judge
that the channel is idle, and starts its timer. But for the receiving node, it is near the
nodes P and Q, and it can sense the channel are occupied by them, so it will not start
its timer until the transmission between them is end. So the two timers are not
synchronized well. This leads to the wrong estimation of the backoff time. This is the
problem of hidden terminals.

4 Multiple Detectors Approach

Since the hidden terminal problem makes the starting time of the sender and
observer’s clocks start at a different time. The method that uses multiple detectors is
raised.

282 F. Wang et al.

As shown in figure 2, we add two nodes, node M and node N, to help detect the
backoff time of the sender. Both nodes M and N can sense the transmission of the
sending node S, but neither of them is near enough to the nodes P and Q. So both of
the nodes M and N would sense the channel to be idle at the same time as the sender S
does. With the help of nodes M and N, the estimation of the senders’ backoff time
would be more accurate.

Fig. 2. Using multiple detectors can avoid misdiagnosis

4.1 Mathematic Analysis

Firstly suppose that all the sending and receiving nodes have the same sensing range
Rm. So a node S (suppose to be the sender) can communicate with all the nodes in the
circle whose center is the node S and the radius of which is Rm. And all the other
nodes in that circle can sense the transmission of the node S no matter which node is
the receiving node. So each of the nodes in the circle can be a detector to detect the
backoff time of the sender S. And for one of the detectors, for example the receiving
node, it has the same radius of its sensing region. If there are any nodes in its sensing
region are in transmission, the node would judge that the channel is occupied by the
others. But the sensing regions of the sender and the receiver are not the same. It leads
to the diverse of the sensing result.

4.1.1 Hidden Nodes Probability
As shown in figure 3, node S is the sending node, it wants to communicate with the
node R. The circle I denotes the sensing range of node S and circle II denotes the
sensing range of node R. The distance between node S and R can be any value
between 0 and the sensing radius Rm. All the nodes in region I can be used to detect
the backoff time of the node S, such as node R and node N. Take node R as an
example. Region III is the region that in the circle II but not in the circle I, which
means that the transmission of nodes in region III can only be detected by node R but
not node S. Suppose that there is a node H in region in transmission, and no other
nodes in region I is currently in transmission. Then nodes S would find that the
channel is idle and begin to decrease its timer from the backoff time to zero and send
the RTS to node R. But node R has sensed that the channel is in occupied by node H,
and it would not begin to decrease its timer. So when node R receives the RTS sent by

 Using Multiple Detectors to Detect the Backoff Time of the Selfish Node 283

Fig. 3. The area that a hidden node can be found

S, the backoff timer of node R is not time out and R would judge that the sending
node S misbehaved.

The probability of misjudging is proportional to the area of region III. Since the
nodes are randomly and uniformly distribution in the whole area, the larger region III
is, the more hidden nodes in the region.

Let the distance between node S and R is X meters, then the area of region III can
be expressed as the function of X.

Area of III (Hidden nodes occurring range):

2 2
2 2

2
2 2

1
4[]

2 2 2 4

(2)
4

H

Rm X X
A Rm Rm

X
Rm X Rm

θπ

π θ

×= × − − × × −

= − × + × −

.

(1)

In (1), arccos
2

X

Rm
θ = , X is in the range of 0~Rm

Since the nodes are randomly and uniformly distributed in the whole area, the
probability of the occurrence of a hidden node is the ratio between the area of III and
the whole area:

2/H HP A Rmπ= . (2)

With the increase of the distance between the sender and the receiver, the probability
of hidden nodes occurring increases too. The range of hidden nodes may occur also
increase as the radius of the sensing range.

4.1.2 Using of Multiple Detectors
When a hidden node H exists, as shown in figure 4, we can use multiple detectors to
decrease the probability of misdetection. H is any node that in the shaded area of
figure 3.

284 F. Wang et al.

Fig. 4. Scenario where multiple detectors are used

In figure 4, circle I denote the communication range of the send node S, which
means that all the nodes in circle I can detect the node S and compute its backoff time
as well. The circle II is the communication range of node H, and all the nodes can
sense the channel to be busy when H holds the channel. Circle II divides the inter area
of circle I into two parts, region III and region IV. In region III, the nodes can both
sense node S and node H. When H is in transmission, they would not judge the
channel to be idle as the node S does. So they would make error detect of the backoff
time of node S. But for the nodes in region IV, they don’t sense the node H as well as
node S, so they sense the same channel condition as node S, and would get the true
length of the backoff time of node S.

In the figure, nodes E1 and E2 would make mistake when detecting the backoff
time of S with the influence of H, but nodes C1, C2 and C3 would not.

When using multiple detectors, the number of correct detection and error detection
are also related to the area of the two ranges.

Let node S and H are apart in the distance of K, the radius of the sensing range are
still be Rm, then the two area can be denoted as follows:

Area of region III, error range:

2 2
2

2
2 2

1
4 []

2 2 2 4

2
4

E

Rm K K
A Rm

K
Rm K Rm

θ

θ

= × − × × −

= − × −

.

(3)

Area of region IV, correct range:

2 2
2 2

2
2 2

1
4 []

2 2 2 4

(2)
4

C

Rm K K
A Rm Rm

K
Rm K Rm

θπ

π θ

= − × − × × −

= − + × −

.

(4)

 Using Multiple Detectors to Detect the Backoff Time of the Selfish Node 285

In (3) and (4), arccos
2

K

Rm
θ = , and K is in the range of Rm~2Rm.

If we only use one detector, the error rate of detection is 2/EA Rmπ , that is the

ratio between the shade area of figure IV and the area of the circle. Denote the one
detector error rate is:

2
1() /EP K A Rmπ= . (5)

Then when multiple detector are used, the probability that all the node are in the

error region is 1()nP K .

4.2 Algorithm Analysis

Suppose that we use 1, 2, 3…n detectors to detect the backoff time of the sender S.
Each of the detectors gets a result denoted as T(k), k=1, 2, 3…n

The total result of the backoff time can be calculated as:

1

(1) (2) () 1
()

n

k

T T T n
T T k

n n =

+ + ⋅⋅⋅ += = ∑ . (6)

This is Average method. Consider two extreme conditions: if all the detectors are
in the correct region (region IV in figure 4), the estimation of backoff time should be
equal to the real time T; and if all the detectors are in the error region (region III in
figure 4), the result should be the same as we only use one detector and it gets the
wrong result. For most of the conditions the result would be between the two extreme
values.

Our aim is to make the estimate result more and more approach to the real backoff
time. In equation (6), whether the result is approach to the real value depend only on
the position of the detectors. As the hidden nodes goes more and more near the
sending nodes, more and more detectors would gets the wrong value and the final
result would be farer away from the real value. The detector’s position only be
categories into two types, in error region or outside of the error region, and the other
position information does not make any sense in it. So we propose a new algorithm
using the position information of the detectors to improve the accuracy of the
estimation result.

Then we propose a weighted method. We use it to get a weight for the result get by
each detector. The equation (6) can be written as

1 2
1

(1) (2) () ()
n

n k
k

T wT w T w T n w T k
=

= + + ⋅⋅⋅ + =∑ . (7)

The detection results gotten by the detectors who would get less probability of
influence by the hidden node should get larger weight. The following equation is
based on this idea.

286 F. Wang et al.

1 2

1

1 1

(1) (1) (1)
Hk Hk

k n
H H Hn

Hi
i

P P
w

P P P
n P

=

− −= =
− + − + ⋅⋅⋅+ − −∑

.

(8)

Look back to equation (2), HP is related to the distance between the sender and

the detector. For each specific detector, it has its own distance to the sender, and it has
its own weight parameter.

HP is the probability that a detector node would be influenced by the hidden node

problem. Then 1 HP− is the probability that the detector would not be influenced by

a hidden node. The node that have larger 1 HP− , which means it would be less

influenced by the hidden node problem, will have larger weight.

5 Simulation Scenario

We use Matlab to test the performance of the two algorithms.
The scenario is a 400m * 200m region. And all the sender and detectors have the

same sensing range Rm=100m. The sending node is fixed at the coordinate (100,100).
The hidden node is lies in the line y = 100, and x in the range 200 to 300. And the
other detector nodes, is randomly and uniformly distributed in the left square 100m *
100m area.

Fig. 5. Simulation scenario

6 Simulation Results

In the simulation we have test the two methods, average method and weighted method
in two aspects. First we make the assumption that the true value of the backoff time

 Using Multiple Detectors to Detect the Backoff Time of the Selfish Node 287

chosen by the sender is 2, and the detectors would detect the value to be 1 if they have
been influenced by the hidden node, otherwise they will get the correct result.

We first test the impact of the number of the detectors on the detection result.
Figure 6 shows that no matter how many nodes are used to detect the sender’s backoff
time, the weighted algorithm will always have better performance. And more
detectors provide a more similar approach to the optimize value. In this scenario the
hidden node is fixed at the coordinate (250,100).

0 20 40 60 80 100
1.75

1.8

1.85

1.9

1.95

2

number of detectors

de
te

ct
io

n
va

lu
e

average
weighted
optimal

Fig. 6. Impact of number of detectors on the result

200 220 240 260 280 300
1.5

1.6

1.7

1.8

1.9

2

coordinate of the hidden nodes

de
te

ct
io

n
va

lu
e

average
weighted
optimal

Fig. 7. Impact of the position of the hidden node on the result

Then we test the impact of the position of the hidden node on the result. When the
hidden node is moving away from the sender, the percentage of the nodes that would
decrease, then the result would be more and more close to the true value. Also the

288 F. Wang et al.

weighted algorithm always has better performance than the average method. Both of
the trends are as we expected. The number of detectors in this scenario is about 70.

7 Conclusion

The selfish in wireless mesh network would degrade the performance of the other
honest nodes and the whole network. The proper handling of the selfish nodes is a
crucial requirement. Some method have been raised to mitigate the problem, however
they didn’t consider the impact of the hidden node problem on the detection of the
backoff time of the sender, which would lead to misdiagnosing an honest node to be a
selfish node. In this paper we first analyze the probability of misdiagnose occurs.
Then we propose the method that using multiple observers to avoid the hidden node
problem. And we propose two algorithms to deal with the detection value of the
multiple detectors, one is the simple average algorithm and the other is the improved
weighted algorithm. We do simulation to analyze the performance of the two
algorithms. And as we expected, the weighted algorithm performs better in the
simulation.

References

1. IEEE standard for Wireless LAN-Medium Access Control and Physical Layer
Specification, P802.11 (1999)

2. Guang, L., Assi, C.: Vulnerabilities of ad hoc network routing protocols to MAC
misbehavior. In: IEEE/ACM Wimob (2005)

3. Guang, L., Assi, C.: On the resiliency of ad hoc networks to MAC layer misbehavior. In:
Workshop on PE-WASUN, ACM MsWiM (2005)

4. Konorski, J.: Protection of Fairness for Multimedia Traffic Streams in a Non-Cooperative
Wireless LAN Setting. In: van Sinderen, M., Nieuwenhuis, L.J.M. (eds.) PROMS 2001.
LNCS, vol. 2213, Springer, Heidelberg (2001)

5. MacKenzie, A.B., Wicker, S.B.: Game Theory and the Design of Self-Configuring,
Adaptive Wireless Networks. IEEE Comm.Magazine 39(11), 126–131 (2000)

6. Michiardi, P., Molva, R.: Game Theoretic Analysis of Security in Mobile Ad Hoc
Networks. Technical Report RR-02-070, Institut Eurecom (2002)

7. Cardenas, A.A., Radosavac, S., Baras, J.S.: Detection and Prevention of MAC Layer
Misbehavior in Ad Hoc Networks. In: Proceedings of the 2nd ACM workshop on Security
of ad hoc and sensor networks (2004)

8. Kyasanur, P., Vaidya, N.H.: Selfish MAC Layer Misbehavior in Wireless Networks. IEEE
Transactions on mobile computing (2005)

9. Guang, L., Assi, C.: Mitigating Smart Selfish MAC Layer Misbehavior in Ad Hoc
Networks. In: IEEE International Conference on Wireless and Mobile Computing,
Networking and Communications (2006)

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 289–301, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Self-reconfiguration in Highly Available Pervasive
Computing Systems

Hadi Hemmati1 and Rasool Jalili2

1 Simula Research Laboratory, P.O. Box 134, NO-1325 Lysaker, Norway
hemmati@simula.no

2 Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
jalili@sharif.edu

Abstract. High availability of software systems is an essential requirement for
pervasive computing environments. In such systems self-adaptation, using dy-
namic reconfiguration is also a key feature. However, dynamic reconfiguration
potentially decreases the system availability by making parts of the system tem-
porary frozen, especially during incomplete or faulty execution of the recon-
figuration process. In this paper, we propose Assured Dynamic Reconfiguration
Framework (ADRF), consisting of run-time analysis phases, assuring the de-
sired correctness and completeness of dynamic reconfiguration process. We
also specify factors that affect availability of reconfigurable software in perva-
sive computing systems. Observing the effects of these factors, we present
availability improvement of our method in comparison to the other reconfigura-
tion mechanisms.

Keywords: Dynamic Reconfiguration, Pervasive Computing, Autonomic Sys-
tems, Availability.

1 Introduction

Pervasive Computing Systems (PCSs) are going to change the focus of software
systems from information and services to users. In such user-centric PCSs,
availability and adaptability are parts of the software development fundamentals [1].
High availability of services in PCSs forces such systems to be self-adaptive. Self-
adaptation or adaptability is the software ability to change its architecture behavior in
the execution time whenever it is needed [2]. Changing software architecture in run-
time without shutting the system down is called dynamic reconfiguration [3].

Our perception of dynamic reconfiguration covers all kinds of run-time changes on
application in the level of software architecture such as upgrading, updating, bug
fixing, and adapting to a new situation. Mainly, dynamic reconfiguration is performed
to adapt a system to the new situation to improve system performance and software
qualities. One of the most important quality attributes, which is necessary in
distributed systems and much more in PCSs, is system availability. This is due to the
facts that unavailable systems can not (1) be invisible from users for a long time (2)
respond to user intent sufficiently (3) be trusted as secure systems and (4) be

290 H. Hemmati and R. Jalili

considered as dependable systems to be used anytime, anywhere, and from any
device. Reconfigurable software in PCSs has the following features [4]:

• PCS software potentially has the ability to perform many reconfigurations in
their life-time because of systems adaptiveness and reconfigurations context-
awareness.

• In ordinary systems, reconfigurations are usually simple such as upgrading a
component. But in PCSs, reconfigurations usually consist of several operations
to adapt the system to completely new situations. Reconfigurations with
several operations are called complex reconfiguration.

• Most of PCSs do not have any external administrator. This fact forces them
to be self-managed. From this point of view, PCSs are similar to autonomic
systems which need self-reconfigurablity.

• Wireless communication, device mobility, limited power, and other limited
resources make pervasive computing environments error-prone. Therefore,
the risk of failure during reconfiguration process in such environments is
very high.

Hence, if there is not any mechanism for correct execution of reconfiguration
process, dynamic reconfiguration decreases the system availability in the case of
reconfiguration failure.

Although adaptability in PCSs has been discussed in many papers, the problem of run-
time assurance for reconfiguration process has not been considered properly. Most of
current run-time monitoring, validation, and verification techniques are at the code level
[5, 6]. There exists some tools such as ArchStudio [7] and Mae [8] which manage
dynamic reconfiguration but they do not have enough run-time analysis. In [9] replicated
components have been used during reconfiguration, and after completion of reconfigura-
tion process. This solution suffers from having an extensive overhead for changing all
replicas of a component after a reconfiguration. In addition, the replicated component can
not be used, when the old version is functionally wrong or not applicable.

To achieve the assured reconfiguration, we need some assurance analyses in the
specification time and run-time. As the main focus of this paper is run-time analysis,
we assume that all reconfiguration specifications are correct. Having a verified
reconfiguration specification is not enough because of unexpected run-time errors and
unsuitable reconfiguration starting time [10]. In this paper, we propose a run-time
monitoring method in ADRF to ensure correct and complete execution of dynamic
reconfiguration in PCSs. Also, we demonstrate how much the PCS availability can be
improved by performing reconfiguration under ADRF supervision.

Section 2 introduces ADRF with its architecture and process. In sections 3
monitoring and analysis of reconfiguration in ADRF is demonstrated. Section 4
discusses some availability issues in ADRF, and section 5 evaluates ADRF in terms
of system availability.

2 Assured Dynamic Reconfiguration Framework

Assured Dynamic Reconfiguration Framework (ADRF) is aimed to provide correct
and complete reconfiguration in PCSs [11]. In addition, ADRF improves system

 Self-reconfiguration in Highly Available Pervasive Computing Systems 291

availability through reducing the risk of incomplete and faulty reconfigurations. In
this section ADRF architecture and its reconfiguration process are explained.

2.1 ADRF Architecture

ADRF, illustrated in Figure 1, is located between the middleware and the user
interface. It surrounds the application and monitors it in the reconfiguration period.
ADRF rules can be updated through the user interface. Utilizing the middleware
distribution facilities, ADRF can support distributed applications, which is out of the
scope of this paper. Inside ADRF, there are three main components for providing
assured reconfiguration process: A context-manager (CM), a reconfiguration-manager
(RM), and a service-manager (SM). CM is responsible for triggering RM and the
application when a related context changes. RM is responsible for performing assured
reconfigurations when preconditions are triggered by CM. SM is responsible for
preparing components and software for reconfiguring in a suitable manner by freezing
and unfreezing some components.

Fig. 1. The Architecture of ADRF

2.2 Reconfiguration Process in ARDF

In the ADRF component model, components are interconnected through messages and
messages are buffered in the source and destination components. Therefore, connectors
are just some pointers and do not have significant role in our view of the software
architecture. A UML-like state-chart is used for specifying component behavior.
Software configuration in ADRF is represented by a graph of components. The system
behavior is characterized using the components behavior in addition to its architectural
configuration. The reconfiguration process in ADRF consists of four steps:

292 H. Hemmati and R. Jalili

1. Detecting the need for a reconfiguration (or reconfiguration initiation)
2. Selecting a reconfiguration map
3. Performing the reconfiguration map
4. Analyzing the architecture after reconfiguration

The first step starts when a change in the system or environment occurs which satisfies a
reconfiguration’s pre-conditions. These pre-conditions in PCSs are context-aware. It
means that they are triggered by changes in the system, user, or environmental contexts.
In fact, system designers or architects use these pre-conditions to define situations
where system needs reconfiguring its architecture. The followings are some examples of
these situations in PCSs: the need for tolerating faults, using new services, adapting to
existing resources, automatic evolution, and supporting change in user intents.

In the second step the corresponding map for the pre-condition is fired. A
reconfiguration map is a set of reconfiguration operations which should be performed
sequentially. Each reconfiguration has a rule, which contain preconditions and
corresponding map. In ADRF, reconfiguration rules are specified in the design time
by the system designer or architect. Reconfiguration operations are:

• Add(Ci) which adds component Ci to an architecture,
• Delete(Ci) which deletes component Ci from an architecture,
• Attach(Ci,Cj) which attaches two components Ci and Cj to each other,
• Detach(Ci,Cj) which detaches two components Ci and Cj from each other, and
• Replace(Ci,Cj) which replaces two components Ci and Cj with each other.

The definition of reconfiguration rules can be defined in EBNF (Extended Backus-
Naur Form) as:

• <RecRule> ::= <Precond>, <Map>
• <Precond> ::= <Cond> {Λ <Cond>}*
• <Cond> ::= Context <Op> Context | Context <Op> Const
• <Op> ::= < | > | <= | => | == | ≠ | in | not in
• <Map> ::= <RecOp>+
• <RecOP> ::= Add(Ci) | Delete(Ci) | Attach(Ci, Cj) | Detach(Ci, Cj) | Replace(Ci,

Cj)

Where terminals are shown in bold and non-terminals are located between "<" and
">". The terminal Context can be one of the pre-defined contexts in the system or
environment. The terminal const is a constant value. In ADRF, software components
are attached together without specific connectors. Therefore, the connector role in the
reconfiguration operations is omitted.

In the third step of the reconfiguration process, the reconfiguration map is
performed by sequentially executing its reconfiguration operations on the software.
Executing these operations, it is necessary to block (freeze) some parts of the software
which are participated in the reconfiguration. It is due to the fact that in most cases
components can not be reconfigured, when they are being executed through a running
process. During freezing period, services which are provided by frozen components
are not available. Freezing has two problems which should be solved in the
reconfiguration process: finding the best time to freeze, and finding the minimum
components which should be frozen.

 Self-reconfiguration in Highly Available Pervasive Computing Systems 293

After freezing, the reconfiguration operations are performed and then the frozen
components are unfrozen. In the fourth step, some run-time analyses are carried out
before unfreezing the modified software architecture to check its conformance with
the architect anticipation.

3 Monitoring and Analysis of Reconfiguration Process in ARDF

Run-time assurance analysis in ADRF is performed in three phases: before, during,
and after reconfiguration. In the initialization phase of ADRF, the context-aware
application and each reconfiguration rule register themselves in CM. Each rule may
include some contexts in its pre-condition. Such pre-conditions are registered in CM
in the initialization phase as well as new rules insertion time. If all preconditions of a
reconfiguration are satisfied, CM will trigger RM to fire the reconfiguration. In the
following sub-sections, we explain the details of the three reconfiguration analysis
phases.

3.1 Freezing the Affected Area

The first phase of analyzing a reconfiguration, which is done before reconfiguration
execution, is freezing the affected area by SM. Affected area in a specific
reconfiguration, is the set of components affected by the reconfiguration. It consists of
all components which have been given as parameters to the reconfiguration
operations. For example, if a reconfiguration attempts to replace c1 with c2; c1 should
be frozen and added to the affected area of this reconfiguration. Unfrozen components
continue their execution regardless of the frozen part. If a running component sends a
message to one of the frozen components, the message will remain in the destination
component buffer, until the component is unfrozen.

After recognizing the affected area, SM should find the best time to freeze. When
components of the affected area are in their Safe Reconfiguration Points (SRPs) is the
best time. SRPs are states in the component state-chart where the component state can
be correctly transferred. In fact, components that are not in SRP states can not be
reconfigured. Recognizing SRPs in the state-chart can not be done completely
automatic due to the lack of some semantic information which should be given by the
architect. In ADRF we assume that the architect specifies SRPs in the component
state-chart. SRPs are defined per component without taking into account the
difference between reconfigurations. Therefore, we need additional restriction on
SRPs to find allowed starting states per reconfiguration. In ADRF this is done by a
Transfer Function, which corresponds some SRPs of the component to new states
after a specific reconfiguration. Transfer Function of a reconfiguration is given in a
table called T-Table. This table is a list of following pair states <Permissible SRP
from the reconfiguration point of view, Corresponding state after reconfiguration>.

In ADRF, each component is executed in a separate execution process and each
user instantiates the component in a separate execution thread. A reconfiguration
execution reaches to a break-point when all its threads are in their permissible SRPs
regarding T-Table. When the freeze instruction is invoked, execution threads will be
stopped by SM in the first break-point. If the affected area components can not reach

294 H. Hemmati and R. Jalili

to a break-point in a defined time, the reconfiguration is regarded as unsafe and
ADRF will reject it.

3.2 Structural Analysis

The second assurance analysis is structural correctness checking after performing the
reconfiguration. In ADRF this analysis is done by Assurance Automata. The
automaton is created during reconfiguration to model the intermediate architectures,
from the initial to the expected target architecture. In Assurance Automata, each state
represents the anticipated architectures during reconfiguration. ADRF continually
monitors current system configuration and compares it with the states of Assurance
Automata. There are some techniques and methods for capturing the current system
architecture such as [12]. Assurance Automata is defined more formally as
()Σ′ ,,,, FSS δ where:

∑ is the automaton alphabet and includes reconfiguration operations:

∑ = {Add(Ci), Delete(Ci), Attach(Ci, Cj), Detach(Ci, Cj), Replace(Ci, Cj)}∪ {Er, Hld},
Where Er indicates the incorrect execution and Hld shows the unexecuted operation.

iS represents a configuration (valid or invalid) of an architecure. The configuration is

shown by G(V,E). G is a directed graph, where its nodes are the architecture
components and its edges are connectores (links between attached components).
δ is the transition function defined by either correct execution of an operation
(destination: the next state) or incorrect execution in the case of run-time errors
(destination: other states or one trap state in online and offline methods respectively)
or unexecution, for any reason (destination: the current state).

S ′ is the initial state, equivalent to the system architecture just before reconfiguration.

F is the final state, equivalent to the target architecture.
Structural analysis by Assurance Automata can be done in offline or online

methods:

Offline Method: In the offline method, a snapshot of the system is captured and then
reconfiguration starts. After a predefined time, which depends on the number of
reconfiguration operations, RM compares the system state (current configuration)
with the target state in Assurance Automata. The reconfiguration execution is
structurally correct if those states match. Otherwise, the system state is compared to
the all intermediate states in Assurance Automata in the reverse order, until finding an
equal state. Afterward, the reconfiguration is re-executed from the discovered state
with remained operations. If none of the states are equal to the system state, the
system is in a trap state and it should be recovered from initial state, which is stored
in the captured snapshot, and then the reconfiguration is re-executed.

In this method, besides the timeout, the number of executed operations is another
stopping criterion for reconfiguration process. RM restricts the number of performed
operations to the number specified in the map.

Online Method: In the online method, when the expected time to execute an
operation is passed, RM compares the current system state with the expected state in
Assurance Automata. The expected states represent correct execution of each

 Self-reconfiguration in Highly Available Pervasive Computing Systems 295

reconfiguration operations. If the system state is equal to the next state of the
automaton, the execution has been performed correctly. If the system state is not
equal to the next state, but equal to the “before transition” (current) state, the last
operation must be re-executed. If the system state is not equal to either the next or
current state, system has gone to the other state. In this case, system must be
recovered from the current state and then the last operation should be re-executed.

The main advantage of this monitoring and control mechanism is online error
detection that is suitable when some repair mechanism is available.

3.3 Behavioral Analysis

The behavioral analysis is the third phase in assurance analysis which is performed at
the end of the reconfiguration process and before unfreezing the affected area. RM
checks component states which should match with the T-Table information. If
Assurance Automata passes the reconfiguration but a component is found in the
affected area which is not in its expected state, the behavioral assurance is not
satisfied and the state transfer should be repeated. In ADRF, the current state transfer
algorithm is simple but can be replaced without any change in the core of the
framework.

Finally, if the three assurance analysis phases are passed successfully, the
reconfiguration process is regarded as assured and SM can unfreeze the affected area.

4 Availability Issues of Reconfigurable Software in PCSs

The term availability is defined as the ratio of the total time a functional unit is
capable of being used during a given interval to the length of the interval. The most
simple representation for availability is as a ratio of the expected value of the uptime
of a system to the aggregate of the expected values of up and down time, or
MTTF/(MTTF+MTTR). Where MTTF is the mean time to failure and MTTR declares
the mean time to repair.

Although a successful reconfiguration can improve system availability by 1)
replacing faulty components with the debugged version and 2) adding extra
components to reply requests of overloaded components, but it has the possibility of
freezing some components at run-time, causing them to be unavailable for a while.
Replication of components seems to be a solution. However, it has problems such as
the overhead of reconfiguration of all replicas. In addition, in cases where the new
component functionality is not valid anymore, replicated components are
inapplicable. ADRF tries to minimize the mentioned unavailability time of the
affected area components.

4.1 Availability Definition in Reconfigurable Software

To define the system availability in ADRF, we assume the importance of all services
in the system is the same and freezing a component results in unavailability of only
that component services. Accordingly, we can define the system availability as the
simple average (instead of weighted) of its services or components availability. The
availability of each component itself is the average of all its instances availability.

296 H. Hemmati and R. Jalili

Component instances are instantiated from a base component for each user session
where the component is invoked. Reconfiguration process is performed on the base
components. By reconfiguring a base component all its instances should also be
reconfigured accordingly. When all instances of a component are frozen, the
component is frozen and ready to be reconfigured.

Putting all together, the system availability is the average availability of all system
component instances. Let call jth instance of ith component, Cij, so in a system having
n components and mi instances for each component Ci, the system availability is
defined as equation 1.a.

The availability of a component instance is equivalent to its up time (CIUT)
divided by its life time (CILT). CILT is the time between the instantiation of an
instance and its destruction. With respect to the reconfiguration process, CIUT is a
part of CILT that the component instance is not frozen, multiply by α . α is the
component’s normal availability without considering the reconfiguration process.
The freeze time of a component instance depends on the number of reconfigurations
performed on the instance during its life time (p) and the instance freeze time during
each reconfiguration (CIFT(Rk)). CIUT is obtained by subtracting the sum of all
freeze times of an instance from the instance life time, multiplying by α . The system
availability is obtained by the average value of Availability(Cij) for all component
instances in the system (replacing Availability(Cij) in equation 1.a by Availability(Cij)
from equation 1.b).

a)

imn
A vailability(C)ij

i=1 j=1
A vailab ility(system) =

n
m i

i=1

∑∑

∑

b)

p
α*(CILT - CIFT(R))k

CIUT k=1Availability(C) = ij CILT CILT
=

∑

(1)

4.2 Availability Factors for Reconfigurable Software in PCSs

We extracted factors that affect the system availability based on the above discussion.
The effective factors are defined as follows (concentrating on the reconfiguration
effects on availability, we assume that CILT and α are constants):

• Number of reconfigurations: As the number of reconfigurations is
increased, the component freeze time is increased. Therefore, the component
availability and consequently the system availability are decreased.

• Number of involved components: Since all involved components should be
frozen during reconfiguration, the more components involved in a
reconfiguration the less system availability. If a component instance does not
participate in any reconfiguration during its life time, its availability has the

 Self-reconfiguration in Highly Available Pervasive Computing Systems 297

maximum value (α). For each participation, an unavailability time (CIFT) is
added to the components down time and so decreases the system availability.

• Number of users: If the number of system users is increased, the number of
component instances involved in the reconfiguration is increased. Therefore,
available instances and the system availability will be decreased.

• Number of reconfiguration operations: The number of reconfiguration
operations directly affects the total execution time of the reconfiguration
process. Accordingly, long reconfigurations (including many operations)
decrease system availability.

• Error Rate: The more errors occurrence the more validity checks and
recovery done.

5 Availability Evaluation in ADRF

In our study, a simple PCS simulator was implemented to fill the absence of a real
pervasive system. The simulator takes an XML file describing a context-aware
application through its architectural component-diagram plus the state-chart of each
component. Contexts can be changed randomly in the simulator. A sample of context is
location and its change demonstrates the user mobility. Application execution is
simulated by transferring messages among components. A prototype of ADRF has also
been embedded in the PCS simulator implementation in order to manage reconfiguring
the applications running in the simulator.

To evaluate ADRF and its impacts on availability, a smart library case study has been
studied. Smart library provides a map-based guidance to books and collections on a
Smart Digital Assistants. Main components in the system architecture which are
distributed in the environment servers, gadgets, and user mobile devices are User Profile
Manager, User Interface, Library Books Manager, Search Engine, Positioning Engine,
Location Manager, Path Finder, and Map Manager. The reconfiguration which is used
here is replacing Location Manager (LM) component with a new location manager
(ULM) which supports updating the user current position while he is walking towards a
selected rack. The study focuses on comparing availability of the system when using
one of the following reconfiguration mechanisms:

• BASE: This mechanism ignores occurrence of errors. The system
administrator is responsible for recovering the system and re-executing the
reconfiguration. Involving the external human administrator in the
reconfiguration process makes this mechanism unsuitable for PCSs. Evaluating
this mechanism, the average recovery time by the external administrator is
added to the unavailability time of all involved instances in the unsuccessful
reconfiguration.

• OPTIMISTIC: This mechanism uses offline method of ADRF for structurally
analyzing the reconfiguration process. If the system falls into an error state, it
is automatically recovered after reconfiguration process and repeats the
reconfiguration with the hope of correct execution. In this approach, capturing
the system snapshot is done in the background while the system is available,
but automatic recovery time is considered as a part of component’s downtime.

298 H. Hemmati and R. Jalili

• ADRF: This mechanism uses online method of ADRF in the structural
analysis phase. The check and repair time for each operation, is important in
the online method. In ADRF, each reconfiguration operation should be
performed correctly. In the case of any error in the operation execution, it
should be detected and repaired on-line. The smaller check and repair time, the
quicker reconfiguration process and more available systems.

Our first observation is the effect of number of users on system availability. The
number of library users in this case varies from 1 to 36. As shown in Figure 2.a, the
availability in BASE mechanism is decreased more rapidly due to its long external
recovery time. While the system availability in ADRF and OPTIMISTIC mechanisms
are close to each other, ADRF provides more availability as the number of users
increases. The reason is dependence between the number of users and the number of
component instances. Therefore, OPTIMISTIC mechanism makes systems with many
users more unavailable.

The next experiment focuses on the number of reconfigurations. In this case, another
reconfiguration which replaces ULM with LM is defined. These two reconfigurations are
applied repeatedly on the software architecture by required context changes. Figure 2.b
depicts the effect of varying the number of reconfigurations on the system availability. As
shown, decline of the system availability in the BASE mechanism is very sharp, because
of the huge external overhead per reconfiguration. As the number of reconfigurations
increases, the re-execution overhead in the OPTIMISTIC mechanism results in less
availability in comparison to the ADRF mechanism. This experiment recommends ADRF
for adaptive context-aware systems which have many reconfigurations during their life-
cycle.

The effect of the number of reconfiguration operations on the system availability is
evaluated, as the next experiment. We increase the number of operations by replacing
more components and adding new components. As depicted in Figure 2.c, by increasing
the number of reconfiguration operations, the availability of ADRF against BASE and
OPTIMISTIC mechanism is less decreased. The BASE mechanism is the worst,
because of the higher chance of failure (when the number of operations increases) as
well as the high external recovery time. For long reconfigurations OPTIMISTIC
approach decreases the system availability more than ADRF, because of re-executing
the reconfiguration process from the beginning.

Our concentration in Figure 2.d, is the effect of error rate on availability. Generally,
when a fault happens it means that an error has happened before. This error could be in
communication links, computation, storage, or anywhere else. We assume no difference
between errors. Therefore, error rate is assumed as the rate of fault occurrence. By
changing the average error rate between 0.05 and 0.5, the difference among
availabilities gained in the three mechanisms is specified in error-prone environments.
As expected, the OPTIMISTIC mechanism is not suitable in such environments even
worse than the BASE mechanism because of its optimistic view on error occurrence and
its huge re-execution overhead. According to Figure 2.d, when the risk of falling into
error states in each operation execution is high, online detection and repair in ADRF is
the best.

Based on the level of decline on availability, the number of reconfigurations is the
most effective factor. Therefore, the mechanism tolerating this effect is more suitable
for PCSs. Our above-mentioned evaluations determined that ADRF is an appropriate

 Self-reconfiguration in Highly Available Pervasive Computing Systems 299

framework for reconfiguration in PCSs especially when the environment is error-prone,
the software is complex, context-aware, very adaptive with long reconfigurations, and
lots of users. This is because of ADRF assurance mechanism which provides not only
the correct and complete reconfiguration but also a highly available reconfiguration
process, in comparison to performing reconfigurations without any assurance checks or
simple offline optimistic validation mechanisms. Additionally, ADRF demonstrates
itself scalable in terms of the number of users, reconfiguration operations, and the error
rate.

Fig. 2. The Effect of a) Number of Users, b) Number of Reconfigurations, c) Number of Re-
configuration Operations, and d) Error Rate on system availability

6 Conclusions and Future Work

Software reconfiguration will play an important role in the future computing
environments. Most research on this domain and especially on the reconfiguration in
PCSs are restricted to finding the best change strategies. However, applying these

300 H. Hemmati and R. Jalili

reconfiguration strategies in a running system has problems such as reconfiguration
failure which affects service availability. Without monitoring and validating the
reconfiguration process at run-time, system invisibility and adaptability can be
damaged.

In this paper, we proposed an Assured Dynamic Reconfiguration Framework,
ADRF, capable of performing run-time reconfiguration on PCSs. Achieving three
assurance analysis phases (before, during, and after reconfiguration process), ADRF
ensures architect that his defined reconfigurations will be performed correctly and
completely. In addition, we defined the system availability with respect to
reconfiguration process and identify the effective factors on the PCSs availability. We
evaluated our developed framework, which uses an online assurance mechanism in
the reconfiguration process, based on the defined factors. Results confirmed that, our
framework provides more system availability especially for complex PCSs in error-
prone environments which perform long reconfigurations.

As future work, effects of other factors on reconfigurable software availability can
be investigated. Enhancing ADRF to perform secure and dependable reconfiguration
is also among the other topics of interest for future research.

References

1. Saha, D.: Pervasive Computing: A Paradigm for the 21st Century. IEEE Computer Soci-
ety, Los Alamitos (2003)

2. Cheng, S., Garlan, D., Schmerl, B., Sousa, J.P., Spitznagel, B., Steenkiste, P., Hu, N.:
Software Architecture-based Adaptation for Pervasive Systems. In: Schmeck, H., Ungerer,
T., Wolf, L. (eds.) ARCS 2002. LNCS, vol. 2299, Springer, Heidelberg (2002)

3. Oreizy, P., Taylor, R.N.: on the role of software architectures in runtime system reconfigu-
ration. In: International Conference on Configurable Distributed Systems (1998)

4. Hemmati, H., Aliakbarian, S., Niamanesh, M., Jalili, R.: Structural and Behavioral Run-
Time Validation of Dynamic Reconfiguration in Pervasive Computing Environments. In:
4th Asian International Mobile Computing Conference (AMOC), Calcutta, India (2006)

5. Nicoara, A., Alonso, G.: Dynamic AOP with PROSE. In: Pastor, Ó., Falcão e Cunha, J.
(eds.) CAiSE 2005. LNCS, vol. 3520, Springer, Heidelberg (2005)

6. Chen, F., Rosu, G.: Towards Monitoring-Oriented Programming: A Paradigm Combining
Specification and Implementation. Electronic Notes in Theoretical Computer Science,
vol. 89. Elsevier, Amsterdam (2003)

7. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-Based Runtime Software Evolu-
tion. In: The 20th International Conference on Software Engineering (ICSE 1998), Kyoto,
Japan, pp. 177–186 (April 1998)

8. Roshandel, R., Hoek, A.V., Mikic, M., Medvidovic, N.: Mae – A System Model and Envi-
ronment for Managing Architectural Evaluation. ACM Transactions on Software Engi-
neering and Methodology (April 2004)

9. Diaconescu, A., Murphy, J.: A Framework for Using Component Redundancy for self-
Optimising and self-Healing Component Based Systems. In: ICSE 2003 Workshop on
Software Architectures for Dependable Systems, Portland, Oregon, USA (May 3 2003)

10. Niamanesh, M., Jalili, R.: A Dynamic-Reconfigurable Architecture for Protocol Stacks of
Networked Systems. In: 31st Annual International Computer Software and Applications
Conference, Beijing, China (July 2007)

 Self-reconfiguration in Highly Available Pervasive Computing Systems 301

11. Hemmati, H., Niamanesh, M., Jalili, R.: A Framework to Support Run-Time Assured Dy-
namic Reconfiguration for Pervasive Computing Environments. In: The first IEEE Interna-
tional symposium on wireless pervasive computing ISWPC, Thailand (2006)

12. Hamou-Lhadj, A., Braun, E., Amyot, D., Lethbridge, T.: Recovering Behavioral Design
Models from Execution Traces. In: Ninth European Conference on Software Maintenance
and Reengineering (CSMR 2005), pp. 112–121 (2005)

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 302–315, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Modeling Modern Social-Network-Based Epidemics:
A Case Study of Rose*

Sirui Yang, Hai Jin, Xiaofei Liao, and Sanmin Liu

Services Computing Technology and System Lab
Cluster and Grid Computing Lab

School of Computer Science and Technology
Huazhong University of Science and Technology, Wuhan, 430074, China

hjin@mail.hust.edu.cn

Abstract. The social-network-based epidemics, such as email-based ones, have
been long studied. However, few have noticed some newly emerging epidemics
which especially based on portable devices. In this paper, we think of such
viruses and take a representative, the Rose epidemic, for case study. We build a
model with a system of differential equations and closed-form solutions for
three propagation scenes correspondingly. With both theoretical and numerical
analysis, we find out that (1) Rose is able to infect hosts as exponentially as the
Internet-based worms do;(2) In the Internet cafe scene, it is difficult to contain
Rose even with reactive recovery measures; (3) the most influential factors for
Rose’s propagation are the amount of hosts and portable devices and the
lifetime of Internet cafe machines, while the arrival rate of clients and the
proportion of immune machines only affect in the print service office scene.

Keywords: Social Network, Portable Device, Rose Epidemic, Modeling.

1 Introduction

Information security has been challenged by Internet epidemics for decades [1][2].
These epidemics, such as worms, Trojans and malware, are able to self propagate by
taking advantage of vulnerabilities on online hosts. For instance, the random scanning
worms [3] will examine a random series of Internet hosts, and compromise vulnerable
ones rapidly. Researchers have proposed plentiful measures against both known and
potential Internet based epidemics. For example, a simple and traditional solution is
the reactive immunization [4][5].

Social network: There have already been extensive researches on social network
[6][9]. Similar to the World Wide Web (WWW), the web of human sexual contacts,
or criminal networks, which often do not have an engineered architecture but instead
are self-organized by the actions of a large number of individuals, social network can

* This work is supported by National Science Foundation of China (NSFC) under grants

No.60433040 and No.60731160630, the Research Fund for the Doctoral Program of Higher
Education under grant No.20050487040.

 Modeling Modern Social-Network-Based Epidemics: A Case Study of Rose 303

emerge as small-world properties or scale-free degree distributions [13]. Traditionally, it
is believed that the junk email is one of the most important security issues in social
network. However, with modern techniques, we believe there are more complicated
epidemics taking advantage of social network.

Modern social network based epidemics: The traditional social network based
epidemics can be concluded as acquaintance-based, e.g., the junk emails, rumor
dissemination. However, modern epidemics have the characteristics that do no need
contacts to know each other. They simply need a certain form of medium. For
instance, an epidemic called Rose [7] has been prevalent in China since April, 2006. It
never takes advantage of Internet but portable devices only. An infected device will
harm vulnerable hosts as well as other devices through social networks. Further, if
such a feature is integrated with Internet techniques, the harm can be much strong.
For example, Panda [8] which relies on portable devices and some vulnerable
websites even infects millions of hosts and leads to a great deal of loss from
December, 2006 to April, 2007.

Intuitively, Internet is much more clustering and fast-speed than social network.
However, due to the power-law principles in the free-scale networks, epidemics based
on social network are still fast propagating. Besides, many offline epidemics are not
taken into account in existing virus database of major anti-virus companies’ products.
This greatly increases the prevalence of offline epidemics and raises the difficulty to
clean such viruses.

As introduced, the typical propagation measure for modern social network based
epidemics is to make use of portable devices, especially flash drives. As Rose is a
purely portable device based epidemic, our further analysis is based on Rose.

In this paper, we study the social network based epidemics especially aiming at
portable devices. Specifically, we bring forward Rose’s three typical propagation
scenes and establish corresponding differential equations, as well as closed-form
solutions. The specific contributions of this paper are as follows:

(1) To the best of our knowledge, we are the first to explore the portable device
based social network epidemics. We build a system of differential equations to model
the Rose epidemic. The model contains the cases both with and without recovery
mechanisms. We propose the closed-form solutions for these equations. Our
methodology is meaningful that the models without and with recovery are suitable for
the propagating phase and the eliminating phase, respectively. The model indicates
that Rose can propagate exponentially as most Internet based epidemics do.

(2) We conduct numerical experiments of this model, and the results show that
Internet cafe scene is the most important one where Rose can not be eliminated even
with recovery mechanisms.

(3) The most influential factors in the dissemination of Rose are the amount of
hosts and portable devices and the lifetime of Internet cafe machines. In the print
service office scene, the arrival rate of clients and the percentage of immune machines
also have some influence.

The rest of this paper is organized as follows: in section 2, we introduce the
destruction and mechanism of Rose, as well as its three propagation scenes. In section 3,
we model Rose for each of the scenes respectively, both with and without defense. In
Section 4, the numerical experiments and results are shown. In Section 5, we introduce
the related work. In Section 6, the conclusion is drawn and the future work is presented.

304 S. Yang et al.

2 The Rose Epidemic

Portable device technique has been rapidly developed recently. Among all portable
devices, portable storages (e.g., flash drives) are most popular. It allows users to
connect a storage disk to a computer and use it immediately. The flash drives are
prevalent because of their convenience and mobility. However, these features also
provide viruses yet another manner to propagate. Once a virus compromises a flash
drive, it will automatically propagate itself to any vulnerable machines to which the
storage is plugged-in. Rose is such a virus that purely takes advantage of portable
storages.

2.1 The Mechanism of Rose

Rose first appeared in the central China in April, 2006 which infected Windows
systems. Once a computer is compromised, there will be two virus producing files
called rose.exe and autorun.inf in all drives. When double clicking the drive icon, the
drive can not be open. However, the virus is auto-propagating at background. The
harms of the Rose virus are high resource occupation rate and possible system crash.

As we mentioned, the propagation of Rose epidemic is based on portable devices.
Once a virus-containing portable device is connected to a susceptible computer, it will
automatically copy the virus files onto all other drives. A susceptible computer is a
machine that allows flash drives to auto run if there is an autorun.inf file on the exact
drive. As this function is enabled by default in Windows, a large proportion of
computers are susceptible. If other clean portable devices are connected to this
infected computer, they will also be compromised recursively. Besides, not until the
auto run system function is disabled, simply deleting virus files can not immune the
machine.

The propagation mechanism of Rose seems simple and weak. However, such
epidemics have become rampant for a long period. Most anti-virus software have not
provided corresponding virus database for Rose currently. We estimate it is because
of two reasons: (1) such epidemic is not significant at the beginning because they do
not transfer through Internet, so the virus database is not updated in time. (2)
Considering that the autorun.inf file is a normal text file, which is used for the auto
run function in legal manner, it is rude to simply disabling the function and remove
such a file.

2.2 Three Propagation Scenes

To our knowledge, there are mainly three places where Rose is significantly
propagated.

Print Service Office (PSO): The print service offices help clients print sheets, such
as papers, documents, images. In each office, there are several computers where
clients can freely use their flash drives to upload files for print. As the service
providers are mostly unprofessional in system security administration, many
machines in PSOs are susceptible to Rose. Once a client uses an infected flash drive
on the machine, it is compromised and can further infect following clients’ portable
devices.

 Modeling Modern Social-Network-Based Epidemics: A Case Study of Rose 305

Internet Cafe (IC): The Internet cafe is a place where net surfers pay for Internet
service. Clients are also allowed to use flash drives freely. In this case, the IC scene is
same to the PSO scene. However, we concentrate on a specific kind of IC, i.e., the
one where the storage protection cards are used. A storage protection card, also
called system reset card, is a piece of hardware used to recover the disk content and
system configuration on the boot of the machine. It is usually a PCI device and takes
effect before the operating system is loaded. Thus, the virus files will be removed
automatically at any reboot of the machine. As many ICs provide service in the all-
day manner, a machine will then be restarted only by the clients’ operation, e.g., when
the system is down.

Friendship Network (FN): In many cases, friends will share (i.e., borrow and lend)
portable storages when needed. For instance, a person attended a party and will use
the photographer’s portable storage to copy some pictures. In this way, the virus can
also be propagated. Friendship network is totally a traditional social network as we
mentioned.

In the following sections, we will explain the details of these scenes, and study
each of them to build the model.

3 Epidemic Modeling

Now we analyze Rose virus and establish a model of it. We will consider the
occasions both with and without recovery mechanisms. We assume only computers
can be immunized, while portable storages can not be immunized but cleaned by the
immune machines. The case when the storages are set read-only to immunize
themselves is not taken into account. We also suppose a client owns one and only one
portable device. The sum of the clients (also portable storages) is very large but
limited, which is practical for describing Rose epidemic in a specified region (e.g., a
college or a city).

3.1 Modeling Print Service Office Scene

For simplicity, we make following assumptions in this subsection: (1) Clients visit
each printing service computer with the same arrival rate; (2) There are two kinds of
machines in PSO, the infected ones and the immune ones. An immune machine is a
computer having auto run function disabled and cleanup software installed. Thus, a
clean portable storage will only be contaminated when connecting to an infected
machine. On opposite, a virus containing flash drive will be cleaned on connecting to
an immune machine. The infected machines are propagated by outside environment
and all flash drives are clean at the beginning.

The frequently used notations are list in Table 1. As a flash drive is either clean
(susceptible) or infected, we have x+y=W.

Without Recovery. In this subsection, we study the case when there are no recovery
mechanisms. Namely, M=0. Suppose the probability for a client to visit an infected
machine is p, then:

306 S. Yang et al.

Table 1. Frequently used notations in the model

M # of immune machines
N # of susceptible machines
μ Client arrival rate for each machine
W # of total clients
x # of clean flash drives
y # of infected flash drives
p probability to visit an infected machine
Ci Constants in formal solutions

NM

N
p

+
=

 (1)

Fig. 1. State transition diagram in PSO scene: (a) Markov process without recovery (b) Markov
process with recovery (c) transition probability

Considering the tuple (x, y), it is a Markov process. Figure 1(a) shows the state
transitions for this process. From the state (x, y) the system can go to the state:

 (x-1, y+1): when a clean client visits an infected machine;
 (x, y): otherwise.

Let y=y(t), i.e., the number of infected clients at time t. Thus, we have:

p
W

y
p

W

yW
p

yx

x
y ⋅⋅−=⋅⋅−=⋅⋅

+
= μμμ)1(

(2)

This differential equation has the formal solution:

0,)(1 ≥−==
⋅

−
teCWtyy

t
W

pμ

(3)

Consider the boundary condition that y(0)=0, we can get C1=W. Then, the closed-
form solution is:

0,)(≥⋅−=
⋅

−
teWWty

t
W

pμ

(4)

With Recovery. In this subsection, we take into account that there are some passive
solutions such as vaccination. Then, the Markov process (x, y) and the state transitions
are shown in Figure 1(b). Then the system at state (x, y) can jump to the state:

 Modeling Modern Social-Network-Based Epidemics: A Case Study of Rose 307

 (x-1, y+1): when a clean client visits an infected machine;
 (x, y): when an infected client visits an infected machine, or a clean client visits

an immune machine;
 (x+1, y-1): when an infected client visits an immune machine.

Therefore, we also get a differential equation for y(t) in this case:

W

y
pp

yx

y
p

yx

x
y

⋅+⋅=−⋅⋅
+

−⋅⋅
+

= μμμμ)1(

(5)

with the closed-form solution that:

0),1()(≥−=
⋅−

tepWty
t

W

μ

(6)

3.2 Modeling Internet Cafe Scene

As introduced, a computer in the IC scene will receive arriving clients and keeps
working until it is rebooted. The period between two reboots is called the lifetime of
the computer. It will be infected at a random time during its lifetime when an
infective client uses his flash drive on it. So different from PSO scene, the flash drive
in IC scene is possible to infect a computer and flash drives arriving in the remaining
of this lifetime.

Also, we make some assumptions for simplicity: (1) Clients visit each Internet
service computer with the same arrival rate; (2) An infective client may arrive at a
random time during this period; (3) Compared with the long investigation time, the
lifetime is assumed much shorter, and all machines are regarded synchronously
working.

The length of the lifetime is denoted as T. We assume the lifetime yields exponential
distribution with the parameter λ. Then, T=1/λ. We use y0 for the initial number of
infected flash drives in IC scene, which is determined by outside environment.

Without Recovery. In this case, still M=0. We denote the time point for a clean
machine to receive an infected client during one lifetime as 1-q, i.e., the machine is
clean in [0, 1-q) and it is infected in [q, 1]. For one machine, we can get the
differential equation of the number of the newly infected clients during its lifetime:

Ttpq
yx

x
y ≤≤⋅⋅⋅

+
= 0,μ

(7)

The formal solution of this equation is:

TteCWy
t

W

pq

≤≤−=
⋅⋅

−
0,2

μ

(8)

As y(0)=y0=0, then C2=W. We integrate Formula (8) over [0, T] and get the number
of newly infected clients that:

)1()(
T

W

pq

eWTy
⋅⋅

−
−=

μ

(9)

Further, if the arrival rate for rebooted machines and normal machines are same, i.e.,
q=1/μ, and T=1/λ, we can derive Formula (9) into:

308 S. Yang et al.

)1()(
1

pWeWTy λ
−

−= (10)

Then, in each period of lifetime, there are y(T) machines to be infected. As
supposed, T is much more transient compared with the long observation time.
Namely, the infecting rate λT=dy/dT=y(T). Further, we can build the differential
equation for the whole observation that:

TTT W

y

W

yW

yx

x
y λλλ ⋅−=⋅−=⋅

+
=)1(

(11)

The solution is:

t
W

Ty

eyWWy
)(

0)(
−

⋅−−= 0),)1(exp()(
1

0 ≥⋅−−−−=
−

tteyWW pWλ

(12)

With Recovery. The Markov process for Rose propagation with recovery in IC scene
is shown in Figure 2.

Fig. 2. State transition diagram in IC scene: (a) Markov process with recovery (b) transition
probability

Then Formula (8) should be adjusted to:

Ttp
yx

y
pq

yx

x
y ≤≤⋅⋅

+
−⋅⋅⋅

+
= 0,22 μμ

(13)

The solution is:

Tte
q

Wq
y

t
W

qp

≤≤−
+

=
+−

0),1(
1

)1(2μ

(14)

By replacing t=T, q=1/μ, and T=1/λ into this solution, we can get:

)1(
)1(

)1(
1

)(
)1()1(22

W

p
T

W

qp

e
W

e
q

Wq
Ty λ

μμ

μ

+−+−
−

+
=−

+
=

(15)

Similar to Without Recovery case, we get the propagation process during the whole
observation that:

0)),1/()1(exp()(
)1(

0

2

≥+−⋅−−−=
+−

tetyWWy W

p

μλ
μ

(16)

 Modeling Modern Social-Network-Based Epidemics: A Case Study of Rose 309

3.3 Modeling Friendship Network

According to the theory of social network, the friendship network is a scale-free (SF)
network [12][13][14]. Since such networks and corresponding epidemics (as shown in
Figure 3) have been extensively studied, we simply present the results in the FN
scene. The propagation manner is shown in Figure 3.

In this scene, we suppose the friendship network is composed by individuals who
own personal machines, some of which have flash drives and others not. The one who
has no flash drives will borrow others’ and use them on his machine. Then the
infected flash drives propagate Rose epidemic among these machines and drives. An
infected individual is the one with either an infected machine or an infected flash
drive. Otherwise, it is a clean individual. During each step, each susceptible (clean)
individual is infected with rate ν if it is connected to one or more infected nodes.
Meanwhile, infected nodes are cured and become again susceptible with rate δ,
defining an effective spreading rate λf=ν/δ.

Fig. 3. Infected nodes and epidemics in social networks

It is known that the probability of an individual to have k friends is k-γ (γ=3 is used
in most computations) [12]. Further, in the scale-free model, the connectivity
distribution of all the individuals yields P(k)=2m2/k-3. Then, the percentage of infected
individuals (ρ) yields [13]:

fm
e

λρ
1

2
−

≅
(17)

Notice that Formula (17) is the case with recovery. While, in cases without
recovery, λf=ν.

For coherency purpose, we use y to denote the number of infected individuals, and
the number of individuals is still W, thus

fm
WeWy

λρ
1

2
−

≅⋅=
(18)

4 Analysis and Implications of Parameters

We have obtained a system of differential equations and closed-form solutions to model
the propagation of Rose epidemic in three scenes. In this section, we analyze the
parameters’ effects and implications. The following analysis is based on Formula (6)

310 S. Yang et al.

and (16), i.e., the cases with recovery. When investigating one parameter, the others are
fixed and the investigated one is varied within a range. The values and ranges for the
parameters are listed in Table 2.

Arrival rate: First, we investigate the influence of the arrival rate of clients in the PSO
and IC scenes, i.e., parameter μ. The results for PSO model and IC model are shown in
Figure 4.

In the PSO scene, the arrival rate has shown significant influence. When μ=100, the
curve is a fast increasing exponential one and about 10% clients have been
compromised within 250 time units. When μ is reduced to 10, the progress is milder and
10% clients have been infected within about 2000 time units. When μ reaches 1 or
below, the curves are almost linear and the propagation is much slowly evolving. This
result is intuitive to the real world that if PSO receives a flurry of clients when
epidemics take place, the epidemic is able to disseminate rapidly. Also, we can see from
Figure 4 that with recovery, there are no more than 10% clients infected.

Table 2. Values/ranges for parameters in experiments

Parameter Value when fixed Range when varied
μ 10 0.1~1000
M 20 10~200

N (fixed) 200 N/A
W 5000 2000~50000
y0 10 1~100
λ 0.01 0.001~1

(a) (b)

Fig. 4. Rose propagation with varied μ: (a) in PSO scene; (b) in IC scene

However, Figure 4(b) indicates that the arrival rate influences unnoticeably in the
IC scene. This is because the machines in the IC scene will reboot every 100 time
units (i.e., λ=0.01). This period is short compared with our observation period (about
2000 time unit as shown in the figure). Besides, the first arrival of an infective client
after the reboot is random. Therefore, the affect of parameter μ is much neutralized.
The result implies that it is fortunate that with the help of storage protection card, the
arrival rate of clients in IC scene is ignorable.

 Modeling Modern Social-Network-Based Epidemics: A Case Study of Rose 311

Immune machine percentage: In Figure 5, we show the results of the propagation
with different immune machines in PSO and IC scenes.

The infected client number in the PSO scene is bounded to about 470 when M=10,
which is decreased to 250 when M=200. The effect of the immune machine
percentage in IC scene is also perceivable but a bit weaker than in PSO scene. It is
promising that we can limit the epidemic to affect less than 10% clients by inducing
5% immune machines (i.e., M=10 while N=200) in the PSO scene. However, the case
in the IC scene is not acceptable, e.g., even if M=200 the limitation reaches to 4500
(i.e., 90%). Moreover, we also notice that the decrement of infected client boundary is
inverse exponential to the increment of immune machines. This suggests that to
simply increase the immune machines is not a sufficient solution to eliminate Rose
epidemic.

(a) (b)

Fig. 5. Rose propagation with varied M: (a) in PSO scene; (b) in IC scene

Client amount: As we suppose the epidemic is disseminated within a limited but
large scale, we study the influence of the sum of clients and the results are shown in
Figure 6. It is intuitive that in both the PSO and IC scenes, the growth of infected
client number is much slower with W getting larger. Unlike the former two
experiments, the influences of the client amount are totally homogeneous in both the
two scenes. Notice that the threshold of infected clients is still less than 10% in the
PSO scene but nearly 100% in the IC scene.

Machine lifetime and initially infected clients: Now we study the particular
parameters in IC scene, i.e., the lifetime and the initially infected clients.

The effect of lifetime in the IC scene is presented in Figure 7(a). With longer
lifetime, the propagation is much sharper. That is because the IC machine stays infective
once it receives a virus containing client; and the longer its lifetime is, the more it will
compromise following clients. When λ=0.001 (i.e., the lifetime of a machine reaches
1000 time unit which is half of our observation period), which means the IC machines
are nearly always-on, the whole clients are infected very soon (in about 300 time units).

312 S. Yang et al.

(a) (b)

Fig. 6. Rose propagation with varied W: (a) in PSO scene; (b) in IC scene

Figure 7(b) shows the influence of the initially infected clients in the IC scene. It is
difficult to tell apart the four curves, which indicates that y0 is really trivial to the
propagation of Rose. It is reasonable because a flash drive is unable to contact others
directly. The real intermediate of Rose epidemic is the machines in all scenes. The y0
initially infected clients’ most important job is only bringing the virus into the
community.

(a) (b)

Fig. 7. Particular parameters in IC scene: (a) with varied λ; (b) with varied y0

Recovery existence: The models without recovery are able to describe the
propagating phase of Rose epidemic, while the models with recovery can be used to
represent the eliminating phase. Now we examine the difference between the two
kinds of models. Our current analysis is based on Formula (4), (6), (12) and (16).

Figure 8 shows the respective results in PSO and IC scenes. In Figure 8(a), the
recovery mechanism can greatly reduce the number of infected clients (limited to about
10% of the values when recovery is absent). It means in the PSO scene, the Rose
epidemic tends to be under control with sufficient recovery measures, e.g., the
immunization. Nevertheless, the result in Figure 8(b) indicates that it is difficult to
recover from Rose in the IC scene. The curves show that even with common

 Modeling Modern Social-Network-Based Epidemics: A Case Study of Rose 313

(a) (b)

Fig. 8. Model comparison in without and with recovery cases: (a) in PSO scene; (b) in IC scene

 immunization solutions, the epidemic can be disseminated quickly and widely. The
recovery mechanism is nearly of no use (the bottom curve in the figure). It implies that
in IC scene a passive recovery is quite insufficient against Rose.

5 Related Work

Many researchers have studied sorts of security issues in Internet, such as random
scanning worms [3]. Especially, they build some models which can introduce the
epidemics well. However, some researches have been transferring into epidemics in
social network, which happens in an offline manner. A most common concern among
these researches is the junk email issue.

Levi et al. [15] pointed out there are some risks in using emails, such as the bogus
email with someone else’s email name and address when SMTP servers do not check
sender authenticity. They proposed a digital signature and globally-known trustworthy
certification authority solution.

Newman et al. [16] proposed that the emails can compose a network to propagate
computer viruses. The network is formed in the way that viruses make use of computer
users’ email address books as a source for email addresses of new victims. Further, they
investigated empirically the structure of this network using data drawn from a large
computer installation, and discussed the implications of this structure for the
understanding and prevention of computer virus epidemics.

There are more studies on filtering junk emails [17][18]. However, as we introduced
above, a new security issue has emerged in the form of leveraging portable devices. The
representation of this kind of epidemics is Rose [7] and Panda [8]. In these epidemics,
people share machines and portable devices, thus form a social network and facilitate
the propagation of the epidemics.

6 Conclusion and Future Work

In this paper, we explore a kind of modern social network based epidemics which
leverages portable devices and Windows OS vulnerabilities. We take Rose epidemic
as a case study and analyze the models in three scenes of Rose’s propagation. We

314 S. Yang et al.

establish a system of differential equations with the help of Markov process and
conduct numerical analysis on them. The experiments on the model show that reactive
measures take effect in the print service office scene, however, it is difficult to
recovery from Rose epidemic in the Internet cafe scene. Also, simply increasing the
immune machines is ineffective. The most influential factors during the propagation
process are the amount of hosts and portable devices and the lifetime of Internet cafe
machines. The arrival rate of clients and the percentage of immune machines only
affect in the print service office scene.

There are some user behaviors we ignore in our modeling, such as right-clicks
(which can avoid to trigger the virus) and read-only drives. Also as mentioned, Panda
is a more raging epidemic compared with Rose, which relies on both the social
network and the Internet. Besides, it is worth studying that how to proactively defend
the non-Internet epidemics, since it is shown reactive solutions take little effect. We
leave them as our future work.

References

1. Blaster Worms, CERT Advisory CA-2003-20 W32/Blaster Worm,
http://www.cert.org/advisories/CA-2003-20.html

2. Code Red Worms, CAIDA Analysis of Code-Red,
http://www.caida.org/analysis/security/code-red/

3. Weaver, N., Staniford, S., Paxson, V.: Very fast containment of scanning worms. In: Proc.
of the 13th USENIX Security Symposium (2004)

4. Cohen, R., Havlin, S., Ben-Avraham, D.: Efficient Immunization Strategies for Computer
Networks and Populations. Physical Review Letters 91(24), 247–901 (2003)

5. Yang, S., Jin, H., Liao, X., Yao, H.: OnRipple: A Distributed Overlay Framework for
Targeted Immunization in Large-Scale Networks. In: Proc. of ACIS SNPD 2007, Qingdao,
China, July 30-August 2 (2007)

6. Scott, J.: Social Network Analysis: A Handbook, 2nd edn. Sage, London (2000)
7. Rose Epidemic, Rose Virus and Solution (in Chinese),

http://grid.hust.edu.cn/cgcl/rose.htm
8. Nimaya Worm, Worm.Nimaya (Panda) and Special Cleanup Tools (in Chinese),

http://it.rising.com.cn/Channels/Service/2006-
11/1163505486d38734.shtml

9. Ebel, H., Davidsen, J., Bornholdt, S.: Dynamics of Social Networks. Complexity 8(2), 24–
27 (2002)

10. Newman, M.E.J.: The Structure and Function of Complex Networks. SIAM Review 45(2),
167–256 (2003)

11. Pasteor-Satorras, R., Vespignani, A.: Epidemics and Immunization in Scale-Free
Networks. In: Handbook of Graphs and Networks: From the Genome to the Internet,
Wiley-VCH (2003)

12. Grabowskia, A., Kosiński, R.A.: The SIS Model of Epidemic Spreading in a Hierarchical
Social Network. Acta. Phys. Polon. B 36, 1579–1593 (2005)

13. Pastor-Satorras, R., Vespignani, A.: Epidemic Spreading in Scale-Free Networks. Physical
Review Letters 86(14), 3200 (2001)

14. Liu, Z., Hu, B.: Epidemic spreading in community networks. Europhys. Lett. 72(2), 315
(2005)

 Modeling Modern Social-Network-Based Epidemics: A Case Study of Rose 315

15. Levi, A., Koc, C.K.: Risks in Email Security. Communications of the ACM 44(8), 112–
112 (2001)

16. Newman, M.E.J., Forrest, S., Balthrop, J.: Email networks and the spread of computer
viruses. Phys. Rev. E 66(035101) (2002)

17. Takahashi, K., Abe, T., Kawashima, M.: Stopping Junk Email by Using Conditional ID
Technology: privango. NTT Technical Review 3(3), 52–56 (2005)

18. Oda, T., White, T.: Immunity from spam: an analysis of an artificial immune system for
junk email detection. In: Proc. of 4th International Conference on Artificial Immune
Systems, pp. 276–289 (2005)

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 316–330, 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Evaluation Study of the Effectiveness of Modeling
NASA Swarm-Based Exploration Missions with ASSL

Mike Hinchey1 and Emil Vassev2

1 Lero–the Irish Software Engineering Research Center, University of Limerick, Ireland
mike.hinchey@lero.ie

2 Concordia University, Montreal, Quebec, H3G 1M8, Canada
i_vassev@cse.concordia.ca

Abstract. We assess the effectiveness of using the Autonomic System
Specification Language (ASSL) to model ANTS (Autonomous Nano-Technology
Swarm), a NASA concept swarm-based exploration mission. In this study, we
draw upon our preliminary results of modeling some of the autonomic features of
ANTS, to discuss and evaluate the advantages and shortcomings of this approach.
Moreover, this paper, which documents the results of that study, identifies
challenges and aspects of ANTS that cannot be modeled with ASSL. Therefore,
an important contribution of this study is a critical analysis of ASSL as a
specification language designed specifically for autonomic systems.

Keywords: Autonomic computing, system modeling, specification language.

1 Introduction

Autonomic Computing (AC) [5] is an emerging field for developing complex large-
scale systems by transforming them into self-managing autonomic systems (ASs),
which are intrinsically intended to reduce complexity through automation. However,
the very complexity inherent in many systems that lend themselves well to AC can
often cause difficulty in designing that same AS. All of this emphasizes the need for
a specification language that allows for modeling and validation of such systems.
ASSL is a formal framework for modeling ASs that reveals a new specification style,
going far beyond the initial specifications pertaining to functional and interfacing
issues [1].

NASA exploration missions increasingly rely on the concepts of AC, exploiting
these to increase the survivability of remote missions, particularly when human
tending is not feasible. NASA swarm-based exploration missions [2, 3, 4] represent a
new class of concept missions based on swarm intelligence attained through
collective, cooperative interactions of nodes at all levels of the system. One such
mission is the concept Autonomous Nano-Technology Swarm (ANTS), in which “a
thousand picospacecraft, each weighing less than three pounds, will work
cooperatively to explore the asteroid belt” [2]. ANTS provides self-management to
meet the requirements of changing configurations and harsh external conditions.

 Modeling NASA Swarm-Based Exploration Missions with ASSL 317

Research Problem. In general, ANTS must afford autonomous operation without
intervention from Earth, while operating under harsh conditions in space. ANTS
poses many challenges related to its heterogeneous architecture, the need of
continuous re-planning, re-configuration, and re-optimization. Thus, considering the
hostile environment in which it must survive, we need to design and implement
ANTS as a system able to perform an arbitrary number of in-space exploration tasks
over multiple years and also able to autonomously manage itself, by integrating at
least the baseline AC self-management policies: self-configuring, self-healing, self-
optimizing and self-protecting [5].

Therefore, the need for prototyping, and formal modeling, which will aid in the
design and implementation ANTS, are becoming increasingly necessary and
important as the urgent need for high levels of assurance regarding correctness and
autonomic behavior persists in the ANTS requirements [2, 3, 4]. Moreover, an
evaluation of the effectiveness of the approach under consideration should be
performed in the context of a comprehensive study about ANTS, thus including
architecture, objectives, and operational environment.

Our Approach. In this research, we place emphasis on modeling ANTS’s autonomic
properties with ASSL and build a set of specification models for ANTS. Having
completed our initial steps of modeling ANTS with ASSL, we are able to evaluate the
effectiveness of our preliminary results, before further research will be undertaken.
The result of this evaluation study will allow us to improve the current specification
models and continue specifying incrementally. The latter also includes relating the
current specification models together into a whole and more-complete specification
model that will allow us to generate Java code, which will be the base for a functional
prototype of ANTS. The latter could be extremely useful when undertaking further
investigation based on practical results and will help to test the autonomic behavior
under simulated conditions. The goals of this paper can be stated as following:

1) to give a brief survey of the current ASSL specification models for ANTS; and
2) to present a thorough and critical analysis of the models under consideration.

The rest of this paper is organized as follows. In Section 2, we review related work
on the current formal approaches to ANTS and AC formal specification platforms.
As a background to the remaining sections, Section 3 provides a brief description of
ANTS, and Section 4 introduces the ASSL framework. Section 5 presents an
overview of the current and prospective ASSL specification models for ANTS. In
section 6, we provide an evaluation of using ASSL with the ANTS concept mission.
Our conclusions and future work directions are outlined in Section 7.

2 Related Work

A NASA developed formal approach, named R2D2C (Requirements to Design to
Code) is described in [9]. In this approach, system designers may write specifications
as scenarios in constrained (domain-specific) natural language, or in a range of other
notations (including UML use cases). These scenarios are then used to derive a
formal model that fulfills the requirements stated at the outset, and which is
subsequently used as a basis for code generation. R2D2C relies on a variety of formal

318 M. Hinchey and E. Vassev

methods to express the formal model under consideration. The latter can be used for
various types of analysis and investigation, and as the basis for fully formal
implementations as well as for use in automated test case generation.

IBM has developed a framework called Policy Management for AC (PMAC) [10]
that provides a standard model for the definition of policies and an environment for
the development of software objects that hold and evaluate policies. For writing and
storing policies, PMAC uses a declarative XML-based language called AC Policy
Language (ACPL) [10, 11]. A policy written in ACPL provides an XML specification
defining the following elements:

• condition — when a policy is to be applied;
• decision — observable behavior or desired outcome of a policy;
• result — a set of named and typed data values;
• action — invokes an operation;
• configuration profile — unifies result and action;
• business value — the relative priority of a policy;
• scope — the subject of the policy.

The basis of ACPL is the AC Expression Language (ACEL) [10, 11]. ACEL is an
XML-based language developed to describe conditions when a policy should be
applied to a managed system.

3 ANTS

The Autonomous Nano-Technology Swarm (ANTS) concept sub-mission PAM
(Prospecting Asteroids Mission) is a novel approach to asteroid belt resource
exploration. ANTS necessitates extremely high levels of autonomy, minimal
communication requirements with Earth, and a set of very small explorers with a few
consumables [2, 3]. These explorers forming the swarm are pico-class, low-power,
and low-weight spacecraft units, yet capable of operating as fully autonomous and
adaptable agents. The units in a swarm are able to interact with each other and self-
organize based on the emergent behavior of the simple interactions.

Fig. 1 depicts the ANTS concept mission. A transport spacecraft launched from
Earth toward the asteroid belt carries a laboratory that assembles the tiny spacecraft.
Once it reaches a certain point in space, where gravity forces are balanced, termed a
Lagrangian, the transport ship releases the assembled swarm, which will head for the
asteroid belt. Each spacecraft is equipped with a solar sail, thus it relies primarily on
power from the sun, using only tiny thrusters to navigate independently. Moreover,
each spacecraft also has onboard computation, artificial intelligence, and heuristics
systems for control at the individual and team levels.

As Fig. 1 shows, there are three classes of spacecraft — rulers, messengers and
workers. They form teams that explore particular asteroids in an ant colony analogy.
ANTS exhibits self-organization since there is no external force directing its behavior
and no single spacecraft unit has a global view of the intended macroscopic behavior.

 Modeling NASA Swarm-Based Exploration Missions with ASSL 319

Fig. 1. ANTS Mission Concept [2]

In general, a swarm consists of several sub-swarms, which are temporal groups
organized to perform a particular task. Each swarm group has a group leader (ruler),
one or more messengers, and a number of workers carrying a specialized instrument.
The messengers are needed to connect the team members when they cannot connect
directly, due to a long distance or a barrier.

4 ASSL

The Autonomic System Specification Language (ASSL) [1] is a framework that
provides a multi-tier structure for specifying ASs and targets at the generation of an
operational framework instance from the ASSL specification. In general, the
framework helps to design and generate an AC wrapper that embeds the components
of existing systems; i.e., it allows non-intrusive addition of self-management features
to existing systems. Moreover, the framework allows a top-down development
approach to ASs, where the generated framework instance will guide the designers to
the required components, and their interfaces, of the system under consideration.

ASSL Rationale. By its virtue, ASSL is generic and expressive enough to describe a
variety of ASs [6, 7]. The ASSL framework is defined through formalization tiers.
Over these tiers, ASSL provides a multi-tier specification model that is designed to be
scalable and exposes a judicious selection and configuration of infrastructure
elements and mechanisms needed by an AS. Thus, ASSL defines the latter with its
interaction protocol and AEs, where the ASSL tiers and their sub-tiers describe
different aspects of the AS under consideration. Fig. 2 depicts the ASSL specification
model, which decomposes an AS in two directions — first into levels of functional
abstraction, and second into functionally related sub-tiers. The first decomposition
presents the system from three different perspectives, three major tiers:

• a general and global AS perspective, where we define the general system rules,
architecture and global actions, events, and metrics applied in these rules;

320 M. Hinchey and E. Vassev

• a communication protocol perspective, where we define the means of communica-
tion between AEs within the AS under consideration. This is crucial, since ASSL
considers ASs as multi-agent systems;

• a unit-level perspective, where we define interacting sets of individual
computing elements (AEs) with their own behavior, which must be
synchronized with the rules from the global AS perspective.

Fig. 2. ASSL Tiers [1]

With the second decomposition, we decompose the major tiers into functionally related
sub-tiers, where new AS properties emerge at each sub-tier. This allows a very flexible
approach to specification. For example, we can start with a global understanding of the
system by specifying the service-level objectives and digging down to find the needed
metrics at the very detailed-level, or we can start working at the detailed levels and build
our system bottom-up, or we can work on both abstract and detailed-level sides by
constantly synchronizing their specification.

ASSL Tiers. The AS Tier specifies an AS in terms of service-level objectives (AS
SLO), self-management policies, actions, events, metrics, and architecture. The AS SLO
is a high-level form of behavioral specification that establishes system objectives such
as performance. The self-management policies could be the four self-management
policies (the so-called self-CHOP) of an AS: self-configuring, self-healing, self-
optimizing and self-protecting, or they could be others. The metrics constitute a set of
parameters and observables controllable by the AEs.

At the AS Interaction Protocol tier, the ASSL framework specifies an AS-level
interaction protocol (ASIP). ASIP is a public communication interface, expressed as
communication channels, communication functions and messages.

At the AE Tier, the ASSL formal model considers AEs to be analogous to software
agents able to manage their own behavior and their relationships with other AEs. At
this tier level, ASSL describes the individual AEs of an AS.

 Modeling NASA Swarm-Based Exploration Missions with ASSL 321

5 ASSL Specification Models for ANTS

In order to evaluate the effectiveness of modeling ANTS with ASSL, in the course of
this evaluation study, we partially specified some of the ANTS concept mission
autonomic properties. The following subsections present a critical analysis of the
current specification models together with prospective ASSL models for ANTS.

5.1 Current ASSL Models for ANTS

In our endeavor to specify ANTS with ASSL, we emphasized modeling ANTS self-
management policies of self-configuring, self-healing and self-scheduling. In
addition, we propose a specification model for the ANTS safety requirements. In
general, a complete specification of these autonomic properties requires a two-level
approach. They need to be specified at the individual spacecraft level (AE tier) and at
the level of the entire swarm (AS tier). To specify the ANTS safety requirements we
use the ASSL SLO structures (cf. Section 4). Moreover, to specify the self-
management policies we used four base ASSL elements:

• a self-management policy structure — which describes the self-management
policy under consideration. We use a set of fluents and mappings to specify
this policy [1]. With fluents we express specific situations, in which the policy
is interested, and with mappings we map those situations to actions. A fluent
has a timed duration, for example a state like “there is a lack of idle x-ray
workers”. When the system gets into that condition, the fluent is initiated.

• actions — a set of actions that can be undertaken by ANTS in response to
certain conditions, and according to that policy.

• events — a set of events that initiate fluents and are prompted by the actions
according to the policies.

• metrics — a set of metrics [1] needed by the events and actions.

Note that the specifications presented here are partial, because some of the aspects
that must be specified, or have been specified, are left out, due to space limitations.

5.1.1 Self-configuring
ANTS must support concurrent exploration and examination of hundreds of asteroids.
Thus, in order to coordinate science operations while simultaneously maximizing
resource utilization, ANTS should allow team formation “on the fly”, where the
ANTS resources must be configured at both the swarm and team (sub-swarm) levels.

Fig. 3 presents a partial specification of the self-configuring behavior of ANTS
when a new asteroid has been detected [6]. This policy specifies the “on the fly”
configuration of different teams of ANTS spacecraft units for asteroid exploration.

Shortcomings and Improvements. The model shown in Fig. 3 prompts reconfiguration
immediately after a new asteroid has been discovered. ANTS will explore the asteroid belt
where hundreds of thousands of asteroids are currently known, and the total number
ranges in the millions or more. Thus, while working on some asteroids, ANTS should
discover many new asteroids in a steady fashion, thus causing a constant reconfiguration
that will block the entire swarm. A possible solution is to add more guards to the

322 M. Hinchey and E. Vassev

Fig. 3. ANTS Self-Configuration

reconfigureANTS action to ensure that reconfiguration will take place only when there is a
sufficient number of idle workers and rulers to form a team that will explore the newly
discovered asteroid. This requires metrics to track the number of idle workers and rulers in
the swarm.

The proposed specification model specifies only the AS-level self-configuration.
For completeness, we need to specify the self-configuring policy for each ruler. This
will allow rulers to release idle workers, which then can participate in the formation
of new teams. A major deficiency here is the lack of support for cooperation among
the rulers to achieve better self-configuring. A possible solution will be to specify a
negotiation protocol [1] to allow negotiation among the rulers for idle workers.

The biggest challenge in this model is the reconfiguration of ANTS on the fly. Our
temporary solution is to delegate this task to further implementation. The ASSL IMPL
clause states for “further implementation” [1], which means that the ASSL framework
will generate an empty routine and its content should be implemented manually. To
solve this problem, we must investigate possible self-configuring mechanisms for
group formation and scheduling in accordance with the ANTS and environmental
conditions, and then specify the IMPL routine (cf. Fig. 3) with ASSL.

Self-configuring may also be required as the result of a failure or anomaly of some
sort. For example, a worker may be lost due to collision with an asteroid, failure of its
communication devices, or hardware failure. The loss of a worker may result in the
role of that worker being performed by another. Therefore, a great improvement of
this model will be the specification of self-configuration due to the loss of a worker.

5.1.2 Self-healing
In Fig. 4, we present a partial specification of the self-healing policy. In our approach,
we assume that each worker sends, on a regular basis, heartbeat messages to the ruler
[6]. The latter uses these messages to determine when a worker is not able to continue
its operation, due to a crash or malfunction in its communication device or instrument
(cf. Fig. 4).

Fig. 4 shows only fluents and mappings, these forming the specification model for
the self-healing policy. The key features of the proposed model are:

 Modeling NASA Swarm-Based Exploration Missions with ASSL 323

• an inCollision fluent that takes place when the worker crashes into an asteroid
or into another spacecraft, but it is still able to do self-checking operations;

• an inInstrumentBroken fluent that takes place when the self-checking operation
reports that the instrument is not operational anymore;

• an inHeartbeatNotification fluent that is initiated on a regular basis by a timed
event to send the heartbeat message to the ruler;

• a checkANTInstrument action that performs operational checking on the carried
instrument.

• a distanceToNearestObject metric that measures the distance to the nearest
object in space.

Fig. 4. ANTS Self-Healing

Shortcomings and Improvements. In our current model, we specify the self-healing
policy only from the worker’s viewpoint. For a complete specification, we need to
specify this policy also on the ruler’s side and for the entire swarm (AS tier).
Moreover, the instrument checking operation should check also for the instrument’s
performance; i.e., the instrument can be still operational but its performance can be
degraded. This will allow self-optimization, where low performing workers will be
replaced with high performing ones. In addition, in order to complete the model, we
also need to specify self-checking on the worker’s navigation and communication
systems, and self-testing of the worker’s computational unit.

Part of the self-healing process could be assigning a new worker with an identical
instrument to the team when a malfunctioning worker has been discovered. This will
prompt self-configuration. Moreover, as is stated in [2], a worker with a malfunctioning
instrument can be transformed into a ruler. This can be specified in the self-healing
policy as an increase in the total number of rulers and as a decrease in the total number
of workers. This can be handled by metrics conscious of the number of rulers and the
number of workers in the entire swarm and for each team.

Another shortcoming here is that the self-healing model does not take into
consideration recovery from mistakes, e.g., position displacement. A better specification
shall include all the possible mistakes per spacecraft and their appropriate recovery actions
or intrinsically specified recovery protocol [1].

324 M. Hinchey and E. Vassev

5.1.3 Self-scheduling
In the course of this research, we documented a formal approach to the self-
scheduling mechanism in ANTS and specified this mechanism as a self-management
policy from both the ruler’s and worker’s sides [7]. Because some of the tasks in
ANTS are time-constrained, in our approach we employed fault tolerance measures to
both value and timing violations. We used ASSL to model self-scheduling in ANTS
by capturing the timing and schedulability requirements, and by modeling scheduling
at group and individual level.

Modeling self-scheduling for ANTS [7] was the most complex exercise in the
course of this project. We specified self-scheduling as a distinct self-management
policy. Note, that ASSL allows specification of distinct self-management policies that
can be classified as neither one of the four self-CHOP policies [5]. We specified self-
scheduling as any regular policy - with a set of related fluents, events, actions, and
metrics. For more information on this model, the reader is asked to consult [7].

Some of the key fluents and actions used in this model are:

• inPlanning is a fluent that takes place when a request to the team to perform a
new task has been issued. The fluent is initiated when a new asteroid had been
discovered and terminated when the planning task had been done or when the
system had rejected the planning task.

• inScheduling is a fluent that resists until the ruler has successfully scheduled
the instrument tasks generated by a task planning action. The latter will
perform while there are enough idle workers in the system.

• inMonitoring is a fluent that performs monitoring over the workers, which
perform the instrument tasks, these generated by the inScheduling fluent.

• PlanTask is an IMPL routine [1] that plans the team task as a sequence of
instrument tasks.

• EvaluateWorkerPerformance is an IMPL routine that evaluates worker
performance and computes the same as a real number. The worker performance
is needed by the ruler to do load balancing and task scheduling.

Shortcomings and Improvements. A possible improvement could be the ASSL
specification of the planning task. In our current solution, we delegate this task for
further implementation (the PlanTask IMPL routine). To solve this problem, we must
investigate possible expressions of ANTS states, because the proposed model needs
the initial state and the goal state of the system.

A shortcoming is that the current model does not provide a full specification of the
heartbeat message. The latter is sent by the workers to notify the associated ruler
about their status. An improvement to this model will be a complete specification of
this message as a composite structure including the worker’s health status (damage in
%), the worker’s operational status (% of complete work) and its coordinates.

Moreover, the EvaluateWorkerPerformance IMPL routine can be specified with
ASSL. In the current model, we present performance as a real number, but it could be
specified with the ASSL structures. Any performance improvement initiative begins
with an analysis of the factors affecting performance. These possible factors can be
divided into two major groups: external and internal. Almost anything that affects
worker’s performance in any activity will fall into one of the above classifications.
Some possible external factors are space (environmental conditions), teammates, and

 Modeling NASA Swarm-Based Exploration Missions with ASSL 325

communication. Some possible internal factors are knowledge, instrument capacity,
health status etc. Although this will help to specify all the performance related factors,
we still need to figure out how to express the correlation between these factors, and
hence their impact on each other, thus resulting into a more precise estimation of their
global impact on worker’s performance. In addition, it is difficult to express the
environmental conditions and worker’s health and operational statuses, which are
needed for the computation of the worker’s performance. A possible solution is to
express them at two levels: first as composite data structures, and second as quality or
resource metrics derived from these structures.

Another shortcoming is the missing specification of how rulers and workers learn
about asteroids, and how they exchange information related to their learning.

5.1.4 Safety
In our approach, the system’s safety properties are defined in terms of SLO (service-
level objectives). In the course of this research, we formulated the ANTS safety
service-level objectives (Safety SLO) to ensure that both ANTS AS and ANTS AEs
contribute to the achievement of the ANTS global safety strategy [6].

NASA uses two software safety standards [12]. These standards define four
qualitative hazard severity levels: catastrophic, critical, marginal, and negligible. In
addition, four qualitative hazard probability levels are defined: probable, occasional,
remote, and improbable. We applied these standards to define the following hazards:

• a collision with the other spacecraft units or asteroids — we considered this as
catastrophic and probable (index 1);

• high-density magnetic fields — critical and occasional (index 2);
• high radiation-marginal and remote (index 4);
• a high energy level due to a solar eruption — critical and occasional (index 2);
• a loss of the communication with other units — critical and probable (index 1).

Fig. 5 shows the safety SLO specification for the ANTS AS, based on the hazard
model above. The Safety_RiskGroup1 SLO corresponds to the hazards with the risk
index 1, and the two other groups correspond to the risk index 2 and the risk index 4
respectively. The Safety_RiskGroup1 SLO has the highest priority and they must be
held in order to proceed to the Safety_RiskGroup2 and the Safety_RiskGroup4 SLO.

Fig. 5. ANTS Safety SLO Specification

326 M. Hinchey and E. Vassev

Shortcomings and Improvements. The proposed model does not specify the safety
SLO at the AE level. The latter are AE SLO (cf. Section 4.4) and could be expressed
as a sequence of AE-level Boolean expressions. A possibility is to express them with
the worker’s (AE-level) metrics and events. Therefore, for a complete ANTS safety
specification, we should specify these events and metrics at the AE tier and map them
to appropriate actions. Moreover, the events must be attached to the metrics under
consideration, which should detect hazard parameters such as the distance between
the ANTS spacecraft and another near space objects, the magnetic field density, the
radiation level, the solar energy level, the presence of a communication link, and the
bandwidth of the communication link.

5.2 Prospective ASSL Models for ANTS

5.2.1 Self-optimizing
Optimization of ANTS [2, 3] should be specified at both individual and swarm levels.
The former will be specified at the AS tier and the latter at the AE-tier, where we
should specify the self-optimization policy for rulers, workers, and messengers.

Self-optimization for rulers could be specified as a process of learning. For
example, rulers should learn about asteroids by collecting data on different types of
asteroids, thus allowing them to better determine the characteristics of different
asteroids that are of interest and perhaps asteroids that are difficult to orbit or get data
from, for example, an asteroid with a fast rotation that is difficult to focus on.

Self-optimization for messengers could be specified as a process of positioning to
balance the communications between the rulers and workers and perhaps adjusting its
position so it can send data back to Earth.

Self-optimization for workers could be specified as a process of learning about the
asteroids. This will allow workers to gain experience. Therefore, more experienced
workers should be able to automatically skip over asteroids that are not of interest,
thus saving time and optimizing the entire exploration process.

5.2.2 Self-protecting
The self-protecting policy should be specified to back up the safety SLO (cf. Section
5.1.4) again at both individual and swarm levels. Thus, the self-protecting behavior of
the team will be interrelated with the self-protecting behavior of the individual
members. The anticipated hazards will be the same as those used in the specification
of safety SLO. Therefore, appropriate actions and events should be specified to avoid
the safety hazards, e.g., actions that will prevent collisions or actions that will protect
against solar storms.

6 Overall Evaluation of ASSL

We consider ASSL as a highly expressive specification language, this being
supported by the multi-tier specification model (Section 4) and the constituted
hierarchical approach to specifying ASs where the low-level tiers express high-level
detail structures of AEs, and the high-level tiers express a general architectural view
of an AS. The ASSL specification models presented in Section 5.1 intrinsically
inherit all the advantages coming with the ASSL specification model.

 Modeling NASA Swarm-Based Exploration Missions with ASSL 327

The following sections describe some remarkable pros and cons common to all the
ASSL specification models for ANTS and ASSL in general.

6.1 Pros

Self-management Policies. The ASSL specification models for ANTS exposes the
self-management policies as a sort of state-transition machine where the states are
described as fluents, and the transitions are triggered by events. The advantages are
that the designers can see how the system will behave, and the specification is
expressed in a form that can be easily verified.

IMPL Routines. The IMPL routines (cf. Section 5.1.1 and Section 5.1.3) are a kind of
abstract actions, which require a complex ASSL specification, or which we do not
need to specify at all. The IMPL routines are a way of referring to the further
implementation; i.e., they are sort of specification stubs needed to complete the
specification model under consideration. In general, by using IMPL routines we
simplify that model. Note, that the IMPL routines still have to be specified with their
guards, ensures, and trigger clauses, which makes their utilization safe for the model.
Moreover, by using IMPL routines we simplify the specification model.

Metrics. The proposed models use metrics widely. Metrics in ASSL have a dual role.
First, they are observables that measure specific system quantities and can be
controlled by the AEs, and second, they give the software developer assurance that a
given set of values is sufficiently sensitive to track range errors [1]. A great advantage
of using ASSL metrics is that they are adaptive and can take into account the SLO.

Actions. The actions in the proposed models are specified following the el “design by
contract” principle [8] elaborated by ASSL. Therefore, the ASSL models for ANTS
benefit from the following advantages:

• a better understanding of the “pre-“ and postconditions on the models’ actions
and, more generally, of the self-management policies construction;

• a systematic approach to specifying bug-free actions;
• a technique for dealing with abnormal cases, leading to a safe and effective

ASSL construct for exception handling (cf. Fig. 3).

Communication Protocol. Some of the ASSL models for ANTS benefit from the
specification of a dedicated communication protocol. For example, for the self-
scheduling model we specify at the ASIP tier (cf. Section 4) a communication
protocol needed by the ruler and the workers to communicate and transfer data for the
needs of the self-scheduling policy. Thus, the models take advantages of special
communication functions, messages and channels.

Model Consistency. We are currently developing a Model Consistency Checker
(MCC) tool as part of the ASSL framework. MCC is a tool for automatic verification
and analysis of ASSL specification models. The consistency of the latter is checked at
two levels: consistency among the different system views (the major tiers AS, ASIP
and AE) and internal consistency among the sub-tiers. The ASSL models for ANTS
will be checked for consistency based on the ASSL grammar rules, on the ASSL type
system, and on a set of embedded in the models constraints.

328 M. Hinchey and E. Vassev

Multilevel SLO. As shown in the ANTS safety SLO specification, ASSL allows the
existence of more sophisticated SLO, i.e. SLO with multiple levels.

Code Generation. With ASSL, we are aiming at code generation. Hence, once
completed and consistent, the ASSL specification models will be translated to Java
code, which will form the skeleton of the ANTS autonomic prototype. The latter can
be used for further investigation and verification based on practical results.

Partial Specification. When formal methods are applied to a project for the first time,
experience has shown that it may be advisable to use them on a smaller scale, other
than the entire project. ASSL exposes a multi-tier specification model that allows
designers to specify partially the system under consideration. This allows designers to
evaluate their system design at the early stages of system development and better
understand what parts of the system will most benefit from modeling with ASSL.

Convenient Coding Style. Writing specifications with ASSL is analogous to writing
programs in a conventional programming language.

There are also other intrinsically pros like the ASSL logic-centric specification
style (in contrast to the data-centric specification style), inheritance (we used
AECLASS structures in the self-scheduling specification [7]), specifications written
in ASSL — an easy to read and cope with formal language [1], etc.

6.2 Cons

System State. The system states in ASSL are specified with fluents, these connecting
events and actions. A shortcoming in this approach is the lack of data presentation in
the fluents. Thus, our ASSL specification models cannot easily describe states related
to possible configurations of ANTS data. Instead, we need to use events related to
metrics that observe specific data, and which events initiate specific fluents.

Metrics. ASSL expresses the metrics with a set of metric threshold classes. A
threshold class determines ranges for valid/invalid metric values. Although this
approach may work well for a small number of metrics, it has two disadvantages.
First, many performance-related metrics are mutually dependent. Therefore,
dependencies among their threshold classes may likely exist as well. Second, some
metrics are of minor importance for self-management, but ASSL does not provide a
straightforward mechanism for grading them by importance. The major problem
stemming from these two factors is multicolinearity; i.e., it will be difficult to assess
the effect of the independent metric on the dependent one, due to the mutual
dependency among the metrics and due to the different level of importance. This
implies that introducing additional metrics into the model under consideration should
be done with great caution.

Modeling Managed Systems. ASSL helps to design and generate AC (autonomic
computing) wrappers in the form of ASs that embed the components of non-AC
systems. The latter are considered as managed systems (managed resources), those
controlled by the AS under consideration [1]. ASSL places emphasis on the AC
functionality and AS architecture, but not on the managed system functionality and
architecture. ASSL specifies only the interface needed to control the managed system
and does not provide any means for software design of that system.

 Modeling NASA Swarm-Based Exploration Missions with ASSL 329

Therefore, the proposed ASSL specification models for ANTS are an AC wrapper
that embeds ANTS and where each AE embeds an ANTS spacecraft unit. To
complete these models we need to specify, for each AE, the managed interface that
controls the associated ANTS spacecraft unit (worker, ruler, or messenger), but with
ASSL we cannot design this unit. Although, this could be considered as a
shortcoming, the clear distinction between the AC and non-AC parts of an AS allows
for much better understanding and handling of the system’s AC features.

Modeling Large-Scale Systems. Large-scale ASs can easily have over a hundred
thousand AEs. Specifying such ASs may require a very complex and labor-intensive
modeling process, because the self-management policies may require a complete
specification for each AE. Fortunately, ASSL provides class structures and
inheritance, which can help when specifying a group of similar AEs. For example,
ANTS consists of thousands of pico-spacecraft units, which requires the specification
of thousands of AEs, but the latter can be grouped by the instrument they are carrying.

Tool Support. The current tool support for ASSL (developed and under development)
is limited to editing and consistency checking. Moreover, we consider as a shortcoming
the lack of answers to the following questions, which require more investigation and
additional tool support allowing model checking:

• What is the quality of the proposed ASSL models?
• How can this quality be assessed and assured?

7 Conclusion and Future Work

This paper has described our evaluation study on the effectiveness of modeling ANTS
— a concept NASA swarm-based exploration mission, with ASSL. In the course of
this evaluation study, we have evaluated the current ASSL specification models for
ANTS’s self-configuring, self-healing, and self-scheduling policies, and for the
ANTS’s safety service-level objectives. This study has revealed the shortcomings of
and has made key recommendations to these models, thus to make them more
effective and complete. In addition, we have outlined two prospective ASSL models
for ANTS—self-optimizing and self-protecting, which together with the
recommended modifications in the currently existing models will help us to specify
ANTS as a whole system, and then successfully generate the code for the future
functional prototype of ANTS. Moreover, this study has helped us to define and
present some important common pros and cons of modeling ANTS (and autonomic
systems in general) with ASSL.

With this evaluation study, we have aimed at investigating the effectiveness of
ASSL when modeling complex autonomic systems like ANTS. Although far from a
thorough evaluation, we consider that the ASSL specification models for ANTS are
worthy of expanding and developing further. Despite the shortcomings presented
here, these models provide didactic evidence that ASSL is an appropriate means for
specifying AS, particularly ANTS. Moreover, the possibility to improve the
specification models demonstrates the high expressiveness of ASSL.

330 M. Hinchey and E. Vassev

Future research is concerned with further ANTS modeling with ASSL, this
including specification of the perspective models and applying in the current models
the recommended by the evaluation study modifications. Next will be code generation
and supplementary implementation of the functional prototype.

References

1. Vassev, E., Paquet, J.: ASSL — Autonomic System Specification Language. In: 31st
Annual IEEE/NASA Software Engineering Workshop (SEW-31), pp. 300–309. IEEE
Press, Baltimore (2007)

2. Truszkowski, W., Hinchey, M., Rash, J., Rouff, C.: NASA’s swarm missions: The
challenge of building autonomous software. IT Professional 6(5), 47–52 (2004)

3. Hinchey, M., Rash, J., Truszkowski, W., Rouff, C., Sterritt, R.: Autonomous and
Autonomic Swarms. In: 8th Biennial Conference on Real Time in Sweden (RTiS), SNART
(reprinted with permission from SERP 2005), Skövde, pp. 65–73 (2005)

4. Hinchey, M., Dai, Y., Rash, J., Truszkowski, W., Madhusoodan, M.: Bionic autonomic
nervous system and self-healing for NASA ANTS-like missions. In: The 2007 ACM
Symposium on Applied Computing (SAC 2007), pp. 90–96. ACM Press, Seoul (2007)

5. IBM Corporation: An architectural blueprint for autonomic computing, 4th edn. White
paper (2006)

6. Vassev, E., Hinchey, M., Paquet, J.: Towards an ASSL Specification Model for NASA
Swarm-Based Exploration Missions. In: 23rd Annual ACM Symposium on Applied
Computing (SAC 2008) – AC Track. ACM Press, Fortaleza (2008)

7. Vassev, E., Hinchey, M., Paquet, J.: A Self-Scheduling Model for NASA Swarm-Based
Exploration Missions using ASSL. In: 5th IEEE International Workshop on Engineering of
Autonomic and Autonomous Systems (EASe 2008), IEEE Computer Press, Belfast (2008)

8. Leavens, G.T., Cheon, Y.: Design by contract with JML. Technical report, Formal Systems
Laboratory (FSL) at UIUC (2006)

9. Hinchey, M.G., Rash, J.L., Rouff, C.A.: Requirements to design to code: Towards a fully
formal approach to automatic code generation. Technical Report TM-, -212774, NASA
Goddard Space Flight Center, Greenbelt (2005)

10. IBM Tivoli: Autonomic Computing Policy Language.Tutorial, IBM Corp. (2005)
11. Agrawal, D., et al.: Autonomic Computing Expressing Language. Tutorial, IBM Corp.

(2005)
12. NASA-STD-8719.13A: Software Safety. NASA Technical Standard (1997)

Distributed Performance Control in Organic Embedded
Systems

Steffen Stein and Rolf Ernst

Institute of Computer and Communication Network Engineering
Technical University of Braunschweig, Germany
{stein,ernst}@ida.ing.tu-bs.de

Abstract. This paper introduces compositional performance analysis into evolv-
ing organic systems. It presents a layered distributed framework that can follow
the platform and system evolution, continuously monitoring the effect of changes
in the application on real-time constraints. For that purpose, an existing method-
ology based on iterative compositional performance analysis was adapted to a
distributed algorithm. A buffering strategy is introduced to improve the algorithm
convergence to the same order as the existing centralized offline algorithm. The
effects are demonstrated in experiments.

1 Introduction

Organic Computing [10] has recently emerged as a new challenge in computer science.
As ubiquitous and embedded computing systems become increasingly powerful, the
development paradigms shift from implementing the technically possible to building
robust and easily usable systems. Organic computing systems tackle this challenge by
introducing adaptation, learning and self-configuration into complex computer systems.
Initiatives as IBM’s Autonomic Computing Initiative [8] or Intel’s Proactive Computing
[14] show that this is not only an academic endeavour.

Real-time systems constitute a notable share of todays embedded computers that
needs special attention. The Design of robust and fault-tolerant real-time systems is
a highly active research area, that has produced numerous approaches for evaluating
and increasing system robustness against selected fault scenarios. Existing approaches
use offline sensitivity analysis to optimize for robustness, meaning low sensitivity [6].
These methodologies can be applied throughout the design process of an embedded
system and yield systems that are highly robust against a selected set of disturbances in
the field.

Future embedded systems however, will undergo an evolution in both hard- and soft-
ware configuration during their lifetime. In the automotive industry, it is already com-
mon to update or add software components during the lifetime of a product, producing
a variety of software configurations in the field. To ensure functional and temporal cor-
rectness of all possible configurations, OEMs have to maintain a complex versioning
database and perform exhaustive testing to cover the whole configuration landscape.
This already constitutes a problem today, which will grow into a major challenge in the
future. Designing embedded systems robust and fault-tolerant will not ultimately solve

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 331–342, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

332 S. Stein and R. Ernst

this problem, as the evolution an embedded systems goes through during its lifetime
cannot be foreseen at design time.

Introducing self-*-properties into embedded system will enhance them by flexibility
for future updates in hard- or software, thus enabling evolution during their lifetime.
Key properties of evolving (embedded) systems are the ability to assess its current sit-
uation (self-awareness) and to reconfigure themselves (self-configuration) in order to
adapt to new situations as may be implied by software updates. For hard real-time sys-
tems, the challenge of implementing self-configuration and adaptation is not only to
ensure functional, but also temporal correctness of a system.

This paper will introduce on a concise problem statement, highlighting the timing-
related problems and challenges caused by the evolution of embedded real-time systems.
It will then present a control framework building on formal methods for performance
analysis capable of managing evolution while still ensuring temporal correctness of a
system utilizing established methodologies from literature. It will close with an exper-
imental examination of a prototype implementation the formal analysis engine.

The remainder of this paper is organized as follows. In the next section, we will in-
troduce related work to then go into detail on the challenges to be addressed by our
approach. The fourth section discusses the architecture of a performance control frame-
work, where the fifth section goes into detail on the analysis methodology used by our
framework. Before we conclude the paper, experimental results are presented.

2 Related Work

Designing adaptive, self-organizing real-time systems touches two highly active fields
of current research. For once, we need to consider current development in the field of
adaptive and fault-tolerant system design, but we also need to have a closer look into
research concerning the analysis of timing properties of a given real-time system.

Currently, fault-tolerant and resilient systems are built by introducing explicit redun-
dancy on a per computer level, such as TMR in avionics.

Later research has introduced redundancy not on a per computer, but on a per task
level. The RecoNets project [7] has designed a prototype system consisting of multiple
microcontrollers running a driver assistance application. It can survive failure of one
or more board, since each task is shadowed on another microcontroller. Checkpointing
techniques allow to seamlessly migrate execution of tasks from one microcontroller
to another in case a failure is detected. This approach, however does not take global
system timing issues into account when spawning shadow tasks at different points in
the system.

Recently, also design of robust and fault tolerant systems taking into account timing
properties has been tackled. In the AiS project [5] for example, common fault scenar-
ios are identified and analysed for their possible impact on system performance. For
selected scenarios, compensation mechanisms are implemented in the system, making
it robust against these faults.

In the context of the “Organic Computing” priority program of the German DFG
[10], many projects aim at building adaptive and self-configuring systems. This is usu-
ally achieved by extending the system by a control loop that observes the current
system state, evaluates it and performs control operations based on a knowledge base

Distributed Performance Control in Organic Embedded Systems 333

that may be constructed using reinforcement learning techniques such as Learning Clas-
sifier Systems [1]. These architectures are referred to as Observer/Controller Architec-
tures; a general discussion of which can be found in [4].

In addition to current research in fault-tolerant and resilient systems, research in for-
mal performance analysis of real-time systems has to be considered. In the past years,
several approaches to system level timing analysis have been proposed by different re-
search groups (i.e. [11,2,15,12]). System level timing analysis requires task-level worst-
case execution times as input data. Recent research has produced formal approaches to
derive these from a given task description [16].

For the purpose of this paper, we can divide the approaches to system level perfor-
mance analysis in two classes. Holistic approaches that try to use as much information
as possible in order to perform a tight analysis of the real-time behaviour of a given
system and compositional approaches that are capable of making abstractions at inter-
mediate analysis steps.

The first class of techniques yields tightly bounded results on the timing properties
of a given system at the prize of high computational complexity. Current approaches
use different semantics to describe their systems ranging from dataflow graphs [11] to
timed automata [9].

The second class, like the approaches proposed in [15] or [12] trade analysis accuracy
for computational complexity. Here, local analysis techniques are composed using load
descriptions of intermediate event streams.

Dynamic scheduling algorithms (i.e. [3]) adapt the scheduling parameters to a change
in load conditions. Global schedulers can cover several processors, but only following
a coherent homogeneous scheduling approach. In this sense, they are comparable to
holistic analysis approaches. Global scheduling algorithms also do not easily adapt to
changing hardware topologies and timing constraint types. Furthermore, they do not
take system properties such as end-to-end latencies into account.

3 Problem Formulation

For the means of this paper, we focus on loosely coupled distributed real-time systems
as can be found i.e. in cars. A real-time system can generally be described as a set of
processing units (processor, PU) interconnected by busses, onto which a set of timing
constrained applications is mapped. On each processor, a scheduling policy is applied,
if multiple tasks are mapped onto it.

In order to give a precise problem formulation, we will first present a terminology.
We consider a set of processors interconnected by buses (or other communication

channels) the system architecture or (hardware) platform. Onto this platform, a set of
applications is to be executed, each consisting of a set of tasks, whose relationships are
defined by a task graph. Furthermore, applications may be temporally constrained. In
this case, we speak of real-time applications. We consider an architecture together with
a set of (real-time) applications a (real-time) system. In order to completely describe
running real-time systems, a set of design parameters, such as task mappings, schedul-
ing parameters (i.e. priorities), or clock rates also need to be defined. We consider a
real-time system together with a complete set of parameters a system configuration. A
given configuration has a set of properties, such as application end-to-end latencies.

334 S. Stein and R. Ernst

Note that in each design stage, a different set of system parameters is available to the
designer. These will be referred to as available parameters. For the sake of simplicity,
we will use the term parameter equivalent to available parameter and account the pa-
rameters that are not available in the current design step to the set of properties. We
consider a given system configuration feasible, if all applications adhere to their timing
constraints.

The challenge addressed in this paper is to find a methodology for designing adap-
tive systems that not only ensure functional correctness, but also adhere to system-wide
temporal constraints such as end-to-end latencies. With respect to the terminology in-
troduced above, this means finding a methodology that enables a system to verify that
its current configuration is feasible, protect itself against transitions into infeasible con-
figurations and ultimately to reconfigure itself to reenter a feasible state. To achieve
the latter, the system must perform self-optimization using available parameters during
run-time. For our purposes, we assume scheduling parameters, such as priorization or
execution sequences to be available as is the case in most real-time kernels. Other pa-
rameters, such as task mapping can also be made available by implementing adequate
techniques from literature.

From the problem statement, one can deduce the necessary components of such a
framework. One needs a feasibility evaluator for a given system configuration, a sensor
component, that monitors the current system properties to be fed into the feasibility
evaluator, an optimization component in order to generate alternate configurations, as
well as an actuator component, that transitions the system from one configuration into
another. Furthermore, a framework for the interactions of these components must be
put into place.

The feasibility evaluator is the key component in the setup outlined above. It is de-
sirable to use an evaluator, that can not only decide on feasibility, but is also able to
compute fitness values for a given system configuration, so that it can also be used by
the optimization component.

Furthermore, since we are targeting hard real-time systems and want to give guar-
antees on real-time performance, the evaluator must use a formal approach to com-
puting the current system properties. As stated in the related work section, current
approaches solve this problem in diverse ways. In distributed organic real-time sys-
tems, non-centralized solutions to fitness evaluation of a current system configuration
that adapt to the system’s evolution are preferred over centralized ones, that introduce
single points of failure. Thus, only distributable approaches to performance verification
are considered for a suitable fitness evaluator.

The next sections will go into detail on the feasibility evaluator and give a closer
description of a framework capable of online performance control of an evolving real-
time system.

4 Performance Control Framework

We chose the methodology described in [12] as a driving technology for the evaluator
for several reasons. The compositional approach is strongly decoupled by efficiently pa-
rameterized event models and a distributed analysis algorithm following the approach
has already been presented in [13]. Furthermore, the computational load implied by

Distributed Performance Control in Organic Embedded Systems 335

Fig. 1. Framework Architecture

the analysis engine can easily be scaled by applying more or less sophisticated local
scheduling analysis techniques. For static priority scheduling this could mean taking
inter-event-correlations into account or simply performing a context-blind schedulabil-
ity analysis. Both approaches yield conservative results for local worst-case response
times, but with different accuracy. This opens the possibility to trade analysis accuracy
for computational load.

In order to build a system model compliant with the analysis approach, for each task,
a worst-case execution time, the activation scheme described by a standard event model
([12]), its communication partners, as well as the maximum communication volume
with each partner must be known. The same is true for scheduling policies on each
shared resource. We assume that these values are annotated to the task set, although
we do not go into detail on how these values are found. Possibilities range from formal
analysis [16], to extensive offline simulation and tracing. These methods are already
successfully applied for design-time system timing analysis by early adaptors of formal
methods e.g. in the automotive industry. In case of real-time constrained applications,
we assume that the applicable constraints are also annotated to the task set.

In order to enable adaptation in evolving real time systems, the feasibility evaluator
must be embedded in a framework for online real-time control. We divide the struc-
ture of the control framework into three major parts, an observer, a controller and an
analysis layer (see figure 1). The actual real-time systems is depicted as SuOC - the
“System under Observation and Control” [4]. An Observer continuously monitors the
systems behaviour to build and maintain an analysable model of the current config-
uration ("monitor component"). This model is analysed by the formal analysis layer.
The results of the analysis are in turn used by a Controller to monitor whether the sys-
tem complies with all temporal constraints. Thus, the analysis engine, together with
part of the Controller form the “feasibility evaluator". For continuous self-optimization,
the controller can use the analysis layer to perform optimizations based on the current
system model. If optimization results in a new (better) configuration, it is also the Con-
trollers task to inject the new configuration into the system ("actuator component").

Using this framework, one can implement self-awareness and self-protection with
respect to timing properties of the current system configuration in an embedded system.

336 S. Stein and R. Ernst

Self-awareness is achieved by maintaining a formally analysed model of the system
at all times, which can also be used to perform what-if analysis before admitting new
applications into the system resulting in self-protecting properties of the embedded sys-
tem. The next paragraphs elaborate on these concepts.

From the annotated information of each application, partial models corresponding to
the task set running on the local processor are generated by local observer instances.
As the key metrics needed for building the model are annotated to the task set, the
main challenge in generating a complete, distributed model is establishing connec-
tivity between the partial models as well as synthesizing models for the communica-
tion infrastructure from the distributed information about communication partners and
volumes.

Before an application is accepted to be mapped on the platform, the current system
model is extended by the application and tested for feasibility. If no constraints are vio-
lated in the model, the application may execute and is guaranteed to meet its constraints,
as long as no application in the system violates its timing properties as annotated. We
consider this construct a service contract between the system and the applications. This
construct ensures that the system will only transition from one provenly save config-
uration into the next provenly save configuration, thus introducing self-protection into
evolving real-time systems.

To ensure compliance with the service contracts, we propose to implement local
watchdogs monitoring execution times and communication volumes as well as activa-
tion frequencies. The observed values will continuously be compared with the infor-
mation forming the service contracts of the individual applications. In case a violation
of a service contract of an application is detected, a controller is notified, in order to
take immediate action. Possibilities range from shaping the load implied by the appli-
cation to the load defined in the service contract (thus achieving isolation from the other
applications), to stopping the application.

At the same time, the current system model is updated to reflect the newly observed
configuration. If the resulting system still complies with all given constraints, the appli-
cation may be readmitted into the system with an adapted service contract. Otherwise,
optimization algorithms may be used to find a feasible configuration.

As violations of service contracts may not only be caused by faulty application an-
notations, but also by component failures or degradation, the above techniques also
constitute a self-healing technique efficiently using slack present in the system to cope
with component faults and failures. The efficiency of this technique directly scales with
the power of the system optimization algorithms put into place.

Figure 2 shows a more detailed view on the architecture of the performance con-
trol framework. Distributed observer instances generate partial models of their local
environment that are communicated to local analysis engines. These engines, in turn
cooperate to perform a distributed system-wide performance analysis of the currently
observed system configuration as described in [13]. Clearly, actuator components also
need to be distributed over the whole system, in order to efficiently perform system
configuration transitions, thus, the controller must also be implemented distributedly.
The cooperating observers, controllers and analysis engines form a global performance
control plane.

Distributed Performance Control in Organic Embedded Systems 337

Fig. 2. Control Framework

5 Analysis Methodology

We use the analysis technique proposed by Richter et al [12] to form the global analysis
and evaluator plane. A general approach to distributed performance analysis using this
technique has been proposed in [13]. As this approach is discussed in the experimental
section, we give a short overview on the approach to distributed performance analysis
in the next paragraphs. First, the SymTA/S approach is introduced shortly, then the
extensions for distributed computation are outlined.

The compositional performance analysis methodology used for this project, solves
the global system-level performance verification problem by decomposing the system
into independently investigated components.

Each Processor or Bus is modeled as a component (computation, communication
resource) that may contain tasks. The possible I/O timing between the tasks (event
streams) is captured with event models that can efficiently be described by a small set
of parameters.

Input event models capture event patterns leading to task activations. These are used
to perform a local scheduling analysis of a resource to derive the local response times
as well as output event models.

These output event models are propagated to subsequent resources where they are
used, in turn, as input event models. In setups with cyclic dependencies the assumed
event streams become increasingly more generic. This procedure either converges (and
provides a conservative estimation of system properties such as jitter and latencies
which can be checked against given constraints), or the system’s schedulability can
not be guaranteed. Figure 5 shows the structure of the analysis loop as implemented in
the tool.

The analysis of a SymTA/S model can easily be distributed over multiple analy-
sis engines, as local scheduling analysis runs are strongly decoupled by event streams.
A method to connect partial models managed by multiple analysis engines has been

338 S. Stein and R. Ernst

Fig. 3. Analysis Loop

proposed in [13]. Here, it is proposed to tunnel event stream information between mul-
tiple analysis engines using existing communication infrastructure. Distributed analysis
control performs a local scheduling analysis on a resource as soon as an input event
stream changes. As a major advantage, this scheme is naturally adapted to the underly-
ing platform topology and can follow its evolution, as communication with other analy-
sis engines is only necessary, if mapped applications communicate over an existing link.
Thus, if communication between analysis engines is necessary, suitable infrastructure
must be present.

6 Experimental Study

In this section, we take a closer look at the expected computational load an embedded
SymTA/S analysis engine will impose on an embedded system. To do this, we imple-
mented the distributed control algorithm as proposed in [13] by extending the offline
tool. Performing schedulability analysis is the compute intensive part of the iteration
loop. Thus, the load imposed by an analysis engine scales with the number of schedula-
bility analysis runs needed to analyse a given system and the load imposed by a single
schedulability analysis run. Here, we want to assess the quality of distributed algorithm
steering the iteration. As a quality measure for a given analysis control algorithm, we
propose the convergence speed of the system wide performance analysis, as measured
by the number of schedulability analysis runs needed to analyse the properties of this
system. We consider a control algorithm optimal for a given problem, if it solves the
global fix-point iteration with a minimal number of schedulability analysis runs. This
also implies that an optimal control algorithm imposes the minimal load for a given
system and schedulability analysis algorithm implementation.

Distributed Performance Control in Organic Embedded Systems 339

For testing, we used an in-house system generator tool to generate analysable system
models. The generated systems contain a configurable amount of connected tasks an
resources. For testing purposes, we generated systems, scaling them in the number of
tasks, resources and length of task chains. To benchmark the distributed analysis control
mechanism, we analysed these systems using the distributed approach as well as the
centralized approach implemented in the tool. We assume that the centralized approach
performs close to optimal.

Fig. 4. Performance naive algorithm

The result of a first test can be seen in figure 4. It shows the number of schedulability
analysis runs needed for a complete system analysis over increasing system size. The
upper point cloud shows the performance of the naive algorithm as proposed in [13],
the lower one shows the performance of the offline algorithm as implemented in the
tool SymTA/S.

The distributed approach shows weak performance w.r.t. schedulability analysis runs
needed to analyse big systems. A closer look at possible causes reveals a system con-
figuration that requires an exponentially growing number of schedulability runs to be
analysed if using the distributed performance analysis control algorithm, where theoret-
ically a linear relationship suffices: Suppose a system consisting of a series of resources
that host a number of independent task chains as depicted in figure 5(a). The system
can be scaled in two dimensions - the number of resources and the number of parallel
task chains. The minimum number of schedulability analysis runs that is needed scales
linearly with the number of resources in the system, as each resource only needs to
be analysed once (from left to right). Increasing the number of parallel chains does not

340 S. Stein and R. Ernst

(a) naiv setup (b) insert buffers

Fig. 5. Chained System

have any effect on the number of schedulability analysis runs needed. The proposed dis-
tributed algorithm, however shows in part exponential behaviour with increasing num-
ber of parallel task chains (see figure 6), since each scheduling analysis on a resource
recalculates the output event models of all n tasks on it, and thus potentially triggers
renewed analysis on the succeeding resource n times, where one analysis run would be
sufficient.

Fig. 6. Performance in number of analysis runs

A solution to this problem is to introduce buffers between successing resources as
shown in figure 5(b) that collect the changes of incoming event streams resulting from
one schedulability analysis on a preceeding resource and release them in as on event
reducing the number of reanalysis events for the succeeding resource to one. This ap-
proach reduces the number of analysis runs needed to the theoretical minimum for this
class of systems.

We implemented the buffering scheme in our offline prototype and redid the exper-
iments outlined above. The results as shown in figure 7 show that this improvement to
the distributed analysis control already yields convergence speeds comparable to those
of the offline tool for the class of systems produced by our system generator. Inter-
estingly, the distributed control algorithm sometimes even outperforms the centralized
algorithm. This is due to the fact that the centralized algorithm does not exploit all

Distributed Performance Control in Organic Embedded Systems 341

Fig. 7. Performance with buffering

knowledge about the system model to precompute an optimal sequence of schedula-
bility analysis runs. This would imply computing a topological sort on the resource
graph. Thus the distributed algorithm can outperform the centralized one, if the acti-
vation scheme coincidentally follows a topological sort of the graph. The fact that the
experiments contained many of these cases may be due to the regular structure of the
generated system models.

Further improvements to both, the offline and the distributed control algorithms can
be made by first performing a topological sort of the resources in the system model, that
can be used to determine an order of local scheduling analysis runs, yielding an optimal
control algorithm.

7 Conclusion

In this paper, we introduced a framework that enables the implementation of organic
real-time systems. It is sensitive to changes in the hardware architecture as well as
software configuration of the system.

It is based on a layered architecture of observers and controllers and a distributed
analysis layer that evaluates the local analysis results and event model parameters. Ex-
periments with a prototype implementation of the analysis methodology to be used have
shown, that the computational load implied remains small.

The presented approach is suitable for implementing evolving hard real-time that
are capable of self-protection against transitions into non-feasible system states w.r.t.
timing properties.

342 S. Stein and R. Ernst

References

1. Bull, L., Kovacs, T.: Foundations of Learning Classifier Systems. Springer, Berlin (2005)
2. Ellebæk, J., Knudsen, K.S., Brekling, A., Hansen, M.R., Madsen, J.: MOVES - a tool for

modeling and verification of embedded systems. In: DATE 2007 University Booth (April
2007)

3. Stankovic, J.A., et al.: Feedback control scheduling in distributed real-time systems. In:
RTSS 2001: Proceedings of the 22nd IEEE Real-Time Systems Symposium (RTSS 2001),
Washington, DC, USA, p. 59. IEEE Computer Society Press, Los Alamitos (2001)

4. Branke, J., et al.: Organic computing - addressing complexity by controlled self-organization.
In: Margaria, T., Philippou, A., Steffen, a.B. (eds.) Proceedings of ISoLA 2006, Paphos,
Cyprus. IEEE-ISoLA, pp. 200–206 (November 2006)

5. Stechele, W., et al .: Concepts for autonomic integrated systems. In: edaWorkshop, Hannover,
Germany, June 19-20 (2007)

6. Hamann, A., Racu, R., Ernst, R.: A formal approach to robustness maximization of com-
plex heterogeneous embedded systems. In: International Conference on Hardware/Software
Codesing and System Synthesis (CODES+ISSS) (October 2006)

7. Haubelt, C., Koch, D., Teich, J.: Reconet: modeling and implementation of fault tolerant
distributed reconfigurable hardware. In: 16th Symposium on Integrated Circuits and Systems
Design (2003)

8. Horn, P.: Autonomic computing: Ibm’s perspective on the state of information technology
(October 2001), http://www.research.ibm.com/autonomic/manifesto/
autonomic_computing.pdf

9. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International Journal on Software
Tools for Technology Transfer (STTT) 1, 134–152 (1997)

10. Mueller-Schloer, C.: Organic computing - on the feasibility of controlled emergence. In:
IEEE/ACM/IFIP International Conference on Hardware/Software Codesing and System
Synthesis (CODES + ISSS 2004) (2004)

11. Poplavko, P., Basten, T., Bekooij, M., van Meerbergen, J., Mesman, B.: Task-level timing
models for guaranteed performance in multiprocessor networks-on-chip. In: CASES 2003:
Proceedings of the 2003 international conference on Compilers, architecture and synthesis
for embedded systems, pp. 63–72. ACM Press, New York (2003)

12. Richter, K.: Compositional Scheduling Analysis Using Standard Event Models. PhD thesis,
Technical University of Braunschweig, Department of Electrical Engineering and Informa-
tion Technology (2004)

13. Stein, S., Hamann, A., Ernst, R.: Real-time property verification in organic computing sys-
tems. In: 2nd IEEE International Symposium on Leveraging Applications of Formal Meth-
ods, Verification and Validation (ISoLA) (November 2006)

14. Tennenhouse, D.: Proactive computing. Commun. ACM 43(5), 43–50 (2000)
15. Thiele, L., Chakraborty, S., Naedele, M.: Real-time calculus for scheduling hard real-time

systems. In: International Symposiumon Circuits and Systems (ISCAS) (2000)
16. Wilhelm, R., et al.: The worst-case execution time problem — overview of methods and

survey of tools. Technical report, Malardalen Real-Time Research Centre, Malardalen Uni-
versity (March 2007)

http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf
http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf

An Operating System Architecture for Organic

Computing in Embedded Real-Time Systems

Florian Kluge, Jörg Mische, Sascha Uhrig, and Theo Ungerer

Department of Computer Science - University of Augsburg
86159 Augsburg, Germany

{kluge,mische,uhrig,ungerer}@informatik.uni-augsburg.de

Abstract. To overcome the rising complexity of computing systems, the
paradigms of Autonomic Computing and Organic Computing have been
introduced. By using an observer/controller architecture, Organic Com-
puting aims to make embedded systems more life-like by providing them
with so-called Self-X properties. Embedded real-time systems can also
gain great benefit from these techniques. In this paper, we show what
new requirements arise when introducing Autonomic/Organic Comput-
ing into the area of real-time applications. These requirements flow into
the architecture of the real-time operating system CAROS. CAROS com-
bines several concepts to provide a solid base for the implementation of
Self-X techniques in embedded real-time systems. We show the practi-
cability of our concepts with a prototypical implementation on the mul-
tithreaded CarCore microcontroller.

1 Introduction

Today, embedded systems are constantly growing, and establishing whole net-
works of Embedded Control Units (ECUs). For example, a car can contain over
70 ECUs fulfilling most different duties. With increasing size these networks
become harder if not impossible to manage. The paradigms of Autonomic and
Organic Computing promise to handle this topic.

In 2001 IBM introduced Autonomic Computing (AC) [1, 2] to overcome the
problem of increasing complexity of computing systems. AC focuses on self-
management of large server systems by implementing the so-called Self-X prop-
erties of self-configuration, self-healing, self-optimisation and self-protection (also
referred to as “Self-CHOP”). To implement such self-management techniques,
Autonomic Managers are proposed that control the system at runtime by a closed
control loop of Monitoring, Analysis, Planning, and Execution (MAPE cycle).

A few years later, Organic Computing (OC) [3] took up the Self-X concepts,
focusing on distributed embedded systems. In general, AC/OC aspire to the de-
velopment of robust, flexible and highly adaptive computing systems. To support
the Self-X properties, Richter et al. [4] developed a generic observer/controller
architecture similar to the MAPE cycle. A System under Observation/Control
(SuOC) is embedded into the control loop of an observer/controller. The ob-
server monitors relevant system parameters and analyses these data. It can also

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 343–357, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

344 F. Kluge et al.

deduce predictions of possible future behaviour by comparing current observa-
tions with past ones. The controller uses this information to infer appropriate
actions. This derivation is influenced by user-defined objectives and uses simula-
tion and adaptation models. Execution of the derived actions closes the control
loop.

Whereas the SuOC is able to run for itself, the surrounding control loop
will improve its operation by means of the Self-X properties. Thereby, the ob-
server/controller can run both in a centralised or distributed way, depending on
the system it is applied to.

Throughout this paper we will use the term Organic Manager to subsume the
observer/controller architecture of Organic Computing respectively the MAPE
control cycle of Autonomic Computing.

Operating system requirements that arise from AC/OC are (1) the exten-
sive monitoring of system parameters and running application threads and (2)
a concept to implement the Organic Manager without disturbing application
thread execution. Self-healing and self-optimisation require (3) the ability to
move tasks between different control units. Most of these functionalities can be
implemented by means of helper threads, which run in parallel to the real-time
applications. Thereby, they support the operation of the real-time applications
without disturbing their timing behaviour.

There is also another point where operation of automotive networks can be
improved. In the traditional way of implementation, a manufacturer supplies a
device with its microcontroller and software in-a-box, with nearly no possibilities
for changes due to warranty reasons. Especially safety-critical and real-time de-
vices are affected. Microcontrollers in such devices usually have free processing
time, which cannot be utilised.

With our approach we want to provide a solution to make the free processing
time available to other applications without influencing the safety-critical or hard
real-time tasks. Thereby, it can happen that two or more hard real-time tasks
need to be executed on one device. Additionally, these tasks could be developed
by different manufacturers. Hence, we need a system, hardware and software,
that allows hard real-time threads to run in full isolation from each other and
potential non real-time threads like helper threads.

But, hard real-time systems must not miss any deadline. Therefore, the
analysability and predictability of the timing behaviour of all real-time tasks
within one system is an essential requirement. This point concerns not only the
application itself but also the operating system services it is using.

In this paper we present the architecture of the real-time operating sys-
tem CAROS (Connective Autonomic Realtime Operating System). CAROS
is aimed to combine the requirements of hard real-time systems and the poten-
tials of AC/OC. Therefore, we design CAROS itself as a System under Obser-
vation/Control [4]. CAROS extends operating system techniques for the use
in an “organic environment”. Additionally, CAROS targets networked high-
performance embedded microcontrollers.

An Operating System Architecture for Organic Computing 345

CAROS supports extensive and non-intrusive monitoring, an Organic Man-
ager implementation by helper threads, and task migration concepts. All these
capabilities can be implemented without disturbing the timing behaviour of hard
real-time application threads running in parallel.

This paper is organised as follows: Section 2 gives an overview of work related
to real-time operating systems and Autonomic/Organic Computing (AC/OC).
In section 3 we state the requirements arising from the Organic Computing
paradigm for a real-time operating system. Section 4 presents the architecture
we developed to accomplish these requirements. In section 5 we describe a pro-
totypical implementation on the CarCore Processor. In section 6, we show how
AC/OC implementations will benefit from the proposed operating system archi-
tecture and section 7 concludes the paper.

2 Related Work

Over the last years, research in the area of Organic Computing was mainly pro-
moted within the German Science Foundation Priority Program “Organic Com-
puting” [5]. Projects here focus on systems of small networked components like
sensor networks. Although, real-time systems currently only play an underpart
within this program. The project DoDOrg [6] investigates a digital organism for
real-time applications. This project aims at the use of reconfigurable hardware
to implement virtual organs that can handle specific tasks.

The work of Rammig et al. [7] tends at the development of a distributed OS
for real-time applications. It implements techniques for self-optimisation and
self-configuration. The latter is also performed with the help of reconfigurable
hardware.

These projects have similar aims as the CAROS architecture. However, the
mentioned approaches differ strongly from our concept, as they make use of
reconfigurable hardware, whereas we aim at high-performance embedded micro-
controllers.

In the area of commercial real-time operating systems, the concepts of Or-
ganic Computing, when regarded at all, are currently only addressed marginally.
An example would be QNX Neutrino [8], which provides a micro-kernel-based
implementation of the POSIX standard (IEEE Std. 1003.1, [9]). The current
version includes an instrumented kernel and support for self-healing systems,
but does not further address the ideas of Organic Computing.

Helper threads have been proposed for future high-end multithreaded proces-
sors by rapidly spawning threads that are executed simultaneously to the main
thread thus helping the processor to speed up the execution of the single main
thread. Such helper threads are proposed for tasks like branch prediction [10],
prediction of accessed memory addresses [11, 12, 13], exception handling [14, 15]
and accelerated execution of loops [16]. In the embedded Java microcontrollers
Komodo [17] and jamuth [18] helper threads are also used for a real-time capa-
ble garbage collection and the dynamic preloading of software updates of running

346 F. Kluge et al.

hard real-time threads [19]. Also, a helper thread can be used to accelerate task
switching in the embedded multithreaded Infineon TriCore 2 microcontroller [20].

The design of CAROS extends the helper-thread concept by another applica-
tion. Helper threads, running in the “timing shadow” of real-time applications,
here will be used as containers for Organic Management functionalities.

3 Requirements

In this section, we state the minimum requirements for a real-time operating
system, and show how these must be extended for the support of the ob-
server/controller architecture of Organic Computing.

A Real-Time Operating System (RTOS) typically fulfils the following prop-
erties [21]:

1. A RTOS is multi-threaded and preemptible.
2. The notion of thread priority exists.
3. The OS supports predictable thread synchronisation mechanisms. These in-

clude means to prevent priority inversion and/or deadlocks.
4. The OS behaviour should be known, esp. interrupt latencies, maximum exe-

cution time of system calls (must be bounded, predictable, and independent
of objects in the system)

These requirements are fulfilled by most current RTOS implementations. How-
ever, the introduction of AC/OC by means of helper threads imposes some fur-
ther requirements. Our concept extends requirement 2:

2’. The OS allows to run additional applications in fully temporal isolation from
the hard real-time threads.

Furthermore, the observer/controller architecture needs the following require-
ments to be fulfilled:

5. Monitoring of system parameters and running threads is required to provide
detailed runtime information.

6. The OS provides points to intervene into the operation of the system.
7. A concept for mobile code allows the migration of applications between

nodes.
8. Safety and security measures ensure the proper operation of the remaining

system, even if a failure occurs in one application.

Figure 1 summarises the requirements and how they are classified into the do-
mains of Real-Time and Autonomic/Organic Computing. On this basis, we are
now able to propose an OS architecture that fulfils all the afore mentioned re-
quirements.

An Operating System Architecture for Organic Computing 347

Isolation
of Threads

Helper
Threads

Measures

Monitoring
Support

Mobile
Code

Guaranteed
Timing
Behaviour

Fig. 1. Requirements for an Organic Real-
Time Operating System

Organic Manager (Observer / Controller)

Security Manager

Dynamic

Memory

Management

Node

Thread/

Application

Thread/

Application

Thread/

Application

Thread/

Application

Thread/

Application

Middleware / Application

Resource

Management

Device

Drivers

Device

Drivers

Device

Drivers

Device

Drivers

Device

Drivers

Runtime Linker

Program ModulesProgram ModulesProgram ModulesProgram ModulesProgram Modules

C
A

R
O

S
µ

K
e
rn

e
l

S
u
O

C

Physical ECU

Memory Hardware DevicesProcessor

Thread

Management

RT-Scheduling

Thread

Synchronisation

Fig. 2. Architecture of CAROS

4 Architectural Design

4.1 Overview

The design of the CAROS architecture follows the microkernel principles. The
OS kernel comprises only the most necessary functionalities, like the scheduler,
resource management etc., whereas all additional functions run outside the kernel
as separate components, using only a predefined kernel interface. Thus, such
modules can be exchanged without impairing other parts of the system. Also,
a failure within one module leads not necessarily to the failure of the complete
system. Figure 2 gives an overview of the proposed architecture.

Two of the core functionalities are the Thread Management and the Resource
Management, like in any other RTOS. To permit code migration required by self-
optimisation and self-healing techniques, the kernel is extended by a Dynamic
Memory Management and a Runtime Linker. To ensure real-time operation of
applications, CAROS strongly utilises pre-allocation techniques. Resources are
allocated to a new application as far as possible before it starts real-time opera-
tion. A concept for Security Management completes the architecture. Monitoring
points are available throughout all OS modules. The Organic Manager itself is
not part of the operating system, but its implementation by helper threads is
supported by CAROS (see below). The next sections will describe the five indi-
vidual kernel parts in more detail.

4.2 Thread Management

Scheduler. The Scheduler is the most important part of the Thread Man-
agement. It implements a real-time capable scheduling scheme. However, this
scheduling scheme must allow to run non real-time threads in parallel to real-
time application(s). Hence, we propose the adoption of the Guaranteed Percent-
age (GP) scheduling [22], where each thread is guaranteed a constant fraction
of processing time during a repeating interval. Figure 3 illustrates the proposed
scheduling scheme. During one scheduling period, first the real-time threads get

348 F. Kluge et al.

RT-App 1 RT-App 2 RT-App 3 HT-App 1 HT-App 2 HT-App 3

25 % 20 % 15 % 15 % 10 % 15 %

100 %

Assigned Time

Complete

Processing Time

Fig. 3. The adapted GP Scheduling Scheme (RT: Real-Time; HT: non real-time Helper
Thread)

their share of processing time. This share depends on the WCET values of the
applications’ tasks that run within the thread slots. Afterwards, the remaining
processing time is divided among other non real-time threads e.g. accordant to
a weighted round robin scheme.

As CAROS must be able to accept new applications at runtime whose timing
constraints are known just then, the scheduler must provide information about
the current load of the processor. Using the adopted GP scheduling, the scheduler
can easily provide this information. Thus the Thread Management can decide
whether it is possible to start a new application on the node. This information
can also be used as monitoring data for an Organic Manager that runs as a
helper thread in the “timing shadow” of the real-time application(s).

Helper Threads. Helper threads are not allowed to disturb the timing be-
haviour of the running hard real-time threads. On a sequential processor they
may run in the idle times of the hard real-time threads, but must be preempted
with fixed overhead as soon as a hard real-time thread is triggered. Thus, they
do not run concurrent to a hard real-time thread and cannot interrupt the ob-
served threads. On a multithreaded processor, helper threads can be executed
in own thread slots concurrent to the hard real-time thread, provided that a
hardware-based real-time scheduler is available. Helper threads can also run in
separate cores of a multicore processor.

Synchronisation. Components for thread synchronisation are provided by the
Thread Management module. As the synchronisation mechanisms usually must
intervene deeply into the threads, they are directly managed by the Thread
Management. The employed mechanisms are apt for the use in real-time envi-
ronments.

4.3 Resource Management

Features. Management of hardware resources is also an important task of an
operating system. Because of the microkernel concept, the CAROS kernel only
manages the most essential system resources directly, i.e. processing time and
memory. Other resources, especially peripheral devices are managed through a
dedicated Resource Management. Access to these resources is done through de-
vice drivers. Following the microkernel principles, these drivers must not be exe-
cuted within the kernel, but in userspace. This concerns the generic read/write
operations as well as driver-specific I/O operations. However, access to the de-
vice (open/close operations) and configuration of the driver (ioctl operation)
is granted by the security manager running within the kernel.

An Operating System Architecture for Organic Computing 349

The problem of concurrent use of devices can be reduced to thread synchro-
nisation for which the Thread Manager already provides solutions. However, the
Resource Management may extend these mechanisms or implement more apt
solutions.

The device drivers need not be linked statically to the kernel, instead they can
be loaded at bootup or runtime using the Runtime Linker (see 4.5 below). With
this concept, it is also possible to exchange or update a device driver during
runtime.

Following these criteria, the Resource Manager forms an important base for
Self-Configuration techniques. The ability to exchange drivers at runtime allows
a high and flexible adaptation of the system through an organic manager.

The drivers themselves must provide at least rudimentary status information
for the operating system about the functional state of the corresponding devices.
For the support of an organic management, the drivers may implement more
sophisticated monitors.

Real-Time Considerations. Generally, there is no limitation on the number
of drivers supported by the resource manager. However, this leads inevitably to
the use of dynamic data structures within the manager, which cannot guarantee
a bounded timing behaviour for device accesses. For the use in real-time ap-
plications, the resource management must also provide constant-time-handlers.
The number of devices an application uses is limited and known in advance. So
the handlers for these devices can be arranged during the preparation of the
application’s execution environment during bootup (for statically deployed ap-
plications) respectively subsequent to the linking process (for dynamically loaded
application). Thus, device accesses can be performed in constant time. The de-
vice access for non-real-time applications can still be done over a dynamic name
resolution or similar.

4.4 Dynamic Memory Management

The memory management must allow a separation of the running threads. At
the same time it should enhance the possibilities for real-time applications, and
therefore must be real-time capable itself. We suggest the introduction of a two-
layered memory management, and the use of memory pre-allocation. On the
first layer, the Node Memory Management allocates large blocks of memory for
the individual threads. As this allocation must be guarded by locks to keep
the overall state of the memory consistent, here blocking of threads can occur.
However, this allocation is usually only done before the relating thread is started,
so influences on the real-time behaviour will not occur. Also, the impacts of this
blocking are reduced through the real-time capable synchronisation techniques of
the thread management. On the second layer, the Thread Memory Management
allocates memory to the program running in the specific thread. This can be
done without locking, as the memory is taken from the blocks allocated in the
first stage exclusively for the thread.

350 F. Kluge et al.

Another advantage of such a two-layered architecture can be seen in figure 4.
When working with several threads, it is necessary to keep track which memory
block belongs to which thread. As shown in 4(a), this usually would be done by
putting these blocks into a linked list, using the list pointer (LP) fields. Using
the conventional (one-layered) allocation scheme, each block must have such a
pointer. Thus, management overhead will be increased strongly. When using the
proposed two-layered architecture, the list pointers need only be added to the
large blocks allocated on node stage, as shown in 4(b). As can be seen, even in
this rather simple example some memory is saved. Thus, the higher expenses for
keeping two layers of management data will be weighed up.

M
D

L
P

M
D

L
P

M
D

L
P

M
D

L
P

M
D

L
P

M
D

L
P

Thread A

Thread B

(a) Conventional memory management;
the memory blocks of threads A and B
are highly mixed

M
D

M
D

M
D

M
D

M
D

M
D

M
D

L
P

M
D

L
P

Free!
Thread A

Thread B

(b) Two-stage memory management, the
outer boxes display the blocks of the
global memory management; the threads’
memory is kept separated

Fig. 4. Example layout of used memory with two threads; MD: Management data of
the memory allocator, LP: List Pointers to keep track of thread’s memory

The two-layered architecture also facilitates cleaning up after a thread termi-
nation, as only few large blocks need to be deallocated by the node management.
There is no need to take care of the internal structure of these blocks. In the
single-layered case, instead, each small block would need its own deallocation
call, prolonging the time until the memory could be reused.

On the thread level, the possibility to use various implementations of memory
allocators unfolds. If a real-time application requires the flexibility of dynamic
storage allocation, a real-time capable allocator with bounded execution time
can be used. For non-real-time applications, efficiency of memory usage can be
improved by a best-fit allocator. The thread level allocation runs in userspace.
This saves time especially during the real-time allocation by avoiding costly
system calls.

A high locality of dynamic memory allocation will be gained by the two-
layered architecture. Especially the node memory management can be further
improved if the underlying hardware provides a memory management unit. The
availability of a memory protection system would raise the security of the whole
system, because it would allow nearly a full isolation of threads on the memory
level.

By adding specialised monitors to the two stages of storage allocation, the
proposed two-layer architecture allows a very fine-grained monitoring of mem-
ory usage and fragmentation. Thus, an Organic Manager is enabled to detect
memory contention very early and to react in time.

An Operating System Architecture for Organic Computing 351

4.5 Runtime Linker

A Runtime Linker represents the premise for loading program modules at run-
time. It is also utilised by the Resource Management to load device drivers.
Therefore, it must provide a framework for module and driver development. The
compiled code of such modules usually contains symbolic references to functions
of the operating system or of other modules. These references are resolved by
the runtime linker when loading the module on a specific node.

Due to these symbolic references, the linking process itself is not real-time
capable. Instead, the time for linking a module depends strongly on the number
and kind of symbolic references it contains and the data structures used for
resolution. But the linker can still be used to improve real-time operation of a
system by running a linking process as a helper thread [19].

For reasons of safety and security, the operating system must support a con-
cept of namespaces. Symbols provided by modules must not be available to all
applications on the host. Instead, access to these symbols is restricted to the
application that loaded the module in the first place. However, the application
is allowed to grant access to the module to other, selected applications.

Furthermore, the runtime linker has to provide a way to remove modules from
a running system again (module unloading). Particularly, if a module is replaced
by an updated version, the memory of the old version should be freed. Also, if an
application is migrated to another ECU, not only its runtime memory must be
freed, but also the process image usually has to be removed. The runtime linker
hereby must ensure consistency of the loaded module. This is notably critical, if
a module is to be removed that does not represent an application, but is rather
used as a library to support other modules.

The placement of the runtime linker inside the kernelspace may not seem ob-
vious in the first place. But as it has high responsibility regarding the migration
of applications, it must strongly interact with the Thread Management in some
places and is also important for the Resource Management for loading device
drivers.

4.6 Security Management

Especially the uncontrolled start of new applications on an ECU can have heavy
impact on the system’s behaviour. The same applies for an excessive or uncon-
trolled use of system memory.

To prevent such situations, a Security Management provides several stages
of privileges. If an operating system service is invoked, the OS first checks the
calling application’s privileges before executing the service. The Security Man-
ager also provides a coherent scheme for propagation of privileges, e.g. if an
application starts another one.

Another point of security and safety regards the communication with other
nodes. The kernel itself does not provide a communication module. Thus, it also
cannot directly support secure communication with other ECUs. However, it
is possible to build in support for communication and security modules loaded

352 F. Kluge et al.

by the runtime linker. Furthermore, a Security Manager can provide its own
encryption functions, which can be regarded as “trusted” functions in contrast
to dynamically loaded modules from unknown sources.

5 Prototypical Implementation

A first prototypical implementation of CAROS was performed on the simul-
taneous multithreaded (SMT) CarCore processor. SMT allows to run helper
threads concurrently to real-time threads in temporal isolation guaranteed by
the hardware-based real-time scheduler of the CarCore. In the following sections,
we describe shortly the architecture of the CarCore, and present our experiences
with CAROS.

5.1 The CarCore Processor

The CarCore (see fig. 5) is the SMT processor core of the CAR-SoC1 [23]. It
is binary compatible to the Infineon TriCore architecture [24]. Its back-end is
similar to the TriCore, consisting of two pipelines each with Decode, Execute,
and Write Back stages. The preceding front-end stages (Instruction Fetch and
Schedule) are shared between both pipelines. Scheduling of threads is separated
into two layers, namely the Schedule stage within the pipeline, and a dedicated
Thread Manager (not to be confused with CAROS’ Thread Management).

Instructions are issued in-order and two instructions of a thread can be issued
in parallel, if an integer instruction is directly followed by an address instruction.
Otherwise, the other pipeline is filled by an instruction of another thread.

Fig. 5. Architecture of the CarCore Processor

1 Connective Autonomic Real-time System-on-Chip.

An Operating System Architecture for Organic Computing 353

The Schedule stage implements the First Scheduling Layer. It predecodes the
instructions depending on the priority of the thread slots and assigns them to the
appropriate pipelines. In case of latencies, instructions of the next prior thread
are selected. The priorities of the thread slots are assigned by an external signal
from the hardware Thread Manager, which implements the Second Scheduling
Layer. The Thread Manager allows to run an arbitrary number of threads man-
aged completely by hardware, thus reducing software overhead. It implements a
Guaranteed IPC Scheduling, which works similar to the Guaranteed Percentage
Scheduling (see section 4.2). Here, one or more real-time threads are guaranteed
a specific IPC rate within a predefined period each. The remaining process-
ing time in each period is distributed among non real-time threads (e.g. helper
threads). This scheduling technique is real-time capable. It is described in more
detail in [25]. The multithreaded hardware architecture and the special schedul-
ing technique enable us to have non real-time threads running in parallel to hard
real-time threads, but without influencing their real-time behaviour.

The binary compatibility to the Infineon TriCore architecture enables us to
use COTS development tools, like the TriCore GCC from HighTec [26], instead
of having to write our own compiler.

5.2 Implementation of CAROS

As mentioned, the CarCore provides a hardware-based, real-time capable thread
scheduler. On OS level, scheduling functionality is reduced to managing the
hardware thread slots and ensuring consistency of all scheduling parameters.
Especially the helper thread concept can be implemented very easily. However,
to ensure the real-time behaviour, we limited the number of real-time threads
as described in 4.2. The Thread Manager supports dependency models for ap-
plications. Hence, it is possible to prepare a real-time application from a helper
thread, and pre-allocate all needed resources. So when the application starts
running, real-time behaviour can be guaranteed for all resource accesses.

Thread synchronisation is achieved by the conventional mechanisms of lock
and conditional variables. To overcome the problem of priority inversion, a pri-
ority inheritance mechanism as described in [27] is used.

Dynamic memory management on the node level is currently performed by
an allocator based on Lea’s allocator [28] (DLAlloc). On the thread level, the
user can choose between DLAlloc again, and the real-time capable TLSF [29].
Both stages are equipped with extensive monitoring functions, to measure mem-
ory usage and fragmentation. Unfortunately, the CarCore currently provides no
memory protection system, so we can not yet guarantee a total isolation of the
separate threads on the memory level. However, the node level of the dynamic
memory management is ready to manage multiple types of memory in parallel.
Thus, we are able to provide a kind of Quality of Service on the memory level.

The runtime linker is able to use the GCC-generated object files (.o). The
development framework ensures that these object files have a certain format
and contain the information that is necessary for the integration of modules or
drivers into a running system.

354 F. Kluge et al.

The implementation of the resource management is geared to the POSIX
standard [9]. For handling of devices, it provides open/close and read/write
operations. Configuration of the device drivers is done using the ioctl operation.
These operations are called through the kernel, which must grant the access using
the Security Manager. However, the device access by the driver is executed in
userspace again. Thus, the kernel can not be affected by malfunction of the
driver.

The Security Management is mostly implemented in a distributed fashion. The
only central point, the assignment and manipulation of privileges, is integrated
into the thread management. The checks whether an application is allowed to
perform a specific operation or not are performed within the operation, because
usually only few privileges must be checked. Due to the implementation of the
privileges as bit sets, these checks can be done with very low overhead.

6 Benefits for Organic Computing

The following section shows, how Autonomic and Organic Computing will benefit
from the CAROS architecture. Thereby, special attention is paid to the targeted
area of networks of embedded high-performance microcontrollers.

As a result of the presented architecture, the OS kernel can provide very de-
tailed runtime information about its state to an Organic Manager running on
top of the OS. This fine-grained architecture enables the integration of equally
fine-grained actuators, to influence the runtime behaviour of the system. Thus,
the CAROS architecture provides good support for the MAPE resp. the ob-
server/controller architecture for AC/OC. Depending on the application and
system architecture, the management components can run in one or more helper
threads, or even distributed over multiple nodes of a network.

The dynamic capabilities of the CAROS architecture enable the implementa-
tion of sophisticated Self-X techniques. The following points will expose in more
detail, how the specific Self-X properties profit from CAROS.

6.1 Self-configuration

The possibility to load device drivers and program modules even at runtime
enables flexible reactions to environmental changes. Necessary re-configuration
can be performed in the background using helper threads, while the main appli-
cation is still working. When re-configuration is finished, execution of the main
application is switched to the new code [19].

The reconfiguration itself is not real-time capable, but isolation of the helper
thread from other running threads guarantees hard real-time behaviour for the
running application threads, while a helper thread loads the new code.

6.2 Self-healing

The isolation on the memory level allows a strict segregation of applications.
If malfunction (e.g. through deadlocks or infinite loops) of an application is

An Operating System Architecture for Organic Computing 355

detected, its initial state can be recovered and the application be restarted. Due
to the two-layered memory management architecture, this can be performed in
a very efficient way.

Self-Healing is also supported on the network level. If here an ECU drops out,
the applications that were running on it can be restarted on another ECU. This
only demands the availability of further code images of the applications in the
network.

6.3 Self-optimisation

On a single ECU, the timing information of the Thread Manager can be used
to optimise the share of processing time a real-time thread gets without missing
its deadline. Thus, more processing time is available for non real-time threads.

On the level of a network, the processing load of the ECUs can be optimised
by migrating applications from ECUs with high load to such ones with a low
processing load. It is even possible to have backup ECUs with no dedicated
application. Instead, jobs are assigned to them at runtime due to dynamically
arising requirements.

6.4 Self-protection

The security manager limits access especially to system functions. Applications
can be prevented from manipulating e.g. the scheduling parameters of other
applications and thus endangering the real-time behaviour of the system.

The memory isolation induced by the two-layered memory management and
supported by a hardware memory protection system prevents malicious applica-
tions from changing other application’s code or data.

Many of the presented techniques make use of a communication network con-
necting several ECUs. To be real-time capable, the network device drivers must
implement special protocols, like the OSEK Fault-Tolerant Communication [30]
or FTT-CAN [31].

7 Conclusion and Future Work

We have presented the CAROS architecture, proposing a real-time operating
system with inherent support for Autonomic/Organic Computing. Through the
integration of dynamic features, like a runtime linker, the potentials for imple-
menting Self-X techniques are increased. The stated requirements of the kernel
architecture consider especially the observer/controller architecture proposed in
[4] by ensuring extensive monitoring information. A prototypical implementation
on the multithreaded CarCore processor shows the feasibility of our concepts.
Thereby, the special hardware scheduler of the CarCore brings a great ease to
the implementation.

In the future, we will develop an Organic Management system that imple-
ments the Self-X techniques based on the CAROS architecture. Thereby, special

356 F. Kluge et al.

consideration will go into real-time aspects, and as well in the generality of the
developed concepts.

For better comparability, an implementation of CAROS on a recent single-
threaded processor is targeted. The use of memory protection concepts is another
point, that will be investigated in more depth.

References

[1] Horn, P.: Autonomic Computing: IBM’s Perspective on the State of Information
Technology. IBM Manifesto, IBM Corporation (October 2001)

[2] Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

[3] Müller-Schloer, C.: Organic computing: on the feasibility of controlled emergence.
In: CODES+ISSS 2004: Proceedings of the 2nd IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis, pp. 2–5. ACM
Press, New York (2004)

[4] Richter, U., Mnif, M., Branke, J., Müller-Schloer, C., Schmeck, H.: Towards a
generic observer/controller architecture for organic computing. In: Hochberger,
C., Liskowsky, R. (eds.) GI Jahrestagung (1). LNI, GI, vol. 93, pp. 112–119 (2006)

[5] : DFG Priority Program 1183 Organic Computing visited (April 2008),
http://www.organic-computing.de/SPP

[6] Becker, J., Brändle, K., Brinkschulte, U., Henkel, J., Karl, W., Köster, T., Wenz,
M., Wörn, H.: Digital on-demand computing organism for real-time systems. In:
Karl, W., Becker, J., Großpietsch, K.E., Hochberger, C., Maehle, E. (eds.) ARCS
Workshops, LNI, GI, vol. 81, pp. 230–245 (2006)

[7] Rammig, F.J., Götz, M., Heimfarth, T., Janacik, P., Oberthür, S.: Real-time op-
erating systems for self-coordinating embedded systems. In: Proceedings of the
Dagstuhl Seminar MBEES: Modellbasierte Entwicklung eingebetteter Systeme
II, Wadern, Germany (2006)

[8] : QNX Software Systems , http://www.qnx.com/
[9] : IEEE Std 1003.1, 2004 Edition. The Open Group Base Specifications Issue 6

(2004)
[10] Chappell, R.S., Stark, J., Kim, S.P., Reinhardt, S.K., Patt, Y.N.: Simultaneous

subordinate microthreading (ssmt). In: ISCA, pp. 186–195 (1999)
[11] Collins, J.D., Wang, H., Tullsen, D.M., Hughes, C.J., Lee, Y.F., Lavery, D.M.,

Shen, J.P.: Speculative precomputation: long-range prefetching of delinquent
loads. In: ISCA, pp. 14–25 (2001)

[12] Luk, C.K.: Tolerating memory latency through software-controlled pre-execution
in simultaneous multithreading processors. In: ISCA, pp. 40–51 (2001)

[13] Zilles, C.B., Sohi, G.S.: Execution-based prediction using speculative slices. In:
ISCA, pp. 2–13 (2001)

[14] Keckler, S.W., Chang, A., Lee, W.S., Chatterjee, S., Dally, W.J.: Concurrent event
handling through multithreading. IEEE Trans. Computers 48(9), 903–916 (1999)

[15] Zilles, C.B., Emer, J.S., Sohi, G.S.: The use of multithreading for exception han-
dling. In: MICRO, pp. 219–229 (1999)

[16] Marcuello, P., González, A., Tubella, J.: Speculative multithreaded processors. In:
International Conference on Supercomputing, pp. 77–84 (1998)

[17] Pfeffer, M., Ungerer, T., Fuhrmann, S., Kreuzinger, J., Brinkschulte, U.: Real-
time garbage collection for a multithreaded java microcontroller. Real-Time Sys-
tems 26(1), 89–106 (2004)

http://www.organic-computing.de/SPP
http://www.qnx.com/

An Operating System Architecture for Organic Computing 357

[18] Uhrig, S., Wiese, J.: jamuth – an ip processor core for embedded java real-time
systems. In: Proceedings of the 5th International Workshop on Java Technologies
for Real-time and Embedded Systems (JTRES) (2007)

[19] Pfeffer, M., Ungerer, T.: Dynamic real-time reconfiguration on a multithreaded
java-microcontroller. In: ISORC, pp. 86–92. IEEE Computer Society, Los Alami-
tos (2004)

[20] Kluge, F., Mische, J., Uhrig, S., Ungerer, T., Zalman, R.: Use of helper threads
for os support in the multithreaded embedded tricore 2 processor. In: Lu, C. (ed.)
Proceedings Work-In-Progress-Session of the 13th IEEE Real-Time and Embed-
ded Technology and Applications Symposium, pp. 25–27 (2007)

[21] : FAQ of comp.realtime (1998), visited April 2008,
http://www.faqs.org/faqs/realtime-computing/faq/

[22] Kreuzinger, J., Schulz, A., Pfeffer, M., Ungerer, T., Brinkschulte, U., Krakowski,
C.: Real-time scheduling on multithreaded processors. In: RTCSA, pp. 155–159.
IEEE Computer Society, Los Alamitos (2000)

[23] Uhrig, S., Maier, S., Ungerer, T.: Toward a processor core for real-time capable
autonomic systems. In: Proceedings of the Fifth IEEE International Symposium
on Signal Processing and Information Technology (2005)

[24] Infineon Technologies AG: TricoreTM1 Core Architecture. 1.3 edn. (2005)
[25] Kluge, F., Mische, J., Metzlaff, S., Uhrig, S., Ungerer, T.: Integration of Hard Real-

Time and Organic Computing. In: ACACES 2007 Poster Abstracts, L’Aquila,
Italy, Academia Press, Ghent (Belgium) (2007)

[26] : HighTec EDV-Systeme GmbH, http://www.hightec-rt.com/
[27] Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority inheritance protocols: An approach

to real-time synchronization. IEEE Trans. Comput. 39(9), 1175–1185 (1990)
[28] Lea, D.: A memory allocator. Unix/Mail 6/96 (1996)
[29] Masmano, M., Ripoll, I., Crespo, A., Real, J.: TLSF: A New Dynamic Mem-

ory Allocator for Real-Time Systems. In: ECRTS 2004: Proceedings of the 16th
Euromicro Conference on Real-Time Systems (ECRTS 2004), Washington, DC,
USA, pp. 79–86. IEEE Computer Society, Los Alamitos (2004)

[30] OSEK/VDX Fault-Tolerant Communication, Version 1.0 (2001)
[31] Almeida, L., Fonseca, J.: FTT-CAN: a Network-Centric Approach for CAN based

Distributed Systems. In: 4th IFAC Symposium on Intelligent Components and
Instruments for Control Applications (SICICA 2000) (2000)

http://www.faqs.org/faqs/realtime-computing/faq/
http://www.hightec-rt.com/

Towards an Autonomic Peer-to-Peer Middleware

for Wireless Sensor Networks

Reinhard Mörgenthaler, Markus Zeller, and Josef Jiru

Fraunhofer Institute for Communication Systems ESK, Munich, Germany
{reinhard.moergenthaler,markus.zeller,josef.jiru}@esk.fraunhofer.de

http://www.esk.fraunhofer.de

Hansastr. 32, 80686 Munich, Germany

Abstract. In this paper we present an approach for the design of a wire-
less sensor network (WSN) architecture and the corresponding middle-
ware. The middleware, with the main functions service discovery and
task management, interacts with the WSN and allows an efficient col-
laboration of the services on top. Design criteria for a WSN architecture
and the middleware are scalability, fault-tolerance and self-organization.
To meet these requirements it is necessary to minimize the need for com-
munication of a single sensor node and to distribute the functionality of
a node with respect to its properties autonomously. Therefore, our sys-
tem approach envisions a four layer model for the sensor network and its
middleware: Two layers of sensor nodes, one layer of gateway peers and
one layer of process peers. The middleware’s communication model is
based on a peer-to-peer approach to reduce communication complexity.
Important aspects of the system are already implemented and evaluated
with respect to energy consumption and message complexity.

1 Introduction

A WSN is a wireless network of autonomous devices using sensors or actuators to
observe physical or environmental conditions or to interact with the environment.

Römer et al. [16] introduced a design space for wireless sensor networks to
show the various characteristics that influence the design of WSNs. Here, we will
focus on the main aspects of the design of a wireless sensor network - scalability,
energy efficiency, message efficiency, optimal resource management and hence
management of heterogeneous nodes.

Currently, there are a number of applications that indicate the usefulness
of WSNs like vital sign monitoring [2], power consumption [12] and grape
monitoring [3].

Another typical example is Roves [11], an implementation of a self-organizing
network to link and control electronic lock cylinders (Figure 1). After activation,
each cylinder autonomously associates and authenticates itself with the most
suitable gateway in range. This gateway announces the cylinder’s presence to the
administration. Then, the administration is capable of controlling the cylinder. If
a gateway fails, a cylinder will automatically associate itself to another gateway
in range.

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 358–372, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Towards an Autonomic Peer-to-Peer Middleware for WSNs 359

wireless key

gateway 1 gateway 2

IP-based
infrastructure network

lock system
administration

lock cylinder 1 lock cylinder 3

lock cylinder 2

lock cylinder 4

Fig. 1. Roves system architecture

To handle the data delivered by sensor nodes and to manage them a middle-
ware on top of the WSN is necessary. Requirements for such a middleware are
defined in [15] and [14]. Again, scalability is an important issue along with ex-
pandability, inherent dynamism and aspects of self-organization such as self-
management, self-configuration, self-healing and self-protection.

In this paper we want to present a novel approach for a system architec-
ture and middleware for wireless sensor networks. We want to provide functions
similar to UPnP to discover and control sensor nodes and build a middleware
following the peer-to-peer paradigm on top to compensate the disadvantages of
UPnP that would make it ineffective to use with low power sensor nodes. There-
fore the focus of our interest is divided into two areas – (i) development of an
integrated network structure for WSNs and the corresponding middleware and
(ii) development of the middleware that interacts with the WSN.

Naturally, the network structure has to satisfy the above-mentioned require-
ments for WSNs. The middleware relies on peer-to-peer technology to provide
scalability, fault-tolerance and self-organization.

The rest of this paper is structured as follows. Section 2 references related
work in the relevant areas. Section 3 explains the requirements for sensor net-
works and the middleware and explains the aspects of self-organization that are
required. Section 4 takes a closer look at the system architecture. In Section 5
some implementation details of Roves and results of the middleware’s implemen-
tation are presented. In Section 6 we present our conclusion and some aspects
for future work.

2 Related Work

In this section we discuss work in the research areas relevant to this paper. These
are sensor operating systems, methods of service discovery, peer-to-peer technol-
ogy and sensor middleware with aspects of autonomous and organic computing.

360 R. Mörgenthaler, M. Zeller, and J. Jiru

Currently, available middleware can be divided into three different approaches
[9] – database-inspired solutions, tuple-space solutions and event-based solu-
tions. Typical representatives of database solutions are TinyDB [13], SINA [19]
and COUGAR [4]. They all query sensor nodes by using SQL-like statements.
However, these solutions have in common that every sensor node in the system
needs to understand and process every data type in the network. TinyDB cre-
ates a sensor table in every node that stores the local values. In COUGAR every
sensor has an abstract data type that has to be supported by every node. Thus,
it is not possible to integrate new sensors into the network. TinyLime [5] is a
representative for the tuple concept. A tuple-space is a form of shared memory
where data can be added or removed. TinyLime can only be used for query-
ing local nodes because it does not support multi-hop propagation of data. An
event-based solution is provided by Mires [20]. It is built using TinyOS and uses
its integrated event-handling and message-oriented communication paradigms.
Mires allows sensor nodes to advertise the type of sensor data they provide, lets
client applications subscribe to advertised services and publishes sensor data to
clients that subscribe to it.

Sensor middleware is mostly built on top of sensor operating systems (OS).
However, the separation between sensor OSs and middleware is not very clear as
OSs usually include aspects of middleware systems. Nowadays, a lot of operating
systems are available. Some examples are TinyOS [10], SOS [8], Contiki [6] and
Nano-RK [7]. Most operating systems support some kind of task management
which brings along some overhead during system execution. Additionally, they
are usually only supported by a small number of sensor node models, which
narrows their applicability in highly heterogeneous environments. As this paper’s
concern is mostly about middleware for sensor networks we will not discuss sensor
operating systems any further.

Automated device and service discovery can be found in UPnP networks. After
a device is activated it advertises its services by multicasting discovery messages.
A device searching for other UPnP devices also multicasts its request. However,
for resource-constrained sensor nodes, the continuous transmission and reception
of these broadcast messages consumes a lot of energy. After discovering a device,
interested clients (called control points) can request a description of each service
and device. These descriptions contain information on how to control a service,
what events a client can subscribe to and how to monitor the service. A sensor
node describing itself to every interested client and interacting with everyone
would require a large number of messages. This is very energy consuming and
should be avoided in a sensor network.

Effective message routing can be achieved via structured peer-to-peer net-
works like Chord[21], Pastry[17] or Tapestry[25]. Peers use a dynamic hash table
(DHT) to map keys (e.g. IP addresses) to values. A key is stored on a peer that
has an ID (also a key) closest to the key. A peers routing table contains only
a fraction of peers in the network and a key is always routed to the peer with
the closest ID in the routing table. This mechanism assures that only O(log n)
messages are necessary to locate a key.

Towards an Autonomic Peer-to-Peer Middleware for WSNs 361

Peers in peer-to-peer networks are usually considered uniform in resources. So,
to deal with heterogeneous peers, a “super peer” based approach was introduced
[26]. Each super peer acts as a central server to a group of peers. These peers send
their search requests to the responsible super peer that at first uses the super
peer overlay network to process the request. Only if a key cannot be located, the
regular peer-to-peer network will be used. The “super peer approach” reduces
the required bandwidth and completes requests faster.

A peer-to-peer event-notification architecture called Scribe, following the
publish-subscribe approach, was introduced in [18]. A peer can create topics
which any peer can subscribe to. To efficiently disseminate events to the sub-
scribers over the network a multicast tree for every topic is created.

An example for a peer-to-peer middleware that autonomously manages service
distribution and relocation in a ubiquitous environment is AMUN [23]. This
system is based on JXTA, an open-source peer-to-peer framework.

3 Requirements

The requirements to fulfill our goal can be classified as requirements for a wireless
sensor network which can partially be met through the design of our middleware
and the requirements for the middleware itself.

3.1 Sensor Network

In [16] a design space for wireless sensor networks was proposed. Here, we only
want to define the requirements we intend to meet with the proposed middleware.
These requirements are: energy efficiency, message efficiency, optimised resource
management, scalability and the management of heterogeneous nodes.

A sensor node should possibly last several years. Therefore, efficient energy
management is required. To optimize power consumption it is also necessary
to optimize message transmissions. The number of messages used to control a
node or to notify events should be limited as far as possible. Furthermore, other
resources in a sensor network, such as processing power and available memory,
are also very restricted and need to be used efficiently. Scalability ensures proper
functionality even as the number of nodes in a network amounts to tens of
thousands. Like in Roves, devices in a network can be very heterogeneous in
terms of their capabilities. So, in order to optimize their efficiency, different
devices need to be configured differently.

3.2 Middleware

A middleware is the interface between a wireless sensor network and the appli-
cations using it. Its main purpose is to manage the WSN, to enable applications
to inject queries into the WSN without knowing implementation details and to
execute these queries.

362 R. Mörgenthaler, M. Zeller, and J. Jiru

A middleware has to manage a large number of nodes. Hence, it should be
highly scalable. For example, locating a particular piece of data needs to be
done efficiently without querying every available device (as might happen in a
worst case scenario) because in an environment with tens of thousands of nodes
this would be impossible to achieve in a reasonable amount of time. Scalability
also includes self-configuration and self-maintenance issues because an approach
requiring human interaction would not scale well enough.

Expandability addresses the ability of the middleware to integrate and dis-
tribute new program components at runtime. The support of new sensor nodes
or sensors, new tasks or a new communication medium are examples.

Inherent dynamism deals with the fluctuating state of the network. Sensor
nodes can change position, lose connection or fail because of power outages at
irregular intervals. Even middleware peers can join or leave the network at any
time. It is necessary to develop a system which is capable of dealing with these
challenges and which detects nodes, peers or services when they (re-)appear or
disappear.

Additionally, there are some functional requirements we consider most impor-
tant in a middleware. These are: service discovery and task management.

Service discovery will be used to discover new sensor nodes and sensors in
the network and to make their services available to the user and other services.
A similar approach is implemented in the UPnP protocol [24] but needs to be
adapted to satisfy the requirements and properties of a sensor network. Using
task management functions, tasks submitted to the middleware will be executed
on devices that offer enough resources to handle them.

3.3 Overall Requirements

Traditionally, computer networks have an administrator who is responsible for
creating and managing the network. Because of the potentially large numbers
of sensor nodes and middleware devices, this approach is not suitable in our
context. An autonomous system like AMUN [23] has the capability to configure,
manage and optimize itself and thus offers the basis to maintain large and highly
dynamic networks.

Furthermore, it is crucial to the WSN as well as to the middleware’s network
to reduce network traffic as much as possible. To achieve that, it is necessary to
avoid broadcast messages and to access the WSN as little as possible.

4 System Architecture

This section takes a closer look at the system architecture. First, a four layered
network structure is introduced and then other aspects of the system’s design
are discussed.

4.1 Network Structure

Considering Roves, we divided the structure of the sensor network and its middle-
ware into four layers (Figure 3). The layers are ordered from bottom to top with

Towards an Autonomic Peer-to-Peer Middleware for WSNs 363

Fig. 2. System Architecture

increasing functionality but a device in any layer can always possess the capa-
bilities of lower layers. Figure 2 shows a descriptive illustration of the network
structure.

Tiny-Node Layer. The lowest layer consists of small battery-powered sensor
nodes with minimal processing power and maximal life time. Their only purpose
is to collect sensor data but they do not process data in any way. Each node
associates itself to a peer in the Gateway Layer. This peer then acts as a “man
in the middle” and is responsible to forward all messages intended for this sensor
node. Tiny nodes do not communicate with each other. Each node possesses a
configurable low-power radio transceiver to communicate. For security reasons
communication messages may also be encrypted. An example for a tiny node is
the Roves wireless key.

Small-Node Layer. Nodes in the Small-Node Layer provide the same functions
as tiny nodes with some additional features. They do not only possess sensors
to deliver data, they can also have actuators like the Roves lock cylinder. Ad-
ditionally, battery power is not that restricted as in the Tiny-Node Layer. If a
node is not in range of a gateway peer, it can establish a multi-hop connection to
a gateway by relaying messages through other nodes of the Small-Node Layer.
Furthermore, sensor data cannot be only collected, it is also possible to perform
further calculations with it.

Gateway Layer. The actual middleware begins with the Gateway Layer. How-
ever, Gateway Layer devices belong to the sensor network as well as to the
middleware. All devices are organized in a peer-to-peer network. Typically, a

364 R. Mörgenthaler, M. Zeller, and J. Jiru

Sensor network

Tiny-Nodes (1) Small-Nodes (2)

Middleware

Gateway (3)

Process (4)

Application

Fig. 3. Four Layer Schema

gateway peer has two means of communication, a low-power radio transceiver to
communicate with tiny/small-nodes and a device to enable IP communication.
Tiny and small nodes associate themselves to a gateway that publishes the node
and its services over the middleware’s peer-to-peer network. Any gateway peer
can be assigned a task, like collecting sensor data from locally associated sensors.
It can also store histories of collected data. Additionally, all clients submitting
tasks to the middleware or waiting for events join the peer-to-peer network at
least temporarily. These client peers will be treated as gateway peers without
associated sensor nodes.

The gateway peers will be disseminated in a way that every sensor node can
find at least one peer. This avoids the need for multi-hop communication. The
hardware platform for a gateway peer is a WLAN Router with MIPS architecture
that has been extended with a low-power radio transceiver and uses the uCLinux
operating system.

Process Layer. Process layer peers act as super peers in the middleware’s
peer-to-peer network. Basically, super peers are gateway peers that possess the
most capabilities to handle requests made by clients. They receive new tasks,
divide them into sub-tasks that can then be partially carried out by gateway
peers. These peers are the only ones that have complete system knowledge.

4.2 Medium Access Control of WSN Nodes

In order to provide reliable, low-power communication between sensor nodes
and gateway peers, a CSMA/CA based medium access control (MAC) layer was

Towards an Autonomic Peer-to-Peer Middleware for WSNs 365

developed to manage communication over the radio transceiver. In addition,
the MAC layer makes it possible to configure the response time of a sensor
node according to the middleware’s needs or to consume less power. The MAC
layer was developed for the Chipcon 1100 low-power radio transceiver [22]. The
transceiver supports “wake-on-radio” (WOR) that makes it possible for a sensor
node’s microcontroller unit (MCU) to sleep until a message is received. This
provides a simple way to significantly reduce current consumption.

WOR basically works as follows: The transceiver sleeps for a specified amount
of time, e.g. 1000 ms. Then it wakes up and switches to receive (RX) mode for
some time large enough to receive the Sync Word of two subsequent messages.
In this case messages need to be repeated by the transmitter for a minimum of
1000 ms to make sure one message has fallen into the receiver’s RX slot. Every
message will be acknowledged by the receiver to let the transmitter know that
the message was successfully delivered.

Before sending a message, the transmitter performs a clear channel assessment
(CCA) for a predetermined time. Only then a message will be sent. For example,
when using the 1000 ms WOR cycle and a 3.91 ms RX time a sensor node can
perform WOR for about 1000 days, if batteries delivering 1700 mAh are used.

4.3 Sensor Association and Description

Once a sensor node has been activated, it starts an association process to make
itself accessible through the middleware. Therefore, the node selects an appro-
priate gateway peer in range. Additionally, a node autonomously starts a new
association process if the selected gateway peer fails or if the link quality has
fallen below a specified threshold. Furthermore, there is the possiblity to per-
form mutual authentification between sensor node and gateway peer. During
the association the gateway peer checks if the sensor node is already known in
the system. If this is not the case, the peer requests a description of the node
that will be sent to the peer after the association has been completed. This de-
scription will be stored in the peer-to-peer system and is accessible in the future
which enables the sensor node to skip the description process in the future. After
completion of association and if neccessary description, a node periodically sends
alive messages to the associated gateway peer to indicate that it is still online.

4.4 Gateway Layer Peer-to-Peer

The peer-to-peer system will be a structured peer-to-peer network using a DHT
to route messages. This provides an easy way to locate information with only
O(log n) messages.

The peer-to-peer mechanism ensures an even distribution of the key/value
entries between all peers. However, a peer storing the above-mentioned data is
not necessarily the same peer where a sensor node is associated to or a task is
running. Typical information items in our network are a list of active and known
nodes, a list of available services, running tasks, etc. If a peer joins or leaves the
network, the storage of a key may change but not the peer executing a task or

366 R. Mörgenthaler, M. Zeller, and J. Jiru

keeping the connection to a sensor node. As described in [21] a new key will be
inserted in (r) carefully chosen nodes to achieve the desired degree of redundancy
(r) in case a node fails.

Typically, gateway layer peers are either small embedded devices acting as a
gateway to the sensor nodes or clients submitting a query to the middleware. A
client can only become a super peer, if there is a high probability that it stays in
the network for some time, e.g. when it subscribes to an event that continuously
sends messages to the client for a time longer than a specified threshold.

4.5 Super Peers in Process Layer

A common unstructured peer-to-peer network considers all peers uniform in
resources like CPU speed, bandwidth and storage capabilities. In reality, this is
usually not the case. This is the reason why our middleware uses gateway and
process layer peers. Super Peers are responsible for task execution. Furthermore,
the process layer peers are the only ones that can have complete knowledge about
the system’s state, e.g. which sensors are online, which services are available or
which tasks are currently executed. Consequently, a client joining the network
only needs to query its responsible super peer for information about available
sensor nodes, services, etc. Following the peer-to-peer principle the failure of a
super peer does not result in the loss of information of the system’s state because
all relevant information is stored redundantly on several super peers. The amount
of super peers in the system will be adjusted based on the number of super peers
necessary to efficiently execute every query and task. If there are no tasks to be
executed, there are only enough super peers neccessary to maintain the required
amount of redundancy. The number of super peers must be large enough that a
new task can always find a peer that is capable of handling it.

4.6 Tasks

Any authorized client can submit queries into the middleware. A query will be
implemented in a way similar to TinyDB [13]. A super peer will be responsible
for processing it. Basically, this means finding the peers, the sensor nodes are
associated with and sending them subqueries concerning their nodes. These peers
are responsible to forward the query to the sensor node if necessary.

Usually, executing a query follows an event-based approach. The client submit-
ting the query will receive periodic updates on the sensor readings. Additionally,
the super peer can monitor these update messages, record them and hence create
a history for later use.

4.7 Self-organization

Using the design explained in this section the system’s self-organization aspects
can be shown.

– Self-configuration: The sensor nodes and peers automatically join the net-
work without the need of user interaction.

Towards an Autonomic Peer-to-Peer Middleware for WSNs 367

– Self-optimization: The distribution of tasks occurs based on the workload
and available resources of the peers.

– Self-healing: Peers can dynamically join or leave the system without compro-
mising its integrity [21]. Due to distributed and redundant storage of data
items, no data will be lost.

– Self-protection: Before a sensor node or peer joins the system it needs to au-
thenticate itself. Furthermore, messages can be encrypted to ensure privacy.

– Self-description: New sensor nodes and services describe themselves to the
middleware.

5 Results

At this point, we want to describe some features already implemented in Roves
and how the super peer selection will be done. Then, we want to take a closer
look at how our approach improves message efficiency.

5.1 Energy Consumption

Using our first implementation as an example, an estimation of a sensor node’s
lifetime can be provided. Our reference design uses the CC1100 together with an
Atmel ATMega64L microcontroller [1] running at 3 volts. The lifetime estimation
is based on the power delivered by a common battery with 1700 mAh. The
transceiver’s output power was set to 0 dbm. With this settings and having a one
second WOR cycle with 3.91 ms RX time per second the energy consumption is
around 0.21 mJ. This enables the sensor node to perform WOR for approximately
1000 days. Furthermore, energy consumption for a successful transmission of 61
bytes is 0.5 mJ. The lifetime of a sensor node is around 970 days if it is in WOR
mode and sending one alive message every minute. Ideally, sensor association
needs to be done only once therefore its energy consumption can be neglected.
Additionally, when sending one data message every minute the sensor node’s
lifetime further reduces to 937 days.

5.2 Association and Authentication

To include a sensor node into the network it needs to be associated to a gateway
peer. This process is similar to a three-way handshake and includes a chal-
lenge/response procedure to mutually authenticate both devices (Fig. 4).

A sensor node broadcasts an “Associate Broadcast Request” message. This
message contains the node’s unique associate ID and a random number as first
challenge. Any peer receiving this request responds with an “Associate Broad-
cast Response” message. The payload of the response message contains (i) the
sensor node’s unique associate ID, (ii) the ID of the responding peer, (iii) the
number of the currently associated nodes at the peer and (iv) a second random
number created by the responding peer. Additionally, the sensor node calculates
the received signal strength indication (RSSI) value for each receiving message.

368 R. Mörgenthaler, M. Zeller, and J. Jiru

Associate Broadcast Request

 Rand1, Associate ID

Associate Broadcast Response
Associate ID, Peer ID, Node ID, Node Count, Rand2

[RSSI]

Associate Node Request

Associate ID, MAC(Rand2)

Associate Node Response

Associate ID, MAC(Rand1), Node Seq#, Peer Seq#

Sensor
Node

Gateway
Peer

Fig. 4. Association of a Sensor Node

Per definition, the node waits for a predefined number of responding peers and
decides which peer to choose based on a peer’s currently associated nodes and
the RSSI value of the “Associate Broadcast Response” message. An “Associate
Node Request” message containing the message authentication code (MAC) for
the second random number will then be sent to this peer. After confirming the
sensor node’s identity by comparing the received MAC with the locally calculated
one, the node is authenticated by the peer which immediately responds with an
“Associate Node Response” message. This message also contains the MAC for
the first random number and two randomly generated sequence numbers. These
sequence numbers are basically session IDs for incoming and outgoing messages,
which will be increased by one for every outgoing respectively incoming message
to ensure tamper-proof encrypted communication. However, if no encryption is
necessary, the sequence numbers can be omitted. Furthermore, we want to men-
tion that only the “Associate Broadcast Request” message is a real broadcast
message. However, its message header contains a randomly generated temporary
node ID that defines the destination address for the response message. By ac-
tivating the radio’s hardware address filter, the response will only be processed
by devices using the same hardware filter address. If, by any chance, there is an-
other device with the same hardware filter address, the message will be ignored
at a later point.

5.3 Selection of Super Peers

Initially, after joining the peer-to-peer network a device is treated as a gateway
peer with no associated sensor nodes. The selection of a new super peer takes
place only if the necessity arises. This occurs if the resources available on the

Towards an Autonomic Peer-to-Peer Middleware for WSNs 369

current super peers are too low to execute another task. Each peer monitors
its own workload and informs its associated super peer about the available re-
sources. Furthermore, each super peer knows about the workload of every other
super peer. If one of them decides that a new super peer is necessary, a super peer
selection process is started and the peer offering the most resources will be se-
lected as new super peer. This selection process only involves process layer peers
because the state of all other peers is already known within the process layer.

5.4 Evaluation of Network Traffic

As mentioned before, our system uses functions similar to UPnP to discover and
interact with sensor nodes. However, UPnP contains a few disadvantages that
made a redesign neccessary. Device and service discovery and description has to
be done for every client that searches for UPnP devices and has to be redone if
a client was shut down and later reactivated. In addition, every client subscribes
directly to particular services on the devices and therefore a sensor node has to
send a number of event messages linear to the number of subscribed clients. Also,
UPnP is based on the http protocol and the size of messages is of no concern. In
contrast the maximum payload of radio messages is 64 bytes and therefore the
message size and the energy neccessary to transmit a message is very important.

Using our system’s peer-to-peer properties these deficiencies can be overcome.
Figure 5 shows the basic approach. During association the capabilities of a sensor
node are submitted to the middleware. This needs to be done only once because
the information will be stored redundantly in the peer-to-peer network and is
therefore always available in the future. Furthermore, when a client joins the
network and asks for information there is no need to query sensor nodes because
the neccessary data is already known. In addition, if possible a client can search
for tasks already running and simply subscribe for event messages from the
same task. This can be done without querying any sensor node. Table 1 shows

Gateway peer

Super peer

Description (once)

Notify super peer

Client

Describe system state

Describe system state

T
Tiny

Node

Fig. 5. Discovery by middleware

370 R. Mörgenthaler, M. Zeller, and J. Jiru

Table 1. Comparation of Messages

Task UPnP Middleware

Association/Discovery per Client per System

Description per Client once per System

Event per Client one to gateway, distribution via Scribe to subscribers

the differences of the message complexity. However, if the required data is not
already available, e.g. the sample rate of a sensor data item is too low, it sends
a query to the nodes in question. When this query arrives at the responsible
gateway peer, the peer instructs the sensor node to update the data item’s
sample rate to the higher rate, ideally in a way that satisfies the old task and
the new one with one event message. The distribution of the event messages to
the interested clients follows the Scribe[18] approach to achieve effectiveness and
scalability.

As mentioned in Section 5.1 a sensor node’s lifetime is approximately 937 days
if one client receives an event message every minute. Using the UPnP approach
and having ten clients that want to receive the same event message the lifetime
reduces to approximately 724 days. In contrast, with our approach the sensor
node only sends one message to the gateway peer regardless of the number of
clients that subscribed to this event. Therefore, the lifetime does not depend on
the number of interested clients and stays at 937 days.

6 Conclusion and Future Work

The development of a middleware for WSNs is an extensive research topic with
many different approaches. We believe that the design of a peer-to-peer middle-
ware for wireless sensor networks is a promising approach to create an autonomic
middleware and offers the fundamentals to manage and control wide-area WSNs.
However, the development of our system has not been finished yet and the anal-
ysis of our middleware with respect to message efficiency, scalability and an
optimized peer to super peer ratio is still in process.

It is beyond the scope of this paper and of our first implementation to include
features like multi-hop communication for sensor nodes to associate sensors that
are not in the immediate vicinity of a gateway. Additionally, we see further
work in task distribution algorithms, security mechanisms, a global service for
distributed storage and increased redundancy on the network as well as on the
service layer.

References

1. Atmel Corp. ATMega64 Datasheet,
http://www.atmel.com/products/AVR/overview.asp

2. Baldus, H., Klabunde, K., Muesch, G.: Reliable Set-Up of Medical Body-Sensor
Networks. In: Karl, H., Wolisz, A., Willig, A. (eds.) EWSN 2004. LNCS, vol. 2920,
Springer, Heidelberg (2004)

http://www.atmel.com/products/AVR/overview.asp

Towards an Autonomic Peer-to-Peer Middleware for WSNs 371

3. Beckwith, R., Teibel, D., Bowen, P.: Pervasive Computing and Proactive Agri-
culture. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001,
Springer, Heidelberg (2004)

4. Bonnet, P., Gehrke, J., Seshadri, P.: Towards Sensor Database Systems. Mobile
Data Management (2001)

5. Curino, C., Giani, M., Giorgetta, M., Giusti, A., Murphy, A.L., Picco, G.P.:
TINYLIME: Bridging Mobile and Sensor Networks through Middleware. In: Proc.
of the 3IEEE Int. Conf. on Pervasive Computing and Communications (PerCom),
pp. 61–72 (2005)

6. Dunkels, A., Gronvall, B., Voigt, T.: Contiki - a Lightweight and Flexible Operat-
ing System for Tiny Networked Sensors. In: First IEEE Workshop on Embedded
Networked Sensors (2004)

7. Eswaran, A., Rowe, A., Rajkumar, R.: Nano-RK: An Energy-Aware Resource-
Centric Operating System for Sensor Networks. In: IEEE Real-Time Systems Sym-
posium (2005)

8. Han, C.-C., Kumar, R., Shea, R., Kohler, E., Srivastava, M.: A dynamic operating
system for sensor nodes. In: MobiSys 2005: Proc. of the 3rd international conference
on Mobile systems, applications, and services, pp. 163–176 (2005)

9. Henrickson, K., Robinson, R.: A survey of middleware for sensor networks: state-of-
the-art and future directions. In: Proc. of the international workshop of Middleware
for sensor networks, Melbourne, Australia, pp. 60–65 (2006)

10. Hill, J., Szewczyk, R., Woo, A., Culler, D., Hollar, S., Pister, K.: System architec-
ture directions for networked sensors. In: Proc. of ASPLOS (2000)

11. Augel, M., Jiru, J., Mörgenthaler, R.: Selbstorganisierendes Schließanlagensystem
und Verfahren zum Organisieren eines derartigen Systems. German Patent Appli-
cation, 10 2006 047 939.4-31 (2006)

12. Kappler, C., Riegel, G.: A Real-World, Simple Wireless Sensor Network for Mon-
itoring Electrical Energy Consumption. In: Karl, H., Wolisz, A., Willig, A. (eds.)
EWSN 2004. LNCS, vol. 2920, Springer, Heidelberg (2004)

13. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: TinyDB: an acqui-
sitional query processing system for sensor networks. ACM Trans. Database
Syst. 30(1), 122–173 (2005)

14. Modukuri, K., Hariri, S., Chalfoun, N.V., Yousif, M.: Autonomous middleware
framework for sensor networks. Perser 0, 17–26 (2005)

15. Römer, K., Kasten, O., Mattern, F.: Middleware Challenges for Wireless Sensor
Networks. MC2R 6(2) (2002)

16. Römer, K., Mattern, F.: The Design Space of Wireless Sensor Networks. IEEE
Wireless Communications 11(6), 54–61 (2004)

17. Rowstron, A., Druschel, P.: Pastry: Scalable Distributed Object Location and
Routing for Large-Scale Peer-to-Peer Systems. In: Proceedings of IFIP/ACM
Middleware 2001 (2001)

18. Rowstron, A., Kermarrec, A.-M., Castro, M., Druschel, P.: SCRIBE: The design
of a large-scale event notification infrastructure. In: Crowcroft, J., Hofmann, M.
(eds.) NGC 2001. LNCS, vol. 2233, Springer, Heidelberg (2001)

19. Shen, C., Srisathapornphat, C., Jaikaeo, C.: Sensor Information Networking Ar-
chitecture and Applications. IEEE Personal Communications (2001)

20. Souto, E., Guimarães, G., Vasconcelos, G., Vieira, M., Rosa, N., Ferraz, C., Kel-
ner, J.: Mires: a publish/subscribe middleware for sensor networks. Personal and
Ubiquitous Computing 10(1), 37–44 (2006)

372 R. Mörgenthaler, M. Zeller, and J. Jiru

21. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scal-
able peer-to-peer lookup service for internet applications. In: Proc. ACM SIG-
COMM, San Diego (2001)

22. Texas Instruments, Datasheet for Chipcon CC1100, Revision SWRS038B,
http://focus.ti.com/lit/ds/symlink/cc1100.pdf

23. Trumler, W., Petzold, J., Bagci, F., Ungerer, T.: AMUN: an autonomic middleware
for the Smart Doorplate Project. Personal and Ubiquitous Computing 10(1), 7–11
(2006)

24. UPnP Device Architecture 1.0, http://www.upnp.org
25. Zhao, B.Y., Kubiatowicz, J.D., Joseph, A.D.: Tapestry: An infrastructure for fault-

tolerant wide-area location and routing, UC Berkeley (2001)
26. Zhu, Y., Wang, H., Hu, Y.: A Super-Peer Based Lookup in Structured Peer-to-Peer

Systems. In: ISCA PDCS, pp. 465–470 (2003)

http://focus.ti.com/lit/ds/symlink/cc1100.pdf
http://www.upnp.org

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 373–387, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Embedding Dynamic Behaviour into a
Self-configuring Software System

Paul Ward, Mariusz Pelc, James Hawthorne, and Richard Anthony

Dept. Computer Science,The University of Greenwich, Park Row, Greenwich, London, UK
{P.A.Ward,M.Pelc,J.Hawthorne,R.J.Anthony}@gre.ac.uk

Abstract. This paper describes a methodology for embedding dynamic behaviour
into software components. The implications and system architecture requirements
to support this adaptivity are discussed. This work is part of a European
Commission funded and industry supported project to produce a reconfigurable
middleware for use in automotive systems. Such systems must be trustable against
illegal internal behaviour and activity with external origins, additional devices for
example. Policy-based computing is used here as an example of embedded logic.
A key contribution of this work is the way in which static and dynamic aspects of
the system are interfaced, such that the behaviour can be changed very flexibly
(even during run-time), without modification, recompilation or redeployment of
the embedded application code. An implementation of these concepts is
presented, focussing on achieving trust in the use of dynamic behaviour.

Keywords: Dynamic embedded systems, Policy-based computing, Automotive
control systems, Fault-tolerance in autonomics.

1 Introduction

This paper presents a methodology for embedding decision making capability into
software components. The target system is a distributed middleware for automotive
systems with a mixture of mandatory and optional software components located at
each processing node. A component may perform a single function or service for
either the system or directly to fulfill an application requirement. In a self-managing
system such components may need to be aware of information from within and
around the system (the environment). This context-awareness allows the system to
make decisions in order to adapt to changing conditions during run-time.

We propose an approach for embedded systems with self-configuration logic
embedded into many individual components rather than a centralised node or service,
with the goal of improving flexibility and extensibility. Each of the components will
have specific tasks and contain modules that can be replaced at run-time. This allows
the behaviour of the system to be altered, making the system very dynamic.

The development of an embedded architecture is a requirement of the DySCAS
project [1]. This project deals with the dynamic configuration and use of Electronic
Control Units (ECUs) within the architecture of an automobile. Additional devices
and services may be added during run-time such as a mobile phone or an internet
connection when the vehicle is in a hotspot area. Device detachment or ECU failure

374 P. Ward et al.

during run-time will require a reconfiguration. Other challenges include the use of
heterogeneous ECUs, some of which are very resource-constrained; use cases which
involve field upgrades of functionality; and flexible dynamic reconfiguration to
optimise resource usage and to mask some types of failure. These challenges have
brought on the necessity for a dynamic and reconfigurable architecture for embedded
systems. A static architecture simply would not be appropriate for this frequently
changing environment. See [1, 2, 3] for more on the DySCAS project.

Automotive systems developers face a dilemma in that they need to continuously
add new desirable features to maintain market share, whilst keeping the behaviour of
vehicles completely safe. Autonomic techniques are an attractive means by which
‘smart’ context-aware behaviour can be embedded into vehicles. However, the
acceptance of autonomics concepts into the automotive area is highly dependent on
the trustability of the developed mechanisms, and of the underlying development
methodologies used. If changes in the system behaviour are to be allowed, the vehicle
manufacturer must be certain that the new configuration is safe and will not cause any
illegal or potentially dangerous behaviour. The important issue of trust impacts on this
project in two distinct ways: the system behaviour must itself be trustable and the
system must automatically make trust decisions concerning externally connected
devices (and data transmitted from such devices), as well as making trust decisions
concerning software patches and upgrades transmitted to the vehicle. The automotive
domain is challenging for the implementation of autonomics, having requirements of
real-time performance and very high robustness.

Embedded systems traditionally have fixed functionality. Whilst this approach
remains valid for systems with a very narrow and fixed purpose, such as a washing
machine controller for example, it is generally not applicable to embedded systems
with greater functionality, or that operate in more variable environments. Certainly
this is not true in the case of DySCAS in which the configuration and behaviour of the
system is context sensitive. More complex embedded systems will often need the
capability to change behaviour to meet changing higher level requirements, for
example an event which was previously dealt with in a particular way, will now be
required to be handled in a completely different way. A static architecture would
require recompilation and re-deployment of the executable code to bring the new
functionality into effect. A dynamically reconfigurable architecture would not need
the system to be halted while making the change. In some cases, halting of the system
may even be undesirable or unsafe.

The dynamic nature of the architecture means unavoidable greater complexity over
a static system, adding a requirement on validation and verification procedures. Our
strategy is to validate as much as possible at design time, such as verifying the
correctness of replaceable decision modules before deployment. Due to resource
constraints in embedded automotive systems, it is favourable to minimise the
validation tasks at run-time.

Inspiration for our methodology comes from policy-based computing where a
system’s actions are specified by both the compiled code and some policies.
Depending on the scheme, a policy can be anything from a simple template
containing some pre-determined constants to a decision system with various rules and
complex functions. At a particular point in a running process, a policy is evaluated
and the result is used to influence the system behaviour. Policy evaluation is carried

 Embedding Dynamic Behaviour into a Self-configuring Software System 375

out by a specialised library that is able to interpret the policy file and produce the
correct result. This means that by loading and evaluating a new policy the system can
act in a different way. Such policy changes can occur, post-deployment, as frequently
as required and even without having to halt or restart the system. This form of
updating a computing system is simpler, quicker and less costly than rebuilding and
reinstalling whole software components or even a whole system image.

There is also a very real danger here of creating a system which is increasingly
complex in implementing the required dynamic behaviour, and in doing so, it
becomes more challenging to implement this than it is to implement the main system.
Anthony refers to this in [4] as ‘complexity tail-chasing’. The work with AGILE is
focused on the use of policies within autonomic systems. One of the advantages of
AGILE policies is that they are capable of creating a wide range of self-configuring
logic whilst remaining flexible to use and requiring low levels of run-time system
resources to evaluate. For other types of policy language see [5, 6].

2 Related Work

A promising approach to achieving autonomic computing is through context-aware
run-time adaptation and dynamic reconfiguration. This may, in general, be achieved
in two ways. Firstly, by embedding the context-awareness into the application or
middleware and providing individual system software components (objects, services,
etc.) with common centralised supervision. This method makes the whole system
context-aware. However, in the case of more complex systems that manage more
system components, this may lead to an increase in communication and computation
effort, therefore reducing system performance. The central supervisor may have its
own detailed implementation which is separate from methods employed by the rest of
the system. The second method (the one advocated in this paper) is to distribute the
context-aware functionality by placing it into the system software components
directly. This should lead to a reduction of the system load related to the self-
adaptation decision making process. Most significantly, overall complexity is
reduced, as the need for a monolithic supervisor component is avoided, and flexibility
is increased as each component can potentially use a different self-configuration
technique. Configuration decisions are localised within each component, reducing
communication costs and adaptation latency.

An example of centralised configuration decision making is found in [7]. Entire
system configurations are stored and switched between as required. For a complex
system, each configuration can be large, complex and would likely require system
restart to enact a configuration change. This ‘mode’ based operation best suits critical
systems with a small number of required configurations. The standard configurations
are pre-validated, the run-time adaptation is limited to selecting between ‘modes’.
However the approach generally suffers limitations of scalability and flexibility.

[8] Presents a specific CORBA-compliant middleware that assures system context-
awareness. To assure this feature, a context-sensitive application object structure
equipped with context-sensitive interfaces is proposed. In this case context-sensitivity
is built-in to the component directly, but context analysis is external from this
component which has a negative impact on communication intensity and also

376 P. Ward et al.

decision-making latency. Decisions made by adaptive object containers using context
information, activate or deactivate selected object methods, altering the behaviour.

In [9] the ability of a system to perform dynamic reconfiguration in response to
context changes is facilitated by a middleware supporting modularized customisable
key services. These services achieve reconfiguration by dynamically instantiating and
destroying static and non-context-aware components to achieve the appropriate
system behaviour. The functionalities that components provide are visible through a
set of corresponding fixed interfaces. An advanced middleware layer provides
communication between services and applications. The instantiation and destruction
of components requires complicated dependency and resource availability analysis
each time a change is required. Consequently this technique is of limited suitability
for real-time and embedded systems.

Reconfigurable hardware and embedded system software which is partitioned into
autonomous units of execution (called intelligent hardware agents) interacting with
the environment in an intelligent manner is described in [10]. Three models of
reconfiguration are discussed: static, non-buffered dynamic and buffered. Intelligent
hardware agents: make use of domain specific knowledge; are able to learn from the
environment; and are able to adapt themselves to environmental changes.

A layered architecture of context-aware software infrastructure as well as layered
structure of context information management is proposed in [11]. This work also
presents commonly used context modelling and context abstraction techniques that
support the decision making process involved in mapping of context information to
appropriate application behaviours. The adaptation layer uses three repositories:
situation, preference, and trigger, which dynamically provide the application layer
with appropriate services from the lower layers.

The concept of Service-Oriented Context-Aware Middleware (SOCAM) as well as
formal context models used to address issues including context reasoning, context
classification, and dependency are presented in [12]. This architecture aims to provide
an efficient infrastructure to support building context-aware services that are assumed
to make use of different levels of context and adapt the way they behave according to
the current situation. In this approach a special Context Reasoner service interacts
with context-aware services using for example rule-based reasoning. Different
inference rules can be created in a predefined format and then preloaded into the
Context Reasoner. This approach centralises decision making. In a system with many
context-aware components interacting, this centralisation may lead to a reduction of
the system performance and excludes this solution from real-time embedded systems.

An architectural approach towards embedded reconfiguration is undertaken in [13].
This work describes a structure of components with dynamically defined interfaces.
External events are bound to ports on the software component; these bindings can be
changed to alter the system structure. Using events as external interfaces enables
components to be integrated into the system with minimal coupling. This approach
focuses on the reconfiguration mechanism, and does not specify the decision making
system to perform the reconfiguration.

An approach to verifying the design of adaptive embedded systems is presented in
[14]. Design time modelling and formal specification are used to verify the behaviour
before the system is implemented and deployed. The use of software tools to aid this
process is discussed. The adaptive behaviour itself is formed of several possible

 Embedding Dynamic Behaviour into a Self-configuring Software System 377

configurations for each service which can be enabled if a condition is met. The main
disadvantage of this solution lies in the finite number of possible reconfigurations that
are predetermined at design time.

In [15] policy engines are decomposed into components. According to this paper,
the main disadvantage of such an approach is the use of pre-built policy engines that
support particular, usually fixed, languages based on text, GUI, or programming
interfaces for “plugging in” custom policy logic usually constructed from scratch.
This can represent reduced flexibility and thus usefulness in real-world applications.
In contrast, our approach does not assume any pre-defined decision engine. This
means that, for example, the AGILE policy library [4, 16] or a neural network
reasoning engine can be used, as appropriate to the type of decision making required.

Aspect Oriented Programming (AOP) and reflection could be used and combined
as described in [17, 18] to implement runtime adaptable system changes as an
alternative to using policies. Reflection however allows the rules of encapsulation to
be broken, possibly leading to an un-maintainable system. The problem with AOP is
that a dynamic compiler and/or weaver need to be developed and used to enable
runtime changes to be possible.

In [19] a dependable self-adaptive software system is described called the
Architectural Run-time Configuration Management (ARCM). This approach is
similar to our own, in that changes to the system can be rolled back if required.
However, they say that to increase the trust in any dynamic changes made requires
visual feedback in order for a system administrator to detect and correct problems.
This goes against the concept of autonomics whereby tedious activities such as this
should be dealt with by the system and not require human intervention.

In [20] it is suggested that trust of a component could be increased by testing it
several times before use. The problem here is that it is generally not possible to
capture (or even know) all possible system configurations during the testing phase.

The approach advocated in this paper is differentiated from the current state of
practice as described above by its key characteristics which include: distributed
decision points local to the required point of adaptation; independent operation of
decision points within components thus avoiding any synchronisation requirement
and permitting independent updates to occur; The ability to change policies at run-
time; and a dynamic wrapper which automatically and silently handles errors that may
occur in the evaluation of a decision point. These characteristics are described and
evaluated in the remainder of the paper.

3 Self-managing System Overview

In our scheme (in contrast to those systems discussed in the previous section)
decisions about the reconfiguration are embedded within the software system itself,
instead of outside. The decision making process is distributed throughout many
software components as shown in figure 1. Two types of components are shown,
those that contain embedded decision making and those that do not. If a component is
enabled with embedded decision making its behaviour can be changed during run-
time by altering the configuration module currently loaded into its decision points. A
regular component will behave as a deterministic functional block that is fixed once

378 P. Ward et al.

the system is deployed. The nature of the context information is determined by the
application area and comprises of all of the information that is available. Output from
the system will have an affect on the environment and thus the context. This creates
the feedback loop through the application specific outputs and ensuing consequences.

Software System

Context
Information

Outputs

Software
Component

With Embedded
Decision Making

Context Manager

Fig. 1. Simplified system-centred view of a context-aware software system with self-
configuration decision making embedded inside components

Context information arriving at the system must be correctly delivered to the software
components. In the diagram a conceptual “Context Manager” is shown to provide this
functionality; in practice how this operates is specific to the implementation. However, it
is clear that communication is required between all components using this context
information and the context manager. We suggest that a service oriented approach is taken
whereby components register with the context manager to be updated about certain items
of context. This would allow an event driven pattern or time-dependant operation with
components notified regularly of the context that they are interested in. It is quite
conceivable that the context manager could contain some embedded decision making that
could be loaded at instantiation and/or altered during run-time. This flexibility provides the
ability for different modes of operation depending on the current context. During the
lifetime of this system the context information may change, for example if new hardware
devices or resources become available. Such new information should be made available to
the software components by the context manager.

An important distinction of this approach over an externally supervised system is
improved scalability. As a system with embedded decision making increases in size, the
number of components also increases. Management of the required resources to operate
such a system is relatively trivial, a main advantage being that even though there are
numerous distributed decision points, the complexity of each can be very low. However,
if the decision making process were centralised, any additions to the software system
would require an equivalent change to the decision system. Further difficulties can be
caused by a communication bottleneck between the controlling and controlled system.

4 Embedding into Software Components

The described system can be said to be dynamically reconfigurable because its
behaviour can be changed during run-time by altering the embedded decision making

 Embedding Dynamic Behaviour into a Self-configuring Software System 379

of one or more software components. The component architecture, shown in figure 2,
is designed specifically to allow this. The component developer will leave one or
more open decision points that will later be filled with a decision making process,
effectively dividing the functionality into basic, fixed, functional blocks and flexible
decision points. Software design techniques appropriate for this type of component
will require further investigation.

Software Component

Context Inputs from Other
Software Components

Outputs

Functional
Block

Open Decision
Point

Fig. 2. A single software component with open decision points left by the designer for
embedding decision making modules

Any open decision points left in the component must later be filled using some
type of decision system, producing a result when inputs are applied. The type of
technology used here is flexible; in section 5 policy-based computing is presented as
implemented in the DySCAS project. Two stages are required to fill such a decision
point, a Decision Evaluation Module (DEM) and a Decision Configuration Module
(DCM). The type of evaluation module is matched to the configuration module;
together they define the behaviour of this decision point. A DEM is compiled offline
and is able to process the inputs together with a DCM and return the appropriate
result. While the functionality of a DEM is generally fixed; there may be many
versions of a DCM destined for the same component. The behaviour of a component
changes depending on which of these variants are currently loaded. Also, different
DCMs may require different context information to enact their desired function. The
DEM should be ready before the software component is required to run, for example,
by compiling into the component or be loaded at run-time for example.

The DCM is essentially a collection of data items that configure the DEM to
produce decision making behaviour. For example, a DEM could be a neural network
with a DCM containing a set of weights. Therefore, by loading a different DCM, the
network weights are changed and component behaviour altered.

Changes in the DCM used in a component can occur without the need to halt the
system. This loading process is shown in figure 3. A storage area is assumed to be
available to persist various DCMs, along with access to all software components. The
DCM is then transmitted to the software component using a predefined standardised
interface. Inside the component there is an open decision point with a DEM already
installed, the DCM is passed to this and loaded.

380 P. Ward et al.

Fig. 3. A decision module being loaded into a software component during run-time and the
negotiation of the dynamic interface between the component and the context manager

To facilitate the interaction (inputs and outputs) between the component and the
open decision point we introduce a dynamic wrapper concept. This provides an
interface to allow inputs to enter the decision point from the component and ensures a
legal result is returned. The component can then take the result and use it to inform
further processing as required. To maximise flexibility, we allow each DCM to have
individual requirements for context information, thus the interface between the
component and decision point is not fixed during the component’s design. The
interface is negotiated at the point of loading a DCM into a decision point at run-time,
therefore the dynamic wrapper will vary with every new DCM.
The negotiation of the wrapper takes the following steps (as shown in figure 3):

1. A DCM is loaded into the DEM.
2. The DEM reads the DCM to gain the list of required context information and

outputs produced.
3. The DEM passes the list of required context and decision outputs to the

dynamic wrapper.
4. The dynamic wrapper compares the decision outputs with those expected by

the component.
5. If the decision outputs correspond correctly, the required context list is

forwarded to the context manager, via the component interface.
6. The context manager checks if the context required is available and responds

with the result.
7. If all context information is available, the load is complete and the

component is ready to operate.
8. If the required context is not currently available or the decision outputs do

not match between the component and DCM, the DCM is unloaded.

The DEM is responsible for checking DCM validity, for example parsing a
configuration file, with an invalid DCM causing a load failure. A decision point
without a functioning DEM and correctly loaded DCM will not be able to be
evaluated normally. In this case there are several possibilities to ensure the robustness
of the system, which of these is chosen is dependant on the specific component. The

 Embedding Dynamic Behaviour into a Self-configuring Software System 381

simplest option is for a safe default outcome to be supplied for each decision point
and given as the decision result when an error occurs. Alternatively, the previous
working or a default DCM for this decision point could be loaded. Whichever strategy
is chosen, the default (safe) behaviour is defined for each decision point by the
component developer at design-time. This approach minimises the amount of run-
time error handling required while at the same time maximising safety. Further
investigation of validation and verification techniques for this system is required.

Figure 3 also shows an interface between the component and the context manger. It
is important to manage the communication and to allow for multiple open decision
points within a single component, via some implementation specific addressing
mechanism. A common data structure is needed to allow a flexible amount of context
information to flow between the context manager, component interface and dynamic
wrapper. The format should be of variable length and be able to convey the type,
name and value of each context item.

Using a general dynamic interface will allow any embedded technology to be used
(e.g.: policies, neural network weights, etc) provided a component has the correct
evaluator for this type of technology. The type of embedded technology a component
uses could even be changed at run-time, by the loading and unloading of evaluation
modules stored in the system. In the first instance it may be sensible to use only one
technology for the DEM in all components in a single system. This approach is used
in the DySCAS project with policy-based computing. However, if the dynamic
wrapper concept is implemented in a general way, several technologies could be used
in the same system. An even more flexible system would allow the DEM in a single
decision point to be changed during run-time by unloading and loading of modules.

In this description it is assumed that loading of a DCM is triggered by some event
from within the system. The concept does not restrict the possible implementation of
this in any way. For example, the component itself could request a new DCM,
perhaps as the result of a configuration decision. Alternatively, a DCM load could
result from a special interrupt, whereby a new DCM is pushed onto the component.
This continues the theme of making the architecture as flexible as possible.

5 Implementation in the DySCAS Project

The overall goal of the DySCAS project is to develop a middleware that supports self-
management within automotive systems. The increased demands on configuration
flexibility and scalability of such systems results in the necessity to implement
knowledge-based autonomics within the system middleware in order to make this
system aware of the dynamically changing environment.

Policy-based computing is one of the techniques that supports autonomic decision
making and is one of the most suitable solutions to be applied in the resource
constrained context-aware environments. Policies written using defined semantics are
usually held externally to the complied embedded code and may be changed at run-
time, enabling post-deployment changes in system functionality.

In this context one of the specific technologies that can be used for expressing
dynamic behaviour is AGILE, a general policy description language [16, 21].
Main features of this language include support for dynamic reconfiguration and

382 P. Ward et al.

self-stabilisation. The variety of constructs available in AGILE make this a very
efficient tool for the implementation of policy-based configurations.

The AGILE library is written for the .NET environment and supports AGILE
policy language syntax and semantics and provides set of tools and interfaces for
writing policy-based context-aware applications. Because this library wasn’t designed
to satisfy typical embedded systems resource constraints, a more efficient and
resource conscious version of this library, called AGILE-Lite, has been developed.
Main features of the AGILE and AGILE-Lite [21] libraries are compared in figure 4.

•Under development in C++/.NET since 2005
•Not optimised for size or resource efficiency
•Built-in signal processing and trend analysis
•Implemented self-stabilisation mechanisms
•High flexibility and functionality

•Fully object oriented policy language
•Suport for policies and templates
•Dynamic policy adaptation
•Simple policy language, syntax, semantics
•Policies represented in XML format
•Dynamically loaded policies and templates
•Support for embedded Utility Functions
•Dynamic switching between policies

•Under development in C since January 2007
•Fully functional for embedded systems
•Resource constraints aware
•C166 kernel compatibility
•Linux compatibility

AGILE

AGILE-Lite

•Under development in C++/.NET since 2005
•Not optimised for size or resource efficiency
•Built-in signal processing and trend analysis
•Implemented self-stabilisation mechanisms
•High flexibility and functionality

•Fully object oriented policy language
•Suport for policies and templates
•Dynamic policy adaptation
•Simple policy language, syntax, semantics
•Policies represented in XML format
•Dynamically loaded policies and templates
•Support for embedded Utility Functions
•Dynamic switching between policies

•Under development in C since January 2007
•Fully functional for embedded systems
•Resource constraints aware
•C166 kernel compatibility
•Linux compatibility

AGILE

AGILE-Lite

Fig. 4. Comparison of features of the AGILE and AGILE-Lite libraries

DySCAS specifies a set of use-case scenarios to be supported. These serve to both

define functional requirements the DySCAS middleware must provide and showcase
some novel aspects of this project. Use-case scenarios are categorised into four so-
called Generic Use-Cases (GUC) and a subset of Specific Use-Cases (SUC) within
each GUC. DySCAS Generic Use-Cases are the following:

• GUC1 - New device attached to the vehicle;
o exemplary SUC2: Negotiating and contracting of functionalities.

• GUC2 - Integrating new software functionality;
o exemplary SUC1: Selecting software packages to be installed.

• GUC3 - Closed reconfiguration;
o exemplary SUC6: Planning new system configuration.

• GUC4 - Resource optimization;
o exemplary SUC1: Optimisation intelligence.

All of the mentioned use-case scenarios must be supported by the DySCAS
middleware, which makes the middleware architecture design a very challenging issue.
This middleware will contain numerous services (such as device discovery service,
security service, prioritisation service, resource management and mapping service, etc.),
that can each be policy-configurable and in this way context-aware. For each decision
point the policy is loaded at the system initiation stage or later, in run-time, depending
on the current environment context. The whole policy life-cycle, presented in figure 5,
has to be supported by the middleware.

 Embedding Dynamic Behaviour into a Self-configuring Software System 383

Storage

Certification/
Versioning

Policy editing
Design level

validation

Policy
Repository

Policy
management

DySCAS Middleware
SW component

Run-time
evaluation

1 2

3
4

56

- Transitions1 6...

Fig. 5. The life-cycle of policies in the DySCAS project

The policy life-cycle begins with policy editing by the use of software tools.
During this process the policy is validated (transition 1) in order to detect any
semantic or logic errors. After the policy is validated, it is placed (transition 2) into
storage (hard drive, memory key, etc.). Uploading the policy consists of
certification/versioning (transition 3) to ensure integrity and the storage of the policy
into the correct location in the repository (transition 4). In response to the context
changes (for example a user-made or event-based decision) the policy update process
is triggered. The policy manager has to find the appropriate policy version in the
repository and store the decision point’s currently used policy (transition 5) for
rollback purposes. Finally, the new policy is transferred to the component (transition
6). This procedure allows the AGILE-Lite library to perform embedded run-time
evaluation process on the newly loaded policy when a decision point is evaluated.

In reference to the architecture presented in sections 3 and 4, DySCAS uses policy
based computing to implement embedded decision making. The Decision Evaluation
Module (DEM) being the AGILE-Lite library and the Decision Configuration Module
(DCM) is a policy file. In this implementation policy loading can be triggered by user
interaction, new device connection or servicing of a vehicle by the manufacturer, for
example. To aid the use of these technologies policy creation tools are under
development and validation and verification methods are being investigated.

5.1 Automated Trust Decisions in DySCAS

The DySCAS project has identified a number of advanced use cases to illustrate the
applicability and versatility of the dynamic adaptation scheme. A mix of simulations and
demonstrator implementations are being prepared for validation and dissemination
purposes. This section describes one such demonstrator which focuses on an infotainment-
oriented use case involving data streaming from an external attached device such as an
MP3 player or Personal Data Assistant carried by an occupant of the vehicle. Several of
the mechanisms discussed above are demonstrated, including the decision point
implementation with a dynamic wrapper. Due to the large variability in portable devices
and media encoding schemes it is expected that during the vehicle lifetime many changes
will occur. A major aim of DySCAS is to allow the vehicle’s computer system to be
updated throughout its lifecycle to keep up with such changes. The application also shows
how robustness issues are incorporated into the methodology.

384 P. Ward et al.

The data streaming scenario demonstrates how a software component embeds a
decision point, and thus can be run-time configured with an appropriate policy. The
decision point is concerned with deciding whether a data stream feed to the vehicle
should be trusted, as shown in figure 6. To allow a close examination of the concepts
we focus on just one component although the full data streaming use-case involves
several interacting components and multiple policy configured decision points.

The AGILE policy library is used as the decision making technology and is linked
inside the decision point. This library parses and evaluates a policy file as requested;
all other functionality of the decision point is performed by the dynamic wrapper. A
simplified implementation of the Context Manager is used, whose main responsibility
is to respond to component requests about the availability of context information.
Communication of the context and policies to the component is simulated as assumed
to be operative. For diagnostic and dissemination purposes this example has been
implemented in a high-level programming environment designed to run on a desktop
computer and provide a view into the working of the concepts. A parallel
implementation is occurring, designed to run on typical vehicle embedded hardware.

PContext Information Decision Point Default Outcome PolicyKey Dynamic Wrapper

Provider_ID
Content_Type
Encoding

Provider_ID
Content_Type
Encoding
Connection_Type

P

DSSPolicy1.xml

DSSPolicy2.xml

P
Reject Accept

Data Stream Security Component
Context for DSSPolicy1

Context for DSSPolicy2

(encapsulating
trust logic)

(updated
trust logic)

PContext Information Decision Point Default Outcome PolicyKey Dynamic Wrapper PContext Information Decision Point Default Outcome PolicyKey Dynamic Wrapper

Provider_ID
Content_Type
Encoding

Provider_ID
Content_Type
Encoding
Connection_Type

P

DSSPolicy1.xml

DSSPolicy2.xml

P
Reject Accept

Data Stream Security Component
Context for DSSPolicy1

Context for DSSPolicy2

(encapsulating
trust logic)

(updated
trust logic)

Provider_ID
Content_Type
Encoding

Provider_ID
Content_Type
Encoding
Connection_Type

P

DSSPolicy1.xml

DSSPolicy2.xml

P
Reject Accept

Data Stream Security Component
Context for DSSPolicy1

Context for DSSPolicy2

(encapsulating
trust logic)

(updated
trust logic)

Fig. 6. A typical use of the methodology in a data stream security component

Figure 6 shows two sets of context information, which are required for evaluation of
the policies “DSSPolicy1.xml” and DSSPolicy2.xml”. These context requirements are
specified inside the policy and are used during the wrapper negotiation process described
previously. The following excerpt from “DSSPolicy1.xml” shows the specification of
context requirements, (“Environment Variables” in the AGILE grammar.

<EnvironmentVariables>
 <EVariable Name="Provider_ID" Type="string"/>
 <EVariable Name="Content_Type" Type="string"/>
 <EVariable Name="Encoding" Type="string"/>
</EnvironmentVariables>

The decision point and wrapper mechanisms make it very easy for the software
component developer to insert open decision points into code at any place where it is
necessary to defer decision-making logic. The specification of each decision point
includes the decision point identifier, the default outcome and any other possible
outcomes. Output from the decision point will always be consistent with this
specification. In our example, the decision point will return 0 for “Reject” or 1 for
“Accept”, this is assured by the wrapper which is transparent to the developer. The
following C# code is used to create this decision point.

 Embedding Dynamic Behaviour into a Self-configuring Software System 385

DecisionPoint d = new AGILEDecisionPoint("DP","0","1");
addDecisionPoint(d);

Here the decision point is created to operate with the AGILE library, however if
other decision making technology is available a different type of decision point can be
placed here. At the point in the component code where the decision point should be
evaluated the following line is placed.

string result = evaluateDecisionPoint("DP");

Along with the evaluation result, the decision point also provides access to other
information such as, was the default outcome used and other diagnostics. In figure 7
diagnostic traces are presented to illustrate the fault tolerance features provided by the
dynamic wrapper, such as policy load errors and default behaviour.

Fig. 7. Annotated diagnostic traces of the Data Stream Security Component

These traces show three occasions that a policy is not loaded correctly into the
decision point. Notice how subsequent evaluation of the decision point does not result
in an error, or illegal behaviour, instead the default ‘safe’ result is given. This feature,
handled by the transparent wrapper, is at no cost to the developer and increases trust
in the robustness of the methodology. An example of successful policy load and
evaluation is also included. The interested reader is invited to obtain this application
and investigate its functionality [22].

6 Conclusions and Future Work

In this paper we described a methodology for a dynamic embedded system where the
system logic is componentised. The behaviour of these components can be altered by
replacing or changing the embedded decision making module. There is a growing
need for this type of dynamic architecture in embedded systems, which this work goes
some way to addressing. This is made quite scalable with the use of individual
localised decision points rather than a centralised controlling component. A
specialised component architecture is presented to allow context-aware behaviour and

A policy (“DSSPolicyX.xml”) is loaded into
the decision point and parsed, producing a
list of required context. The wrapper finds
that this context is not available and the
policy is not used.
The component is run to make a decision
about an incoming data stream. As the
policy load failed the default return value
was returned.

Policy (“DSSPolicyY.xml”) load fails due to
the policy being able to produce a result that
is not specified in this decision point.

Corrupt policy (“DSSPolicyZ.xml”) causes
the load to fail.

Policy is loaded successfully and
subsequently evaluated. On this occasion the
decision allows the data stream to proceed.

386 P. Ward et al.

run-time replaceable decision modules. A more detailed and descriptive specification
of the context manager is needed to fully realise the potential of this approach.

A partial demonstration of one of the automotive use-cases has been presented,
which illustrates the way in which run-time configuration can be achieved using the
methodology and implementation mechanisms described. A challenging use-case was
used to illustrate the need for the deferment of configuration and decision making logic.
The way in which trust decisions are made will evolve over the lifetime of an artefact
such as a vehicle and thus there needs to be a way to easily update the decision logic
without having to replace or upgrade the embedded software mechanisms. Trust logic
may also be implemented differently by different vehicle manufactures, and in some
scenarios (such as fleet transport) it may be necessary to support customisation by
vehicle owner or driver. As shown in this paper, once a decision point has been inserted
(with perhaps a very simple initial policy), it can be subsequently upgraded as
necessary. The methodology for implementing autonomic behaviour also incorporates a
context management service. This enables the context inputs of a decision point to be
configured during run-time, and thus not placing any design-time restrictions on the new
policy in terms of which context information is available inside a particular component.

Future effort is required to further the work presented here concerning trust in the
robustness of the dynamic system. Developing policy Validation and Verification
(V&V) approaches would further increase confidence and acceptance. We propose
that metadata be added to policies that can be used as an additional check that the
correct policy is loaded into a decision point. Design time (offline) V&V could be
used if a suitable security scheme were in place; policy certification for example.

The methodology presented here is designed to strike a balance between post-
deployment flexibility and trust to improve acceptance. Future exploration of the
autonomic possibilities this provides could include the use of a set of policies, with
various context requirements, per decision point. A policy would be selected based on
the currently available context, achieving a self-optimising behaviour.

Acknowledgements and DySCAS project information. The DySCAS project is
funded within the 6th framework program “Information Society Technologies” of the
European Commission. Project number: FP6-IST-2006-034904.

The partners are: Volvo Technology AB (the project coordinator), DaimlerChrysler
AG, Enea Services AB, Robert Bosch GmbH, The University of Greenwich, The
University of Paderborn, The Royal Institute of Technology (KTH), Systemite AB,
and Movimento. The project started in June 2006 and runs until November 2008.
Further details are available at the project website [1].

References

1. DySCAS project website: http://www.DySCAS.org
2. Anthony, R., Ekelin, C.: Policy-driven self-management for an automotive middleware. In:

1st Intl. Workshop on Policy-Based Autonomic Computing (PBAC) at 4th IEEE Intl.
Conf. Autonomic Computing, pp. 55–64 (2007)

3. Anthony, R., Rettberg, A., Jahnich, I., Törngren, M., Chen, D., Ekelin, C.: Towards a
Dynamically Reconfigurable Automotive Control System Architecture, Embedded System
Design: Topics, Techniques and Trends, IFIP, pp. 71–84. Springer, Heidelberg (2007)

 Embedding Dynamic Behaviour into a Self-configuring Software System 387

4. Anthony, R.: Policy-centric Integration and Dynamic Composition of Autonomic
Computing Techniques. In: 4th International Conference on Autonomic Computing (ICAC
2006), IEEE Computer Society, Washington (2007)

5. IBM Research, Policy technologies,
 http://www.research.ibm.com/policytechnologies/

6. Lobo, J., Bhatia, R., Naqvi, S.: A policy description language. In: Proc. AAAI, pp. 291–
298 (1999)

7. Kramer, J., Magee, J.: Self-Managed Systems: an Architectural Challenge. In: Proceedings
of the 2007 Future of Software Engineering, pp. 259–268. IEEE Computer Society,
Washington (2007)

8. Yau, S.S., Karim, F.: An Adaptive Middleware for Context-Sensitive Communications for
Real-Time Applications in Ubiquitous Computing Environments. Real-Time Syst. 26(1),
29–61 (2004)

9. Costa, P., Coulson, G., Mascolo, C., Mottola, L., Picco, G.P., Zachariadis, S.:
Reconfigurable Component-based Middleware for Networked Embedded Systems.
International Journal of Wireless Information Networks 14(2), 149–162 (2007)

10. Naji, H.R., Wells, B.E., Etzkorn, L.: Creating an adaptive embedded system by applying
multi-agent techniques to reconfigurable hardware. Future Gen. Comput. Syst. 20(6),
1055–1081 (2004)

11. Henricksen, K., Indulska, J.: Developing context-aware pervasive computing applications:
Models and approach. Pervasive and Mobile Computing 2(1), 37–64 (2006)

12. Gu, T., Pung, H.K., Zhang, D.Q.: A service-oriented middleware for building context-
aware services. J. Netw. Comput. Appl. 28(1), 1–18 (2005)

13. Wang, S., Shin, K.G.: An architecture for embedded software integration using reusable
components. In: Proc. 2000 Intl. Conf. Compilers, Architecture, and Synthesis for
Embedded Systems, pp. 110–118. ACM Press, New York (2000)

14. Schneider, K., Schuele, T., Trapp, M.: Verifying the Adaptation Behavior of Embedded
Systems. In: 2006 International Workshop on Self-Adaptation and Self-Managing Systems
(SEAMS 2006), pp. 16–22. ACM Press, New York (2006)

15. Beznosov, K.: On the Benefits of Decomposing Policy Engines into Components. In:
ACM Intl. Conf. Proceeding Series, vol. 80 (2004)

16. Anthony, R.: The AGILE Policy Expression Language for Autonomic Systems. Intl.
Trans. on Systems Science and Applications 1(4), 381–397 (2006)

17. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.: Composing adaptive software.
IEEE Computer 37(7), 56–64 (2004)

18. Gilani, W., Naqvi, N.H., Spinczyk, O.: On adaptable middleware product lines. In: Proc. 3rd
Workshop on Adaptive and Reflective Middleware, pp. 207–213. ACM, New York (2004)

19. Georgas, J.C., van der Hoek, A., Taylor, R.N.: Architectural runtime configuration
management in support of dependable self-adaptive software. In: Proc. 2005 Workshop on
Architecting Dependable Systems (WADS 2005), pp. 1–6. ACM, New York (2005)

20. Elfatatry, A.: Dealing with change: components versus services. Commun. ACM 50(8),
35–39 (2007)

21. Pelc, M., Anthony, R.: Towards Policy-Based Self-Configuration of Embedded Systems.
System and Information Sciences Notes 2(1), 20–26 (2007)

22. Policy Autonomics website, demonstration application, http://staffweb.cms.gre.
ac.uk/~ar26/Research/PolicyAutonomics/publications_development
/embedbehavior

Service Discovery of IP Cameras Using SIP and

Zeroconf Protocols

Yi-Chih Tung1, Chien-Min Ou2, Wen-Jyi Hwang1,�, and Wei-De Wu1

1 Department of Computer Science and Information Engineering,
National Taiwan Normal University, Taipei, 117, Taiwan
{g94470041,whwang,g95470103}@csie.ntnu.edu.tw

2 Department of Electronics Engineering, Ching-Yun University,
Chungli, 320, Taiwan
cmou@cyu.edu.tw

Abstract. This paper presents a novel framework for remote access of
IP cameras with minimum pr-configuration cost. Although the usual ser-
vice discovery protocols such as Zeroconf can be adopted for simplifying
the pre-configuration procedures, the protocols are limited only for local
services. The proposed protocol, termed STDP (Service Trader Discovery
Protocol), is able to provide remote IP camera services while requiring
minimum configuration complexity. The STDP is a hybrid combination
of Zeroconf and SIP (session initial protocol). The Zeroconf is adopted
for the discovery and/or publication of local services; whereas, the SIP
is used for the delivery of local services to the remote nodes. With sim-
ple plug-and-play pre-configuration, services provided by IP cameras are
then remotely available. This protocol is well-suited for high mobility
applications where the fast deployment and low administration efforts of
IP cameras are desired.

1 Introduction

An IP camera (IP CAM) is a video camera that contains a hardware video en-
coder and an embedded processor with a TCP/IP interface. It is a stand alone
unit that can be directly connected to the internet without the need for a sep-
arate computer. It also has a built-in web server, which provides the ability
for accessing digital images and configuring the camera. Its digital output al-
lows the camera easily integrated with a wide range of applications, including
e-surveillance, web attractions and remote monitoring. In these applications, IP
CAMs are usually deployed in the environments with dynamic locations. With-
out a static IP address information, accessing the web server associated with the
IP CAMs is difficult. In addition, for a service consumer, it is not possible to
always have a complete overview over these applications and their availability.
The dynamics of recent networks make this process even more complex.

One way to solve the problem is by the employment of service discovery pro-
tocols, such as SLP (Service Location Protocol) [3], Jini [10], UPnP (Universal
� To whom all correspondence should be sent.

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 388–402, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Service Discovery of IP Cameras Using SIP and Zeroconf Protocols 389

Plug-and-Play) [5], and Zeroconf [2], [4]. In the service discovery environment,
IP CAMs and other devices advertise themselves, supplying details about their
capabilities and the information one must know to access the service (e.g., the
IP address). Nevertheless, existing service discovery protocols are limited only
to local area networks (LANs). For many IP CAM applications, remote access is
required. An effective protocol for remote service of IP CAMs is therefore desired
for these applications.

This paper proposed a novel SIP (Session Initiation Protocol)-based frame-
work, termed STDP (Service Trader Discovery Protocol), for the remote accesses
of IP CAMs. SIP [9] is a protocol developed by IETF to assist in providing ad-
vanced telephony services across the internet. Basically it is a signaling protocol
used for establishing sessions in an IP network. In the SIP, location of clients are
maintained and updated in the registrar server. The IP address of the target node
can be obtained by a query to the server. Although a direct deployment of SIP to
an IP CAM is possible for accessing digital images, a number of modifications are
desired. For many home network applications, costly manual pre-configurations
should be avoided. However, the deployment of SIP requires the assignment of
an unique pair of SIP URI and password to each IP CAM. This may result in
a high manual pre-configuration cost when the number of IP CAM is large. On
the contrary, there is no pre-configuration cost for the existing service discovery
protocols permitting accesses only to LAN. The goal of STDP therefore is to
simplify/eliminate the administration efforts associated with the remote access
protocols for IP CAM applications.

The proposed STDP protocol is a hybrid combination of the Zeroconf and
SIP protocols. The Zeroconf protocol is a light weight protocol supporting ser-
vice discovery in a LAN. As compared with other service discovery protocols, it
imposes minimal implementation cost for an embedded system. IP CAMs using
the Zeroconf protocol can be deployed with simple plug-and-play. Consequently,
the hybrid combination allows the remote accesses of IP CAM while enjoying
low pre-configuration cost.

To implement the STDP, the SIP is required to be deployed only on a single
node, termed trader, in the LAN. This assures the minimal pre-configuration
cost for the system. The trader is responsible for collecting the service informa-
tion provided by all the other nodes in LAN via the Zeroconf protocol. A remote
access to any IP CAM in the LAN can be accomplished by first retrieving the
service information from the trader using the SIP. Based on the information, the
IP address of any IP CAM in the LAN can be found. A remote node can then
access the web server associated with the target IP CAM based on the retrieved
service information. The proposed STDP protocol has been implemented in a
dynamic network environment. Physical tests reveal that the IP CAMs support-
ing only simple Zeroconf protocols can be easily accessed by a remote host. The
proposed STDP protocol is therefore beneficial for a wide range of IP CAM
applications requiring dynamic deployment.

390 Y.-C. Tung et al.

2 Preliminaries

The proposed STDP is a hybrid combination of SIP and Zeroconf. Therefore, in
this section, we give a brief description of these two protocols. The independent
applications of these two protocols for accessing IP CAMs are also discussed.

2.1 SIP

SIP is a signaling protocol used for establishing sessions in an IP network. The
user agents and servers are the major components of the protocol. A user agent
is a end-user device. A user agent client (UAC) issues a request and a user agent
server (UAS) responds to the request. When the SIP is applied for the remote
access of a IPCAM, in the simplest form the UAC is a viewer and the UAS is
the IP-CAM, as shown in Figure 1. In this case, the location of the IP-CAM
should be fixed, and should be known to the viewer.

Fig. 1. Basic application of SIP for IP CAM

To support the mobility for the IP CAM, the employment of SIP servers are
necessary. Commonly used SIP servers include the registrar and proxy server.
A SIP registrar handles registration messages. It is associated with a databases
(termed location server) containing user agent locations. A SIP proxy server can
be viewed as the router in the SIP level that forward SIP requests and responses.
In addition, it provides functions for authentication and authorization.

Figure 2 shows a simple example, which uses proxy, registrar and location
servers with the INVITE message for session establishment. As shown in the
figure, an IP CAM first registers its location in the location server. A SIP proxy
server then accepts an INVITE request made by a UAC and queries location
server to find UAS location. Based on the address received from the server, the
proxy server forwards the INVITE message to the UAS. The session will then
be established after the acknowledgements from UAS are received. It can be
observed from the example that the viewer does not have to know the IP CAM
location prior to a connection establishment. In addition, the UAS is allowed to
change its location without informing the UAC. Only a registration request to
the registrar server for location updating is required.

In addition to supporting the user mobility, the SIP offers the event notifica-
tion framework [7], [8], which uses SUBSCRIBE/NOTIFY messages for subscrib-
ing to, and receiving notifications of, SIP-related events within SIP networks.

Service Discovery of IP Cameras Using SIP and Zeroconf Protocols 391

Fig. 2. A simple SIP-based framework for remotely accessing IP CAM

The ability to request asynchronous notification of events proves useful in many
services for which cooperation between devices is required. Examples of such
services for IP phone applications include automatic callback services (based on
terminal state events), buddy lists (based on user presence events) and message
waiting indications (based on mailbox state change events).

The SIP allows the remote access of IP CAM with mobility support and event
notification. To use the SIP, however, each IP CAM should be associated with
a pair of SIP URI and password. The high manual pre-configuration cost and
administration efforts for the deployment of IP CAMs are therefore necessary.
This is undesirable for many IP CAM applications.

2.2 Zeroconf

Zeroconf is a protocol for discovering services available in a local network. A
Zeroconf network is one that can exist without a central control component, and
works without any kind of manual pre-configuration.

Zeroconf can directly be adopted for discovering IP CAM in the LAN. It in-
volves address assignment, name translation and service discovery without cen-
tral servers. The address assignment for a node in Zeroconf network can simply
be accomplished by randomly selecting an address in the range of 169.254.1.0
to 169.254.254.255. The node then does an ARP probe for the address. If there
are any responses, the node chooses another IP address at random, and tries the
ARP probe again.

The name translation in Zeroconf network is solved by the multicast DNS
(mDNS) standard, which eliminates the requirement for DNS server. In the
standard, all the nodes in the LAN listens to a specific IP multicast address. A
node wish to publish a name will broadcast the selected name to this multicast
address. Other nodes having the same name then reply to the requesting node.
The name translation can be accomplished in a similar fashion. Instead of using

392 Y.-C. Tung et al.

Fig. 3. Publication operations of Zeroconf

fully qualified domain name (FQDN), a node name in the .local name space is
used for mDNS.

Another standard, termed DNS Service Discovery (DNS-SD) can be used for
the service discovery in Zeroconf. DNS-SD works particularly well with mDNS,
since it also uses DNS records. Three basic operations are included in the DNS-
SD: publication, discovery and resolution. The goal of publication is to advertise
a service. The discovery operation is used to browse for available service. Based
on the results of discovery operation, the resolution operation is adopted for
translating service names to addresses and port numbers.

Figures 3, 4 and 5 show a simple example of these DNS-SD operations for a
local network consisting of an IP CAM. The publication operations of Zeroconf
are shown in Figure 3, which consists of address selection (Figure 3.(a)), name
selection (Figure 3.(b)), service start up (Figure 3.(c)) and service broadcast
(Figure 3.(d)). In Figure 3.(a), the IP CAM randomly selects the IP address
169.254.0.1, and announces it to the network. Because no devices respond to
the announcement, the IP CAM takes the address as its own. In Figure 3.(b), it
starts up its own multicast DNS responder, requests the host name ipcam.local.,
verifies its availability, and takes the name as its own. In Figure 3.(c), the IP
CAM starts up a video service on TCP port 80. Finally, in Figure 3.(d), it
publishes the service instance, of type http. tcp, under the name ipcam, in the
.local domain. It should be noted that the service type (i.e., http. tcp) contains
two fields: the first field (i.e., http) is service dependent, and the second field
(i.e., tcp) indicates the transportation protocol used by the service. The service
type will be used for service browsing and discovery. The instance name (i.e.,
ipcam) is device dependent. That is, devices sharing the same service type will
have different instance names. The service instance therefore can be used for the
query of port and IP address of a device.

Figure 4 depicts the service query and discovery in the Zeroconf network.
In this example, the service type queried by the viewer shown in Figure 4.(a)

Service Discovery of IP Cameras Using SIP and Zeroconf Protocols 393

Fig. 4. Service query and discovery in Zeroconf

Fig. 5. The query for domain name, port and IP address in Zeroconf

is http. tcp. The service instance discovered from the network is ip-
cam. http. tcp.local, which represents an IP CAM. Based on the service in-
stance, the viewer can further query for the port, domain name and IP address
of the IP CAM using resolution operation, as shown in Figure 5.

Although Zeroconf requires no pre-configuration cost, it has the major draw-
back that the protocol can only be used in a local network. For IP CAM appli-
cations, however, remote accesses are usually desired.

3 STDP

The goal of STDP is to eliminate the drawbacks of accessing IP CAMs based
only on SIP or Zeroconf protocols. It provides remote access of IP CAM with
minimal pre-configuration cost. As shown in Figure 6, the STDP is an applica-
tion layer control protocol that utilizes both SIP and Zeroconf. A STDP-based
network contains three basic components: service provider, service requester,
and service trader. In our design, the service provider and requester are an IP
CAM and a viewer, respectively. Although the primary goal of the STDP is for
the design of IP CAM systems, the STDP apply equally well to the broader
group, where the service provider and service requester can be any networked
appliances demanding low pre-configuration cost and efficient remote access.

394 Y.-C. Tung et al.

Fig. 6. The protocol stack of STDP-based networks

The service traders are the nodes used for the delivery of service information
over WAN. A service trader provides two functions. It can be adopted to col-
lect/discover service information from service providers in a local network, and
deliver the information to a remote node (which is also a trader) upon requests.
Alternatively, it can also be used to subscribe and receive the service information
from other traders in remote sites, and publish the service information to the
service requesters within its local domain. A trader can be implemented in an
independent device such as a computer. It can also be implemented in an IP
CAM (or a viewer). In these cases, the device supports multiple roles as a trader
and a service provider (or a requester).

The communications between two service traders are based on SIP protocol,
as shown in Figure 7. Each trader can be an UAC and/or an UAS. Each local net-
work needs only one service trader. Each of the service providers and requesters
talk to its trader in the same LAN for the delivery of local service information.
From Figure 7, we observe that the Zeroconf is adopted for the communication
between a trader and a service requester (or a provider). Therefore, in our design,
the service provider and requester need to support Zeroconf protocol.

To obtain information from a service provider to a service requester, both
the SIP and Zeroconf protocols are used. The STDP provides a mechanism for
the service information exchange between the SIP and Zeroconf. Based on the
acquired service information, the viewer then can access the IP CAM using the
HTTP protocol.

To discuss the STDP protocol in more detail, we divide the protocol into three
parts, as depicted in Figure 8. The first part concerns with the communication
between a trader and a service provider. It can be observed from Figure 8.(a) that
the trader will receive service information published by an IP CAM. The trader
can also actively discover the service provided by an IP CAM. All the publish
and discovery operations are based on Zeroconf protocol, which are illustrated
in Figures 3-5.

However, it should be noted that the address assignment scheme shown in
Figure 3.(a) is not adopted in our design. This is because the address selected by
Zeroconf is valid only for local access. Our design allows any address assignment
scheme for acquiring an IP address for global access, including the dynamic
address assignment using the DHCP.

Service Discovery of IP Cameras Using SIP and Zeroconf Protocols 395

Fig. 7. STDP topology

Fig. 8. STDP protocol messages

The second part of the STDP protocol focuses on the interactions between
traders. This part of the protocol is based on the SIP. Service traders accompa-
nied by service providers are the UASs in the SIP. An UAS discovers/collects
local services available, and delivers the service information to other UACs upon
request. An UAC is the service traders accompanied by service requesters. It
sends subscription requests to UASs for acquiring the service information. Once
the UAC obtains service notifications from UASs, it publishes the service infor-
mation to its own service requesters.

396 Y.-C. Tung et al.

In the STDP, the SIP SUBSCRIBE/NOTIFY messages are used for the ser-
vice information delivery between an UAC and an UAS, as shown in Figure 8.(b).
In the SIP, the original goal of SUBSCRIBE/NOTIFY messages is to provide
the SIP related events subscriptions and notifications. The STDP extends the
usage of SUBSCRIBE/NOTIFY for the service subscription and notification.

To use the SUBSCRIBE message for service subscription, the type of ser-
vices desired should be specified in the message header. Here we augment a field
(termed Zeroconf) in the header of SUBSCRIBE message for specifying the ser-
vice type. The format of service type follows the DNS-SD format as http. tcp,
as depicted in Figure 9.(a).

NOTIFY messages are sent to inform traders of the service available for which
the traders have a subscription. Subscriptions are established using the SUB-
SCRIBE method described above. Sending a NOTIFY message does not termi-
nate the corresponding subscription. A single SUBSCRIBE request may trigger
several NOTIFY messages. In each NOTIFY message, the list of services and the
IP address of the corresponding service providers are carried. We also augment
two fields (termed Zeroconf and eX-Contact) in the header of NOTIFY message
to achieve this objective. It can be observed form Figure 9.(b) that the Zero-
conf field indicates the service type this message response to. The eX-Contact
field contains 5 items: action, service instance, host name, port number and IP
address.

The action item instructs how the service instance included in field should be
handled. There are three actions: addition (denoted by Add), deletion (denoted
by Del), and updating (denoted by Upd). The addition action instructs the target
service trader to add the service instance to the service list. The deletion action
informs the target service trader to remove the service instance. The update
action directs the target trader to update the attributes of the service instance.
The attributes considered here include the video coding standard adopted by
the IP CAM, frame size and frame rate.

Use Figure 9.(b) as an example, the NOTIFY message instructs the target
trader to add the service instance ipcam. http. tcp.local, with host name ip-
cam.local, port number 80, and IP address 140.122.184.235, to its service list. It
should be noted that the service instance and domain name should also follows
the DNS-DS format in the STDP.

The final part of STDP describes the communications between a trader and
a service requester, which is also based on Zeroconf. It can be observed from
Figure 8.(c) that the trader will then publish the service information collected
from other traders to the service requester. The service requester may also ac-
tively discover the service information from the trader.

Three parts of the STDP protocol depicted in Fig.8 may operate indepen-
dently. That is, the SIP and Zeroconf protocols are not required to operate at a
pre-specified order in the STDP. Figure 10 shows two examples of STDP message
flows. For the sake of brevity, only two LANs are considered in each example.
Nevertheless, the message flows can easily be extended to the scenarios contain-
ing large number of LANs. As shown in Figure 10, LAN A in each example

Service Discovery of IP Cameras Using SIP and Zeroconf Protocols 397

Fig. 9. Extensions of SUBSCRIBE/NOTIFY messages for STDP service subscription
and notification

contains a service requester and a trader (termed Trader 1). LAN B consists of
two service providers (termed Service Provider 1 and Service Provider 2) and a
service trader (termed Trader 2).

Figure 10.(a) illustrates the scenario, in which Trader 1 and Trader 2 first find
their own service requester and service providers via PUBLISH/DISCOVERY
messages. The service information of the service providers is then delivered from
LAN B to LAN A via SUBSCRIBE/NOTIFY messages. After receiving the
service information, Trader 1 then publishes this information to the Service
Requester. As shown in Figure 10.(a), after the Service Requester received the
service information, it selects the Service Provider 2 as its target device. The
Service Requester then issues directly a service request via HTTP protocol to
Service Provider 2. Direct video delivery from Service Provider 2 to Service
Requester then follows.

For the scenario shown in Figure 10.(b), it is assumed that the Service Re-
quester and Service Providers are not online at the beginning. The communi-
cation between Traders 1 and 2 is first established. This is then followed by a

398 Y.-C. Tung et al.

Fig. 10. Two examples of STDP message flow: (a) Trader 1 and Trader 2 first find their
own service requester and service providers via PUBLISH/DISCOVERY messages.
(b) Trader 1 and Trader 2 first establish their connection via SUBSCRIBE/NOTIFY
messages.

series of service information updating/notification when service providers and
service requester become available. Similar to the case shown in Figure 10.(a),
the Service Requester finally selects the Service Provider 2 as its target device
for the IP CAM service.

As shown in Figure 7, the service trader plays a major role in STDP. It
connects different local networks, and operates in back-to-back mode. It acts
as a SIP user agent on one side, and as a Zeroconf end device on the other
side. A trader has 4 operations. To further elaborate these operations, Figure 11
depicts their flowchart in detail. The first operation is to send Discovery or
Publish messages. In this operation, the trader acts as a Zeroconf end device
searching or publishing the services available. In the second operation, the trader
acts as a SIP UAC, and send SUBSCRIBE message for triggering the SIP event
notification mechanism. After sending the SUBSCRIBE message, the trader will
then waits and receives one or more NOTIFY messages for updating the service
list. The trader behaves as a SIP UAS in the third operation, which receives
the SIP SUBSCRIBE message. The trader will then send one or more NOTIFY
messages to the subscribing node. The fourth operation receives the Discovery
or Publish messages, where the trader functions again as a Zeroconf end device.
This operation and the first operation are essential for a trader to acquire the
service available from the service provider, or deliver the service to the service
requester.

Note that the SIP is required to be installed in the service traders because of
the operations of SUBSCRIBE/NOTIFY. Only one node in a local network needs

Service Discovery of IP Cameras Using SIP and Zeroconf Protocols 399

Fig. 11. Operation flowchart of a trader

to be the service trader. For the other nodes, only the implementation of Zeroconf
is necessary. The employment of Zeroconf protocol can effectively reduce the pre-
configuration efforts, because the protocol allows the simple plug-and-play. By
contrast, the SIP devices require the assignments of SIP URI and password.
For the stand alone embedded systems such as IP CAMs, the assignments may
require considerable efforts especially when the number of IP CAMs is large. The
STDP therefore provides an effective approach for lowering pre-configuration
cost and providing remote access.

4 Experimental Results

The STDP protocol has been implemented in a test-bed that realizes the scenario
proposed in Figure 12. Similar to Fig.10, The scenario consists of two local
networks (termed LAN A and LAN B in the figure). LAN A consists of a number
of laser printers, one IE browser and 4 IP CAMs. LAN B contains a number of
laser printers, one personal computer and one IE browser. As shown in the figure,
an IP CAM and a personal computer serve as the service trader in the LAN A
and LAN B, respectively. The IE browser in each local network is the service
requester in that local network.

All the IP CAMs and laser printers in both LANs are the service providers.
They are all of the type http. tcp. Their IP addresses are dynamically as-
signed by a DHCP server. Each IP CAM obtains its own hostname following
the procedure shown in Figure 3.(b). Consequently, no manual pre-configuration
is necessary for the IP CAMs serving only as the service provider. Only the IP
CAM functioning both as trader and service provider requires the manual pre-
configuration, because the assignments of SIP URI and password are necessary.

400 Y.-C. Tung et al.

Fig. 12. The scenario for our experiment

Fig. 13. All the services of type http. tcp discovered in LAN B without the employ-
ment of STDP

Note that, in addition to the IP CAMs, the laser printers are included in this
scenario. Since the laser printers supports Zeroconf, detecting the service pro-
vided by the laser printers in different local networks demonstrates the fact that
the proposed protocol can be adopted for the discovery of services provided by
various Zeroconf-based devices.

In our experiment, a reference design kit (RDK) based on a 200-MHz ARM
920 CPU and an MPEG4 encoder ASIC is used for the IP CAM design. The
employment of MPEG4 ASIC allows the source video sequence to be encoded in
real-time. Both the wired and wireless LAN interfaces (i.e., 802.3 and 802.11) are
also available in the IP CAMs. The operating system of the IP CAMs is Linux.
The Bonjour software development kit (SDK) [1] is adopted for the Zeroconf
implementation in the IP CAM. In addition, the PJSIP library [6] is used for
the SIP UAC and UAS implementations of the IP CAM functioning as a trader
(i.e., the IP CAM with host name ipcam in Figure 12).

Service Discovery of IP Cameras Using SIP and Zeroconf Protocols 401

Fig. 14. All the services of type http. tcp discovered in LAN B with the employment
of STDP

Since the IE browser is used as the service requester in each LAN, it is neces-
sary for the browser to support the Zeroconf. In our implementation, the Bon-
jour plug-in is adopted, which is able to discover the services of type http. tcp.
Figure 13 shows all the services of type http. tcp discovered by the IE browser
in LAN B without the employment of STDP. It can be observed from the figure
that these services are actually the services provided by the laser printers in LAN
B. This is consistent with our scenario presented in Figure 12. Figure 14 depicts
the search results by the same IE browser with the employment of STDP. In the
figure, it can be found that all the services of type http. tcp available in LAN
A and LAN B can be identified. In particular, all the IP CAMs in LAN A can
be discovered by the IE browser in LAN B. Moreover, the web page and source
video of each IP CAM can be easily accessed by clicking the host name of that
IP CAM in the browser, as shown in Figure 14 for accessing the IP CAM with
host name ipcam(4). Based on the experiments, it can then be concluded that
the STDP provides an effective approach for the remote access of IP CAMs,
while requiring minimal pre-configuration cost and administration efforts.

5 Conclusion Remarks

The proposed STDP protocol has been found to be effective for IP CAM applica-
tions. It allows both remote access and dynamic deployment of IP CAMs without
the need of manual pre-configuration. In the STDP, the service lists from remote
hosts are obtained by SIP SUBSCRIBE/NOTIFY event notification mechanism.
The service discovery and publish in a local network are then based on Zeroconf

402 Y.-C. Tung et al.

protocol, which is also used for eliminating manual pre-configuration. A test-bed
verifying the STDP protocol has been implemented. From the experiment, it is
observed that a basic IE browser with Bonjour plug-in can be effectively used for
the remote access of IP CAMs, which are installed with simple plug-and-play.
All these facts demonstrate the effectiveness of the STDP.

References

1. Bonjour (2007) lasted visited,
http://developer.apple.com/opensource/internet/bonjour.html

2. Cheshire, S., Steinberg, D.H.: Zero Configuration Networking: The Definite Guide.
O’Reilly Media, Inc, Sebastopol (2005)

3. Guttman, E., Perkins, C., Veizades, J., Day, M.: Service Location Protocol, Version
2, RFC 2608 (1999)

4. Guttman, E.: Autoconfiguration for IP Networking: Enabling Local Communica-
tion. IEEE Internet Computing, 81–86 (2001)

5. Kim, D.S., Lee, J.M., Kwon, W.H., Yuh, I.K.: Design and Implementation of Home
Network Systems Using UPnP Middleware for Networked Appliances. IEEE Trans.
Consumer Electronics, 963–972 (2002)

6. PJSIP.ORG last visited (2007), http://www.pjsip.org/
7. Rahman, M., Braun, D., Bushmitch, D.: A framework to access networked ap-

pliances in wide area networks. In: Proc. IEEE Consumer Communications and
Networking Conference, pp. 261–266 (2005)

8. Roach, A.: Session Initiation Protocol (SIP)-Specific Event Notification, RFC 3265
(2002)

9. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks,
R., Handley, M.: SIP: Session Initiation Protocol, RFC 3261 (2002)

10. Waldo, J.: The Jini Specifications, 2nd edn. Addison-Wesley, Reading (2000)

http://developer.apple.com/opensource/internet/bonjour.html
http://www.pjsip.org/

Adaptability of the TRSIM Model to Some

Changes in Agents Behaviour�

Alberto Caballero, Juan A. Botia, and Antonio Gómez-Skarmeta

Universidad de Murcia, Campus Espinardo, Murcia, España
{acaballero,juanbot,skarmeta}@um.es

Abstract. Trust and reputation models are very useful tools to assist
decision making process within agents. They can help to represent and
to approximately predict the behaviour of the agents in a system. Trust
and reputation values can be used to recognize the agents with a good-
expected performance. This way, trust and reputation models offer an
adaptive mechanism to guide interactions between agents. In this paper
we study the behaviour of TRSIM model when it is applied to consumer-
provider scenario. We present several experimental evidences related with
the stability of the model for different types of requirements of the con-
sumer, and recognition of different types of providers. Also, we study the
ability of the model to adapt to behavioural changes of provider agents.

1 Introduction

To mitigate the absence of information or the existence of incomplete or inaccu-
rate information about the behaviour of the agents into a system, we need some
mechanisms to reduce the risks produced by choosing eventually inappropriate
agents to interact with them.

Each agent in a multi-agent system can show very different behaviour given
the situation defined by its environment and the user requirements. For instance,
in a consumer - provider scenario, consumer agents prefer to interact (to nego-
tiate, to cooperate, etc.) with high-performance providers. In a number of these
environments, there is not a central entity capable to provide information about
the behaviour of others. For that, each agent must create and update their own
information model about the performance of others. This way, it can decide
whom interacts to solve a particular problem, given a certain situation.

Trust and reputation models offer good solutions to represent and to predict
the behaviour of agents in a system [7,11,9,5,11,4,6,8,10,3]. Trust and reputation
values can be used as a criterion to identify agents who are expected to show good
behaviour. In other words, those who are able to offer a high-quality solution
for a given problem. Thus, a trust and reputation model can provide adaptive
� This paper is supported by a Fundación Carolina scholarship and also by the Span-

ish Ministry of Education and Science in the scope of the Research Project TIN-
2005-08501-C03-02 and by the Project “Análisis, Estudio y Desarrollo de Sistemas
Inteligentes y Servicios Telemáticos” through the Fundación Séneca within the Pro-
gram “Generación del Conocimiento Cient́ıfico de Excelencia”.

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 403–417, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

404 A. Caballero, J.A. Botia, and A. Gómez-Skarmeta

mechanisms to guide the interactions. The models can use trust and reputation
information to recognize the quality of the solution that agents offer.

A robust trust and reputation model can be capable to adapt to the changes
that take place in the behaviour of agents. In each moment, the models need
to adjust the trust and reputation values in order to give an updated and real
estimate about the performance of other agents. For instance, when a given agent
decreases the quality of the responses that offers, the models must be capable to
reduce the trust in him. In the same way, when some agent improves the quality
of his responses, trust in him must be increased.

This paper shows some experimental evidence about the behaviour of the
TRSIM model, from different points of view, when is applied to a consumer -
provider environment. This work studies the way that TRSIM reaches a stable
status for different types of consumer requirements, the ability of the model to
recognize the type of providers given the quality of the responses that they offer,
and the ability to adapt to behavioural changes of provider agents.

The paper is structured as follows. Section 2 talks about previous studies and
the relationship with other works. Section 3 introduces structure, main charac-
teristics and general functionality of the model. Section 4 defines the experimen-
tal conditions and simulation algorithm used in these studies. In section 5 we
present a set of experiments where the quality of solutions that agents have do
not change in the simulation. In this case, we study when and how the model
stability is reached for different consumer requirements, and, how the model is
capable to recognize the quality of solutions that agents have using trust and
reputation information. In other hand, section 6 offers experimental results re-
lated to the ability of the model to adapt to some changes in the behaviour of
provider agents. Finally, in section 7 some conclusions are given.

2 Motivation and Related Work

In previous works we define a trust and reputation model in a MAS to propose
a suitable response for a consumer requirement in a P2P environment where
agents can be consumer or provider of resources [1]. This model considers trust
and reputation as emergent properties of direct interactions between agents,
based on multiple interactions between two parties. In this model, trust is a
belief an agent has about the performance of the other party to solve a given
task, according to its own knowledge. Moreover, reputation is related to the same
belief but based on the opinions of other agents in the community.

Contrary to other models [9,5,11], where trust and reputation values are ob-
tained as global values only associated to a peer, our model associates trust
and reputation to the specification of the task that agents need to delegate by
contracting. The performance of a given agent can be very different, according
to the specification of the task that it executes or the requirements of the user
that it represents. Some models consider that trust or reputation are associ-
ated to the user requirements or a particular dimension [7,4,6,8]. Griffiths [4]
proposes a experience-based mechanism to model the trustworthiness of agents

Adaptability of the TRSIM Model to Some Changes in Agents Behaviour 405

according to various criteria. He presents the notion of multi-dimensional trust
to manage several facets of trust and combine them into a unique value, accord-
ing to the preferences of the agent. Wang and Vassileva propose a P2P model
to compute trust and reputation from different dimensions and combines them
using Bayesian networks [10]. Ramchurn et al. [6] combine trust and reputation
from different informational sources using a weighted average, where each weight
represent the importance of each source.

In other previous work, we study some experimental results related with the
refinement process of our model in order to identify the suitable structure, func-
tions and parameters to correctly manage trust and reputation [2]. Now, we
study the stability and adaptability of the model analyzing some metrics such
as satisfaction degree, error in recommending the suitable response, and trust
for a given agent. In this way, we take into account the criterion of stability used
by Carbó et al. [3]. They consider that model reaches the stability when the
variations of error do not exceed a given threshold.

3 Model Structure

Basically, the model is structured and operates following the schema given in the
figure 1. TRSIM model is composed by a set of information bases that each agent
stores about the behaviour of the others and a set of functions to operate with
these bases. Following a distributed approach imposed by P2P environments,
each agent manages its own bases of experiences. Functions appearing in the
figure produces values to guide the interactions between agents, based on trust
and reputation concepts.

From the point of view of an agent, that needs to solve a given task, the
model has two bases of experiences to obtain trust and reputation values for

SimilarityIET
Interactions Experiencies
for Trust

IER

Interactions Experiencies
for Reputation

DT

DTRL

R

DT

Direct Trust

Direct Trust
Reliability

Reputation

Trust

ITIR

Indirect
Reputation

Indirect
Trust

aj?

Quality of
Response (Q)

Promised
Quality (P) aj

Fig. 1. Relationship between different parts of the model

406 A. Caballero, J.A. Botia, and A. Gómez-Skarmeta

this task: base of experiences for trust (IET) and for reputation (IER). Trust
and reputation values are produced by means of the right combination of some
functions, and information interchanged between agents. (The way to combine
informational sources is based on the ideas given by ReGreT [7]). First, by
introspection of the bases of experiences, the model calculates direct trust (DT),
reputation (R) and reliability of DT (DTRL), and combines them to produce a
unique value of global trust, using the function (T). The value, aggregated from
direct trust DT , its reliability DTRL and reputation R, is used to select the
partners in the interaction, to ask about the solution or about others.

If the bases of experiences do not have available information about the previ-
ous experiences for a given task, the model obtains the values of trust (by means
of function DT) and reputation (by means of function R) for a similar task and
combines these values with the similarity degree between two tasks, given by
function D. For that, the model uses functions IT and IR to select the partners
in the interaction for both purposes.

Initiator agent interacts with the recommended agent and solves its task with
the response offered by the selected partner. In this moment, the initiator agent
produces information related with the interaction that it may use to update its
own bases of experiences. For that, our model gives two functions: fulfillment of
the promised satisfaction (P) and quality of the response (Q).

3.1 Domain-Dependent Functions: Quality and Similarity

There are two important functions in the model whose definition depends on the
representations of tasks and responses: quality of the solution given the task that
it solves, and similarity between two tasks. The quality of the solution, denoted
by Q(wj , sk), indicates how much the response wj satisfies the requirements
specified in the task sk, based on the comparison of both concepts. In other hand,
similarity between two tasks sk and sp is denoted by D(sk, sp), and indicates
the similarity degree between two instances of the same concept.

In previous works [1,2] we proposed WSMO1 to represent task request sk

and response wj . Tasks and responses are described by a set of non-functional
properties (bi), some of them are defined by WSMO and others added by the user,
depending on the application domain. For each property bi, we define vsk

(bi)
and vwj (bi) values to represent the convenience of property bi for task sk and
response wj , respectively. Convenience are defined in the range [0,1], a value
near to 0 indicates a non-desired value in the concept property, and values near
to 1 indicate high-desired ones [2].

According to the convenience of the value of each property, and following
some ideas given by WSMO we define a set of the most important attributes of
a given concept. If Ru is the set of properties used to define WSMO concepts, for
each task (sk) or response (wj), we can split the good-value attributes into the
sets Rg ⊂ Ru and Rw ⊂ Ru, respectively. To construct these sets, we consider
that the attribute bi of sk (we denote with sk.bi) is a good-value attribute and

1 Web Service Modeling Ontology. http://www.w3.org/Submission/WSMO/

Adaptability of the TRSIM Model to Some Changes in Agents Behaviour 407

hence bi ∈ Rg if sk.bi ≥ λi (λi is a domain-dependent threshold value). In the
same way, an attribute bi of wj is a good-value and bi ∈ Rw if wj .bi ≥ λi.

Using the sets of the most prominent attributes, defined above, and consider-
ing how many task attributes are satisfied by response, the function to compute
the quality of the solution is written as follows:

Q(wj , sk) = sin

(
π

2
· |Q

′
wj,sk

|
|Ru|

)

where Ru is the set of all properties of tasks and responses, Q
′
wj ,sk

⊂ Ru is the
set of these properties such that its values in the task sk are less restrictive than
the values in the response wj :

Q′
wj ,sk

= {bi|bi ∈ Ru, vsk
(bi) ≤ vwj (bi)}

Satisfaction degree function is like a ratio between the satisfied sk attributes
and the total number of attributes Ru of any task or response. The maximum
satisfaction degree is obtained when all (not only good-value) attributes desired
in task sk are satisfied by response wj . On the contrary, the worst satisfaction is
obtained when any attribute of task sk is satisfied by attributes of response wj .

In other hand, similarity between two tasks is defined in the following way:

D(sk, sp) = 1− 1
n
·

n∑
i=1

|vsk
(bi)− vsp(bi)|

considering the same elements defined above related with the description of tasks
using WSMO.

4 Experiments Scenario

All experiments we are presented have been developed considering the same
simulation scenario, defined from a unified set of experimental conditions. This
scenario summarizes, in a simple way, some common characteristics of a wide
range of distributed systems (such as Grid, P2P systems, MAS, etc.).

The frame of experiments is defined from a scenario based on the interactions
among agents. Agents play two roles: provider or consumer of resources. All
agents play the provider role, but for each round only one agent acts as consumer,
according to the requirements of the user randomly assigned at the beginning of
the round.

At the beginning of the simulation, the set of tasks S and the set of responses
W are defined. These sets consist of 6 tasks and 10 responses, respectively. The
1/3 of the tasks belong to High-demanding tasks, the 1/3 to Medium-demanding
tasks, and 1/3 to Low-demanding tasks.

The degree of demand of a given task indicates how much difficult is to satisfy
this task using the set of the solutions that agents may offers. In the definition

408 A. Caballero, J.A. Botia, and A. Gómez-Skarmeta

of the scenario of simulation, we consider that the demand of a task is given by
the values of its non-functional attributes. Comparing two tasks, the degree of
demand of a task is greater than other when it has higher values for its non-
functional attributes.

One solution (or response), from the set of solutions W , is assigned to each
agent when it acts as provider, defining three types of agents. The 30% of agents
have High-quality responses, the 40% have Medium-quality responses, and 30%
have Low-quality responses. At the beginning of each replica of the simulation,
only one consumer agent is assigned to represent the requirements of the users,
randomly obtained from the set of task specifications S.

A round is a minimal unit of time considered in the simulation. It begins
when the requirements of initiator agent are established, by means of the task
specification selected, and finalizes when the bases of experiences are updates.
400 rounds carry out in each simulation.

The algorithm of the simulation is offered in figure 2. However, the way to
assign responses from W to each agent from N determines different experimental
situations. For this reason, the experiments analyze the following cases:

– task assigned to initiator agent is randomly selected from the set of tasks;
– always a High-demanding task is assigned to initiator agent;
– always a Medium-demanding task is assigned to initiator agent; and
– always a Low-demanding task is assigned to initiator agent;

The experimental evidences, that we comment in the following sections, are
the result from the simulation of TRSIM functionalities using our own imple-
mentation in Java. The values, shown in each figure, are the mean of the values
obtained from 20 replicas of the experiments.

– to create the set of agents N , responses W , tasks S
– to assign one response from W to each agent of N
– to select one agent ai from N
– for all (round t)

– to select one task sk from S as requirements of ai

– to select the agent(s) aj to ask solutions for sk

– InteractionResults := (t, ai, aj , sk, q = Q) ...to evaluate the interaction
– updateBases(InteractionResults) ...to update the bases of experiences,
taking into account the solution wj given by aj

– end for

Fig. 2. General algorithm of the simulation

Each figure studies the evolution of some metrics about the behaviour of the
model: satisfaction degree with the recommended solution, and error in rec-
ommending it. These metrics show how suitable is the recommendation of the
model. The error in recommending is defined as the difference between the qual-
ity of the recommended solution and the optimum quality (it means, the value

Adaptability of the TRSIM Model to Some Changes in Agents Behaviour 409

of the quality of the best of all solutions in the system). We consider that model
reaches stability when variations in error do not exceed 0.01.

Given that the main objective of the trust and reputation model is to assist the
selection of the best solutions, some experiments also study the trust evolution
for each type of agent. The three types of agents are defined from the quality of
the solutions that they offer.

5 Bootstrapping the Model

Here, we present a set of experiments where the quality of the solutions that
agents give does not change in the entire simulation. The first of them, presented
in section 5.1, studies how the model reaches an stable condition, particularized
for different types of tasks. The second one, in section 5.2, analyzes the ability
of the model to recognize different types of agents using trust and reputation.

5.1 Stability of the Model

This experiment is devoted to analyze the behaviour of the model for different
requirement degrees of the task in each round. For that, figure 3 compares the
error evolution for different ways to select the tasks that initiator agent must
solve. This figure shows that the behaviour of the model, for each type of tasks,
is stabilized after a relative small number of rounds.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 20 40 60 80 100 120

er
ro

r

rounds

ramdom tasks selection
High-demanding tasks

Medium-demanding tasks
Low-demanding tasks

Fig. 3. Comparison of error in recommending the suitable response, according to the
degree of demand of the task in each round: a) random, b) high, c) medium, d) low

Figure 3 shows how the error decreases for each alternative. These values
depend on the demand of the task to be resolved in each moment. When de-
manding of the task is lower, the error decrease is bigger and the error reaches
lower values. This means that, the stability of the model is reached before, when
the requirements of the task is lower. This is a desired behaviour of the model: it
is easier to satisfy Low-demanding tasks. The same response guaranties higher
satisfaction values for a Low-demanding task that for a High-demanding one.

410 A. Caballero, J.A. Botia, and A. Gómez-Skarmeta

5.2 Recognition of Types of Agents Using Trust and Reputation

Following, we study the evolution of trust that initiator agent has in the rest of
agents, according to the quality of the responses that agents offer. We analyze
the ability of the model to classify the agents according to the quality of the
responses that they offer, using trust and reputation information.

Figure 4 shows the evolution of trust that initiator agent has in the rest,
grouping by the degree of demand of the task that agent needs to solve in each
round.

a) task randomly selected b) High-demanding task

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

tru
st

rounds

High-quality agents
Medium-quality agents

Low-quality agents

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

tru
st

rounds

High-quality agents
Medium-quality agents

Low-quality agents

c) Medium-demanding task d) Low-demanding task

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

tru
st

rounds

High-quality agents
Medium-quality agents

Low-quality agents

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

tru
st

rounds

High-quality agents
Medium-quality agents

Low-quality agents

Fig. 4. Comparison of trust evolution for each group of agents, according to the degree
of demand of the task to solve in each round: a) random, b) high, c) medium, d) low

We conclude that, independently of the type of the task, the model is capable
to recognize the quality of the agent solutions, using trust and reputation in-
formation. In general way, the trust in High-quality agents grows. For instance,
we observe that, for random selection of tasks (Figure 4.a), trust in High-quality
agents is greater than trust in Medium-quality and Low-quality agents. At the
same time, trust in Low-quality agents decreases slightly, and in Medium-quality
agents keeps around average values between High-quality and Low-quality values.
A similar behaviour is shown when the type of the task is fixed at the beginning:

Adaptability of the TRSIM Model to Some Changes in Agents Behaviour 411

High-demanding tasks (Figure 4.b), Medium-demanding tasks (Figure 4.c) or
Low-demanding tasks (Figure 4.d).

However, the model is incapable to differentiate Medium-quality from Low-
quality to solve High-demanding tasks (Figure 4.b). Given the high demand of
the tasks that initiator agent needs to solve in this case, model only increases the
trust in the High-quality. Only High-quality agents are suitable to solve High-
demanding tasks. Neither the Medium-quality agents nor the Low-quality are
adequate to solve these tasks, and them, the trust for these two types of agents
decreases in the same way. This is a desired behaviour of the model. In other
cases, when initiator agent solves a not High-demanding task, model shows dif-
ferent evolutions for trust in Medium-quality and Low-quality agents (Figures 4.c
and 4.d).

6 Adaptability of the Model to Changes on the Behaviour
of Provider Agents

The set of experiments shown in this section, is devoted to study the ability of
the model to adapt to changes on the behaviour of provider agents. This type
of experiments is interesting to find out how capable is the model to recover an
stable status, and when the stabilization is reached, taking into account some
specific variations in the behaviour of provider agents. For that, after the sta-
bilization of the model, we induce some changes in the quality of the response
of the provider agents and analyze how the model reacts in from these changes.
The main experiments are related with the following situations: (1) behaviour of
a single agent degrades and then improves, and (2) behaviour of a single agent
improves and then degrades.

Each experiment shows the degree of satisfaction with the recommended solu-
tion in the cases when provider agents change their behaviour, comparing with
the cases when agents keep stationary. Each figure shows in a separate way
the evolution for High- and Medium-demanding tasks. We do not consider Low-
demanding tasks because the previous experiments (presented in section 5) show
that High- and Medium-demanding tasks are the unique cases in which the model
is really useful. Low-demanding tasks can be satisfied efficiently for any type of
tasks. For Low-demanding tasks, similar high satisfaction values (very near to 1)
can be obtained by randomly-selected responses. In other words, any solutions
in the system can guarantee high satisfaction values for a Low-demanding task.

Also, figures bring out trust evolution for behaviour-changed agents to study
the ability of the model to capture the changes produced in the quality of its
solutions.

6.1 Simulation of Changes in the Behaviour of Provider Agents

Behaviour of agents depend on the values of attributes which describe responses
to requests of tasks. Hence, simulating changes in the behaviour of provider
agents implies modifying these values.

412 A. Caballero, J.A. Botia, and A. Gómez-Skarmeta

We consider that behavioural changes are produced gradually, during 20
rounds of the simulation, and they take place once the model reaches a stable
condition. Changes begin on the round t = 200. All figures, offered to analyze
the ability of the model to adapt to changes, show the metrics related to the
model performance, from the round t = 190 to the round t = 250.

a) b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

qu
al

ity
 o

f t
he

 a
ttr

ib
ut

es

rounds

Behaviour of a single agent degrades and then improves

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

qu
al

ity
 o

f t
he

 a
ttr

ib
ut

es

rounds

Behaviour of a single agent improves and then degrades

Fig. 5. Types of changes in the behaviour of agents: a) behaviour of a single agent
degrades and then improves, b) behaviour of a single agent improves and then degrades

Figure 5 defines the variations produced in the attributes of the responses,
given by agents that modify its behaviour during several rounds. Figure 5.a shows
the worsening and recovery of attributes of a given response: the value of each
attribute is gradually decreased during 10 rounds and then recovers it original
value, in the same gradual way. In other hand, figure 5.b shows the improvement
and worsening of attributes of a given response: the value of each attribute is
gradually improved during 10 rounds and then decreased to its initial value.

Each figure is related with the behavioural changes that we study in the
experimental simulations presented below.

6.2 A High-Quality Agent Degrades Their Behaviour and Returns
to Improve

Figure 6 shows the evolution of the satisfaction degree with the recommended
solution when a High-quality agent degrades their behaviour and then improves
it, compared with the case that the agent does not change. We analyze the cases
when the initiator agent solves High-demanding and Medium-demanding tasks.

For both types of tasks, figure 6 shows that the model is effectively capable to
adapt to this type of changes in solutions given by a High-quality agent. During
the change, the satisfaction degree with the recommended solution and trust
in the agent that gives it, are decreased and returned to improve in the same
way that the quality of the agent solution changes. The satisfaction degree is
decreased after its quality becomes worse, and then it is gradually increased when
its quality is recovered. The differences in this metric between both situations
are higher for High-demanding tasks than Medium-demanding one.

Adaptability of the TRSIM Model to Some Changes in Agents Behaviour 413

a) High-demanding task b) Medium-demanding task

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 190 200 210 220 230 240 250

sa
tis

fa
ct

ion

rounds

a High-quality agent degrades their behaviour and then improves it
agents keep stationary

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 190 200 210 220 230 240 250

sa
tis

fa
ct

ion

rounds

a High-quality agent degrades their behaviour and then improves it
agents keep stationary

Fig. 6. Comparison of satisfaction degree with the recommended solution, according to
the type of the task to solve in each round (a) High-demanding, b) Medium-demanding),
when the agents do not change during the simulation and when a High-quality agent
degrades their behaviour and then improves it

Figure 7 shows the variations in the trust in the High-quality agent that
degrades their behaviour and then improves it, according to the type of the task
to solve in each round. It compares the cases when agents keep stationary during
the simulation and when a High-quality agent degrades their behaviour and then
improves it. This figure makes clear that the model is capable to represent, using
trust values, this type of behavioural changes of agents. In this case, the model
decreases the trust when agent makes worse (during the first part of the change).
But, when agent recovers it quality, trust is increased reaching similar values that
it has at the beginning of the change.

Similarly to other metrics, the variations of the trust in the agent that changes
the quality of the responses is lower for Medium-demanding tasks.

a) High-demanding task b) Medium-demanding task

 0

 0.2

 0.4

 0.6

 0.8

 1

 190 200 210 220 230 240 250

tru
st

rounds

a High-quality agent degrades their behaviour and then improves it
agents keep stationary

 0

 0.2

 0.4

 0.6

 0.8

 1

 190 200 210 220 230 240 250

tru
st

rounds

a High-quality agent degrades their behaviour and then improves it
agents keep stationary

Fig. 7. Comparison of trust evolution in the High-quality agent degrades their be-
haviour and then improves it, according to the type of the task to solve in each round
(a) High-demanding, b) Medium-demanding)

414 A. Caballero, J.A. Botia, and A. Gómez-Skarmeta

After the change, the model returns to a stable condition in a relatively
small number of rounds. This condition is reached in the round t = 228 for
High-demanding tasks, whereas it is reached in the round t = 224 for Medium-
demanding ones.

Other experiments related to the behavioural changes in Low-quality were
made. In these cases, the stability of the system is not affected. But, similarly to
changes in High-quality agents, these experiments show that the model is also
capable to represent the changes in the solutions given by Low-quality, using
trust and reputation information.

6.3 Behavioural Changes of a Group of Low-Quality Agents

Here, we offer experimental results related with the performance of the model
in situations where the behaviour of Low-quality agents changes. There is not
variation in the stability of the model, when a Low-quality agent changes in-
dividually. There are not significant variations in the main metrics (degree of
satisfaction with the recommended solution, error in recommending the suitable
response, trust in the recommended agent).

These measures do not change because there are a lot of High-quality agents
in the set of agents with high trust and reputation values. These High-quality
agents are selected during the change, offering the same satisfaction degree, error
and trust in the recommended solution. The variations in the Low-quality agents
do not affect the system performance.

In this experiment we consider that there is not any High-quality agent. This
way, we study the performance of the model when several Low-quality agents
change their behaviour in absence of High-quality ones. This experiment take
into account that the 50% of Low-quality agents improve its behaviour and
degrade again, when the population of agents in the simulation consist of 60%
of Low-quality agents and 40% Medium-quality ones. The rest of experimental
conditions are the same that the previous experiments shown in section 6.2.

Similarly to previous experiments, we show separately evidences related with
High-demanding and Medium-demanding tasks.

A set of Low-quality agents improve its behaviour and degrade again.
Figure 8 shows the evolution of the satisfaction degree with the recommended
solution when some Low-quality agents change their behaviour. It compares
the cases when the 50% of Low-quality agents improve its behaviour and de-
grade again, and when agents keep stationary. The evidences related with High-
demanding and Medium-demanding tasks are presented separately.

For both types of tasks, figure 8 shows that the satisfaction degree is increased
and, then, returned to degrade in the same way that the quality of the agents
changes. The satisfaction is increased during the first part of the change (when
quality is increased) because the quality of these agents produce better satis-
faction degrees that Medium-quality. (Before the change, the Medium-quality
agents produced the best satisfaction values.) After that, satisfaction values are
decreased until similar values at the beginning of the change. The differences of

Adaptability of the TRSIM Model to Some Changes in Agents Behaviour 415

a) High-demanding task b) Medium-demanding task

 0

 0.2

 0.4

 0.6

 0.8

 1

 190 200 210 220 230 240 250

sa
tis

fa
ct

ion

rounds

the 50% of Low-quality agents improve and degrade again
agents keep stationary

 0

 0.2

 0.4

 0.6

 0.8

 1

 190 200 210 220 230 240 250

sa
tis

fa
ct

ion

rounds

the 50% of Low-quality agents improve and degrade again
agents keep stationary

Fig. 8. Comparison of satisfaction degree with the recommended solution, according to
the type of the task to solve in each round (a) High-demanding, b) Medium-demanding),
when the agents do not change during the simulation and when the 50% of Low-quality
improve their behaviour and then degrade again

a) High-demanding task b) Medium-demanding task

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 190 200 210 220 230 240 250

er
ro

r

rounds

the 50% of Low-quality agents improve and degrade again
agents keep stationary

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 190 200 210 220 230 240 250

er
ro

r

rounds

the 50% of Low-quality agents improve and degrade again
agents keep stationary

Fig. 9. Comparison of error in recommending the suitable response, according to the
type of the task to solve in each round (a) High-demanding, b) Medium-demanding),
when the agents do not change during the simulation and when the 50% of Low-quality
improve their behaviour and then degrade again

this metric between both situations are higher for High-demanding tasks than
Medium-demanding one.

Despite the different values of satisfaction, the model does not show signif-
icant variations in the evolution of error recommending the suitable response
(Figure 9). The evolution of error values points out the ability of the model to
recommend the most suitable solution using trust information, in every round.
The little variation in error means that trust model is capable to identify the
agent to offers the best solution in every moment. In other words, the model
keeps a stable status when the 50% of Low-quality agents change its behaviour.

Figure 10 shows the mean of the variations in the trust in the Low-quality
agents that change, according to the type of the task to solve in each round.

416 A. Caballero, J.A. Botia, and A. Gómez-Skarmeta

a) High-demanding task b) Medium-demanding task

 0

 0.2

 0.4

 0.6

 0.8

 1

 190 200 210 220 230 240 250

tru
st

rounds

the 50% of Low-quality agents improve and degrade again
agents keep stationary

 0

 0.2

 0.4

 0.6

 0.8

 1

 190 200 210 220 230 240 250

tru
st

rounds

the 50% of Low-quality agents improve and degrade again
agents keep stationary

Fig. 10. Comparison of trust evolution in the Low-quality agents that change their
behaviour, according to the type of the task to solve in each round (a) High-demanding,
b) Medium-demanding), when the agents do not change during the simulation and when
the 50% of Low-quality improve their behaviour and then degrade again

This figure compares the cases when agents keep stationary during the simu-
lation and when the 50% of Low-quality agents improve their behaviour and then
degrade again. This figure makes clear that the model is capable to represent,
using trust values, this type of behavioural changes of agents. In this case, during
the first part of the change (when agents improve), the model increases the trust
in these agents. After that, trust values are decreased until similar values at the
beginning of the change. The differences in this metric between both situations
are higher for High-demanding tasks than Medium-demanding one.

7 Conclusions

The performance of TRSIM is studied taking into account an experimental
consumer-provider scenario, where the requirements of consumers and responses
of providers are represented using WSMO.

Two set of experiments are presented. One of them is related to the perfor-
mance of the model where agents do not change their behaviour. In this group
we study the stability of the model and the ability to recognize the agents ac-
cording to the quality of responses. TRSIM reaches a stable status for each type
of consumer requirement. The stability is reached before when the degree of de-
mand of the requirement is lower. Also, the model is capable to show different
behaviours for each type of agent for all types of provider demanding. Generally,
trust values in high-quality agents are increased, values in low-quality agents are
decreased, and values in medium-quality agents are kept around average values.

The second group of experiments analyzes the behaviour of the model when
the quality of the responses that agents give changes. We offer experimental re-
sults related with some situations where an agent or a group of agents change
their behaviour. In all situations, the model is capable to represent the be-
havioural changes of agents using trust and reputation values. In the cases where

Adaptability of the TRSIM Model to Some Changes in Agents Behaviour 417

the stability of the model is affected, the model reaches a new stable state after
a small number of rounds.

References

1. Caballero, A., Bot́ıa, J., Skarmeta, A.: A New Model for Trust and Reputation
Management with an Ontology Based Approach for Similarity Between Tasks. In:
Fischer, K., Timm, I.J., André, E., Zhong, N. (eds.) MATES 2006. LNCS (LNAI),
vol. 4196, Springer, Heidelberg (2006)

2. Caballero, A., Bot́ıa, J., Skarmeta, A.: On the Behaviour of the TRSIM Model for
Trust and Reputation. In: Petta, P., Müller, J.P., Klusch, M., Georgeff, M. (eds.)
MATES 2007. LNCS (LNAI), vol. 4687, pp. 182–193. Springer, Heidelberg (2007)

3. Carbó, J., Molina, J.M., Dávila, J.: Trust Management Through Fuzzy Reputation.
Int. Journal of Cooperative Information Systems 12(1), 135–155 (2003)

4. Griffiths, N.: Enhancing peer-to-peer collaboration using trust. Expert Systems
with Applications 31(4), 849–858 (2006)

5. Huynh, T.D., Jennings, N.R., Shadbolt, N.R.: An Integrated Trust and Reputation
Model for Open Multi-Agent Systems. Journal of Autonomous Agents and Multi-
Agent Systems 13(2), 119–154 (2006)

6. Ramchurn, S.D., Jennings, N.R., Sierra, C., Godo, L.: A computational Trust
Model for Multi-Agent Interactions based on Confidence and Reputation. In: Fal-
cone, L.K.M.S.R., Barber, S. (eds.) Proceedings of the 6th International Workshop
on Trust, Privacy, Deception and Fraud in Agent Systems (AAMAS 2003), vol. 3,
pp. 69–75 (July 2003)

7. Sabater, J., Sierra, C.: Social ReGreT, a reputation model based on social relations.
ACM SIGecom Exchanges 3(1), 44–56 (2002)

8. Sierra, C., Debenham, J.: Trust and honour in information-based agency. In: AA-
MAS 2006: Proceedings of the fifth international joint conference on Autonomous
agents and multiagent systems, pp. 1225–1232 (2006)

9. Wang, Y., Singh, M.P.: Formal Trust Model for Multiagent Systems. In: Proc. of
IJCAI 2007, pp. 1551–1556 (2007)

10. Wang, Y., Vassileva, J.: Trust-Based Community Formation in Peer-to-Peer File
Sharing Networks. wi 00, 341–348 (2004)

11. Yu, B., Singh, M.P.: Distributed reputation management for electronic commerce.
Computational Intelligence 18(4), 535–549 (2002)

Trusting Groups in Coalition Formation Using

Social Distance

Peter Shaw, Paul Sage, and Peter Milligan

School of Electronics, Electrical Engineering and Computer Science,
Queen’s University, Belfast, Northern Ireland

Tel.: +44 (0)28 9097 4873; Fax: +44 (0)28 9097 5666
{pshaw05,p.sage,p.milligan}@qub.ac.uk

Abstract. In environments where distributed team formation is key,
and defections are possible, the use of trust as social capital allows social
norms to be defined and compared. An agent can use this information,
when invited to join a group or coalition, to decide whether or not its
utility will be increased by joining. In this work a social network approach
is used to define and reason about the relationships contained in the
agent community. Previous baseline work is extended with two decision
making mechanisms. These are compared by simulating an abstract grid-
like network, and preliminary results are reported.

1 Introduction

In environments such as sensor networks, supply networks and virtual organi-
sations, distributed team formation is an increasingly important factor in the
success of any application [1]. When autonomous agents need to make decisions
in the face of uncertainty, some model or representation of trust is used, and
where agents are unreliable, either intentionally or otherwise, trust serves an
important role in decision making [2].

Trust metric research has often overlooked the impact of groups, as gregarious
networks have been uncommon, while the use of trust in decision making and
group formation implies social division [3]. Peer to peer computing (P2P) and
Grid computing are starting to converge [4], therefore, the implication of trusting
relationships in the formation of coalitions and virtual organisations is an area
requiring further research.

The contribution of this paper is an investigation into the effect of the social
position of an agent in a network relative to established groups as a critical
factor in the subjective application of trust metrics in coalition formation and
delegation in open systems, within the context of P2P and Grid computing.

Social capital refers to the level of investment in the network of relationships
in a society. If the relationships are strong, then more reliable results will be
achieved. The algorithms proposed in this paper allow agents to use knowledge
of trust relationships to determine the degree of social capital locally, and to use
this information to modify their behaviour to maximise their own utility. Two
preliminary experiments have been conducted, and the results are presented and
analysed.

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 418–428, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Trusting Groups in Coalition Formation Using Social Distance 419

2 Related Work

Griffiths and Luck [2] use trust to decide which agents are most likely to be good
group members, and use what is known about the agents’ motivations to decide
whether or not to join the group.

Alternatively, Khambatti et al. [5] use the degree of expertise and group cen-
trality in a specific “role based” domain to imply trust values. “Regret” [6],
another interpersonal trust metric, builds up a trust metric using personal expe-
rience, the experience of colleagues, and the experiences of the agent’s colleagues.
However, neither of these approaches measure a group’s trustworthiness.

Tackling the issue of social capital directly, [7] proposes observability in a
network as a method to reduce a class of malicious behaviours on peer to peer
style networks. However, they do not apply the idea of social capital to group
formation protocols.

Bulka et al [8] presented an adaptive learning algorithm that outperformed a
random algorithm for the effective formation of distributed groups. In this work,
the agents were considered to be ’reliable’ and therefore did not defect.

In summary, these approaches have not used trust to reason about a group’s
trustworthiness in the presence of unreliable group members, and using that
information, to decide whether or not to join such a group.

3 Trust as Social Capital

Intuitively there is a relationship between the relative position of agents in a
community and their trust relationships. For example, one can suppose that a
stranger trying to enter an established group would have to prove that they are
trustworthy, much more than an established group member would to be accepted
in a group project. Equivalently, the power that is provided to the members of
a group by having pre-existing relationships can be demonstrated in raising the
entry requirements for those “on the outside, looking in”.

It would be useful perhaps to define what is meant by the “group”, and so
define who is in and who is outside the group. The definition may well depend
on the application. At one end of the spectrum is an organisational boundary
providing a definite list of who is in the group and who is not. At the other
end of this spectrum there are groups that are defined by a loose cluster of
relationships, for example where a series of preferential relationships over time
provide a defacto group. Therefore, some general mechanism is needed to define
the boundary of any group. We take a social network view [9] to describe the
relationships and properties of the society.

This paper assumes that there is a mechanism for acquiring the directional
trust value between any two agents in the society [10], and so the level of “trust”
between any two agents will be used as the relationship that defines the network.
In this way trust becomes a measure of the social capital between any two agents.

Assuming there is a “boundary”, providing a means to say who is in the group,
and who is not, this boundary indicates a social norm. This paper investigates
the use of these social norms when deciding whether to join a group or not.

420 P. Shaw, P. Sage, and P. Milligan

This paper recognises that there are two seperate processes or roles involved
in group formation. The first process is that of selecting the most appropriate
agents to invite to join the group. By avoiding agents that are likely to defect,
the coordinator can maximise the efficiency of the formation process. The second
process is that of deciding to join a group, that is, to accept an invitation. In
order to simplify the analysis, this paper will look at accepting invitations and
a future paper will address the offering of invitations.

4 Team Formation Environment

As with the work of Bulka et al. [8], a random coalition is formed through the
agent relationships within the society. A network of directional relationships is es-
tablished in an initialisation phase, and while the value of each relationship may
vary, the relationship connections are held constant for each simulation. Tasks
require agents with particular skills, and are advertised for a particular dura-
tion. If sufficient agents have not formed the group by this advertising deadline,
the task does not run, and the agents are released from their committment. If
there are enough committed agents at the deadline, the task runs for a particular
duration. Tasks are advertised globally, and one task is added at each time step.

As these agents are self interested, it may be reasonable for an agent to quit
one task, to join another that has a higher utility. Therefore, this paper extends
the approach of Bulka et al. by allowing a committed agent to remove itself from
that task. In other words, these agents may defect.

Bulka et al. [8] provided a basic coalition formation algorithm, which is reused
here. An agent is eligible to work on the task if they are not currently committed
to a task, have a direct relationship with someone already in the group, and have
a skill that is required by the task. At each timestep, eligible agents are asked
in a random order to join the group, until the group is completed and the task
starts, or the advertising deadline is reached and the group is disbanded. Within
that context two new coalition-joining heuristics are presented, simulated and
analysed.

5 Previous Work

As each eligible agent (the “deciding agent”) is asked whether it wishes to join
a particular group, it must decide whether its utility is increased by doing so at
this timestep. To make this decision, four group joining heuristics were defined
and are used as a baseline for the current work.

The first heuristic is referred to as ‘Trust your neighbours’. A “Group” refers
to the agents already committed to the task, and in this case, the group was
joined if the average trust from the agent to the group was greater than the
average trust from the agent to its immediate neighbours. ie The group was
joined if TrustInGroup > TrustInNeighbours.

Definition 1. The set of all tasks: T = {t1, t2, . . . tnumOfTasks}

Trusting Groups in Coalition Formation Using Social Distance 421

Definition 2. The set of all resources: R = {r1, r2, . . . rnumOfResources}
Definition 3. The set of all edges: E = {eij}∀i, j such that ∃ a directed trust
relationship from ri to rj

Definition 4. The trust values: V = v (eij) where v(eij) is the discounted his-
tory of previous direct interactions between ri and rj

Definition 5. The set of all task groups: G = {Gt1 , Gt2 , . . . GtnumOfT asks
}

Definition 6. The set of immediate neighbours: Nri = {rj} iff ∃eij ∈ E

TrustInNeighbours(ri) =
∑

v(eij)
sizeof(Nri)

∀j, eij ∈ E (1)

TrustInGroup(ri, Gtk
) =

∑
v(rij)

sizeof(Gtk
)
∀j, eij ∈ Gtk

(2)

The second method looks at where the ‘Group meets the Cluster’. Here “Cluster”
refers to the set of agents connected by trusting relationships from the deciding
agent. Currently this cluster is “hollow”, meaning that it is discovered using
a depth first search in the trust network, and only the leaves of the search
are included in the resulting cluster. The probability of accepting an offer is
proportional to the size of the intersection between the cluster and the group. ie
The group was joined with probability ∝ TrustInGroupMeetsCluster.

Cluster(ri, d, threshold) = (3)
d ≤ 0→ {}
d > 0→ {rj}+ Cluster (rj , d− 1, threshold)∀j, v (eij) > threshold

ClusterBoundary(ri) ≡ CB(ri) = (4)
{rj}∀j, eij ∈ cluster(ri, d, threshold), v(ejk) ≤ threshold

T rustInGroupMeetsCluster(rij, Gtk
, d, threshold) = (5)

sizeof(Gtk
)
⋂

CB(ri, d, threshold)
sizeof(Gtk

)

The third method uses ‘Social Norms’. The social norm of the group is taken to
be the average of all trusting relationships within the group (Equation 6), while
the social norm of the deciding agent is taken to be the average of its neighbours
trustworthiness (Equation 7). If the social norm of the group is greater than the
social norm of the deciding agent, the group is joined.

TrustInGroupSocialNorms(Gtk
) = (6)∑

v(eij)
sizeof(eij)

∀i, j, suchthatri, rj ∈ Gtk

TrustInAgentsSocialNorm(ri) = (7)∑
v(eij)

sizeof(eij)
∀eij ∈ E

422 P. Shaw, P. Sage, and P. Milligan

These three decision strategies were then compared against accepting invita-
tions at ‘Random’. Under the ’Random’ approach the group was joined with a
probability inversely proportional to the number of advertised tasks.

6 Baseline Results

The agents were modelled as nodes in a graph, with directed edges representing
the valued trust from one agent toward another. Each simulation run had a graph
with 100 nodes, and 800 randomly selected edges. An agent’s behaviour was set
during initialisation phase and was taken at random from a flat distribution
ranging from 0, always defect, to 1, never defect. The initial trust values (edge
weights) were randomly generated and were then refined through a discounted
history of direct interactions.

For this experiment, 1000 tasks were introduced, one at each timestep. Only
one skill was introduced to the system, so that all agents were suitable for all
tasks. Each task required 10 identical agents, was advertised for 10 timesteps,
and subsequently “executed” for 10 timesteps.

Two aspects of agent behaviour were analysed: to what extent did the decision
making method effect the society’s overall performance, and conversely, what
effect did the method have on the individual performance of the agents.

The “Social Utility” graph (Figure 1), measures the global success of the
various methods under investigation. All decision methods plateau after 500
timesteps, this coincides with the stability of the learnt trust values (not shown).

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time or
ga

ni
sa

tio
na

l p
er

fo
rm

an
ce

 =
 ta

sk
s

co
m

pl
et

ed
 /

ta
sk

s
pr

es
en

te
d Social Utility

Trust Your Neighbours
Random
Group Meets Cluster
Social Norms

Fig. 1. Organisational performance against time

Trusting Groups in Coalition Formation Using Social Distance 423

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

tasks completed

nu
m

be
r

of
 a

ge
nt

s

Individual Utility

Trust Your Neighbours
Random
Group Meets Cluster
Social norms

Fig. 2. Agents with the same number of successful tasks

In the presence of defections the “random” method performed poorly, with
aproximately 12% of all tasks completed. The best social outcome is found when
an agent prefers the most trustworthy immediate neighbours. When the society
is composed of “trust your neighbours” agents, aproximately 60% of the tasks
are completed.

The “Individual Utility” graph (Figure 2) presents a breakdown of the breadth
of successful outcomes within the society. Literally it shows the number of agents
succeeding, and the number of agents at each level of success. As a fully deployed
agent can process a total of 100 tasks in 1000 timesteps, the graph represents a
distribution of the work achieved by the individual agents in the community.

In the presence of defections the “random” method provides a small set of
agents with minor success, while all the other agents are excluded from suc-
cessful outcomes. Comparing the social norms of the group and the immedi-
ate neighbourhood allows the broadest participation within the society. “Trust
your neighbours” and “social norms” allow some of the agents to complete al-
most 90% of their potential, while still permitting broad participation within the
community.

7 Correlations and Social Distance

The four heuristics were analysed to discover any correlations between the social
position of the agent making the decision to accept an offer, and the number of
successful outcomes.

Various measurements of the graph structure were used to characterise the
agents position in the social network. As the graph used directional edges, mea-
surements were taken for both “inward” and “outward” edges. The edge weight

424 P. Shaw, P. Sage, and P. Milligan

Table 1. Correlations between social position variables and success for all strategies

Variable Trust Neighbours Group Meets Cluster Social Norms Random

this agent best in 0 0 0 0
this agent best out 0.0429387 0.0652026 0.0267161 0
this agent average in 0.0200308 0.0398571 0.038015 0
this agent average out 0.0479077 0 0.033328 0
this agent total in 0.0407946 0.0454109 0.0735013 0
this agent total out 0.0671361 NaN 0.0612176 0
immediate neighbours best in 0 0.106637 0.0572399 0
immediate neighbours best out 0 0.0509812 0.0261016 0
immediate neighbours average in 0.0249456 0 0.00829533 -0.0431845
immediate neighbours average out 0.00429786 0 0.0631625 0.0152801
immediate neighbours total in 0.00348265 0.0249011 0.0211221 0
immediate neighbours total out 0.0391652 0.0233749 0.0455316 0
local neighbourhood best in 0.0169605 NaN 0.0305721 0
local neighbourhood best out 0.0267395 NaN 0.0146344 0
local neighbourhood average in 0.015614 0.049149 0.028678 0
local neighbourhood average out 0.00776662 0 0.0166917 0.0288254
local neighbourhood total in 0.00751014 0.0411369 0.0341038 -0.00151335
local neighbourhood total out 0.0147399 0.0279165 0.0703052 0.00034982
group best in 0.0130603 0.0369075 0.0671317 0.00189634
group best out 0.0372578 0.0302561 0.281333 0.0232269
group average in 0.0335759 NaN 0.237916 0.0238936
group average out 0.257363 0 0.0891814 0.00609973
group total in 0.137826 0.06194 0.143565 -0.00180655
group total in 0.146905 0.0593814 0.802156 0.00197573
cluster best in 0.0907392 0.432135 0.817632 0
cluster best out 0.798045 0.386057 0.033961 0
cluster average in 0 0 0 0
cluster average out 0 0 0 0
cluster total in 0.798904 0.0996071 0.0341785 0.00809271
cluster total out 0.00836592 NaN NaN -0.00592662

represented the trust value. Therefore the best trust value, the average trust
value and the total of all trust relationships in the same direction were recorded.
These were recorded seperately for both inward and outward edges. These values
were measured relative to five different foci: the agent itelf, the agent’s immedi-
ate neighbours (one hop away), the agent’s local neighbourhood (up to two hops
away, to maintain some “local” identity), the group associated with the task,
and the cluster starting at this agent, giving 30 variables in all.

Simulations with 1000 tasks were completed 10 times, and the measures listed
above were recorded for each task success or failure. All the results for each
strategy were appended and correlations were calculated on the whole data set
for that strategy. Due to aproximation errors in recording the measurement
data, NaN values were introduced, and have been subsequently treated as non-
correlations.

The correlations are set out in the table below (Table 1). A value of +1
indicates the strongest possible positive correlation between the measurement
and the success of that strategy. A value of 0 indicates no correlation, while -1
indicates the strongest negative correlation.

Trusting Groups in Coalition Formation Using Social Distance 425

The most significant correlations were found to relate to group and cluster
variables, and their values are in bold on the table. The two social position
variables “out edge total trust for the group” and “in edge best trust for the
cluster” were both most succesful with the “social norms” strategy. The “out
edge best trust for the cluster” and the “in edge total trust for the cluster” were
associated with the “trust neighbours” strategy.

Concentrating on these four correlations a hybrid strategy was designed that
allowed each agent to adopt the most successful strategy for its current social
position.

a : GroupTotalOutEdgesNormed = (8)∑
v(eij)

4.sizeof({eij})∀ri ∈ Gtk
, ∀eij ∈ E

b : ClusterT otalInEdges(ri) = (9)∑
v(eji)

4.sizeof({eij})∀ri ∈ cluster(ri, d, threshold), ∀eij ∈ E

c : ClusterBestInEdge(ri) = (10)
max{v(ekj)}∀rj ∈ cluster(ri, d, threshold), ∀ekj ∈ E

d : ClusterBestOutEdge(ri) = (11)
max{v(ejk)}∀rj ∈ cluster(ri, d, threshold), ∀ejk ∈ E

(12)

Definition 7. X = {a, b, c, d}

TrustUsingCorrelations(ri, Gtk
) = (13)

max(X) = a|c→ TrustInSocialNorms,

max(X) = b|d→ TrustInNeighbours,

This was compared to a “social distance” heuristic. “Social distance” refers to
the distance from a cluster boundary. A cluster boundary is a set of boundary
agents: where an agent has out edges that leave the set of agents forming the
cluster. If an agent forms part of the cluster boundary it has a social distance of
zero. If it is inside the cluster, and is therefore surrounded by boundary agents,
it has a negative social distance. If it is outside the cluster it has a positive social
distance. The heuristic uses this social distance to weight the decision to accept
a group offer or not.

TrustInSocialDistance(ri) = (14)
ri ∈ Cluster(ri, d, threshold)→ 0− shortestPath(ri, CB(ri, d, threshold))
ri¬ ∈ Cluster(ri, d, threshold)→ shortestPath(ri, CB(ri, d, threshold))

Currently this heuristic takes no account of the group. If the social distance
is zero, it accepts offers with probability 0.5. If the social distance is negative,
this probability drops to 0.0 at some maximum distance, while at the other end,
the probability rises to 1.0 at maximum positive distance.

426 P. Shaw, P. Sage, and P. Milligan

8 Preliminary Results

These two heuristics are compared Figures 3 and 4.
The two methods reached their final values around the 500 timestep mark,

which coincides with the trust values stabilising (not shown). “Using correla-
tions” had a final social utility of aproximately 60% and “social distance” a
social utility of aproximately 59%. Compared to the baseline results, the so-
cial utility of “using correlations” and using “social distance” is as good as the
previously most successful strategy.

As expected, the individual utility of “using correlations” was largely similar
to the results on which it was based. However “social distance” produced a very
different result. While the two distributions of successful tasks in Figure 4 have
similar means, at around 62 successful tasks, which represents 62% of maximum
capacity for any individual agent, the tighter distribution of social distance may
imply that only well positioned agents are successful. However there may be
enough of these agents to produce aproximately the same profit as when using
correlations (confer Figure 3).

0 200 400 600 800 1000
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

time

or
ga

ni
sa

tio
na

l p
er

fo
rm

an
ce

 =
 ta

sk
s

co
m

pl
et

ed
 /

ta
sk

s
pr

es
en

te
d social utility

Social distance
Using correlations

Fig. 3. Organisational performance against time

Using correlations has a much broader distribution, describing a society where
many more agents are able to participate in coalition formation, and while some
agents do not participate in many successful tasks, some agents out-perform
social distance to a point where they are almost at maximum capacity.

Trusting Groups in Coalition Formation Using Social Distance 427

0 20 40 60 80 100
0

1

2

3

4

5

6

7

tasks completed

nu
m

be
r

of
 a

ge
nt

s

individual utility

Social distance
Using correlations

Fig. 4. Agents with the same number of successful tasks

9 Conclusion

The effect of an agent’s social position during coalition formation has been in-
vestigated in a static network of directional relationships. Several heuristics for
deciding whether or not a coalition should be joined have been implemented and
compared by simulation. The results show that the social position of an agent
can greatly effect the performance of the individual and of the society as a whole
during coalition formation.

The use of social distance appears to be an interesting heuristic and forms
questions for the ongoing research.

These include:

– Can social distance (and the other algorithms) be implemented effectively
using only local knowledge?

– How accurate does the information need to be to make accurate decisions?
– In social distance, are the groups constantly changing or are the groups

repeating?
– Can these areas of the graph be categorised?
– Is it one cluster? or several clusters joined with boundary spanners?
– How does this relate to finding replacements and subsequent task success/

failure?
– What is the average social distance? are most people on the boundary??
– Does the performance of these heuristics change when the number of avail-

able agents decrease?

428 P. Shaw, P. Sage, and P. Milligan

References

[1] Dang, V.D., Dash, R.K., Rogers, A., Jennings, N.R.: Overlapping coalition forma-
tion for efficient data fusion in multi-sensor networks. In: 21st National Conference
on Artificial Intelligence, pp. 635–640 (2006)

[2] Griffiths, N., Luck, M.: Coalition formation through motivation and trust. In:
Proceedings of the Second Autonomous Agents and Multiagent Systems (AAMAS
2003), pp. 17–24 (2003)

[3] Sabater, J., Sierra, C.: REGRET: reputation in gregarious societies. In: Interna-
tional Conference on Autonomous Agents archive Proceedings of the Fifth In-
ternational Conference on Autonomous Agents, Montreal, Quebec, Canada, pp.
194–195 (2001)

[4] Hudzia, B., McDermott, L., Illahi, T.N., Kechadi, M.-T.: Entity Based Peer-to-
Peer in a Data Grid Environment. In: The 17th IMACS World Congress Scien-
tific Computation, Applied Mathematics and Simulation, Paris, France (2005),
http://arxiv.org/abs/cs/0608112

[5] Khambatti, M., Dasgupta, P., Dong Ryu, K.: A Role-Based Trust Model for
Peer-to-Peer Communities and Dynamic Coalitions. In: Proceedings of the Second
IEEE International Information Assurance Workshop, pp. 141–154 (2004)

[6] Sabater, J., Sierra, C.: Social Regret, a reputation model based on social relations.
SIGecom Exchanges 3(1), 44–56 (2002)

[7] Moore, T.: Countering Hidden-Action Attacks on Networked Systems. In: Fourth
Workshop on the Economics of Information Security, Cambridge, MA (2005),
www.infosecon.net/workshop/pdf/18.pdf

[8] Bulka, B., Gaston, M.: desJardins: Local Strategy Learning in Networked Multi-
Agent Team Formation. In: Journal of Autonomous Agents and Multi-Agent Sys-
tems (JAAMAS), vol. 15(1), pp. 29–45. Kluwer, Dordrecht (2006)

[9] Wasserman, S., Faust, K.: Social Network Analysis. Cambridge University Press,
Cambridge (1994)

[10] Xiong, L., Liu, L.: PeerTrust: Supporting Reputation-Based Trust for Peer-to-Peer
Electronic Communities. IEEE Transactions On Knowledge And Data Engineer-
ing 16(7), 843–856 (2004)

http://arxiv.org/abs/cs/0608112
www.infosecon.net/workshop/pdf/18.pdf

Adjustable Trust Model for Access Control

Maryna Komarova and Michel Riguidel

Ecole Nationale Supérieure des Télécommunications,
46 rue Barrault, Paris 13, France
{komarova,riguidel}enst.fr

Abstract. The purpose of this work is to give a service provider or a
resource holder the opportunity to evaluate the trustworthiness of each
potential client, react to the client’s activity by adapting access policies to
the actual risk level, and derive user’s access rights from his previous be-
havior, recommendations from third party and the actual circumstances.
It is supposed that the system is able to observe and to log the activity
of each client and use this information to estimate correspondent trust
values.

Keywords: Trust values, Trust evolution, Access Control.

1 Introduction

In the modern virtual world the concept of trust plays a significant role. Trust
and reputation models are widely used in electronic commerce systems, social
networks and peer-to-peer communications. The traditional trust models imple-
mented for access control are static and reflect relations between the truster and
trustee only at the time the agreement is established. Traditional access control
mechanisms are not suitable to the ubiquitous environment where all interacting
entities are potentially unknown and, therefore, untrusted. The number of users
is extremely large and their behavior is difficult to predict, and risks for service
providers change dramatically in such circumstances. It becomes impossible for
an administrator to analyze system’s logs and fit security policies to the actual
situation. Thus, a mechanism should be developed to provide access control to
resources and to automated management of access policies. The concept of trust
represents a promising basis for such a mechanism. The access network provider
should be motivated to implement a dynamic trust model to manage the ac-
cess rights of all clients. The use of such a model facilitates restricting access
to services for suspicious users and provides more privileges to users who have
demonstrated good behavior. Fair users are also motivated to participate in the
trust construction because a good reputation allows them to have access to a
larger set of services.

Formalization of the human understanding of trust may serve to treat user
behavior history better in order to estimate a risk that serving this user repre-
sents to a network, to restrict access for potentially malicious users, and to favor
good users.

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 429–443, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

430 M. Komarova and M. Riguidel

The proposed trust-based access control mechanism provides a response to
the challenges presented by the ubiquitous environment in the following way.
We add a dynamic aspect to trust relationships management between entities
providing services. If roaming agreements are established between two providers,
each of them is able to construct trust with another one, based on the obser-
vation of activity of recommended clients. Access policies modification, in order
to enforce resource protection, is carried out in an automated and autonomic
manner. We provide a trust formalization model with clear dependency between
access policies and the obtained trust value. The observation-based trust calcu-
lation permits dealing with a long-term history of interactions with each user
and restricting or prohibiting access to malicious users.

The proposed model operates in three stages: in the first stage, the client
authenticates to the service provider; in the second stage, the service provider
calculates the trust value for the authenticated client; and, finally, the obtained
trust value is matched against service access policies to determine access rights
of the user.

2 Concepts and Notions

2.1 Our Understanding of Trust

Trust has been defined in different ways in different works depending on purposes
and usage scenarios for which the trust concept is implemented [1], [2], [3]. To
formalize the reason for collaboration between two entities, in the literature both
trust and reputation models are discussed.

People will not completely trust somebody based only on his reputation. We
distinguish notions of trust and reputation in the following manner. Trust rep-
resents an active and decisive concept: if one entity trusts another entity, the
latter is allowed a determined set of actions. Reputation may serve as a source
of trust; however, it does not directly define allowed actions. Trust is subjective,
while reputation is also subjective but is not based on personal observations.
Trust always has a clear reason: one entity trusts another via some information
or experience. Reputation usually comes from an external universe and it does
not reflect personal experience of the interested party. In our understanding,
reputation is one reason for establishing trust. We define the mechanism for
establishing the relationship between reputation and trust.

Our trust model is designed to assure more secure interaction between two en-
tities. One of these entities provides various services and another entity requests
and consumes services; for that reason, we consider a client-server collaboration
model. We define trust in the context of our model as follows. One entity has
a certain degree of trust for another entity and therefore allows it to execute
certain actions and to access some resources because the trustee has collabo-
rated with the truster in the past and the latter was satisfied by the result of
this collaboration, or a trusted third party has recommended the trustee. So, the
truster supposes that the trustee will behave satisfactory during the interaction.

Adjustable Trust Model for Access Control 431

We distinguish degrees of trust as follows. An entity may be non-trusted, which
means that the trust is not formed yet. Over time and after several interactions
an entity becomes trusted with a correspondent trust value and, finally it may
become completely trusted, distrusted or completely distrusted. If the entity is
completely trusted, it is allowed to perform all actions associated with the given
type of entities. The difference between distrusted and completely distrusted
states is that a distrusted entity potentially may regain trust while a completely
distrusted one may not.

2.2 The Agents

In our trust model we consider two types of agents: a service provider and a
service consumer. There may be contractual relationships established between
service providers, and one service provider may recommend his subscribers to his
partner service provider. Actions performed by a service provider may include,
for example, providing network connectivity, allowing access to data storage or
providing different kinds of information. The user may perform a wider and less
defined range of actions. The action provided by the user is considered positive
if it does not conflict with the service provider’s security policies. Otherwise it
is considered to be negative. An agent is characterized by a role and history
of previous interactions. This role changes in different situations. The agent
providing services may be a home authority or a visited authority for the user
served. The user may be a subscriber, a recommended user or a well-known user
for the serving agent.

2.3 Sources of Trust

Two main sources of trust are considered in this work.

Personal observations. This is the most trustworthy source of trust. The value of
trust is based on the history of the past behavior of a particular user. If services
provided by the access network are located in another network belonging to the
same security domain, feedback from these networks is considered a personal
observation.

Recommendations are the opinions of trusted authorities on a particular agent.
In our approach, recommendation expresses the positive opinion and means that
the recommended user is considered trustworthy by the recommender. This in-
formation is very important if the truster deals with an unknown user. In this
case there is a single source of trust. Otherwise this source of trust has less in-
fluence on decision making about the trustworthiness of the user. The situation
in which the recommender is not fair or is not aware of the behavior of the
recommended user is also possible. That is why it is necessary to estimate the
trustworthiness of each partner that might recommend users.

3 Requirements, Assumptions and Limitations

We have designed the trust-based access control model to address the problem of
trust establishment and trust management between previously unknown agents

432 M. Komarova and M. Riguidel

in an open and dynamic environment. Considered usage scenarios include in-
teractions between peers in an overlay network, interactions between the user
and web services, and interactions between a mobile user and a non-home access
network. In our model it is assumed that the value of trust to the user is calcu-
lated after authentication between the entities that are going to communicate.
We also assume that one agent is able to recognize another agent’s identity and
the service provider has means to observe, record and analyze a user’s activity.
The proposed mechanism should define a way whereby the service provider can
mitigate attacks denying access to potentially dangerous users while protecting
fair users.

We assume that each service provider has its own access policies. These poli-
cies define sets of services that a user with a particular trust level can access.
There should be a clear match between access policies and the parameters of a
trust model. The formalized model should translate access policies into trust in
a simple and visible manner. Just as in the world of human interaction, in the
digital world it may take a long time to establish trust, but a relatively short
time to lose it. In such a way, it should be possible to retain long-term history of
interactions between agents to avoid the situation in which malicious agents lose
trust yet after a short time are able to regain trust and recommence malicious
activity. The trust value attributed to the user should depend on the entire past
experience.

The deployment of any model imposes resource-related limitations. The mem-
ory of every system has a limited size; therefore, a long history of interactions
between agents should be summarized and retained in an efficient manner. To
save on resources (time, battery life, and computing power), the trust model
must be simple and must not be computationally heavy.

4 Model for Service Access Control

Depending upon the services provided, trust for a user may have many levels,
as well as just two levels (trust/do not trust). An unknown user is considered as
non-trusted and may be granted a basic non-privileged set of services that may
include limited bandwidth and limited possibility of accessing or downloading
information. If this user visits the service provider frequently and manifests
good behavior, it becomes firstly near-trusted and then a trusted client. As
the trust level increases the client’s access rights also increase. The “bad” or
malicious client is considered distrusted and is prohibited from accessing the
serving network. Two thresholds define each trust level: the lower and the upper
thresholds.

Authorities that are trusted by the provider are combined into Contractual
groups (CG). Each contractual group has a set of agreed services. A user un-
known to the serving network is given access to the service set corresponding to
the Contractual group to which the recommender belongs. Over time the service
set available for a user is either extended or reduced, according to the actual
trust value. The reputation of each authority also evolves as a function of the

Adjustable Trust Model for Access Control 433

behavior of recommended clients and of payment for consumed services. In this
model we consider only the behavioral component of this function.

We define the following sets of services provided by the access network: S(T)
- service set for each trust level T , S(CG) - service set for a contractual group
CG. Table 1 provides an example of mapping between trust values and service
access policies.

Table 1. Example of service sets and correspondent trust levels

Trust levels Groups of services Description

Trusted S(T3) Access to specific services
Near-trusted S(T2) Internet access, higher speed, higher limit for download
Unknown S(T1) Internet access, limited speed, limited download
Distrusted S(T0) Access denied

The user u has a recommendation from the authority m and it tries to join the
target service provider s. To fix the appropriate service set the access network
uses the algorithm:

if S(Ts(u)) ∩ S(CGm) �= ∅
then S′ = S(Ts(u)) ∪ S(CGm) else S′ = S(Ts(u))

If the service provider offers chargeable service, the presence of a Recommen-
dation is mandatory, because the reference for a payment source is required.
Definition of payment schemes is outside the scope of this work.

5 Trust: Generalized Model

We develop a centralized trust model in which the entity providing services does
not completely trust its partners and relies on its personal observation rather
than on feedback or recommendation from third parties.

In our model, trust is calculated based on experience the network has with
each user, recommendations on the user (e.g. certificates) and the reputation
of the entity that has recommended the user. Services may be located both in
the network managed by the service provider and in its partner network. Based
on the evaluated trust value, one of two possible solutions is selected: allow or
block the access to services for a particular user. The proposed trust evaluation
approach allows decisions to be made about the user’s trustworthiness, taking
into account developing trust and a dynamically changing environment. The
trust evaluation and definition of the available service set are performed auto-
matically. These procedures are transparent to the user and do not require the
intervention of a system administrator.

When a user requests access to services, the server provider generates pa-
rameters for trust calculation based on the interaction history with this user,
information concerning the agent recommending this user, and current access
policies. Updated parameters are used to calculate the observation-based trust

434 M. Komarova and M. Riguidel

value that is used in construction of a general trust value. The obtained trust
value is mapped with access levels defined in advance and, as a result of this
mapping, the service provider makes a decision to serve or not the user making
the request. The activity of an accepted user is observed, analyzed and recorded
in the history both of the user and the agent (partner) that has recommended
this user.

5.1 Computing General Trust

Trust relations are always bilateral and are not symmetric. The fact that one
agent s trusts another one u is denoted as Ts(u). Trust values continuously
change in the interval [0,1]. Hence, one agent completely trusts another one if
Ts(u) = 1 and it completely distrusts him if Ts(u) = 0. We present a formalized
model for trust calculation based on analysis and the reasoning provided above.
Trust relationships between two agents may be established only if at least one
source of trust is available at the time of collaboration. We consider that the
full trust value to the user is formed from values of experience TO(u) with the
agent u, reputation R(m) of a recommender m and recommendation (advice)
giving by the recommender m on the agent u A(m) as follows (Eq.1). Meaning
of weight β is explained in Section 5.2.

Ts(u) = β · TO(u) + (1− β) ·A(m) ·R(m),
TO(u) ∈ [0, 1], A(m) ∈ 0, 1, R(m) ∈ [0, 1] (1)

Experience (Observation-based trust) expresses the result of the interaction
with the particular user u in the past. This value is calculated by the service
provider itself and takes on real values from zero to one.

Reputation generally shows the common opinion about the trustworthiness of
an agent. It may be based on feedbacks from other agents. In the proposed model,
reputation is used to construct trust for an unknown user and it represents the
reputation of the agent that has recommended this user. In the formula for trust
calculation, reputation serves as a trustworthiness weight for recommendation.
The reputation of the recommender changes over time and it depends on results
of interactions with recommended users. Reputation takes on real values from
zero to one. We do not consider negative values because there is no interest to
collaborate with an agent with a negative reputation and it is useless to keep
and manage exact information about such an agent.

For each of its partners the service provider keeps the number of interactions
performed with users recommended by this partner N and the number of inter-
actions considered as successful or positive npos. After each interaction with a
recommended user the rate of positive recommendation is renewed using the new
values of the number of interactions N ′ and the number of positive experiences
n′

pos. It may remain the same in a case when there were no negative interactions
performed in the past and it may increase or decrease. In the two latter cases the
rate of positive recommendation should have an effect on the reputation value.
This functional dependence is defined as follows (Eq.2):

Adjustable Trust Model for Access Control 435

R(m) = R(m) +
(

n′
pos

N ′ −
npos

N

)
(2)

In the proposed model, reputation already reflects the degree of trust for each
recommender.

Recommendation means some direct statement concerning the particular user
presented to a potential service provider by a trusted authority. A digital cer-
tificate may be viewed as an example of the recommendation information. The
way in which a user provides recommendations is outside the scope of this work.

An agent may recommend a user to another agent who in this situation is
playing the role of a service provider by, for example, a digital certificate or by
the user’s identity confirmation in the authentication process between a user
and a service provider. Recommendation in our model takes on two values: “0”,
which means the absence of a recommendation, and “1” in case of the presence
of a recommendation. The trust value for an unknown user is computed on
the basis of the reputation of the recommender. If the unknown user has no
recommendation, it is then considered as untrusted and is refused to access
resources provided by the truster.

5.2 Trust Development

In our model, the influence of different sources of trust on the final trust value
develops over time. When dealing with an unknown user, the service provider has
insufficient information to estimate the trustworthiness of this user. That is why
the trust calculation relies mostly on recommendations received form trusted
partners and depends on their reputation calculated by the service holder au-
thority. In time a number of interactions may take place between the previously
unknown user and the network providing it with information about the user’s
behavior. When the trust value for a user with a certain interaction history
is calculated, the influence of the personal observation on the final trust value
increases and, finally, trust is calculated based on personal observations rather
than on the reputation of recommenders.

In Eq.1 the influence of each trust source on the final trust value is ex-
pressed by weight β for observation-based trust and 1− β for reputation of
recommenders. At the beginning of interaction between two agents unknown to
each other, the service provider collaborates only with users recommended by
its partners. Then, during the period called the learning time (tl) the allowed
service set is determined both by the user’s reputation and by the presence of a
recommendation for him. Finally, the trust to a well-known user depends only
on his pas behaviour. The value of the weight for trust calculation is obtained
for each session, using the following equation (Eq.3):

β =
{

nvis

tl , if nvis

tl ≤ 1,
1, otherwise. (3)

where nvis is the number of interactions (sessions) performed between the service
provider and the user. Interactions performed during the learning time period

436 M. Komarova and M. Riguidel

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Observation time

T
ru

st

Observation−based trust
General trust, R=0.8
General trust, R=0.5
General trust, R=0.3

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Observation time

T
ru

st

Observation−based trust
General trust, R=0.8
General trust, R=0.5
General trust, R=0.3

Fig. 1. Effect of observation-based trust and recommender’s reputation on general trust
value

serve to construct the behavior pattern of the user. We include the number of
visits in (Eq.3) in order to distinguish users that frequently visit the network
and, thus, the latter is able to collect statistic on their behaivior, from those
who perform few interactions during the learning time and, so, cannot be served
without recommendation.

Fig. 1 provides two examples of trust earning by a user. Each example depicts
both the observation-based and the general trust. In the first case (Fig. 1) the
user shows only positive behavior. Trust gaining rapidity is determined only by
the reputation of the recommender. In the second case (Fig. 1), several interac-
tions with the user are considered as negative. During the learning period the
resulting general trust value may be higher than the value of observation-based
trust if the user’s recommender has good reputation.

6 Observation-Based Trust

6.1 Model Description

The proposed model is designed for automated decision making about the trust-
worthiness of each particular user based on recorded past experience and service
access policies. Trust evolves over time and users considered as non-trustworthy
in the past may be forgiven, based upon the access policies.

The unknown user is presumed not to be malicious and it is granted the
minimal trust value sufficient to access the network and is able to attain the
maximum possible trust value and access the maximum provided service set. If
this user frequents the network and demonstrates good behavior, it becomes a
trusted one. Trust takes on only positive values varying between 0 and 1. Nega-
tive values of trust are useful in distributed trust and reputation models [4], [5],
[6] when trust calculation is based on feedbacks from other agents concerning an
agent’s activity. In the proposed model the user is considered to be distrusted
and the service provider does not serve him if the correspondent trust value is
equal to or less than zero. In this situation the exact negative trust value has no
importance and does not influence decision-making about trustworthiness of this

Adjustable Trust Model for Access Control 437

user. Trust calculation is based on parameters derived from network/service ac-
cess policies, number of trust levels and user-related information.Network/service
access policies used for trust computing are:

1. The user u becomes completely trusted (TO = 1) after continuous nbegtrust

visits with observed good behavior.
2. The user u becomes distrusted (TO = 0) after nstoptrust visits with observed

bad behavior.
3. The distrusted user is forgiven with a loss of one trust level after tforgive

days.
4. There are m trust levels, each level has an upper threshold Tu:

Level 0: distrusted (TO = 0);
Level 1: (TO ∈ (0, Tu1]) ...
Level i: (TO ∈ (Tui−1, Tui])...
Level m-1 : (TO ∈ (Tum−2, 1]);

5. The service provider makes access policies stricter if the rate of negative
behavior across all users is more than or equal to Nmax. Making access
policies stricter means that the value of the parameter nbegtrust is increased
and the value of the parameter nstoptrust is decreased.

To obtain an accurate trust evaluation of the user, the service provider retains
the following user-related information:

1. The number of positive experiences with the user npos.
2. The number of negative experiences in collaboration with the user nneg;
3. The number of times the user was distrusted ndistrust;
4. The time label indicating the distrust lifetime, corresponding to the moment

when the user may be forgiven tforgive.
5. Boolean variable f that indicates whether the user can be forgiven (f = 1)

or whether the client is completely distrusted (f = 0).

To update user-related information, a very simple procedure is used. If the
user has displayed good behavior during a visit, this visit is considered as a
positive experience and the number of positive experiences npos is incremented.
Otherwise this visit is considered as a negative experience and the number of
negative experiences nneg is incremented.

6.2 Trust Formula

Upon an access request from the user, the service provider calculates the updated
value of trust according to Eq.4. To formalize the development of trust for the
user the linear model was chosen. All parameters of the proposed linear model
are defined by access policies and past experience with the particular user. For a
“good” user the value of trust grows linearly with an increasing number of visits
and reaches the maximum value equal to one. In order to calculate the trust
value for the user a discrete formula is defined as follows (Eq.4):

TO =
{

α · npos, if TO ≤ k,
k, otherwise. (4)

438 M. Komarova and M. Riguidel

Where TO denotes the observation-based trust for a user at a particular
moment,α is a parameter of a model called “optimism”, and another param-
eter k, “tendency”, expresses the maximum trust possible to earn for the user
with the given history and with respect to current access policies. Trust for the
same user may change if access policy changes.

6.3 Optimism and Tendency

The number of positive and negative experiences defines the trust value for the
user, the optimism parameter α and the tendency parameter k. The former
expresses the rate of trust earning and the latter corresponds to the maximum
value that user trust can actually reach.

The optimism parameter expresses the speed of trust earning by the user and
it is represented by the tangent of the angle between the line corresponding to
trust evolution and the time axis. The upper threshold of the trust level Tu
is the maximum trust that can be reached by the user. Optimism is defined
by the number of positive interactions nbegtrust needed to be initiated and per-
formed by the user in order to reach the maximum trust and the number of
negative experiences gathered by the service provider during working with this
user (Eq.5):

α =
Tu

nbegtrust + nneg
(5)

The tendency parameter k is introduced in order to regulate the maximum
trust value that can be achieved by the user (Eq.6):

k = Tu · (1− nneg

nstoptrust
) (6)

An example of trust variation for a user that reveals different behavior dur-
ing interaction with the service provider is shown in Fig. 2. A user loses trust
depending on the number of negative experiences, and after several positive
experiences it regains trust, however, the new trust value is limited by the ten-
dency parameter. Each negative experience decreases the maximum achievable
trust value.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Observation time

O
bs

er
va

tio
n−

ba
se

d
tr

us
t

n
beg

trust

 =10, n
stop

trust

=5
n

beg

trust

 =5, n
stop

trust

=3

Fig. 2. Effect of negative experiences and policies on the trust value

Adjustable Trust Model for Access Control 439

The number of positive experiences is not included in calculation of parame-
ters to prevent attacks by strategic users (as described in Section 3).

7 The Memory Model and Forgiving

The appropriate model for retaining the interaction history between two agents
should be designed taking into account the limitation of memory size dedicated
to store history-related data and the timing factor. The timing factor is very
important because more recent events must have more influence on the decision
about the trustworthiness of the user, however, the information about past be-
havior should be also taken into account. Generally the history is represented
by a more or less long sequence of single events [7], [8]. The number of events to
retain remains the question. A very long history allows more accurate trust esti-
mation but it requires more processing time and more storage space. A short his-
tory lets past bad experiences be forgotten, with malicious users thereby quickly
regaining a high trust level. Another problem related to this type of history orga-
nization is the aggregation of events in order to compute the actual trust value.
In order to represent the varying relevance of events that occurred at different
times for the actual trustworthiness of an agent, various solutions are proposed
in the literature.

The main implementation difficulty related to trust models proposed earlier
[1], [7], [4] consists in the necessity for model parameters selection. These pa-
rameters are not directly defined by access policies. Fig. 3 illustrates the trust
evaluation in the Beta Reputation System [4], Giang’s trust model [7] and our
model on a simple example. These models were chosen for comparaison because
thay are designed to be implemented in the same scenario as we consider. We
evaluated trust to a user that performed 100 interactions with the studied net-
work. Interactions from 49 to 52 were negative and all the rest were positive.
Parameters for the referenced models were set in order to allow a user to gain
the trust value of “1” and to be penalized for negative experiences.

In the Giang’s model the malicious user regains a high level of trust just after
stopping to behave maliciously, while in the Beta Reputation System more time
is required to achieve the highest trust value. After negative interactions trust

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Observation time

T
ru

st
 v

al
ue

Beta Reputation
Giang’s model
Proposed model

Fig. 3. Trust development in different models

440 M. Komarova and M. Riguidel

to the user was not significantly degraded due to the previous good experience
that the system had with this user. In this experiment a long memory window
containing 100 interaction was chosen for referenced models.

Instead of using memory windows, fading memory or forgetting factors pro-
posed in [4], [5], [9], we keep the history of interactions in scalar variables. The
number of negative and positive experiences changes over time due to the dy-
namic behavior of users and to the system forgetting old experience. However,
old experience does not mean obsolete and useless experience. The proposed
memory model allows retaining information for long-term observation history
and performing more accurate trust evaluation.

In our model we implement different forgetting models for positive and neg-
ative experiences. It is necessary to distinguish between the user that was dis-
trusted in the past and a user that was newer distrusted. Trust models proposed
earlier do not permit this kind of distinction.

With the proposed trust model the user becomes distrusted after several visits
when negative behavior has been displayed. We define a mechanism for forgiving
distrusted users in our trust model. The distrusted user may be forgiven after a
certain period of time tforgive, defined by the administrator of the system. The
forgiving period is defined by the actual values of access control policies, the risk
level and the number of times the user has been deemed distrusted.

For example, the service provider has defined four levels of trust with corre-
sponding threshold trust values for each level unknown (0, 0.37], near trusted
(0.37, 0.63], trusted (0.63, 0.8] and completely trusted (0.8, 1] . For a user that
has never been considered distrusted the maximum reachable trust value is 1 ;
for one that has been penalized once the maximum reachable trust value is 0.8 ;
if it has been penalized twice, the maximum reachable trust value is 0.63, and
after the third penalty the user cannot be forgiven. After having been forgiven,
the user loses one trust level. For instance, if the maximum potentially reach-
able trust value before the trust lost was “trusted”, then the maximum reachable
trust value will be set to “near trusted” for the forgiven user.

The system “forgets” the number of positive and negative experiences with the
forgiven user but retains the number of times this user was distrusted. If the for-
given user behaves well, the trust value grows with less optimism for him than for a
user that was never considered a distrusted agent. The maximum achievable trust
value Tu depends on the defined number of trust levels m and the number of fatal
errors ndistrust, when access to the network was forbidden to it.

The number of recorded negative experiences may be decreased if the number
of consequent positive experiences is greater the nvisit parameter. The service
provider updates the user-related information after each completed interaction.
Fig. 4 shows how a user with some bad experience in its early history can regain
the trust of the service provider.

We have evaluated the effectiveness of the proposed memory model in terms of
interaction history storage and the performance of the computational model. The
proposed memory organization enables the service provider to keep long-term
history for each user in only five variables, and operations performed for updating

Adjustable Trust Model for Access Control 441

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Observation time
O

bs
er

va
tio

n−
ba

se
d

tr
us

t

Observation−based trust
Interactions

Fig. 4. Regaining trust by a user. The number of interactions with a positive result is
set to 10.

history are linear. Access rights attributed to each user change automatically
with policy changes.

8 Adapting Access Policies

In the proposed trust model we use the concept of risk to adapt the server
provider’s access policies to a changing environment. At each moment, the risk
value is defined as the ratio of the number of recorded negative experiences
calculated for all users that are allowed to access services compared to the over-
all number of sessions with these users. The parameters involved in the trust
calculation depend on access policies that may change according to the actual
risk level. Increasing the number of positive experiences needed to achieve the
maximum trust value enforces protection against early bad users, and thus they
are able to damage a limited set of resources. Nevertheless, under these circum-
stances strategic bad users are still able to gain maximum trust from the service
provider, and thereby privileged access to critical resources.

To decrease the negative impact that these users’ actions can have on the ser-
vice provider, the policy corresponding to the number of negative interactions
with a user needed to lose trust should be decreased. To manage access poli-
cies the service provider defines several negative rate thresholds thrratei and
correspondent values Δbegi and Δstopi by which the policies will change if the
actual negative rate exceeds the given negative rate threshold. When the pol-
icy changes, the user either loses or acquires a higher trust level. The tendency
parameter and the maximum achievable trust Tu changes accordingly. Access
policies (nbegtrust and nstoptrust) change according to the following rules:

if rateneg < thrrate1

then nbegtrust=initial value, nstoptrust=initial value;
if thrrate2 > rateneg > thrrate1

then nbegtrust = nbegtrust + Δbeg1, nstoptrust = nstoptrust −Δstop1;
...
if rateneg > thrratep

then nbegtrust = nbegtrust + Δbegp, nstoptrust = 1.

442 M. Komarova and M. Riguidel

The risk value defines if nbegtrust should be changed by the Δbegi and if
nstoptrust should be changed by Δstopi.

We have evaluated the performance of the proposed trust-based access control
method via a series of simulations realized using OMNeT++ simulator. The aim
of the simulation was to study the evolution of trust to each user in a network as a
function of the behavior of all visitors. In our simulations we considered different
scenarios of bad user’s activity. In Scenario 1 (Fig. 5) the system is attacked at a
particular moment and the number of attackers increases gradually, all involved
attackers stay active for a certain period of time. The situation, where users
started to misbehave keep malicious activity, is figured in Scenario 2 (Fig. 5).

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Observation time

N
eg

at
iv

e
ra

te

Scenario 1

Static policy
Adaptive policy
% of malicious users

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

N
eg

at
iv

e
ra

te

Observation time

Scenario 2

Static policy
Adaptive policy
% of malicious users

Fig. 5. Effect of policies adaptation on the rate of user’s negative behavior

We simulated a service provider’s network interactions with 200 clients. Initial
values for nbegtrust and nstoptrust were set to 10 and 5 correspondently. For
illustration purposes only one negative rate threshold was set. If negative rate
exceeds the value 0.1 then the value of nbegtrust is increased by 5 and the value
if nstoptrust is decreased by 4. It can be seen that policy adapting helps to better
mitigate attacks as compared with the model with static policies.

9 Conclusions

The proposed trust model may be implemented to improve access control in open
environments such as wireless networks of Internet Service Providers that serve a
large number of users. This model is also suitable for peer-to-peer environments
such as grids or file sharing systems. The generalized formalization of notions
of trust, behavior and risk allows the model to be suitable for different deploy-
ment scenarios. In this work we consider the aspect of trust evolution over time
rather than different aspects of trust propagation. The main improvement made
in this work consists in using a direct and clear relationship between network
access policies and trust model parameters. The proposed memory model aims
to reduce the space necessary to store long-term user behavioral history in a set
of discrete variables, rather than using a time series or description language, as
has been proposed in related publications. A linear trust model provides better

Adjustable Trust Model for Access Control 443

performance when compared with non-linear models described in the literature.
In the proposed model, the originality is the use of different sources of trust, the
possibility of dynamic adaptation to the changing environment and the ability
to work with long-term user history.

References

1. Marsh, S.: Trust and Reliance in Multi-Agent Systems: A Preliminary Report. In:
MAA-MAW 1992, 4th European Workshop on Modeling Autonomous Agents in a
Multi-Agent World, Rome (1992)

2. Yahalom, R., Klein, B., Th., B.: Trust Relationships in Secure Systems - a Dis-
tributed Authentication Perspective. In: IEEE Symposium on Security and privacy
(1993)

3. Th, B., Borcherding, M., Klein, B.: Valuation of trust in open networks. In: ES-
CORICS 1994, Brighton, UK (November 1994)

4. Jøsang, A., Ismail, R.: The Beta Reputation System. In: Proceedings of the 15th
Bled Conference on Electronic Commerce (2002)

5. Ravichandran, A., Yoon, J.: Trust management with delegation in grouped peer-to-
peer communities. In: Proceedings of SACMAT 2006, USA (2006)

6. Tchepnda, Ch., Riguidel, M.: Distributed Trust Infrastructure and Trust-Security
Articulation: Application to Heterogeneous Networks. In: AINA, pp. 33–38 (2006)

7. Giang, P.D., Hung, L.X., Lee, S., Lee, Y.-K., Lee, H.: A Flexible Trust-Based Access
Control Mechanism for Security and Privacy Enhancement in Ubi-quitous Systems.
In: IEEE MUE (2007)

8. Chakraborty, S., Ray, I.: TrustBAC - Integrating Trust Relationships into the RBAC
Model for Access Control in Open Systems. In: Proceedings of the eleventh ACM
symposium on Access control models and technologies, pp. 49–58 (2006)

9. Krukow, K., Nielsen, M., Sassone, V.: A Framework for Concrete reputation systems
with Applications to History-Based Access Control. In: CCS 2005 (2005)

Towards Trustworthiness Establishment: A D-S

Evidence Theory Based Scorer Reliability Tuned
Method for Dishonest Feedback Filtering�

Chunmei Gui, Quanyuan Wu, Huaimin Wang, and Jian Qiang

School of Computer Science
National University of Defense Technology

410073, Changsha, China
plantsperfume@yahoo.com.cn

Abstract. Trust is an important character in next generation Internet.
Entity’s reputation aims at embodying trustworthy interaction informa-
tion in history and constructing anticipation in future. Spurious reputa-
tion threatens to cause latent cheat and leakage in reputation mechanism,
which is an exigent problem to be considered in wide distributed, dynamic
domain. Based on D-S evidence theory, tuned by scorer reliability, the
proposed approach evaluates entities’ ratings on multi-facet and filters
out dishonest feedbacks and malicious referrers. Importing self-adaptation
mechanism, the status of reputation can be adaptively formed, updated,
used and evolved in dynamic real-time environment. Compared with other
methods, this approach accords with human filtering psychology natu-
rally, is especially instructive in application.

1 Introduction

The guarantee of high trustworthiness holds the balance for secure sharing and
efficient collaboration among entities in wide distributed, dynamic domain. Re-
cently, most papers elaborate on architectures or mechanisms for designing rep-
utation service and resource selection. The presence of inaccurate testimonies
and malicious referrers is necessary to be considered. There are two main re-
searches on trust for entity, one is based on accreditation and the other is based
on evidence. accreditation-based research validates consistence through security
accreditation collection, request, and security policy issued by the third-party.
Trust relation is acquired through accreditation or accreditation chains, which
is relative fixed, no risk or uncertainty consideration. Evidence-based research
measure entity’s trust degree through historical interacting results and recom-
mending information, which dynamically reflects the natural attributes in form-
ing, using, evolving and adaptation. Based on reputation, the credibility and
reliability of decision-making are significantly improved, which drives efficient
resource sharing into benign circle with broad prospect.
� This work is supported by the National 973 Basic Research Program of China under

the Grants No. 2005CB321804.

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 444–454, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Towards Trustworthiness Establishment: A D-S Evidence Theory 445

However, rating and recommending on entities’ reputation are not completely
trustworthy. Attack often occurs because of dishonesty feedback, collusive de-
ceiving, and malicious testimonies. They achieve their purpose through biding
up or debasing the reputation of entity. Therefore, unfair rating filtering, as
a fundamental step, is important to guard the efficiency of reputation system.
Most of current work [1-7] draw conclusion by directly composing historical rat-
ing information, which is not sufficient for grasping the essence of trust and is
easy to form the leak of reputation mechanism. The reputation of entity aims
at embodying historical interaction status and providing anticipation for user
in future. Filtering out malicious evaluation, respecting species’ rating habits,
entity’s genuine reputation level can be constructed.

A D-S evidence theory based unfair rating filtering approach is presented in
this paper. D-S evidence theory supports a considerable accurate depiction for
unknown or uncertainty, which holds advantage on situation when difference of
character is not sufficient to distinguish honesty or not. Learning ideas from
psychology, integrating information of multiple features, the approach takes rat-
ing habits and partiality into consideration. Self-adaptive mechanism enhances
the universal usage of system and experiment shows the validity of detecting
unfair rating. It provides prominent support to trustworthy reputation evidence
erecting, trustworthy resource selection, and trust architecture constructing.

The rest of this paper is structured as follows: in Section 2, Dempster-Shafer
evidence theory is introduced. In Section 3, A D-S evidence theory based scorer
reliability tuned unfair rating filtering approach is introduced. In Section 4,
experiment and results are presented. Related work is briefed and compared in
Section 5. Finally in Section 6, we summarize future work and conclude the
whole paper.

2 The Dempster-Shafer Evidence Theory

The Dempster-Shafer evidence theory [8], based on probability and compos-
ing rules, is a set of mathematical reasoning theory. Importing different pre-
cision depiction for unknown and uncertainty, adopting reliability function as
measurement, using decision-making to eliminate uncertainty in information, it
ascertains the impersonal differentiation. The D-S evidence theory presents com-
position formula for evidence composition, and after composition, the character
of basic probability in evidence will be satisfied. As an important uncertainty
reasoning method, the D-S evidence theory has been applied in fields as target
detection, classification and identification, risk analysis, and multi-rule decision.

D-S evidence theory is constituted on discerning frame Θ. Deeming that all
probability in a problem are denoted as set Θ {θ1, θ2, · · · , θn}, then any propo-
sition corresponds to a subset of Θ, i.e. one element in power set P (Θ). If
Θ = {θ1, θ2}, then the power set of Θ is 2Θ = {φ, Θ, {θ1} , {θ2}}. D-S evi-
dence theory defines a probability function to support a system status about an
evidence, named basic probability assignment (shorten form is BPA).

446 C. Gui et al.

Definition 1. Deem that Θ is discernment frame, if set function m : P (Θ) →
[0, 1] satisfies: m(φ) = 0,

∑
A⊂Θ m(A) = 1, then m is called the basic probability

assignment on frame Θ; ∀A ⊂ Θ, m(A) is called basic reliability of A.

Definition 2. Deem that Θ is discerning frame, m : P (Θ) → [0, 1] is basic
probability assignment on frame Θ, then the Bel(A) =

∑
B⊂A

m(B)(∀A ⊂ Θ)

defined function: Bel : P (Θ)→ [0, 1] is the belief function on Θ.

Definition 3. Dempster rules formalizes composition rule multi-evidence as:
Deem that Bel1, · · ·Beln are belief functions on the same discerning frame Θ,
m1, · · ·mn are corresponding basic probability assignment, if Bel1⊕· · ·⊕Beln ex-
ists and basic probability assignment is m, then ∀A ⊂ Θ, A �= φ, A1, · · ·An ⊂ Θ,

m(A) = K−1
∑

A1, · · · , An ⊂ Θ
A1 ∩ · · · ∩An = A

m1(A1) · · ·mn(An), (1)

where K is normalization factor, K =
∑

A1, · · ·An ⊂ Θ
A1 ∩ · · · ∩An �= φ

m1(A1) · · ·mn(An).

3 The D-S Evidence Theory Based Unfair Rating
Filtering Approach

Rating on reputation includes genuine rating and unfair rating. Genuine rating is
founded on normal rating psychology and rating ability, sincerely reflects status
of entities, and should belong to entities’ honesty reputation evidence. Unfair
rating bids up or debases entities’ value, influences and even imperils the whole
reputation system. As unfair rating often behaves unconventionally, according to
observing information, this paper draws integrated aggregation and distinguishes
between truth and false.

3.1 The Model of Reputation Evidence

During the process of collaboration, entities evaluate each other on their behav-
ior, whose value is within the scope of 0 to 100. Here, we denote the first-hand
rating ei given to ej at the time of t as R〈t,ei,ej〉. The bigger R〈t,ei,ej〉 is , the
higher satisfaction degree is given to ej . The assess is also given to each feature
item, which is described as {Rc1 , Rc2 , · · · , Rck

, · · ·Rcn}〈t,ei,ej〉, i.e., at the time
of t, the rating ei given to ej on feature Ck is Rck

.
Trustworthy ratings are brought into entity’s trustworthy set of reputation

evidence, and form entity’s reputation norm after learning and maintenance.
The norm embodies the impersonal reputation situation of an entity. Subsequent
detection can be done on the basis of norm. The norm is required to be fresh and
righteous ,the group-scale should be suitable, and the distribution is requested
to be even. Similarly, it is denoted as {Rc1 , Rc2 , · · · , Rck

, · · ·Rcn}〈t,np,ej〉, i.e., at
the time of t, the rating of norm np given to ej on featureCk is Rck

.

Towards Trustworthiness Establishment: A D-S Evidence Theory 447

3.2 Detecting Architecture of Reputation Evidence

Unfair rating filtering can be summed as discriminating the genuineness or dis-
honesty of evaluation. In this paper, representative feature items of rating are
firstly selected, which should be distinguishable and reflect the whole condition.
Meanwhile, profiles which represent the conditions of reputation norm are always
learned and updated. The probability assignment is calculated according to the
deviation between current rating and norm profile. Based on Dempster rules,
integrating probability assignment of multi-features, respecting rating habits,
the paper gives the last result about unfair rating filtering. In figure 1, the D-S
evidence theory based system framework is given.

Reputation
 evaluation

traffic

Feature
items

Feature
evidence 1

Feature
evidence 2

Feature
evidence n

Assign
BPAF1

Norm 1

Norm 2

Norm n

Fusion engine
with D-S rules

Conclusion

Reputation
evidence

model

M M M

Assign
BPAF2

Assign
BPAFn

Fig. 1. D-S evidence theory based detecting architecture of reputation evidence

3.3 Selecting Features of Reputation Evidence

Resource sharing is an essential character in internet. For the large scale and
the high strangeness, reputation evidence often comes from the third party. The
amount of evaluation diverse among species due to the distributing phenomena
of power law [13], and their own reputation should be considered.

It is not especially restricted to choose feature items in this paper. Only
that the environment evaluating occurs and the form rating shows should be
respected, which represent certain psychology characters and society characters.
The chosen features of reputation evaluating should be impersonal, accurate,
timing, and embodying expectation.

Concretely speaking, we can detect the rationality of rating on key item. For
example, deceiving or not, obviously different from promise, uncompleted ser-
vice, service complete but overtime, filch user’s personal information etc. As to
consumer, for example, executing malicious code or not, laying trojan horse,

448 C. Gui et al.

occupying overtime, pay in time, no rubbish files left behind. Sum up, the eval-
uation features can be integrated as performance, security level, expectation
degree etc.

3.4 The D-S Evidence Theory Based Unfair Rating Filtering
Engine

In this paper, all the candidates’ ratings are objects to-be-detected. According
to D-S evidence theory, the frame Θ = {N, A} is defined, where N expresses
normal and genuine, A expresses abnormal and dishonesty, and N ∩ A = φ.
Then, nonempty subset of 2Θ includes {N} , {A} , {N, A}. Define the probability
assignment function m : P ({N, A}) → [0, 1] , m (φ) = 0, m ({N, A}) + m (N) +
m (A) = 1, where, m (N) expresses the probability that support normal on
current feature item, m (A) expresses the probability that support abnormal on
current feature item, m ({N, A}) = 1−m (N)−m (A)expresses the probability
that support unknown on current feature item, i.e. it can’t be decided whether
it is the probability which supports normal or on the converse.

Different candidates often give different evaluation on the same entity, which
is related to their interests’ direction, rating experience, feeling, and personality.
Kendall’s concordance coefficient [9] can be used here to detect scorer reliability,
which has been widely applied in many similar cases. For each feature item, the
calculate formula is follow:

W =

M∑
i=1

R2
i −

�
M�

i=1
Ri

�2

M

1
12S2 (M3 −M)

, (2)

where S is the num of raters, M is the num of evaluated entities, Ri is the sum
of ratings an entity gains.

Considering the design principle of probability assignment function: when
candidate is quite consistent with norm in rating probability, it shows candi-
date’s rating is in a relative normal scope, so its probability supporting normal
should be relatively high and the probability supporting abnormal should be
relatively low; Along with the depressing of rating consistence, the probability
which supports normal will reduce and the probability which supports dishonesty
will gradually heighten. Based on scorer reliability, we can get the probability
assignment function of formula (3) on the kthfeature item, named BPAFk :

mk ({N}) = W × (1− αk),
mk ({A}) = (1−W)× (1− αk),
mk ({N, A}) = αk.

(3)

Where, αk ∈ S, S = {α1, α2, · · ·αn} is the set of uncertainty degree on features,
the value is given according to experience and importance.

Towards Trustworthiness Establishment: A D-S Evidence Theory 449

Pseudo code for the algorithm of D-S based unfair rating filtering is follow:

Algorithm URF (*Unfair Rating Filtering*)

Input: (1) Collection of Candidates C={ lccc ,...,, 21 }

(2) Collection of Norms N={n1,n2,…,ns}

(3) Collection of Entities E={
m

eee ,...,, 21 }

(4) Collection of Features F={
n

FFF ,...,, 21 }

(5) Collection of Uncertainty Degree S= },...,,{ 21 n
ααα

Output: Candidates’ Probability Assignment Table CPAT

Begin

1. Construct the Entities’ Reputation Rating Table ERRT

2. for i=1 to l do

3. MNAi φ←

4. for each Feature Item FR
ck

∈ in ERRT do

5. for i=1 to l do

6. for j=1 to m do

7. Rj= ><∈ ><
+∑

jij ecNnp enp
RR

,,

8. W=Formular2(s+1, m, {Rj , for all j=1…m)})

9. (mi({N}), mi({A}), mi({N, A}))=Formular3(W,
k

α)

10. MNAi ← MNAi ∪ {(mi({N}), mi({A}), mi({N, A}))}

11. CPAT φ←

12. for i=1 to l do

13. (m({N}), m{A}), m({N, A}))=Formular1(MNAi)

14. CPAT ← CPAT ∪ {(m({N}), m{A}), m({N, A}))}

15. return CPAT

End

Fig. 2. Pseudo code for algorithm URF

Reputation evaluation traffic

Feature items

Norm

Self adapting mechanism

Conclusion

Eliminate
unseasonabl

e records

Veridical

Adapting configure

Normal
records

Feature items

Detector engine

Filtering

Inveracious
 (bid up or

preach down)

Real-time
update

Fig. 3. Self-adaptation mechanism

450 C. Gui et al.

3.5 Adaptive Mechanism

The status of entities’ reputation is time-dependent, it could be even, ascending
and descending. It is necessary to import self-adaptive mechanism for reputation
norm. In the beginning, current evaluation is served as entities’ original repu-
tation norm, and then, the next on-line ratings will be detected. Current norm
profile is learned and updated, which is provided for the next use.

The detecting system can be deployed easily in real environment. Importing
self-adaptive mechanism, system operates well after a short-time adaptive train-
ing, which provides fundamental basis for the whole reputation architecture.

4 Experiment and Result

Based on eBay’s business trace, the first-hand evaluating data of reputation is
scored from 0 to 100 in table 1, which is the to-be-evaluated information system.
n1 ∼ n3 stand for 3 norm evaluators, which are trustworthy and may come from
history detection or experts; c.1 ∼ c.8 stand for 8 candidates whose rating are
to be detected; e1 ∼ e3 are 3 entities to be rated on service performance F1

(for example: arriving within 3 days, pay within 24 hours, and service consistent
with promise etc.), security level F2 (for example: no inaccurate testimonies
deviated from real, no malicious cancellation, and no rubbish files left etc.), and
optimal anticipation F3 (for example: entity performance increase in advance,
service update effectively, and ratio of performance to price is increasing etc.).
11 entities’ rating tendency on 3 feature items is depicted in figure 4.

Using uncertainty coefficient α1=0.05 for service performance, α20.03 for se-
curity level, and α3 = 0.10 for optimal anticipation, according to the algorithm,
probability assignment of normal, dishonesty, and unknown on features can be
calculated in table 2. To further comparison, probability assignment supporting
normal of 8 candidates on 3 features are depicted in figure 5.

According to the algorithm, integrating the probability assignment on 3 fea-
tures, at last we get the candidates’ reliability degree of rating. From the results
shown in table 3, we can see: the trust sequence should be c.1 = c.3 = c.5 = c.8 ≈

Table 1. Entities’ reputation rating information in 3 Features

Features
Norm rating Candidates rating
n1 n2 n3 c.1 c.2 c.3 c.4 c.5 c.6 c.7 c.8

Rc1

e1 91 97 99 90 87 96 70 75 79 91 96
e2 88 87 84 87 93 88 80 70 95 85 92
e3 81 80 81 80 82 82 97 65 85 82 88

Rc2

e1 69 70 71 67 77 73 98 60 80 72 85
e2 75 77 78 76 85 79 80 67 71 78 90
e3 88 87 84 87 70 88 65 71 76 85 99

Rc3

e1 81 80 81 82 88 79 80 66 70 82 91
e2 89 88 87 89 76 89 65 70 75 90 98
e3 75 77 78 77 83 76 89 61 80 78 85

Towards Trustworthiness Establishment: A D-S Evidence Theory 451

n1 n2 n3 c.1 c.2 c.3 c.4 c.5 c.6 c.7 c.8
50

60

70

80

90

100

Norms & Candidates

R
at

in
g

Rating on e1
Rating on e2
Rating on e3

n1 n2 n3 c.1 c.2 c.3 c.4 c.5 c.6 c.7 c.8
50

60

70

80

90

100

Norms & Candidates

R
at

in
g

Rating on e1
Rating on e2
Rating on e3

n1 n2 n3 c.1 c.2 c.3 c.4 c.5 c.6 c.7 c.8
50

60

70

80

90

100

Norms & Candidates

R
at

in
g

Rating on e1
Rating on e2
Rating on e3

Fig. 4. Rating behaviors on three features (a) rating behaviors in service performance;
(b) rating behaviors in security level; (c) rating behaviors in anticipation about opti-
mization

Table 2. Candidates’ probability assignment on features

BPA
Candidates
c.1 c.2 c.3 c.4 c.5 c.6 c.7 c.8

F11

m1({N}) 0.95 0.772 0.95 0.238 0.95 0.416 0.416 0.95
m1({A}) 0.00 0.178 0.00 0.712 0.00 0.534 0.534 0.00
m1({N , A}) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

F21

m2({N}) 0.97 0.424 0.97 0.242 0.97 0.424 0.788 0.97
m2({A}) 0.00 0.546 0.00 0.728 0.00 0.546 0.182 0.00
m2({N , A}) 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

F31

m3({N}) 0.90 0.394 0.90 0.225 0.90 0.394 0.731 0.90
m3({A}) 0.00 0.506 0.00 0.675 0.00 0.506 0.169 0.00
m3({N , A}) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

c.7 � c.2 � c.6 � c.4; c.4must be filtered out because it is dishonesty feedback
and c.6 should be filtered out too; filtering out c.2 or not can be considered by
system decider according to their application requirement; although first-hand
ratings from c.5 are generally low, the result shows whose probability assignment
of normal supporting is high, which means ratings from c.5 should be reserved
and c.5 might be strict; at the same time, although first-hand ratings from c.8

are generally high, the result shows whose probability assignment of normal sup-
porting is high, which means ratings from c.8 should be reserved and c.8 might
be lenient; of course, c.1 and c.7 should be reserved and it seems consistent with
their first-hand ratings status.

452 C. Gui et al.

0

0.2

0.4

0.6

0.8

1

Candidates

pr
ob

ab
ili

ty
 a

ss
ig

nm
en

t m
1
 ({N})

m
2
 ({N})

m
3
 ({N})

C.
1

C.
2

C.
3

C.
6

C.
5

C.
4

C.
8

C.
7

Fig. 5. Candidates’ probability assignment supporting normal on three features

Table 3. Candidates’ probability assignment and filtering results

BPA c.1 c.2 c.3 c.4 c.5 c.6 c.7 c.8

m({N}) 0.99985 0.6983 0.99985 0.0535 0.99985 0.3386 0.9048 0.99985

m({A}) 0 0.3011 0 0.9462 0 0.6609 0.0948 0

m({N, A}) 0.00015 0.0006 0.00015 0.0003 0.00015 0.0005 0.0004 0.00015

Justification N A N A N A N N

4.1 Related Work

Undoubtedly, reputation is not only of great helpful to humanities, but also
important as a formalizing computational concept in scientific computing field.
Recently, reputation is widely adopted in most popular ecommerce website such
as eBay, Amazon and is introduced to multi-agent systems, semantic web, P2P
systems and Grid systems [1-7].

Generally speaking, most of these papers elaborate on architectures or mech-
anisms for designing reputation service and resource selection. In [4], a trust
modeling is presented which aims at providing resources security protection in
grid through trust updating, diffusing and integrating among entities. In [5],
Grid Eigen Trust, a framework used to compute entity’s reputation in grid. In
[6], “personalized similarity” is adopted to evaluate an entity’s credibility. In [7],
“the propagation of distrust”, an interesting idea, which allows the proactive
dissemination of some malicious entity’s bad reputation and maintains positive
trust values for peers at the meanwhile.

However, the presence of inaccurate testimonies and malicious referrers is
necessary to be considered. As to dishonest feedback filtering, to the best of our
knowledge, we find the small number of work: In [10], controlled anonymity is
used to avoid unfairly low ratings and negative discrimination and cluster fil-
tering techniques based on value and frequency are used to reduce the effect of
unfairly high ratings and positive discrimination. Such filtering method does not
take an entity’s rating habit into consideration and might filter out ratings from
lenient raters. In [11], a statistical filtering technique is described for excluding
unfair ratings. By comparing the overall reputation score of a given agent with
the probability distribution of the ratings on that agent from each rater, this

Towards Trustworthiness Establishment: A D-S Evidence Theory 453

scheme dynamically determines an upper and lower threshold for which raters
should be judged unfair and thereby excluded. The work is efficient in mitigating
the influence of individual inaccurate testimonies. Meanwhile, it is vulnerable to
the presence of collusive inaccurate testimonies and malicious referrers. It is in-
feasible in open Internet environment that it assumes the existence of cumulative
rating vectors for each rater. In [12], based on the idea of Weighted Majority
Algorithm, the work modifies recommenders’ reputation, which is some extent
effective to punish malicious referrer. However, Influence has been spread before
the punishment that reputation system might have cost so much.

4.2 Conclusions and Future Work

The guarantee of high trustworthiness holds the balance for secure sharing and
efficient collaboration among entities in wide distributed, dynamic domain. The
work offers fundamental step towards trust establishment for further research.
There are 4 main features: 1) Dishonest feedbacks and malicious referrers can be
filtered out whatever they are single or collusive, no doubt it is necessary when
reputation mechanism is intensive used. 2) Respecting entity’s rating habits, for
example, some raters are lenient while some are strict and they are distinctly
different from inaccurateness, rating habits and abundant rating connotation
are unified considered in this paper. 3) Integrating D-S evidence theory and
relative psychology method, importing adaptive mechanism, the work effectively
embodies the nature characters of reputation in forming, updating, using and
evolving. 4) The cost of calculation is low, which is apt to be deployed in open
environment and will be effective after short time of training.

This paper is helpful for trustworthy resource selection, reputation construct-
ing, and more reputation related research work. Next, we suggest that mechanism
of punishment and promoting should be taken into consideration.

References

1. Sepandar, D.K., Mario, T.S., Hector, G.M.: The EigenTrust Algorithm for Repu-
tation Management in P2P Networks. In: Proceedings of the Twelfth International
World Wide Web Conference, Budapest, Hungary (May 20-24, 2003)

2. Massa, P., Bhattacharjee, B.: Using Trust in Recommender Systems: an Exper-
imental Analysis. In: Jensen, C., Poslad, S., Dimitrakos, T. (eds.) iTrust 2004.
LNCS, vol. 2995, pp. 221–235. Springer, Heidelberg (2004)

3. Griffiths, N., Chao, K.-M.: Experience-based trust: Enabling effective resource se-
lection in a grid environment. In: Herrmann, P., Issarny, V., Shiu, S.C.K. (eds.)
iTrust 2005. LNCS, vol. 3477, pp. 240–255. Springer, Heidelberg (2005)

4. Song, S., Hwang, K., Macwan, M.: Fuzzy Trust Integration for Security Enforce-
ment in Grid Computing. In: Jin, H., Gao, G.R., Xu, Z., Chen, H. (eds.) NPC
2004. LNCS, vol. 3222. Springer, Heidelberg (2004)

5. Alunkal, B.K.: Grid EigenTrust: A Framework for Computing Reputation in
Grids. MS thesis, Department of Computer Science, Illinois Institute of Technology
(November 2003)

454 C. Gui et al.

6. Xiong, L., Liu, L.: PeerTrust: Supporting Reputation-Based Trust in Peerto-Peer
Communities. IEEE Transactions on Knowledge and Data Engineering, Special
Issue on Peer-to-Peer Based Data Management 16(7) (July 2004)

7. Guha, R., et al.: Propagation of Trust and Distrust. In: Proc. ACM World Wide
Web Conference (WWW 2004), pp. 403–412. ACM Press, New York (2004)

8. Dempster, A.: Upper and lower probabilities induced by multivalued mapping.
Annals of Mathematical Statistics 38(2), 325–339 (1967)

9. Cronbach, L.J.: Essentials of Psychological Testing, 5th edn. Happer & Row, pub-
lishers, N.Y (1996)

10. Dellarocas, C.: Immunizing Online Reputation Reporting Systems Against Unfair
Ratings and Discriminatory Behavior. In: Proceedings of the 2nd ACM Conference
on Electronic Commerce, Minneapolis, MN (October 17-20, 2000)

11. Whitby, A., Jsang, A., Indulska, J.: Filtering out unfair ratings in bayesian repu-
tation systems. In: Proceedings of the Workshop on Trust in Agent Societies, at
the 3rd Int. Conf. on Autonomous Agents & Multi Agent Systems (2004)

12. Weng, J., Miao, C., Goh, A.: A Robust Reputation System for the Grid (2006),
http://www.cais.ntu.edu.sg/∼wengjs/cgi-bin/schlabo/dl.pl?file=TR&get=1

13. Barabási, A.-L., Bonabeau, E.: Scientific American, vol. 288, p. 50 (2003)

http://www.cais.ntu.edu.sg/~wengjs/cgi-bin/schlabo/dl.pl?file=TR&get=1

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 455–469, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A User Behavior Based Trust Model
for Mobile Applications

Zheng Yan1, Valtteri Niemi1, Yan Dong2, and Guoliang Yu2

1 Nokia Research Center, Helsinki, Finland
{zheng.z.yan,valtteri.niemi}@nokia.com

2 Institute of Psychology, Renmin University of China, China
dongpsy@ruc.edu.cn, yugllxl@sina.com

Abstract. A mobile application is a software package that can be installed and
executed in a mobile device. Which mobile application is more trustworthy for
a user to purchase or install becomes a crucial issue that impacts its final suc-
cess. This paper proposes a trust model based on users’ behaviors, which assists
the evaluation and management of the mobile application’s trust with user
friendliness. We achieve our model through exploratory factor analysis, reliabil-
ity analysis and correlation analysis based on the data collected from a ques-
tionnaire survey. It is indicated that a user’s trust behavior is a multidimensional
construct composed of four aspects: usage behavior, reflection behavior, corre-
lation behavior and management behavior. Particularly, the practical signifi-
cance of our work towards usable trust management, the limitations of current
empirical study and future work are also discussed.

1 Introduction

A mobile application is a software package that can be installed and executed in a
mobile device (e.g. a mobile phone), for example, a mobile email client to access
emails. Generally, this software package developed by various vendors can be
downloaded from a web site or received from another device for installation. Which
mobile application is more trustworthy for a user to purchase or install becomes a
crucial issue that impacts its final success.

Trust is a multidimensional, multidisciplinary and multifaceted concept. The con-
cept of trust has been studied in disciplines ranging from economics to psychology,
from sociology to medicine, and to information science. We can find various defini-
tions of trust in the literature. Common to these definitions are the notions of confi-
dence, belief, faith, hope, expectation, dependence, and reliance on the goodness,
strength, reliability, integrity, ability, or character of a person or thing [1]. Generally,
a trust relationship involves at least two parties: a trustor and a trustee. The trustor
(i.e. a trusting subject) is the person or entity who holds confidence, etc. on the reli-
ability, integrity, ability, etc. of another person or thing, which is the object of trust -
the trustee (i.e. a trusting object).

A user’s trust in a mobile application is, being highly subjective, inherently hard to
measure. Furthermore, trust is built up over time and changes with the use of the ap-
plication due to the influence of many factors. As it is an internal ‘state’ of the user,

456 Z. Yan et al.

there is no way of measuring it directly. Fully supporting trust evaluation and man-
agement on mobile applications requires a number of usability studies regarding
extracting user’s trust criteria/standards in different contexts, user’s experience or
feedback dissemination and user’s decision about trust or distrust. This may introduce
a lot of efforts in order to achieve feasible usability and perhaps the system designed
based on the existing literature solutions cannot be finally accepted by the end users
due to heavy user-device interaction, complexity and misunderstanding.

Marsh reasoned that it might prove more suitable to model trust behavior rather than
trust itself, removing the need to adhere to specific definitions [17]. This paper attempts
to develop a user behavior based trust model for mobile applications. Thus, through
auto-monitoring users’ behaviors via user-device interactions, we can extract useful in-
formation for evaluating and managing trust of mobile applications in an autonomic and
user-friendly measure. With this way, it is also possible to avoid heavy interactions that
may be required by some existing trust management solutions, e.g. [2]. Developing such
a trust model is significant for a mobile device to provide trust information to its user in
order to encourage usage. It also benefits a mobile application provider that could offer
its user suggestions for selecting a valuable mobile application.

The rest of the paper is organized as follows. Section 2 gives a brief overview of
the literature. Section 3 proposes hypotheses regarding a user behavior based trust
model. Section 4 designs a measurement scale to prove the hypotheses followed by
data analysis. In section 5, we report our experimental results and the achieved model.
Furthermore, we discuss the limitations of our empirical study, and the practical sig-
nificance of developing this trust model in Section 6. Finally, conclusions and future
work are presented in the last section.

2 Background and Related Work

2.1 Trust Model (From a Psychological View Towards an Engineering View)

Current trust models have been developed based on specific security issues and also
solely on knowledge, experience, practices, and performance history [3]. Much of the
prior research in trust of automation has focused primarily on the psychological as-
pect [4]. But prior research lacks an integral understanding of both the psychological
and engineering aspects of trust, which is essential for developing an appropriate trust
model towards a trustworthy system that is easily accepted by the users.

Many proposals have been presented to link some of the psychological aspects of
trust with engineering issues. For example, attempts have been made to map psycho-
logical aspects of trust (e.g. reliability, dependability, and integrity) to human-
machine trust clusters associated with engineering trust issues such as reliability and
security [5]. Lance, et al. studied trust from a number of influencing factors from the
engineering and psychological points of view and tried to combine these factors in or-
der to provide a comprehensive model [6]. Most of existing work follows the research
steps that, what is trust referent, what are factors or aspects related to trust, and evalu-
ate or assess trust based on those factors and aspects and try to manage trust accord-
ingly [1]. But it is actually hard to computationally model some influencing factors,
such as usability and a user’s subjective factors. Since trust is a subjective concept,

 A User Behavior Based Trust Model for Mobile Applications 457

assessing trust need to understand the trustor’s trust criteria regarding each factor or
aspect, even for different contexts. This may raise a lot of interaction requirements in
order to get the trustor’s criteria in various situations or contexts. In most digital in-
formation systems, the trustor is a user and the trustee is a device or a device applica-
tion. This will increase interactions between the user and device, and thus cause a
usability issue that requires more efforts to overcome.

Initial trust refers to trust in an unfamiliar trustee, a relationship in which the actors
do not yet have credible, meaningful information about, or affective bonds with, each
other [8]. McKnight et al. proposed and validated measures for a multidisciplinary
and multidimensional model of initial trust in e-commerce [9]. The model includes
four high-level constructs: disposition to trust, institution-based trust, trusting beliefs,
and trusting intentions, which are further delineated into sixteen measurable, litera-
ture-grounded sub-constructs. The cross-disciplinary nature of the trust typology in
this study highlights the multiple, interrelated dimensions of e-commerce trust.

The technology trust formation model (TTFM), is a comprehensive model of initial
trust formation used to explain and predict people’s trust towards a specific informa-
tion system [10]. The above two models used the framework of the TRA to explain
how people form trust, and both integrated important trusting antecedents into their
frameworks in order to effectively predict people’s trust [9, 11]. Since the objective of
TTFM model was to predict initial trust (trusting intention) before any actual interac-
tion with the trusting object, trust-related behavior (i.e. trust behavior: a trusting sub-
ject’s actions to depend on, or make her/him vulnerable to a trusting object) was
excluded from this model. McKnight model did not study the trust behavior either.

Fig. 1. Relationships among initial trust, short term trust and long term trust

On the other hand, short-term trust is built up over the first interactions with a system
and long-term trust is developed with the continuous use of a system over a longer pe-
riod of time. On-going trust appeared in [9] concerns the short-term trust and the long-
term trust. In our study, we mainly focus on the on-going trust evaluation based on the
user’s behaviors. The relationship among initial trust, short term trust and long term
trust are described in Fig.1. In particular, the on-going trust could contribute to the trus-
tee’s reputation and thus greatly help other entities building up their initial trust.

2.2 Human-Computer Trust

Trust is firstly a social phenomenon. With the rapid growth of computer and network-
ing technology, human – computer trust has been paid attention to.

458 Z. Yan et al.

One issue that contributes to whether the users purchase a new product (e.g. a mo-
bile application) is how much they trust the technology. Muir is one of the first re-
searchers to look at a decision process between supervisors and automated systems.
She verifies the hypothesis proposed by Sheridan et al. that the supervisor’s interven-
tion behavior is based upon his/her trust in automation [12]. The relationship between
trust and interaction behavior is obvious. Her work provides a basic guideline to de-
sign a trust model regarding human-computer interaction.

Muir tested her theory in two studies [4, 13]. The first study supported the "pro-
gression of trust" aspect of her theory, and the second study found a positive correla-
tion between trust and use. Lee and Moray [14] found that trust in a system partially
explained system use, but other factors (such as the user's own ability to provide man-
ual control) also influenced the system use. These three studies have provided some
support for Muir's theory, but additional research is needed to evaluate her hypotheses
in more depth, especially in other domains. All above work plays as the foundation of
our study: a user’s trust in mobile applications can be evaluated based on the user-
device interaction behavior.

However, the above study focused on human’s trust in an automation and intelligent
machine. Little work has been conducted regarding mobile application’s user trust al-
though this study is crucial. Prior arts also lacked study on the influence of recommen-
dations and usability with regard to human-computer trust. With the rapid development
of mobile computing technology, a mobile device becomes a multi-application system
for multi-purpose and multi-usage. It always has a network connection. It is also an
open platform that allows deploying new or upgraded applications at anytime and
anywhere. Therefore, such a dynamically changed system introduces new challenges
for human-computer trust. We believe that the study should go into depth in the newly
thrived mobile application context.

2.3 Trust Management

Trust management is emerging as a promising technology to facilitate collaboration
among entities in an environment where traditional security paradigms cannot be en-
forced due to lack of centralized control and incomplete knowledge of the environment.
However, prior arts generally lack considerations on the means to gather experiential
evidences for effective trust evaluation. Many systems rely on a user to provide feed-
back [15]. Sometimes, it may not be appropriate or convenient to require him/her
to provide feedback because it could cause many usability problems. This introduces
a requirement for experiential feedbacks to be largely automated. Our work aims to sup-
port automatic evidence collection for trust evaluation and management with user
friendliness.

English and Terzis presented an interaction monitor that enables automated collec-
tion of detailed interaction evidence based on interaction modeling [16]. The monitor
is a prototype implementation of a generic interaction monitoring architecture that ap-
plied a well-understood rule engine and an event management technology. However,
this study and our previous work presented in [2] focused on monitoring the trustee’s
behavior, not the trustor’s trust behavior, which could provide a more direct channel
to achieve trust information.

 A User Behavior Based Trust Model for Mobile Applications 459

3 Hypotheses

Our research question is what interaction behaviors are related to the user’s trust in a
mobile application. We hypothesize that the user’s trust in a mobile application can be
studied through the user’s behaviors, which can be monitored via the user-device in-
teraction during the application usage. The concrete hypotheses about trust behaviors
are listed in Table 1. All four types of behaviors comprise the user’s trust behavior in
a mobile application. They contribute to the calculation of the device’s confidence on
the user’s trust in the mobile application.

Table 1. Hypotheses on Trust Behaviors

Behavior Type Hypotheses Remarks
§1 Usage Behavior §1.1 The user trusts a mobile application more, if

he/she has more time, times and frequency of usage;
§1.2 Trust in a mobile application could influence
the user’s behavior regarding high risk and high im-
portance tasks;
§1.3 The user becomes more professional in using a
mobile application if he/she has experienced more
features of the mobile application.

The user’s expertise
could influence his/her
usage, thus indirectly in-
fluence his/her trust in a
specific mobile applica-
tion.

§2 Reflection Behav-
ior (behaviors after
confronting applica-
tion problems or hav-
ing good/bad experi-
ences)

§2.1 Trust impacts the user’s behavior, the usage af-
ter experiencing error, failure or bad performance
implies more trust; after application error usage im-
plies more trust, otherwise, distrust due to bad ex-
perience;
§2.2 Good/bad application performance and usage
experience of a mobile application could in-
crease/decrease the user’s trust;
§2.3 Good/bad application performance or usage
experience could influence the user’s behavior on
high risk and high importance tasks.

Notably, the difference
of the reflection behav-
ior and the usage behav-
ior lies in the fact that
the first one is a type of
event-related behavior
while the second one is
about general usage sta-
tistics. Their contribu-
tions to trust could be
different.

§3 Correlation Behav-
ior (behaviors corre-
lated to similar func-
tioned applications)

§3.1 For two similar functioned applications, higher
usage rate (i.e. usage time, usage times, usage fre-
quency, and experienced features) of one application
means more trust in it;
§3.2 Trust in a mobile application influences the be-
haviors of recommendations and comments.

§4 Management Be-
havior (behaviors re-
lated to application
management)

§4.1 Trust in a mobile application influences the be-
haviors of application management, such as applica-
tion installation, deletion and replacement, etc.

4 Methods

We applied a psychometric method to examine our hypotheses. We designed a ques-
tionnaire (see Appendix), taking Short Message Service (SMS) as a concrete example
of mobile application. Each item in the questionnaire is a statement for which the par-
ticipants need to indicate their level of agreement. The questionnaire is anchored us-
ing a seven-point Likert scale ranging from “strongly disagree” to “strongly agree”.

4.1 Scale Development

There are four basic parts in the scale. As shown in the Appendix, for the usage be-
havior (UB), we designed a list of items about a) normal using behaviors (NUB),

460 Z. Yan et al.

(item 1-3 for testing hypothesis §1.1); b) usage behaviors about application features
(UBAF), (item 7, 8 for testing hypothesis §1.3); c) usage behaviors related to trust
(UBT) (item 9, 10 for testing hypothesis §1.1); and d) usage behaviors related to risk
and context (UBRC) (item 5, 6 for testing hypothesis §1.2). Regarding the reflection
behavior (RB), we designed a number of items about a) good performance reflection
behaviors (GPRB) (item 4, 13, 14 for testing hypothesis §2.2); b) bad performance re-
flection behaviors (BPRB) (item 11, 12, 15, 16 for testing hypotheses §2.1 and §2.2);
c) experience reflection behaviors (ERB) (item 17, 18 for testing hypotheses §2.1 and
§2.2); and d) experience reflection behaviors related to risk and context (ERBRC)
(item 19, 20 for testing hypothesis §2.3). In the part about the correlation behavior
(CB), we design items about a) comparison of behaviors regarding similar applica-
tions (CBSA) (item 21-25 for testing hypothesis §3.1); and b) recommendation be-
haviors (REB) (item 26, 30-33 for testing hypothesis §3.2). Finally, we designed
items about the application management behavior (MB) such as replacing, deleting,
installing and rejecting a mobile application (item 27-29 for testing hypothesis §4.1).

4.2 Data Collection

An experiment was conducted by three psychologists. The questionnaire was administered
to undergraduate students enrolled in a psychology class in a university. In the beginning,
the participants were arranged to answer the questionnaire in a big auditorium. Then, the
questionnaires were collected and each participant was offered a small gift. Almost all par-
ticipants had past experience of answering a questionnaire survey. They are familiar with
the basic rules for this kind of experiment. Meanwhile, the conductors explained the basic
concepts appeared in the questionnaire before the participants answered the questionnaire.
The average questionnaire response time was about 15 minutes.

The participants were composed of 318 undergraduate students, among whom,
151（ ）47.5% were women and 167 (52.5%) were men; 11 participants were below 18
years and others were between 19-29 years. 229 (72%) participants major in science
or technology, while 89 (38%) in arts. Table 2 provides the information about the par-
ticipants’ experience on mobile application usage. According to the survey, 153
(48.1%) participants had experiences of using the internet accessed applications (e.g.
a mobile internet browser), 274 (86.2%) had experiences of using the mobile network
accessed applications (e.g. SMS and Contacts) and 262 (82.4%) had that of non-
network accessed applications (e.g. Profile).

Table 2. Participants’ Experience on Mobile Application Usage

The experience on mobile applications Number of participants Percent (%)

Below 0.5 hour/day 31 9.7
0.5-1 hour/day 85 26.7
1-5 hours/day 104 32.7

More than 5 hours/day 97 30.5
Missing 1 .3

Time of
phone
usage

Total 318 100.0
Below 3 times/day 15 4.7

3-10 times/day 106 33.3
More than 10times /day 195 61.3

Times of
SMS us-

age

Missing 2 .6
 Total 318 100.0

 A User Behavior Based Trust Model for Mobile Applications 461

4.3 Data Processing and Analysis

SPSS 11.5 was adopted to process the data collected from the questionnaire survey. In
the first phase, exploratory, principal components, factor analysis was conducted in
order to explore the basic constructs of trust model (i.e. the principle factors that de-
termine trust). The purpose of using principle components analysis (PCA) was to cull
out the items that did not load on the appropriate high-level construct. Kaiser’s crite-
rion was applied in the PCA, which considers factors with an eigenvalue greater than
one as common factors [18]. The PCA was performed using both orthogonal and
oblique rotation. McKnight et al. argued if the trust constructs form a model of caus-
ally linked variables (which implies positive correlations), oblique rotation should be
applied in the PCA [7]. While, the orthogonal rotation assumes that constructs are not
correlated. Since no theory was found to support obvious correlations among different
types of trust behaviors, and the correlations among extracted factors are not high as
shown in Section 5.3, we applied a rotation strategy named Quartimax to conduct the
orthogonal rotation. We also applied the oblique rotation with Promax method (with
default Kappa=4). The results based on the oblique rotation are similar to those
achieved based on the orthogonal rotation. So in the next section, we report our re-
sults of the PCA based on the orthogonal rotation. In addition, we also conducted reli-
ability analysis and correlation analysis in order to further prove our hypotheses and
the further achieved model.

5 Results

5.1 Principle Components Analysis

Factor loadings illustrate correlations between items and factors. Based on PCA,
eleven factors were marked by high loadings (i.e. more than 0.4) with total items, in
which four factors (i.e. NUB, UBAF, UBT, and UBRC) were formed for the usage
behavior, with no cross-loadings above 0.4. A second analysis using the items only
designed to measure the usage behavior was also conducted. We obtained the same
four factors. The results of PCA relating to the usage behavior are shown in Table 3
and Table 4, respectively. As presented, all item loadings were greater than 0.5, and
the four factors had explained 65.266% of the usage behavior. It is important to note
that the sums of squared loadings of variance corresponding to a factor reflect the
percentage that can be explained by the factor regarding the total variance of all items
(e.g. the variance of the usage behavior).

Table 3. Eigenvalues and Sums of Squared Loadings of Variance of Usage Behavior

Factors Eigenvalues Sums of squared loadings of
variance (%)

Sums of squared loadings of cu-
mulative variance (%)

NUB 2.088 18.557 18.557
UBAF 1.539 16.108 34.666
UBRC 1.229 15.473 50.139
UBT 1.018 15.128 65.266

462 Z. Yan et al.

Table 4. Rotated Component Matrix of Usage Behavior

Factor Loadings
Variable NUB UBAF UBRC UBT
Item 3 .807
Item 2 .803
Item 1 .541
Item 8 .816
Item 7 .744
Item 6 .848
Item 5 .764

Item 10 .795
Item 9 .787

Four factors (i.e. GPRB, BPRB, ERB and ERBRC) were obtained in terms of the

reflection behavior. The PCA results of the sole reflection behavior based on its items
were presented in Table 5 and Table 6, respectively. All the item loadings were over
0.5 and the four factors had explained 63.031% of the reflection behavior.

Table 5. Eigenvalues and Sums of Squared Loadings of Variance of Reflection Behavior

Factors Eigen-
values

Sums of squared loadings of
variance (%)

Sums of squared loadings of cu-
mulative variance (%)

BPRB 3.412 21.847 21.847
GPRB 1.510 16.188 38.035

ERBRC 1.408 13.541 51.576
ERB 1.233 11.454 63.031

Table 6. Rotated Component Matrix of Reflection Behavior

Factor Loadings
Variable BPRB GPRB ERBRC ERB
Item 15 .778
Item 16 .769
Item 12 .748
Item 11 .646
Item 31 .539
Item 13 .884
Item 14 .833
Item 4 .562
Item 19 .839
Item 20 .795
Item 17 .840
Item 18 .753

There are two factors formed for the correlation behavior, but item 26’s loading
was below 0.4 and one item’s cross-loading was above 0.4. It was found that the latter
item was originally designed to measure the reflection behavior; therefore, it should
be placed in the reflection behavior. Then, a second analysis was performed after we
deleted these two items. We obtained the same two factors (i.e. CBSA and REB), but
there was another item (24) enjoying a cross-loading of 0.4. However, this item was
finally retained because the value of cross loading was lower than the loading. More-
over, the reliability analysis showed that dropping this item reduced the alpha for the

 A User Behavior Based Trust Model for Mobile Applications 463

correlation behavior from 0.78 to 0.73. Important to note that alpha is a reliability co-
efficient, which is an index to retain an item. The results of PCA for the adjusted
items of the correlation behavior are presented in Table 7 and Table 8, respectively.
The loading for each item was greater than 0.5 and the two factors had explained
57.873% of the reflection behavior.

Table 7. Eigenvalues and Sums of Squared Loadings of Variance of Correlation Behavior

Factors Eigenvalues Sums of squared loadings of
variance (%)

Sums of squared loadings of cu-
mulative variance (%)

CBSA 3.312 37.317 37.317
REB 1.317 20.556 57.873

Table 8. Rotated Component Matrix of Correlation Behavior

Factor Loadings
Variables CBSA REB

Item 22 .896

Item 21 .860

Item 23 .849

Item 25 .598

Item 24 .570

Item 32 .742

Item 33 .700
Item 30 .523

With respect to the management behavior, one factor was obtained (i.e. MB), with
no cross-loadings above 0.4. Likewise, a second analysis was performed using the
items just designed to measure the management behavior. We got the same one factor,
including the user’s behavior of rejecting, deleting and replacing a mobile application.
The results for the management behavior were presented in Table 9 and Table 10, re-
spectively. As depicted, the factor had explained 56.089% of the management behav-
ior and all item loadings were greater than 0.5.

Table 9. Eigenvalues and Sums of Squared Loadings of Variance of Management Behavior

Factors Eigenvalues Sums of squared loadings of
variance (%)

Sums of squared loadings of cu-
mulative variance (%)

MB 1.68 56.089 56.089

Table 10. Component Matrix of Management Behavior

Factor Loadings
Variable MB
Item 28 .844
Item 29 .827
Item 27 .535

464 Z. Yan et al.

5.2 Reliability Analysis

Reliability is a value between 0 and 1 with a larger value indicating better reliability
[5]. We also conducted internal consistency reliability analysis using Cronbach’s al-
phas [5], as shown in Table 11. The reliabilities of the usage behavior and the man-
agement behavior were not high enough. We plan to revise or add new items in the
questionnaire to improve them in the future work. Notably, low Alpha value reflects
that the items’ consistency is not so good. But it does not mean the construct is bad,
which has been examined by the PCA.

Table 11. Reliability Analysis

Type of Behavior No. of Cases No. of Items Alpha
Reflection behavior 318 12 0.76

Usage behavior 318 9 0.57
Manage behavior 318 3 0.60

Correlation behavior 318 8 0.78
Total trust behavior 318 32 0.82

5.3 Achieved Model and Correlations

According to the aforementioned results, a 32-item scale was created that measures
the usage behavior, the reflection behavior, the correlation behavior and the manage-
ment behavior of the trust behaviors (as in Appendix). A graphic and linguistic trust
model of mobile applications based on the users’ behavior can also be achieved, as
shown in Fig. 2. In summary, the reflection behavior, the usage behavior, the man-
agement behavior and the correlation behavior represent the user’s trust behaviors.
The PCA and reliability analysis showed that the questionnaire has positive psycho-
metric properties with respect to construct validity and reliability. Thus, the proposed
trust model built upon our hypotheses is reasonable.

In addition, the relationships of different components in Fig.2 are set based on the
correlations of four types of trust behaviors. We found that all of them had significant
correlation with the trust behavior at the 0.01 level, which indicates that these four
types of behaviors can represent the trust behavior. We also found that these four fac-
tors had lower correlations with each other than their correlations with the trust be-
havior. This indicates that the four factors can measure not only the general aspects
but also the specific aspects of the trust behavior. Particularly, the results show that
the management behavior and the correlation behavior had no significant correlation,
which suggests that the two behaviors have no influence with each other. Other be-
haviors have more significant correlations, which indicate that those behaviors have
influence or impact with each other.

Furthermore, we illustrate the internal relationships of the usage behavior, the reflec-
tion behavior and the correlation behavior based on the factor correlations in
Fig. 3., Fig. 4., and Fig. 5., respectively. As can be seen from the figures, the correlation
between each internal factor (e.g. GPRB) and its corresponding principle behavior type
(e.g. RB) is higher than the correlations among the factors. This indicates that the

 A User Behavior Based Trust Model for Mobile Applications 465

Fig. 2. The trust model of mobile applications based on users’ behavior1

Usage Behavior
(UB)

Normal using
behavior (factor

NUB)

Behavior related to
application feature

(factor UBAF)

Behavior related to
trust (factor UBT)

Behavior related to
risk and context
(factor UBRC)

.599** .476** .197** .831**

.220** -.037 .213**

.121*

.132*

.146**

Fig. 3. Internal relationships of usage behavior1

Fig. 4. Internal relationships of reflection behavior1

factors belonging to a concrete type of trust behavior can measure not only the gen-
eral aspects but also the specific aspects of this type of trust behavior. Therefore, our
results are pretty sound.

1 * Correlation is significant at the 0.05 level (2-tailed).
 ** Correlation is significant at the 0.01 level (2-tailed).

466 Z. Yan et al.

Fig. 5. Internal relationships of correlation behavior1

6 Further Discussions

6.1 Limitation Analysis

The experiment was conducted in China. Its participants are only university under-
graduates. The participants’ nationality, ages, interests, past mobile application ex-
periences, culture background and social behavior could impact the results.

In the experiment, all the items about trust behavior are designed based on the
SMS. However, the trust behavior is related to many facets, some of which could be
hard to reflect through SMS. For example, SMS is a system default application. It
could not be managed by a normal user. In order to overcome this problem, we pro-
vided a situation assumption in some questionnaire items for easy understanding in
the experiment. Since SMS is the most popular mobile application in China, we be-
lieve taking SMS as a concrete example in the experiment has its special advantages.

Although the scale has been examined with the principle components analysis, the
reliability analysis and the correlation analysis, the results show that improvement is
still needed. For example, there are two items having cross loading on two factors; the
reliability analysis showed that the usage behavior and the management behavior have
comparatively low reliability coefficients. So we plan to add or revise the items in or-
der to improve the expression of them. In addition, new items should be introduced
into some factors (e.g. ERB, UBT, UBRC, and UBAF) that contain only two items in
order to conduct confirmatory factor analysis (CFA) in the future since containing
two items are not ample for the CFA [18].

6.2 Practical Significance

The significance of this study lies in the fact that the proposed model supports auto-
matic evidence collection for trust evaluation and management. The model studies
trust based on the user’s behavior in a natural way, thus easing the load of extra hu-
man computer interaction towards usable trust management. This is because the trust
behavior is possible to be monitored through auto-observation mechanism located at
the mobile device. There is no much extra usability study needed if deploying a trust
management solution based on our model.

Since trust is a multifaceted concept, it is influenced by many factors and the influ-
encing rates could be different for different persons in different contexts. In many
situations, it is hard to have a comprehensive consideration on all factors, not to men-
tion that getting information of some factors requests interaction to extract the trustor’s
preference (e.g. the considerations of different influencing factors, user’s emotion and
intension/motivation to trust, etc.). Obviously, some information is hard to be achieved

 A User Behavior Based Trust Model for Mobile Applications 467

and quantified, and thus it is impossible to be aggregated with other factors in a digital
measure. All of these introduce additional challenges to manage trust with sound us-
ability, especially for mobile devices with limited user interface. In our model, the
user’s trust in mobile applications is investigated through trust behaviors. This greatly
helps us overcome the challenges caused by those trust influencing factors hard to be
extracted, monitored, calculated and aggregated.

In addition, this model is examined through user study. Therefore, it is easy to be
accepted by the end user. This model based trust explanation mechanism could be
easy for the user to understand. Meanwhile, a recommendation from one user or a
user agent can be further assessed and explained with this trust model in order to help
other users selecting a trustworthy mobile application.

More importantly, we could further design a computational trust metric on the ba-
sis of the achieved model towards calculating a user’s trust in a mobile application
based on the trust behaviors. We will report our future results in another paper.

7 Conclusions and Future Work

User-application trust is becoming more and more important for developing and fa-
cilitating mobile applications and mobile internet based services. Studying the trust
behavior helps greatly in explaining trust status because real behavior based explana-
tion is more convinced. In this paper, we proposed a trust model for mobile applica-
tions based on users’ behaviors and examined it using the principle components
analysis, reliability analysis and correlation analysis. Based on the results achieved,
we got the main factors and construct of trust behavior that contribute to the calcula-
tion of the user’s trust in a mobile application. Concretely, the PCA, reliability and
correlation analysis showed that far from being unitary, the trust behavior has multi-
ple dimensions. We explored four dimensions: the usage behavior, the reflection be-
havior, the correlation behavior and the management behavior; and figured out their
internal constructs. Meanwhile, we tested and analyzed the measurement scale’s fea-
sibility and reliability for studying and validating the proposed trust model. Based on
the results we proved that the proposed model is feasible and reasonable in most as-
pects. The experiment proved our hypotheses and provided us a number of hints for
further optimizing the initial scale.

Regarding the future work, we will further improve the scale in order to conduct a
formal experiment with larger number of participants for confirmatory factor analysis
in order to achieve causal relations among different types of behaviors. Another target
is to digitalize the model and apply it into a mobile reputation system for managing
trust of mobile applications with context-awareness support.

Acknowledgments

We would like to express our special thanks to Dr. Rong Yan for his help in arranging
the experiment and proof reading the paper manuscript.

468 Z. Yan et al.

References

[1] Yan, Z., Holtmanns, S.: Trust Modeling and Management: from Social Trust to Digital
Trust. Book chapter of Computer Security, Privacy and Politics: Current Issues, Chal-
lenges and Solutions. IGI Global (2007)

[2] Yan, Z., Prehofer, C.: An Adaptive Trust Control Model for a Trustworthy Component
Software Platform. In: Xiao, B., Yang, L.T., Ma, J., Muller-Schloer, C., Hua, Y. (eds.)
ATC 2007. LNCS, vol. 4610, Springer, Heidelberg (2007)

[3] Daignault, M., Marche, S.: Enabling Trust Online. In: Proceedings of the Third Interna-
tional Symposium on Electronic Commerce (October 2002)

[4] Muir, B.M.: Trust in Automation: Part I. Theoretical Issues in the Study of Trust and
Human Intervention in Automated Systems. Ergonomics 37(11), 1905–1922 (1994)

[5] Crocker, L., Algina, J.: Introduction to Classical and Modern Test Theory. Thomson
Leaning (1986)

[6] Lance, J., Hoffman, L.J., Kim, L.J., Blum, J.: Trust Beyond Security: an Expanded Trust
Model. Communications of the ACM 49(7) (July 2006)

[7] McKnight, D.H., Cummings, L.L., Chervany, N.L.: Initial Trust Formation in New Or-
ganizational Relationships. Acad. Management Rev. 23(3), 473–490 (1998)

[8] Bigley, G.A., Pearce, J.L.: Straining for Shared Meaning in Organization Science: Prob-
lems of Trust and Distrust. Acad. Management Rev. 23(3), 405–421 (1998)

[9] McKnight, D.H., Choudhury, V., Kacmar, C.: Developing and Validating Trust Measures
for E-Commerce: an Integrative Typology. Information Systems Research 13(3), 334–
359 (2002)

[10] Li, X., Valacich, J.S., Hess, T.J.: Predicting User Trust in Information Systems: a Com-
parison of Competing Trust Models. In: Proc. of 37th Annual Hawaii International Con-
ference on System Sciences, p. 10 (January 2004)

[11] Fishbein, M., Ajzen, I.: Beliefs, Attitude, Intention and Behavior: an Introduction to The-
ory and Research. Addison-Wesley, Reading (1975)

[12] Sheridan, T.: Computer Control and Human Alienation. Technology Review, 61–73
(1980)

[13] Muir, B.M.: Trust in Automation Part II: Experimental Studies of Trust and Human In-
tervention in a Process Control Simulation. Ergonomics 39(3), 429–469 (1996)

[14] Lee, J., Moray, N.: Trust, Control Strategies and Allocation of Function in Human-
Machine Systems. Ergonomics 35(10), 1243–1270 (1992)

[15] Xiong, L., Liu, L.: A Reputation-Based Trust Model for Peer-to-Peer Ecommerce Com-
munities. In: Proceedings of the 4th ACM conference on Electronic commerce, pp. 228–
229 (2003)

[16] English, C., Terzis, S.: Gathering Experience in Trust-Based Interactions. In: The 4th In-
ternational Conference on Trust Management (2006)

[17] Marsh, S.: Formalising Trust as a Computational Concept. Ph.D. Thesis, Univ. Stirling
(1994)

[18] Nunnally, J.C.: Psychometric Theory, 2nd edn. McGraw-Hill, New York (1978)

 A User Behavior Based Trust Model for Mobile Applications 469

APPENDIX: Measures

1. Sending a message again (especially after the first try) means that you satisfy pre-
vious experiences in average.
2. More times of using the messaging means you trust it more.
3. More frequency of using the messaging means you trust it more.
4. You trust the messaging more if you spent more time on it.
5. You do more important tasks through the messaging if you trust it more.
6. You do higher risk tasks through the messaging if you trust it more.
7. You try more features of the messaging if you trust it more.
8. After trying more features of the messaging, you become more expertise on it.
9. If you distrust the messaging, you do not use it.
10. You don’t use the messaging any more after the first try because you distrust it.
11. You use the messaging less after meeting an error or a failure.
12. You use the messaging less frequently after meeting an error or a failure.
13. You increase the time/times of using the messaging because of good performance.
14. You increase the frequency of using the messaging because of good performance.
15. You decrease the time/times of using the messaging because of bad performance.
16. You decrease the frequency of using the messaging because of bad performance.
17. After a very bad experience of using the messaging, you stop using it.
18. After a very bad experience of using the messaging, you will use it less.
19. After a very bad experience of using the messaging, you will use it to do less risky
task.
20. After a very bad experience of using the messaging, you will use it to do less im-
portant task.
21. Using the messaging more times than another similar functioned mobile applica-
tion means you trust it more.
22. Using the messaging more frequently than another similar functioned mobile ap-
plication means you trust it more.
23. Spending more time in using the messaging than another similar functioned mo-
bile application means you trust it more.
24. Using the messaging to fulfill a more important task than another similar func-
tioned mobile application means you trust it more.
25. Using the messaging to fulfill a more risky task than another similar functioned
mobile application means you trust it more.
26. You recommend the messaging to your friends because you trust it. (This item is
removed because its loading is below 0.4.)
27. You replace the messaging application with a new one because you trust the new
one more.
28. You delete the messaging because you don’t trust it any more.
29. You reject installing a messaging application because you distrust it.
30. You would like to provide good or bad comments about the messaging when you
trust or distrust it.
31. After experienced a bad performance of the messaging, you generally don’t use it
as trust as before.
32. If you have a very good experience using the messaging, you generally would like
to recommend it.
33. For two similar functioned mobile applications, you trust more in the one you
would like to recommend.

Managing Contracts in Pleiades Using
Trust Management

Christoffer Norvik1, John P. Morrison1, Dan C. Marinescu2, Chen Yu2,
Gabriela M. Marinescu2, and Howard Jay Siegel3

1 Dept. of Computer Science
University College Cork, Cork, Ireland

{c.norvik,j.morrison}@cs.ucc.ie
2 School of Electrical Engineering and Computer Science

University of Central Florida, Orlando, Fl, 32816
{dcm,yuchen,magda}@cs.ucf.edu

3 Dept. of Electrical and Computer Engineering
and Dept. of Computer Science

Colorado State University, Fort Collins, CO 80523-1373
hj@colostate.edu

Abstract. The advent of multicore technologies is set to significantly increase
the average compute power per machine. Effective and efficient exploitation of
this power poses unprecedented challenges and opportunities. The Pleiades sys-
tem, currently under development in UCF, CSU and UCC [1], proposes the con-
struction of a distributed, heterogeneous, and secure marketplace for trading and
administer these resources whose owners sign up to various quality of service
(QoS) contracts, in return for financial and in-kind payment. This paper presents
a very important part of the Pleiades system: addressing the role of Trust Manage-
ment (TM) in the generation and enforcement of these contracts. The approach
taken significantly reduces the overhead that is traditionally assumed with cryp-
tographic solutions, by the dynamic and a priory creation of a secure environment
in which these expensive checks associated with cryptographic solutions, are not
required.

1 Introduction

As far back as 1989, Intel researchers suggested that multicore technology could be
used to meet ever increasing compute requirements [2]. Today, two to eight core pro-
cessors are standard, and microprocessors containing 10-100 cores together with cru-
cial advances in memory technology, throughput and latency are imminent [3]. It is
clear that multicore technology will be available in all standard machines sold in the
near future at no appreciable cost increase. Even though the motivation for constructing
these machines is to satisfy the compute requirements of more and more sophisticated
applications, history tells us that large user communities will not immediately avail of
this increase in power. To appreciate this point, one needs only to look at current us-
age profiles, in which many machines still spend much of their time doing nothing.
In these communities, increased power will translate into greater wastage of compute

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 470–480, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Managing Contracts in Pleiades Using Trust Management 471

resources. At the same time, other user communities seem to have insatiable compute
requirements and can absorb any and all technological advances [4] [5].

The general user community is partitioned into those who have more than enough re-
sources to meet their needs and those who never have enough. As technology advances,
the disparity between these groups will widen, and the opportunity for the creation of a
market economy based on the buying and selling of compute resources becomes more
and more attractive. In addition to the supply and demand outlined above, social, eco-
nomic, and security considerations must be successfully implemented for such a market
authority to succeed. The Pleiades system grapples with these issues in concert for the
creation of an effective market authority. Pleiades encourages users to join together to
form organisations, to enable resource sharing. These organisations adopt necessary
components, provided by Pleiades, to facilitate resource sharing. These components
are governed by policies, enabling organisations to tailor these, in order to meet their
demand of fault-tolerance, quality of service and security. Adopting this approach al-
lows organisations and users to self organise into existing organisations and joining old
organisations to form new ones, by simply changing their policies.

This paper addresses a specific component of the Pleiades system, namely the secure
and reliable trading of resources through the creation and management of Quality of
Service contracts based on Trust Management.

Primary motivation for this paper is to demonstrate how the KeyNote Trust Man-
agement System can be flexibly used in the dynamic management of contracts. The
flexibility of the system, allows users to tailor their contracts to meet their own needs,
and to adopt to new contracts schemes when collaborating with different organisations
and users.

Section 2 discussed related work using virtualization and trust management as a basis
for leasing spare resources. An introduction to Trust Management is given in Section 3.
Section 4 introduces the proposed tools needed to sell and consume resources. Section 5
explains how contracts are created and issued. Section 6 shows how we use contracts
to establish virtual machines to take advantage of leased resources, and briefly outlines
steps to reimburse providers for their services. Finally, Section 7 draws some conclu-
sions and looks forward to incorporating the work into the overall Pleiades system.

2 Related Work

Extensive research and work has gone into enabling virtual machines to work in a dis-
tributed and Grid environment. Reference [6] proposes an architecture to support trust
management contracts, to establish virtual machines to trade resources. All though ex-
ploring similar ideas, the implementation uses a specifically developed trust manage-
ment system, to create contracts for resource consumers and providers.

TrustCoM [7] is a project to develop a framework enabling dynamically evolving
Virtual Organisations [8] to manage trust, security and contracts. This will allow VOs
to share their resources and make use of secure, collaborative, business processing [9].

Reference [10] proposes similar usage of KeyNote credentials in order to support
payments in a distributed environment, these payments are defined on the level of graph
and graph nodes to be computed. This requires prior knowledge to the compute time of
the graph and nodes, though this information is not always known.

472 C. Norvik et al.

Our contribution is in using an established application, KeyNote, to allow each MA
to tailor the construction of contracts to meet their requirements. Subsequently, allowing
contracts to be used between different MAs, with different contract specifications, and
the establishment of virtual organizations [11], to share resources amongst themselves,
using a subset of the information in contracts.

We are not required to have prior knowledge to the compute requirements needed by
the resource consumers, nor are we concerned to what extent these requirements are.
The expressiveness of KeyNote and in the manner in which it is supported here, ensures
that our approach is extensive enough to support a secure and viable economy.

3 Trust Management

Combinations of Access Control Lists (ACL), and X.509 public key infrastructure is
argued to be less suitable for authorization and authentication schemes in distributed
systems [12]. ACL involves verifying if a user is valid, e.g., providing authentication.
If the user is deemed to be valid, the requested actions must be checked to determind
if the authenticated user is authorized to perform the requested actions. To summarize,
one can ask the following question, “is the user with the following username a valid
user, and if so, is the user allowed to perform the requested actions?” The complex-
ity of keeping ACLs up to date and the necessary steps to perform authentication and
authorization will increase the complexity of maintaining the current and future users
(generally referred to as principals within the system), thus effecting the scalability of
the system.

Scalability issues can be addressed by introducing the concept of trust management
[12]. Trust management binds the names of principals to public keys, and their au-
thorized actions to security policies. This solution achieves authorization and authen-
tication in one step instead of two. Thus, the question becomes “is the holder of this
key allowed to perform the requested actions?” KeyNote [13] is a trust management
application that allows for writing of signed and non-signed security policies, called
assertions. These assertions allow principals to delegate trust and authorized actions
to others in a flexible and expressive language. The unsigned security policy acts as a
root policy, from which trust is delegated. When a principal wishes to delegate actions,
the principal will write a policy describing which principals are allowed to do those
actions, and signs it with the private key. This policy is now referred to as a credential.
The signer can send the credential to a recipient over an unsecured connection. The re-
cipient cannot tamper with the credential in an attempt to gain additional permissions.
This process will be exploited in the creation of reliable and secure QoS contracts as
described in Section 5.

4 Virtualization Software

Virtual Machines (VM) [14] is a technology that enables the user to run several different
operating systems concurrently on one machine. Using the VM, the user can initialize
a new operating system on a given machine that runs in a sandbox, oblivious to any
other operating system that may be running on that machine. VM is easily configurable

Managing Contracts in Pleiades Using Trust Management 473

Community Resources

Market Engines

Market Authority

Excess
Capacity

B
Excess

Capacity

A

1:
2:
3:

1.

2.

3.

A offeres resources to the MA.

given to A.

Customer 1

Customer 2

A’s resources are being leased by customer 1.
The proof of customer 1’s purchase is being

available to Resource
Consumers.

Fig. 1. The market engines negotiate contracts for resources between users with excess capacity,
resource providers, to customers needing resources, resource consumers. The resource providers
offers resources by sending the market engines credentials based on the amount of spare resources
offered. Based on these credentials, the market engine then writes new credentials for consumers,
in exchange for payment. Consumers then present these credentials to their respective providers.

in terms of available hard drive space, RAM, number of CPUs and CPU speed, and
other local hardware. More importantly, it creates a layer of separation between the
underlying operating system and the newly instantiated VM, preventing unauthorized
access both to and from the VM. VM enables the user to tailor it to required usage
and need. This includes but is not limited to, the choice of operating system, legacy
application support, user and user administration rights, and full control of the operating
system in the VM [15].

The concept of virtualization is integrated into the Pleiades system and the sharing
of resources among participating machines. Users of the system are divided into (a)
resource providers, those with excess capacity, shown in Figure 1 as A, and B, and (b)
those who need resources, resource consumers, shown in Figure 1 as customers 1 and 2.

A Market Authority (MA) will oversee, negotiate contracts, and provide the nec-
essary tools to support a sharing and trading of resources. Subsequently, the MA is
responsible for distributing the necessary tools to permit this process. A VM tool will
be developed for resource providers. Users wanting to provide resources are required
to download and install this tool before the sharing of resources can commence. This
tool enables the MA to oversee the state of any VM that is contracted out to resource
consumers, enabling it to take any necessary steps to ensure that users are provided with
the expected QoS. When the tool is not in use, it sits idly on the user’s machine. The
tool is enabled by the introduction of a valid contract. To enable the creation of VMs

474 C. Norvik et al.

and subsequently the sharing of spare resources, a valid contract must be loaded. Once
the contract is loaded, the tool ensures that the required VMs are generated to allow the
resource consumer to use the leased resources. The information present in the contracts
generates the basis of how much spare resources should be contracted out. The tool
will only generate the VMs with the resources requirements specified in the contracts,
preventing users from receiving more resources than requested.

5 Contracts

In [16] it is shown how the trust management application KeyNote [13] can be used to
create contracts between merchants and customers with a trusted third party.

The core of the solution lies in a users’ ability to prove that the customer has a secret
known only to that customer and the third party, that the merchant can use at a later
stage to claim validity that the transaction occurred. This can then be presented to the
trusted third party to claim the money for the transaction. This has some prerequisites.
A third party must be trusted by both users. This party must be able and willing to act
as a middle man, issuing contracts, receiving payments, and reimbursing users for used
contracts. This trusted third party therefore acts much in the same fashion as a bank.
The bank must provide some means for users to prove that a transaction occurred. This
is achieved by using a hash function and a secure randomly generated seed to create a
hash chain. A hash function must be computationally inexpensive to compute the hash
value of any given value, but computationally infeasible to recreate the original value
given the computed hash value. More formally, assuming h() is a cryptographic one-
way hash function, performing h() on x yields y. Given y, it should not be feasible to
compute x.

The bank creates a contract containing the value of computing the hash of a secure
random generated seed value. The hn+1(x) gives the coin visible in the contract, and
h1(x) is the last coin on the chain [16]. This gives the buyer n number of coins that
can be spent. The merchant is able to check the coin by computing the hash of the coin
until the hash value in the contract is reached. The seed and contract are sent securely
to the customer in return for payment for the wanted services. The customer provides
the contract and the correct coin on the chain to the merchant, who based on the trust
management check of the contract and a hash check of the coin, can be certain that the
buyer has paid for the services.

The resources are then given to the customer, and when expired, the merchant is
able to prove to the bank that the transaction occurred by producing the last coin value
obtained from the customer. Using this approach, our resource providers are the mer-
chants, the resource consumers are customers, and the MA represent the trusted third
party.

The MA keeps track of resources that have been made available by resource p-
roviders. The MA also is responsible for issuing rules on how contracts should be writ-
ten, which is discussed further in Section 6. The resource provider writes a credential
for the resources it wishes to sell, which is handed over to the MA. The credential is
stored by the market engine, which will try to find a consumer for the available re-
sources. If a consumer is found, the MA writes a new credential based on the provider’s
credential. The credential also contains the hash chain described above.

Managing Contracts in Pleiades Using Trust Management 475

This new credential and seed coin are then delivered to the consumer upon a confir-
mation of payment having been received. The consumer presents this credential and
proves that it has paid for the contract by providing the coin from the MA to the
provider, who based on a trust management check will decide if the consumer is au-
thenticated and authorized. If the consumer is authorized, the resources will be made
available. Once the transaction is complete, the provider can be reimbursed by the MA,
discussed further in Section 6.

This solution has a number of desirable features. Because the resource provider will
trust the MA that it is willing to sell the resources to, it also will trust the consumer
which purchased said resources. This trust is further strengthened by the consumer’s
ability to provide some proof that it obtained the contract legally, e.g., purchased the
right to use the resources from the MA, by presenting the coins to the provider. This
establishes a trust relationship between two otherwise unknown principals.

The resource provider is able to continue to use resources until it is presented with
a valid contract. The virtualization software that is downloaded and installed on the
provider’s machine should only lay dormant, or preferably only execute until a potential
contract arrives. Once approached with a contract, the provider is quickly able to decide
if the contract is valid, based on the trust management check. As the consumer must
provide a public key upon submission of the credential, the provider is assured that the
consumer has purchased the contract from a trusted MA. The resource provider can not
deny having allowed the spare resources to be leased out, as the contract is signed by
its private key. Some form of time stamp must be incorporated to address the freshness
of the contract. This topic is discussed in Section 7.

To address contract durations, we extend the contracts to incorporate the notion of
time. A resource provider will explicitly denote in the contract the cost using resource
set A for a pre-set duration. The consumer pays the MA a lump sum, which can be used
to purchase contracts. A consumer specifies what kind of resources are needed, and for
how long it is needed. The MA provides the contract for the resources with the required
number of coins for the requested time duration. Once the contract is initialized, the
resources will last for the pre-set duration given in the contract. Once the time is up, the
provider requests a new coin before the consumer is allowed to continue work. This is
done until the consumer either runs out of coins or no longer has any more use for the
resources. This prevents the need to regenerate contracts when the pre-set time duration
expires. The provider will only get reimbursed for the duration of services provided,
and the consumer can elect to use the remaider of the money at the MA on another
resource provider. It should be noted that the MA should lock the total value of the
contract to the payment lodged by the consumer. This ensures that the consumer can
only get contracts worth what was lodged, and the resource provider gets paid for its
provided resources whether or not the contract is completed.

The MA or the resource consumer can delegate purchased resources to other MAs or
consumers [17]. As the nature of trust management allows for the delegation of trust, the
principal contract holder needs only write a new credential to the necessary peer, and
hand off the credentials to the third party. This allows anyone to purchase resources in
bulk, and then dividing them up and reselling them as they see fit. However, mechanisms
are in place to ensure that this can be denied should the provider deem it necessary.

476 C. Norvik et al.

Scenarios where principals wish to form their own market authorities for collabo-
ration might arise. These scenarios, where trust is complete among all participating
principals, allow for the granularity of the contracts to be reduced for the purpose of
increases in overall speed and administration. It is still important to make sure that the
correct principals have the correct access to resources.

6 Trust Management Contracts and Reimbursements

Implementing support for payments using trust management credentials is not a new
approach. References [16] and [10] both show how this can be successfully achieved
and implemented. Furthermore, it shows how payments are made to a bank, and how
the resource provider is reimbursed when the contract has been successfully completed.
This solution comes at a price in form of performance degradation because all requests
for computation must be checked by the trust management engine. This requires cryp-
tographic computations that are inherently expensive. Reference [10] gives examples of
this expense when computing fine grained jobs in WebCom. In parallel systems gran-
ularity is defined as the ratio of processing to communication. When this ratio is low,
the computation is said to be fine grained, when high, the computation is said to be
coarse grained. In effect granularity describes how frequently a computation is punctu-
ated (that is, interrupted) by, in this case, a communication action. In a similar manner,
the punctuation of code with TM checks defines granularity from that perspective.

The performance degradation on coarse grained jobs is less, because the queries to
the trust management engine are less frequent and fewer. This puts pressure on the pro-
grammer to develop as many coarse grained jobs as possible, which might not always
be feasible. It is clear that having the virtual machine query the trust management en-
gine for every request is not feasible, as the shared amount of queries in terms of access
to I/O, read and write calls to memory and hard drive, and so on, would severely impact
the performance of the system.

Our solution addresses two critical questions. “How to reduce the performance degra-
dation generated by querying the trust management engine?”, and “how to convince the
consumer that the resources it purchased are guaranteed to be supplied by the provider?”
First, we deal with the trust management overhead by reducing the number of times the
trust management engine has to be queried. This is achieved by creating a virtual ma-
chine. The application provided by the market authority only allows virtual machines
to be activated with a valid contract. Once the resource provider has the contract and is
willing to offer the resources in the terms stated in the contract, this contract is given
to the application. The application, based on these terms, creates new virtual machines
and subsequently deploys these to create redundancy across the system.

Once the virtual machines have been created, they must exist under the rule of
the contract, which specifies requirements such as available hard drive space, mem-
ory availability, hardware resource access, and even time limits for hardware access.
When the contract has expired, the application kicks in, and freezes the state of the
virtual machines. If the resource provider is no longer willing to offer its services, the
virtual machines will be removed from the system. If a new contract is loaded, the ap-
plication will enable the virtual machine again, or should new terms arise, create new

Managing Contracts in Pleiades Using Trust Management 477

virtual machines based on said terms. It will then subsequently move the state of the
old virtual machines into the new ones, thus preserving all modifications and changes
made by the consumer during execution. By using a virtual machine, we address con-
cerns on both the provider’s and the consumer’s side. Because the virtual machine op-
erates in a sandbox, users cannot modify and make changes outside their sandbox. The
trust management engine is not queried until a new contract appears, and security is
achieved from the virtual machine sandbox and the operating system loaded in it. Im-
plementations where the trust management is used to check the validity of contracts,
the consumer is forced to pay first, before receiving the goods. If the consumer is using
an unscrupulous provider, the provider might elect to not give the consumer the goods,
and cash in on the contract before the consumer is able to report the fraud to the bank.
The provider is subsequently punished for this, by banning it from the system, however
the damage has already been done. If the resources provided are not what the consumer
purchased, the market authority is notified, and can therefore elect to refuse payment to
the provider. Our extension coupled with the implementation from Section 5 provides
proof of a valid consumer, in form of a contract and a coin; proof for the provider to
get reimbursed, in form of the coin produced by the consumer; and finally proof for
the consumer that the resources paid for are provided, by the virtual machines made
available and the notification to the MA if said resources drop below a threshold.

Authorizer: ResourceProvider
Local-Constants: “ResourceProvider”

“MA”
Conditions: SERVICE == “Pleiades” &&

((@TOTAL CPUS+@USER CPUS <= 4) &&
(@TOTAL CPU CORES+@USER CPU CORES <= 8) &&
(@TOTAL MEM+@USER MEM <= 4096));

Licensees: MA
Signature: ResourceProvider

Fig. 2. Credential from Resource Provider to an MA, leasing resources in form of CPUs, Cores
and RAM. By keeping track of requests made by users, and storing these into a variables, e.g.,
@TOTAL CPUS, @TOTAL CPU CORES and @TOTAL MEM, the Resource Provider pre-
vents the MA, by accident, issuing to many contracts based on the actual resources provided.

Figure 2 and 3 shows samples of possible TM contracts, specifying the amount of
resources the resource provider is willing to lease out from Figure 2 (Public keys and
signatures has been omitted in these examples). The total amount of available leased
resources are addressed in the contracts to the MA to prevent faults where the MA leases
too many resources out to consumers. A request for resources will thus be denied from
the resource provider. It requires the resource provider to keep track of total amount of
resources leased out.

Figure 3 is a standard contract, where the available resources are denoted in the
contract, together with lease time, type of duration, available coins and the last coin
on the chain as discussed in Section 5. The expressiveness of KeyNote will allow us
to write credentials that are dynamic, thus instead of explicitly denoting a fixed set of

478 C. Norvik et al.

Authorizer: MA
Local-Constants: “MA”

“ConsumerA”
Conditions: SERVICE == “Pleiades” &&

@USER CPUS <= 2 &&
@USER CPU CORES <= 4 &&
@USER MEM <= 2048 &&
@Duration == 60 &&
DurationType == “min” &&
@NumberOfCoins <= 10 &&
Coin == “SomeValue”;

Licensees: ConsumerA
Signature: MA

Fig. 3. Credential from MA, to a Consumer, denoting available resources that can be requested

resources, e.g., as maximum available memory, maximum available cores, contracts
can be written as percentage of the total available system resources. This is ideal in a
situation where users may from time to time need all available resources on the system,
but where the system in larger time is idle. Scenarios like this, might be a corporation
with workstations that are in use from 8-6 but not from 6-8.

Reimbursement is provided by the MA. The resource provider will present the con-
tract and the last coin that it received from the consumer. If the MA has a record of
creating the contract and the contract and coin are deemed valid by the trust man-
agement engine, the resource provider is reimbursed. The coin is checked by simply
hashing the value of the coin until the hash value equals that in the contract. This also
provides the basis for how much the provider should be reimbursed. At this point, the
contract should be marked as paid, thus preventing the resource provider from trying
to get paid several times. The resource consumer is notified by the MA to enable it to
give feedback on the transactions [18]. This helps to thwart attempts to cheat the sys-
tem by unscrupulous resource providers. Mechanisms should be in place to enable the
cooperation between different market authorities sharing the negotiation of price and
reimbursements of contracts to different users. This is subject for further research.

7 Summary and Future Work

This paper describes a way of providing a sustainable and secure economy in Pleiades.
The solution utilizes trust management, an established secure system, to create contracts
for consumers and providers. Using trust management, users are allowed to write, share,
and use trust management assertions to issue, buy and consume resources. However, the
way the trust management has been combined to create contracts, and the way it is used
for trust management checks, reduces the cryptographic overhead associated with the
general trust management process. An additional benefit for the consumer, is increased
level of quality of service. The system scales well for future development, and also is
suitable for the distributed nature of the MA.

Managing Contracts in Pleiades Using Trust Management 479

Details of how the software provided by the MA is created, how contract freshness
is maintained, and a set of pre-defined rules on how to correctly write the credentials,
i.e., in terms of variable names, is needed.

Simulations of the system in order to show, amongst others, tradeoffs between in-
stantiating short lived VMs and its coupling with the creation and usage of KeyNote
credentials, how well the system scales when being exposed to evolving organisations,
and more importantly the effectiveness between different organisations in relation to
communication overheads, requires further investigation. Crossing different organisa-
tions poses other problems too, especially in terms of user’s data security. Since this
could be an inhibitor when sharing resources beetwen different organisations, though
potentially not an issue when contained within the organization itself, it warrants the
investigation into a separate component, that would address this issue, for the Pleiades
system.

Revocation has been addressed by the creators of KeyNote in [19]. Revocation may
be used, when addressing the subject of freshness of contracts, it relies on the synchro-
nization of clocks between principals, which may be difficult to achieve.

The work done in [10] show what would appear to be, an inevitable increase in
compute time when making trust management checks on fine grained jobs, due to the
number of TM checks needed. A major contribution of the system described here is that
this performance degradation is not inevitable. In fact, since the solution described here
is general, it could be applied to systems other than Pleiades.

Acknowledgments

Christoffer Norvik and John P. Morrison acknowledges the support provided by the Sci-
ence Foundation Ireland. Dan C. Marinescu expresses his thanks to the Science founda-
tion of Ireland for the support provided by a Walton award. H. J. Siegel was supported
by the US National Science Foundation under grant number CNS0615170 and by the
Abell Endorsement.

The helpfull comments received from the reviewers are greatfully acknowledged.

References

1. Marinescu, D.C., Morrison, J.P., Siegel, H.J.: Pleiades: a Self-Organizing Service-Based Ar-
chitecture (2007), http://condgraf.ucc.ie/Pleiades

2. Gelsinger, P., Gargini, P., Parker, G., Yu, A.: Microprocessors circa 2000. IEEE Spec-
trum 26(10), 43–47 (1989)

3. Intel Tera-scale: Computing Research Program,
http://techresearch.intel.com/articles/Tera-Scale/1421.htm

4. Folding@Home: Distributed computing, http://folding.stanford.edu/
5. SETI@Home: Search for extraterrestrial intelligence,

http://setiathome.berkeley.edu/
6. Fu, Y., Chase, J., Chun, B., Schwab, S., Vahdat, A.: Sharp: an architecture for secure resource

peering. In: SOSP 2003: Proceedings of the nineteenth ACM symposium on Operating sys-
tems principles, pp. 133–148. ACM, New York (2003)

7. TrustCoM: Project, http://www.eu-trustcom.com/

http://condgraf.ucc.ie/Pleiades
http://techresearch.intel.com/articles/Tera-Scale/1421.htm
http://folding.stanford.edu/
http://setiathome.berkeley.edu/
http://www.eu-trustcom.com/

480 C. Norvik et al.

8. Dimitrakos, T.: et al: Trustcom - A Trust and Contract Management Framework enabling
Secure Collaborations in Dynamic Virtual Organisations. ERCIM News No. 59, 59-60
Sophia Antipolis, France (2004) (Accessed April 2008), http://www.ercim.org/
publication/ercim news/enw59/dimitrakos2.html

9. Wilson, M.D., Chadwick, D., Dimitrakos, T., Doser, J., Arenas, A., Giambiagi, P., et al.:
The trustcom framework v0.5. In: Proc. 6th IFIP Working Conference on Virtual Enterprises
(PRO-VE 2005), Valencia, Spain (September 26-28, 2005)

10. Patil, A., Norvik, C., Power, D.A., Morrison, J.P.: Implementing fine and coarse grained
payment mechanisms using webcom. In: Proceedings of the he 8th Hellenic European
Research on Computer Mathematics and its Applications Conference (HERCMA 2007),
Athens, Greece (September 20-22, 2007)

11. Foster, I.: The anatomy of the grid: Enabling scalable virtual organizations. In: CCGRID
2001: Proceedings of the 1st International Symposium on Cluster Computing and the Grid,
Washington, DC, USA, p. 6. IEEE Computer Society, Los Alamitos (2001)

12. Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.D.: The role of trust management
in distributed systems security. In: Vitek, J. (ed.) Secure Internet Programming. LNCS,
vol. 1603, pp. 185–210. Springer, Heidelberg (1999)

13. Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.: The KeyNote Trust-Management
System Version 2, Request for Comments 2704 (1999)

14. Meyer, R.A., Seawright, L.H.: A virtual machine time-sharing system. IBM Systems Jour-
nal 9(3), 199–218 (1970)

15. Figueiredo, R.J., Dinda, P.A., Fortes, J.A.B.: A case for grid computing on virtual machines.
In: ICDCS 2003: Proceedings of the 23rd International Conference on Distributed Comput-
ing Systems, Washington, DC, USA. IEEE Computer Society, Los Alamitos (2003)

16. Foley, S.N., Quillinan, T.B.: Using trust management to support micropayments. In: Proceed-
ings of the Second Information Technology and Telecommunications Conference, Waterford
Institute of Technology, Waterford, Ireland., TecNet, pp. 219–223 (2002)

17. Foley, S.N.: Using trust management to support transferable hash-based micropayments. In:
Proceedings of the 7th International Financial Cryptography Conference, Gosier, Guade-
loupe, French West Indies (2003)

18. Marinescu, D.C., Yu, C., Marinescu, G.M., Morrison, J.P., Norvik, C.: A reputation algo-
rithm for a self-organizing system based upon resource virtualization. In: 17th Heterogeneous
Computing Workshop (HCW 2008); accepted to appear in the proceedings of the 22nd In-
ternational Parallel and Distributed Processing Symposium (IPDPS 2008), Miami, FL (April
2008)

19. Blaze, M., Ioannidis, J., Keromytis, A.D.: Experience with the keynote trust management
system: Applications and future directions. In: Trust Management: First International Con-
ference, iTrust, Heraklion, Crete, Greece (2003)

http://www.ercim.org/publication/ercim_news/enw59/dimitrakos2.html
http://www.ercim.org/publication/ercim_news/enw59/dimitrakos2.html

A Semantic Foundation for Trust Management

Languages with Weights: An Application to the
RT Family�,��

Stefano Bistarelli1,2, Fabio Martinelli2, and Francesco Santini2,3

1 Dipartimento di Scienze, Università “G. D’Annunzio” di Chieti-Pescara, Italy
bista@sci.unich.it

2 Istituto di Informatica e Telematica (CNR), Pisa, Italy
{stefano.bistarelli,fabio.martinelli,francesco.santini}@iit.cnr.it

3 IMT - Institute for Advanced Studies, Lucca, Italy
f.santini@imtlucca.it

Abstract. In this paper, we present a variant of Datalog language (we
call it DatalogW) able to deal with weights on ground facts and to conse-
quently compute a feedback result for the goal satisfaction. The weights
are chosen from a proper c-semiring. In our context, our goal is to use
this language as a semantic foundation for languages for expressing trust
relationships. As a matter of fact, many of them have a semantics given
in terms of crisp constraints: our approach is to extend them to cover also
the soft case. Thus, we apply DatalogW as the basis to give a uniform se-
mantics to declarative RT W (Trust Management) language family. The
approach is rather generic and could be applied to other trust manage-
ment languages based on Datalog, as a semantic sublayer to represent
trust management languages where the trust level is relevant.

1 Introduction and Motivations

Trust is a very interesting and relevant notion in modern pervasive computer
systems. It lies at the heart of human interactions and thus as soon as these in-
teractions happen through (and among) digital devices, such trust relationships
must be represented, specified, analyzed, negotiated and composed in those sys-
tems [11]. As a matter of fact, when one wants to mechanize the reasoning
in certain situations, a formalization is necessary. If one wants also to achieve a
common understand and comparison among different trust management system,
a semantic mechanism would be extremely useful.

To make a concrete example, a Trust Management (TM) language is required
to have the expressivity power to represent the trust-related facts of the con-
sidered dominion and a method to derive new assessments and decision starting
from these base facts. Current trust management languages based on credentials

� The first and third authors are supported by the MIUR PRIN 2005-015491.
�� The second author is supported by the EU projects GRIDtrust and SENSORIA.

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 481–495, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

482 S. Bistarelli, F. Martinelli, and F. Santini

(for both expressing facts and access policy rules) uses several foundational ap-
proaches. However, facts and access rules are not so crisp in the real complex
world. For example, each piece of information could have a confidence value as-
sociated with it and representing a reliability estimation, or a fuzzy preference
level or a cost to be taken in account. The feedback final value, obtained by
aggregating all the ground facts together, can be then used to improve the deci-
sion support system by basing on this preference level instead of a plain “yes or
no” result (e.g, see [15,6,5]). In this scenario, a credential could state that the
referred entity is a “student” or a “bright student” with a probability of 80%
because her/his identity of student is based on what an acquaintance asserts
(thus, it is not as certain as declared in IDs), or, in the second case, because
the received marks need to be globally evaluated. In literature there are many
examples where trust or reputation are computed by aggregating some values
together [11], for example in PGP systems, or for generic trust propagation in-
side social networks. We think that similar quantitative measurements are useful
also for trust languages, in order to have a more informative result.

For this reason, we describe a weighted version of Datalog (i.e. DatalogW)
where the rules are enhanced with values taken from a proper c-semiring struc-
ture [1,3], in order to model the preference/cost system; then, we use it as the
basis to give declarative semantics to a Role-based Trust-management language
according to the principles of RT0 [14], and called here RT W

0 : the statements of
RT W

0 are “soft”, i.e. have a related c-semiring value. A similar improvement can
be accomplished also for RT1 [14], i.e. RT0 extended with parameterized roles.
Similar variations for RTML family languages were defined and implemented by
using different formal tools in [15]. There, an initial comparison (and integra-
tion) between rule-based trust management (RTML) and reputation-based trust
systems has been performed and a preliminary (ad-hoc) implementation RTML
weighted presented in [8] for GRID systems. However, having a uniform seman-
tics approach to model these languages (as DatalogW) could be very useful to
provide a common understanding as well as a basis for systematic comparison
and uniform implementation.

Indeed, there are good reasons to prefer a language that is declarative and has
a formal foundation. In this sense, we are following a similar approach as done
in [13] for RTML trust management languages, where Datalog with constraints
have been proposed as a formal semantics for trust management languages. Since
trust is not necessarily crisp, DatalogW could be used to give formal semantics to
this kind of languages with “soft credentials”. In this paper we show an approach
for RTML that can be further extended to other Datalog-based languages. The
main contribution of this paper is thus to provide a formal semantics for such
languages that could also bring to a uniform implementation approach, as well as
to a comparison among these languages . Giving weights to facts and rules con-
tributes also towards bridging the gap between “rule-based” trust management
(i.e. hard security mechanisms) and “reputation based” trust management [11]
(i.e. soft security mechanisms).

A Semantic Foundation for Trust Management Languages with Weights 483

It is also worth noticing that c-semirings are a valuable mechanism to model
and solve optimization problems in several contexts. With our proposal of mix-
ing credential based languages with soft-constraints based on c-semiring in a
systematic way, we pave the way for linguistic mechanisms for making optimiza-
tion decision related to the trust domain. Indeed, this domain could be also
coupled with other parameters and thus creating a much more complex (self)
optimization mechanisms. For instance, one could use a cost/preference parame-
ter associated with the trust level. The composition of the trust semiring and the
preference one is yet amenable of mechanization and this yet leads to a similar
treatment we describe here.

In this paper we extend the ideas presented in [2] by giving a weighted se-
mantics to all the RT languages presented in [14]. In Sec. 2 we describe the
background notions about trust languages and c-semirings. In Sec. 3 we present
a weighted version of Datalog, i.e. DatalogW , while Sec. 4 features the weighted
RT language family based on DatalogW , i.e. RT W

0 , RT W
1 , RT W

2 , RT WT and
RT WD. At last, in 5 we present the final conclusions.

2 Background

Datalog was originally developed as a query and rule language for deductive
databases and is syntactically equivalent to a subset of the Prolog language.
Several TM languages are based on Datalog, e.g., Delegation Logic [12], the
RT (Role-based Trust-management) framework [14], SD3 (Secure Dynamically
Distributed Datalog) [10] and Binder [9]. These are some of the languages that
can benefit from the semantic basis presented in this paper, even if we will focus
only in the RT language family.

The RT framework is a family of Role-based Trust-management languages [14],
whose most basic part is RT0 which has been then extended to RT1 with param-
eterized roles: University.professorOf(student) is a statement that can be used to
name the professor of a student. An entity (or principal, e.g. A or B) in RT is a
uniquely identified individual or process, which can issue credentials and make re-
quests. RT assumes that an entity that issued a particular credential or a request
can be determined through the use of public/private key pairs. A role in RT takes
the form of an entity followed by a role name (e.g. R with subscripts), separated
by a dot. A role defines a set of entities who are members of this role: each entity
A has the authority to define who are the members of each role of the form A.R.
Each statement defines one role to contain either an entity, another role, or cer-
tain other expressions that evaluate to a set of entities. More details will be given
in Sec. 4.

An important extension that significantly enhances the expressivity of this
kind of languages is presented in [13]. In that work, the authors present Data-
log extended with constraints (denoted by DatalogC) in order to define access
permissions over structured resources as trees.

Several approaches advocated the usage of trust levels w.r.t. attributes, also
stated directly in digital credentials. In addition to the works on the extension of

484 S. Bistarelli, F. Martinelli, and F. Santini

RTML with weights and its relationships with other trust models as the Josang
one already mentioned [15,8], there is also the work on policy and reputation
done in [5]. Here the PROTUNE policy language is extended to deal with trust
and reputation levels. Also role based access control has been extended with
trust levels in [6]. All these works use specific logics and approaches.

C-semirings. A c-semiring S [1,3] (or simply semiring in the following) is a tuple
〈S, +,×,0,1〉 where S is a set with two special elements (0,1 ∈ S) and with two
operations + and × that satisfy certain properties: + is defined over (possibly
infinite) sets of elements of S and thus is commutative, associative, idempotent,
it is closed and 0 is its unit element and 1 is its absorbing element; × is closed,
associative, commutative, distributes over +, 1 is its unit element, and 0 is its
absorbing element (for the exhaustive definition, please refer to [1,3]). The +
operation defines a partial order ≤S over S such that a ≤S b iff a+ b = b; we say
that a ≤S b if b represents a value better than a. Notice that the partial order
can be defined since the + operator is commutative, associative and idempotent.
Other properties related to the two operations are that + and × are monotone
on ≤S , 0 is its minimum and 1 its maximum, 〈S,≤S〉 is a complete lattice and
+ is its lub. Finally, if × is idempotent, then + distributes over ×, 〈S,≤S〉 is a
complete distributive lattice and × its glb.

Varying the set S and the meaning of the + and× operations, we can represent
many different kinds of problems, having features like fuzziness, probability,
and optimization. Moreover, in [3] the authors have shown that the cartesian
product of two c-semirings is another c-semiring, and this can be fruitfully used
to describe multi-criteria constraint satisfaction and optimization problems, e.g.
the path semiring presented in Sec. 3.

3 A Weighted Extension of Datalog

Datalog is a restricted form of logic programming with variables, predicates,
and constants, but without function symbols. Facts and rules are represented as
Horn clauses in the generic form R0 :- R1, . . . , Rn. A Datalog rule has the form
R0(t0,1, . . . , t0,k0) : -R1(t1,1, . . . , t1,k1), . . . , Rn(tn,1, . . . , tn,kn), where R0, . . . , Rn

are predicate (relation) symbols and each term ti,j is either a constant or a
variable (0 ≤ i ≤ n and 1 ≤ j ≤ ki). The formula R0(t0,1, . . . , t0,k0) is called the
head of the rule and the sequence R1(t1,1, . . . , t1,k1), . . . , Rn(tn,1, . . . , tn,kn) the
body. If n = 0, then the body is empty and the rule is called a fact. Moreover,
each program P in Datalog (i.e. a finite set of rules) must satisfy two safety
conditions: i) all variables occurring in the head of a rule also have to appear in
the body, and ii) every fact in P must be a ground fact.

We can now define our Weighted Datalog, or DatalogW based on classical Dat-
alog. While rules have the same form as in classical Datalog, a fact in DatalogW

has the form: Ri(xi,1, . . . , xi,ki) : - s. Therefore, the extension is obtained by
associating to ground facts a value s ∈ S taken from the semiring 〈S, +,×,0,1〉.
This value describes some properties of the fact, depending on the chosen semir-
ing: for example, we can add together all these values by using the Weighted

A Semantic Foundation for Trust Management Languages with Weights 485

Table 1. A simple DatalogW program

s(X) :- p(X,Y).
p(a,b) :- q(a).
p(a,c) :- r(a).

q(a) :- t(a).
t(a) :- 2.
r(a) :- 3.

semiring 〈R+, min, +,∞, 0〉, trying to minimize the overall sum at the same
time. Otherwise, we can find the best global preference level by using the Fuzzy
semiring 〈[0, 1], max, min, 0, 1〉 or we can retrieve the highest resulting proba-
bility when we compose all the ground facts, by using the Probability semiring
〈[0, 1], max,×, 0, 1〉.

Table 1 shows an example of DatalogW program, for which we suppose to
use the Weighted semiring. The intuitive meaning of a semiring value like 3
associated to the atom r(a) (in Table 1) is that r(a) costs 3 units. Thus the
set N contains all possible costs, and the choice of the two operations min and
+ implies that we intend to minimize the sum of the costs. This gives us the
possibility to select the atom instantiation which gives the minimum cost overall.
Given a goal like s(x) to this program, the operational semantics collects both a
substitution for x (in this case, x = a) and also a semiring value (in this case, 2)
which represents the minimum cost among the costs for all derivations for s(x).
To find one of these solutions, it starts from the goal and uses the clauses as
usual in logic programming, except that at each step two items are accumulated
and combined with the current state: a substitution and a semiring value (both
provided by the used clause). The combination of these two items with what is
contained in the current goal is done via the usual combination of substitutions
(for the substitution part) and via the multiplicative operation of the semiring
(for the semiring value part), which in this example is the arithmetic +. Thus, in
the example of goal s(X), we get two possible solutions, both with substitution
X = a but with two different semiring values: 2 and 3. Then, the combination
of such two solutions via the min operation give us the semiring value 2.

To compute trust, in Sec. 4.1 we will use the path semiring [16]: Strust =
〈〈[0, 1], [0, 1]〉, +p,×p, 〈0, 0〉, 〈1, 1〉〉, where

〈ti, ci〉+p 〈tj , cj〉 =

⎧⎪⎨
⎪⎩

〈ti, ci〉 if ci > cj ,

〈tj , cj〉 if ci < cj ,

〈max(ti, tj), ci〉 if ci = cj .

〈ti, ci〉 ×p 〈tj , cj〉 = 〈titj , cicj〉

In this case, trust information is represented by a couple of values 〈t, c〉: the
second component represents a trust value in the range [0, 1], while the first
component represents the accuracy of the trust value assignment (i.e. a confi-
dence value), and it is still in the range [0, 1]. This parameter can be assumed
as a quality of the opinion represented instead by the trust value; for example,
a high confidence could mean that the trustor has interacted with the target for
a long time and then the correlated trust value is estimated with precision.

486 S. Bistarelli, F. Martinelli, and F. Santini

Finite Computation Time. Being the DatalogW language a subset of the Soft
Constraint Logic Programming language [4] with no functions, we can can use
the results in [4] to prove that, considering a fixed DatalogW program, the time
for computing the value of any goal for this program is finite and bounded by
a constant. The reason is that we just have to consider a finite subclass of refu-
tations (i.e. simple refutations) with a bounded length. After having considered
all these refutations up to that bounded length, we have finished computing the
semiring value of the given goal. Given a refutation tree, a path from the root
to a leaf is called simple if all its nodes have different labels up to variable re-
naming. A refutation is a simple refutation if all paths from the root to a leaf in
its refutation tree are simple. The proof of Theo. 1 is given in [4].

Theorem 1 (Finite Set of Simple Refutations). Given a DatalogW pro-
gram P and a goal C, consider the set SR(C) of simple refutations starting
from C and building the empty substitution. Then SR(C) is finite.

4 Extending the RT Family with DatalogW

We describe four kinds of credentials for defining roles in a TM language family,
here called RT W , which is based on DatalogW (see Sec. 3). This family uni-
formly extends the classical RT family [14] by associating a weight, or better, a
semiring value to the basic role definition. Therefore, all the following credentials
must be parameterized with a chosen 〈S, +,×,0,1〉 semiring in order represent
preference/cost or fuzzy information associated to the statements. For every fol-
lowing RT W

0 credential, we describe how it can be translated in a corresponding
DatalogW rule. Then we will suggest how to extend RT W

0 with parameterized
roles, obtaining the RT W

1 language.

Rule 1. A.R←− 〈B, s〉 where A and B are (possibly the same) entities, and R
is a role name. This means that A defines B to be a member of A’s R role.
This statement can be translated to DatalogW with the rule r(A, B) :- s,
where s is the semiring value associated with the related ground fact, i.e.
s ∈ S.

Rule 2. A.R ←− B.R1 This statement means that A defines its R role to
include (all members of) B’s R1 role. The corresponding DatalogW rule is
r(A, x) :-r1(B, x).

Rule 3. A.R ←− A.R1.R2, where A.R1.R2 is defined as linked role [14] and
it means that A defines its R role to include (the members of) every role
B.R2 in which B is a member of A.R1 role. The mapping to DatalogW is
r(A, x) :-r1(A, y), r2(y, x).

Rule 4. A.R←− B1.R1 ∩B2.R2 ∩ · · · ∩Bn.Rn. In this way, A defines its R role
to include the intersection of the n roles. It can be translated to DatalogW

with r(A, x) :-r1(B1, x), r2(B2, x), . . . , rn(Bn, x).

The semantics of a program using these rules will find the best credential chain
according to the + operator of the chosen semiring, which defines a partial order

A Semantic Foundation for Trust Management Languages with Weights 487

≤S . Notice that only the basic role definition statement (i.e. Rule 1) is enhanced
with the semiring value s ∈ S, since the other three rules are used to include
one role into another or to obtain the intersection of different roles.

Notice that having a semiring value associated only with ground facts does
not prevent us from giving a weight also to rules. This can be accomplished by
slightly changing the syntax of the credentials used to compose the roles together
(i.e. Rules 1-2-3), by associating a semiring value also to them. Then, in the
Datalog translation, a new ground fact can be added in the body of the rule,
whose weight models the use of that specific rule. For example, Rule 2 becomes
A.R←− 〈B.R1, s〉 (where s is a value taken from the same S semiring set), and
its Datalog translation is r(A, x) :-r1(B, x), rule weight, where rule weight :- s
is the ground fact that gives a weight to the rule. Clearly, nothing changes from
the computational point of view (see Sec 3).

It is easy to extend this language in order to enhance it with parameterized
roles, thus obtaining a RT W

1 language following the hierarchy presented in [14].
This parametrization can be used to represent relationships among entities, e.g.
University.professorOf(student) to name the professor of a student, but also to
represent attributes that have fields, e.g. the number of exams or the enrollment
academic year and so on. With respect to the previous four rules, in RT W

1 the
head of a credential has the form A.R(h1, . . . , hn), in which A is an entity, and
R(h1, . . . , hn) is a role name (R is a role identifier). For each i ∈ 1 . . . n, hi is a
data term having the type of the ith parameter of R. For example, Rule 1 can
be rewritten in RT W

1 as A.R(h1, . . . , hn) ←− 〈B, s〉, and mapped to DatalogW

as r(A, B, h1, . . . , hn) :- s. Our intention is to extend the RT W family according
to the guidelines explained in [14] (see Sec. 5).

Since Datalog is a subset of first-order logic, the semantics of a TM language
based on it is declarative and unambiguous. While The × operator of the semir-
ing is used to compose the preference/cost values associated to the statements,
the + is used to let the framework select the best derivation with more chances
to authorize the requester (among all the credentials revealed by her/him).

In the next theorem we claim that our weighted language family can be used
to represent also classical RT credentials [14]. In this sense, the RT W languages
can be considered as a foundation layer for all the classical RT languages (RT W

2

will be instead presented in Sec. 4.2).

Theorem 2 (Language Family Inclusion). For each S set of statements in
the RT0, RT1 or RT2 language, we can find a corresponding SW set of statements
respectively represented in RT W

0 , RT W
1 or RT W

2 , and whose semantics is the
same. This can be accomplished by using DatalogW together with the Boolean
semiring.

In Fig. 1 we show the result of Theo. 2, i.e. the vertical inclusions; the horizontal
ones are explained in [14] (for RT) and in this paper (for RT W). Theorem 2 can
be proved by using the Boolean semiring 〈{0, 1},∨,∧, 0, 1〉 and by assigning a
weight of 1 (i.e. the true value) to all the ground facts. In this way we obtain a
set of crisp statements and the semantics returns all the possible derivations, as
the corresponding RT set of statements would do.

488 S. Bistarelli, F. Martinelli, and F. Santini

RT
0

RT1

RT
0

RT
1

w w

RT
2

RT
2

w

Fig. 1. A hierarchy of RT W languages, compared with the classical RT one

In Sec. 4.3 and Sec. 4.4 we respectively introduce other two RT -based lan-
guages: RT WT and RT WD can be used, together or separately, with each of
RT W

0 , RT W
1 , or RT W

2 . The resulting combinations are written as RT W
i , RT WT

i

and RT WD
i for i = 0, 1, 2.

4.1 Some Examples with Levels of Trust

We can start by adding levels to the classical RT0 example presented in many
RT related papers (e.g. [14]). To solve the example in Table 2, we use a Fuzzy
semiring 〈[0, 1], max, min, 0, 1〉, where the elements in [0, 1] represents the truth
degree connected to a credential and evaluated by the entity which signs and
issues it: for example, StateU.highMarks ←− 〈 Alice, 0.8 〉 in Table 2 cer-
tifies that Alice has obtained a good number of high marks (since the value is
0.8) for the exams completed at the StateU university (the credential is issued
by StateU).

Table 2. An example in RT W
0 , with fuzzy values associated to the credentials

EPub.disct ←− EPub.preferred ∩ EPub.brightStudent.

EPub.preferred ←− EOrg.highBudget ∩ EOrg.oldCustomer.

EPub.brightStudent ←− EPub.goodUniversity.highMarks.

EPub.goodUniversity ←− ABU.accredited.

ABU.accredited ←− 〈 StateU, 0.9 〉.
StateU.highMarks ←− 〈 Alice, 0.8 〉.
EOrg.highBudget ←− 〈 Alice, 0.6 〉.
EOrg.oldCustomer ←− 〈 Alice, 0.7 〉.

The example in Table 2 describes a fictitious Web publishing service, EPub,
which offers a discount to anyone who is both a preferred customer and a bright
student. EPub delegates the authority over the identification of preferred cus-
tomers to its parent organization, EOrg. In order to be evaluated as a preferred
customer, EOrg must issues two different types of credentials stating that the
customer is not new (i.e. EOrg.oldCustomer) and has already spent some money
in the past (i.e. EOrg.highBudget). EOrg assigns a fuzzy value to both these
two credentials to quantify its evaluation. EPub delegates the authority over the
identification of bright students to the entities that are accredited universities.
To identify such universities, EPub accepts accrediting credentials issued by the

A Semantic Foundation for Trust Management Languages with Weights 489

fictitious Accrediting Board for Universities (ABU). ABU evaluates a university
with a fuzzy score and each university evaluates its enrolled students. A student
is bright if she/he is both enrolled in a good university and has high marks.
The final fuzzy score, obtained by composing together all the values of the used
credentials, can be compared with a threshold to authorize the discount: e.g.
only entities whose set of credentials produced a score greater than 0.7 are au-
thorized. Otherwise, the final fuzzy result can be used to derive a proportional
discount amount: for example a score of 0.8 could authorize a discount that is
twice the discount allowed with a score of 0.4. The following credentials prove
that Alice is eligible for the discount with a score of 0.6, determined by the fact
that she has not a very high budget spent at EOrg (i.e. her EOrg.highBudget
credential has a value of 0.6).

Table 3. An extension of the example in Table 2, using the path semiring

EPub.disct ←− EPub.preferred ∩ EPub.brightStudent.

EPub.disct ←− EOrg.famousProf.goodRecLetter.

EPub.preferred ←− EOrg.highBudget ∩ EOrg.oldCustomer.

EPub.brightStudent ←− EPub.goodUniversity.highMarks.

EPub.goodUniversity ←− ABU.accredited.

EOrg.famousProf ←− 〈 ProfX, 〈 0.9, 0.9 〉〉.
ProfX.goodRecLetter←−〈Alice, 〈 0.9, 0.8 〉〉.
ABU.accredited ←− 〈 StateU, 〈 0.9, 0.8 〉〉.
StateU.highMarks ←− 〈 Alice, 〈 0.8, 0.9 〉〉.
EOrg.highBudget ←− 〈 Alice, 〈 0.6, 0.5 〉〉.
EOrg.oldCustomer ←− 〈 Alice, 〈 0.7, 0.7〉〉.

In Table 3 we extend the example of Table 2 in order to represent also a
case where the authorization can be accomplished by following different deriva-
tions. For example, a customer could be allowed to have a discount even if
she/he presents a good recommendation letter written by a famous professor
(i.e. EPub.famousProf.goodRecLetter). In Table 3 we use the path semiring pre-
sented in Sec. 3, thus a semiring value consists in a couple of trust/confidence
feedbacks. The best derivation corresponds to the criteria defined by the +p (i.e.
confidence is more important).

4.2 RT W
2 : Logical Rights

Trust languages can be used to grant some permissions, i.e. to represent access
modes over some specific objects. For this reason it useful to group logically
related objects (e.g. the files inside the same directory) and access modes, and
to give permissions about them in a correlated manner. As proposed in [14], we
introduce in our language the notion of o-sets, which are used to group together
this kind of objects: o-sets names are created by associating an o-set identifier
to a tuple of data terms. Moreover, an o-set identifier has a base type τ , and

490 S. Bistarelli, F. Martinelli, and F. Santini

o-set names/o-sets created by using an o-set identifier have the same base type
as the o-set identifier. Finally, the value of an o-set is a set of values in τ .

An o-set-definition credential is similar to the role definition credential that
we have defined in Sec. 4 for RT W

1 : the difference is that the members of o-sets
are objects that are not entities. Admin.Documents(read)←− 〈FileA, 0.9〉, for
example, states that the administration office grants to FileA the permission to
be read only for the 90% of it; FileA and the Documents o-set id are associated
with the file type.

O-set-definition credentials can be translated in Datalog exactly as proposed
for RT W

1 in Sec. 4: the head of a credential has the form A.O(h1, . . . , hn),
where O(h1, . . . , hn) is an o-set name of type τ , while the body can be a value
of base type τ , another o-set B.O1(s1, . . . , sm) of base type τ , a linked o-
set A.R1(t1, . . . , tl).O1(s1, . . . , sm), in which R1(t1, ..., tl) is a role name and
O1(s1, . . . , sm) is an o-set name of base type τ , or an intersection of k o-sets
of the base type τ (see Sec. 4.3 for the intersection of roles and o-sets).

Therefore, a credential in RT W
2 is either a role-definition credential or an

o-set-definition credential. For more details on types and properties of RT W
2

credentials (w.r.t. RT W
1), please refer to [14].

Example 1. In this example, the AlphaCompany allows the members of a project
team to work on the documents of this project: each of the credentials repre-
senting the documents, e.g. a fileA file, are associated with a couple of val-
ues, e.g. 〈0.9, 0.5〉, which grant a member of the project the right to read 90%
of the file and to modify 50% of it. This restriction on files can be explained
by copyright or Concurrent Versioning System limitations, or due to the dif-
ferent position taken by employees. Even the credentials concerning the mem-
bers of the project (e.g. Bob) are weighted with the same percentages, in this
case related instead to the role of the entity (i.e. there are generic read/modify
rights associated to Bob): in this way, it possible to combine all these levels
of rights together, and to finally know how much a given entity can read and
modify a given object. As we presented in Sec. 2, the cartesian product of two c-
semirings is still a c-semiring and, therefore, it is not a problem to have multiple
weights (more details are given in [3]); for this reason we use the vectorization
of two Fuzzy semirings, i.e. 〈〈[0, 1], [0, 1]〉, 〈max, max〉, 〈min, min〉, 〈0, 0〉, 〈1, 1〉〉,
in order to maximize (i.e. with 〈max, max〉) the composition of the values
representing the rights, (i.e. with 〈min, min〉): in practice, we use the Fuzzy
semiring to find the maximum read/modify percentages, obtained by keep-
ing the worst value among all the composition percentages. The credentials
to represent this scenario are the following ones, from which we can obtain
AlphaCompany.fileAc(read, modify,fileA)←− Bob with a value of 〈0.8, 0.5〉:

AlphaCompany.fileAc(read, modify, AlphaCompany.documents(x)) ←−
AlphaCompany.team(x).

AlphaCompany.documents(proj) ←− 〈fileA, 〈0.9, 0.5〉〉.
AlphaCompany.team(proj1) ←− 〈Bob, 〈0.8, 0.7〉〉.

A Semantic Foundation for Trust Management Languages with Weights 491

4.3 RT W T : Threshold and Separation-of-Duty Policies

Threshold structures are satisfied by the agreement of k out of a set of entities
that satisfy a specified condition, while separation of duty instead requires that
two or more different people be responsible for the completion of a sensitive
task, such deciding the result of an exam. With Rule 4 (see Sec. 4) it is possible
to implement simple threshold structures by using the intersection of roles; for
example, the policy stating that a student is considered bright (bS) by her/his
university (Uni) only if two out of three professors (P1, P2 and P3) say so,
can be represented by the three rules Uni.bS ←− P1.bS ∩ P2.bS, Uni.bS ←−
P1.bS ∩ P3.bS and Uni.bS ←− P2.bS ∩ P3.bS.

However, with this kind of intersections we are not able express complex
policies: for example if we need to represent the fact that A says that an entity
has attribute R if two different entities having attribute R1 says so. For this
reason we need to introduce the RT WT language, in order to properly work
with sets of entities. More specifically, RT WT adds to the RT W languages the
notion of manifold roles, which generalizes the notion of roles [14]. A manifold
role has a value that is a set of entity collections. An entity collection is either
an entity, which can be viewed as a singleton set, or a set of two or more entities.
Notice that, as the RT WD language presented in Sec. 4.4, RT WT can be used
together with each of RT W

i languages (see Sec. 4). In RT WT we introduce two
more types of credentials w.r.t. Sec. 4:

Rule 5. A.R ←− B1.R1 � · · · � Bk.Rk. As we introduced before with words,
the meaning of this credential is members(A.R) ⊇ members(B1.R1 � · · · �
Bk.Rk) = {s1 ∪ · · · ∪ sk|si ∈ members(Bi.Ri) for 1 ≤ i ≤ k}. Given
w1, . . . wk as the actual weights of the derivations respectively rooted in
B1.R1, . . . Bk.Rk, the global weight of this clause is then composed as w1 ×
w2 × · · · × wk, where × depends on the chosen 〈S, +,×,0,1〉 semiring.

Rule 6. A.R ←− B1.R1 ⊗ · · · ⊗ Bk.Rk. The formal meaning of this credential
is instead given by members(A.R) ⊇ members(B1.R1 ⊗ · · · ⊗ Bk.Rk) =
{s1 ∪ · · · ∪ sk|(si ∈ members(Bi.Ri) ∧ si ∩ sj = ∅) for 1 ≤ i �= j ≤ k}.
Given w1, . . . wk as the actual weights of the derivations respectively rooted
in B1.R1, . . . Bk.Rk, the global weight of this clause is then composed as
w1 ×w2 × · · · × wk, where × operator depends on the chosen 〈S, +,×,0,1〉
semiring.

As usual, the Datalog engine will select the best derivation according to the
+ operator of the semiring. Considering RT WT , the translation to Datalog rules
for Rule 1, Rule 2 and Rule 4 is the same as the one presented in Sec. 3. For
Rule 3, Rule 5 and Rule 6 rules, the translation is instead the following one:

Rule 3. A.R←− A.R1.R2 can be translated to r(A, x) :-r1(A, y), r2(y, x) when
size(r1) = 1, or can be translated to r(A, y) :-r1(A, x), r2(y, x1), . . . r2(y, xk),
setk(x, x1, . . . , xk) when size(r1) = k > 1. Each role identifier has no a size:
the size of a role limits the maximum size of each of its member entity
set (see [14] for further details). The new setk predicate takes k + 1 entity

492 S. Bistarelli, F. Martinelli, and F. Santini

collections as arguments, and setk(s, s1, . . . , sk) is true if and only if s =
s1 ∪ · · · ∪ sk; if si is an entity, it is treated as a single-set element.

Rule 5. A.R←− B1.R1�· · ·�Bk.Rk can be translated to r(A, x) :-r1(B1, x1),
r2(B2, x2), . . . , rk(Bk, xk), setk(x, x1, . . . xk).

Rule 6. A.R←− B1.R1⊗· · ·⊗Bk.Rk can be translated to r(A, x) :-r1(B1, x1),
r2(B2, x2), . . . , rk(Bk, xk), nsetk(x, x1, . . . xk). The nsetk predicate takes k+
1 entity collections as arguments and it is true only when s = s1 ∪ · · · ∪ sk

and for any 1 ≤ i �= j ≤ k, si ∩ sj = ∅

Example 2. Suppose that for a university office a student is “bright” (i.e. Uni.bS)
if one member of Uni.evalExtAdvisor (i.e. an external advisor) and two different
members of Uni.EvalProf (i.e. a professor who teaches in that university) all
say so. This can be represented using the following credentials (where A, B, C
and D can be external advisors and/or professors):

Uni.bS ←− Uni.evaluators.bS.

Uni.evaluators ←− Uni.evalProfs� Uni.evalExtAdvisor.
Uni.evalProfs ←− Uni.evalProf⊗ Uni.evalProf.

Uni.evalExtAdvisor ←− 〈A, 0.9〉. Uni.evalExtAdvisor ←− 〈B, 0.7〉.
Uni.evalProf ←− 〈A, 0.8〉. Uni.evalProf ←− 〈C, 0.8〉.

Uni.evalProf ←− 〈D, 0.6〉.
If we adopt the Fuzzy semiring 〈[0, 1], max, min, 0, 1〉, the best authorization

corresponds to the set {A, C} with a value of 0.8 (i.e. the min between 0.9 and
0.8): we remind that A is both a professor (i.e. A teaches at the university) and
an external advisor (i.e. A can be a visiting professor) and therefore only two
entities can satisfy the request. Therefore, with this program we retrieve the
best combination of evaluators for a student: the student is supposed to present
her/his signed credentials and to request how much she/he is considered bright:
the evaluations of different evaluators are composed by selecting the worst score
(with the min operation of the semiring), but at the end the best derivation is
selected (by using the max operator).

4.4 RT W D: Delegation of Role Activations

The RT WD language is finally added to our weighted family in order to handle
delegation of the capacity to exercise role memberships. The motivations are
that, in many scenarios, an entity prefers not to exercise all his rights. For
example, a professor could want to log as a simple university employee, thus not
having the rights to insert or change the student exam results, but only having
the rights to check the number of canteen tickets. With a weighted extension
(i.e. RT WD) we are now able to state “how much” the rights are delegated to
another entity (e.g. a session or a process). Therefore it is possible to quantify
the “amount” of delegated rights, e.g. to modify a document, but only for the
80% of it, which is for example less than the rights held by the delegating entity
(e.g. 100%). The delegation takes the following form: B1

D as A.R−−−−−−→ B2, which

A Semantic Foundation for Trust Management Languages with Weights 493

means that B1 delegates to B2 the ability to act on behalf of D in D’s capacity
as a member of A.R.

For the definition of the RT WD rules we introduce the forRole predicate as
in [14]: forRole(B, D, A.R) can be read as B is acting for “D as A.R” and
it means that B is acting for the role activation in which D activates A.R.
The delegation rules can be translated in the following way: B1

D as A.R−−−−−−→ B2

forRole(B2, D, A.R)←− forRole(B1, D, A.R). This rule means that B2 is act-
ing for “D as A.R” if B1 is doing so. Other kind of delegation rules that can be
formulated are presented in [14].

Clearly, even the other rules presented in Sec. 4 and Sec. 4.3 must be modified
according to the introduction of the forRole predicate. For example, A.R ←−
〈D, s〉 becomes forRole(D, D, A.R) :- s and s ∈ S is the associated weight taken
from the 〈S, +,×,0,1〉 semiring. Therefore we have presented only the Rule 1
translation and, for sake of brevity, we omit all the other rules translation with
the forRole predicate (from Rule 2 to Rule 6); however the translation is similar
to the one proposed in the RT D design in [14]. A request is translated in the
same way as a delegation credential; the request is replaced by the dummy entity
corresponding to it. For example, the B1

D as A.R−−−−−−→ req request is translated to
forRole(ReqID, D, A.R) ←− forRole(B1, D, A.R), where ReqID is the
dummy entity for req.

Example 3. In this simple example we show how different delegation acts can
lead to different costs. We use the Weighted semiring, i.e. 〈R+, min, +,∞, 0〉,
since we suppose the authorizer wants to minimize the cost associated with
the credentials used for the authorization (the + of the semiring is instantiated
to min in the Weighted semiring): the costs are elements of R+ (i.e. the set of
positive real numbers) and are composed with the arithmetic + (i.e. the × of the
Weighted semiring). The total cost value can be considered, for example, as the
cost charged to the authorizer in order to satisfy the requester. For example, the
authorizer is represented by a university budget office, and the cost associated
with the credentials represents the money cost to manage them (i.e. phone calls,
faxes, travel expenses, etc). In the example, we have a university (i.e. Uni),
where any conference organization event has to be proposed and approved before
it is allowed to be practically organized. Any professor can propose such an
event. A member of the “approval commission” can instead approve an event.
A member of this commission is also a professor (i.e. the commission is made
up of professors); however, a professor cannot approve his own proposed event.
Therefore, the aim of the university budget office is to minimize the cost for the
organization of the events. This can be represented as follows:

Uni.organizeEvent ←− Uni.propose⊗ Uni.approve.

Uni.propose ←− Uni.prof.
Uni.approve ←− Uni.appCommission.
Uni.prof ←− Uni.appCommission.

Suppose also that A and B professors are both in the approval commission
and the cost of these two credentials is the same (e.g. 1 euro is a basic cost to

494 S. Bistarelli, F. Martinelli, and F. Santini

manage a member of the approval commission): Uni.appCommission←− 〈A, 1〉
and Uni.appCommission←− 〈B, 1〉.

Both of them wish to propose and clearly accept the same event (named
bigConf) and they present the following credentials. Moreover, we extend the
syntax of the delegation rules as already explained in Sec 4: now they can have
an associated semiring value (the cost) taken from R+.

A
A as Uni.appCommission−−−−−−−−−−−−−−−−−→ 〈event(bigConf), 6〉.
A

A as Uni.prof−−−−−−−−−→ 〈event(bigConf), 5〉.
B

B as Uni.appCommission−−−−−−−−−−−−−−−−−→ 〈event(bigConf), 8〉.
B

B as Uni.prof−−−−−−−−−→ 〈event(bigConf), 2〉.
Given the request forRole(reqID, {A, B}, Uni.organizeEvent) (and reqID

is the dummy entity), the system will choose B as the proposer (with a cost of
2) and A as the entity who approves the event (with a cost of 6), since it is
the cheapest solution to the problem. The total cost of all the credentials is 10
euro, obtained by summing also 1 euro for each credential related to a professor.
Notice that the other possible solution, with A proposer and B approver of the
event, costs 15 euro, i.e. 5 euro more.

5 Conclusions and Future Work

We have proposed a weighted extension of Datalog (i.e. DatalogW) and a trust
language family based on it. These languages can be used to deal with vague
and imprecise security policies or credentials, and preference or costs associated
to each rule or fact. In practice, we can manage and combine together differ-
ent levels of truth, preference or costs associated to the statements and finally
have a single feedback value on which to authorize a trust request. We have
extended the RT family [14] and we we have shown that the classical RT0 and
RT1 languages are respectively included in our RT W

0 and RT W
1 languages. It

is worthy to notice that our extension is completely orthogonal w.r.t. the RT
extension proposed in [13], i.e. RT C , where the supporting DatalogC language
allows first-order formulas in tractable constraint domains. The constraints are
introduced to represent the access permissions over structured resources, e.g.,
tree domains and range domains. Our aim is instead the representation of trust
levels modelling cost/preference or fuzziness of credentials. Our systematic ap-
proach to give weights to facts and rules, contributes also towards bridging the
gap between “rule-based” trust management (i.e. hard security mechanisms) and
“reputation based” trust management [11] (i.e. soft security mechanisms).

On future improvement could be to leave to the programmer the opportunity
to take more decisions inside the rules, for example based on the current ag-
gregated semiring value (the process is called reification of the values, i.e. make
them visible to the programmer); from its evaluation, some rules could be en-
abled and others could be ignored, influencing the derivation process and the
final result. Therefore we want to extend the language in this sense.

A Semantic Foundation for Trust Management Languages with Weights 495

We plan to investigate the complexity of tractable soft constraints classes [7]
in order to cast them in a Datalog-based language. Therefore, we want to extend
also the RT C language [13] (based on Datalog enhanced with crisp constraints)
in its soft version.

References

1. Bistarelli, S.: Semirings for Soft Constraint Solving and Programming. LNCS,
vol. 2962. Springer, Heidelberg (2004)

2. Bistarelli, S., Martinelli, F., Santini, F.: Weighted datalog and levels of trust. In:
Advances in Policy Enforcement. IEEE, Los Alamitos (to appear, 2008)

3. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint solving and op-
timization. Journal of the ACM 44(2), 201–236 (1997)

4. Bistarelli, S., Rossi, F.: Semiring-based constraint logic programming: syntax and
semantics. ACM Trans. Program. Lang. Syst. 23(1), 1–29 (2001)

5. Bonatti, P., Duma, C., Olmedilla, D., Shahmehri, N.: An integration of reputation-
based and policy-based trust management. In: Semantic Web Policy Workshop
(2005)

6. Chakraborty, S., Ray, I.: TrustBAC: integrating trust relationships into the rbac
model for access control in open systems. In: SACMAT 2006: Proc. of Access
control models and technologies, pp. 49–58. ACM Press, New York (2006)

7. Cohen, D.A., Cooper, M.C., Jeavons, P.G., Krokhin, A.A.: The complexity of soft
constraint satisfaction. Artif. Intell. 170(11), 983–1016 (2006)

8. Colombo, M., Martinelli, F., Mori, P., Petrocchi, M., Vaccarelli, A.: Fine grained
access control with trust and reputation management for globus. In: OTM Confer-
ences (2), pp. 1505–1515 (2007)

9. De Treville, J.: Binder, a logic-based security language. In: SP 2002: Proceedings
of the 2002 IEEE Symposium on Security and Privacy, Washington, DC, USA, p.
105. IEEE Computer Society, Los Alamitos (2002)

10. Jim, T.: SD3: A trust management system with certified evaluation. In: SP 2001:
Proceedings of the 2001 IEEE Symposium on Security and Privacy, Washington,
DC, USA, p. 106. IEEE Computer Society, Los Alamitos (2001)

11. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for
online service provision. Decis. Support Syst. 43(2), 618–644 (2007)

12. Li, N., Grosof, B.N., Feigenbaum, J.: Delegation logic: A logic-based approach to
distributed authorization. ACM Trans. Inf. Syst. Secur. 6(1), 128–171 (2003)

13. Li, N., Mitchell, J.C.: Datalog with constraints: A foundation for trust management
languages. In: Dahl, V., Wadler, P. (eds.) PADL 2003. LNCS, vol. 2562, pp. 58–73.
Springer, Heidelberg (2002)

14. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a role-based trust-
management framework. In: SP 2002: Proc. of Security and Privacy, p. 114. IEEE
Computer Society, Los Alamitos (2002)

15. Martinelli, F., Petrocchi, M.: A uniform approach for the modeling of security and
trust on protocols and services. In: ICS 2006: International Workshop on Computer
Security (2006)

16. Theodorakopoulos, G., Baras, J.S.: Trust evaluation in ad-hoc networks. In: WiSe
2004: Workshop of Wireless security, pp. 1–10. ACM, New York (2004)

Annotation Markers for
Runtime Replication Protocol Selection

Hein Meling

Department of Electrical Engineering and Computer Science,
University of Stavanger, N-4036 Stavanger, Norway

hein.meling@uis.no

Abstract. This paper presents an architecture enabling developers to easily and
flexibly assign replication protocols simply by annotating individual server meth-
ods. This avoids using costly replication protocols for all object methods, e.g.
read-only methods can use less costly protocols, reserving the costly replica-
tion protocols for update methods. The architecture has been implemented in the
Jgroup/ARM middleware, and enables addition of new replication protocols with-
out modifying the core toolkit. It also supports runtime selection of replication
protocol for individual methods. This can be used to support self-optimization of
protocol selection by optimizing for the most appropriate configuration under a
given system load.

1 Introduction

Middleware for building dependable distributed applications often provide a collection
of replication protocols supporting varying degrees of consistency. Typically, providing
strong consistency requires costly replication protocols, while weaker consistency often
can be achieved with less costly protocols. Hence, there is a tradeoff between cost and
consistency involved in the decision of which replication protocol to use for a particular
server. But, perhaps more important is the behavioral aspects of the server. For instance,
the server may be intrinsically non-deterministic in its behavior, which consequently
rules out several replication protocols from consideration, e.g. atomic multicast.

This paper presents an architecture for Jgroup/ARM [11] enabling software develop-
ers to easily and flexibly select their replication protocol of choice for each individual
server method. The principal motivation for the architecture is to improve the flexibility
in choice of replication protocols, so as to reduce the resource consumption of depend-
able applications as much as possible. In many fault-tolerant systems, different replica-
tion protocols are supported at the object level [14, 15], meaning that all the methods
of a particular object must use the same replication protocol. Jgroup [11] takes a dif-
ferent approach: when implementing a dependable service, the invocation semantics of
each individual method can be specified separately using Java annotations [2, Ch.15].
This allows for greater flexibility as various methods may need different semantics.
Hence, developers may select the appropriate invocation semantics at the method level,
and even provide different implementations with alternative semantics. The presented
architecture makes it very easy to add new replication protocols to the system, with
no changes to the core toolkit. Protocol implementations are picked up automatically.

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 496–506, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Annotation Markers for Runtime Replication Protocol Selection 497

The current implementation supports four different replication protocols, or invoca-
tion semantics: anycast, reliable multicast, atomic multicast and leadercast. The latter
is a variant of passive replication and permits servers with non-deterministic behav-
ior, whereas atomic multicast can be viewed as a kind of active replication, and hence
does not tolerate servers being non-deterministic. The architecture can also accommo-
date adaptive or runtime protocol selection based on runtime changes in the environ-
ment. A common example in which application semantic knowledge can be exploited
is a replicated database with read and write methods. Often a simple Read-One, Write-
All (ROWA) replication protocol [17] can then be used and still preserve consistency.
A ROWA replication protocol can easily be implemented using anycast for read meth-
ods and either multicast, atomic, or leadercast for write methods. On the other hand,
replication protocols which operate at the object level require that also simple read-
only methods use the strongest replication protocol required by the object to preserve
consistency. However, assigning appropriate invocation semantics to the methods of a
server do require careful consideration to ensure preservation of consistency as well
as reducing the resource consumption needed. Hence, a guideline is provided in [11],
based on [8]. For example, if two methods of the same server modify intersecting parts
of the shared state, they should use the same replication protocol.

By exploiting knowledge about the semantics of distributed objects, the choice of
which replication protocols to use for the various methods can be used to obtain a per-
formance gain over the traditional object level approach. Similar ideas were proposed
by Garcia-Molina [9] to exploit semantic knowledge of the application to allow nonse-
rializable schedules that preserve consistency to be executed in parallel as a means to
improve the performance for distributed database systems. OGS [6, 7] also allows each
method of a server to be associated with different replication protocols, but this must be
explicitly encoded for each method through an intricate initialization step. The approach
presented herein is much easier to use as it exploits Java annotations to mark methods
with the desired replication protocol. The Spread [1] message-based group communi-
cation system can also be used to exploit semantic knowledge, since each message can
be assigned a different replication protocol. JavaGroups [3] on the other hand would
have required separate channels for each replication protocol. Unlike Jgroup however,
neither of these two systems are aimed at RMI based systems.

Organization: In Section 2 the architecture is presented, while in Section 3 the pro-
tocol selection mechanism is covered. The leadercast replication protocol is covered in
Section 4, and Section 5 covers the atomic replication protocol. Finally, Section 6 dis-
cusses potential enhancements to the architecture that would enable support for adaptive
runtime selection of protocols.

2 The EGMI Architecture

The external group method invocation (EGMI) architecture of Jgroup/ARM [11] aims
to provide: (a) flexibility and efficiency using to a customized RMI layer; (b) flexibility
to add new replication protocols; (c) runtime adaptive selection of replication protocol
(Section 6); (d) improved client-side view updating (covered in [12]).

498 H. Meling

Group Manager

ExternalGMIModule

Server Replica 1

Client

Dependable
Registry

bind()

lookup()

Legend:Legend:
External entity interaction Registry interactions
Local method invocation Module interactions

Client-side
Group Proxy

RegistryModule

MulticastModule

EGMI interface

EGMI interface
Server-side Proxy

Group Manager

ExternalGMIModule

Server Replica 1

RegistryModule

MulticastModule

EGMI interface

bind()

1

2 3

4

5

66

5

77 88

Server-side Proxy

Contact ServerContact Server

Fig. 1. The external GMI architecture

Fig. 1 illustrates the high-level interactions of the EGMI architecture. The figure
illustrates interactions involved in a multicast invocation. Clients communicate with
an object group through a two-step approach, except for the anycast semantic. Two
communication steps are required for multicast interactions. The ExternalGMIModule
acts as the server-side proxy (representative) for clients communicating with the object
group, and is also responsible for protocol selection. The server representing the group
is called the contact server. The choice of contact server is made (on a per invocation
basis) by the client-side proxy, and different strategies can be implemented depending
on the requirements of the replication protocol being used. The general strategy used by
both anycast and multicast is to choose the contact server arbitrarily, while leadercast
always selects the group leader. However, in the presence of failures an arbitrary server
in the group is selected.

As shown in Fig. 1, before a client can invoke the object group, each member of
the group must bind() its reference (client-side proxy) in the dependable registry. The
client can then perform a lookup() to obtain the client-side proxy encompassing all group
members. The client-side proxy provides the same EGMI interface as the server, enabling
the client to invoke local methods on it (➊). The proxy encodes invocations into remote
communications (➋), and ultimately complete the invocation by returning a result to the
client. The ExternalGMIModule exploits the MulticastModule to send multicast messages
(➌,➍,➎) to all group members. This is followed by the invocation of the encoded method
(➏) on all members, and returning the results back to the contact server (➆,➇). The
contact server is responsible for returning a selected result back to the client.

2.1 The Client-Side and Server-Side Proxies

The client-side and server-side proxies are implemented as a customized version of
the Jini Extensible Remote Invocation (JERI) protocol stack [16]. All layers in JERI

Annotation Markers for Runtime Replication Protocol Selection 499

Client-side proxy Dynamically

generated

Client

EGMI interface

GroupInvocationHandler

GroupEndpoint

E1 E2 E3 SE1 SE2 SE3

GRH1 GRH2 GRH3

GID1 GID2 GID3

S1 S2 S3
EGMI interface EGMI interface EGMI interface

LegendLegend
GID - GroupInvocationDispatcher SE - ServerEndpoint
GRH - GroupRequestHandler E - Endpoint

Replication protocol

selection

Endpoint selection

and failover handling

E
xt

er
na

lG
M

IM
od

ul
e

Object ID LayerObject ID Layer

Invocation LayerInvocation Layer

Transport LayerTransport Layer

Fig. 2. The EGMI protocol stack

protocol stack have been retrofitted with group support, except for the transport layer,
as shown in Fig. 2. Currently, a TCP transport is used between clients and the contact
server, whereas multicast is used internally in the group.

The GroupInvocationHandler shown in Fig. 2 is responsible for marshalling and un-
marshalling invocations. When invoked by the client-side proxy, internal tables are
queried to determine the semantics of the method being invoked. Knowing the se-
mantics on the client-side improves efficiency, as the contact server can forward the
invocation to the group without unmarshalling it until received by the GroupInvoca-
tionDispatcher at the destination server.

The GroupEndpoint maintains the current group membership lazily synchronized
with the server-side membership [12]; it stores a single Endpoint for each member of
the group. Each Endpoint object represents the transport between the client and the
corresponding ServerEndpoint. GroupEndpoint also selects the endpoint to use for a
particular invocation, based on the semantics of the method.

When the GroupRequestHandler (GRH) receives an invocation, the invocation se-
mantic is extracted from the data stream. Depending on the invocation semantic, the in-
vocation is passed on to a protocol-specific invocation dispatcher (see Section 3). Here
the protocol dispatcher is assumed to be multicast (as in Fig. 2). Hence, the stream is
passed on to the MulticastModule, and finally to the GroupInvocationDispatcher (GID)
which takes care of the unmarshalling and invocation of the method on the remote
server objects. As Fig. 2 shows, the results are returned to the contact server, which
finally returns the result(s) to the client.

500 H. Meling

Listing 1. Skeleton of the RegistryImpl

public final class RegistryImpl {
@Multicast IID bind(String name, Entry e)
throws RemoteException
@Anycast Remote lookup(String serviceName)
throws RemoteException, NotBoundException

}

3 Replication Protocol Selection

Each method is usually assigned a distinct invocation semantic by the server developer
at design time, by prefixing each method with an annotation marker for the replication
protocol to use, as shown in Listing 1. It is also possible to declare protocol annota-
tions in the interface. However, markers declared in the server implementation takes
precedence over those declared in the interface. This makes it easy to provide alterna-
tive implementations of the same interface with different invocation semantics for the
various methods declared in the interface, e.g. if an implementation wants to provide
stronger consistency for some methods.

Fig. 3 depicts the protocol selection mechanism of the ExternalGMIModule. Each
protocol must implement the ProtocolDispatcher interface through which invocations
are passed before they are unmarshalled. This allows the protocol to multicast the in-
vocation to the other group members before unmarshalling is done in the GroupInvoca-
tionDispatcher. However, the stream received by the GroupRequestHandler is partially

ExternalGMIModule

GroupRequestHandler

GroupInvocationDispatcher

Server Replica
EGMI interface

Replication protocol

selection

Anycast LeadercastMulticast Atomic
ProtocolDispatcher ProtocolDispatcher ProtocolDispatcher ProtocolDispatcher

getProtocol(semantics)

ServerEndpoint

Protocol

repository

JERI based

transport

Fig. 3. EGMI replication protocol selection

Annotation Markers for Runtime Replication Protocol Selection 501

Listing 2. The @Atomic annotation marker

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
@interface Atomic { }

Listing 3. The ProtocolDispatcher interface

public interface ProtocolDispatcher {
InvocationResult dispatch(InputStream in)
throws IOException;

void addListener(Object listener);
}

unmarshalled to obtain information necessary to route the message to the appropriate
protocol dispatcher instance. The protocol repository holds a mapping between the an-
notation marker (a method’s invocation semantic) and the actual protocol instance. The
repository is queried for each invocation of a method.

3.1 Supporting a New Protocol

To support new replication protocols, two additions are required: (i) a new annotation
marker must be added, allowing servers to specify the new protocol and (ii) the ac-
tual protocol implementation. Listing 2 shows the annotation marker for the @Atomic
replication protocol. To support runtime protocol selection, the retention policy of the
marker must be set to RUNTIME to allow reflective access to the marker. Furthermore,
the target element type is set so that the marker only applies to METHOD element types.
For details about the Java annotation mechanism see [2, Ch.15].

A new protocol implementation must implement the ProtocolDispatcher interface
(see Listing 3), and placed in the protocol package location. The latter is configured us-
ing a Java system property. Replication protocols are constructed on-demand based on
reflective [2, Ch.16] analysis of the server implementation (or its EGMI interfaces) to
determine the invocation semantics of its methods. Methods whose invocation seman-
tic is unspecified defaults to @Anycast. Only required protocols are constructed. This
analysis is done in the bootstrap phase, and the information is kept in internal tables for
fast access during invocations.

3.2 Concurrency Issues

Note that a protocol instance may be invoked concurrently by multiple clients, and care
should be taken when developing a replication protocol to ensure that access to protocol
state is synchronized. Furthermore, the EGMI architecture is designed for multithread-
ing, and hence it does not block concurrent invocations using the same or different
protocols. It is the responsibility of the server developer to ensure that access to server

502 H. Meling

state is synchronized. However, invocations received while a new view is pending are
blocked temporarily and delivered in the next view. This is necessary to avoid that in-
vocations modify the server state while the state merge service [13] is active.

4 The Leadercast Protocol

The leadercast protocol presented in this section is a variant of the passive replica-
tion protocol [10]. The principal motivation to provide this protocol is the need for a
strong consistency protocol that is able to tolerate non-deterministic operations. The
main difference between leadercast and the passive replication protocols described in
the literature [10] is optimizations in scenarios where the leader has crashed. That is
how to convey information about the new leader to clients, and how to handle failover.
These optimizations are possible due to the client-side view updating technique de-
scribed in [12]. Fig. 4(a) illustrates the leadercast protocol, when the client knows which
of the group members is the leader. In this case, the protocol is as follows:

1. The client sends its request to the group leader.
2. The leader process the request, updating its state.
3. The leader then multicasts an update message containing 〈Result, StateUpdate〉 to

the followers (backups).
4. The followers modify their state upon receiving an update message, and replies

with an Ack to the leader.
5. Only when the leader has received an Ack from all live follower replicas, will it

return the Result to the client.

Result is the result of the processing performed by the leader, while StateUpdate is the
state (or a partial state) of the leader replica after the processing. A partial state may for
instance be the portions of the state that have been modified by the leadercast methods.
Notice the compare() method performed at the end of the processing. This is used to
compare the server state before and after the invocation of method(), and if the state did
not change, there is no need to send the update message, as shown in Fig. 4(b).

The Result part of the update message is necessary in case a follower is promoted
to leader, and needs to emit the Result to the client in response to a reinvocation of the
same method. This can only happen if the leader fails, causing the client to perform
a failover by reinvoking the method on another group member, as shown in Fig. 4(c).
Hence, the followers needs to keep track of the result of the previous invocation made
by clients. A result value can be discarded when a new invocation from the same client
is made, or after some reasonable time longer than the period needed by the client to
reinvoke the method. As depicted in Fig. 4(c), the failure of the leader causes the mem-
bership service to install a new view. Client invocations may be received before the new
view is installed, however, they will be delayed until after the view has been installed,
as discussed in Section 3.2. The follower receiving the reinvocation of a previously in-
voked method will simply return the result to the client along with information about
the new leader.

If the follower receiving a reinvocation of a previously invoked method is not the
new leader, the invocation is forwarded to the current leader, as shown in Fig. 4(d). This

Annotation Markers for Runtime Replication Protocol Selection 503

Processing

Client

Leader

Follower1

Ack

Result, StateUpdate
Update

Follower2

Request

Result

getState() method() compare() putState()Legend:Legend:

(a) With leader receiver

Processing

Client

Leader

Follower1

Follower2

Request

Result

getState() method() compare() = Legend:Legend:

(b) With no state change

Processing

Client

Leader

Follower1

Ack

Result, StateUpdate
Update

Follower2

Request

Result

getState()
method() compare() putState()Legend:Legend:

Reinvoke
Request

Timeout

getResult()

getResult()

(c) With failover

Processing

Client

Leader

Follower1

Ack

Result, StateUpdate
Update

Follower2

Request

Forward
Result

getState() method() compare() putState()Legend:Legend:

Forward
Request Result

(d) With follower receiver after a failover

Fig. 4. The Leadercast protocol

can happen if the leader failed before the followers could be informed about the original
invocation. This forwarding to the current leader will only occur once per client, since
the result message contains information about the new leader, and hence the client-side
proxy can update its contact server.

As discussed above, the client-side proxy is responsible for selecting the contact
server. For the leadercast protocol, the group leader (primary) is selected unless it has
failed. The server selection strategy is embedded in the invocation semantic represen-
tation associated with each method. When the client detects that the leader has failed,
the choice of contact server is random for the first invocation; the new leader is then
obtained from the invocation reply and future invocations are directed to the current
leader.

5 The Atomic Multicast Protocol

The atomic multicast protocol implemented in the context of this thesis is based on the
ISIS total ordering protocol [4], hence only a brief description is provided herein. The
protocol is useful to ensure that methods that modify the shared server state do so in a
consistent manner. Methods using the atomic protocol must behave deterministically to
ensure consistent behavior. The protocol is a distributed agreement protocol in which
the group members collectively agree on the sequence in which to perform the invo-
cations that are to be ordered. Fig. 5(a) shows the protocol. In the first step, the client
sends the request to a contact server, who forwards the request to the group members,
each of which respond with a proposed sequence number. The contact server selects
the agreed sequence number from those proposed and notifies the group members; the
highest proposed sequence number is selected. Finally, when receiving the agreed se-
quence number each member can perform the invocation and return the result(s) to the
contact server, which will relay it to the client.

The contact server selection strategy is random for load balancing and fault tolerance
purposes. The contact server acts as the entity that defines the ordering of messages,
and serves this function for all invocations originated by clients using it as the contact

504 H. Meling

Processing

Client

Server 1

Request

Server 2

Server 3

Request

Proposed
Sequence no.

Agreed
Sequence no.

Processing

Processing Result

Result

(a) The Atomic protocol

Client

Server 1

Request

Server 2

Server 3

Request

Proposed
Sequence no.

Agreed
Sequence no.

Processing

Processing

Result

Reinvoke
Request

Timeout

Request
Result

(b) A failover scenario

Fig. 5. The Atomic multicast protocol

server. Since the choice of contact server is random, the same client may choose a
different one for each invocation that it performs. It follows that also different clients
will use different contact servers. An alternative contact server selection strategy is to
always select the same server (the leader) to do the message ordering. By doing so, a
fixed sequencer protocol requiring less communication steps can be implemented. The
fixed sequencer and other total ordering protocols are discussed in [5].

Fig. 5(b) illustrates one scenario in which the contact server fails before completing
the current ordering. The client detects the failure of the contact server, and sends the
request to an alternative server. In this particular scenario, the remaining servers needs
to rerun the agreement protocol. However, had the contact server failed after completing
the agreement protocol, but before emitting the result to the client, the new server must
emit the previous result in response to a reinvocation.

The two-step communication approach used for EGMI between the client and the
group members precludes the provision of a true active replication scheme. In particu-
lar, the client-side proxy will not receive replies directly from all the servers, and thus
cannot mask the failure of the contact server towards the client-side proxy. Hence, if
the contact server fails during an invocation, the client-side proxy is required to ran-
domly pick another server and perform a reinvocation. The failure of the contact server,
however, is still masked from the client object. But the disadvantage is that the failover
delay of the atomic approach is equivalent to that of the leadercast approach when the
contact server fails. However, one way to provide true active replication is to let clients
become (transient) members of the object group prior to invoking methods on it, al-
lowing clients to receive replies from all members and not just the contact server. It is
foreseen that the client-side proxy can hide the fact that it has joined the object group,
from the client object before performing an invocation, e.g. by annotating the method
with @Atomic(join=true). An optional leaveAfter attribute could also be provided indi-
cating the number of invocations to be perform before the client-side proxy requests to
leave the group. This way true active replication can be provided also to clients.

6 Runtime Adaptive Protocol Selection

Another useful mechanism that can easily be implemented in this architecture is support
for dynamic runtime protocol selection. Dynamically changing the replication protocol
of methods at runtime is useful for systems that wish to dynamically adapt to changes
in the environment. For instance, a server may decide to change its replication protocol
for certain methods to improve its response time, if the system load increases. One
might also imagine a special module that can configure the replication protocols of

Annotation Markers for Runtime Replication Protocol Selection 505

a server group remotely from some management facility (e.g. ARM [11]) to adapt to
changing requirements. For example, if moving to more powerful hardware, one can
simply migrate replicas to the new hardware, followed by a change of the replication
protocol to use for certain methods. This section briefly outlines how this feature can
be implemented.

First, a @Dynamic marker is needed, which must be added to methods that should
support dynamic reconfiguration. Next, the Dynamic replication protocol must be im-
plemented, which is simply a wrapper for the other supported protocols. The Dynamic
protocol must maintain a mapping for each @Dynamic method and its currently con-
figured invocation semantic. By default, methods that declare @Dynamic should be
configured with the @Anycast semantic, unless the marker is parametrized with the de-
sired default protocol, e.g. @Dynamic(protocol=@Leadercast). A DynamicReplication-
Service interface can be provided that enables the server (or other protocol modules)
to dynamically change the invocation semantics of the server’s methods at runtime. A
protocol module may then implement update algorithms that can seamlessly reconfig-
ure the replication protocol of individual methods at runtime. One scheme could be to
change the replication protocol of certain methods based on the size of the group. For
example, if the group only has three members or less then @Atomic is used; if it has
more than three members then @Leadercast is used.

Another, more subtle use of this feature relates to a client designed for testing the
performance of various replication protocols. The server can then simply implement a
set of test methods, each declaring the @Dynamic marker, whereas the client can invoke
a special method to set the appropriate replication protocol to be tested, before invoking
the actual test methods on the server. To allow clients to reconfigure the replication
protocol of methods, the server (or a module) must provide a remote interface (e.g. by
exporting the DynamicReplicationService interface) through which clients can update
the invocation semantics of the server-side methods.

7 Conclusions

This paper presented an architecture and accompanying implementation of a dynamic
protocol selection mechanism that makes it flexible and easy to improve the resource
utilization of replicated services, by taking advantage of application semantics. The
features of this architecture may also be used to support self-optimization by runtime
reconfiguration of replication protocols for each individual server method.

References

1. Amir, Y., Danilov, C., Stanton, J.: A Low Latency, Loss Tolerant Architecture and Proto-
col for Wide Area Group Communication. In: Proc. Int. Conf. on Dependable Systems and
Networks (June 2000)

2. Arnold, K., Gosling, J., Holmes, D.: The Java Programming Language, 4th edn. Addison-
Wesley, Reading (2005)

3. Ban, B.: JavaGroups – Group Communication Patterns in Java. Technical report, Dept. of
Computer Science, Cornell University (July 1998)

506 H. Meling

4. Birman, K.P., Joseph, T.A.: Exploiting Virtual Synchrony in Distibuted Systems. In: Proc.
11th ACM Symp. on Operating Systems Principles (1987)

5. Défago, X.: Agreement-Related Problems: From Semi-Passive Replication to Totally Or-
dered Broadcast. PhD thesis, École Polytechnique Fédérale de Lausanne, Switzerland, Num-
ber 2229 (August 2000)

6. Felber, P.: The CORBA Object Group Service: A Service Approach to Object Groups
in CORBA. PhD thesis, École Polytechnique Fédérale de Lausanne, Switzerland (January
1998)

7. Felber, P., Défago, X., Eugster, P., Schiper, A.: Replicating CORBA Objects: a Marriage
Between Active and Passive Replication. In: Proc. 2nd Int. Conf. on Dist. Applic. and Interop.
Systems (June 1999)

8. Felber, P., Jai, B., Smith, M., Rastogi, R.: Using semantic knowledge of distributed objects
to increase reliability and availability. In: Proc. 6th Int. Workshop on Object-Oriented Real-
Time Dependable Systems (WORDS) (January 2001)

9. Garcia-Molina, H.: Using semantic knowledge for transaction. Processing in a distributed
database 8(2), 186–213 (1983)

10. Guerraoui, R., Schiper, A.: Software-based replication for fault tolerance. IEEE Com-
puter 30(4), 68–74 (1997)

11. Meling, H.: Adaptive Middleware Support and Autonomous Fault Treatment: Architectural
Design, Prototyping and Experimental Evaluation. PhD thesis, Norwegian University of Sci-
ence and Technology, Dept. of Telematics (May 2006)

12. Meling, H., Helvik, B.E.: Performance Consequences of Inconsistent Client-side Member-
ship Information in the Open Group Model. In: Proc. 23rd Int. Performance, Computing, and
Comm. Conf. (April 2004)

13. Montresor, A.: System Support for Programming Object-Oriented Dependable Applications
in Partitionable Systems. PhD thesis, Dept. of Computer Science, University of Bologna
(February 2000)

14. Moser, L.E., Melliar-Smith, P.M., Narasimhan, P.: Consistent Object Replication in the Eter-
nal System. Theory and Practice of Object Systems 4(2), 81–92 (1998)

15. Ren, Y., et al.: AQuA: An Adaptive Architecture that Provides Dependable Distributed Ob-
jects. IEEE Trans. Comput. 52(1), 31–50 (2003)

16. Sommers, F.: Call on extensible RMI: An introduction to JERI (December 2003), http://
www.javaworld.com/javaworld/jw-12-2003/jw-1219-jiniology p.html

17. Tanenbaum, A.S., van Steen, M.: Distributed Systems – Principles and Paradigms. Prentice
Hall, Englewood Cliffs (2002)

http://www.javaworld.com/javaworld/jw-12-2003/jw-1219-jiniology_p.html
http://www.javaworld.com/javaworld/jw-12-2003/jw-1219-jiniology_p.html

Enhanced Three-Round Smart Card-Based Key

Exchange Protocol

Eun-Jun Yoon and Kee-Young Yoo�

Department of Computer Engineering, Kyungpook National University,
1370 Sankyuk-Dong, Buk-Gu, Daegu 702-701, South Korea

Tel.: +82-53-950-5553; Fax: +82-53-957-4846
ejyoon@tpic.ac.kr, yook@knu.ac.kr

Abstract. In 2007, Kwon et al. proposed a three-round protocol, SKE,
for smart card-based key exchange in the three-party setting which pro-
vides both key independence and forward secrecy. This paper demon-
strates the vulnerability of the SKE protocol and then presents an
improvement to repair the security flaws of the SKE protocol.

Keywords: Cryptography, Authentication, Password, Key exchange,
Smart card, Cryptanalysis.

1 Introduction

A key exchange protocol between two communication entities, allows partici-
pants to identify each other and establish a common session key, which is used
to encrypt transmitted messages between them over an insecure channel. In
general, the key exchange protocols can be classified into three types: public
key, symmetric key, and password. The public key or symmetric key based key
exchange protocols need to share long-term secret keys between each user. How-
ever, it is difficult for a human to memorize long random strings used as secret
keys. In contrast, the password based key exchange protocol allows users to es-
tablish a session key using only human-memorable passwords. However, because
of low entropy of the password space, the password based key exchange protocol
should be designed to be secure against password guessing attacks or dictionary
attacks [1].

Recently, three-party key exchange protocol [2][3][4][5][6][7][8][9] is an impor-
tant cryptographic technique in the secure communication areas, by which two
clients, each shares a long-term secret key or a human-memorable password with
a trusted server, can agree a secure session key. Especially, smart card-based key
exchange in the three-party setting [8][9] allows two users to establish a session
key between them using smart cards, where each user uses a human-memorable
password to gain access to his/her smart card.

In 2007, Kwon et al. [9] proposed a three-round protocol, SKE, for smart
card-based key exchange in the three-party setting which provides both key

� Corresponding author.

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 507–515, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

508 E.-J. Yoon and K.-Y. Yoo

independence and forward secrecy and security against DoS attacks. Because
the SKE protocol only needs three-round to share a session key between two
clients, it provides both round and communication efficiency and is suitable for
mobile applications in which session keys have to be exchanged frequently.

Nevertheless, this paper demonstrates the vulnerability of the SKE protocol.
Using our attacks, we have shown that the SKE protocol is insecure to an im-
personation attack and is vulnerable to an integrity violence of the session key
from illegal modification. We also present a simple improvement to repair the
security flaws of the SKE protocol.

This paper is organized as follows: In Section 2, we briefly review the SKE
protocol. Section 3 shows the security flaws of the SKE protocol. In Section 4,
we present a simple improvement of the SKE protocol and discusses the security
of the proposed protocol. Finally, our conclusions are presented in Section 5.

2 Review of SKE Protocol

This section reviews Kwon et al.’s SKE protocol [9]. The SKE protocol is com-
posed of three phases: registration, session key agreement, and password updat-
ing. In the SKE protocol, all parameter choices depend on a security parameter
l. Abbreviations used in this paper are as follows:

– A, B, S: two users and a trusted server.
– MACk(m): the MAC of message m under key k.
– Ek(M): the symmetric encryption of a plaintext M under key k.
– Dk(C): the symmetric decryption of a ciphertext C under key k.
– PEy(M): the public key encryption [10][11] of a plaintext M with public key

y.
– PDx(C): the public key decryption [10][11] of a ciphertext C under private

key x.
– H(·): a secure hash function such that H(·) : {0, 1}∗ → {0, 1}l.
– xs: a master secret of the server S.

2.1 Registration Phase

1. When a new user A wants to register, A gives a password pwA to S.
2. Upon receiving a request from A, S computes PWA = H(A||pwA), vA =

H(A||xs) and wA = vA ⊕ PWA.
3. S stores (A, vA, wA) in a smart card and gives the smart card to A.

2.2 Session Key Agreement Phase

When A wants to establish a session key with B, A inserts his/her smart card
into a card reader, and types a password pw′

A. The smart card then computes
PW ′

A = H(A||pw′
A) and v′A = wA ⊕ PW ′

A, and checks if v′A = vA holds. If the
number of failing tries exceeds a predefined threshold, the smart card deactivates

Enhanced Three-Round Smart Card-Based Key Exchange Protocol 509

A (A, vA, wA) S (xs) B (B, vB, wB)

Round 1:

rA ← {0, 1}l

(y, x) ← PK(1l)
cA = EvA(rA)
Pick up TS
τA = MACrA(A||B||TS||y||cA)

A||B||TS||y||cA||τA−−−−−−−−−−−−−−−−−−−−−−→
Round 2:

vA = H(A||xs)
rA = DvA(cA)
Verify TS and τA

vB = H(B||xs)
cS = EvB (rA)
τS = MACrA(A||B||TS||y||cS)

A||TS||y||cS ||τS−−−−−−−−−−−−−−−−−−→
Round 3:

rA = DvB (cS)
Verify TS and τS

rB ← {0, 1}l

cB = PEy(rB)
τB = MACrA(A||B||TS||cB)

sk = H(A||B||rA||rB)
cB ||τB←−−

rB = PDx(cB)
Verify τB

sk = H(A||B||rA||rB)
Shared session key sk = H(A||B||rA||rB)

Fig. 1. Kwon et al.’s SKE protocol

itself to prevent on-line dictionary attacks. B also authenticates itself to his/her
smart card as A does.

After the above authentication of users by the smart cards, A and B (in fact,
the smart cards of A and B) execute the following protocol. An execution of
session key agreement phase is shown in Fig. 1.

Round 1. A→ S: A||B||TS||y||cA||τA

A randomly selects rA ∈ {0, 1}l and a pair of one-time public/private
keys (y, x). A computes cA =EvA(rA) and τA = MACrA(A||B||TS||y||
cA), where TS is a time stamp. A then sends A||B||TS||y||cA||τA

to S.
Round 2. S → B: A||TS||y||cS||τS

The server S computes vA = H(A||xs) and extracts rA from cA. S
checks if TS is within a tolerable time span and MAC τA is valid. If the
verification is successful, S computes vB = H(B||xs), cS = EvB (rA),
and τS = MACrA(A||B||TS||y||cS). S sends A||TS||y||cS||τS to B.

510 E.-J. Yoon and K.-Y. Yoo

Round 3. B → A: cB||τB

B extracts rA from cS . B checks if TS is within a tolerable time
span and MAC τS is valid. If the verification is successful, B ran-
domly selects rB ∈ {0, 1}l and computes cB = PEy(rB) and τB =
MACrA(A||B||TS||cB). B sends cB||τB to A. B calculates a session
key sk = H(A||B||rA||rB).

A first extracts rB from cB, and checks if MAC τB is valid. If the ver-
ification is successful, A computes a session key sk=H(A||B||rA||rB).

2.3 Password Updating Phase

1. When A wants to change his/her password, A inserts his/her smart card into
a card reader and types both old password pwA and new password pwnew

A .
2. The smart card then computes PW ′

A = H(A||pwA) using the input, and
computes v′A = wA ⊕ PW ′

A.
3. The smart card checks if v′A = vA holds. If the number of failing tries exceeds

a predefined threshold, the smart card deactivates itself. If the verification
holds, the smart card computes PWnew

A = H(A||pwnew
A) and wnew

A = wA ⊕
PW ′

A. PWnew
A = vA ⊕ PWnew

A , and replaces wA with wnew
A in the smart

card.

3 Cryptanalysis of SKE Protocol

This section shows that Kwon et al.’s SKE protocol is insecure to an imperson-
ation attack and an integrity violence of the session key from illegal modification.

3.1 Impersonation Attack

The impersonation attack on SKE protocol proceeds as follows:

1. A→ S: A||B||TS||y||cA||τA

A performs Round 1 of the session key agreement phase.
2. E(B)→ A: c∗B||τ∗

B
Upon intercepting A||B||TS||y||cA||τA sent by A, the attacker E lets c∗B =
y||cA and τ∗

B = τA. Finally, E sends c∗B||τ∗
B to A for impersonating user B.

Upon receiving c∗B||τ∗
B from E(B), A will decrypt c∗B by computing PDx(c∗B).

Then, A will check if MAC τ∗
B is valid. Because MAC τ∗

B is MACrA(A||B||TS||c∗B),
where c∗B = y||cA, the verification is successfully passed by A. Finally, A will com-
pute a session key sk = H(A||B||rA||PDx(c∗B)) and use it to perform the subse-
quent communication with B.

As a result of this impersonation attack, A will assure that he/she is com-
munication with B by verifying MAC τ∗

B and believe the responding party is a
legal user B. However, the user B did not perform the SKE protocol to agree
the session key sk. Thus, B will always reject A’s sending message. It means
that the SKE protocol dose not provide explicit authentication unlike Kwon et
al.’s security analysis. An example of the impersonation attack on SKE protocol
is shown in Fig. 2.

Enhanced Three-Round Smart Card-Based Key Exchange Protocol 511

A E(B)

rA ← {0, 1}l

(y, x) ← PK(1l)
cA = EvA(rA)
Pick up TS
τA = MACrA(A||B||TS||y||cA)

A||B||TS||y||cA||τA−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
c∗B = y||cA

τ∗
B = τA

c∗B ||τ∗
B←−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Decrypt c∗B
Verify τ∗

B
?
=MACrA(A||B||TS||c∗B)

sk = H(A||B||rA||PDx(c∗B))

Fig. 2. Impersonation attack

3.2 Integrity Violence of the Session Key from Illegal Modification

SKE protocol is also vulnerable to an integrity violence of the session key from
illegal modification. Suppose that attacker E interposes the communication be-
tween A, S, and B. Then, attacker E can perform the illegal modification attack
as follows:

1. A→ S: A||B||TS||y||cA||τA

A performs Round 1 of session key agreement phase.
2. Upon intercepting A||B||TS||y||cA||τA sent by A, the attacker E forwards it

to S, and lets c∗B = y||cA and τ∗
B = τA.

3. S → B: A||TS||y||cS||τS

S performs Round 2 of session key agreement phase.
4. B → A: cB||τB

B performs Round 3 of session key agreement phase.
5. Upon intercepting cB||τB sent by B, the attacker E replaces cB with c∗B and

τB with τ∗
B , respectively. Finally, E sends c∗B||τ∗

B to A.

After all, as described in the above impersonation attack, A will compute
the wrong session key sk = H(A||B||rA||PDx(c∗B)). However, A cannot detect
the generation of this wrong session key because he/she authenticate c∗B||τ∗

B by
verifying MAC τ∗

B . From now, A and B shall use mutually different session keys
in encrypting/decrypting their messages.

Unlike Kwon et al.’s security analysis, because all communicating parties
check the validity of the received messages using the MAC, SKE protocol cannot
detect this illegal modification attack and cannot prevent communicating parties
from maintaining the invalid sessions.

Through this illegal modification attack, attacker E can neither obtain the
wrong session key nor the correct session key sk but can make two parties believe
and use an unintended session key. Therefore, an illegal modification attack is a
serious attack, since it can prevent the two communication parties from reaching

512 E.-J. Yoon and K.-Y. Yoo

A E S B

A||B||TS||y||cA||τA−−−−−−−−−−−−−−−−−−−−→
c∗B = y||cA

τ∗
B = τA

A||B||TS||y||cA||τA−−−−−−−−−−−−−−−−−−−−→
A||TS||y||cS ||τS−−−−−−−−−−−−−−−−−−→

sk = H(A||B||rA||rB)
cB ||τB←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

c∗B ||τ∗
B←−−−−−−−−−−−−−−−−−−−−

Decrypt c∗B
Verify τ∗

B

?
= MACrA(A||B||TS||c∗B)

sk = H(A||B||rA||PDx(c∗B))
A and B share different session keys sk

Fig. 3. Integrity violence of the session key from illegal modification

a common secret key. An example of the integrity violence of the session key from
illegal modification on SKE protocol is shown in Fig. 3.

4 Enhanced SKE Protocol

This section proposes an improvement of Kwon et al.’s SKE protocol [9] to
prevent above two attacks. The enhanced SKE protocol is also composed of
three phases: registration, session key agreement, and password updating. The
registration phase and the password updating phase are same as Kwon et al.’s
SKE protocol. Our enhanced session key agreement phase performs as follows.

4.1 Enhanced Session Key Agreement Phase

When A wants to establish a session key with B, A inserts his/her smart card
into a card reader, and types a password pw′

A. The smart card then computes
PW ′

A = H(A||pw′
A) and v′A = wA ⊕ PW ′

A, and checks if v′A = vA holds. If the
number of failing tries exceeds a predefined threshold, the smart card deactivates
itself to prevent on-line dictionary attacks. B also authenticates itself to his/her
smart card as A does.

After the above authentication of users by the smart cards, A and B (in fact,
the smart cards of A and B) execute the following protocol. An execution of
enhanced session key agreement phase is shown in Fig. 4.

Round 1. A→ S: A||B||TS||y||cA||τA

A randomly selects rA ∈ {0, 1}l and a pair of one-time public/private
keys (y, x). A computes cA = EvA(rA) and τA = MACrA(A||B||TS
||y||cA), where TS is a time stamp. A then sends A||B||TS||y||cA||τA

to S.

Enhanced Three-Round Smart Card-Based Key Exchange Protocol 513

A (A, vA, wA) S (xs) B (B, vB, wB)

Round 1:

rA ← {0, 1}l

(y, x) ← PK(1l)
cA = EvA(rA)
Pick up TS
τA = MACrA(A||B||TS||y||cA)

A||B||TS||y||cA||τA−−−−−−−−−−−−−−−−−−−−−−→
Round 2:

vA = H(A||xs)
rA = DvA(cA)
Verify TS and τA

vB = H(B||xs)
cS = EvB (rA)
τS = MACrA(A||B||TS||y||cS)

A||TS||y||cS ||τS−−−−−−−−−−−−−−−−−−→
Round 3:

rA = DvB (cS)
Verify TS and τS

rB ← {0, 1}l

cB = PEy(rB)
τB = MACrA(A||B||TS||rB)

sk = H(A||B||rA||rB)
cB ||τB←−−

rB = PDx(cB)

Verify τB
?
= MACrA(A||B||TS||rB)

sk = H(A||B||rA||rB)
Shared session key sk = H(A||B||rA||rB)

Fig. 4. Enhanced SKE protocol

Round 2. S → B: A||TS||y||cS||τS

The server S computes vA = H(A||xs) and extracts rA from cA. S
checks if TS is within a tolerable time span and MAC τA is valid. If the
verification is successful, S computes vB = H(B||xs), cS = EvB (rA),
and τS = MACrA(A||B||TS||y||cS). S sends A||TS||y||cS||τS to B.

Round 3. B → A: cB||τB

B extracts rA from cS . B checks if TS is within a tolerable time
span and MAC τS is valid. If the verification is successful, B ran-
domly selects rB ∈ {0, 1}l and computes cB = PEy(rB) and τB =
MACrA(A||B||TS||cB). B sends cB||τB to A. B calculates a session
key sk = H(A||B||rA||rB).

A first extracts rB from cB, and checks if MAC τB is valid. If the ver-
ification is successful, A computes a session key sk = H(A||B||rA||rB).

514 E.-J. Yoon and K.-Y. Yoo

4.2 Security Analysis

This subsection discusses the enhanced security features. The rest are the same
as the original Kwon et al.’s SKE protocol as described in the literature [9].
Readers are referred to [9] for completer references.

Theorem 1. The enhanced SKE protocol can simply prevent the above described
impersonation attack and integrity violence problem of the session key from illegal
modification.

Proof. To prevent two security problems in Section 3, a simple solution is to
change τB = MACrA(A||B||TS||cB) with MACrA(A||B||TS||rB) in the Round
3 of session key agreement phase. That is, cB replaces with rB . Then, only
A can extract rB from cB and check if MAC τB is valid. We can see τB =
MACrA(A||B||TS||rB) is different to τA = MACrA(A||B||TS||y||cA). It means
that attacker E cannot compute τB = MACrA(A||B||TS||rB) because he/she
cannot know rA and rB. If E has x, he/she can decrypt cB and get rB . However,
it is impossible because x is A’s one-time private key. Therefore, our solution
can simply prevent two attacks.

5 Conclusions

This paper demonstrated the security flaws of Kwon et al.’s SKE protocol. Using
our attacks, we have shown that SKE protocol is insecure to the impersonation
attack. Additionally, we have shown that SKE protocol is also vulnerable to
an integrity violence of the session key from illegal modification. For the above
attacks, we presented a simple improvement to repair the security flaws of Kwon
et al.’s SKE protocol.

Acknowledgements

This research was supported by the MKE(Ministry of Knowledge Economy) of
Korea, under the ITRC support program supervised by the IITA(IITA-2008-
C1090-0801-0026). This work is partially supported by the 2nd Brain Korea 21
Project in 2007.

References

1. Ding, Y., Horster, P.: Undetectable on-line password guessing attacks. ACM Op-
erating Systems Review 29(4), 77–86 (1995)

2. Bellare, M., Rogaway, P.: Provably secure session key distribution: The three party
case. In: 27th ACM Symposium on the Theory of Computing.STOC 1995, pp. 57–
66. ACM Press, New York (1995)

3. Steiner, M., Tsudik, G., Waidner, M.: Refinement and extension of encrypted key
exchange. ACM Operating Systems Review 29(3), 22–30 (1995)

Enhanced Three-Round Smart Card-Based Key Exchange Protocol 515

4. Lin, C.L., Sun, H.M., Steiner, M., Hwang, T.: Three-party encrypted key exchange
without server public-keys. IEEE Commun. Lett. 5(12), 497–499 (2001)

5. Chang, C.C., Chang, Y.F.: A novel three-party encrypted key exchange protocol.
Computer Standards and Interfaces 26(5), 471–476 (2004)

6. Lee, S.W., Kim, H.S., Yoo, K.Y.: Efficient verifier-based key agreement protocol for
three parties without server’s public key. Appl. Math. Comput. 167(2), 996–1003
(2005)

7. Sun, H.M., Chen, B.C., Hwang, T.: Secure key agreement protocols for three-party
against guessing attacks. Systems and Software 75, 63–68 (2005)

8. Jaung, W.S.: Efficient three-party key exchange using smart cards. IEEE Trans.
Consum. Electron. 50(2), 619–624 (2004)

9. Kwon, J.O., Jeong, I.R., Lee, D.H.: Three-round smart card-based key exchange
scheme. IEICE Trans. Commun. E90-B(11), 3255–3258 (2007)

10. Abdalla, M., Bellare, M., Rogaway, P.: DHAES: An encryption scheme based on
the Diffie-Hellman problem, Submission to IEEE P1363 (1998)

11. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumption and
an analysis of DHIES, CT-RSA01, pp.143–158 (2001)

Assertions Signcryption Scheme in Decentralized

Autonomous Trust Environments

Mingwu Zhang1, Bo Yang1, Shenglin Zhu1, and Wenzheng Zhang2

1 Department of Computer Science and Engineering, College of Informatics,
South China Agricultural University, Guangzhou, 510642, P.R. China

{zhangmw,byang,zhusl}@scau.edu.cn
2 National Laboratory for Modern Communications, Chengdu, 610041, P.R. China

wzzhang@163.com

Abstract. Trust management is a crucial approach to authenticate user
and protect resource in distributed systems. Trust between two unknown
parties in different autonomous domain is established based on the par-
ties properties, by which are proven their qualifications through the dis-
closure of appropriate credentials. Assertion, described as well-defined
uniformly semantic structure entities such as credentials, policies and
requests, is encrypted by issuer or authority’s public key. In this paper,
we propose an efficient assertion security protect model based on sign-
cryption scheme for multiple autonomous domain managers and privacy
key generators(PKGs). We proved its security including confidentiality,
unforgeability, public verifiability, and ciphertext anonymity under the
DBDH assumption in the random oracle model, where the proposed
scheme has comparable advantage in security and efficiency to other
previous ID-based signcryption schemes in multiple PKGs.

Keywords: Trust management, assertion, signcryption, autonomous
trust domain, privacy.

1 Introduction

In distributed systems, such as P2P, Ad hoc, wireless sensor network and ubiq-
uitous computing systems, authorization and access control are the process by
which a security enforcement point determines whether an entity should be al-
lowed to perform a certain action. Authorization takes place after entity has
been authenticated. Furthermore, authorization occurs within the scope of an
access control policy.

Trust management, introduced by Blaze et al. [4] as a unified approach to
specifying and interpreting security policies, credentials, and relationships which
allows direct authorization of security-critical actions, is an important approach
to design authorization and delegation systems in decentralized environments,
such as business partnerships or coalition operations, and open decentralized
systems. This allows for increased flexibility and expressibility, as well as stan-
dardization of modern, scalable security mechanisms [20, 11].

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 516–526, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Assertions Signcryption Scheme 517

Trust between two unknown parties in different autonomous domain is
established based on the entities’ properties, by which are proven their quali-
fications through the disclosure of appropriate credentials. All requests, creden-
tials and interactive policies are described as assertions, by which use a uniform
structure and semantic to describe exchanging information in distributed net-
works [4, 11, 15, 1]. Assertion confers authority on keys that states the assertion
source trusts the public key in the authority structure to be associated an action.

In general, assertions are encrypted by issuer or authority public key. How-
ever, in self-organized networks such as ubiquitous systems, ad hocs, and wireless
sensor networks, there have neither pre-established infrastructures, nor central-
ized control servers. Especially, there are inadequate for assertions encryption
in autonomous domain trust environments because inter-domain entities can-
not obtain the other side’s public key without the help of pre-establish trust
relationship. At the same time, for the dynamic and decentralized, it is impossi-
ble to set up the infrastructure such as PKI in large decentralized autonomous
self-organized environments.

Signcryption, first proposed by Zheng [22], is a cryptographic primitive that
performs signature and encryption simultaneously, at a lower computational
costs and communication overheads than the traditional systems like PGP that
executes signing and encryption a message in sequential procedures. ID-based
cryptography, user’s public key can be any binary string that can identify the
user’s identity, is supposed to provide a more convenient alternative to conven-
tional public key infrastructure. Many ID-based signcryption schemes that have
been proposed are based on a single PKG [16, 19, 8, 2, 21], which is inadequate
for multiple autonomous environments [10, 17]. In large scale decentralized net-
works, nodes and entities can be organized as autonomous domains, on which
each domain has its key manager and private key generator.

Assertions will be exchanged between negotiation entities in trust system. Es-
pecially, in autonomous trust environment, assertions may be resent one by one
on multi-hop networks. In order to protect assertion security, Blaze et al. [4]
suggested that assertion should be signed in PKI infrastructure. Park et al. [17]
described a security model on fast mobile grid services based XML signcryp-
tion component. Bagge and Molva [3] proposed a policy-based encryption and
signature schemes based on bilinear pairings, whereas it has lower efficiency in
computing. In [18], Wang and Cao proposed an IBE scheme in multiple PKGs
environment which is based on Boneh-Franklin encryption scheme [5]. Lal and
Sharma [13] provided that Wang and Cao scheme [18] encryption scheme does
not have chosen ciphertext security in mDBHP assumption [12].

Li et al. [14] proposed an ID-based signcryption scheme based on multiple
PKGs in Ad hoc networks. The proposed scheme might leak the privacy because
of middle node can verify the ciphertext and know the message originality of
trust entities. In [9], author proposed a signcrption scheme that provide public
ciphertext authenticity and is forward and provably secure as well as publicly
verifiable in simple PKG model.

518 M. Zhang et al.

In this paper, we propose an efficient assertions protecting scheme in au-
tonomous trust environments, which is derived from ID-based signcryption in
multiple PKGs. Proposed scheme has the following security properties: confi-
dentiability, unforgeability, ciphertext anonymity, and public verifiability. We
also give its security proof under DBDH assumption in the random oracle model
and give a comparison with recent literatures in security, computing complexity
and ciphertext size.

The rest of this paper is organized as follows: Section 2 reviews the basic
concepts of bilinear map groups, the hard problems underlying our proposed
scheme, and gives a formal ID-based assertion signcryption scheme and its secu-
rity notions. We describe our concrete scheme in section 3 and prove its security
in section 4. We give the performance and security comparison with recent lit-
eratures in section 5 and draw our conclusion in section 6.

2 Cryptographic Blocks

2.1 Pairings and Complexity Assumptions

Definition 1 (Bilinear pairings). Let G1 be a cyclic additive group, whose
order is a prime q, P be a generator of G1. G2 be a cyclic multiplicative group
of the same order. Let ê : G1×G1 → G2 be a admissible bilinear mapping which
satisfies the following three properties:

– Bilinearity: If P, Q ∈ G1 and a, b ∈ Zq, then ê(aP, bQ) = ê(P, Q)ab.
– Non-degeneracy: There exists P, Q ∈ G1 such that ê(P, Q) �= 1.
– Computability: For all P, Q ∈ G1, one can compute ê(P, Q) in an efficient

polynomial time.

Definition 2 (CDHP). Given (P, aP, bP) for a, b ∈ Z∗
q , to compute abP .

Definition 3 (BDHP). Given (P,aP,bP,cP) for a, b, c ∈ Z∗
q , to compute

ê(P, P)abc.

Definition 4 (DBDH Problem). Given (P,aP,bP,cP,h) for a, b, c ∈ Zq, and
an element h ∈ G2, to decide whether h = ê(P, P)abc holds.

Let IG be a DBDH parameter generator. We say that an algorithm B has ad-
vantage AdvIG,B(k) in solving the DBDH problem for IG in time at most t(k)
if for sufficiently large k:

AdvIG,B(k) =
∣∣∣Pa,b,c∈RZq,h∈G2 [1← B(aP, bP, cP, h)]−
Pa,b,c∈RZq [1← B(aP, bP, cP, ê(P, P)abc)]

∣∣∣

2.2 Assertions Signcryption Scheme

An assertion signcryption scheme is specified as five randomized algorithms:
System-setup, Issuer-setup, Extract, Signcrypt, and Designcrypt.

Assertions Signcryption Scheme 519

– System-setup: It takes a security parameter k as input and returns systm
parameters Params. The system parameters include three cryptographic
hash functions.

– Issuer-setup: Each autonomous domain manager PKGi takes the Params
as input and returns his public/private key pair (P i

pub, si) where he only
publishes his public key to group members.

– Extract: This algorithm is the same to ID-based key extract algorithm [7,6],
where the difference is in that a user should register in and extract from his
autonomous domain manager PKGi in multiple autonomous trust domain
environments.

– Signcrypt: To send an assertion a to Bob identified by QB, sender Alice
obtains the ciphertext C by this algorithm on input of (a, SA, QB).

– Designcrypt: User Bob with secret key SB uses this algorithm to decrypt the
ciphertext and verify the valid of the signature.

2.3 Security Notions

The security of our proposed scheme satisfies semantics security, unforgeability,
public verifiability, and ciphertext anonymity.

1. Assertion confidentiality: The recipient of a message learns nothing about the
assertions he would need to possess in order to decrypt the message, unless
he actually has them. The game IDASC for semantic security in our scheme
is described as:

– Initial: The distinguisher D runs the System− setup and Issuer− setup
algorithms with a security parameter k and sends the public parameters
Params to adversary A.

– Proceeding query 1 adaptively: Adversary A performs key extract queries,
signcrypt queries, designcrypt queries adaptively. These queries are the
same as ID-based signcryption schemes [6](the different in that it can
make queries in multiple PKGs in proposed scheme).

– Challenge:A chooses two assertion a0, a1 and two identities IDA, IDB on
which he wants to be challenged. In this stage A cannot perform the key
extract query corresponding to IDB. D picks a random b from {0, 1}
and computes σ = Signcrypt(mb, SIDA , IDB) and sends σ to A.

– Query 2 adaptively: The adversary A can ask a polynomially bounded
number of queries adaptively again as in the first stage with the re-
striction that he cannot make the key extraction query on IDB and
designcrypt query on σ.

– Response: Finally, adversary A returns a bit b′ and wins the game if
b′ = b.

Definition 5. The assertion signcryption scheme is semantic security
(IND-IDASC-CCA) if adversary A obtains the advantage AdvIND−CCA(A)
= |Pr[b′ = b]− 1/2| is negligible in IDASC game.

520 M. Zhang et al.

Note that the scheme about confidentiality is insider security since the ad-
versary has the ability to query the private of the sender of a signcrypted
assertion. It ensures the forward security that the confidentiality is preserved
even if the sender’s private key is compromised.

2. Unforgeability: An signcryption scheme based on multiple PKGs is exis-
tentially unforgeable against chosen-message insider attack (EUF-IDASC-
CMA2) if no PPT forger F has a non-negligible advantage in the following
game:

– Challenger runs System− setup and Issuer− setup just like in IDASC
game.

– Forger F adaptively performs a number of queries just like in IDASC
game.

– F produces a ciphertext (σ, IDA, IDB) in the sense that the key is the
range of key extract algorithm, and wins the game if: (a) Designcrypt
(σ, IDA, IDB) �= ⊥; (b) σ is not produced by Signcrypt oracle.

3. Ciphertext anonymity: Ciphertext anonymity means that ciphertexts contain
no third-party extractable information that helps to identity the sender
or the intended recipient. The game about ciphertext anonymous against
chosen-ciphertext insider attack (ANON-IDASC-CMA2) if no PPT distin-
guisher D has a non-negligible advantage in the following game:

– Challenger runs System− setup and Issuer − setup just like in IDASC
game.

– The adversary A performs the queries just like in IDASC game. At the
end of this stage, A outputs a message a, and two senders IDA0 , IDA1 ,
and two recipient identities IDB0 , IDB1 , where A must not have the key
extract queries on IDB0 , IDB1 .

– Challenger picks a random b, b′ from {0, 1} and computes a ciphertext
σ = Signcrypt(a, IDAb

, IDBb′) and send σ to A.
– A adaptively makes a number of queries just like in IDASC game with

the restriction that it must not make designcrypt queries on σ. Finally,
A outputs the bits (d, d′) and wins the game if (d, d′) = (b, b′).

Adversary A’s advantage in anonymous game ANON-IDASC-CMA2 is de-
fined as:

AdvANON−CMA(A) = |Pr[(d, d′) = (b, b′)]− 1/4|.
4. Public verifiability: Public ciphertext verifiability means that any third party

should be able to verify the origin of the ciphertext without knowing the
content of the message and getting any help from the intended recipient.

3 Proposed Scheme in Multiple Autonomous Trust
Domain

In this section, we describe our proposed ID-based assertion signcryption scheme.
The proposed scheme consists of five algorithms as following.

Assertions Signcryption Scheme 521

1. System-setup: Given a security parameter k, generate (G1, G2, ê, q, P) as in
definition 1. Choose three hash functions H1 :{0, 1}∗→G1, H2 :G1×{0, 1}l →
Z
∗
q , H3 : G2 → G2

1×{0, 1}l, where l is the number bits of message ciphertext.
2. Issuer-setup: Each assertion issuer PKGi (Trust domain managers or PKGs)

picks at random a secret master key si ∈ Z
∗
q , and publishes the corresponding

public key P i
pub = siP .

3. Extract: In an autonomous trust domain, a user selects a corresponding
PKG to register in and extracts his/her private key. Suppose that Alice
registers with PKGi and extracts his privacy key by SA = siQA, where
QA = H1(IDA).

4. Signcrypt: Suppose that Alice, identified by IDA in trust domain PKG1

(domain public key is P 1
pub), wants to send an assertion A to user Bob in

trust domain PKG2(domain public key is P 2
pub), she carries out the following:

– Chooses r←R Z
∗
q , and computes U = rQA;

– Computes h = H2(U ||a), and V = (r + h)SA;
– Computes t = ê(SA, QB)r, and W = H3(t)⊕ (V ||QA||a);
– Sets the ciphertext as C = (U, W).

5. Designcrypt: On received the signcrypted assertion C = (U, W) from IDA,
Bob follows the steps below to obtain the plaintext assertion a:

– Computes t = ê(U, SB);
– Computes (V ||QA||a) = W ⊕H3(t), and h = H2(U ||a);
– If QA /∈ G1 or V /∈ G1 holds, returns ⊥; otherwise
– Accepts the assertion a and returns � iff the following equation holds:

ê(P 1
pub, U + hQA) = ê(P, V)

It is easy to see that the above algorithms are consistent. Indeed, if C is a valid
ciphertext, then

ê(P, V) = ê(P, (r + h)SA) = ê(P, SA)r ê(P, hSA)
= ê(P 1

pub, U)ê(P 1
pub, hQA) = ê(P 1

pub, U + hQA)

Note that we accept the assumption in [7] that multiple PKGs share common
system parameters. Furthermore, Every PKGs has different master secret key si.
Different from [14] in multi-domain communication that needs two domains pub-
lic key, our scheme only needs the signcypter trust domain’s public key, and it
can pass through the inter-domains resend message without mid-domain PKGs’s
public key . That is, if a message is sent to the target node that pass across mul-
tiple trust domain secretly, it decrypts the ciphertext using source domain public
key P 1

pub and target node private key.

4 Security Analysis

Theorem 1 (Confidentiality). If there is an adversary A can succeeds with prob-
ability ε in IDASC game, then there is a distinguisher D can solve the DBDH
problem with advantage at least

ε′ � ε · 1
qH1
− 1

2k · qU

qH1

522 M. Zhang et al.

Proof. Assuming that the distinguisher D receives a random instance(P 1
pub,

aP 1
pub, bP 1

pub, cP
1
pub, h) of the DBDH problem. His goal is to decide whether

h = ê(P 1
pub, P

1
pub)

abc or not. D will run A as a subroutine and act as A’s chal-
lenger in the IND-IDASC-CCA2 game. We assume that A will ask for H1(ID)
before ID is used in any other queries. We also assume that A never makes an
Designcrypt query on a signcrypted assertion obtained from the Signcrypt oracle,
and he can only make Designcrypt queries for observed ciphertext assertions.

To maintain consistency and avoid collision between queries made by A, D
keeps the following lists: Li for i = 1, 2, 3 that are initially empty and are used to
keep track of answers to queries asked by A to oracles H1, H2, H3, respectively.

At the beginning of the game, D gives A the system parameters with P 1
pub =

aP , The value a is unknown to D and simulate the master key of the P 1
pub.

H1 queries: H1(IDi)

– At the j-th query, D answers by H1(IDj) = bP (Assume that the identity
IDj belongs to P 1

pub, otherwise exchange P 1
pub for P 2

pub)
– For i �= j, if IDi already appears on the L1, then D responds with

H1(IDi) = biP , otherwise
– D chooses bi ∈R Z∗

q , puts the pair (IDi, bi) in list L1 and answers
H1(IDi) = biP .

H2 queries: H2(U ||a)

– If (U ||a, h) ∈ L2 for some h, returns h.
– Else chooses h ∈R Z∗

q , adds the pair (U ||a, h) in list L2 and answers
H2(U ||a) = h.

H3 queries: H3(t)

– If (t, z) ∈ L3 for some z, returns z.
– Else chooses z ∈R G1×G1×{0, 1}l, adds the pair (t, z) in list L3 and answers

H3(t) = z.

Key extract queries: Extract(IDi)

– If IDi = IDj , D aborts the simulation.
– Else searches the list L1 for the entry (IDi, bi) corresponding to IDi and

answers biP .

Signcrypt queries: Signcrypt(a, IDA, IDB)

We have the following cases to consider:

– Case 1: IDA �= IDj . D finds the entry (IDA, bA) in L1, and computes the
private key SA by running the key extraction query; then D returns the
result by query Signcrypt(a, SA, QB).

– Case 2: IDA = IDj and IDB �= IDj . Chooses r, h ∈R Z∗
q ; computes U =

rP − hQA, V = rP 1
pub; adds (U ||a, h) to L1; computes t = ê(SA, QB)r(D

could obtain SA from the key extraction algorithm because IDB �= IDj);
finds H3(t) in L3 with r′ �= r and computes W = H3(t) ⊕ (V ||QA||a, r′)(In
this case, D will repeat the process with r′ �=r at most qS+qH3 times as L3).

Assertions Signcryption Scheme 523

– Case 3: IDA = IDj and IDB = IDj . Following the three steps of Case 2;
chooses h∗ ∈R G1×G1×{0, 1}l and computes W ∗ = h∗⊕ (V ||QA||a); Adds
tuple (IDA, IDB, U, V, W ∗, r, h∗) to Ls and returns (U, W ∗).

Designcrypt queries: Designcrypt(U ′, W ′)
For a designcrypt query on a ciphertext C′ = (U ′, W ′) between identities IDA

and IDB, we have the following two cases to consider:

– Case IDB = IDj . D always returns a symbol⊥ that notifiesA the ciphertext
σ′ = (C′, U ′, W ′) isn’t a valid one.

– Case IDB �= IDj . D computes t′ = ê(U ′, SB); obtains the (V ||QA||a) = W⊕
H3(t) from L3; extracts t = H2(U ||a) from L2; finally, returns a′ if equation
ê(P, W ′) = ê(P 1

pub, U
′ + hQA) holds, otherwise rejects the ciphertext.

After a polynomially bounded number of queries, A picks a pair of identities
on which he wishes to be challenged. Note that D will fail and stop if A has
asked a key extraction query on IDj . The probability of A will not fail in this
stage is (qH1 − qK)/qH1 . Furthermore, with a probability 1/(qH1 − qK), A can
choose the pair (IDi, IDj) with i �= j to be challenged. Hence the probability
that A’s response is helpful to D is 1/qH1 .
A chooses two plaintext m0, m1 ∈ M. Challenger D chooses b ∈R {0, 1}, lets

U = cP 1
pub and t = h to signcrypt message mb in Signcrypt algorithm. Here h

is a candidate for the DBDH problem. D sends the signcrypted assertion C to
A. A performs a polynomially bounded number of queries just like in the first
stage. Neither can he request a key extraction about IDi and IDj , nor ask the
Designcrypt query on C. At the end of the queries, A produces a bit b′ for
which he believes the relation C = Signcrypt(mb′ , SIDi , QIDj) holds. At this
moment, if b′ = b, distinguisher D outputs h = ê(U, SIDj) = ê(cP 1

pub, abP) =
ê(P 1

pub, P
1
pub)

abc which solves the DBDH problem for the previous random in-
stance, otherwise D stops and answers “failure”.

Now we consider the probabilities in queries phases, challenge phase and re-
sponse phase. The probability that A choose the pair (IDi, IDj) with i �= j to
be challenged on the pair (IDi, IDj) is 1/qH1 . The probability that D can give
a correct Designcrypt query is ε + 1/2 − qU/2k. Finally, the advantage of D
that solving the DBDH problem is

ε′ ≥ 1
qH1
· (ε− qU/2k) = ε·2k−qU

qH12k = ε · 1
qH1
− 1

2k · qU

qH1

Theorem 2 (Ciphertext anonymity). If there is an adversary A can succeeds
with probability ε, then there is a simulator B can solve the DBDH problem with
advantage at least

ε′ � ε · 1
qH1
− 1

2k · qU+1
qH1 (qS+2)

Theorem 3 (Unforgeability). The proposed scheme is existentially unforgeable
against adaptive chosen-message attacks(EUF-IDASC-CMA2).

Proof. The unforgeability against adaptive chosen messages attacks of our scheme
is derived from the signature security of Cha and Cheon [6] under the CDH

524 M. Zhang et al.

assumption. If an attacker F can forge a signcrypted message, he can forge a
Cha and Cheon’s signature as following:

– Sign: Given an assertion a, computes U = rQA, h = H2(U ||a), and computes
V = (r + h)SA, The signature on a is σ = (U, V).

– Verify: When receiving σ = (U, V), it performs the proposed verify algorithm.
Computes h = H2(U ||a), checks whether the equation holds: ê(P, V) =
ê(P 1

pub, U + hQA).

Due to the hardness of CDH problem in Cha and Cheon’s scheme, our pro-
posed scheme is unforgeable against chosen message attacks.

Theorem 4 (Public verifiability). The proposed scheme provides the public au-
thenticity.

Proof. One may be convinced that the ciphertext is came originally from QIDA

by computing and verifying as follows:

– computes h = H2(U ||a)
– checks whether the equation ê(P, V) = ê(P 1

pub, U + hQA) holds.

5 Efficiency Analysis

We compare the security with recent literatures providing encryption and signa-
ture schemes in multiple PKGs environments in Table 1. In [14], it provides the
semantic security, unforgeability and public verifiability. In [18], it is identical
to that of Galindo’s BF-IBE encryption variant, which cannot provide unforge-
ability. Ciphertext anonymity in [14, 18] hasn’t been proposed, whereas it only
provides encryption scheme security proof in multiple PKGs in [18].

Table 1. Security comparison with related schemes

scheme security
confidentiality unforgeability public verifiability ciphertext anonymity

[14] y y y ?

[18] y n n n

our scheme y y y y

Table 2. Comparison of computing costs and ciphertext size

scheme sigcrypt/sig desig/verify ciphertext size

G1 G2 ê G1 G2 ê

[14] 3 1 1 0 1 4 2|G1| + |m|
[18] 1 1 1 1 0 1 |G1| + 2|m|

our scheme 3 0 1 1 0 3 3|G1| + |m|

Assertions Signcryption Scheme 525

In Table 2, we compare the computing complex and ciphertext size. Because
the scheme in [18] cannot provide unforgeability, it has the least ciphertext size.
Compared with [14], we can see that our scheme has higher efficiency in com-
puting costs.

6 Conclusion

We have proposed an efficient assertion protect scheme based on ID-based sign-
cryption scheme. Our scheme can work in multiple autonomous domain envi-
ronments such as decentralized self-organization network, autonomous P2P, and
large scale distributed trust management environment etc. We have proved that
our scheme satisfies the confidentiality, unforgeability, public verifiability, and
ciphertext anonymity with higher security than recent literatures. However, our
scheme is only loosely related to DBDH problem, which raises an open problem
to provide a tight security proof for multiple trust domain security in standard
security assumptions. Furthermore, it is interesting in protecting assertion pri-
vacy in multiple trust autonomous domain environments.

Acknowledgement

We would like to thank the anonymous reviewers for their valuable comments
and feedbacks. This work is supported by the National Natural Science Foun-
dation of China under Grants 60573043 and 60773175, the Foundation of the
Key Lab for Guangdong Electronic Commerce Application Technology under
Grant 2007gdecof002, and the Foundation of National Laboratory for Modern
Communications under Grant 9140c1108010606.

References

1. Agudo, I., Lopez, J., Montenegro, J.A.: A representation model of trust relation-
ships with delegation extensions. In: Herrmann, P., Issarny, V., Shiu, S.C.K. (eds.)
iTrust 2005. LNCS, vol. 3477, pp. 116–130. Springer, Heidelberg (2005)

2. Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption.
Journal of cryptology 20, 203–235 (2007)

3. Bagga, W., Molva, R.: Policy-based cryptography and applications. In: S. Patrick,
A., Yung, M. (eds.) FC 2005. LNCS, vol. 3570, pp. 72–87. Springer, Heidelberg
(2005)

4. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: Proc.
of the 17th Symposium on Security and Privacy, pp. 164–173. IEEE Computer
Society Press, Los Alamitos (1996)

5. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

6. Cha, J., Cheon, J.: An identity-based signature from gap Diffie-Hellman groups. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer, Heidelberg
(2002)

526 M. Zhang et al.

7. Chen, L., Kudla, C.: Identity based authenticated key agreement protocols from
pairings. In: Proceedings. 16th IEEE Computer Security Foundations Workshop,
2003, pp. 219–233 (2003)

8. Chen, L., Malone-Lee, J.: Improved Identity-Based Signcryption. In: Vaudenay, S.
(ed.) PKC 2005. LNCS, vol. 3386, pp. 362–379. Springer, Heidelberg (2005)

9. Chow, S.S., Yiu, S., Hui, L.C., Chow, K.: Efficient forward and provably secure
id-based signcryption scheme with public verifiability and public ciphertext au-
thenticity (Springer-Verlag). In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS,
vol. 2971, pp. 352–369. Springer, Heidelberg (2004)

10. Kidston, D., Robinson, J.: Distributed network management for coalition deploy-
ments. In: MILCOM 2000. 21st Century Military Communications Conference Pro-
ceedings, Los Angeles, CA, USA, vol. 1, pp. 460–464 (2000)

11. Krukow, K., Nielsen, M.: Trust structures: denotational and operational semantics.
International journal of information security 6, 153–181 (2007)

12. Lal, S., Kushwah, P.: Security proof for shengbao wangs identity based encryption
scheme. Cryptology ePrint Archive, Report 2007/316 (2007),
http://eprint.iacr.org/

13. Lal, S., Kushwah, P.: Multi-pkg id based signcryption. Cryptology ePrint Archive,
Report 2008/50 (2008), http://eprint.iacr.org/

14. Li, F., Hu, Y., Zhang, C.: An identity-based signcryption scheme for multi-domain
ad hoc networks. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp.
373–384. Springer, Heidelberg (2007)

15. Li, N., Winsborough, W.H., Mitchell, J.C.: Distributed credential chain discovery
in trust management. Journal of Computer Security 11, 35–86 (2003)

16. Malone-Lee, J.: Identity-based signcryption. Cryptology ePrint Archive, Report
2008/098 (2002), http://eprint.iacr.org/

17. Park, N., Moon, K., Chung, K., Won, D., Zheng, Y.: A security acceleration using
xml signcryption scheme in mobile grid web services. In: Lowe, D.G., Gaedke, M.
(eds.) ICWE 2005. LNCS, vol. 3579, pp. 191–196. Springer, Heidelberg (2005)

18. Wang, S., Cao, Z.: Practical identity-based encryption (ibe) in multiple pkg envi-
ronments and its applications. Cryptology ePrint Archive, Report 2007/100 (2007),
http://eprint.iacr.org/

19. Yang, G., Wong, D.S., Deng, X.: Analysis and improvement of a signcryption
scheme with key privacy. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC
2005. LNCS, vol. 3650, pp. 218–232. Springer, Heidelberg (2005)

20. Yao, D., Tamassia, R.: Cascaded authorization with anonymous-signer aggregate
signatures. In: Proc. of 2006 IEEE workshop on Information Assurance, pp. 21–23
(2006)

21. Yu, Y., Yang, B., Huang, X.Y., Zhang, M.W.: Efficient identity-based signcryption
scheme for multiple receivers. In: Xiao, B., Yang, L.T., Ma, J., Muller-Schloer, C.,
Hua, Y. (eds.) ATC 2007. LNCS, vol. 4610, pp. 13–21. Springer, Heidelberg (2007)

22. Zheng, Y.: Digital signcryption or how to achieve cost (signature & encryption)
� cost(signature)+cost(encryption) (Springer-Verlag). In: Kaliski Jr., B.S. (ed.)
CRYPTO 1997. LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 527–539, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Study of Information Security Practice in a Critical
Infrastructure Application

Martin Gilje Jaatun1, Eirik Albrechtsen2, Maria B. Line1, Stig Ole Johnsen2,
Irene Wærø2, Odd Helge Longva1, and Inger Anne Tøndel1

1 SINTEF ICT, NO-7465 Trondheim, Norway
{Martin.G.Jaatun,Maria.B.Line,Odd.H.Longva,

Inger.A.Tondel}@sintef.no
2 SINTEF T&S, NO-7465 Trondheim, Norway

{Eirik.Albrechtsen,Stig.O.Johnsen,Irene.Waro}@sintef.no

Abstract. Based on multiple methods we have studied how information
security practices, and in particular computer security incident response
practices, are handled in the Norwegian offshore oil and gas industry. Our
findings show that there is still insufficient awareness regarding the importance
of information security in the offshore industry, and that increased vigilance is
required in order to respond to mounting threats of tomorrow.

Keywords: Incident Response Management, Information Security, Process
Control, Security Practice.

1 Introduction

During the last years the concept of Integrated Operations (IO), i.e. use of information
technology and real-time data to operate petroleum processes, has been implemented
in the oil and gas industry on the Norwegian Continental Shelf [1]. This implies that
new technologies and new ways of working and communicating are implemented to
create remote operations, control and support; e.g. through merging ICT systems and
Supervisory Control And Data Acquisition (SCADA) systems. This development is
still in progress, and the integration of industrial processes, technology and different
actors is likely to continue and even tighten up in the years to follow. On the one
hand, integrated operations represent a major opportunity for increased and more
efficient production and reduced operational cost as well as improved safety
performance [1]. On the other hand, implementation of new and supplementary
information systems increases the systems’ vulnerability to breakdowns due to
information security breaches. Breaches can lead to consequences such as production
stops; disabling of critical safety barriers and problems of providing oil and gas to
customers [2]. It is thus necessary for the petroleum industry to implement adequate
information security measures to contribute to a stable production and sale as well as
safety for its employees.

This paper gives a picture of information security practices in the Norwegian oil
and gas industry by presenting empirical findings from the research project “Incident

528 M.G. Jaatun et al.

Response Management” (IRMA), funded by the Research Council of Norway and the
Norwegian Oil Industry Association.

The IRMA research project developed a framework for incident response
management [3]. The management framework includes the following three phases
(see Fig. 1): prepare (planning and preparation of incident response); detect and
recover (detection of incidents and restoration to normal operation); and learn
(experience sharing and learning afterwards). There are several standards and good
practice documents that describe incident handling (e.g. [4, 5]). The management
system developed in IRMA differs from the traditional incident handling approaches
in two ways: It focuses on both reactive and proactive learning; and it is tailored to
the oil and gas industry.

Incident handling
and

learning

External dynamics

Fig. 1. Incident Response Management Phases

The complex processes of oil and gas producing installations are monitored and
controlled by Supervisory Control And Data Acquisition (SCADA) systems which are
traditionally operated by personnel with a different background than administrators of
traditional computer systems. This implies that there is a situation of disparate cultures
that also results in information security challenges.

The paper is structured as following: Section 2 presents the empirical sources and
methods we have used, section 3 presents our findings, which are discussed further in
section 4, while section 5 concludes and summarises our study.

2 Empirical Sources and Methods

The development of the incident response management (IRMA) framework for the
petroleum industry presented in Jaatun et al. [3] required a combination of different
empirical sources of information security practices in this industry:

– An interview study with key personnel in the Norwegian oil and gas industry
– A case study of incident response management practice at an oil and gas

installation in the North Sea

 A Study of Information Security Practice in a Critical Infrastructure Application 529

– A risk and vulnerability assessment of infrastructure and work processes at an
offshore installation

– A study of cultural aspects of information security by using a tool for
assessing information security culture at a particular installation

– A workshop on information security and integrated operations
– A workshop on the main findings of IRMA in the Norwegian offshore industry
– System dynamic workshops

In addition, the IRMA project team has been represented in Norwegian Oil
Industry Association’s (OLF) workgroup on information security for the entire
duration of the project. The workgroup meetings have provided the project with
important background information and firsthand access to operator and contractor
personnel who are actively involved with offshore safety and security work. The
workgroup meetings have also been used to discuss preliminary results from IRMA,
and have provided us with useful feedback. Furthermore, the fact that we had
contributed to the workgroup meetings made it significantly easier to recruit
participants for our workshops and interviews.

Although the empirical studies had a main emphasis on incident handling, other
parts of information security were also uncovered during the study, which are
presented in the subsequent sections.

The bulleted list above also shows that a combination of different qualitative social
science methods was used for collecting information about information security
practices in the oil and gas industry. Information security practices in this particular
industry have previously not been the subject of many research attempts. In that way,
qualitative research methods proved to be a good methodological approach due to the
explorative nature of qualitative research. In general, qualitative research provides
understandings of social phenomena by proximate studies of the local contexts of the
study [6]. By close interaction between researchers and informants, the researchers
will get an understanding of the processes studied rather than only a description of the
processes [7], which proved to be useful for the present study.

Qualitative research results should not be treated as generalized facts, but
understandings of processes in the particular context of the study [6]. As a
consequence, the findings presented in this paper are not necessarily generalized facts,
but a representation of information security practices in the Norwegian oil and gas
industry.

3 Findings

This section presents the main findings from the different data sources mentioned in
the previous section.

3.1 Interviews

Nine interviews of personnel with knowledge and experience of information security
in the oil and gas industry were conducted by phone in the period of March-June
2007. The interviews aimed at exploring how incidents were handled in the
Norwegian oil and gas industry, and were approached by looking at how incidents

530 M.G. Jaatun et al.

were practically dealt with and how the informants believed a best practice for
incident response management should look like. The interviews were analyzed
according to [8] by structuring the information in matrices and looking for patterns in
the structured data (see [9] for a detailed result matrix).

In general, the interviews showed that the informants experienced very few
information security incidents that have impact on production. It was assumed that it
could be between one and two years between each incident.

Information security measures tend to have a main focus on technology. Technical
issues are often covered exclusively, while there are seldom discussions of defenses in
breadth; covering organisational and human factors in addition to technical issues.

There are many plans for different parts of incident response in the studied
organisations, with different level of details. A short and common plan, documenting
specific incident response management incorporated in the organisation, is missing
among most of the interviewees. Scenario training, which is widely used in other loss
prevention areas in the industry, for handling information security breaches is seldom
performed. Furthermore, the interviews showed that individual awareness and
proactive unrest related to information security could be improved. Knowledge and
understanding of information security could be improved among employees,
especially among suppliers.

The learning phase after an incident has occurred is considered to be important.
However, some informants were worried whether learning actually had any effect for
future activities, and feared that learning was quickly forgotten. The learning is
thorough. Root causes are not always identified, discussions do not always involve
information and communication technology (ICT) and process professionals together,
and lessons learned are not published.

The interviewees’ organisations’ reporting systems are seldom tailored to
information security, and there are often many different reporting systems, leading to
a lack of a unified system for reporting incidents. The interviews also indicate a lack
of frankness about real incidents. A change of focus is demanded in the industry to
make experience transfer both inside the organisation and to external organisations
possible.

3.2 A Case Study at an Oil and Gas Installation in the North Sea

In the early stages of the IRMA project, a case study at an oil and gas installation was
performed. The case study aimed at describing how incident response management
was performed in practice at a selected offshore installation. Interviews, meetings and
document studies were used in the case study.

In general, the incident response management at the studied installation has a
potential to be more systematic and planned, as the current management approach
seemed scattered and randomly made. The study showed that the only incident
handling procedure at the installation was a procedure for handling virus infections1;
there were no other relevant procedures for incident response. There were some
awareness-creating activities at the installation, which among other subjects also

1 This procedure was not immediately available at the start of the case study, and might actually

have been developed as a result of our inquiry.

 A Study of Information Security Practice in a Critical Infrastructure Application 531

included information security. Our findings indicate that if there is a virus infection in
the SCADA systems, it might take weeks before the infection is detected; even if the
system is not operating normal.

When incidents happen, there is limited learning in the organisation from these
incidents, and there is moderate communication within the organisation about real
incidents.

3.3 Risk and Vulnerability Assessment

To gain more insight into ICT-related risks involved in integrated operations, a risk
and vulnerability assessment was conducted based on the work process of daily
production optimization of an offshore installation. Small-scale workshops with
managers were performed to identify incidents and assess the risk of these incidents.

This assessment and the knowledge attained by analyzing the coupling and
dependencies of ICT systems, vulnerabilities, responsibilities, possible consequences
of various incidents and how incidents are usually detected and recovered, gave a
basis for further work as well as implications for the assessed installation.

The most critical incidents identified in the risk assessment were: the operation
centre goes down jamming the SCADA system; the SCADA system goes down; a
virus/worm infects the system from external sources; and missing situational
awareness from central control room operator.

The risk assessment suggested the following risk reducing measures relevant for
incident response management: monitoring the stability of the SCADA equipment
when it is integrated with ICT infrastructure; external PCs should be scanned and
checked prior to being allowed in technical network or offshore network, or supplier
should guarantee that the equipment are without viruses; incident reporting and
learning from incidents should be improved; the responsibilities related to technical
network and the integration of ICT/SCADA systems should be unambiguous and
monitored; awareness, safety and security culture should be improved onshore and
offshore; common risk assessment among the actors in the organisational network
should be established and sustained; and emergency response plans should
incorporate information security incidents.

3.4 Assessment of Information Security Challenges at an Installation

A tool for assessing organisational aspects of information security, Check-IT [10, 11],
was used to identify some key challenges related to an integrated operation
installation in a half-day workshop with ten managers and staff members. CheckIT
consists of a set of questions regarding organisational aspects of information security,
including alternatives for answers. Although it is a questionnaire, the questions are so
open-ended that they function well for group discussions as well, which results in
both an assessment of the current status as well as improved awareness among
discussion partners.

The study showed that information security is not satisfactorily integrated in
projects and new installations. Furthermore, suppliers and service providers are not
satisfactorily involved in incident planning, detection and learning. The identification

532 M.G. Jaatun et al.

of critical ICT systems is not satisfactorily in developing integrated operations;
HAZOP analysis [12] (risk analysis) of ICT/SCADA systems is seldom done.

Productivity goals are sometimes prioritized ahead of information security
requirements, as rules and procedures related to information security are sometimes
ignored in situations with conflicting demands.

In general, the personnel on offshore installations have a low level of awareness
related to information security (e.g. regarding spyware and virus). This is partly
explained by lack of communication of information security issues in the organisation.
This lack of communication is also reflected in unsatisfactorily sharing of information
security incidents between organisations in the industry.

3.5 Workshop on Information Security and Integrated Operations

A workshop on information security in integrated operations was arranged by the
Norwegian Petroleum Directorate, the Petroleum Safety Authority Norway, The
Norwegian Oil Industry Association (OLF) and SINTEF in November 2006 [13].
The workshop aimed at 1) creating awareness on information security in integrated
operation among different organisational groups (ICT, Health, Safety, Security and
Environment (HSSE), automation and operations); 2) creating an arena for experience
transfer and networking; and 3) identifying possible measures. About fifty
participants from the oil and gas industry, the power supply industry; public agencies
and research institutions attended the workshop.

Several information security issues in integrated operations were discussed in
parallel groups, including topics on incident response management. One result of the
workshop was that there is a need for more measurement of information security (key
performance indicators) to evaluate whether the security level corresponds to policies
and regulations; to evaluate effects of measures and to integrate information security
with other business areas. Such measurements should be with some kind of reference
point, e.g. the OLF Information Security Baseline Requirements (ISBR) [14].

There is a lack of willingness to report incidents in the industry; as a consequence
more work is needed to study how to develop a reporting culture; how to inform about
incidents; and how to develop a best practice regarding reporting and handling of
incidents. Routines for reporting, including feedback on the reports, should be
simplified.

Training and preparedness for ICT-related incidents is lacking. The industry has
traditionally trained on defined hazard and accident situation scenarios in other loss
prevention areas. Such scenarios are however lacking for ICT-related incidents.
Furthermore, the workshop indicated that there is a gap in communication between
different groups of professionals offshore, i.e. HSSE, ICT and process. This is
reflected by ICT routines that are not adjusted to the offshore reality.

3.6 Workshop on Main Findings from IRMA

In October 2007 some of the main findings on IRMA project in the offshore industry
were discussed at a workshop. 15 participants from the industry, governmental
agencies, consulting companies and research institutions participated at the workshop.

 A Study of Information Security Practice in a Critical Infrastructure Application 533

Regarding the plan phase of incident response management it was emphasized that
incident response management must appear as a proactive management approach in
order to be prepared to handle and learn from whatever incidents that may occur. In
this proactive approach, performing risk analysis should be the foundation for
providing decision support to how incident response management should be planned
and performed.

In the detect and recover phase, it is important that those who discover or suspect
an incident know who to notify. One must define possible incidents and then see
which channels for reporting are the most efficient for those incidents, e.g. perform a
risk analysis.

To be able to learn from incidents, structures for reporting incidents must be in
place. A module for information security incidents is needed in applied software for
reporting incidents. Contractors fill out a form, which is registered in the incident
reporting tool Synergi2 by someone else. It is a challenge that different parts of the
organisation have different traditions for reporting incidents. For example that control
room operators do not report incidents, since they only handle the consequences of
incidents, not the incident itself.

The workshop participants felt that an information security forum for experience
transfer in the oil and gas industry is an interesting idea, but the industry must decide
what such a forum should be used for. It is important to include different professions
in such a forum.

The workshop also discussed whether historical data on incidents is relevant for
IRMA in integrated operations. New technology and new ways of organizing work
may change the relevance of historical data.

3.7 System Dynamics Workshops and Cooperation with the AMBASEC Project

In 2005 the IRMA project team in collaboration with the AMBASEC3 research
project team, carried out two system dynamic workshops, The objective of the
workshops were to reach a deeper understanding of present risks in the transition to
integrated operations and the implications for incident handling in this transition. The
processes included building a system dynamic model for a particular integrated
operation installation.

The results from the workshops and the collaboration between IRMA and
AMBASEC are documented in two reports [15, 16] and several scientific publications
[17-20]. The areas of discussion included identifying key indicators and dynamic
system stories to anticipate change in a system’s state over time.

In the first workshop, a preliminary version of a system dynamics model for the
transition to integrated operations was established, and a set of stakeholders4 and their
influences on possible outcomes for security in IO were identified. Two dynamic
stories were developed with the intent to show the relationship between operational

2 http://www.synergi.com
3 AMBASEC (A Model-based Approach to Security Culture) is a project funded by the

Research Council of Norway, anchored at Agder University College (AUC – now University
of Agder). AMBASEC has had a formal collaboration with IRMA.

4 Examples of stakeholders are oil company (system owner), chief executive officer, platform
chief, control room manager, incident response team manager, Ptil, media etc.

534 M.G. Jaatun et al.

change, security and the stakeholders: “Virus exposure in virtual organisations” and
“The effect of the introduction of compliance mechanisms to suppliers and contractors.”

Workshop attendees discussed a risk and vulnerability analysis for the work
process “daily production optimization”, and came up with different views on how
work processes will develop in the future of IO.

Findings from the first workshop included:

– Monitoring risk change should be given high priority when developing new
policies in the industry related to incident reporting, creating CSIRTs5 and
raising awareness.

– Transitions from traditional to integrated operations create vulnerabilities.
The timing of these vulnerabilities may depend on how well the organisation
is able to change its operating processes, train its staff and contractors, and
gain acceptance of the transition.

– Successful implementation of collaborative arenas reinforces their effectiveness.
On the other hand, limited success will likely slow acceptance of this innovation,
and increase the resources required for subsequent rollouts, or possibly derail the
project.

– The transition from existing to new work processes will introduce new
security issues and potential for security lapses. These problems, if not
detected and mitigated, are expected to increase the resistance to further
change and adoption.

– Delays in learning and reflection may reduce the migration to integrated
operations. Development of a capacity to detect problems and learn from
them may facilitate future transitions. Conversely, a limited capacity to
detect problems as they occur will obstruct change and delay corrections,
increase risk, and put the project at greater peril.

The second workshop was focused on the implementation of a new workprocess in
the Brage oilfield. Simulation on the SD-model where the parameters were adjusted
by the experts from Hydro brought forward a set of hypotheses:

– Maturation and adoption of technology enables work processes and
transformation.

– Introduction of new technologies and work processes can create knowledge
gaps and vulnerabilities.

– More communication off-platform reduces resistance to change, which
enables adoption of mature processes.

– Incident reporting creates a stock of knowledge of incidents, which allows us
to bring on mature work processes and improves rate of getting mature
technology online, reducing vulnerabilities, incidents and damage.

While the effects of this work on the proposed integrated operations migration are
not by any means clear, the group model building process achieved several important
outcomes for the participants. The qualitative models identified several problematic
areas in the transition. The potential for a Knowledge Gap and a Work Process gap

5 Computer Security Incident Response Team.

 A Study of Information Security Practice in a Critical Infrastructure Application 535

reinforced the importance of timing and knowledge sharing. The long-term effectiveness
of CSIRT activity on the ability of the firm to develop a strong security culture is
dependent upon a move beyond damage repair and into active learning.

From a methodical perspective, the results had two additional important outcomes:
Group model building engaged and focused a diverse set of experts and modellers to
develop a holistic, systems view of a problem. This was particularly gratifying given
the initial skepticism expressed during the planning of the meeting. Through the
feedback models, a wide set of interrelationships emerged that influence the success
or failure of both the integrated operations and the CSIRT initiatives. Though little
hard data was available, the participants’ knowledge of the general structures and
behaviours in their environment was sufficient for credible and understandable causal
modelling. This is a crucial finding in high-threat environments, as little data is ever
made available outside the secure environment of the firm.

The state of information security in this domain is still relatively immature when
compared to the state of safety. In the realm of safety there are numerous reporting
systems, often mandated by law or if not directly by law, by high political pressure.
Perhaps we will not see well-functioning incident reporting systems for information
security before government intervenes or threatens to do so. Another reason for the
relatively slow adaptation of incident reporting systems may be the singular focus on
information security as a technical issue. Non-security personnel are often kept
completely out of the loop and are instead presented with a set of prescribed rules.
However, this is a limited approach to user education. Users must be kept ‘in the
loop’; only then will they see the necessity and usefulness of following the rules
prescribed by information security specialists.

Simulation runs on the SD-model illustrate the potential for a successful incident
reporting system. However, they also show that there is potential for partial or even
complete failure if important factors, such as the quality of investigations and
motivation, are not handled well.

4 Discussion

Traditionally, there has been, and still is, a greater focus on safety than on security in
the offshore industry. This is due to the fact that the process control systems used to
be proprietary, and the set of security threats applicable was clear and not very large,
while working conditions for the people posed a greater overall threat to their lives.

4.1 Few Incidents are Observed

A general view in the industry is that there are few information security incidents
occurring. A majority of employees therefore do not see why having a plan for
incident response is important. It is perceived more as an unnecessary and expensive
hassle than an efficient measure which may save lots of time and money the day
something happens.

536 M.G. Jaatun et al.

It is claimed within the industry that loss of money is acceptable as long as no lives
are lost. However, an offshore installation in full production generates so much
money, that it is hard to believe that loss of money really is of no concern.

Because of the lack of a complete method for incident response, how can it be
stated that not many incidents occur? In meetings where IT staff and process control
staff have been together, we have seen several times that one of the groups have
revealed stories about incidents that up till then was unknown by the other one.
Communication of incidents seems to be absent, and also the ability to discover
incidents can be questioned. This leads us to conclude that improved indicators for
information security are needed.

4.2 Combining Two Different Worlds

Regarding the two groups IT staff and process control staff, there is clearly a gap
between them which may pose great security challenges. This is especially relevant
now when process control systems change from being nearly completely proprietary,
or at least not connected to any external networks, to include more commercial off-
the-shelf hardware and software and being connected to the Internet, although with
several layers of security mechanisms. Where process control staff used to be in total
control and manage their systems without any help from IT staff, there is now need
for a close interaction where IT staff need to manage and maintain systems in
production. This requires a mutual understanding for each other’s fields of expertise.
In the world of the IT staff, computers crashing from time to time are normal;
rebooting is sometimes necessary and often this also fixes the problem; and installing
patches can usually be done at any time. In the world of the process control staff,
keeping the production systems running without interruption is crucial, as a system
crash may result in stop in production, which again leads to loss of money. This
means that patches should not be installed before there is a 100% certainty they will
work without any compatibility problems. Rebooting computers may be the same as
stop of production as well as disable safety systems. And backup systems are rarely
tested, if at all, because what if they do not work? These different mindsets can be
explained by different objectives in the loss prevention approaches [21]. The IT world
typically sees confidentiality and data integrity as the main objective, while the
industrial control systems aim at system availability and data integrity to ensure plant
safety and occupational injury prevention.

It is a challenged to combine the mindsets of IT staff and process control staff is a
in a successful way, but collaboration between them is necessary. This means that
there is a need for communication and skills development for both groups of people.
To integrate different perceptions of risk and risk mitigation, Klinke and Renn [22]
suggest a discourse-based management approach where the involved actors interact
and discuss risk issues. Workshop methods such as seek conferences and focus groups
might prove useful for this purpose.

4.3 Learning Based on Few Incidents

As long as we do not have proof of anything else, we need to base our work on the
perceived fact that few incidents actually occur. However, as we believe that this will

 A Study of Information Security Practice in a Critical Infrastructure Application 537

change in the near future, with the ongoing transition to integrated operations and the
use of new technologies, we see a clear need for improvement of incident response
management. First and foremost, having a plan for how to deal with different kinds of
incidents, including reporting procedures and responsibilities, is a good starting point.
A greater challenge is how to implement learning of incidents as there are so few to
learn from.

Sharing experiences and knowledge between companies within the same industry
is a good way of gathering information about incidents which again can be used as a
basis for learning. It is important that the employees can relate to the referred
incidents, which can be achieved by collecting information from similar companies. A
challenge in such cross-organisational learning is openness about the incidents.
Embarrassing and threatening aspects is known to be major obstacles for learning [23]
, most security incidents are in its nature threatening and embarrassing, so a a key
challenge in future sharing of inexperience and learning is to create an environment
for openness on these incidents. We see that the work group organized by OLF has
succeeded in this type of information exchange. This group has now existed for three
years, and is based on trust and openness. This has been a good first-step-on-the-way
in improving communication about information security within the industry.
However, in the long run it is not sufficient that only Chief Information Security
Officers (CISOs) communicate. Information needs to be spread throughout a larger
part of each company, and there must be communication present across company
limits on several layers.

5 Conclusion

We have presented the findings of an empirical study of information security
practices in oil and gas operations on the Norwegian Continental Shelf, with a special
focus on computer security incident response. Our findings show that there is still
insufficient awareness regarding the importance of information security in the
offshore industry, and that increased vigilance is required in order to respond to
mounting threats of tomorrow.

Further work is required in order to instill this sense of vigilance on the oil and gas
industry. We believe that increased effort should be put into developing information
security indicators that proactively can measure (lack of) security for these
installations, including near-miss type of indicators. If the industry allows itself to get
lulled into a sense of security based on the currently small number of perceived
incidents, it risks getting swamped by a future deluge of attacks.

Acknowledgements

This research was supported by the Research Council of Norway and the Norwegian Oil
Industry Association (OLF). The authors thank all participants of OLF’s workgroup on
information security, and in particular StatoilHydro, for their cooperation.

538 M.G. Jaatun et al.

References

1. OLF, Integrated Operations on NCS, Norwegian Oil Industry Association (2004),
http://www.olf.no/?22894.pdf

2. Albrechtsen, E., Hovden, J.: Industrial safety management and information security
management: risk characteristics and management approaches. In: European Safety and
Reliabilty Conference 2007 (ESREL 2007), Stavanger, Norway (2007)

3. Jaatun, M.G., et al.: Incident Response Management in the oil and gas industry, SINTEF
Report A4086, Trondheim (December 2007),
http://www.sintef.no/upload/10977/20071212_IRMA_Rapport.pdf

4. ISO/IEC TR 18044:2004 Information technology – Security techniques – Information
security incident management (2004)

5. Grance, T., Kent, K., Kim, B.: Computer Security Incident Handling Guide, NIST Special
Publication 800-61 (2004),
http://csrc.nist.gov/publications/nistpubs/800-61/sp800-
61.pdf

6. Thagaard, T.: Systematikk og innlevelse: en innføring i kvalitativ metode (in Norwegian)
[Systematic and insight: introduction to qualitative methods] Bergen: Fagbokforlaget
(2003)

7. Kvale, S.: Det kvaliative forskningsintervju (in Norwegian) [Interviews: an introduction to
qualitative research interviewing]. Oslo: Ad Notam Gyldendal (1997)

8. Miles, M.B., Huberman, A.M.: Qualitative Data analysis: an expanded sourcebook. Sage,
Thousand Oaks, Calif (1994)

9. Albrechtsen, E., et al.: IRMA - Interviews on incident response in the oil and gas industry,
SINTEF MEMO (November 22, 2007)

10. Nordby, Y., Hansen, C.W.: Informasjonssikkerhet – atferd, holdninger og kultur (in
Norwegian) [Information security – behaviour, awareness and culture] NTNU-rapport
ROSS(NTNU)200504 (2005)

11. Johnsen, S.O., et al.: CheckIT – A program to measure and improve information security
and safety culture. International Journal of Performability Engineering 3(1 Part II), 174–
186 (2007)

12. Hazard and operability studies (HAZOP studies) - Application guide, IEC 61882 (2001)
13. Jaatun, M.G. (ed.): Arbeidsseminar om IKT-sikkerhet i Integrerte Operasjoner: Referat (in

Norwegian) [Minutes from workshop on ICT Security in IO] (2007),
http://www.sintef.no/upload/10977/sluttrapport.pdf

14. Information Security Baseline Requirements for Process Control, Safety and Support ICT
Systems (2007), http://www.olf.no/hms/retningslinjer/?50182.pdf

15. Rich, E., Andersen, D.F., Richardson, G.P.: OLF IRMA-AMBASEC Group Modeling
Report I, University at Albany, Albany, NY (2006)

16. Rich, E., Andersen, D.F., Richardson, G.P.: OLF IRMA-AMBASEC Group Modeling
Report II, University at Albany, Albany (2006)

17. Rich, E., Gonzalez, J.J.: Maintaining Security and Safety in High-threat in E-operations
Transitions, presented at 39th Hawaii International Conference on System Sciences,
Hawaii (2006)

18. Rich, E., et al.: Emergent Vulnerability in Integrated Operations: A Proactive Simulation
Study of Risk and Organizational Learning, presented at 40th Hawaii International
Conference on System Sciences, Hawaii (2007)

19. Sveen, F.O., Rich, E., Jager, M.: Overcoming organizational challenges to secure
knowledge management. Information Systems Frontiers 9(5), 481–492 (2007)

 A Study of Information Security Practice in a Critical Infrastructure Application 539

20. Sveen, F.O., et al.: Toward viable information security reporting systems. Information
Management & Computer Security 15(5), 408–419 (2007)

21. Stouffer, K., Falco, J., Kent, K.: Guide to SCADA and Industrial Control Systems Security
(draft), NIST Special Publication 800-82 (2006),
http://csrc.nist.gov/publications/drafts/800-82/Draft-SP800-
82.pdf

22. Klinke, A., Renn, O.: A New Approach to Risk Evaluation and Management: Risk-Based,
Precaution-Based, and Discourse-Based Strategies. Risk Analysis 22(6), 1071–1094
(2002)

23. Argyris, C., Schön, D.A.: Organisational learning II: Theory, method and practice.
Addison-Wesley, Reading (1996)

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 540–554, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Web Search Results Clustering Based on a Novel Suffix
Tree Structure

Junze Wang, Yijun Mo, Benxiong Huang, Jie Wen, and Li He

Institude of Communication Software and Switch Technology, Huazhong
University of Science and Technology, Wuhan 430074, Hubei, China

wangjunze@smail.hust.edu.cn

Abstract. Web search results clustering are navigator for users to search needed
results. With suffix tree clustering (STC), search results can be clustered fast,
automatically, and each cluster is labeled with a common phrase. Due to the large
memory requirement of suffix tree, some other approaches have been proposed,
with lower memory requirement. But unlike other algorithms, STC is an
incremental algorithm and a promising approach to work on a long list of
snippets returned by search engines. In this paper we proposed an approach for
web search results clustering and labeling, based on a new suffix tree data
structure. The approach is an incremental and linear time algorithm, with
significantly lower memory requirements. This approach also labels every final
cluster a common phrase, thus it is suitable for quickly browsing by users.
Experimental results show that the new approach has better performance than
that of conventional web search result clustering.

Keywords: Search results organization, document clustering, incremental
clustering, a new suffix tree, lower memory requirement.

1 Background and Related Work

Existing search engines often return a long list of search results, so users have to go
through the list to identify their required results. The goal of a clustering algorithm on
our domain is to group each document with others sharing a common topic, thus helps
users to find relevant results.

Most traditional clustering algorithms cannot be directly used for web search results
clustering because of some practical issues. For example, the clustering algorithm
should be fast enough for online calculation; and the generated clusters should have
readable descriptions for quick browsing by users, etc. Zamir and Etzioni [1][2] gave a
detailed analysis on these issues. They also proposed an algorithm named STC, which
finds clusters based on the common phrases shared by snippets.

In recent years several web search results clustering algorithms have been proposed
[3-8]. But they are not incremental clustering algorithm. Unlike them, the STC
algorithm is an incremental algorithm, so web search result clustering based on this
algorithm is a promising approach to work on a long list of snippets returned by search

 Web Search Results Clustering Based on a Novel Suffix Tree Structure 541

engines. However the original STC algorithm often constructs a long path of suffix tree
and suffers from large memory requirements.

Hau-Jun Zeng and etc. [9] introduced an improved suffix tree with N-gram to deal
with the problem of the original suffix tree. However, the suffix tree with N-gram can
discover only partial common phrases when the length of N-gram is shorter than the
length of true phrases. For example, given a true phrase “suffix tree clustering
algorithm”, a suffix tree with 3-gram can discover partial phrases: “suffix tree
clustering” and “tree clustering algorithm”. In this case, STC with N-gram labels a
cluster with a partial phrase (probably unreadable), and gives too many candidate
clusters. Thus, it may hurt the final cluster quality.

In response to this situation, Jongkol Janruang [10] proposed a new partial phrase
join operation, which can join the partial phrases, combine the candidate clusters, and
generate more readable labels.

Additionally, STC algorithm extracts all right-complete substrings of the true phrase
(including the true phrase itself). Take the phrase “suffix tree clustering algorithm” for
example, all the right-complete substrings of it, such as “tree clustering algorithm”,
“clustering algorithm” and “algorithm”, will be discovered, and all these partial phrases
are regarded as candidate phrases. In this condition STC algorithm gives too many
candidate clusters and may hurt the final cluster quality too. On this issue [11] has given
a good analysis on this issue.

We will analyze the shortcomings of STC with N-gram further more in section 2; In
section 3, we will propose a new suffix tree data structure, named suffix tree with
X-gram, along with a improved STC algorithm which overcomes the shortcomings of
conventional STC algorithms, and still maintains the advantages; At last the
experimental results show that our new approach has better performance than that of
conventional STC algorithms.

2 Suffix Tree with N-Gram

Original suffix tree is a very efficient way to identify true common phrases in snippets,
but suffers from large memory requirements. Suffix tree with N-gram performs the
similar function, and has lower memory requirements. “With N-gram” means the
suffixes fed to the suffix tree is limited no more than N. If a suffix is longer than N, only
the first N chars will be fed to the tree and the chars after the Nth char will be discarded.
As an example, an original suffix is shown in Figure 1, and a suffix tree with N-gram
(N=3) is shown in Figure 2, given the snippet [suffix, tree, clustering, algorithm, x1, x2,
x3] for building the two suffix trees. The expression {x1, x2, …, xi} (m, n) means the
word sequences “x1, x2, …, xi” present in snippet m, at position n. So in Figure 2,
{suffix, tree, clustering} (1, 1) means “suffix tree clustering” presents in snippet 1, at
position 1; {tree, clustering, algorithm} (1, 2) means “tree clustering algorithm”
presents in snippet 1, at position 2.

Obviously suffix tree with N-gram maintains fewer words than original suffix tree.
In this way it has lower memory requirements. Maintaining fewer words also implies it
spends less time in building the tree.

542 J. Wang et al.

Fig. 1. The original suffix tree building depends on the snippet [suffix, tree, clustering, algorithm,
x1, x2, x3]

Fig. 2. The suffix tree with 3-gram building depends on the snippet [suffix, tree, clustering,
algorithm, x1, x2, x3]. The maximum depth of this suffix tree is 3.

However, suffix tree with N-gram discovers only partial common phrases when the
length of N-gram is shorter than the length of true phrases. For example, give a true
phrase “suffix tree clustering algorithm”, a suffix tree with 3-gram can discover partial
phrases: “suffix tree clustering” and “tree clustering algorithm”.

A new partial phrase join operation is proposed in [10]. The candidate cluster
combining technique uses the join operation to define a new common phrase of a new
cluster when merging a pair of similar candidate clusters. For example, the candidate
cluster A = {suffix, tree, clustering} (1, 1) and B = {tree, clustering, algorithm} (1, 2)
shown in Figure 2, a new common phrase is defined as

A + B = {suffix, tree, clustering, algorithm} (1, 1)

This new phrase can be discovered in snippet [suffix, tree, clustering, algorithm, x1,

x2, x3].

 Web Search Results Clustering Based on a Novel Suffix Tree Structure 543

The partial phrase join operation generates the true common phrases which are more
readable, but still can not overcome the shortcomings of “right-complete” [12]. Given
the true phrase “suffix tree clustering algorithm”, STC discovers all its right-complete
substrings, such as “tree clustering algorithm”, “clustering algorithm”, “algorithm” and
the phrase itself, and considers all of them as candidate clusters. But in all of them, only
the phrase itself is useful for clustering! Given a phrase with length L, there are at most
L right-complete substrings. Generate so many useless candidate clusters will increase
the consumption of STC algorithm and hurt the final cluster quality.

In addition, there is still some redundant data in the suffix tree with N-gram. In the
next section we will introduce a new data structure named suffix tree with X-gram,
which can be constructed with less memory space; and we will introduce a complement
operation to eliminate the useless “right-complete” substrings of the true phrases.

3 The Clustering Algorithm Based on Suffix Tree with X-Gram

In order to lower the memory requirement, the maximum length of suffixes fed to the
suffix tree should be limited. In STC with N-gram, it is no more than a constant variable
N. But in fact, we want the true phrases fed to the tree as a whole one, even it is longer
than N; and the noisy word sequences fed to the suffix tree as short as possible, even it
is already shorter than N.

In the clustering algorithm based on suffix tree with X-gram, we use X to denote the
maximum length of suffixes fed to the suffix tree. We make X an adaptive variable. The
suffix tree with X-gram also limits the length of the suffixes which fed to the tree, but is
more reasonable than with N-gram. With this data structure, the word sequences which
are presented more frequently are considered more likely to be true common phrases,
and will be fed to the tree as a whole one; but the noise word sequences fed to tree will
be limited, even it is not so long. In this way suffix tree with X-gram discovers the true
common phrases, and maintains fewer words than suffix tree with N-gram. Now we
show the construction process of suffix tree with X-gram.

A suffix tree with X-gram for the word sequences S[1…m] can be built like this: first
enters the first word S[1] into the tree as a leaf node. Then it successively enters the
suffix S[i…j] into the growing tree, for i increasing from 2 to m, and S[i…j] is the
longest prefix of suffix S[i…m] matched the conditions. The details of this construction
method are presented as follow:

1. Initialize a tree only has a root node. Add the first word S[1] to the tree and then
generate the suffix tree T1, which only has a leaf node denotes the word S[1].

2. Tree Ti+1 is constructed from Ti. The steps are as follows:
 2.1. Starting at the root of Ti the algorithm finds the longest path from root whose

label matches a prefix of S[i+1…m]. This path is found by successively comparing and
matching words in suffix S[i+1…m] to words along a unique path from the root, until
no further matches are possible.

544 J. Wang et al.

2.2. When no further matches are possible, the algorithm must arrive at a node,
say Ncur. Now the match part between the path in the tree and the suffix S is S[i+1, j].
The algorithm creates a new leaf node labeled S[j+1], which is a child node of Ncur.

For instance, given the snippet [suffix, tree, used, in, suffix, tree, clustering], this
algorithm first feeds the word “suffix” to the tree (step 1 in the algorithm), then feeds
the words “tree”, ‘used’, “in” to the suffix tree ordinal. Then it is turn to the word
“suffix”, and “suffix” already exists in the tree as a path from root to a leaf node. So add
word “tree” to tree, as a child node of “suffix” (step 2.2 in the algorithm). The suffix
tree generated at last is shown in Figure 3.

Fig. 3. An Example of Suffix Tree with X-gram. Building depends on the snippet [suffix, tree,
used, in, suffix, tree, clustering]. Step 1: feed “suffix” to tree; step 2: feed “tree” to tree; step 3:
feed “used” to tree; step 4: feed “in” to tree; step 5: feed “suffix tree” to tree; step 6: feed “tree
clustering” to tree; step 7: feed “clustering” to tree.

The suffix tree with N-gram limited the depth of suffix tree with a constant variable
N; but with X-gram, the depth of suffix tree will be limited with a variable X, which is
not constant but an adaptive variable. So if a word sequences present several times in
snippets, it will be fed to the tree wholly, even it is longer than N; and if a word
sequences present little times, it will be feed to the tree partial, even it is shorter than N.

Given the snippets set show in Table 1:

Table 1. Snippets set

D1 suffix, tree, clustering, x1, x2
D2 y1, suffix, tree, clustering, y2
D3 z1, z2, suffix, tree, clustering

Build the original suffix tree, suffix tree with 3-gram and suffix tree with X-gram,
which are shown in Figure 4(a), Figure 4(b) and Figure 4(c). The number of nodes
maintained by respective suffix tree is show in Table 2. We use Ukkonen’s algorithm
[13] to construct the suffix tree and every node denotes a word.

 Web Search Results Clustering Based on a Novel Suffix Tree Structure 545

(a)

(b)

Fig. 4. (a) Example of original suffix tree. Building with the snippets set shown in Table 1.
(b) Example of suffix tree with 3-gram. Building with the snippets set shown in Table 1.
(c) Example of suffix tree with X-gram. Building with the snippets set shown in Table 1.

546 J. Wang et al.

(c)

Fig. 4. (continued)

From Table 2 we see the suffix tree with X-gram maintains fewer nodes, and the true
common phrase “suffix tree clustering” has been feed to the tree wholly. It is because of
many word sequences in the snippet sets are noise, and noisy word sequences feed to
the suffix tree with X-gram are shorter than the other two types of suffix tree. So, with
our approach the algorithm maintains fewer nodes, and lowers the memory
requirements.

Table 2. The total number of nodes maintained by three different STC algorithms

 Original STC STC with 3-gram STC with X-gram
number of nodes be

maintained
33 24 13

But there are still some problems needed to be dealt with in this new approach.

1. Some phrases can not feed to the tree wholly.
Review the process of building a suffix tree with X-gram. The true phrase can not be
fed to the tree wholly when it first presents in the snippets set. For a true phrase with
length L, it will be fed to the tree wholly after it presented L times at most. Take the
example of the phrase “suffix tree clustering” in snippets set shown in Table 1. When it
presents at the first time in D1, the substring “suffix” was fed to the tree; when it
presents at the second time in D2, the substring “suffix tree” was fed to the tree; when it
presents at the third time in D3, the whole phrase “suffix tree clustering” was fed to the
tree.

 Web Search Results Clustering Based on a Novel Suffix Tree Structure 547

It need to be noticed that in application, most true common phrases no longer than 4
(almost 80% [14]). It means most true common phrases can be fed to the tree as a whole
phrase, after they present 4 times at most.

On the other hand, the word sequences with frequency no greater than threshold T
are considered as noise and should be filtered out in clustering process. Suppose T is 4,
then the word sequences with frequency less than 4 will be considered as noise and
should be filtered out.

In a word, if a word sequence with frequency no less than threshold T (suppose T is
4), it will be considered as a true phrase, and it probably can be fed to the tree as a whole
one; and if a word sequence with frequency less than the threshold T, it should be a
noisy word sequences and need not to be feed to the tree as a whole one.

Review the snippets set shown in Table 1, the word sequence “suffix tree clustering”
presents 3 times and fed to the tree wholly at last, so it should be a true phrase; and the
word sequence “x1 x2” can not be fed to the tree as a whole one, and it obviously a noise.

In addition, the vast majority of the true common phrases with length no more than 6
(more than 90% [14]), so we limited the most depth of suffix tree with X-gram no more
than 6. In this case, the vast majority of the true common phrases can still be found
wholly.

Undoubtedly there are still some true phrases be broken up and can not fed to the tree
wholly. In this condition, we adopt the partial phrases join operation, and then the true
common phrase can be discovered.

Although join operation still needed in STC with X-gram, due to more true phrases
can be fed to the suffix tree wholly, so fewer partial phrases are needed to be joined,
than that in STC with N-gram.

2. A phrase can be fed to the tree wholly, but not all snippets contain this phrase
can be discovered in the suffix tree with X-gram.
The snippets set are given in Table 3, we build a suffix tree with X-gram which is
shown in Figure 5. We give only 3 branches (branch A, B, and C) and omit other
branches. Here we use Ukkonen’s algorithm. The dotted lines denote the suffix links.

Table 3. Snippets set

D1 suffix, tree, clustering, x1, x2
D2 y1, suffix, tree, clustering, y2
D3 z1, z2, suffix, tree, clustering
D4 suffix, tree, clustering, v1, v2
D5 w1, suffix, tree, clustering, w2

The true phrase “suffix tree clustering” presented in D1, D2, D3, D4 and D5, but in
the suffix tree we can only find it presented in D3, D4 and D5. In the suffix tree with
X-gram, we merely discover D1 contains “suffix”, D2 contains “suffix tree”, but we
can not discover D1 or D2 contains the phrase “suffix tree clustering”. It means that not
all the snippets contain this phrase can be discovered in the suffix tree with X-gram.

548 J. Wang et al.

Fig. 5. The suffix tree with X-gram building with the snippets set shown in Table 3. The dotted
lines denote the suffix links.

In this condition, we can not select the candidate clusters depending on the
frequency of a word sequences in the suffix tree directly. We should complement this
branch first. In this step, the successive word sequences followed “suffix” in D1 and
successive word sequences followed “tree” in D2, will be fed to the tree, in order to
complement the branch. The length of these word sequences is limited; ensure the
depth of the tree no more than 6. Because we used the Ukkonen’s algorithm to construct
the suffix tree, so the successive word sequences can be located with suffix links.

Fig. 6. The suffix tree with X-gram after complement

 Web Search Results Clustering Based on a Novel Suffix Tree Structure 549

After complement operation, the suffix tree is shown in Figure 6.
Now we can get a candidate cluster {suffix, tree, clustering} (1, 1)(2, 2)(3, 3)(4,1)(5,

2) from the tree. And after complement operation, all the merely “right-complete”
substring of true phrase “suffix tree clustering”, such as “tree clustering” and
“clustering” are all filtered out.

In the branch A shown in Figure 5, the word sequences followed “suffix” in D1, the
word sequences followed “suffix tree” in D2, the word sequences followed “suffix tree
clustering” in D3, are all uncertainty. These parts may form “suffix tree clustering v1” 3
times, or “suffix tree clustering w2” 3 times, or “suffix tree clustering” 3 times.
Suppose the threshold T of the frequency is 3, this branch may contain candidate
clusters, so it needs to be complemented.

It should be emphasized that not all the branches need to be complemented. Take the
branch C shown in Figure 7 for example, it can not contain phrase with frequency
greater than 2. Suppose T is 3, then this branch can not contain candidate clusters. This
branch needs not to be complemented.

Fig. 7. A branch which need not to be complemented

Suppose a branch contains such a phrase, which with frequency C in the suffix tree,
and with length L. If C+L is greater than T, this branch should be complemented.

In fact, the phrase of length L and with frequency C may presents L-1 times before it
can be fed to tree as a whole one. It means this phrase may present C+L-1 times in
whole snippets set. When C+L > T, this phrase may be a candidate cluster. So the
branch which contains this phrase should be complemented.

Take the example of the phrase “suffix tree clustering” in snippets set shown in
Table 3. In Figure 5 we discover this phrase presents 3 times in branch A ([suffix, tree,
clustering] (3, 3)(4, 1)(5, 2)), and its length is 3. C is 3, L is 3, so this phrase should
presents 5 times in the snippets set (C+L-1=5). Actually this phrase presents 5 times (in
D1, D2, D3, D4, and D5).

The steps of search results clustering algorithm based on suffix tree with X-gram are
as follows:

1. The document cleaning stage. For most text-based document clustering
algorithms, this stage is very similar. The HTML tags, punctuation and other similar
non-informative text are removed; a set of stop words removed; stemming is applied to
reduce words to their root form.

550 J. Wang et al.

2. In the second stage, a suffix tree with X-gram is created using the word
sequences in the snippets set. Then complement the braches which may contain the
candidate clusters. In this process we filter out all the merely “right-complete”
substrings of true common phrases, and get the candidate phrases.

3. The candidate clusters are merged, scored and sorted. Then generate the final
clusters. To keep the cost of this last step constant, we do not check all the candidate
clusters, but only with the k highest scoring ones (we take k to be 100 in our
experiments).

4 Experiments

4.1 Experiment Setup

We now show a few experimental results to give the user a feel for the cluster
performance of STC with X-gram.

We first compare three different clustering algorithms (original STC, STC based on
suffix tree with 3-gram, and STC based on suffix tree with X-gram) for space
complexity, then time complexity, and clustering quality at last.

For this purpose we defined 10 queries, which are listed in Table 4. For every query
we collect search result snippets form google [15], and feed the snippets to three
different algorithms.

Table 4. 10 queries used for experiment

type queries
ambiguous queries apple, jaguar, java, matrix

entity names data mining, information retrieval,
general terms salsa, resume, music, yellow page

It should be noticed that in STC based on suffix tree with N-gram, N valued 2, 3, and
4 respectively, to evaluate this algorithm more comprehensive. If N valued 1, this
algorithm is just like “bag of word”, can not generate more readable labels for final
clusters, or taking O(n2) time complexity to generate the frequent sets; and if N valued
too big, this algorithm becomes to original STC, and will suffer from large memory
requirement.

4.2 Space Complexity

The original STC algorithm can often construct a long path of suffix tree, and suffers
from large memory requirements. The improved suffix tree with N-gram performs the
same function but has lower memory requirements. Our approach has also significantly
reduced memory requirements. We use the total number of nodes maintain by three
different algorithms to compare the space complexity.

 Web Search Results Clustering Based on a Novel Suffix Tree Structure 551

Table 5. The total number of words maintained by each algorithm

 total number of nods be maintained
Original STC 10767

STC with 4-gram 8178
STC with 3-gram 5765
STC with 2-gram 3315
STC with X-gram 2803

Fig. 8. Time complexity analysis

Table 6. Example cluster labels for “data mining” that is query word

A New STC STC+N-gram Original STC
Data Mining and
Knowledge Discovery

Data Mining and Knowledge Data Mining and
Knowledge Discovery

Principles of Data
Mining and Knowledge
Discovery

Principles of Data Mining Principles of Data Mining
and Knowledge Discovery

data mining concepts and
techniques

data mining concepts data mining concepts and
techniques

data mining with sql
server 2005

data mining with sql data mining with sql
server 2005

For each query listed in Table 4, every algorithm collects first 200 search results
form google and building a suffix tree. The total number of nodes maintained by three
approaches is shown in table 5.

552 J. Wang et al.

Table 7. Average precision of all clusters

query STC with 3-gram STC with X-gram Original STC
apple 0.81 0.80 0.81
jaguar 0.89 0.88 0.87
java 077 0.76 0.80

Salsa 0.80 0.78 0.80
data mining 0.73 0.76 0.75
information retrieval 0.71 0.79 0.76
matrix 0.79 0.84 0.81
music 0.74 0.81 0.81
yellow page 0.71 0.77 0.77

Resume 0.73 0.81 0.80
AVG 0.77 0.80 0.80

The noisy word sequences feed to the suffix tree with X-gram are shorter than the
other two types of suffix tree. So, with our approach the algorithm maintains fewer
nodes.

4.3 Execution Time

In this section we measured the execution time of the various STC algorithms while
clustering snippets collection of various sizes (100 to 1000 snippets, collected form
google).

We select a query from table 4 for analyzing the time complexity of these three
algorithms. Each reported time is averaged over 10 snippet sets. The results are shown
in Figure 8, in which the X-axis stands for the number of results returned form original
search engine, and the Y-axis is the time spent in the whole algorithm. It should be
emphasized that the times values are not total processing time, excluding snippets
downloading, parsing time.

In this experiment we search only for maximal frequent sets, not for all frequent sets.
And we use a 3% threshold, start at 3 (100 * 3%) and end with 30 (1000 * 3%).

The result of the execution time is shown in Fgure 8.
It is plain that the time complexity of all three approaches are approximately linear,

but our approach, based on suffix tree with X-gram, is the fastest. It is because suffix
tree with X-gram maintains fewer words than that of suffix tree with N-gram or original
STC algorithm, so fewer words are feed to the tree and fewer nodes to be pruned. And
STC with X-gram can fed more true phrases to the tree wholly than that of with
N-gram, so there are less partial phrases need to be joined. In this way suffix tree with
X-gram can be faster than other two.

4.4 More Readable Description

Our cluster labels are true common phrases and more readable than conventional STC
technique. As shown in Table 6, that is example of “data mining” is query words.

 Web Search Results Clustering Based on a Novel Suffix Tree Structure 553

4.5 Clustering Precision

Due to lacks of standard dataset for testing web search result clustering, we have to
build a small test dataset. For this purpose, we have defined a set of queries for which
search results were collected from Dmoz.com [16]. The average of precision of the
three approaches is shown in Table 7.

Form the Table we can see the average difference in precision performance using the
STC+X-gram is litter better than using STC+N-gram.

5 Conclusion

STC based on suffix tree with X-gram significantly lower the memory requirements
than the original STC and it generate more readable label than STC+N-gram, nearly the
same precision as original STC, and still an incremental and a linear time algorithm,
and faster than other types of STC algorithm.

We also proposed a complement operation to complement the suffix tree with
X-gram, which filter out all the merely right-complete substrings of the true phrase, and
can generate more reasonable candidate clusters.

So, our web result clustering algorithm based on the two novel approaches get better
performance than conventional web result clustering algorithms so it is very suitable
for online application.

References

1. Zamir, O., Etzioni, O.: Grouper: A Dynamic Clustering Interface to Web Search Results. In:
Proceedings of the Eighth International World Wide Web Conference (WWW 8), Toronto,
Canada (May 1999)

2. Zamir, O., Etzioni, O.: Web Document Clustering: A Feasibility Demonstration. In:
Proceedings of the 19th International ACM SIGIR Conference on Research and
Development of Information Retrieval (SIGIR 1998), pp. 46–54 (1998)

3. Osinski, S., Weiss, D.: A Concept-Driven Algorithm for Clustering Search Results. IEEE
Intelligent Systems 20(3), 48–54 (2005)

4. Weiss, D.: Carrot2: Design of a Flexible and Efficient Web Information Retrieval
Framework. In: Szczepaniak, P.S., Kacprzyk, J., Niewiadomski, A. (eds.) AWIC 2005.
LNCS (LNAI), vol. 3528, pp. 439–444. Springer, Heidelberg (2005)

5. Weiss, D., Stefanowski, J.: Web search results clustering in Polish: Experimental evaluation
of Carrot. In: Proceedings of the New Trends in Intelligent Information Processing and Web
Mining Conference, Zakopane, Poland (2003)

6. Osinski, S., Weiss, D.: Conceptual Clustering Using Lingo Algorithm: Evaluation on Open
Directory Project Data. Institute of Computing Science, Poznan University of Technology
(2004)

7. Osinski, S., Stefanowski, J., Weiss, D.: Lingo: Search Results Clustering Algorithm Based
on Singular Value Decomposition. Institute of Computing Science, Poznan University of
Technology (2003)

554 J. Wang et al.

8. Dell, Z., Yisheng, D.: Semantic, Hierarchical, Online Clustering of Web Search Results. In:
Yu, J.X., Lin, X., Lu, H., Zhang, Y. (eds.) APWeb 2004. LNCS, vol. 3007, Springer,
Heidelberg (2004)

9. Hua-Jun, Z., et al.: Learning to Cluster Web Search Results. In: SIGIR 2004, Peking
University (2004)

10. Janruang, J., Kreesuradej, W.: A New Web Search Result Clustering based on True
Common Phrase Label Discovery. In: Computational Intelligence for Modeling,
International Conference on Computational for Modeling Control and Automation, 2006
and International Conference on Intelligent Agents, Web Technologies and Internet
Commerce, p. 242 (November 2006)

11. Dong, Z.: Towards Web Information Clustering, doctoral dissertation. Southeast Univ.,
Nanjing (2002)

12. Chang, C.H., Lui, S.C.: IEPAD: Information Extraction based on Pattern Discovery. In:
Proceedings of the tenth International Conference on World Wide Web, Hong Kong, May
2-6 (2001)

13. Ukkonen, E.: On-line construction of suffix trees. Algorithmic 14(3), 249–260 (1995)
14. Zamir, O.: Clustering Web Document: A Phrase-Based Method for Grouping Search Engine

Results. Doctoral Dissertation, University of Washington (1999)
15. Google search engine (2008), http://www.google.com
16. Open Directory Project (2008), http://dmoz.org

Di-GAFR: Directed Greedy Adaptive

Face-Based Routing

Tao Yang1, Ye Huang1, Jianxin Chen1, Geng Yang1, and Chunming Rong2

1 College of Computer Science, Nanjing University of Posts and
Telecommunications(NJUPT)

yangg@njupt.edu.cn
2 Department of Electrical and Computer Engineering, University of Stavanger

Abstract. In this paper, we present Di-GAFR, a novel WSN geometric
routing algorithm containing greedy, face and directed routing. In
Di-GAFR, forwarding decisions merely depend on information about a
node’s immediate neighbors in the network topology, which made the al-
gorithm absolutely local and highly scalable. Additionally, we have proved
that Di-GAFR was asymptotically optimal. Simulations demonstrate that
Di-GAFR sufficiently outperforms other prominent algorithms, such as
GPSR and GOAFR, in the “critical” region.

Keywords:Geometric routing, face routing, directed routing,Di-GAFRs.

1 Introduction

With the growing availability of global positioning systems (GPS, Galileo, etc.),
an increasing number of applications have deployed them in Wireless Sensor
Networks. Thus, it can easily be imagined for each wireless node to understand
its own location. Then geometric routing, which makes forwarding decisions us-
ing only the information through the control messages of the traversing(current)
packets and the positions of immediate adjacent nodes in the network topol-
ogy, and is free from establishing or maintaining the router table for the whole
network, has been proved as an effective mechanism of reducing storage, commu-
nication and computation overheads. Hereby it is gaining popularity for efficient
and large-scale routing scheme for WSNs.

The first geometric routing algorithm that guarantees delivery is Face Rout-
ing algorithm (Compass Routing II), proposed in a seminal paper by Kranakis,
Singh, and Urrutia [1]. Let n denote the number of nodes in the network, the
algorithm guarantees that the message will arrive at the destination and termi-
nates in O(n) steps, while a very simple flooding algorithm can also terminate
in O(n) steps. Later, there comes AFR (Adaptive Face Routing)[2], a pure face
routing and terminating with cost O(c2) in the worst case, where c is the cost
for a optimal route. However, Lacking of greedy forwarding method, AFR does
not perform well on modern large-scale wireless networks.

B. Karp and H. Kung[3] proposed GPSR(Greedy Perimeter Stateless Routing)
C a combination of greedy routing and face routing. It consumes pretty low over-
heads, as the simulation demonstrates. Although GPSR outperforms previous

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 555–566, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

556 T. Yang et al.

routing schemes in average-case, yet it’s not aworst-case optimal one, due to switch
back to greedy routing algorithm excessively.

On the basis of AFR, F.Kuhn et al. [4] introduced GOAFR, the first ad-hoc al-
gorithm to be both asymptotically optimal and average-case efficient. If GOAFR
fails, however, it has to restart in order to return to the source and to enter the
next new turn, which is independent of the current turn. In such case, the re-
dundant computation consumes extra inter-node communication overheads.

Our geometric routing algorithm Di-GAFR(Directed Greedy Adaptive Face
Routing)combines greedy routing, face routing and directed routing. It imple-
ments the tradeoff between storage and computation, by adding some fields in
each node’s buffer to avoid redundant searches and guarantees worst-case opti-
mality as well.

2 Previous Work

we use the unit disk graph (UDG) and Ω(1)-model defined by F.Kuhn and
R.Wattenhofer in [2]. Let G = (V ; E) denote an Euclidean graph, where V
denotes the set of nodes and E ⊆ V denotes the set of edges. And let n := |V |
be the number of nodes. The Euclidean graph with edges between all nodes with
distance at most 1 is called the unit disk graph. If the distance between any two
nodes is bounded from below by a term of order Ω(1), i.e. there is a positive
constant d0 such that d0 is a lower bound on the distance between any two nodes,
this is referred to as the Ω(1)-model.

We employ the GG(Gabriel Graph)[5] to simplify the network topology. In
GG, an edge d(u;v) exists between vertices u and v iff no other vertex w is
present within the circle whose diameter is d(u;v). Since GG is locally generated
consuming little computation overheads, furthermore, As [4] has proved, when
there is an optimal route in UDG, equivalent results can be achieved in UDG∩
GG, Thus, we establish our model in UDG ∩GG.

Throughout the paper we assume that:

1. Nodes have the same transmission range R. Two nodes with distance greater
than R can communicate by relaying their messages through a series of
intermediate nodes which is called multi-hop routing;

2. Nodes is equipped with a location service, i.e. each node knows its Euclidean
coordinates;

3. Nodes knows all the adjacent nodes (nodes within transmission range R)
and their coordinates by exchanging the“hello”-messages. The sender of a
message knows the coordinates of the destination;

4. The control fields are restricted within Ø(1) step, only keeping relevant in-
formation of messages.

With these assumptions our algorithm is rigorously local. And the nodes are
free from maintaining the global topology information and link states, which re-
duces the storage and computation overheads dramatically, and enhances adap-
tion as well.

Di-GAFR: Directed Greedy Adaptive Face-Based Routing 557

3 Di-GAFR Algorithm

3.1 Node Storage and Message Format

Each node is equipped with a location service, for example, each node knows
its Euclidean coordinates. Then adjacent nodes exchange one-hop “HELLO”-
messages. When receiving a “HELLO”, the coordinates and expire time fields
are filled in. And the node distributes a random ID to the adjacent node from
m-integer poor, where ‘0’ denotes the node itself. Hereby, the m neighbors could
be uniquely identified.

Fig. 1. Node Storage

Additionally, we add 3 extra fields: L(ID for last hop), N(ID for next hop),
and R (restart flag). L and N are initialized as 0 (the node itself as predefined),
and N is cleared initially (initialized FALSE). L and N are selectively modified
when routing. And R is set when the node traces back after face routing failing
at the 1st round, so that it can restart from this node next time. We present the
main buffer format in figure 1, besides L, N and R, X and Y denote the node-
location, D denotes valid time and T denotes the time receiving the message. Re-
initializing the L, N and R fields when D is expired implements the adaptability
in dynamic networks. It is obvious that the information storage of R costs only
1 bit (TRUE,FALSE), with L and N �log2m� bit(0,1,2,,m) separately.

Fig. 2. Message Format

Then, let s denote the source node, t denote the destination node, Ps be the
source location, Pt be the destination position, cSIZE denote the current ellip-
tic major axis and |st| denote the minor axis. When traversing geometric routes,
PpCurrent stores the switch node ID from which the current planar shifts,
while PpNext stores the one to which the current face shifts. State field denotes
the message state, which contains FACE, AFTERFACE and FORWARD. FACE

558 T. Yang et al.

demonstrates the algorithm steps into face routing; AFTERFACE demonstrates
the traversal has crossed the boundary for the 1st time; and FORWORD demon-
strates that the traversal has crossed the boundary again or crossed all over the
boundary. wState stands for global state, which also has 3 optional value, i.e.
NORMAL, FAIL or DISCONNECT. FAIL demonstrates t’s reachability at the
1st round, then modifying cSIZE to restart; DISCONNECT demonstrates dis-
connection; and NORMAL, which is set as default value, demonstrates the other
cases.

3.2 Di-GAFR

In GOAFR[4], the algorithm started with greedy routing and switched to geo-
metric routing in case of local minima. Geometric routing initialized an elliptic
bound with s and t being its focuses, 2|st| being the major axis. GOAFR tra-
versed the face intersected ut employing Right-Hand Rule[3], where u denoted
local minima. Having accomplished the exploration and returned to u, if it failed
to find a point closer to t than |st|, it would switch to a complete new GOAFR
algorithm from u to s and report the disconnection to s; Otherwise, if it crossed
the boundary for the 1st time, it would traverse reversely at the same route; if
it crossed the boundary for the 2nd time and still failed to find a point closer to
t than |ut|, it would switch to a new GOAFR algorithm from u to s, double the
radius and restart again at s; if it managed to find a point v closer to point t
than |ut|, it would forward to point v and employ greedy routing.

GOAFR guarantees both reachability from s to t and worst-case optimal, if s
is connected to t. This algorithm, however, increases overheads by returning to
s when failing every round and recalling GOAFR when restarting from s.

In our Di-GAFR, we continue to use the denotation in section 3.1, where s
denotes the source, t denotes the destination, s knows the coordination of t, with
two pre-set constants ρ ≥ ρ0 ≥ 1. Additionally, we assume that the nodes are
temporarily stationary in the WSN, which is finite networks.

Di-GAFR:

0. Initialization: starting at s, an elliptic bound ξ is initialized with s and t
being its focuses, c := ρ0|st| being the major axis. At all nodes, the L, N fields
are initialized as 0, R fields to be FALSE, cSIZE to be c, and PpCurrent =
PpNext = NULL.

1. DGR(Direct Greedy Routing) Mode
Start: if N �= 0 {

forward the message to Node the N-field indicated
}Else {

If ID == t
Finished successfully, stop!

Else if meeting local minimum
Go to step 2
Else {
{Forward to the adjacent node i geographically closest to t

Di-GAFR: Directed Greedy Adaptive Face-Based Routing 559

if crossed ξ
c := ρc}

Fill in N-field with ID-i
Fill in L-field with last node’s ID
Go to Start

}
}

2. DAFR(Direct Adaptive Face Routing) Mode

Fig. 3. Node Storage

Let u denote local minimum, Pu denote u’s geographic location, with the
initialization value PpNext = Pu.

Traverse face F at the intersection of current face and ut employing right-hand
rule and check a node whose N field is non-zero and R field is TRUE.

The algorithm finished successfully when meeting t, or:

1). Two cases:

Case 1: no such node whose N field is not 0:

Do: Start to traverse face F and execute Function b.

/*Annotation: if R== FALSE, the face has not been traversed last
round; Else if R==TRUE, the face has been proved failed last round and
traced back.*/

Case 2: There exists a node whose N field is not 0:

Do: Fill in PpNext field with the node whose position is closest to t and
N �= 0, Then;

560 T. Yang et al.

Case 2.1: PpNext �= Pu and no such node whose R field is TRUE:

Do: Execute aa Function

/*Annotation: the face has been traversed completely.*/

Case 2.2: PpNext �= Pu and there exists a node whose R field is TRUE :

Do: Execute ab Function

/*Annotation: the face has not been completely traversed yet.*/

Case 2.3: PpNext = Pu: Do: Execute ac Function

/*Annotation: there is an overlaid edge. */

2). Execute a Function. *

Let’s describe the functions respectivelywith the assumption that all the nodes
are restricted in current face F.

Function aa: Clear all L and N fields traversed. However, the local minimum
u’s L field is reserved.

Function ab: Set current node’s R field FALSE, and continue to explore. When
the next hop hits the boundary ξ, Set next hop’s R field TRUE and traverse
reversely along the same route. Then, switch the other R-True-field to be
FALSE, and finally hit ξ for the second time, set the next hop’s R field
TRUE. During the exploration, if it finds a closer node to t than pNext,
update PpNext field with current node’s IDs.

Function ac: Execute Function b. Afterwards, If PpNext �= Pu, traverse back
to entry point according to L field, denote pNext to u, and then execute
Function aa.

Function a: Fill in the L and N fields with relevant IDs along u → pNext
route, and then return to step 1 at the pNext node.

Function b:
Case 1: Having traversed all F ’s edges without hitting ξ, if PpNext = Pu,
Do: traverse back to s according to u’s L field, report disconnection and

end the algorithm; else,
Do: execute Function a.

Case 2: Hitting ξ during exploration, execute Function ab. After that, If
PpNext = Pu
Do: traverse in opposite direction using u’s L field back to s, reset the

elliptic boundary by renewing the major axis c := ρc, and go to step 1 ;
Else Do: execute Function a.

Di-GAFR: Directed Greedy Adaptive Face-Based Routing 561

Fig. 4. Message Format

As figure 4 described, our algorithm initialized at source s, with the initial
elliptic boundary ξ1, employing greedy forwarding to u, where u denoted the
local minimum. Then it Switched to DAFR mode at u and continued to traverse
employing Right-Hand Rule. If the nodes’ N fields are all 0(cleared), execute
Function b, i.e. u→ a→ b. Hittingξ1 for the first time during a→ b, then set a’s
R field TRUE and traverse in the opposite direction, i.e. b → a → u → c → d.
Hittingξ1 again during c→ d, then set c’s R field TRUE. Verify that PpNext =
Pu, where |at| > |ut| and |ct| > |ut|, and traverse back from u to s according
L fields. Renew c := ρc at s, thus we establish a new elliptic boundary ξ2,
and forward using N fields. Reaching u again without appropriate node whose
N �= 0, execute Function b. Arriving at a, update R field as FALSE and continue
to explore a→ b→ e→ f → b→ g by Right-Hand Rule.Hitting ξ2 for the first
time during b→ g, set b’s R field TRUE and traverse in the opposite direction,
and continue to traverse backwards at c after renewing c’s R to FALSE. Hitting
ξ2 again during h→ g, set h’s R field TRUE. Since PpNext = Pv �= Pu, execute
Function a, i.e. fill in the L and N fields with relevant IDs along u → pNext
route. Afterwards, Switch to DGR Mode at v(pNext) along v → w → t. Thus,
the algorithm succeeds at reaching t.

3.3 Di-GAFR’s Asymptotical Optimality

We prove the Di-GAFR to be asymptotically optimal, i.e. our algorithm is worst-
case optimal.

THEOREM 3.1: Di-GAFR always terminates in O(n) steps, where n is the
number of nodes. If s and t are connected, Di-GAFR reaches t; otherwise, dis-
connection will be detected.

PROOF: Let us first prove our algorithm present a closer node to t every round,
in whatever cases.

Greedy mode naturally ensures that the message is always forwarded to the
adjacent node which is closest to the destination. In DAFR routing, there are 3

562 T. Yang et al.

cases: a) find a closer node and switch to greedy routing; b) hit the boundary
twice and traverse back to s; c) fail to find a closer point without hitting the
boundary. Obviously, case a) guarantees. And in case b), the elliptic boundary is
enlarged, thus it would transform into case a) or case c) ultimately (in extreme
case, the boundary would include all the nodes). Case c) alludes that the graph
is disconnected, and thus it can lead to s by L field.

Then, it is apparent that the major axis is modified when the former boundary
is hit twice. Thus, Di-GAFR explores the graph M times at worst case.

Let Ei (i=1,2,M) be the amount of edges at the i−th exploration. Since greedy
routing is irretraceable, each edge is explored at most once each round. In DAFR
mode, however, at first the check procedure explores the graph once. Thus, for
case a), each edge is explored at most twice, including a tracing back when
hitting the boundary; for case b), each edge is explored at most three times(2
times as case a) does, plus another tracing back using L field). Consequently,
each edge is explored at most four times every face. While two edges coincide at
2 faces, the edge is explored at most 8 times. To sum up, each edge is explored
at most 9 times at the i−th round (once in DGR mode, another 8 times in
DAFR mode). Together with the Euler polyhedral formula (n−m + f = 2) and
planar feature (2m ≥ 3f), it yields that the number of edges m is bounded by
m ≤ 3n − 6(where f denotes the amount of the faces, and m is the amount of
the edges).

Hence, our algorithm has searched E edges totally:

E =
M∑
i=1

Ei ≤
M∑
i=1

9m = 9M(3n− 6) ≤ (27M) · n ≡ O(n)

THEOREM 3.2: Di-GAFR is asymptotically optimal, i.e. reaches the destination
with cost O(c2(p∗)), where p∗ is an optimal path from s to t.

PROOF: [2] has defined Asymptotical Optimality, i.e. worst-case optimality, and
has proved the lower boundary of geometric routing cost to be O(c2(p∗)). Hence
if Di-GAFR reaches the destination with cost O(c2(p∗)), it is Asymptotically
Optimal. Generally, we use the Euclidean distance metric(see [2]) as the cost
model.

Theorem 3.1 has proved Di-GAFR reaches the destination in O(n) steps. In
UDG environment, with each edge costing c(e) ≤ 1, the total cost is less than
O(n), where n denotes the number of nodes after the M − th exploration.

As the elliptic boundary enlarges, there should be c(k− 1)c(p∗)ck, where k is
a constant and 1 ≤ k ≤M . Together with Ω(1) -model definition, i.e. arbitrary
two nodes has a distance no less than d0, thus, any rotundity with radius d0/2
will not intersect with each other and the elliptic area is less than πcM2 . Hence,

n ≤ π · cM2

π(d0/2)2
≡ O((ρM−(k−1)c(p∗))2)) ≡ O(c2(p∗))

Thus, Di-GAFR is Asymptotically Optimal.

Di-GAFR: Directed Greedy Adaptive Face-Based Routing 563

4 Algorithm Analysis

In our simulations, we mainly chose GPSR[3] and GOAFR[4] as the referenced
algorithms, not only because they were classic and dominant in the geographic
routings but also because they were significantly similar to our Di-GAFR. In
order to acquaint ourselves with GPSR and GOAFR, we described the fam-
ily tree of GPSR, GOAFR and Di-GAFR. For comparing the algorithms more
conveniently, we give a alias to Di-GAFR, that is DGAFR.

Fig. 5. The family tree of GPSR, GOAFR and Di-GAFR

As it was shown in figure 5, GR(Greedy Routing) and FR(Face Routing)
denoted the primitive greedy and face algorithms respectively; AR(Adaptive
Routing) mean that the routing needed preset a bound and constantly modify
the bound when meet the failure routing in one turn; DR(Directed Routing)
mean that the routing needed some flash memories to store the path which
had just traversed; OFR was explained detailedly in [4], which selected another
forwarding strategy differed from the primitive FR. Finally, since GFROFRAR
and DR didn’t exist actually, we described them in dashed ellipses.

Following the Setdest Function presented by CMU in NS environment, we
generated networks scenario on square fields of side length 20 units by distribut-
ing network nodes randomly and uniformly in UDG ∩ GG topology. For every
simulation series the number of nodes was determined according to the chosen
network density(D), where network density was the density of nodes in the UDG.
For each considered network the source s and the destination t were also chosen
randomly. To determine Di-GAFR’s performance in network layer, the collisions
in MAC layer was ignored here. In order to judge the average practicability
of an algorithm we followed the definition mean performance PerfA (N) of an
algorithm A on a network N in [4] with m randomly simulated environment:

PerfA ≡ 1
m

m∑
i=1

(perfA(Ni, si, ti)) ≡ 1
m

m∑
i=1

SA(Ni, si, ti)
Sp(Ni, si, ti

Where Ni denoted the i-th network simulated; si and ti denoted the source
and destination node respectively; SA(Ni, si, ti)was the number of steps algo-
rithm A performed on network N finding a route from s to t (which is in

564 T. Yang et al.

Fig. 6. Node Storage

our case, with all simulated algorithms, equal to the number of sent messages);
Sp(Ni, si, ti) denoted the (hop) length of the shortest path (with respect to the
hop metric[2]) between the si and the ti on N . And letρ0 = 1.4, ρ =

√
2,which

proved to be good for practical purposes in [4]. Finally, grounding on our hard-
ware surroundings, we let m be 1000 for facility which is reasonable.

Using the triples (Ni, si, ti) as network densities ranging from 0.2 to 12 nodes
per unit disk, with the step 0.5, we obtained Figure 6 (meanperformance −
networkdensity). In low network density, i.e. D → 0, si and ti were neighbor-
hood or disconnected (the statistics exclude disconnection cases). Thus, the mean
cost was one hop that equals with the cost of the shortest path. And so perf ≈ 1;
When 1D3.5 Di-GAFR performed worse than the other two algorithms, due to
an extra face search and relevant control information overheads. Since the geo-
metric topology was rather simple, the actual operations of GPSR and GOAFR
were almost the same with the same forwarding criteria. Hence, they shared
the performances; When 3.5D7, which was the peak distribution value inter-
val(critical region), algorithm performed diverge here. Di-GAFR dramatically
reduced the traversing overheads by using L and N fields, thus outstripped the
other two schemes tremendously. GPSR behaved worst since it earliest returned
to greedy mode, and thus it lost the Asymptotical Optimality; When D7, which
mean in dense networks, as greedy routing’s proportion increased, Di-GAFR and
GOAFR got weakened by searching the whole face. When D12, greedy routing
dominated with little failure and all the 3 algorithms normalize.

Figure 7 described the mean performance results obtained in simulations on
networks generated in square fields of side length ranging from 4 to 40 units with
the step 4 units, where network density was preset 4.71(the critical density par-
ticularly described in [4]). It was apparent that in small-scaled network, different

Di-GAFR: Directed Greedy Adaptive Face-Based Routing 565

Fig. 7. Message Format

algorithms displayed incomparable performance curses. In such condition, they
varied occasionally (highly depending on the choice of s and t). As the net-
work size extended, the lack of a bounding ellipse resulted in a fast growing
curve for GPSR, since it would cost far more if unlucky. To the contrary, Di-
GAFR restricted the boundary and had recorded the routes, which reduced the
overheads of restarting. Besides, the overheads proportion by adding fields and
pre-searching lessened gradually comparing with the scale of the networks. Thus,
Di-GAFR’s performance values grew relatively slowly for all simulated network
sizes. Especially, when side length is over 24 units, Di-GAFR outperforms GPSR
by almost 50% and continues to widen. Hence Di-GAFR is practically feasible
in large-scaled networks.

5 Conclusion

We introduce Di-GAFR in this paper. Di-GAFR is free from repeated search
when exploration fails by adding L, N and R fields which simplify the search
effectively. Through rigorous analysis, we have proved that Di-GAGR is worst-
case optimal. And simulation results present that Di-GAFR almost outperforms
GPSR by 40%, GOAFR by 30% in the “critical region”. Meanwhile, as net-
work size extends, Di-GAFR is sub-linearly increasing, advancing to GPSR and
GOAFR overwhelmingly. In wireless sensor network, geometric routing under-
lay the distributed storage and query. Hence the implementation of Di-GAFR
in distributed data management is a nontrivial work. And the data storage and
query employing integration of Di-GAFR and geometric hashing function would
be challenging and practical.

566 T. Yang et al.

References

1. Kranakis, E., Singh, H., Urrutia, J.: Compass routing on geometric networks [C].
In: Proc. 11th Canadian Conference on Computational Geometry, Vancouver, pp.
51–54 (1999)

2. Kuhn, F., Wattenhofer, R., Zollinger, A.: Asymptotically optimal geometric mobile
ad-hoc routing [C]. In: Proc. Dial-M 2002, Atlanta, Georgia, pp. 24–33 (2002)

3. Karp, B., Kung, H.: GPSR: greedy perimeter stateless routing for wireless networks
[C]. In: Proceedings of the 6th annual international conference on Mobile computing
and networking, Boston, Massachusetts, pp. 243–254 (2000)

4. Kuhn, F., Wattenhofer, R., Zollinger, A.: Worst-Case Optimal and Average-Case
Efficient Geometric Ad-Hoc Routing [C]. In: Proc. 4th ACM Int. Symposium on
Mobile Ad-Hoc Networking and Computing (MobiHoc.), Annapolis, Maryland, pp.
267–278 (2003)

5. Liming, S., Jianzhong, L., Yu, C., et al.: Wireless Sensor Networks [M], pp. 89–94.
Beijing TsingHua Press (2005)

6. Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor Networks [M].
John Wiley and Sons, Inc., Germany (2005)

7. Ortiz, J., Moon, D., Bker, C., Fonseca, R., Stoica, I.: Location Service for Point-
to-Point Routing in Wireless Sensor Networks [C]. In: IPSN 2007: Proceedings of
the Sixth International Symposium on Information Processing in Sensor Networks,
pp. 166–175 (2007)

8. Nath, S., Gibbons, P.B.: Communicating via Fireflies: Geographic Routing on
Duty-Cycled Sensors [C]. In: IPSN 2007: Proceedings of the Sixth International
Symposium on Information Processing in Sensor Networks, pp. 440–449 (2007)

9. Milosavljevic, N., Nguyen, A., Fang, Q., Gao, J., Guibas, L.: Landmark Selection
and Greedy Landmark-descent Routing for Sensor Networks [C]. In: Proceedings
- IEEE INFOCOM 2007: 26th IEEE International Conference on Computer Com-
munications, pp. 661–669 (2007)

10. Tsai, M., Yang, H., Huang, W.: Axis-Based Virtual Coordinate Assignment Pro-
tocol and Delivery Guaranteed Routing Protocol in Wireless Sensor Networks [C].
In: Proceedings - IEEE INFOCOM 2007: 26th IEEE International Conference on
Computer Communications, pp. 2234–2242 (2007)

11. GPSR code [EB/OL],
http://www.cs.cmu.edu/∼bkarp/gpsr/gpsr-ns-2.1b6.tar.gz

http://www.cs.cmu.edu/~bkarp/gpsr/gpsr-ns-2.1b6.tar.gz

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 567–576, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Cooperative Management Framework
for Inter-domain Routing System*

Ning Hu, Peng Zou, PeiDong Zhu, and Xin Liu

Computer School, National University of Defense Technology,
P.R. China

Ning_Hu@163.com
http://www.nudt.edu.cn

Abstract. The inter-domain routing system consists of many interconnected
Autonomous Systems (ASes) which are independently operated and usually
have different routing policies. Due to lack of effective coordinative mecha-
nism, policy conflicts may arise, which can cause various problems in perform-
ance, security and robustness. To facilitate the collaboration among ASes, we
propose an ISP-oriented inter-domain routing system cooperative management
framework CMF based on the self-organization method. CMF provides funda-
mental support to the ISP’s cooperation which includes organization structure,
mechanisms and applications. CMF can help ISPs alleviate the side effect
caused by the autonomy and selfishness of AS. The framework is generic solu-
tion, which can be used not only in inter-domain routing operation, but also in
other related fields such as intrusion detection and network measurement.

1 Introduction

The inter-domain routing system of the Internet includes many interconnected
Autonomous Systems (ASes) which are operated by different administrative domains
such as Inter Service Providers (ISPs), companies and universities. An ISP operates
its routing policy independently and tries to maximize its benefit. This leads to two
characteristics of an AS: autonomy and selfishness. The Internet is a cyberspace full
of tussle [1]. Some studies show that route convergence delay and persistent route
oscillation may occur if there are conflicts among ASes [2], [3]. Since BGP [4] does
not supply a validation mechanism to confirm the correct of the routing message,
misconfiguration, software bug and malice are inevitable. The security and robustness
of the Internet routing are becoming hot topic [5], [6], [7], [8].

In our opinion, the key reason of these issues is lack of cooperation among ASes.
Firstly, ISPs behave adversely and competitively, which impacts the optimization of
Internet routing. Secondly, there are no effective mechanisms for information sharing
or cooperation. Thirdly, ISPs lack the ability to cooperate. Finally, there is no coopera-
tion-oriented organization form to manage the ISP’s cooperative behavior. K. Claffy

* Research supported by the National Grand Fundamental Research 973 Program of China

under Grant No.2003CB314802 and National High-Tech Research and Development Plan of
China under Grant No.2006AA01Z213 and National Natural Science Foundation of China
Grant No.60673169.

568 N. Hu et al.

indicated the ISPs’ coordination is the top problem of internet management and the root
cause is not technical factor but economic, owner-ship, and trust [9]. The cooperation
among ISPs needs effective mechanisms to resolve the issues such as organization form,
information sharing, privacy preserve and incentive etc. To the best of our knowledge,
there is no mature architecture or platform used to ISP’s operation.

Our contributions can be summarized in three aspects. We refine ISP’s common
requirements for the cooperative operation in inter-domain routing system and design
some fundamental mechanisms which are necessary to ISP’s cooperation. This paper
proposes a Cooperative Management Framework for inter-domain routing system
(CMF), which includes self-organization, reputation, information sharing and incen-
tive mechanism. We also develop two cooperative operating applications to evaluate
the validity of the cooperative mechanisms based on CMF, which are routing policies
consistency checker and route monitor.

The rest of this paper is organized as follows. In Section 2, we provide a brief
background of inter-domain routing system and motivate the need for better coopera-
tion. Some design considerations and a cooperative framework are described in
Section 3. In Section 4, two applications based on CMF are developed. We discuss
related works in Section 5, and conclude in Section 6.

2 Background and Motivation

Due to its large scale, intensive structure, complex connectivity and diverse policies,
the inter-domain routing system is exposed to challenges in its performance, security
and robustness. The lack of cooperation among ISPs intensifies the frangibility of
inter-domain routing system.

For the autonomy, an AS always selects best route according to its local informa-
tion. This can lead to path inflation. In hot potato routing algorithm, an AS uses the
closest link (early-exit) for transferring traffic to the downstream ISP as it minimizes
resource usage in the upstream network without considering resource usage in the
downstream. Some ASes construct route loop or prolong the AS_PATH property of a
BGP route to deceive other AS not to use their route to transfer traffic.

Because the privacy of ISPs can be inferred from the routing policy such as net-
work topology, IP address assignment and commercial relationship with other ISP,
ISPs are unwilling to reveal their local policy to others. The original design of BGP
allowed only AS-PATH reachability information to be shared, this proved to be not
enough. Since there is no cooperative monitor mechanism, the internet routing has to
rely on a large part on trust. Many security issues in BGP, such as black-hole routing,
route spoofing, prefix hijacking, are inevitable in current circumstances. In fact, it is
very difficult to detect or locate these problems only by analyzing single AS routing
policy or BGP route table.

There are very few methods for cooperative monitor or configure the ISP’s routing
policy. Because ISP’s routing policy can be expressed by router configurations, con-
flicts between ISPs can be detected by contrasting multi-AS routing policy. But there
is no tool available to do this work.

 Cooperative Management Framework for Inter-domain Routing System 569

The commercial relationships of ISPs provide constraints to policy configuration.
Similar to this, we need a cooperation-oriented organization model to guide the ISP’s
cooperative behavior. The model needs solve the questions of partner selection, coop-
eration negotiation and behavior management.

Our goal is to refine the essential requirements for operating inter-domain routing
system and implement a platform which supplies the fundamental cooperative
mechanisms to ISPs. By using these mechanisms, ISPs can collaborate more effi-
ciently. Within CMF we focus on the works as follow: (a) Propose an organization
form AS alliance to support the cooperation among ISPs. (b) Design a reputation
mechanism to evaluate the ISP’s routing behavior. (c) Design an information sharing
mechanism to protect ISP’s privacy.

3 Cooperative Management Framework

3.1 Design Considerations

The cooperation among ASes has some particularity and requirements. First, the co-
operation among ASes must be self-organization behavior because there is no control
center. Each AS must select the cooperative partner independently. Second, be-cause
an AS need prevent their commercial secrets such as internal topology, route decision
and neighbor relationship from leaking during the cooperation, the information shar-
ing mechanism must be based on semi-honest model [10]. Third, the behavior of an
AS need to be supervised and evaluated. Finally, incentive is needed.

3.2 Architecture

According to considerations in section 3.1, we design a cooperative management
framework with triple-layer which provides support to ASes cooperation. The struc-
ture of it is shown in Fig. 1. The morphology layer describes the relationships among
ASes. Because the cooperative relationship between ASes can be built upon their
commerce relationship, we use the existing models such as provider-customer and
peering-peering to describe the relationship among ASes. We also propose a new
model which is called AS alliance to describe the cooperative relationship between
ASes which is built by some self-organization algorithm. The morphology layer re-
solves the issues of partner selection, collaborative negotiation and cooperation mode.
The mechanism layer provides some essential mechanisms which include self-
organism mechanism, reputation management, information sharing mechanism and
incentive mechanism. The self-organism mechanism controls the behavior of AS such
as alliance building, evolvement and negotiation. Reputation mechanism can be used
to supervise and evaluate the malice or selfishness of AS. Information sharing mecha-
nism enables ASes to exchange information with privacy preservation. Incentive
mechanism provides strong incentive to cooperation. We develop some cooperative
applications at the base on the fundamental mechanisms described upon. These appli-
cations can improve the ability of monitor and operation on inter-domain routing
system.

570 N. Hu et al.

Fig. 1. Architecture of CMF

3.3 AS Alliance

AS alliance supplies a practical organization form for guide the cooperation among
ASes, which has an ability of self-organization and self-evolvement. AS can join or
leave some alliance freely. AS alliance is a logical structure. Members of AS alliance
can be connected by physical link or some collaboration relationship.

Fig. 2. AS topology and AS alliance

In Fig. 2(b), there are three AS alliances which are AA1, AA2 and AA3. Every
alliance has a leader node selected by members. The leader node has the power of arbi-
trator. The AS alliance building algorithm can be very flexible but the essential rule
is self-organization. The establishing process of AS alliance is similar to the social
behavior of human. At the initial phase, AS selects partner randomly. During the coop-
eration, AS can reselect other node as its partner. Only the good cooperative relation-
ship is long-term stable. After a period of time, the relationship will be convergence.

3.4 Reputation Mechanism

CMF provides a reputation model in sociology to evaluate the reliability of AS’s
behavior and information [11]. PKI is a useful technique to anti-spoof but it is not a
good selection for CMF. First, ASes are operated by different ISPs or governments
which have different benefits and political positions. It is impossible to force every
ISP to trust a unique third part such as s-BGP [12]. Second, PKI usually costs much
CPU resource and impact the performance of routing system [13]. CMF uses a

 Cooperative Management Framework for Inter-domain Routing System 571

weighted summary function to calculate the AS’s reputation instead. The parameter of
the function includes AS relationship, AS tier, statistics of the history routing infor-
mation and other ASes’ recommendation. Reputation mechanism supplies a reference
to AS when it selects routing information from other neighbor.

Fig. 3. Reputation evaluation model

In Fig. 3, the formula below is used to calculate AS-D’s reputation evaluation from
AS-A.

Rep (A, D) r(A, D) t(D) p (D) q(B, C) = + + + α ∗ β ∗ γ ∗ δ ∗ (1)

Table 1. Functions and variables used in formula 1 description

Name Description
Rep (A,D) AS-D’s reputation from AS-A
r(A,D) Commercial relationship between AS-A and AS-D
t(D) AS-D’s tier in the internet
p (D) Fault probability of the history route from AS-D
q(B,C) Recommendation from AS-B and AS-C
α, β, γ, δ Weighted gene

3.5 Information Sharing Mechanism

To detect the policy disrupt or invalid route, an AS needs to do some collaborative
operation such as query or comparison with other ASes. For example, an AS can send
its query of confirm to other ASes whether a route from its neighbor is valid. These
operations need share information such as route, policy or link status with other ASes.
For protecting its commercial benefit, an ISP does not share its privacy with others.
This is the main cause that prevents the ISP from cooperating. BGP does not supply a
mechanism for information sharing. IRR [14] implements centralized information
sharing model, but the model dose not resolve the questions of incentive and privacy
preservation. IRR only collects routing policy and dose not provide guarantee to the
accuracy of the data in its database. The information sharing mechanism of CMF
makes two improvements. First, the scope of information sharing is limited in AS
alliance. Be different from IRR, AS only exchange information with cooperative
partner in CMF. CMF implements a privacy sharing protocol across private database
based on the study of Secure Multi-party Computation problem (SMC) in the litera-
ture [15]. By using the protocol, ISP can share information without privacy leaking.

572 N. Hu et al.

3.6 Incentive Mechanism

The incentive mechanism of CMF facilitates ISP’s coordination through three facets.
First, ASes build their cooperative relationship by the way of self-organization with-
out any compulsive reason. Every member of the alliance will benefit from it. Second,
the AS’s reputation provides a reference value for evaluating the behavior of AS.
AS’s reputation will reduce when it advertise incorrect route malicious or has some
selfish behaviors. If AS’s reputation is less than threshold, it will be excluded by other
members. So the AS will be more vulnerable to attack and its malicious behavior will
be detected more easily. An AS with high reputation will benefit from its good mani-
festation. For example, route from the AS which has a good reputation will be
selected priority and this means more traffic and revenue. Finally, the service of co-
operative monitor and cooperative configure are deployed on the base of AS alliance.
Only join the alliance can AS use these services. As mentioned before, AS must
restrict its selfishness and coordinate with other AS friendly to maintain its good repu-
tation. If every AS behaves as upon, the security and robustness of the whole system
can be enhanced, so all the member will benefit from it. The incentive mechanism can
promote the aggregation of ASes as their needed. It is favorable to the evolvement
toward equality and multipolarization of Internet architecture.

3.7 Simulation

To validate the incentive mechanism, we constructed a simulation experiment which
is shown as Fig. 4. To simplify the complexity, we define an intension function ξ

which is used to denote the need of the AS node， the intension function
: Prefix ASn [0, N]× →ξ calculates a intension value which obeys poisson distribu-

tion. The parameter prefix is IP address prefix which belongs to address range R and
the parameter ASn is AS’s number. We also define an intension matching func-
tion : IntensionX IntensionY {0,1}× →ψ . If the difference value between the two

intensions is less than the threshold T, the function ψ returns 1, otherwise it returns

0. We defined a selection function : Reputation Intension [0, M]× →θ which returns

a selection from AS-0 to AS-M according to their reputation as decrease order. If all
the reputation is 0, it selects an AS randomly. We define a cooperative func-
tion : IntesionX ASN [0, L]× →ο , which returns a cooperation result evaluation from

0 to L. The evaluation also obeys poisson distribution. The value 1 represents the best
and 0 represents the worst.

We create an AS set with M nodes randomly. Each node maintains a reputation ma-
trix which contains other node’s reputation value. At the initial, the reputation matrix is
cleared. In each loop, every node selects an IP_Prefix from R, calculates its intension
with function ξ , selects partner with functionθ and send its request to the selection

node. When node receives a request from other node, it uses functionψ to decide

whether accept this request. If the functionψ returns 1, the node sends an agreement

ACK with a cooperation evaluation result which is calculated by function ο back to the
initiator. If the functionψ returns 0, the cooperation evaluation result is 0. Every time

when node receives the ACK from others, it recalculates the reputation matrix according

 Cooperative Management Framework for Inter-domain Routing System 573

to the evaluation. After each node has got an ACK, the loop is over. After a period of
time, when we collect the cooperation relationship of the nodes, we find the nodes with
similar intension and friendly cooperation are aggregated.

Fig. 4. ASes’ aggregation under the influence of incentive

4 Application

4.1 Cooperative Configuration

By the way of ISP’s collaboration, we can remove the inconsistency existed in routing
policy. The inconsistent configuration happens in following cases: a) Policy conflict
leaded by misconfiguration. Configuring a network of BGP routers is like writing a
complex program. Many configuration files of border router have more than a million
lines. As a result, router configurations tend to have faults. Routing policy can be
expressed by using route filter. If one AS’s route export policy is mismatched with its
neighbor’s route import policy, some routing information will be discarded. b) Path
inflation arisen from routing algorithm. Some routing algorithms might lead to path
inflation such as Hot-Potato routing. Griffin’s research works show that persistent
route oscillation is possible. c) Incorrect policy by malice. For the malicious targets
such as attack and hijacking, some ASes configure their policies which violate the
commercial relationship constraints deliberately.

We implemented a policy consistency analysis tool Co-RCC (Cooperative Router
Configuration Checker) which can be used to detect the inconsistency among multi-
ASes’ policies. Be different from RCC, Co-RCC doesn’t analyze ASes’ policy
directly, this is because many ISPs may be unwilling to reveal their local policy to
others. Co-RCC uses routing information to infer the consistency of policy. Given AS
A and AS B, we use the notation import_from(B) to describe the route set that A is
importing from B. Similarly, export_to(B) is the set of route that A exports to B. First,
A build the export_to(B) according to its route table and export filter. Second, by
using the information sharing protocol that is provided by CMF, A calculates the
intersection of export_to(B) and import_from(A) with B. If the intersection contains
export_to(B), there is no conflict. In the procedure described upon, A can only know
the routes that are shared with B. For any route belongs to B but not to A, A know its
existence but not know its value. So it is impossible for A to infer B’s import policy.

4.2 Cooperative Monitor

The security of routing information is the key issue of the security of inter-domain
routing system. Due to AS’s autonomy, there is no cooperative monitor and validation

574 N. Hu et al.

mechanism among ASes. For this weakness, the malicious nodes hijack and spoof
routing information. We develop a cooperative route monitoring tool which is called
Co-Monitor. Co-Monitor takes the advantage of the rich connectivity of the internet to
monitor and validate the correctness of routing information. For the rich connectivity
of the internet, the correct route can be transmitted to many ASes. So it is insufficient
for the attacker to spoof few nodes. With Co-Monitor, AS sends route validation
query to other member of alliance. When other ASes receive the query, they vote to
the validation of the route and return it to the asker. If most of ASes assure the route is
correct, the route can be accepted otherwise it will be discarded or under suspicion.

5 Related Work

Inter-domain routing system is the fundamental infrastructure of Internet and BGP is
the inter-domain routing protocol used in the Internet today. Most research works
about operation of inter-domain routing system is aimed at the management of BGP.

Ramesh et al. find that AS routing policy is established without coordination and
such independently established policies can adversely impact the stability and analyz-
ability of internet routing [16].They proposed an architecture for routing policy coor-
dination. The architecture is composed of three components include RPSL (Routing
Policy Specification Language), IRR (routing registry) and analysis tools. Because of
ISP’s selfishness and autonomy, the accuracy and integrity of information from IRR
is uncertain [17], [18]. MIT developed a router configuration checker – RCC [19].
RCC is a router configuration check tools that finds faults in the BGP configurations
of routers in single AS without considering multi-AS policy conflict. With Internet’s
richly connected topology, false routing and prefix hijacking can be detected through
ISP’s cooperation [20], [21]. In these works, AS sends a confirmation query for
the route which is received from BGP update message to other ASes. Every AS re-
ceived the query returns an acknowledgement to the querying AS. So the querying
AS can validate the route according to the acknowledgement. ENCORE is a multi
agent-based inter-AS diagnostic system [22]. ENCORE deploys intelligent agents in
multiple ASes and performs collective observation and analysis. AISLE is a multi-
agent-based framework which is used to policy-based routing adjustment system for
transit ISPs and their customer ASes [23]. In AISLE, many Virtual Router (VR) are
deployed in different ASes, these VR cooperate each other and control the border
router of AS to select the best route. Kerio-Bygyo Project implemented a coordination
platform to detect, recover and protected the network address prefix hijacking [24].

6 Conclusion

Inter-domain routing system is a complex decentralized system without a central control
center. Due to the selfishness and autonomous, it is very hard to manage the behavior of
AS’s. Most research works on inter-domain routing system management is focused on
single AS without considering cooperation. How to operate the Inter-domain routing
system has become a question got a lot attention from ISPs. In order to facilitate the
collaboration among ISPs, this paper proposes an ISP-oriented cooperative management

 Cooperative Management Framework for Inter-domain Routing System 575

framework CMF. CMF is based self-organization method. It implements AS’s collabo-
ration by the form of AS alliance and provides corresponding mechanisms to facilitate
the cooperation. We also developed two tools, Co-RCC and Co-Monitor, to evaluate the
effectiveness of cooperation. CMF is a generic tool. Its application is not limited to
inter-domain routing system management. It also facilitates cooperative network meas-
urement and intrusion detection. The research on how to improve the coordination
among autonomous systems is becoming a driving force behind the robustness and
efficiency of the next-generation Internet.

References

1. Clark, D.D., Wroclawski, J., Sollins, K.R., Braden, R.: Tussle in Cyberspace: Defining
Tomorrow’s Internet. In: SIGCOMM 2002, August 19-23, 2002 (2002)

2. Griffin, T.G., Wilfong, G.: An Analysis of BGP Convergence Properties. In: Proc. ACM
SIGCOMM (1999)

3. Varadhan, K., Govindan, R., Estrin, D.: Persistent Route Oscillations in Inter-domain
Routing. Computer Networks 32(1), 1–16 (2000)

4. Rekhter, Y., Li, T.: A Border Gateway Protocol 4 (BGP-4), RFC1771 (1995)
5. Mahajan, R., Wetherall, D., Anderson, T.: Understanding BGP misconfigurations. In:

Proc. of ACM. SIGCOMM (August 2002)
6. Chi-ken, C.: Policy-based Routing with Non-strict Preferences. In: ACM SIGCOMM

2006, September 11-15, 2006 (2006)
7. Haowen, C., Dash, D., Perrig, A., Zhang, H.: Modeling Adoptability of Secure BGP Pro-

tocols. In: SIGCOMM 2006, September 11-15, 2006 (2006)
8. Ballani, H., Francis, P., Xinyang, Z.: A Study of Prefix Hijacking and Interception in the

Internet. In: ACM SIGCOMM, August 27-31, 2007 (2007)
9. Claffy, K.: Top problems of the Internet and how to help solve them (2003), http://

www.caida.org/outreach/presentations//netproblems_lisa03
10. Lindell, Y., Pinkas, B.: Privacy preserving data mining. Journal of Cryptology 15(3), 177–

206 (2002)
11. McKnight, D.H., Chervany, N.L.: The meanings of trust. MISRC Working Paper Series,

Technical Report 94-04, arlson School of Management, University of Minnesota (1996)
12. Kent, S., Lynn, C., Mikkelson, J., Seo, K.: Secure border gateway protocol (sbgp). IEEE

JSAC Special Issue on Network Security (2000)
13. Meiyuan, Z., Smith, S.W., Nicol, D.M.: Evaluating the Performance Impact of PKI on

BGP Security. In: The 4th Annual PKI Research and Development Workshop (April 2005)
14. Internet Routing Registries, http://www.irr.net/
15. Yao, A.C.: Protocols for secure computations. In: Proc. of the 23rd Annual IEEE Sympo-

sium on Foundations of Computer Science (1982)
16. Govindan, R., Alaettinoglu, C., Eddy, G., Kessens, D., Kumar, S.: An architecture for sta-

ble, analyzable Internet routing. IEEE Network 13(1), 29–35 (1999)
17. Battista, G.D., Refice, T., Rimondini, M.: How to extract BGP peering information from

the internet routing registry. In: ACM SIGCOMM 2006 workshops, September 11-15,
2006 (2006)

18. Siganos, G., Faloutsos, M.: Analyzing BGP policies: Methodology and tool. In:
INFOCOM 2004 (2004)

19. Feamster, N., Balakrishnan, H.: Detecting BGP configuration faults with static analysis.In:
Proc. Networked Systems Design and Implementation (May 2005)

576 N. Hu et al.

20. Goodell, G., Aiello, W., Griffin, T., Ioannidis, J., McDaniel, P., Rubin, A.: Working
around bgp: An incremental approach to improving security and accuracy of Inter-domain
routing. In: NDSS (2003)

21. Yu, H., Rexford, J., Felten, E.W.: A Distributed Reputation Approach to Cooperative
Internet Routing Protection. In: 1st IEEE ICNP Workshop on Secure Network Protocols,
2005 (NPSec) (2005)

22. Akashi, O., Hirotsu, T., Sato, K., Kourai, K., Maruyama, M.: Sugawara: Agents Support
for Flexible Inter-AS Policy Control. In: Proc. of the 2003 Symposium on Applications
and the Internet Workshops (SAINT-w 2003) (2003)

23. Akashi, O., Fukuda, K., Hirotsu, T., Sugawara, T.: Policy-based BGP Control Architecture
for Autonomous Routing Management. In: SIGCOMM 2006 Workshops, Pisa, Italy, Sep-
tember 11-15, 2006 (2006)

24. Mizuguchi, T., Yoshida, T.: Inter-domain Routing Security BGP Route Hijacking. In:
APRICOT 2007 (2007)

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 577–587, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Performance Problem Determination Using Combined
Dependency Analysis for Reliable System*

Shunshan Piao, Jeongmin Park, and Eunseok Lee**

School of Information and Communication Engineering Sungkyunkwan University
Suwon, 440-746, South Korea

{sspiao,jmpark,eslee}@ece.skku.ac.kr

Abstract. Performance problems such as Service Level Objective violations are
determined by specific approach are particularly important since it can
significantly improve system reliability. In this paper, we propose an improved
performance problem determination mechanism by using combined dependency
analysis. Using the proposed preprocessing in prior research, a compact model
is created hierarchically. We use temporal inference which associates time with
the created models and occurring symptoms, then post symptom into created
model to provide probabilistic reasoning. The results of dependency reasoning
are combined with the closeness evaluation between symptom and created
model. Combined inference is applied according to the characteristic of
environment knowledge. Using the improved combined approach enables us to
extend problem localization in various situations and it provides much accurate
and efficient problem determination technique for reliable system. Performance
problem determination using the combined dependency analysis is illustrated to
prove the availability and accuracy for improving system reliability.

Keywords: Combined Dependency Analysis, Temporal Inference, Performance
Problem Determination.

1 Introduction

Performance problem management becomes the main issue of gradually innovatory and
distributed service providing system. At the user level, it should guarantee end-to-end
response time and throughput for different types of user transactions [1]. A complex
system may be fail at a given task or encounter performance problem during running
time with the cause that the rapid growth in size and complexity in distributed computing
systems nowadays. Thereby, problem determination techniques are adopted to solve
performance problem such as Service Level Objective (SLO) violations in an IT
infrastructure especially in Ubiquitous computing environment, devoting to autonomic
computing [2] which assumes less human intervention during system operations. Self-
healing systems provide resiliency by discovering and preventing disruptions as well as

* This research was supported by MKE, Korea under ITRC IITA-2008-(C1090-0801-0046), Grant

No. R01-2006-000-10954-0, Basic Research Program of the Korea Science & Engineering
Foundation, and the Post-BK21 Project.

** Corresponding author.

578 S. Piao, J. Park, and E. Lee

recovering from malfunctions. For solving system performance accurately and hence
improving reliability, performance problem determination based on combined
dependency analysis are required in large scale systems, providing rapid and accurate
inferences using huge data volumes [3].

Whatever the problem domain is, most problems are unobservable but existed,
considering the reliability of system, the system has to determine their locations from
collected information via monitoring. When using probabilistic dependency analysis
techniques for performance problem determination, some problems should be solved
at first becomes the main issue. 1) For collected information, how to define them
based on criteria, 2) For network topology, how to determine the connections between
nodes and the structure of the model. 3) For created model, how to determine the
conditional relationships between each pair of nodes. The structure can be fixed by
experts based on domain knowledge, whereas it also can be fixed via learning from
data. Thereby, various machine learning methods are used in problem determination
to provide automated approach instead of human intervention [4].

From above issues, much accurate problem determination based on dependency
analysis, is critical to designing an effective automated system management to repair
performance problems. In this paper, we propose an approach to performance
problem determination using combined dependency analysis that adapts to various
situations, which enables us to determine the locations of problems under given
observations. Based on probabilistic dependency analysis, a hierarchical Bayesian
network is created via learning from data automatically. For overcoming the
deflections derived from time delay in specific situation, we use temporal inference to
increase the accuracy of problem determination, which associates time with the
created models and the occurring symptoms. Observed symptoms are posted into the
created model to provide dependency reasoning. The results of dependency reasoning
are combined with the closeness evaluation between collected symptom and created
model. Moreover, combined dependency analysis methods are applied adapting to the
characteristics of knowledge of current situations to improve the accuracy. Using the
improved combined approach enables us to extend problem determination in various
situations of dynamic domains and it provides much accurate and efficient problem
determination technique for improving reliable system. Performance problem
determination using the proposed combined dependency analysis with temporal
inference is illustrated to prove the availability and accuracy of the proposed approach
in improving system reliability.

The rest of this paper is structured as follows. First, we provide related work on
problem determination introduced in various fields, especially using various
techniques that belong to probabilistic dependency analysis. Second, we give a detail
description of the proposed approach to performance problem determination for
reliable system, including the process of Bayesian network modeling and combined
dependency analysis that adapts to various situations in problem domains. Third, an
application based on performance evaluation is given to show the course and results
of inferences using the proposed approach. In the end, we give the conclusion and the
future work.

 Performance Problem Determination Using Combined Dependency Analysis 579

2 Related Work

There are already some research efforts on problem determination techniques in
various problem domains, and it conducts large scope of machine learning approaches
in automated system management. The topics of problem determination such as root
cause analysis and proactive prediction techniques remain an open research problem
since the inherent variety and the increasing complexity of computing systems.

An adaptive diagnostic technique called active probing uses probabilistic reasoning
techniques combined with information-theoretic approach [3]. The fault diagnosis is
implemented based on intelligent probing techniques which impose a cost because of
the additional network load and the probe results must be collected, stored and
analyzed. An event prediction for proactive management was proposed in [5] to build
a proactive prediction and control system for large clusters. An approach for event
correlation that uses a dependency graph to represent correlation knowledge is
introduced in distributed system management. The event correlator searches through
the dependency graph to localize managed objects whose failure would explain a
large number of management events received [6]. An extended symptom-fault-action
model was proposed to incorporate actions into fault reasoning process to tackle lost
and spurious symptoms [7]. Architecture to capture the changes in dependencies and a
temporal correlation algorithm to perform fault diagnosis with the dynamically
changing dependency information are proposed [8]. A probabilistic event-driven fault
localization technique uses a probabilistic symptom-fault map as a fault propagation
model to isolate the most probable set of faults through incremental updating of a
symptom-explanation hypothesis [9].

Problem determination techniques based on the results of various measurements are
widely used, including root cause analysis, problem prediction, and fault diagnosis.
Existing problem determination approaches can be divided into groups, including
deterministic approach and probabilistic approach. In probabilistic approach, most of them
rely on explicit fault propagation model representing causal relationships among events
(event correlation) or dependencies among communication system entities (conditional
dependency analysis) [7]. Such approaches are quite generic and are applicable to a wide
variety of problem domains.

In this paper, we can consider performance problem determination starting with
representing a probabilistic dependency model among system elements rather than
considering them mutually independent in large scale domains. However, although
many machine learning algorithms that are appeared on existing researches make great
efforts on structure modeling for probabilistic dependency analysis, they are mostly
applicable to specific domain and approaches are designed according to the specific
characteristic of the domain. For more complex system which includes various states, it
needs adaptive problem determination mechanism that adapts to different situations.

3 Performance Problem Determination

Problem diagnosis and prediction are the main functions in support of performance
problem determination in the fields of autonomic computing in large scale systems.

580 S. Piao, J. Park, and E. Lee

A combined approach to performance problem determination based on probabilistic
dependency analysis and temporal inference is introduced that adapting to specific
problem domains. Such approach contributes to automated system management
which let system deal with problems that occur without any anticipation and prevents
system from unexpected loss via pretreatments.

Fig. 1. Performance Problem Determination using Combined Dependency Analysis

Information is collected from the target system and classified, formatted and classified

parameters are then partitioned for creating several models. Before modeling, preprocess-
ing is executed which extracts an ordering parameters. The ranking parameters are input as
partial ordering when making Bayesian network modeling. A hierarchical network is
completed after structure learning and parameter learning. Probability results are given
from diagnosis and prediction through dependency reasoning which is based on the
created network. Combining with the closeness evaluation from temporal inference, the
final result of problem determination is decided with max probability. The whole process
of performance problem determination using dependency analysis is described in Fig. 1.

In this paper, Bayesian network algorithm is used as a dependency modeling
method to provide approaches to problem determination for improving system
reliability. Probabilistic dependency analysis throughout the whole network is able to
localize root causes of problems. For various characteristics of problem domains,
combined dependency analysis is applied using temporal inference.

3.1 Probabilistic Dependency Analysis Based on Bayesian Network

Formally, Bayesian network are directed acyclic graphs (DAG), which is a probabilistic
graphical model to represent a set of variables and their dependencies. The connections
between nodes only imply a direct influence of parent node over child node in the sense
that the probability of child node is conditional on the value of parent node [10].
Bayesian network can propagate probabilities via extending Bayes’ Rule throughout
the whole network automatically for more complex problems. Instead of full joint
distribution only the product of the local distributions of each node is required. Bayesian
network is widely used in uncertainty domains with vague, incomplete, and conflicting
information, and it can be run in multiple directions.

 Performance Problem Determination Using Combined Dependency Analysis 581

We use Bayesian network algorithm to execute probabilistic dependency analysis.
Thereby, the method of modeling a hierarchical network structure by following an
improved process should be focused. Structure learning plays an important role in
using Bayesian network method. As manual created Bayesian model [11] may be
disputed it is unalterable and unable to reflect to the real-time changes of data.
Learning structure from data automatically became main issue as it searches a
structure that captures a true distribution, and it can deal with missing data and hidden
variables. Probabilistic dependency analysis is executed based on a learned structure
which gives insight into the performance domain to provide performance problem
determination. Many existing researches use machine learning to provide automated
structure learning. Thereby, overfitting and generalization problems should be solved
when using machine learning. In order to solve such problems and provide efficient
structure learning, we add a preprocessing which ranks parameters before learning.

Fig. 2. Modeling Composition

There are mainly two learning phases that includes structure and parameter learning
in the whole process of Bayesian network modeling (Fig.2). To create an efficient and
accurate model, a preprocessing step which provides ordering parameters is prepared by
using information theory method based on analyzing mutual relationships for structure
learning that is difficult to find relationships between nodes in diverse domains. In the
preprocessing phase, we can narrow down the size of parameters, and rank these
selected factors in an order to contribute to structure learning.

The collected parameters are divided into observing parameters and problematic
parameters at first. Information gains are computed between a problematic parameter
and an observing parameter. For each problematic parameter, all computed
information gains are ranked with descendent order in a list. Considering the lists of
all problematic problems, observing parameters with mean information gains which
exceeds defined threshold are selected and returned as a list including all problematic
parameters. Two parameters are selected from the head of the observing list. Then
two parameters are stored in a set with order according to the results of mutual
information by exchanging directions of two parameters. The operation is stopped
when meeting a close loop and continued to run until all parameters are considered.
All parameters in pairs are ranked again in a single list. Problematic parameters are

582 S. Piao, J. Park, and E. Lee

not considered when ranking selected parameters. It implies that all problematic
parameters are independent of each other when learning. As the ordering shows that
the anterior parameter may have direct influence on the posterior one in the order, it
can determine the direction of arrow in the network when analyzing two nodes have
conditional dependency relationship.

3.2 Combined Dependency Analysis Using Temporal Inference

In order to improve the availability and efficiency of the proposed approach, we can
apply different mechanism of the approach according to the characteristics of
application domain. For the dynamically changing systems, we can group the
situations into two cases, including one case with many parameters considered and the
other one with few parameters. In the case of including many parameters, we use
selection and ordering in preprocessing and then create the Bayesian network model;
or else, we just use ordering before Bayesian network modeling without parameter
selection. As the effect of preprocessing is that improving the efficiency of learning
with less degradation of accuracy, when there are few parameters to be considered,
there is no need to filter the parameters for modeling, and hence not degrading
accuracy. For the relative steady systems where the situations are not changed
randomly in a period, an adaptive approach is used according to the characteristics:
the time delay of changing is longer than the interval of modeling and the problems
are not randomly changed namely it will maintain for a period after occurring.

Most of existing fault diagnosis methodologies assume availability of a complete
and deterministic dependency model, which cannot be made in dynamically changing
networks, as the nodes may not be static and thus the topology may keep changing
with time. In the dynamically changing situations, it becomes important to incorporate
temporal information to improve the accuracy of problem determination. An
improved dependency analysis combined with temporal inference is proposed to
associate time with created model and associate time with occurring symptom to
adapt to periodic changing situations.

Fig. 3. Combined Dependency Analysis using Temporal Inference

 Performance Problem Determination Using Combined Dependency Analysis 583

Fig. 3 shows that the final result of combined dependency analysis is derived from
the inference output of probabilistic dependency analysis and the closeness between
the creating time of model and the occurring time of symptom. The interval of
creating model can be fixed properly according to the features of the target systems.
We can compute using following formulas.

 or

stands for reasoning result of probabilistic dependency analysis from using
Bayesian network model, means the closeness for occurring symptom and
creating model, is the occurring time of symptom and is the
interval of creating model. As the dependency model is updated periodically with
interval time, the occurring symptom can be posted into the model created before the
symptom arrival () or the one that is created after symptom occurred
(), considering the relevance of them which is weighed on the basis of the
closeness. Then after computing based on the mechanism mentioned above, we can
determine the maximum one as the final result.

Probabilistic dependency analysis combined with temporal inference is able to be
used efficiently for determining root cause of performance problem after problem
detection, and hence improving the reliability of system.

4 Illustration on Performance Evaluation

Based on the characteristics of probabilistic model, a complex system can be
represented by a probabilistic dependency graph to combine various components via
links which represent physical or logical connections [3]. Internet service
infrastructures in ubiquitous environment requires automated performance problem
determination to guarantee high quality of services for different types of user
transactions, it brings a challenging task in system performance evaluation. Service
Level Objectives (SLOs) including response time and request throughput are related
to high quality of service. Performance problem determination can find which system
metrics is the exact root cause of problems. Multivariate distributions such as system
performance metrics derived from monitoring can be integrated to provide a compact
factorized representation for probabilistic dependency inferences. For improving
system reliability, we also consider system metrics and use them to analyze
performance problem using problem determination based on combined dependency
analysis. Each parameter in the collected information is classified into several levels
according to given criteria at first, as listed in Table 1.

result dep closenessP P P= ×

. .

.int| |
sym occur net before

result dep
net erval

t t
P P

t

−
= ×. .

.int| |
net after sym occur

result dep
net erval

t t
P P

t

−
= ×

P
P

t . t .

t .
t .

584 S. Piao, J. Park, and E. Lee

Table 1. System performance metrics classification

Attributes Classes

CPU Utilization High, Medium, Low

RAM Utilization High, Medium, Low

Disk Utilization High, Medium, Low

Bandwidth High, Medium, Low

Packetvolume High, Medium, Low

Clientcount High, Medium, Low

Responsetime Error, Warning, Normal

Throughput Error, Warning, Normal

In preprocessing, system metrics are returned as ordering list for efficient

modeling. According to the meaning of ordering list and the assumptions, the anterior
one in the ordering list can be the parent of posterior one. Problematic parameters like
response time and throughput have no relationship in the network.

Fig. 4. Hierarchical Structure

In the case of including several parameters, we can directly use ordering on

collected parameters without parameter selection in preprocessing. Using the ranking
parameters and training data to support network modeling, a compact hierarchy model
is constructed. The hierarchical structure using ordering parameters as input is shown
in Fig. 4. Comparing with traditional simple Bayesian network, not only the
relationships between causes and effects are found, it also discovers internal
dependency relationships among causal parameters in the network. Based on the
topology of Bayesian network, parameter learning is executed to determine
conditional probability table (CPT) for each node.

 Performance Problem Determination Using Combined Dependency Analysis 585

Probabilistic dependency analysis including top-down and bottom-up reasoning is
executed via probabilities propagation in the network after posting observed symptom
as evidence, which represents the states of several observed parameters with full
belief. After the probabilities of the rest parameters are dynamically changed, the
results of reasoning can be determined. For overcoming the deflections derived from
time delay in dynamically changing dependency model, our approach addresses this
issue by combing probabilistic dependency analysis with temporal inference.
Associating time with dependency model helps to represent the topology and
relationships changed with time and to provide the relevance of dependencies while
processing a symptom which occurred at a particular time. Similarly, associating time
with occurring symptom contributes to reasoning the relevance of symptom and
problem dependencies for processing the temporal inferences.

In order to prove the effort and requirement of preprocessing, we consider various
estimations on experiments by whether using the preprocessing or not.

The evaluations on time consumption and accuracy are given whether using parameter
selection and ordering in preprocessing or not according to the characteristics of problem
domains. When using parameter selection and ordering of preprocessing in domains with
many parameters, although the accuracy is little lower than that only using ordering of
preprocessing, the time consumption is much better than that not using parameter selection
in preprocessing. Moreover, comparing the case of that not using preprocessing, parameter
ordering plays an important role for structure learning in probabilistic dependency
analysis. However, in the problem domains with less parameter, both parameter selection
and ordering are used in preprocessing makes that the result is not optimal. Although the
parameter selection in the preprocessing can reduce the learning time, the accuracy is
dropped distinctly, which tell us that only using parameter ordering in preprocessing for
problem domains with less parameters can make effort on accuracy and reduce time
consumption. We can find the comparison results from Table 2.

Table 2. Comparisons with diverse situations

Problem domains Dimensions
Time

consumption (sec)
Accuracy

(%)
Selection and Ordering in

preprocessing
14.62 88.1

Only ordering in
preprocessing

15.66 90.7
Domains with

many parameters

Without Preprocessing 16.84 91.5

Selection and Ordering in
preprocessing

9.12 73.6
Domains with less

parameters Only ordering in
preprocessing

10.03 91.8

In order to prove the effort of using temporal inference for decreasing the deflection

from time delay, we evaluate the final results of inferences between that only using
probabilistic dependency analysis and that using combined dependency analysis using
temporal inferences. When using dependency analysis to combine probabilistic reasoning

586 S. Piao, J. Park, and E. Lee

result derived from dependency model with computation of closeness, the average
accuracy of final results is better than that only considering probabilistic dependency
analysis, as showed in Table 3.

Table 3. Evaluation on Temporal Dependency Analysis

Inference Mechanism Average accuracy

Probabilistic
Dependency Analysis

Reasoning results from
dependency model

84%

Combined
Dependency Analysis

Results of probabilistic
dependency analysis *

Temporal inference
89%

Various tests under different conditions account for that taking selected ordering

parameters that derived from preprocessing as input of structure learning is much
efficient for modeling, and using combined dependency analysis make great effort on
the accuracy of problem determination in various problem domains with dynamically
changing dependency topology and problematic situation maintaining.

5 Conclusion

In this paper, we propose an improved mechanism of performance problem determination
that adapts to various problem domains via using combined dependency analysis. We use
the preprocessing approach to execute parameter selection and ordering according to
different characteristics of situations to provide efficient and accurate learning for
probabilistic dependency analysis. We also use temporal dependency analysis to increase
the accuracy of problem determination, which has a notion of time while performing
probabilistic reasoning. Moreover, a mechanism of combined dependency analysis is
applied adapting to the characteristic of knowledge of existing domain in order to improve
the efficiency and accuracy. With the improved performance problem determination, it
enables us to extend the scope of problem localization and permit it applicable in various
situations of domains, which provides much accurate and efficient problem determination
technique for improving the reliability of system.

Future work will be continued to consider an efficient approach different from
existing one based on fault type learning, providing proper repair strategy after
determining the type of occurring problem.

References

1. Agarwal, M.K., Kar, G., Mahindru, R., Neogi, A., Sailer, A.: Performance Problem
Prediction in Transaction Based e-Business Systems. IBM Research Report Computer
Science, RC24286(W0706-065) (June 2007)

2. Jeffrey, O., Kephart David, M., Chess IBM Thomas, J.: Watson Research Center, The
Vision of Autonomic Computing. IEEE Computer Society (January 2003)

 Performance Problem Determination Using Combined Dependency Analysis 587

3. Rish, I., Brodie, M., Ma, S., Odintsova, N., Beygelzimer, A., Grabarnik, G., Hernandez,
K.: Adaptive Diagnosis in Distributed Systems. IEEE Transactions on Neural Networks
(March 2005)

4. Steinder, M., Sethi, A.S.: A Survey of Fault Localization Techniques in Computer
Networks. Science of Computer Programming, Special Edition on Topics in System
Administration 53(2), 165–194 (2004)

5. Sahoo, R.K., Oliner, A.J., Rish, I., Gupta, M., Moreira, J.E., Ma, S., Vilalta, R.,
Sivasubramaniam, A.: Critical event prediction for proactive management in large-scale
computer clusters. In: Proceedings of the ACM SIGKDD, Intl. Conf. on Knowledge
Discovery and Data Mining, pp. 426–435 (August 2003)

6. Boris, G.: Integrated Event Management: Event Correlation Using Dependency Graphs.
In: The Tenth IFIP/IEEE International Workshop on Distributed Systems: Operations &
Management, Zurich, Switzerland, IEEE Computer Society Press, Los Alamitos (1999)

7. Tang, Y., Al-Shaer, E.S., Boutaba, R.: Active integrated fault localization in
communication networks. Integrated Network Management, 543–556 (May 2005)

8. Natu, M., Sethi, A.S.: Using temporal correlation for fault localization in dynamically
changing networks. International Journal of Network Management (2007)

9. Steinder, M., Sethi, A.S.: Probabilistic Fault Diagnosis in Communication Systems
through incremental hypothesis updating. Computer Networks 45(4), 537–562 (2004)

10. Alpaydm, E.: Introduction of Machine Learning. © Massachusetts Institute of Technology,
pp. 39–59 (2004)

11. Ding, J., Kramer, B., Bai, Y., Chen, h.: Backward Inference in Bayesian Networks for
Distributed Systems Management. Journal of Network and Systems Management 13(4)
(December 2005)

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 588–602, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Free-Roaming Mobile Agent Security Protocol
Based on Anonymous Onion Routing and

k Anonymous Hops Backwards

Xiaogang Wang1, Darren Xu2, and Junzhou Luo3

1 School of Computer Science and Engineering, Southeast University, Nanjing, P.R. China
wxiaog@seu.edu.cn

2 YRC Worldwide Technologies, Overland Park, Kansas, USA
yongnan.xu@yrcw.com

3 School of Computer Science and Engineering, Southeast University, Nanjing, P.R. China
jluo@seu.edu.cn

Abstract. Security and anonymity are vital for free-roaming mobile agent-based
applications. Based on anonymous onion routing, this paper proposes a security
protocol to defend truncation attacks for free-roaming mobile agent-based
applications. This protocol uses “two hops forwards and k anonymous hops
backwards” chain relation to implement the generally accepted mobile agent
security properties. Security analysis proves that this protocol can defend known
attacks, especially multiple colluded truncation attacks and provide privacy
protection to previously visited servers. Performance evaluation shows this
protocol requires limited communication overhead if right parameters are chosen.

Keywords: Mobile Agent, Colluded Truncation, Anonymous Onion Routing.

1 Introduction

Mobile agents are executable codes which can migrate from originating hosts to
intermediate servers to generate and collect data, and return to the originators to
submit results after completing scheduled tasks. Free-roaming agents are those mobile
agents that are free to choose their next hops dynamically at each hop based on initial
requirements and current conditions.

While mobile agents roam, malicious servers may expose, modify, insert, or
truncate data the agents have collected from other previously visited servers to benefit
themselves. One of the attacks is the colluded truncation attack in which two or more
servers may collude to delete a part of the results collected by an agent from
previously visited servers. Security protocols are needed to protect mobile agents,
collected data and identities of visited servers. An effective approach to defending
colluded truncation attacks is to design chain relation based security protocols which
link results from the currently visited server to results generated at the previously
visited servers and the identities of the next hops.

Karjoth et al. [1] proposed a set of security protocols which uses digital signatures
and hash functions to protect chain relations. A chain relation links a result from the

 A Free-Roaming Mobile Agent Security Protocol 589

currently visited server to a result generated at the previous server and the identity of
the next hop. By using different combinations of cryptographic mechanisms, each
scheme of the protocol family provides different security properties. However, none
of the protocols can defend two-colluder truncation attacks.

Karnik et al. [2] introduced the Append Only Container scheme. It is a compact
case of the KAG protocol family. The protocol uses an encrypted checksum to build a
backward chain relation to link an agent’s previous result with the agent’s data
generated at the currently visited host. The backward chain relation guarantees that
only new data can be added to the results the agent collected and no data can be
deleted from them. This scheme cannot defend two-colluder truncation attacks.

Corradi et al. [3] integrated the Multiple-Hops Protocol in their mobile security
project. Similar to the KAG protocols, this protocol uses a chain relation which
includes both backward and forward chaining. At each server, the protocol runs a
hash function to compute a cryptographic proof of a result from the previous server, a
result generated at the current server, and the identity of the next hop. Like other
protocols, this protocol cannot defend two-colluder truncation attacks.

Xu et al. [4] proposed an improved free-roaming mobile agent security protocol to
address all the issues found in the previously discussed protocols, especially defend
two-colluder attacks. The protocol uses “one hop backwards and two hops forwards”
chain relation as the protocol core to implement the generally accepted mobile agent
security properties. Although this protocol can defend two-colluder attacks, it is
vulnerable to some special cases of multiple-colluder truncation attacks in which two
or more of the attackers are adjacent.

We propose an improved security protocol aiming on colluder truncation attacks
while addressing all the security requirements. The rest of this paper is organized as
follows. In Section 2, the commonly accepted mobile agent security properties,
notations and assumptions used in protocol description are presented. In Section 3, we
discuss the protocol in detail. In Section 4.1, the general security properties of the new
protocol are analyzed. In Section 4.2, multiple-colluder truncation attacks and other
special cases are discussed. In Section 5, the performance of the protocol is analyzed
based on implementation and simulation. In Section 6, the highlights of the protocol
are concluded.

2 Notations and Security Properties

When a free-roaming agent completes its actions on server Si-1, it selects and visits
next server Si to generate and collect data. While the agent migrates to server Si, Si
encapsulates an offer oi with other related data to generate its encapsulated offer Oi,
and then appends the encapsulated offer Oi to the partial results carried by the agent
from the preceding servers. After completing its itinerary S0, S1,…, Si,…, Sm,…, S0, the
agent completes its trip and returns to its originator S0. S0 then extracts and verifies
the encapsulated offers from each visited servers.

We define the model and cryptographic notations used in the paper in table 1 and 2
respectively. The notations used here are similar to those in other security protocols,
such as [4] for comparison.

590 X. Wang, D. Xu, and J. Luo

Table 1. Model Notation

Notation Definition
S0=Sn+1 Originator
Si, 1≤i≤n Servers
o0 Token from S0 to identify the agent instance on return
hi, 1≤i≤n Integrity check value associated with Oi

O0,O2,…,On Chain of encapsulated offers from S0,S1,…,Sn

BackRi, 1≤i≤n Backward anonymous onion used for traveling from Si to Si-k

CountKi,1≤i≤n Number of backward servers at Si

Table 2. Cryptographic Notation

Notation Definition
ri Random number generated by Si

(Pri, Pbi) Private and public key pair of Si

(tPri,tPbi) Temporary private and public key pair of Si

EncPbi(m) Message m encrypted with the public key Pbi of Si

SigPri(m) Signature of Si on message m with its private key Pri

H(m) One-way, collision-free hash function
A→B:m Server A sends message m to server B
⊥ End mark in an onion
rtBackR Backward onion used from Si to Si-k

rtReturnR Prepared forward onion generated from Si to Si-k

ftReturnR Forward onion used from Si-k to Si

ftBackR Prepared backward onion generated from Si-k to Si

The generally accepted security properties are described in many other papers
[4, 5, 6, 7]. We will pay close attention to Public Verifiable Forward Integrity and
Truncation Resilience properties.

3 The Protocol

Based on anonymous onion routing, our protocol builds a chain relation to link the
current server Si backwards to k previously visited servers (Si-k, Si-k+1,…, Si-1) and the
identity of the next hop Si+1. The protocol aims on defending all known attacks,
especially multiple-colluder truncation attacks while supporting privacy protection.
The protocol also fixes some weaknesses found in other protocols. We describe the
protocol as follows.

3.1 Anonymous Onion Routing

Anonymous onion routing [9] is an infrastructure for private communication over a
public network. It provides anonymous connections that are strongly resistant to both
eavesdropping and traffic analysis. Any identifying information such as the identities
and temporary public keys of visited servers is encrypted in layers that can only be
decrypted by a chain of onion routers using their respective private keys. An onion is

 A Free-Roaming Mobile Agent Security Protocol 591

a data structure that is treated as the destination address by intermediate onion routers.
Each layer of the onion defines the next hop in a route. An onion router that receives
an onion peels off its layer, identifies the next hop, and sends the embedded onion to
that onion router. Thus, the onion can be used to establish an anonymous connection.
In our protocol, servers act as onion routers, and four different types of onions are
designed for constructing backward and forward onion routing.

In order to make a chain relating current server Si and next hop Si+1 to backwards k
previously visited servers Si-1, Si-2, …, Si-k, the necessary chain message must first be
transferred backwards making use of the backward onion and then be transferred
forwards making use of the forward onion.

First, Si gets its backward onion rtBackRi by receiving backward anonymous onion
BackRi-1 carried with the mobile agent which migrates from Si-1 to Si.

BackRi-1=EnctPbi-1(…(EnctPbi-k+1(⊥ ,Si-k,tPbi-k)…),Si-2,tPbi-2)
rtBackRi=BackRi-1

By using its temporary private key tPri-1, the first backward server Si-1 can decrypt
backward onion rtBackRi received from Si and get the identity of the second backward
server Si-2 and corresponding embedded onion rtBackRi-1 for Si-2.

rtBackRi-1=EnctPbi-2(…(EnctPbi-k+1(⊥ ,Si-k,tPbi-k)…),Si-3,tPbi-3)

Similarly, in order to be able to return from Si-k to Si, Si must also construct
prepared forward onion rtReturnRi by encryption while the message is being
transferred from Si to Si-k. The prepared forward onion rtReturnRi is constructed by Si
as follows.

rtReturnRi=Enctpbi-1(⊥ ,Si,tPbi)

By decrypting rtBacRi received from Si, Si-1 can also get tPbi-2 and use tPbi-2 to
construct rtReturnRi-1 so as to be able to return from Si-k to Si-1 on later stage.

rtReturnRi-1=Enctpbi-2(rtReturnRi,Si-1,tPbi-1)

Then, Si-1 passes the backward and prepared forward onion rtBackRi-1, rtReturnRi-1
and necessary data together to Si-2. To prevent eavesdropping, all information
transferred between servers must be encrypted by the recipient’s temporary public key.

The intermediate server Sx (i-k≤x≤i-2) acts like Si-1 successively. When Si-k
receives end mark ⊥ as rtBackRi-k+1, Si-k use prepared forward onion rtReturnRi-k+1 as
forward onion to start message transferring from Si-k to Si in reverse direction.

It is obvious that any intermediate server Sx (i-k≤x≤i) only knows the identity of
its adjacent severs, so the privacy of previously visited servers can be preserved.

3.2 Agent Starting at S0

By extending Xu et al. [4] protocol, we also assume that the originator S0 first starts
the agent and encrypts the offer by using its public key to produce a cryptographically
protected encapsulated offer ProtectedO0. Then the agent selects and migrates to its
next hop S1 with ProtectedO0.

592 X. Wang, D. Xu, and J. Luo

S1 generates offer o1 and a random number r1. S1 first signs its own offer, and then
encodes the offer by using the originator’s public key to produce S1’s protected
encapsulated offer ProtectedO1. The server S1 also generates a pair of temporary
digital signature keys [tPr1, tPb1] for signing its own final encapsulated offer later.
The agent then selects its next hop S2. Based on simple anonymous onion routing, S1

can make a chain relating S0, S1 and S2. Then the agent migrates to S2 with the final
encapsulation offer O0 from S0, the protected encapsulated offer ProtectedO1, the
number of backward servers CountK1, backward anonymous onion BackR1 from S1,
and the temporary public key of S1.

Back1=EnctPb1(⊥ ,S0,tPb0)

3.3 Agent Migrating at Si

3.3.1 Offer Provision
The agent migrates to Si with all previous encapsulated offers O0, O1,…, Oi-2, plus the
protected encapsulated offer ProtectedOi-1 from Si-1 (instead of the finial encapsulated
offer Oi-1), the number of backward servers CountKi-1, the temporary public key of Si-1

and the backward anonymous onion BackRi-1. The typical structure of the mobile
agent migrating to Si can be shown in figure 1.

S0 S1 Si Si+1

Backward Anonymous Onion : (BackRi-1)
EnctPbi-1(… (EnctPbi-k+1(- ,Si-k,tPbi-k)…),Si-2,tPbi-2)

Temporary Public Key: tPbi-1

Mobile Agent

Collected Offers: O0,O1,O2,… ,Oi-2,ProtectedOi-1

Number of Visited Servers: CountKi-1

… Si-1

Codes for Mobile Agent

Fig. 1. Structure of the mobile agent migrating to Si

After generating a random number ri and a pair of temporary digital signature keys
[tPri, tPbi], Si computes its protected encapsulated offer ProtectedOi and the number
of backward servers CountKi based on the predefined parameter k. To prevent reusing
of the one time digital signature keys [4], a recording and checking function can be
added to the agent.

Si: Receive O0,O1,…,Oi-2,ProtectedOi-1,CountKi-1,tPbi-1, BackRi-1 from Si-1

Compute CountKi=min (k, CountKi-1+1)
ProtectedOi=EncPb0 (SigPri(oi),ri)

Generate [tPri, tPbi]
Select Si+1

 A Free-Roaming Mobile Agent Security Protocol 593

3.3.2 Interactive Offer Encapsulation
In order to generate a chain relation of the k hops backwards previously visited
servers and two hops forwards Si and Si+1, Si first computes its hash value tHi,
generates corresponding backward onion rtBackRi and prepared forward onion
rtReturnRi. Then Si informs its previous server Si-1 with the next hop identity Si+1. In
order to prevent revealing Si+1’s identity to Si-1, Si only passes an encoded identity
Encpb0(Si+1) to Si-1 to build the chain relation. Si first computes and transmits
tHi=H(Si+1,Si) to Si-1. To prevent potential self-loop attack, Si-1 compares Encpb0(Si+1)
with Encpb0(Si), and refuses to return its final encapsulated offer Oi-1 and reports the
incident if Encpb0(Si+1) and Encpb0(Si) are the same.

Si: Compute tHi=H(Si+1,Si)
rtBackRi=BackRi-1

rtReturnRi=EnctPbi-1(⊥ ,Si, tPbi)
Si→ Si-1: Encpb0(Si+1),tHi,rtBackRi,rtReturnRi,CountKi

Si-1 is now able to build a chain relation hi-1 of its previous offer Oi-2, the k hops
backwards previously visited servers and its next two hops Si and Si+1. The protected
encapsulated offer ProtectedOi-1 has been computed when the agent was at Si-1. In
order to build the chain relation concerning k hops backwards servers, currently
visited server Si and next hop Si+1, Si-1 must continue to inform k-1 hops backwards
servers to generate corresponding chain hash values. Si-1 first computes its hash value
tHi-1 and transmits backwards by using anonymous onion routing.

Si-1: Compute tHi-1=H(tHi,Si-1) (if Encpb0(Si+1)≠Encpb0(Si))
rtBackRi-1,Si-2, tPbi-2=DectPri-1(rtBackRi)
rtReturnRi-1=Enctpbi-2(rtReturnRi,Si-1,tPbi-1)

Now, Si-1 can get rtBackRi-1 as EnctPbi-2(… (EnctPbi-k+1(⊥ ,Si-k,tPbi-k)…),Si-3,tPbi-3)
and get rtReturnRi-1 as EnctPbi-2(EnctPbi-1(⊥ ,Si, tPbi),Si-1, tPbi-1).
Si-1→ Si-2: tHi-1,rtBackRi-1,rtReturnRi-1,CountKi

This process continues successively backwards until Si-k+1 receives rtBackRi-k+2
from Si-k+2.

Si-k+1: Receive tHi-k+2, rtBackRi-K+2, rtReturnRi-k+2, CountKi from Si-k+2

Compute tHi-k+1=H(tHi-k+2,Si-k+1)
rtBackRi-k+1,Si-k,tPbi-k=DectPri-k+1(rtBackRi-k+2)
rtReturnRi-k+1=EnctPbi-k(rtReturnRi-k+2,Si-k+1,tPbi-k+1)

By now the backward onion rtBackRi-k+1 should be the end mark ⊥ .

Si-k+1→

Si-k: tHi-k+1, rtBackRi-k+1, rtReturnRi-k+1,CountKi

Si-k: Compute tHi-k=H(tHi-k+1,Si-k)

ftReturnRi-k,Si-k+1,tPbi-k+1=DectPri-k(rtReturnRi-k+1)
ftBackRi-k=EnctPbi-k+1(⊥ ,Si-k, tPbi-k) (if CountKi<k)

 ftBackRi-k= ⊥ (if CountKi=k)

594 X. Wang, D. Xu, and J. Luo

By now the forward message transmitting process must be followed.

Si-k→ Si-k+1: tHi-k, ftReturnRi-k, ftBackRi-k

Si-k+1: Compute tHi-k+1=tHi-k

ftReturnRi-k+1,Si-k+2,tPbi-k+2=Dectpri-k+1(ftReturnRi-k)
ftBackRi-k+1=EnctPbi-k+2(ftBackRi-k,Si-k+1,tPbi-k+1)

Si-k+1→ Si-k+2: tHi-k+1,ftBackRi-k+1,ftReturnRi-k+1

Si-k+2: Compute tHi-k+2=tHi-k+1

ftReturnRi-k+2,Si-k+3,tPbi-k+3=Dectpri-k+2(ftReturnRi-k+1)
ftBackRi-k+2=EnctPbi-k+3 (rtBackRi-k+1,Si-k+2,tPbi-k+2)

This process goes on successively forwards until Si-1 receives ftReturnRi-2 from Si-2.

Si-2→Si-1: tHi-2,ftBackRi-2,ftReturnRi-2

Si-1: Compute tHi-1=tHi-2

ftReturnRi-1,Si,tPbi=Dectpri-1(ftReturnRi-2)
ftBackRi-1=EnctPbi(ftBackRi-2,Si-1,tPbi-1)
hi-1=H(ProtectedOi-1,tHi-1) (if ftReturnRi-1= ⊥)
Oi-1=SigtPri-1(ProtectedOi-1,hi-1,H(Si-1),tPbi)

Si-1 finally signs and finalizes the finial encapsulation offer Oi-1 by using its secret
key tPri-1.

Si-1→ Si: Oi-1,ftBackRi-1

3.3.3 Offer Verification
Now Si has all previous offers including the final encapsulated offer Oi-1 from Si-1. Si
recovers all previous ProtectedOk, hk and tPbk+1 (1≤k≤i-2) recursively from O0, O1,
…, Oi-2 to verify the offers O1, O2,…, Oi-1 with corresponding public keys. The
protocol confirms the ProtectedOi-1 encapsulated in Oi-1 by Si-1 in Step 3.3.2 is the
same ProtectedOi-1 carried over by the agent in Step 3.3.1 to prevent Si-1 from
changing its mind to use a different offer oi-1 after the agent migrates.

Si: Ver(O0, Pb0), recover ProtectedO0, h0,H(S0) and tPb1

Ver(Ok, tPbk), recover ProtectedOk, hk, H(Sk) and tPbk+1, 1≤k≤i-2

The protocol confirms the H(Sk) encapsulated in Ok is unique among the previously
visited servers by comparing H(Sk) (1≤k≤i-2), Si will report the incident if there are
same values among H(Sk).

3.3.4 Agent Migration
Si forwards all previous offers and its protected encapsulated offer to Si+1 if all
previous encapsulated offers are verified as valid.

Si: Compute BackRi =ftBackRi-1

Si→ Si+1: O0,O1,…,Oi-1, ProtectedOi, CountKi, tPbi, BackRi

 A Free-Roaming Mobile Agent Security Protocol 595

3.4 Agent at Si+1

Agent migrating at Si+1 has the similar processes as at Si. We outline the protocol at
sever Si+1 for comparison with steps at Si.

Si+1: Receive O0,O1,…,Oi-1, ProtectedOi, CountKi, tPbi, BackRi from Si

Compute CountKi+1 =min (k, CountKi+1)
ProtectedOi+1=EncPb0(SigPri+1(oi+1),ri+1)

Generate [tPri+1, tPbi+1]
Select Si+2

Compute tHi+1=H(Si+2,Si+1)
rtBackRi+1=BackRi

rtReturnRi+1=EnctPbi(⊥ ,Si+1, tPbi+1)
Si+1→ Si: Encpb0(Si+2), tHi+1, rtBackRi+1, rtReturnRi+1, CountKi+1

Si+1 waits for k hops backwards servers to generate tHi.

Si-1→ Si: tHi-1, ftBackRi-1, ftReturnRi-1

Si: Compute tHi=tHi-1

ftReturnRi, Si+1, tPbi+1=Dectpri(ftReturnRi-1)
ftBackRi=EnctPbi+1(ftBackRi-1, Si, tPbi)

hi=H(Oi-1, tHi) (if ftReturnRi= ⊥)
Oi=SigtPri(ProtectedOi, hi, H(Si), tPbi+1)

Si finally signs and finalizes the final encapsulation offer Oi by using its secret key tPri.

Si→ Si+1: Oi, ftBackRi

Si+1: Ver(O0, Pb0), recover ProtectedO0, h0, and tPb1

Ver(Ok, tPbk), recover ProtectedOk, hk, and tPbk+1, 1≤k≤i
Compute BackRi+1=ftBackRi

Si+1→ Si+2: O0, O1,…, Oi, ProtectedOi+1, CountKi+1, tPbi+1, BackRi+1

3.5 Agent Returns to S0

When the agent returns to the originator S0, it has all the encapsulated offers O0,
O1,…, On. The agent creator S0 begins to decrypt the offers and extract the data. It
uses its public key Pb0 to recover ProtectedO0, H(00) and temporary public key of
tPb1 from O0, and then uses the temporary public key tPb1 to recover ProtectedO1,
H(01)and tPb2 from the next encapsulated offer. By using these temporary public keys
S0 can extract all the ProtectedOi. The ProtectedOi can then be decrypted by using the
public key Pb0 of S0 and the offers o1,…, on, S1,…, Sn can be obtained. S0 can also
detect colluded truncation attacks by verifying h0, h1,…, hn.

4 Security Analysis

We prove our protocol achieves the generally accepted security properties in this
section. Let’s assume the agent’s itinerary is S0, S1,…, Si-2, Si-1, Si…, Sm,…, S0, and
collected encapsulated offers are O0, O1,…, Oi-2, Oi-1, Oi,…, Om,…, On correspondingly.

596 X. Wang, D. Xu, and J. Luo

4.1 General Security Properties

Xu et al’s protocol [4] satisfies all general security properties including defending the
two-colluder truncation attack and many of its special cases, such as growing a fake
stem attacks, revisiting attacks and interleaving attacks. Our protocol can obviously
satisfy the security properties as well as an extension on the protocol.

Our protocol aims on not only defending multiple-colluder attacks, but also
providing privacy protection. Privacy protection is a vital demand in real applications.
In our protocol, the privacy is preserved by using anonymous onion routing. No
intermediate server is able to acquire any information about other previously visited
servers except its adjacent servers.

4.2 Colluded Truncation Attacks

As Xu et al. [4] analyzed that in only one-hop forwards protocol, Si can modify its
next hop in its own chain relation, Si is able to collude with Sm to truncate the offers
between them and append new offers without being detected. This is why the one-hop
forwards chain relation based protocols cannot defend colluded truncation attacks
without other protection mechanisms.

In “one hop backwards and two hops forwards” protocol proposed by Xu et al. [4],
Si-1 builds the chain relation hi-1=H (Oi-2, ri-1, Si, Si+1) with next two hops Si and Si+1.
Although the inclusion of Si and Si+1 guarantees that the truncation attacks against Oi
and/or Oi+1 will be detected, the chain relation hi-1 may not be able to prevent Si and
Si+1 from changing their own chain relations by collusion.

In our “two hops forwards and k hops backwards” protocol, the chain relation hi-1

can prevent Si and Si+1 from changing their own chain relations, it guarantees that
only Oi from Si and Oi+1 from Si+1 and Oi+2 from Si+2 until Oi+k+1 from Si+k+1 can
follow Oi-1.

It is possible that multiple (three or more) colluders exist. Assume Sm holds partial
encapsulated offers from S0,…,Si-1, Si, Si+1,…, Sx, Sx+1,…, Sm-1. Si and Sm (i<x<m)
leave Oi-1 intact and collude to truncate Ox and/or afterwards. As Xu et al. [4]
analyzed that “one hop backwards and two hops forwards” protocol can defend two
nonadjacent colluder truncation attack, but can’t detect two or more adjacent colluder
truncation attacks. Assume Si and Si+1 are two adjacent colluders. The protocol
proposed by Xu et al. [4] is vulnerable to such attack. But in our protocol, although Si
and Si+1 are adjacent and may collude with Sm to truncate offers collected between Si+1
and Sm, such attack can be detected by our protocol. As Si-1 builds the chain relation
hi-1=H(Oi-2, H(…(H(Si+1, Si), Si-1)…, Si-k)) relating next two hops Si and Si+1 and k hops
backwards servers, only Si and Si+1 can append Oi and Oi+1 after Oi-1. If Oi and/or Oi+1
are truncated, the server identities of the new offers after Oi-1 cannot satisfy the chain
relation hi-1=H(Oi-2, tHi-1) without violating the collusion-free hash function
assumption. So the truncation against Oi and Oi+1 cannot happen or the action will be
detected. Similarly, if Oi+2 is truncated, the server identities of the new offers after
Oi+1 will not satisfy the chain relation hi. In general, as long as the number of adjacent
colluders is not bigger than k, our protocol can effectively detect such truncation
attacks. Our protocol extensively extends “one hop backwards and two hops

 A Free-Roaming Mobile Agent Security Protocol 597

forwards” protocol and can be used to defend various kinds of multiple-colluder
truncation attacks for free-roaming mobile agent.

5 Implementation and Evaluation

We have implemented the protocol in a local 100Mbps Ethernet to evaluate the
protocol and it’s effectiveness of our security protocol.

We use the Java Agent Development Framework system (JADE) developed by
Telecom Italia (formerly CSELT). JADE is a Java software platform that provides
basic middleware-layer functionalities which are independent of specific applications
and simplifies the realization of distributed applications that exploit the software
agent abstraction. JADE is also a very efficient agent platform with agent containers
that can be distributed over the network. Agents live in containers which are the Java
process that provides the JADE run-time and all the services needed for hosting and
executing agents [11].

5.1 Implementation

5.1.1 Implementation Platform
We implemented our security protocol based on JADE [11] platform. The hardware
platform used for the implementation includes eight computers with Intel Pentium 4
on a local 100Mbps Ethernet. The CPU and Memory of each computer are 3GHz and
512MB respectively. The software used for the implementation includes the operating
system Windows XP and JADE (3.5) multi-agent platform. We use JAVA as the
programming language, and the JavaTM 2 Platform, Standard Edition (J2SETM) version
1.6.0 as the essential Java tools and APIs for implementing the security protocol.

The common functionality includes creating initial data on the originator, updating
the data of the agent, and verifying the integrity of the agent on the originating host.
We first develop Java agents which are resided at every host respectively. The
residing agent at each host is on behalf of the host server and responsible for
communicating with the free roaming agent when the free roaming agent migrates to
the host. Then, we design a free roaming agent which starts at originator S0, visits
each succeeding host and collects corresponding offers.

In order to implement k anonymous hops backwards protocol based on anonymous
onion routing, we utilize 512 bits RSA encryption mechanism coming with Java
Cryptography Architecture (JCA) which includes the Java Cryptographic Extension
(JCE)) based on JDK1.6.0. The system timestamp technique in Java is used for
measuring response time metrics.

5.1.2 Performance Metrics
In order to evaluate the performance of security protocol, we measure the total time and
the total volumes of transferred messages caused by free-roaming agent’s traveling from
originated host S0 and returning to S0. Both the time and volume of messages are mainly
concerned with N, the number of visited hosts and the value of k hops backwards
parameter. The total processing time includes the computing complexity cost for
privacy and security processing in anonymous onion routing construction.

598 X. Wang, D. Xu, and J. Luo

5.2 Results and Evaluation

5.2.1 Attack Pattern Simulation
In order to find an optimal balance point of the required numbers of hops backwards
to satisfy both security and performance, we have done the research on the probability
of the multiple-colluded truncation attacks occurred in various scenarios. In a typical
scenario, the free-roaming agent at each hop may choose the next host according to its
intention, but the probability of choosing malicious node is relating to the percentage
of malicious nodes in the network. The length of adjacent multiple-colluded attackers
can be simulated as a typical attacking model against our security protocol. By
simulation, we get the distribution of the probability of the multiple-colluded
truncation attacks existing in a network. Under different percentage of malicious
nodes in the network, the distribution of multiple-colluded attackers with 20 random
selected hosts among 50 relating hosts is shown in figure 2 by simulation.

Based on the simulation result, the probability of the multiple-colluded truncation
attacks increases correspondingly with the increase of m the percentage of malicious
nodes in the network. However, the probability of adjacent multiple-colluded nodes is
very small in practical scenarios. This implies that in order to defend against multiple-
colluded truncation attacks in our security protocol the k hops backwards parameter
may be set smaller according to different application scenarios.

P
ro

ba
bi

li
ty

 (
%

)

20

40

60

80

100

m=5% m=10% m=15% m=20%

Length of adjacent malicious nodes

1 3 5 6 80 2 4 7
0

Fig. 2. Distribution of multiple-colluded attackers

5.2.2 Communication Overheads
Like other chain based protocols with ability of defending colluder truncation attacks,
our protocol requires communications between servers after agent’s migration and
may increase communication overhead.

Communication includes the overhead for the mobile agent’s migration and k hops
backwards message transmission over the LAN to build a chain. Using the Sniffer
tool in JADE, we can get the volume of total transferred messages according to
different parameter k for 16 hosts in our environment. In our implementation, each
host generated two residing agents to simulate two different hosts such that less

 A Free-Roaming Mobile Agent Security Protocol 599

simulating computers are required to simulate more hosts. Table 3 and figure 3 show
the communication results. We can find that the volume of k hops backwards message
transmission varies with different k parameters. The size of mobile agent is 117 kilo
bytes and is not included in the messages table 3.

Table 3. Messages under N Hosts and k Hops Backwards (Kbytes)

k hops backwards
Messages

1 2 3 4 5 6
4 2.3 6.1 12.2
8 5.5 16.1 43.2 101.5 213.6 405.1

12 8.6 26.1 74.2 188.3 441.5 983.9
N

hosts
16 12.1 36.2 105.2 275.1 669.3 1562.7

k hops backwards

1 2 3 4 5 6

M
es

sa
ge

s
(K

by
te

s)

200

400

600

800

1000

1200

1400

1600

7

N=4 N=8 N=12 N=16

0
0

M
es

sa
ge

s
(K

by
te

s)

200

400

600

800

1000

1200

1400

1600

N hosts

4 8 12 16 20

k=1 k=3 k=5 k=6

0
0

 Fig. 3. Messages under k hops backwards Fig. 4. Messages under different N hosts

Figure 4 depicts the relation between the volume of message transmission and the
number of visited hosts under certain k hops backwards.

From the testing results, we know that mobile agent’s migration communication
overhead is necessary and is proportional to the servers that the mobile agent visited in
all with various k hops backwards. But the total volume of message transmission is not
proportional to the k value. The relation between the total volume of message
transmission and the value k is exponential. So, we need to find a suitable value k for
various application environments to avoid huge communication overheads. The volume
of messages transmission is mainly caused by the encryption of RSA public keys.

5.2.3 Response Time Evaluation
In order to defend the multiple-colluded truncation attacks, we prefer to integrate
more hops backwards to the chain in the security protocol. However, more hops
backwards will cause more communication overhead, more processing time and
eventually downgrade the protocol performance. The response time includes the time
for message transmission, mobile agent migration time and the processing time for
each related host. The response time can be shown in table 4 and figure 5. We can

600 X. Wang, D. Xu, and J. Luo

find that the total response time varies with different k parameter and the total number
of visited hosts.

Figure 6 depicts the relation between the total time and the number of visited hosts
under certain k hops backwards.

Table 4. Total Time under N Hosts and k Hops Backwards (Seconds)

k hops backwards
Total time

1 2 3 4 5 6
4 5 6 7
8 12 16 18 23 28 37

12 19 26 29 32 44 69
N

hosts
16 31 35 41 53 70 116

k hops backwards

1 2 3 4 5 6

Ti
m

e
(S

ec
on

ds
)

20

40

60

80

100

120

7

N=4 N=8 N=12 N=16

0
0

Ti
m

e
(S

ec
on

ds
)

20

40

60

80

100

120

k=1 k=3 k=5 k=6

N hosts

4 8 12 16 20
0

0

 Fig. 5. Total Time under k hops backwards Fig. 6. Total Time under different N hosts

From the testing results, we know that the total time for mobile agent’s traveling is
proportional to the servers under various k hops backwards. But the relation between
the total time and the value k is exponential. So, we need to find a suitable value k
practical application to avoid large response time.

5.2.4 Optimal Configuration
Based on implementation and simulation results, the balance point of the numbers of
hops backwards to satisfy both security and performance should be and can be
identified. As the distribution of multiple-colluded attackers indicated in 5.2.1, the
length of adjacent multiple-colluded attacker is very small in practical environment,
so the value of k hops backwards can be chosen between 2 and 5, such that both
security and performance requirement can be satisfied.

6 Conclusion

Based on anonymous onion routing, our protocol uses a “two hops forwards and k
hops backwards” chain relation to build a free-roaming agent security protocol to

 A Free-Roaming Mobile Agent Security Protocol 601

implement all of the generally accepted security properties while supporting privacy
protection. The protocol is designed especially to defend multiple-colluder truncation
attacks and many of its special cases. The solution based on anonymous onion routing
satisfies the privacy protection requirements.

Compared with other free-roaming agent security protocols, this protocol has no
requirements for confidential channels and co-signs on encrypted contents. By using
anonymous onion routing information, no host is required to preserve such connection
status information such as its successor, predecessor. This feature is very important in
practical applications to simplify the implementations. Like other protocols with ability
of defending colluder truncation attacks [4, 8], this protocol requires communications
between servers after agent migrations and may increase communication overhead or
cause the process fail if the backwards visited server are not available. This problem
can be addressed by using some re-encryption mechanism for replacing those relay
nodes which fail. The result shows that by choosing right k hops backwards parameter
this protocol will satisfy communication overhead and response time and meet both the
generally accepted mobile agent security and anonymity requirements. This protocol
offers many unique and attractive features to protect free-roaming agents in a
distributed environment. In the future, we plan to simulate the protocol through and
deploy it in a larger test environment.

Acknowledgments. This work is supported by National Natural Science Foundation
of China under Grants No. 90604004, Jiangsu Provincial Natural Science Foundation
of China under Grants No. BK2007708, Jiangsu Provincial Key Laboratory of
Network and Information Security under Grants No. BM2003201, Key Laboratory of
Computer Network and Information Integration (Southeast University), Ministry of
Education under Grants No. 93K-9 and International Science and Technology
Cooperation Program of China.

References

1. Karjoth, G., Asokan, N., Gülcü, C.: Protecting the computation results of free-roaming
agents. In: Rothermel, K., Hohl, F. (eds.) MA 1998. LNCS, vol. 1477, pp. 195–207.
Springer, Heidelberg (1998)

2. Karnik, N.M., Tripathi, A.R.: Security in the Ajanta Mobile Agent System. Technical
Report TR-5-99, University of Minnesota, Minneapolis, MN 55455, USA (1999)

3. Corradi, A., Montanari, R., Stefanelli, C.: Mobile agents Protection in the Internet
Environment. In: 23rd Annual International Computer Software and Applications
Conference (COMPSAC 1999), Phoenix, AZ, USA, pp. 80–85 (1999)

4. Xu, D., Harn, L., Narasimhan, M., Luo, J.: An Improved Free-Roaming Mobile Agent
Security Protocol against Colluded Truncation Attacks. In: 30th Annual International
Computer Software and Applications Conference (COMPSAC 2006), Chicago, USA, pp.
309–314 (2006)

5. Cheng, J., Wei, V.: Defenses against the truncation of computation results of free-roaming
agents. In: 4th International Conference on Information and Communications Security,
Singapore, pp. 1–12 (2002)

6. Yao, M., Foo, E., Dawson, E.P., Peng, K.: An Improved Forward Integrity Protocol for
Mobile Agents. In: 4th International Workshop on Information Security Applications
(WISA 2003, Jeju Island, Korea, pp. 272–285 (2003)

602 X. Wang, D. Xu, and J. Luo

7. Songsiri, S.: A New Approach for Computation Result Protection in the Mobile Agent
Paradigm. In: 10th IEEE Symposium on Computers and Communications (ISCC 2005),
Cartagena, Spain, pp. 575–581 (2005)

8. Zhou, J., Onieva, J., Lopez, J.: Protecting Free Roaming Agents against Result-Truncation
Attack. In: 60th IEEE Vehicular Technology Conference, Los Angles, USA, pp. 3271–
3274 (2004)

9. Reed, M.G., Syverson, P.F., Goldschlag, D.M.: Anonymous connections and onion
routing. IEEE Journal Selected Areas in Communications 16(4), 482–494 (1998)

10. Gomez-Martinez, E., IIarri, S., Merseguer, J.: Performance analysis of mobile agents
tracking. In: 6th international workshop on Software and performance, Buenes Aires,
Argentina, pp. 181–188 (2007)

11. Chmiel, K., Gawinecki, M., Kaczmarek, P., Szymczak, M., Paprzycki, M.: Efficiency of
JADE agent platform. Scientific Programming 13(2), 159–172 (2005)

Secure Ethernet Point-to-Point Links for

Autonomous Electronic Ballot Boxes

Armando Astarloa, Unai Bidarte, Jaime Jiménez, Jesús Lázaro,
and Iñigo Martinez de Alegŕıa

Department of Electronics and Telecommunications, Faculty of Engineering,
University of the Basque Country
Urquijo s/n, 48013 Bilbao - Spain

{jtpascua,jtpbipeu,jtpjivej,jtplaarj,jtpmamai}@bi.ehu.es

Abstract. Rapid growth of computer networks and advances in crypto-
graphic techniques allow new approaches of electronic voting systems. In
this research, we present a System-on-Programmable-Chip crypto-bridge
module that enables secure ethernet point-to-point connections between
electronic ballot boxes and the remote host of the central electoral of-
fice through insecure Ethernet networks. The proposed crypto-bridge
is implemented using reconfigurable devices, and two implementations
are presented: a single channel module and multi-channel module. HDL
source code of the AES cipher, Ethernet MAC controller and tiny pro-
cessor embedded in the crypto-bridge is public and open enforcing the
confidence in the system.

1 Introduction

In order to explain the motivation of the presented research, two fields must
be contextualized: the electronic ballot boxes and the widely use of Ethernet
standard for network communications.

Taking into account the rapid growth of computer networks and advances in
cryptographic techniques, electronic polling over the Internet is now becoming a
real option for voters who have access to the Net. However, electronic democracy
must be based on electronic voting systems that have the following properties
as described by Cranor et al. [1]: accuracy, invulnerability, privacy, verifiability,
and convenience. Internet voting systems are still under development, it seems
that it will take time before they can become widely available to all citizens
[2,3]. But in this context, there are available new electronic voting system that
are accurate, invulnerable, private, verifiable, convenient, and compatible with
electoral traditions. One example is the electronic ballot box presented in [4,5]
that uses OCR techniques to automatically read paper ballots and digital com-
munication techniques to transmit electoral results to the central electoral office,
where results coming from all voting boxes will be counted. This electronic ballot
is an embedded system (ARM CPU core based) with Ethernet communications
capabilities.

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 603–614, 2008.
© Springer-Verlag Berlin Heidelberg 2008

604 A. Astarloa et al.

Ethernet networks are widely implemented in Local Area Networks (LANs).
However, the use of this well known standard is being extended to Metropoli-
tan Area Networks (MANs). In the context of broadband services providers are
introducing new point-to-point Ethernet services [6]. Some of the keys for this
success are summarized as follows:

– It is a well known technology and the consumer devices can include very low
cost 10/100/1000 Mbps Ethernet links.

– Nowadays, the Internet Protocol (IP) is used world-wide for data, voice and
video transport. This evolution helps the Ethernet expansion because it is
not a connection-oriented network and it is optimized for IP packets traffic.

– Ethernet technology, in conjunction with switching, full duplex and autosens-
ing, allows users to adjust the required performance within the network to
their exact requirements. This feature is favoring the expansion of Ether-
net in industrial networks used for production and automation. Industrial
Ethernet can be easily linked with the company Intranet and Internet.

– The simplicity of the Ethernet frame structure eases ‘on-the-fly’ communi-
cation packet hardware processing. This high-speed computation scheme is
necessary in many scenarios for example, when applying intensive crypto-
graphic algorithms to high speed channels [7].

Taking into account the expansion of Ethernet networks, the need for secure
Ethernet solutions is rapidly growing [8,9]. And this growth is not only related
to personal computers or servers, but to a heterogeneous group of machines as
well. Good examples are casino gambling machines, digital scale networks or elec-
tronic ballot boxes. In those contexts, the need for secure communications with
autonomous means is mandatory. The challenge in securizing communications
networks is to obtain flexible means which are able to deal with the intensive
computation needed by the cryptographic algorithms. But, in general, the control
of these machines is carried out by embedded systems. And embedded systems
are fundamentally processor-based devices operating under resource-constrained
conditions, like the electronic ballot box described in this research. The embed-
ded systems pose severe resource constraints on terms of computational capacity
and memory [10]. The cryptographic algorithms computation requirements are
so high for a conventional embedded processor device, that most of its computa-
tion capacity would be needed if that computation was performed by software.
For many embedded systems, this situation is not affordable.

In order to deal with this drawback, processors most commonly used for indus-
trial applications such as ColdFire, have embedded cryptographic cores (crypto-
cores) in the same device [11]. Using this approach, the frame encryption and
decryption is performed by hardware, freeing the main processor core from this
task. The main drawback of this approach is the limited flexibility that it shows.
These embedded processors are ASIC technology. Thus, the crypto-core is fixed
on terms of algorithm implementation and interfaces; both for the software in-
terface and for the communication media controller peripheral or core.

Besides the ASIC processor-based embedded systems solution, the industry
is massively adopting the core-based design methodology for system integration

Secure Ethernet Point-to-Point Links 605

using Field-Programmable-Gate-Arrays (FPGAs), which leads to the appear-
ance of the System-on-Programmable-Chip (SoPC) platforms [12]. Taking into
account the fact that FPGAs do not incur in non-recurring engineering charges
due to their reconfigurable nature, the number and diversity of the available IP
cores for digital systems composition has heavily increased [13,14]. The SoPCs
are very flexible in different ways: number and type of IP cores and processors,
bus architecture, hardware and software co-processing, etc. This flexibility allows
very short time-to-market and facilitates custom device design for every industry
and application. The SoPC technology faces the secure communication paradigm
with the maximum flexibility: Depending on the application, different crypto-
cores and communication media controller cores can be included in the FPGA
device. For the secure communication section of the SoPC, the designer is in
charge of finding the best FPGA resource occupation-data throughput trade-off
and the optimum IP licence cost as well.

The research that we present in this paper, aims to find a solution to establish
point-to-point secure Ethernet links between electronic ballot boxes and a central
electoral office through insecure Ethernet networks (for example, through an
Ethernet MAN). The proposed solution is focused on the SoPC technology and
methodology, and integrates Open Source cryptographic algorithms hardware
engines and Open Source Ethernet controllers [15].

The remainder of this paper is organized into five sections. In section 2 the net-
work scenario for this application is presented. Sections 3 and 4 detail the proposed
architecture for the single channel and for the multichannel versions of the crypto-
bridge respectively. In Section 5, the implementation results for both versions are
summarized. The paper ends in Section 6, with the conclusions and future work.

2 Secure Electronic Ballot Box

Figure 1 shows the connection scheme to secure the connection among two elec-
tronic ballot boxes (SECURED E-BALLOT BOX 0 and SECURED E-BALLOT BOX 1)
and the host computer of the central electoral office.

Each SECURED E-BALLOT BOX integrates an embedded CPU with Ethernet
capabilities. So, each CPU has its own Ethernet MAC address. For example
in the network scenario represented in Figure 1, MAC ADDR 0 is the MAC ad-
dress for the SECURED E-BALLOT BOX 0, and MAC ADDR 1 and REMOTE HOST MAC
ADDR are the addresses for the SECURED E-BALLOT BOX 1 and for the central elec-
toral office host computer respectively. The connection with the remote host is
done through a non-secure Ethernet net.

In order to provide a secure point-to-point link between electronic ballot boxes
and the remote host, each SECURED E-BALLOT BOX integrates an OSCRYB mod-
ule (OSCRYB 0 and OSCRYB 1) [16]. The OSCRYBs run as Ethernet bridges be-
tween different physical Ethernet networks, but apart from this task, they are
able to filter Ethernet frames for a given MAC address pair. If the Ethernet
frames do not match these addresses, they are transferred transparently be-
tween the Ethernet networks. If a frame matches, it is processed attending to
the order that the MAC addresses have into the packet address fields.

606 A. Astarloa et al.

OSCRYB 0

OSCRYB 0

Ethernet

Link 0

Ballot box

Embedded

CPU

0

Insecure

Ethernet

Network

OSCRYB 1

OSCRYB 0

Ethernet

Link 1

OSCRYB 1

Ethernet

Link 1

OSCRYB 1

Ethernet

Link 0

Ballot box

Embedded

CPU

1

SECURED E-BALLOT BOX 0

SECURED E-BALLOT BOX 1

MULTI

OSCRYB

MULTI-OSCRYB

Ethernet

Link 1

Remote

HOST

MULTI-OSCRYB

Ethernet

Link 0

Fig. 1. Secure electronic ballot boxes network integration

In the central office remote host side, a multi-channel OSCRYB (MULTI-
OSCRYB) module is located between the insecure Ethernet Network and the
secure Ethernet LAN of the central electoral office where the remote host is
stated. As will be detailed in Section 4, each MULTI-OSCRYB SoPC embeds
OSCRYB modules as many SECURED E-BALLOT BOX are connected to the inse-
cure Ethernet network. This redundancy offers an unique point-to-point secure
link with an specific key pair for each ballot box and ensures the necessary
computation power for the network analysis and cryptographic tasks.

For example, the point-to-point link between the SECURED E-BALLOT BOX
0 and the central office remote host will work at follows: In the OSCRYB 0
Ethernet Link 0, if MAC ADDR 0 matches the Ethernet local address packet
field, and REMOTE HOST MAC ADDR matches the Ethernet remote address packet
field of an incoming packet, then it is encoded and transferred ciphered to
the MULTI-OSCRYB 1 Ethernet Link 1. If the OSCRYB 0 Ethernet Link 1 re-
ceives a ciphered packet with the MAC ADDR 0 in the remote address packet field
and REMOTE HOST MAC ADDR in the local address packet field, then it is deci-
phered and transferred to the Ballot box embedded CPU 0. The MULTI-OSCRYB
channel that is in charge of ciphering the Ethernet point-to-point connection be-
tween SECURED E-BALLOT BOX 0 and the central office remote host works in a
similar manner, but with the matching MAC addresses reversed.

Using this mode of operation, the establishment of secure channels between
heterogeneous devices connected to Ethernet networks is an easy and little in-
trusive task. However, as all the necessary computation is performed in the

Secure Ethernet Point-to-Point Links 607

OSCRYB crypto-bridges, these must be designed with a powerful architecture
that provides the means to ensure the necessary dataflow.

3 OSCRYB SoPC Architecture

Figure 2 summarizes the internal dataflow in an OSCRYB. Two Open Source
Ethernet IP Medium Access Controllers IP cores [17], ETHERNET MAC IP 0 and
ETHERNET MAC IP 1, are in charge of controlling the OSCRYB Ethernet Links
0 and 1. The incoming network traffic through the OSCRYB Ethernet Link 0
is transferred to the cryptographic SEC-enc core by the ETHERNET IP 0. This
SEC core is configured to perform encoding operations, and it is in charge of
filtering, ciphering and padding the frames with destination Device 1. These
packets are transmitted to the ETHERNET MAC IP 1. The traffic received through
the ETHERNET MAC IP 1 controller is filtered by a second SEC core (SEC-dec)
configured to filter and decipher the frames with destination Device 0.

SEC-enc

(encoding)

WB slave

WB master

SEC-dec

(decoding)

WB master

WB slave

Ethernet MAC

IP 0

WB m/s

Ethernet phy

Ethernet MAC

IP 1

WB m/s

Ethernet phy

PHY 0

PHY 1

OSCRYB

OSCRYB

Ethernet Link 0

OSCRYB

Ethernet Link 1

Ethernet

traffic from

insecure net
Ethernet

traffic to

insecure net

FPGA

Fig. 2. OSCRYB block diagram

608 A. Astarloa et al.

SEC-enc

(encoding)

WB S

WB M

SEC-dec

(decoding)

WB M

WB S

Ethernet MAC

IP 0

WB M WB S

Ethernet phy

Ethernet MAC

IP 1

WB S WB M

Ethernet phyOSCRYB

Double port

RAM 0-3

WB S

WB S

Double port

RAM 1-2

WB S

WB S

WB bus 3

(point-to-point)

WB bus 1

(point-to-point)

uP 0

WB

M1

WB

M2

uP 1

WB

M1

WB

M2

WB bus 0

(Shared)

WB bus 2

(Shared)

Bus

Arbitrer

0

Address

Decoder

0

Bus

Arbitrer

2

Address

Decoder

2

FPGA OSCRYB Ethernet Link 0

OSCRYB Ethernet Link 1

Fig. 3. OSCRYB implementation block diagram

In order to implement an architecture able to maintain the proposed full-
duplex dataflow, an architecture with four Wishbone1 buses is implemented.

Figure 3 details OSCRYB architecture: Each ETHERNET MAC IP controller
transfers data through its master Wishbone interface via Direct Memory Ac-
cess (DMA) transferences, both for frame transmission and reception. These

1 Wishbone SoC interconnection architecture for portable Intellectual Property cores
[18] is a standard specification for data exchange between IP cores. It defines the
interfaces, what bus topologies are allowed and signaling. It is absolutely royalty
free and is used to share open projects [19]. It provides high levels of robustness and
flexibility.

Secure Ethernet Point-to-Point Links 609

transferences must be configured in the ETHERNET MAC IP cores’ regis-
ters through their slave Wishbone interfaces using a configuration blocks called
‘Buffer Descriptors’ [17]. In the same way, SEC modules have configuration regis-
ters, as the cryptographic KEY and packet length before and after the ciphering,
that must be accessed to configure the data transfers.

Two tiny control microcontrollers, uP-0 and uP-1, have been included in each
OSCRYB module to control the dataflows and to configure these registers for
each transfer. uP-0 is in charge of controlling data transfers to the insecure
Ethernet network and the uP-1 configures the transferences received from this
network. These control processors are based on the tiny soft 8 bit processor
PicoBlaze [20]. The software is stored in the internal dedicated memory of the
FPGA and the processors are implemented using general purpose FPGA logic.
For this application, each processor has been provided with two master Wishbone
interfaces (WB M1 and WB M2).

uP-0 using its WB M1 interface configures ETHERNET MAC IP 0 to transfer
the frames received from the OSCRYB Ethernet Link 0 to the SEC-enc. These
frames after having been filtered and if it is the case, ciphered, are temporally
stored in intermediary RAM memory (Double port RAM 1-2). uP-0 through its
WB M2 interface configures a ETHERNET MAC IP 1 ‘Buffer Descriptor’ to initiate
the DMA transfer that moves the ciphered frame from Double port RAM 1-2
to the OSCRYB Ethernet Link 1. uP-1 works in a similar way but controlling
the dataflow from ETHERNET MAC IP 1 to ETHERNET MAC IP 0.

To implement the described operativity some auxiliary elements are necessary
in the architecture. Wishbone bus 0 has a shared bus interconnection topology
that links three slaves interfaces ETHERNET MAC IP 0, SEC-enc (encoding) and
one port of Double port RAM 0-3 with three master interfaces: ETHERNET MAC
IP 0 master interface, uP0 WB M1 and uP1 WB M2. In a similar way, Wishbone
bus 2 carries the transferences to ETHERNET MAC IP 1, to SEC (decoding), to
the second intermediary double port RAM memory (Double port RAM 1-2),
from ETHERNET MAC IP 1 and from both tiny control microcontrollers.

Wishbone bus 1 and Wishbone bus 3 are Wishbone point-to-point buses
that link SEC cores with double port RAM memories implemented using FPGA
dedicated memory [21]. The aim of these memories is to provide an intermediary
storage space necessary to synchronize all the transfers.

OSCRYB crypto-bridge uses the SEC core to process Ethernet frames ‘on-
the-fly’. The heart of the SEC module is a frame processor that embeds a frame
filter logic and cryptographic algorithm hardware. It offers flexible means able
to deal with the intensive computation needed by the cryptography algorithms.
The selected algorithm is the Rijndael [22,23]. This is one of the widest cryp-
tography algorithm. It was selected by The National Institute of Standards and
Technology (NIST) for the Advanced Encryption Standard (AES) [24]. NIST
adopted Rijndael algorithm with 128 bit block size. It combines a 128 bit key
and a 128 bit unencrypted data block to get a 128 bit block of ciphered data, and
applying the same operations in reverse order using the same key, the plaintext
data may be recovered from the ciphered vector. To process messages or packets

610 A. Astarloa et al.

into blocks it is necessary to define the block cipher’s mode of operation. NIST
has a list of 16 different modes [25]. A detailed description of the SEC module
is presented in [16].

4 MULTI-OSCRYB SoPC Architecture

Thanks to the high density level of the modern FPGAs and to the modularity of
the OSCRYB, it is viable to integrate many OSCRYBs in a single high capacity
FPGA device.

Each OSCRYB module embedded on a MULTI-OSCRYB SoPC secures one
point-to-point Ethernet link. Depending on the size of the reconfigurable device,
the MULTI-OSCRYB will be able to connect a different number of SECURED
E-BALLOT BOXs to the insecure Ethernet network. Figure 4 represents a simpli-
fied block diagram of a generic MULTI-OSCRYB SoPC for n SECURED E-BALLOT
BOX. Because of OSCRYB module has not only its SEC modules but two Ether-
net MAC controllers as well, different network topologies can be adopted for a
given scenario. As an example, in the model depicted in Figure 4, all the physical
Ethernet links are joined using a HUB.

5 Implementation Results

A single OSCRYB SoPC, like the proposed for the SECURED E-BALLOT BOX is a
‘Single channel’ implementation. For this module, the low cost Xilinx Spartan-3
family has been selected.

For the MULTI-OSCRYB (a ‘Multiple Channel’ implementation), the high
capacity Xilinx Virtex-4 family is the best option for the required resources. For
all of the implementations considered, the two intermediate double port RAM
memories have 128 Kbytes of capacity. Taking into account this size, for each
memory 8 internal BlockRAMs are necessary. The AES implementation that we
have used in this development, the R. Usselmann Open Source HDL AES high
speed one [26], uses 7 BlockRAMs. Moreover, each control tiny processor stores
its program in one memory BlockRAM, so, two more consumed RAM memory
blocks must be taken into account for each OSCRYB module instantiation.

Table 1 summarizes the implementation results for a single OSCRYB. If
we take into account that the Ethernet controller IP core embedded in each
OSCRYB is capable of operating up to 100 Mbps, and that the real dataflow ob-
tained for the internet OSCRYB ciphering and filtering engine (the SEC module)
is higher than 100 Mbps, we can ensure that the system will be able to process
the channel optimally.

The implementation results after synthesis, mapping and routing stages of
a MULTI-OSCRYB are detailed in Table 2. The Virtex-4 xc4vlx160-11ff1513
FPGA is used as reference. This device embeds 152.064 Logic Cells and 5.184
Kbits of dedicated RAM memory. The maximum number of OSCRYB modules
for this device is 8.

Secure Ethernet Point-to-Point Links 611

OSCRYB 0

Ethernet phy 0

PHY 0.0

MULTI-OSCRYB

FPGA

Ethernet phy 1

OSCRYB 1

Ethernet phy 0

Ethernet phy 1

… OSCRYB i

Ethernet phy 0

Ethernet phy 1

PHY 0.1 PHY 0.i

PHY 1.0 PHY 1.1 PHY 1.i

hub

hubhub

OSCRYB n

Ethernet phy 0

Ethernet phy 1

PHY 0.n

PHY 1.n

…

Secure Ethernet

Network

Insecure

Ethernet

Network

Fig. 4. MULTI-OSCRYB implementation block diagram

Table 1. Single channel OSCRYB SoPC implementation on a Spartan-3 xc3s1500-
5fg320 FPGA

Resources type Resource utilization

4 input LUTs 13.990 (20%)
Slice Flip-Flops 5.555 (52%)
Spartan-3 Slices 8.957 (67%)
18K BlockRAM 21 (65%)
Xilinx Equivalent gate count 1.552.007
Maximum running speed 75 MHz
SEC max. data throughput 139 Mbit/s

612 A. Astarloa et al.

Table 2. MULTI-OSCRYB implementation on a Virtex-4 xc4vlx200-11ff1513 FPGA

Resources type Resource utilization

OSCRYB modules on-a-chip 8

4 input LUTs 114.929 (64%)
Slice Flip-Flops 43.227 (24%)
Virtex-4 Slices 70.002 (78%)
18K BlockRAM 200 (59%)
Xilinx Equivalent gate count 14.366.622
Maximum running speed 100 MHz

The powerful of the obtained systems can be illustrated with the results of this
implementation: 16 ETHERNET MAC IP cores (Ethernet MAC controllers), 16
SEC crypto-cores and 16 control tiny-processors are running in parallel in the
same chip.

6 Conclusions

The autonomous computing system presented in this work benefits from the
SoPC technology and from the extension of the Ethernet standard in different
types of networks. The establishment of different point-to-point secure Ethernet
links for each electronic ballot box, with independent cryptographic keys and
processing modules, enhances the confidence in the system and offers an scenario
where an electronic voting system fulfills with the compulsory properties.

As the implementation results have shown, the proposed architecture is fully
scalable and replicable even in the same chip. The source code of the two AES
cipher blocks, Ethernet MAC controller and tiny processor is public and open;
and it has been successfully reused in this work.

This research promotes the integration of secure communications in electronic
ballot boxes. The future work in this line is multidisciplinary: Future tasks re-
lated with electronic design will be focused on the integration of the new high-
speed encryption, authentication algorithms and enhancement of the control
software for the tiny processors. In the same way, telematic research will be
needed in order to propose optimized protocols for dynamic key interchange
between OSCRYB modules.

Acknowledgment

This work is developed in the framework of the project ‘Embedded crypto-
bridge for electronic voting applications’ (EJIE07/03), a public research project
funded by the agreement of the University of the Basque Country and EJIE S.A.
(UPV/EHU-EJIE 2007).

Secure Ethernet Point-to-Point Links 613

References

1. Cranor, L.F., Cytron, R.K.: Sensus: A Security-Conscious Electronic Polling Sys-
tem for the Internet. In: Proceedings of the Hawaii International Conference on
Systems Sciences, pp. 7–10 (1997)

2. MTI. Voting, what is what could be, caltech mit voting technology project (July
2001), http://web.mit.edu/voting/

3. California Internet Voting Task Force. A report on the feasibility of internet voting
(January 2000), http://www.ss.ca.gov/executive/ivote/final report.htm

4. Goirizelaia, I., Espinosa, K., Martin, J.L., Lázaro, J., Arias, J., Igarza, J.J.: An
Electronic Secure Voting System Based on Automatic Paper Ballot Reading. In:
Sanfeliu, A., Mart́ınez Trinidad, J.F., Carrasco Ochoa, J.A. (eds.) CIARP 2004.
LNCS, vol. 3287, pp. 470–477. Springer, Heidelberg (2004)

5. Espinosa, J.K., Goirizelaia, I., Igarza, J.J.: OCR Applied to an Electronic Voting
System. Pattern Recognition and Image Analysis 17(4), 457–461 (2007)

6. IEEE-SA Standards Board. IEEE 802.1XTM. IEEE Standard for Local and
metropolitan area networks – Port-Based Network Access Control. IEEE-SA Stan-
dards (2004)

7. Chodowiec, P., Gaj, K., Bellows, P., Schott, B.: Experimental Testing of the Gigabit
IPSec-Compliant Implementations of Rijndael and Triple DES Using SLAAC-1V
FPGA Accelerator Board. In: Proceedings of the Information Security Conference,
pp. 220–234 (October 2001)

8. IEEE-SA Standards Board. IEEE 802.11iTM. IEEE Standard for Information
Technology – Telecommunications and information exchange between systems –
Local and metropolitan area networks – Specific requirements – Part 11: Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications –
Amendment 6: Medium Access Control (MAC) Security Enhancements. IEEE-SA
Standards (2004)

9. Sáiz, P.: A model for establishing secure sessions at the link layer between endpoints
in Ethernet networks. PhD thesis, Faculty of Engineeering. UPV/EHU (October
2007)

10. Hwang, D.D., Schaumont, P., Tiri, K., Verbauwhede, I.: Securing Embedded Sys-
tems. IEEE Security and Privacy 4(2), 40–49 (2006)

11. Inc. Freescale Semiconductor. ColdFire Security: SEC and Hardware Encryption
Acceleration Overview. Freescale Semiconductor Application Note 2788 (2003),
http://www.freescale.com/files/32bit/doc/app note/AN2788.pdf

12. Martin, G., Chang, H. (eds.): Winning the SoC Revolution: Experiences in Real
Design. Kluwer Academic Publishers, Massachusetts (2003)

13. Zorian, Y., Gupta, R.K.: Introducing Core-Based System Design. IEEE Design &
Test of Computers 14(4), 15–25 (1997)

14. Bergamaschi, R.A., Bhattacharya, S., Wagner, R., Fellenz, C., Muhlada, M.: Au-
tomating the Design of SOCs Using Cores. IEEE Design & Test of Comput-
ers 18(5), 32–45 (2001)

15. OpenCores Comunity. OpenCores: Free open source IP Cores and Chip Design
(2004), http://www.opencores.org

16. Astarloa, A., Bidarte, U., Lázaro, J., Arias, J., Olaguenaga, E.: OSCRYB: Open
Source CRYpto-Bridge for Secure Ethernet point-to-point Industrial Communi-
cations. In: Proceedings of the 33nd Annual Conference of the IEEE Industrial
Electronics Society (IECON 2007) (November 2007)

http://web.mit.edu/voting/
http://www.ss.ca.gov/executive/ivote/final_report.htm
http://www.freescale.com/files/32bit/doc/app_note/AN2788.pdf
http://www.opencores.org

614 A. Astarloa et al.

17. Nguyen, K., Mohor, I., Markovic, T.: OpenCores Ethernet MAC 10/100 Mbps:
Overview (2006),
http://www.opencores.org/projects.cgi/web/ethmac/overview

18. Silicore Corporation. Wishbone System-on-Chip (SoC) Interconnection Architec-
ture for Portable IP Cores Revision: B.3 (September 2002),
http://www.opencores.org

19. Rudolf Usselmann. SoC Bus Review, http://www.opencores.org
20. Chapman, K.: PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan II/IIE

Devices. Xilinx Application Notes (February 2003), http://www.xilinx.com
21. Xilinx Corp. Using Block SelectRAM+ Memory in Spartan II FPGAs. Xilinx Ap-

plication Notes (December 2000), http://www.xilinx.com
22. Daemen, J., Rijmen, V.: Rijndael: Algorithm Specification (2001),

http://csrc.nist.gov/encryption/aes/rijndael/

23. Astarloa, A., Sáiz, P., Lázaro, J., Jacob, E., Bidarte, U.: Multi-architectural 128 bit
AES-CBC Core based on Open-Source Hardware AES Implementations for Secure
Industrial Communications. In: Proceedings of the 10th International Conference
on Communication Technology (ICCT2006), pp. 221–226 (November 2006)

24. Gaj, K., Chodowiec, P.: Comparison of the Hardware Performance of the AES Can-
didates Using Reconfigurable Hardware. In: Proceedings of The Third Advanced
Encryption Standard Candidate Conference, pp. 40–54 (April 2000)

25. National Institute of Standards and Technology. Cryptographic Toolkit. Modes of
Operations. Computer Security Resource Center (2005),
http://csrc.nist.gov/CryptoToolkit/tkmodes.html

26. Usselmann, R.: AES (Rijndael) IP Core (2002),
http://www.opencores.org/projects.cgi/web/aes core/overview

http://www.opencores.org/projects.cgi/web/ethmac/overview
http://www.opencores.org
http://www.opencores.org
http://www.xilinx.com
http://www.xilinx.com
http://csrc.nist.gov/encryption/aes/rijndael/
http://csrc.nist.gov/CryptoToolkit/tkmodes.html
http://www.opencores.org/projects.cgi/web/aes_core/overview

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 615–628, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Wireless Sensor Network Assisted Dynamic Path
Planning for Transportation Systems

Yue-Shan Chang1, Tong-Ying Juang1, and Chen-Yi Su2

1 Department of Computer Science and Information Engineering, National Taipei University
151, University Road, Sanhsia, Taipei County, 237, TAIWAN, R.O.C.

{ysc,juang}@mail.ntpu.edu.tw
http://web.ntpu.edu.tw/~ysc/

2 Institute of Information Management, National Taipei University
151, University Road, Sanhsia, Taipei County, 237 TAIWAN, R.O.C.

brojac@gmail.com

Abstract. The static path planning of transportation network is only considering
the shortest-path from source to destination. The approach cannot adjust the
path dynamically when the predetermined path is obstructed. It could increase
the traveling time to destination and could not effectively plan the path with
shortest time. In this paper we propose a Wireless Sensor Network (WSN) as-
sisted framework for dynamic path planning for transportation systems, which
collects the traffic information dynamically using sensor nodes and plan the
path of transportation network with shortest time using Satellite Navigation
System. The WSN can be used for calculating the estimated traveling time and
looking for a shortest-time path by way of fusing the traffic information, such
as average speed and number of vehicles in a timeframe, collected from the
candidate path. Users can thus use handheld device, such as PDA, with GPS
(Global Position System) and GIS (Geographic Information System) to dy-
namically plan the path via requesting the WSN to collect traffic information. It
can perform better than the static path planning approach.

1 Introduction

With advances in computing hardware/software and wireless communication, the
Satellite Navigation System (SNS) can be embedded into a handheld device, such as
PDA (Personal Digital Assistant), by merging with GPS (Global Position System) and
GIS (Geographic Information System) to assist users with planning their travel path.
Such technology can also be adopted in monitoring the location of mobile equipment,
searching scenic resort, and navigating to destination with shortest path.

Wireless Sensor Networks (WSN) [1] comprise a great volume of sensor nodes that
are fully autonomous with many inherent characteristics, such as limited computation
power and resources, energy constraints, limited reliability, and lower communication
capabilities. They can be used to monitor environmental information [2], target detec-
tion, object tracking, and traffic network monitoring [3, 5, 8, 9] via deploying massive
and inexpensive sensor nodes. These sensor nodes may have multiple sensing elements

616 Y.-S. Chang, T.-Y. Juang, and C.-Y. Su

for collecting and responding to environmental information by collaborating internal
part of network such as data/value fusion [6, 7], routing algorithm [4], data gathering,
and data aggregation. The system based on WSN can thus make a real time decision by
collecting and fusing the information from sensor nodes.

The path planning of transportation network in the Satellite Navigation System is
in general using static path planning approach. It is mainly considering the distance
from source to destination. The approach to users may not be efficient because it
cannot adjust the path dynamically when the predetermined path gets obstructed. It
might increase traveling time to destination and could not effectively plan the path
with shorter time.

Finding a shortest-time path requires estimating the traveling time of each possible
link and then computing the possible shorter-time paths. Obviously, the efficient path
to destination is not based on the distance but rather the time to destination. The vehi-
cle should dynamically change the route when the time to destination is larger than
other paths. For example, in the Fig. 1, path 1-2-5-7-8 result in shortest time
(3+4+4+4=15 time units) to destination 8 at first time instance, and this path is hence
chosen by the driver. But, when the vehicle is at link 1-2, the time of link 2-5 is
changed to 15 time units due to some obstruction at link 2-5. The shortest time to 8 is
now 2-4-5-7-8 (7+4+4+4=19) which is less than the previous path 2-5-7-8 (15+4+4 =
23). And, when the vehicle is at link 2-4, the time of link 4-5 is changed to 6 time
units and link 5-7 is changed to 6 time units due to obstructions at link 4-5 and 5-7,
respectively. The shortest time to 8 is the path 4-7-8 (10+5=15) which is less than the
previous path 4-5-7-8 (6+6+5 = 17).

Fig. 1. An example scenario

In this paper we propose a Wireless Sensor Network (WSN) assisted framework
for dynamic path planning for transportation systems. The framework can dynami-
cally adjust and suggest the traveling path for moving vehicle for improving the
problem of static path planning approach by collecting the traffic information dy-
namically using sensor nodes and planning path of transportation network in Satellite

Wireless Sensor Network Assisted Dynamic Path Planning for Transportation Systems 617

Navigation System. The WSN can be used to calculate the possible traveling time and
look for a shortest-time path by way of fusing the traffic information, such as average
speed and number of vehicles in a timeframe, collected from the candidate path. Users
can thus use handheld devices, such as PDA which with GPS (Global Position Sys-
tem) and GIS (Geographic Information System), to dynamically plan the path via
requesting the WSN to collect traffic information.

The system is assumed that the handheld device can automatically issue the request
to the WSN for re-looking for possible shorter-time path from the candidate paths
when the vehicle is closing to an intersection. In the framework, we model the traffic
network utilizing the Macroscopic Model and compute the possible shorter-time path
by on-demand heuristic algorithm when the traveling time of each link calculated in
the candidate paths. The simulation result shows the framework can effectively adjust
the traveling path and improve the problem of static path planning problem.

The remainder of the paper is organized as follows. Section 2 presents the traffic
network model. We examine assumptions, system parameters, and sensor nodes con-
figuration. Section 3 shows the time estimation approach of traffic path and link.
Section 4 shows and examines the simulation result. Section 5 reviews some related
works. Finally, we give conclusion in Section 6.

2 Traffic Network Model

2.1 Network Components and Assumptions

Here we define the network architecture and make some assumptions used in the
system. Fig. 2 shows the components and network architecture of the system. The
system consists of GPS, handheld device with GPS receiver and GIS, and WSN.
The WSN comprises a sensing node (SN) and a cross node (CN). The CN is deployed
on intersection and SN is deployed along with the link between two intersections. The
network architecture of WSN is cluster-based WSN [14].

All links connected to an intersection can be viewed a cluster, and CN is a cluster
head in the WSN. SN is responsible for sensing the number of passing vehicles and
calculating their average speed, while CN is responsible for forwarding request to
related sensor of link, and getting and fusing the information from SNs. Each CN is
also an SN but CN has more power than SN in the computing and communication.
Every node has a node ID and a link ID. Each CN has all neighbors CNs’ ID and
physical location. The location can be the GPS’s coordinate, which is used to deter-
mine the direction a request forwarded to.

When a vehicle that has a handheld device of the system approaches to an intersec-
tion, the handheld device can automatically contact to a CN and issue a request to
look for next path to destination. The contacted CN (CCN) will issue the traveling
time estimation procedure in order to look for next path. In addition, we make the
same assumption as [10] that each sensor the energy can be supplied from roadside or
streetlamp.

618 Y.-S. Chang, T.-Y. Juang, and C.-Y. Su

Fig. 2. Network architecture and components

2.2 Network Model

The network is simply assumed as an acyclic graph G = (V, E); here V is a set of
vertices and E is a set of edges between vertices. A vertex can be a CN. Eij represents
a link from Vi to Vj. In order to without loss generality, the Eij is different from Eji
because the traffic at the two directions is independent. In addition we define the
parameters used in the model as follows:

– Link distance- Lij: represents the length from Ei to Ej.

– Link speed limitation- ijα : default limited speed of Eij.

– Default link traveling time- ijλ : the traveling time from Ei to Ej without any

obstruction in the Eij and the vehicle can pass through in the speed ijα . The

ijλ is equal to Lij/ ijα .

– Sensing Node ID (SN_ID)- ij
kS : represents kth sensing node in the Eij.

– Cross Node ID (CN_ID)- Cm: the mth cross node in the network.
– Number of SN- Nij: the number of sensing node in the Eij.

– Distance of sublink- R(k, k+1): the length from ij
kS to ij

1kS + . The length can be

computed from the location of ij
kS and ij

1kS + as follow.

 2
1kk

2
1kk1)k(k,)-()-(R +++ +×= YYXXη

where)Y,(kkX is the GPS’s coordinate of ij
kS and)Y,(1k1k ++X is the GPS’s coor-

dinate of ij
1kS + . η is a constant to map from coordinate to physical length.

Wireless Sensor Network Assisted Dynamic Path Planning for Transportation Systems 619

To estimate the traveling time of a link we also need to define the parameter

kn that is the number of vehicle in a link in a time period. SN will count the number

of vehicle that passing through the link during the time slot.

3 Traveling Time Estimation

In this section we present the time estimation approach used in the paper.

3.1 Time Estimation of Sub-link

The traveling time of a sub-link can be estimated by means of collecting the number
of vehicle and their average speed between two sensing nodes. The time of a sub-link
is an essential time we can evaluate. It can be estimated by computing the traffic in-
formation collected from two neighbor sensing nodes. The time of a link is the sum-

mation of all sub-links, such as Cm- 1mm,
1S + , 1mm,

1S + - 1m m,
2S + , …, and 1m m,

kS + -Cm+1.
The time of a sub-link can be estimated by using the traffic information sensed by
sensing nodes. Then we can use Macroscopic Model [13] that is usually used in traffic
network to computing the traveling time of the sub-link.

According to the Macroscopic Model, the relationship between traffic and density
of sub-link can be modeled as a continuous fluid model, as shown in Fig. 3. We can
thus compute the average speed and traveling time based on these two terms. The
Macroscopic Model is as follow:

),(),(tRd
t

tRf
R ∂

∂=
∂
∂ (1)

f ：Traffic (Number of vehicle/Time)

d：Density (Number of vehicle/Length)
R：Location

t：Time
then

f = ε×d (2)

d

f=ε (3)

where ε ：Average speed in the sub-link
And the traveling time of the sub-link can be estimated as follow.

}{

}.{.

/)()1(

)()1(

kk

kk

ff

ddR

f

dR

df

RR

−
+Δ

=Δ=Δ=Δ=
+

+

ε
λ (4)

620 Y.-S. Chang, T.-Y. Juang, and C.-Y. Su

where λ ：estimated traveling time
RΔ ：sub-link length

)()(tf k : detected traffic of sensing node k at time t

)()(td k
: density of node k at time t

Traffic in a sub-link. The detected traffic in the SN ij
1kS + at the time t can be repre-

sented as
t

C)n(n
)(

ij
k

ij
1k

1

+−= +
+ tf ij

k
, the C is a constant representing the number of

vehicle resided in the sub-link between ij
kS and ij

1kS + before detection.

)1(+kR

ε
)(kR

)()(tf k)()1(tf k+

)()(td k)()1(td k+

Fig. 3. Macroscopic Model

Density in a sub-link. The density of vehicle in the sub-link between SN ij
kS and

ij
1kS + at time t can be represented as

k)1,(k

ij
k1k

1 R

C)n(n
)(

+

+
+

+−=
ij

ij
k td . The C is same as above

definition.

Average speed in sub-link. According the formula (3), we can compute the average

speed in the sub-link between SN ij
kS and ij

1kS + as follow:

t

R

C)n(n

R

t

C)n(n

d

fε 1)k(k,
ij
k

ij
1k

k)1,(k
ij
k1k

ij
1k

ij
1kij

1k
+

+

++

+

+
+

Δ
=

+−
Δ

×+−==
ij

 (5)

Traveling time of sub-link. The traveling time of sub-link k in the link i to j can be

computed by the ij
kS according to the formula (4) as follows.

ij
k

1)-k (k,
k

R
λ

ε
Δ

=ij (6)

3.2 Time Estimation in a Link

The traveling time of a link is the summation of traveling time of all sub-links in the
link. The requesting CN can fuse the collected result from all of SNs in the link and

Wireless Sensor Network Assisted Dynamic Path Planning for Transportation Systems 621

compute the traveling time of the link and reply the result to the requesting CN. We
can represent the traveling time of a link as follows:

∑
=

=+++=
N

1k

ij
k

ij
N

ij
2

ij
1ij λ)λ...λλ(T (7)

If a CN has more than one possible links to destination, the CN will fuse and compute
the two traveling time of links respectively. For example, on an intersection CNi, there
are two possible links to destination that are CNj and CNk respectively. The CNi will
receive two replies from the two CNs. The CNi so that will need to fuse the result of
link i-j and i-k, and then reply the result to last CN. The detail requesting and for-
warding algorithms will be presented in the next section.

3.3 Time Estimation of Traveling Path

The shortest path in general can be found using Dijkstra algorithm due to constant
distance between two nodes. There are location-aware routing algorithms in sensor
networks and ad hoc networks [15] researches to look for routing path. But the short-
est-time routing path is possible of dynamical change and is associated with traveling
time of link. Here we use an on-demand heuristic algorithm with GPS assisted to look
for the shortest-time path to destination.

In order to without loss generality, we assume that the CN only have neighbor CN’s
ID and their physical location, and do not have any GIS information to destination.
When a vehicle approaches a CN, the SNS in the mobile device will send the ap-
proached CN (CCN) a request to look for shortest-time path to destination. CCN will
forward request and sensed traffic information to next CNs that approaching destina-
tion via near SN. SN and CN will compute cooperatively the traveling time of link.

For example, as shown in Fig. 4, when a vehicle approaches the CN1, the mobile
device with SMS send CN1 (CCN) a request to look for the shortest-time path to

Fig. 4. Request forwarding flow

622 Y.-S. Chang, T.-Y. Juang, and C.-Y. Su

CN11. CN1 will forward the request with sensed information to CN2 and CN3 via
2,1

1S and 3,1
1S respectively. CN2 will forward the request to CN4 and CN5, and CN5

will also forward it to CN6 and CN7. Similarity, CN6 forwards the request to CN5 and
CN8. The request will finally be forwarded to destination (CN11).

Obviously, the request might be forwarded repeatedly in some links. This problem
can easily be solved by applying following two criteria while CN forwarding the
request to destination.

Df <= c* Dsp

where Df: accumulated forwarding distance.
Dsp: the shortest distance from source to destination
c: constant, assumed 1.5

The forwarding angle ∠ CNp-CNn-CNd is large than π/3, where CNd is destination
CN, CNp is current CN, and CNn is next CN. That is:

3)()(

)()(
sin

22

22
1 π>

−+−

−+−−

pdpd

ndnd

XXYY

XXYY

First criterion can avoid looking for longer path in forwarding phase and reduce the
number of forwarding. Second criterion is in order to ensure that forwarding direction.
The context in the request is a five tuple, there are CN list from CCN to current CN,
next CN, accumulated traveling time, accumulated distance, and shortest distance.

3.4 Algorithms

According to approach mentioned above, here shows the algorithms run on various
nodes.

Vehicle with SNS
a). approaching CCN:

1. Compute the shortest distance to destination CN utilizing GIS for refer-
ence.

2. Send request to CCN.
3. Wait for response.

b). receiving response:
1. Extract the shortest-time path from CN list that is returned from destination

CN.
2. Show the path to user.

CCN
a). receiving request:

1. Keep the user ID from the request.
2. Compute the possible forwarding CN according to GPS coordinates of

neighbor CN, and add its own CN_ID to CN list.

Wireless Sensor Network Assisted Dynamic Path Planning for Transportation Systems 623

3. Send the request that involve the sensed data by CCN to possible forward-
ing CNs via neighbor SN in that direction.

4. Wait for response.
b). receiving response:

1. Retrieve the CN list and forward it to user.

SN
a). receiving request:

1. SN will compute the sub-link traveling time ij
kλ according to average vehi-

cle speed and traffic of ij
1-kS and ij

kS and the sub total traveling time Tij.

2. Ccompute the accumulated distance.
3. Send the request with sensed average speed, number of vehicle, accumu-

lated distance, and Tij to next SN.
b). receiving response:

1. Forward response to next SN.

Intermediate CN
a). receiving request:

1. Execute first two steps of SN in receiving request.
2. Discard this request if accumulated distance is greater than c* Dsp. or con-

tinue step 3.
3. Compute the possible forwarding CN according to GPS coordinates of

neighbor CN, and add its own CN_ID to CN list.
4. Send the request that involve the sensed data by the CN to possible for-

warding CNs via neighbor SN in that direction.
5. Wait for response.

b). receiving response:
1. Retrieve next CN from the CN list and forward the response to that CN.

Destination CN
a). receive request:

1. Wait for all requests from same user a time period.
2. Select shortest-time path from the requests of same user and retrieve the

CN list.
3. Send back the response to CCN via shortest-time path shown in retrieved

CN list.

4 Simulation

This simulation is using Matlab to simulate the traffic density and catch partial map
from online e-map Urmap1. Fig. 5(a) shows the partial map that is from Zhongshan
district to Da-an district in Taipei city.

1 Urmap： http://www.urmap.com/

624 Y.-S. Chang, T.-Y. Juang, and C.-Y. Su

Each CN is placed on intersection. This simulation the starting point and ending
point certainly are the intersection. The starting point is at intersection 6, and the end-
ing point is at intersection 34. Fig. 5(a) shows the shortest distance path in the map.

(a)

(b)

Fig. 5. The map in this simulation and the shortest distance path. (a) The shortest-path. (b)
Dynamic path planning at t=0. (c) Dynamic path planning at t=5.1288 (link 29→28 traffic jam)
(d) Dynamic path planning at t=7.1607 (link 32→31traffic jam).

Wireless Sensor Network Assisted Dynamic Path Planning for Transportation Systems 625

(c)

(d)

Fig. 5. (Continued)

The traffic in each link is generated randomly. Fig. 5(b) shows the shortest-time
path estimated at t0 using proposed algorithms. The estimated path is the sequence of
intersection: 6→7→8→9→20→25→ 29→28→31→34 and traveling time is 5.3584
minute. When the vehicle run to intersection 20 (t=5.1288), the algorithm estimates
the shortest-time path is changed to 20→25→29→32→31→34 because there are
traffic jam between 29 and 28 intersection, as shown in Fig. 5(c). When the vehicle

626 Y.-S. Chang, T.-Y. Juang, and C.-Y. Su

run to intersection 32 (t=7.1607), the algorithm detects traffic jam between 32 and 31
intersection. The shortest-time path is changed as 32→35→34, as shown in Fig. 5(d).

Next we take some measurements and make the comparison including distance,
time and path, as shown in Fig. 6. Fig. 6(a) shows the distance from source to destina-
tion. The distance at time 0 is the first selected path, not the shortest path. The dis-
tance will be changed with the path changed at time 0.186 and 2.501.

Fig. 6(b) shows the time needed to the destination. The time is updating dynami-
cally associated with the traffic in the path. All of the time is almost nearly except for
the initial because it is relating to original shortest-time path.

(a) Distance Comparison

(b) Time Comparison

(c) Path comparison

Fig. 6. Measurement and comparison

Wireless Sensor Network Assisted Dynamic Path Planning for Transportation Systems 627

Fig. 6(c) shows the path comparison of six measurements. The time at initial of 1st
measurement has the shortest time because it is relating to original shortest-time path.
When the vehicle approaches the second intersection (t= 0.186), the vehicle makes 2nd
measurement and receives the response from the network showing next link ob-
structed. The vehicle turns to other link to avoid the obstruction. When the t= 2.501,
the vehicle makes 3rd measurement and receives the response from the network also
showing that the next link obstructed. The vehicle can make a decision to turn to other
link. Finally, at the 6th measurement, the simulation shows that the time to destination
is closing to the initial.

5 Related Works

In this section we depict some related works in the topic.
Chen et al. [5] proposed architecture based on WSN technology for Intelligent

Transportation System (ITS) of a transportation network. With the help of WSN tech-
nology, the traffic information of the network can be accurately measured in real time.
Based on this architecture, an optimization algorithm is proposed to minimize the
average traveling time for the vehicles in the network.

Jun [11] discussed the problem of finding the minimum-cost path in the network of
multi-modes of public transportation. The study used the GA-based approaches in
finding the minimum total time path. In order to use GIS data, some reorganizations
and relationships centering on the transfer areas were necessary. In this preliminary
study, an imbedded script language called AML was used to automate the whole
process because the language contains many built-in functions that handle the cover-
age-format data. This resulted in somewhat slow performance than expected.

Sawant et al. [10] addressed the approach of sensor networks to increase the safety
of road traveling. The scheme does not require any changes to the existing highway
infrastructure. Authors showed, using various examples, that the exchange of sensed
data among vehicles can be beneficially used to avoid accidents. Isotropic and non-
isotropic sensors were studied with respect to the coverage area and the probability of
detection. Authors considered a typical highway intersection and plotted the sensor
coverage area and the probability of detection for various vehicles equipped with non-
isotropic sensors.

6 Conclusions and Future Work

We have proposed a framework for dynamic path planning of transportation system
based on the Wireless Sensor Network (WSN). The framework can dynamically adjust
and suggest the traveling path of moving vehicle for improving the problem of static
path planning approach by collecting the traffic information dynamically using sensor
nodes and planning path of transportation network in Satellite Navigation System. In
this paper, we use Macroscopic Model that is usually used in traffic network to com-
puting the traveling time of the sub-link and link, and use an on-demand heuristic
algorithm with GPS assisted to look for the shortest-time path to destination. In addi-
tion, we explain the simulation result. The simulation result shows the framework can
effectively adjust the traveling path and improve the problem of static path planning

628 Y.-S. Chang, T.-Y. Juang, and C.-Y. Su

problem. The future work will develop the algorithm into sensor network and physi-
cally deploy the framework to the transportation system to evaluate the performance.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-works: a
survey. Computer Networks 38(4), 393–422

2. Suri, A., Iyengar, S.S., Cho, E.: Ecoinformatics using wireless sensor networks: An over-
view. Ecological Informatics 1(3), 287–293

3. Matsuo, T., Kaneko, Y., Matano, M.: Introduction of intelligent vehicle detection sensors.
In: IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems, pp.
709–713 (1999)

4. Akkaya, K., Younis, M.: A survey on routing protocols for wireless sensor networks. Ad
Hoc Networks 3(3), 325–349

5. Wenjie, C., Liqiang, G., Zhilei, C., Zhanglong, C., Shiliang, T.: An intelligent guiding and
controlling system for transportation network based on wireless sensor network technol-
ogy. In: IEEE The Fifth International Conference on Computer and Information Technol-
ogy, pp. 810–814 (2005)

6. Chin-Der, W., Ming-Hui, L.: Data fusion methods for accuracy improvement in wireless
location systems. In: Wireless Communications and Networking Conference, pp. 471–476
(2004)

7. Durrant-Whyte, H.: Data fusion in sensor networks. In: Fourth International Symposium
on Information Processing in Sensor Networks, April 15, 2005, pages 2 (2005)

8. Coleri, S., Cheung, S.Y., Varaiya, P.: Sensor Networks for Monitoring Traffic. In: Forty-
Second Annual Allerton Conference on Commuinication, Control, and Computing, U. of
Illinois (September 2004)

9. Wenjie, C., Lifeng, C., Zhanglong, C., Shiliang, T.: A Realtime Dynamic Traffic Control
System Based on Wireless Sensor Network. In: 2005 International Conference on Parallel
Processing Workshops (2005)

10. Sawant, H., Tan, J., Yang, Q.: A Sensor Network Approach for Intelligent Transportation
Systems. In: 2004 IEEE International Conference on Intelligent Robots and Systems, Sep-
tember 28-October 2004, pp. 1796–1801 (2004)

11. Jun, C.: Route Selection in Public Transportation Network Using GA, http://
gis.esri.com/library/userconf/proc05/papers/pap1874.pdf

12. Koutsonikolas, D., Das, S., Charlie Hu, Y.: Path Planning of Mobile Landmarks for Local-
ization in Wireless Sensor Networks. In: Proceedings of the ICDCS Interna-tional Work-
shop on Wireless Ad Hoc and Sensor Networks (IEEE WWASN 2006), Lisboa, Portugal
(July 4-7, 2006)

13. van den Berg, M., Hegyi, A., De Schutter, B., Hellendoorn, J.: A macroscopic traffic flow
model for integrated control of freeway and urban traffic networks. In: 42nd IEEE Confer-
ence on Decision and Control, Maui, Hawaii, pp. 2774–2779 (December 2003)

14. Younis, M., Youssef, M., Arisha, K.: Energy-aware management for cluster-based sensor
networks. Computer Networks 43(5), 649–668 (2003)

15. Ko, Y.-B., Vaidya, N.H.: Location-aided routing (LAR) in mobile ad hoc networks. In: 4th
annual ACM/IEEE international conference on Mobile computing and networking Mobi-
Com 1998, October 1998, pp. 66–75 (1998)

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 629–640, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Recoverable Semi-fragile Watermarking Scheme Using
Cosine Transform and Adaptive Median Filter

Shang-Lin Hsieh, Pei-Da Wu, I-Ju Tsai, and Bin-Yuan Huang

Department of Computer Science and Engineering, Tatung University, Taipei, Taiwan
slhsieh@ttu.edu.tw

Abstract. The paper proposes a novel semi-fragile watermarking scheme capable
of detecting and recovering tampered regions to protect the integrity of images.
The proposed scheme generates the features from the host image itself and uses
them as the watermark, which is then embedded into the frequency domain of the
host image. Additionally, the scheme uses an adaptive median filter to distinguish
between common image processing operations and malicious attacks so that it can
react properly. Moreover, the scheme can locate tampered areas and recover these
areas. According to the experimental results, the scheme is robust to common
image processing operations, including JPEG compression, and is capable of
detecting malicious attacks, such as counterfeiting.

Keywords: Semi-fragile watermarking, integrity of images protection, discrete
cosine transform, adaptive median filter, tampered detection and recovery.

1 Introduction

Ensuring the integrity of critical images is important when they are being transferred
on the Internet because they may be modified by some malicious party. Some
techniques such as fragile and semi-fragile digital watermarking schemes have been
developed to protect the integrity of images. The fragile watermarking scheme first
embeds a pattern, called a watermark, into a host image. Later, the receiving party can
verify the integrity of the host image according to the extracted watermark because
the watermark will break if there is any change done to the image. The changes may
result from common image processing operations or malicious image attacks. Image
attacks, such as counterfeit attack, are unacceptable because they destroy the
information in images. On the contrary, image processing operations, such as
compression, brightness adjustment, and contrast adjustment etc., are normally used
to improve the quality or enhance the features of images, and therefore they should be
regarded as legitimate and acceptable. However, the fragile watermarking scheme
cannot distinguish legitimate operations from malicious attacks. On the other hand, in
the semi-fragile watermarking scheme, the watermark will only break when the image
suffers malicious attacks. Therefore, it is more suitable than fragile watermarking to
protect the integrity of images. Moreover, some semi-fragile watermarking schemes
not only can verify the image integrity but also recover the tampered areas.

In recent years, several papers on fragile or semi-fragile watermarking [1-8] have
been published. Lu et al. [1] proposed a fragile watermarking scheme that is sensitive

630 S.-L. Hsieh et al.

to any changes. Izqierdo and Guerra [5] and Liu et al. [6] proposed schemes that can
verify the integrity of the protected image. However, they cannot locate the tampered
regions and do not have the recovery ability. The scheme proposed by Liu and Hsieh [7]
can recover the tampered areas, but it is not convenient because the original watermark
must be sent to the receiving party, which is sometimes impossible. Lin et al. [8]
proposed a scheme that can recover tampered areas without the help of the original
watermark. However, the recovery information may be destroyed without much
difficulty because it is embedded into the spatial domain.

In the paper, a recoverable semi-fragile watermarking scheme without the need of
the original watermark is proposed. The scheme generates the features from the host
image itself and uses them as the watermark. Then the watermark is embedded into
the frequency domain rather than the spatial domain. Additionally, the scheme uses
adaptive median filter to distinguish between common image processing operations
and malicious attacks so that it can react properly. Moreover, the scheme can locate
the tampered areas and recover them with satisfactory quality.

The rest of this paper is organized as follows. Section 2 describes related
background. Section 3 presents the proposed scheme in detail. The experimental
results are shown and discussed in Section 4. Finally, the conclusion is drawn in
Section 5.

2 Related Background

The proposed scheme uses Torus automorphism to obtain the position for embedding
and adopts an adaptive median filter to increase the ability to discriminate between
common operations and malicious attacks. The following subsections introduce the
related background.

2.1 Torus Automorphism

To achieve the recovery ability, features generated from a certain block need to be
embedded to another block. The scheme uses Torus automorphism to obtain the
position for embedding. Torus automorphism [11] is one class of dynamic systems
that can be expressed as follows:

N
y

x

aa

aa

y

x

t

t

t

t
mod

2221

1211

1

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+

+
 (1)

where a11, a12, a21, and a22∈Z, and N is the size of the given image. The new
coordinates (xt+1, yt+1) can be generated from the current coordinates (xt, yt) by the
transform function.

2.2 Adaptive Median Filter

The proposed scheme uses an adaptive median filter that can adjust the size of the mask
according to the manipulation type the image suffered. In general, common image
processing operations cause some variations on the pixels of the images while malicious

 A Recoverable Semi-fragile Watermarking Scheme 631

attacks result in the scrap regions. A median filter [13] can be used to remove the effect
of variations caused by image processing. The filter moves the filter mask from point to
point in an image and considers its nearby neighbors to decide whether it is
representative of its surroundings or not. The median filter works by first sorting all the
pixel values from the surrounding neighborhood of the central pixel and then replacing
the value of the pixel with the median pixel value. Fig. 1 [13] illustrates an example.
The neighboring values are 115, 119, 120, 123, 124, 125, 126, 127, and 150. Thus the
median value is 124. The central pixel value 150 is replaced with 124.

3 The Proposed Recoverable Semi-fragile Watermarking Scheme

The proposed scheme includes two phases: watermarked image generation phase and
integrity verification phase. In the former phase, the scheme first generates the
features from the host image. The features are then used as the watermark and
embedded to the host image for image verification and tamper recovery. In the latter
phase, the scheme first extracts a watermark and next generates features from
the suspect image. It then compares the features with the extracted watermark. If the
scheme detects that the suspect image has suffered malicious attacks, it will locate
the tampered areas and recover them using the extracted features which constitutes
the watermark. Fig. 2 shows the block diagram of the scheme.

Fig. 1. An example of the median filter

3.1 Main Stages in the Proposed Scheme

The scheme includes several stages, which will be described in detail in the following
subsections.

3.1.1 Preprocessing
The host image is divided into several non-overlapping blocks of size 8×8 pixels as
shown in Fig. 3.

3.1.2 DCT
The scheme applies 2D-DCT to each block and then obtains 64 coefficients for each
block.

632 S.-L. Hsieh et al.

Fig. 2. The block diagram of the proposed scheme

Fig. 3. The size of each block

Fig. 4. The bit positions for feature extraction

3.1.3 Feature Extraction
The stage first computes the average of each block obtained from the preprocessing
stage. Next, the bits 3-7 of the eight binary bits of the average are selected as the
feature F of each block (Fig. 4).

 A Recoverable Semi-fragile Watermarking Scheme 633

Fig. 5. The positions for embedding (a) three randomly selected blocks (b) the coefficients of
each block for embedding each copy (c) the embedding positions of each block in the zigzag
scan order

3.1.4 Random Selection
In order to resist malicious attacks, the features of a certain block must be embedded
into another block. The scheme adopts Torus Automorphism to randomly select the
block for embedding features.

3.1.5 Embedding
The proposed scheme embeds the features of a block to three different blocks.
Moreover, the first 15 AC coefficients in zigzag order of DCT domain of a block are
chosen for embedding the features. The scheme obtains three positions for embedding
by applying Trous Automorphism three times. For the first time, the features of the
source block are embedded into the 1st to 5th AC coefficients of the selected block. For
the second time, the features are embedded into the 6th to 10th coefficients, and for the
last time, the 11th to 15th coefficients.

Next, the features are embedded by modifying the DCT coefficients [14]. Two
values are calculated for modification rules.

1, 0
,

1,

C
Q

M

if C
S

otherwise

≤⎧
= = ⎨−⎩

 (2)

where M is obtained by experiments and used to modify the coefficients, and C is a
modified coefficient. The modification rules are given as follows:

⎩
⎨
⎧

−>−
−≤−

=

+×+=
+×=

=

=

 |_| |_

|_| |_|,_

))1((_

)(_
4

:

ChighCClow|CifC_high,

ChighCClowCiflowC
C

rMQShighC

rMQSlowC

M
r

 0w If

　

　

　

(3)

634 S.-L. Hsieh et al.

⎩
⎨
⎧

−>−
−≤−

=

+×=
+×=

=

=

 |_| |_

|_| |_|,_

)(_

)1)-((_
4

3

:1

ChighCClow|CifC_high,

ChighCClowCiflowC
C

rMQShighC

rMQSlowC

M
r

 w If

　

　

　

(4)

According to the embedding data w∈{0,1}, the remainder r is set to be M/4 or 3M/4 if
watermark bit value w is 0 or 1 respectively. Fig. 6 shows the ranges of tolerance for
the watermark bits. It is important to set the value M appropriately because a larger M
will affect the original image quality while a smaller M will result in erroneous
watermark extraction.

Fig. 6. the ranges of tolerance for the watermark bits

3.1.6 Watermark Extraction
In this stage, the three previously embedded watermark copies mentioned in
Section 3.1.5 are extracted. The first copy is extracted from the 1st to 5th AC
coefficients of the first selected block, the second one from the 6th to 10th AC
coefficients of the second block, and the third one from the 11th to 15th AC coefficients
of the third block. The scheme then uses the following rules to extract the features from
the three copies.

0, (mod) / 2

1,

if C M M
b

otherwise

<⎧
= ⎨
⎩

 (5)

where b is the extracted watermark bit, M is the mode value, and C is the AC
coefficient of previously embedded watermark.

3.1.7 Difference Computation
After the three copies of the previously embedded watermark are obtained, the
proposed scheme then adopts the following voting rule to construct the final
watermark. The voting rule is described as follows.

 A Recoverable Semi-fragile Watermarking Scheme 635

1 2 31, 2
'

0,
i i i

i
PF PF PF

PF
otherwise

+ + ≥⎧
= ⎨
⎩

 (6)

where PF'i represents the ith (i = 1, 2, …, 5) bit of the extracted feature set PF', and
PFi

j the ith bit of the previously embedded jth (j = 1, 2, and 3) copy. After PF' is
determined, it is used with the corresponding block feature F (generated from the
suspect image) to calculate a difference value D according to the following equation.

(')i i iD F PF= ⊕ (7)

where ⊕ is the exclusive OR operation, Di, Fi, and PF'i represent the ith bit of the
difference value D, the corresponding block feature F, and extracted feature PF'
respectively. Finally, the scheme calculates the difference rate DR according to the
following equation.

7 6 5 4 32 2 2 2 2

D
DR =

+ + + +
 (8)

If DR is greater than 0.5, then the block is regarded as a tampered block and the
number of the tampered blocks denoted as N is increased by one.

3.1.8 Tamper Threshold Determination
The semi-fragile watermarking scheme must be able to distinguish between common
image processing operations and malicious attacks. Therefore, a tamper threshold
determination stage is designed to detect the manipulation type of image processing.
In general, common image processing operations cause many variations on the pixels
of the images while malicious attacks result in scrap regions. To judge whether an
image has been manipulated by image processing operations or malicious attacks, a
tamper threshold (Ttatal) is used to determine the manipulation type. The value of the
threshold Ttatal is set to one eighth of the number of the total blocks. When the number
of the tampered blocks (N) is greater than Ttatal, the manipulation type is regarded as a
common operation. Otherwise, it is considered a malicious attack. According to the
manipulation type, Ttatal is set to a different value, which will be used to detect if a
block is tampered or not in different situations. The rules are given as follows.

0.8,

0,

total
tamper

if N T
T

otherwise

≥⎧
= ⎨
⎩

 (9)

According to the experimental results, the threshold is set to 0.8 for common image
processing operations, or 0 for malicious attacks. Finally, the binary difference image
DI is obtained by comparing Ttamper with the difference rate DR of each block. The
binary value of each pixel in DI is determined according to the following rule.

1. If DR > Ttamper, then the binary value of the corresponding pixel in DI is set to 1.
2. Otherwise, the binary value is set to 0.

The value 1 in DI means the block is tampered while the value 0 means the block
is not.

636 S.-L. Hsieh et al.

3.1.9 Filtering
The scheme adopts an adaptive median filter to remove the pepper and salt noise
resulting from common image processing. It adjusts the window size of the median
filter according to the manipulation type. The window size is 3×3 for malicious
attacks (i.e., Ttamper=0), and 5×5 for legitimate operations (i.e., Ttamper=0.8). The
adaptive median filter is applied to DI to obtain a binary tamper region image RI,
which contains only 1 and 0 (since DI is a binary image).

3.1.10 Restoration
The stage restores the tempered region according to the pixel value in RI. If the value
is 1, which means the corresponding block is tampered, the scheme will replace the
pixel values of the tampered block (of size 8×8) with the corresponding feature
(which is the average of the original block) in the previously embedded watermark.

3.2 The Algorithms of the Two Phases

The proposed scheme contains two phases. One is watermarked image generation
phase, and the other is the integrity verification phase. The algorithms of the two
phases are presented as follows.

3.2.1 The Watermark Image Generation Phase
First, the host image is divided into several non-overlapping blocks by preprocessing
stage and then the features are extracted from the host image in the feature extraction
stage. At the same time, the scheme also applies DCT to each block. Next, the random
selection stage randomly selects the blocks for embedding. Finally, the embedding stage
combines the original image with the watermark to generate the watermarked image.
The following procedure lists the steps of the watermarked image generation phase.

Input: an original gray level image H(512×512).
Output: a watermarked image W(512×512).

1. Divide the original image H into 64×64 non-overlapping blocks of size 8×8.
2. Obtain the feature of each block according to the description in Section 3.1.3.
3. Apply DCT to each block.
4. Select embedding positions from the DCT blocks according to the description in

Section 3.1.4.
5. Embed the feature of each DCT block into the selected positions according to the

rules described in Section 3.1.5.
6. Apply IDCT to each DCT block to obtain the watermarked image W(512×512).

3.2.2 The Integrity Verification Phase
The main goal of this phase is to locate tampered regions. First, the suspect image is
divided into several non-overlapping blocks by the preprocessing stage. Next, the
feature extraction stage generates the current features from the suspect image. At the
same time, the watermark extraction stage extracts the watermarks, i.e., embedded
features from the suspect image. In the difference computation stage, the current
features are compared with the embedded features and then the difference image

 A Recoverable Semi-fragile Watermarking Scheme 637

between them is obtained. After the tamper threshold determination stage, the scheme
can determine the correct manipulation type. In the filtering stage, the adaptive
median filter is used to remove irrelative noise. Finally, the tampered regions are
restored by the embedded features in the restoration stage. The steps of the integrity
verification phase are given in detail as follows.

Input: a suspect gray level image S(512×512).
Output: a recovered image R(512×512).

1. Divide the suspect image S into 64×64 non-overlapping blocks of size 8×8.
2. Determine the previously embedding positions according to the description in

Section 3.1.4.
3. Generate the new feature F of each block in S according to the description in

Section 3.1.3.
4. Apply DCT on each block and then extract the feature set PF' from each DCT

block according to the rules described in Section 3.1.6.
5. Calculate the difference rate of each block by comparing F and PF' according to

the description in Section 3.1.7.
6. Determine the tamper threshold Ttamper and then obtain the difference image DI

according to the rules described in Section 3.1.8.
7. Apply the adaptive median filter to DI according to Ttamper, and obtain the

tampered region image RI.
8. Restore the tampered region according to RI and the description in Section 3.1.10

to obtain the recovered image R.

4 Experimental Results

Some experiments have been conducted to prove that the scheme can resist some
common image processing operations and detect malicious attacks. The image
processing software "Ulead PhotoImpact 11" was used in the experiments to simulate
several kinds of image processing.

Four pictures, including "Lena", "Baboon", "F16", and "Peppers" (as shown in Fig.
7), have been tested by the proposed scheme. The PSNRs between the watermarked
images and the host images are given in Table 1. According to the experimental
results, the PSNRs are all greater than 40dB, which shows the qualities of the
watermarked images are satisfactory.

Fig. 7. The test images (a) Lena (b) Baboon (c) F-16 (d) Pepper

638 S.-L. Hsieh et al.

Table 1. The PSNRs of the watermarked images

Image Lena Baboon F-16 Pepper
PSNR 44.2 44.7 44.1 44.3

Table 2. The results of the images after image processing operations

 Lena Baboon F-16 Pepper
JPEG

Brigntness adjustment

Contrast adjustment

Table 3. The results of the proposed scheme for the images after malicious attacks

Suspect
image

Difference
After

filter
Recovered
image

Table 4. The PSNRs of the recovered images

Image Lena Baboon F-16 Pepper
PSNR 36.4 30.8 28.7 33.8

 A Recoverable Semi-fragile Watermarking Scheme 639

4.1 Common Image Processing Operations

According to the experimental results, the proposed scheme can resist the JPEG
compression, brightness adjustment, and contrast adjustment. After the filtering stage,
Most of the pepper and salts noise in the difference image caused by those operations
were removed. The images suffered the operations were still regarded as untampered
images. Table 2 shows the results of the images after image processing operations.

4.2 Malicious Attacks

According to the following experimental results, the proposed scheme can detect
malicious attacks, such as counterfeit attack, and then restore the tampered area
effectively. Table 3 shows the suspect images, the difference images, tamper region
images, and the recovered images. Table 4 shows the PSNRs of the recovered images.
Most of the PSNRs are greater than 30, which means that the proposed scheme can
recover the tampered image with satisfactory quality.

5 Conclusions

This paper proposed a novel recoverable semi-fragile watermarking, which is able to
detect and recover tempered areas. Additionally, the proposed scheme has following
two features:

1. It can remove the pepper and salt noises caused by common image processing
operations, such as JPEG compression, brightness adjustment, and contrast
adjustment.

2. It can appropriately decide the manipulation type (legitimate image processing
operations or malicious attacks) and accordingly discover the tempered areas.

According to the experimental results, the scheme can effectively resist common
image processing operations and detect malicious attacks. Moreover, it can locate the
tampered areas correctly and recover them accurately.

References

1. Lu, H., Shen, R., Chung, F.-L.: Fragile watermarking scheme for image authentication.
Electronics Letters 39(12) (2003)

2. Dittmann, J., Steinmetz, A., Steinmetz, R.: Content-based digital signature for motion
pictures authentication and content-fragile watermarking. In: IEEE International
Conference on Multimedia Computing and Systems, vol. 2, pp. 7–11 (1999)

3. Wu, C.W.: On the design of content-based multimedia authentication systems. IEEE
Transactions on Multimedia 4(3) (2002)

4. Lu, C.-S., Liao, H.Y.M.: Structural digital signature for image authentication: an incidental
distortion resistant scheme. IEEE Transactions on Multimedia 5(2) (2003)

5. Izquierdo, E., Guerra, V.: An Ill-Posed Operator for secure Image Authentication: IEEE
Transactions on Circuits and Systems for Video Technology. 13, 842–852 (2003)

640 S.-L. Hsieh et al.

6. Liu, Y., Gao, W., Yao, H., Liu, S.: A Texture-based Tamper Detection Scheme by Fragile
Watermark. In: The 2004 IEEE International Symposium on Circuits and Systems, ISCAS
2004, Vancouver, CA, pp. 177–180 (2004)

7. Lin, C.H., Hsieh, W.S.: Applying Projection and Bspline to Image Authentication and
Remedy. IEEE Transactions on Consumer Electronics 49, 1234–1238 (2003)

8. Lin, P.L., Huang, P.W., Peng, A.W.: A Fragile watermarking Scheme for Image
Authentication with Localization and Recovery. In: IEEE Sixth International Symposium
on Multimedia Software Engineering (MSE 2004), Florida, USA, pp. 13–15 (2004)

9. Khayam, S.A.: The Discrete Cosine Transform (DCT): Theory and Application1:
Department of Electrical & Computer Engineering Michigan State University (2003)

10. Pennebaker, W.B., Mitchell, J.L.: JPEG – Still Image Data Compression Standard. Int.
Thomsan Publishing, New York (1993)

11. Chang, C.C., Hsiao, J.Y., Chiang, C.L.: An Image Copyright Protection Scheme Based on
Torus Automorphism. In: First International Symposium on Cyber Worlds, pp. 217–224
(2002)

12. Voyatzis, G., Pitas, I.: Chaotic Mixing of Digital Images and Applications to
Watermarking. In: Proceedings of European Conference on Multimedia Applications,
Services and Techniques, vol. 2 (1996)

13. Hypermedia Image Processing Reference, http://www.cee.hw.ac.uk/hipr/
html/hipr_top.html

14. Lin, S.D., Kuo, Y.-C., Huang, Y.-H.: An Image Watermarking Scheme with Tamper
Detection and Recovery. In: International Conference on Innovative Computing,
Information and Control, Beijing, P.R.O.C, vol. 3, pp. 74–77 (2006)

15. Semantics-sensitive Integrated Matching for Picture Libraries, http://wang.ist.
psu.edu/docs/related/

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 641–654, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Intelligent VoIP System in Ad-Hoc Network with
Embedded Pseudo SIP Server

Lin-huang Chang1,2, Chun-hui Sung2, Shih-yi Chiu2, and Jiun-jian Liaw2

1 Department of Computer and Information Science
National Taichung Univ., Taichung, Taiwan, R.O.C.

lchang@ntcu.edu.tw
2 Graduate Institute of Networking and Communication Engineering

Chaoyang Univ. of Technology, Taichung, Taiwan, R.O.C.

Abstract. Wireless networks and the voice over Internet protocol (VoIP) have
recently been widely adapted. VoIP services over Ad-hoc network can be ac-
complished by middleware embedded in mobile devices. In this study, we have
implemented an intelligent VoIP system with embedded pseudo session initia-
tion protocol (SIP) server in an Ad-hoc network. We employed the standard SIP
protocol and integrated SIP presence to handle SIP signaling and user dis-
covery mechanism. The embedded pseudo SIP server, acting as the middleware
between transport and application layers, was compatible with common VoIP
user agents (UAs) using SIP. Our testbed shows acceptable VoIP quality of ser-
vice (QoS) level in transmission delay for both signaling and voice packets.

1 Introduction

There are many Internet applications, such as voice over Internet protocol (VoIP),
which involves heavy multimedia transmission over high-speed networks. Acceptable
quality of service (QoS) is one of the top issues that need to be addressed in VoiIP
applications.

To transfer VoIP packets over the Internet, it is important to conduct the signaling
exchange in advance. The Internet Engineering Task Force (IETF) defined the Ses-
sion Initiation Protocol (SIP) to solve the signaling issues. The SIP can initiate, mod-
ify, and terminate voice session. It differs from H.323 in that SIP is a simple and
flexible protocol which integrates RTP with RTCP for voice transfer in an infrastruc-
ture network.

Currently, many Internet applications or services adhere to the client/server archi-
tecture. The client/server architecture requires the user to obtain the IP address of the
counterpart prior to establishing a connection. On the other hand, the Ad-hoc network
is designed for temporary and/or emergent situations, such as battlefield, temporary
post-disaster reconstruction, and conferencing center. The Ad-hoc network with free
installation and without fixed infrastructure allows single mobile device or work-
station directly to carry out the point-to-point communication without relays via
access point (AP). However, the client/server architecture used for common VoIP ap-
plications, is hard to realize in an Ad-hoc network environment.

642 L. Chang et al.

In this study, we present a distributed VoIP architecture based on pseudo SIP serv-
ers across an Ad-hoc network. The designed architecture embeds the pseudo SIP
server in all end devices such that users can talk to others intelligently without a well-
defined infrastructure. The proposed pseudo SIP server utilizes SIP presence to dis-
cover the mobile device and exchange the signaling over the Ad-hoc network.

The rest of this paper is organized as follows. We will briefly introduce the Ad-
hoc, VoIP systems and related works in Section 2. Section 3 presents the system ar-
chitec-ture, functionalities and designs followed by the detailed implementation and
analysis in Section 4. Finally, the paper is concluded in Section 5.

2 Backgrounds and Related Works

2.1 Ad-Hoc Network

The emergence of wireless technology has encourages people to use all sorts of mo-
bile devices. People can connect to the network at any time and any location to access
the Internet. When two devices want to communicate, they rely on the wireless base
station such as an AP to transmit data. There are a number of problems with the cen-
tralized model which may be overcome by peer-to-peer technology.

The Mobile Ad-hoc Network (MANET) is a network that uses wireless communi-
cation technology comprising many wireless devices. It allows single devices or
workstations to directly communicate point-to-point without the relay via AP as long
as the device or workstation has installed an 802.11 wireless network interface. Be-
cause the node in the wireless network can be moved freely at any time without the
restriction on direction or range, the network topology may change at any time.

In general, routing protocols can not adjust routes due to the addition or removal of
nodes during the communication between two mobile nodes. Therefore, new proto-
cols, such as Ad hoc On-Demand Vector Routing (AODV) and Optimized Link State
Routing Protocol (OLSR), are required for these mobile nodes to communicate with
each other given a dynamic network topology. Wireless mobile device on the Ad-Hoc
network therefore possess routing functionality similar to that found on routers, al-
though the routing protocol may be different.

2.2 Ad-Hoc VoIP System

In VoIP applications, the signaling and voice data are delivered using packet switch-
ing from client(s) to client(s) via switches, routers, and/or servers, such as SIP register
or SIP proxy servers. The registration and forwarding of the signaling via SIP servers
employ the client/server architecture. The client/server architecture, however, is com-
plicated to deploy in Ad-hoc network environment. Therefore, the integration of SIP
functionality with clients would be one of the solutions to conduct Ad-hoc VoIP ap-
plications.

On the other hand, due to the frequent changes in network topology in an Ad-hoc
network, the discovery service for users becomes even more important. Some studies
has focused on the research of VoIP over Ad-hoc network using modified SIP proto-
col [7] or other protocol, such as service location protocol (SLP) for service discovery
[8]. However, modified SIP protocol may not be compatible with SIP user agents

 Intelligent VoIP System in Ad-Hoc Network with Embedded Pseudo SIP Server 643

(UAs). In this paper, we used a pseudo SIP server [1] to handle the SIP signaling
which maintained the originality of the SIP protocol. The pseudo SIP server was de-
signed based on the standard SIP protocol and compatible with SIP UAs. It is there-
fore more suitable for Ad-hoc VoIP realizations.

2.3 Related Works

Chang et al. [2][9] designed the pseudo SIP Server combined with universal plug and
play (UPnP) for Ad-hoc VoIP applications. They conducted the user registration and
remote user discovery by UPnP processing phases. Figure 1 shows the process flow
of the Ad-hoc VoIP using UPnP protocol. Any user, for instance User 1, entering the
Ad-hoc network will advertise itself and then get a detailed description from each of
the available devices.

U s e r 1 U s e r 2 U s e r N

．

．

．

M u l t i c a s t (N I T I F Y)

M u l t i c a s t (M - S e a r c h)

S e a r c h R e s p o n s e o f U s e r 1

S e a r c h R e s p o n s e o f U s e r N

G e t D e s c r i p t i o n

R e s p o n s e

I n v o k e Q u e r y

Q u e r y R e s p o n s e

S u b s c r i b e

R e s p o n s e

E v e n t N o t i f y

S I P S i g n i n g & V o I P D a t a T r a n s f e r

Fig. 1. The process of the UPnP over Ad-Hoc VoIP

Unlike previous studies [7-8], they did not modify the standard SIP protocol to ac-
complish VoIP service over Ad-hoc network. Their proposed pseudo SIP server with
UPnP architecture is compatible with all SIP UAs. However, the overhead issue by
using UPnP protocol for user discovery and registration may not be the best solution
for Ad-hoc VoIP signaling. Therefore, in this paper, we employed the all-SIP idea by
using SIP presence to discover the mobile device and exchange the signaling over the
Ad-hoc network.

3 System Design

This section discusses the detailed design of our Ad-hoc VoIP system. The pseudo
SIP server based on the standard SIP protocol also included the SIP presence func-
tionality. Unlike designs using SLP or UPnP, our design accomplished the all-SIP
signaling with user discovery support. Additionally, the proposed design further deals
with the instant mobility issue by introducing the mobility management functionality.

644 L. Chang et al.

This allowed the mobile device to move freely in the Ad-hoc network while instanta-
neously maintaining the user information.

3.1 System Architecture

Figure 2 shows the system architecture, which includes four parts: (1) SIP UA, (2)
pseudo SIP Server embedded in transport layer, (3) Internet Protocol version 6 (IPv6),
and (4) 802.11 layer.

Pseudo SIP
server

Transport
layer

SIP User Agent

IPv6

802.11

Fig. 2. System architecture

In the application layer, the user agent can be any version, for example Kphone
[19], Linphone [15], etc., which applies the standard SIP protocol as VoIP signaling.
The UA will then communicate with the pseudo SIP server. By using the conven-tional
UA with standard SIP, users can easily talk to others in the Ad-hoc environ-ment.

The proposed pseudo SIP server is designed in the transport layer which acts as the
middleware to serve the application layer, such as UAs. It is easily embedded in the
mobile device. The major purpose of the pseudo SIP server is the management of SIP
signaling. With the functionality of SIP registrar and SIP proxy servers, the pseudo
SIP server accomplishes the ability to discover users and exchange signaling in Ad-
hoc VoIP applications.

In the network layer, we employed the IPv6 protocol to accomplish auto-
configuration for the Ad-hoc mobile nodes. We also used the IEEE 802.11b/g in the
data-link layer for media access control (MAC) and radio signaling. This architecture
will provide the mobile nodes the VoIP ability under Ad-hoc environment. The de-
tailed design of the system and process flows are discussed in the next sub-sections.

3.2 Mobility Management Functionality

In the Ad-hoc network, users can join or leave the group and/or the Ad-hoc network
freely which will cause a problem for user member update and/or instant user discov-
ery. This issue can be divided into two categories: service initiation timing and mov-
ing in/out of mobile nodes. In our pseudo SIP server, we designed the functionality of
mobility management to handle these problems.

When a user initiates the VoIP service using a pseudo SIP server, it will not realize
the existing user message due to the asynchronous process initiation. For the

 Intelligent VoIP System in Ad-Hoc Network with Embedded Pseudo SIP Server 645

client/server infrastructure, this can be done by a SIP proxy server during the registra-
tion process. In Ad-hoc network, however the user needs to wait until the SIP expires.

To solve the synchronous delay issue, the pseudo SIP server conducts registering as
shown in figure 3. First, user A initiates the pseudo SIP server and caches its
REGISTER message. Then, when user B initiates the pseudo SIP server and multi-casts
its REGISTER message, user A updates user B REGISTER message and uni-casts its
own message to user B. The REGISTER messages for different users there-fore remain
consistent and the user lists will be synchronized in the Ad-hoc network.

Multicast

Uni-Cast

User B

REGISTER sip:[fe80::202:6fff:fe09:b1da] SIP/2.0
Via: SIP/2.0/UDP
[fe80::202:6fff:fe09:b1da]:5062;branch=z9hG4bK1C5FA913
CSeq: 1829 REGISTER
T o: "9005" <sip:9005@[fe80::202:6fff:fe09:b1da]>
Expires: 900
From: "9005" <sip:9005@[fe80::202:6fff:fe09:b1da]>
Call-ID: 125084713@[fe80::202:6fff:fe09:b1da]
Content-Length: 0
User-Agent : kphone/4.2
Event: registration
Allow-Events: presence
Contact: "9005"
<sip:9005@[fe80::202:6fff:fe09:b1da]:5062;t ransport=udp>;
methods="INVITE, MES SAGE, INFO, SUBSCRIBE,
OPTIONS, BYE, CANCEL, NOTIFY, ACK, REFER"

User A

Fig. 3. REGISTER mechanism

On the other hand, when a mobile node moves into the transmission range of the
Ad-hoc network, it needs a trigger mechanism to avoid the long wait for the SIP to
expire. In our pseudo SIP server, we set a trigger mechanism for user advertisement
and discovery instantly, as shown in figure 4. The pseudo SIP server searches the user
list upon receiving the INVITE message from UA. If the user is found in the cache it
will forward the INVITE message, otherwise, it will multicast a REGISTER message.
After the timeout, if the pseudo SIP server is still can not find the user, it will reply a
404 Not Found message back to UA.

Through the REGISTER mechanism for asynchronous initiation and discovery and
advisement process, the embedded pseudo SIP server being compatible with SIP UA
can provide the VoIP service in the Ad-hoc network without complex design and too
much overhead.

3.3 System Module Design

Different from the client/server VoIP architecture in the infrastructure network, the dis-
tributed Ad-hoc mobile nodes embedded with pseudo SIP server should provide some
fundamental properties of SIP registrar and proxy/redirect servers to accomplish the dis-
covery, user list update, mobility management and signaling for session estab-lishment
and tear-down. Figure 5 depicts the system module design, consisting of the Session Man-
agement module, the Mobility Management module, the User Discovery module, the SIP
Presence module, as well as the User-list cache.

646 L. Chang et al.

Receive INVIT E from UA
Find t he User ?

Y es Froward I NVIT E
m essage

Mult icast REGIST ER
message

No

Find t he User ?

Yes

Pseudo SIP Server

T im e out
SIP /2.0 404 Not Found

No

No

Fig. 4. User advertisement flow chart

Application

Session Management
module

User-list cache

Mobility Management
module

SIP Presence module

User Discovery module

SIP signaling

System flow

 Pseudo SIP server

Fig. 5. System module design of the Pseudo SIP Server

The Session Management module was designed to receive and parse the SIP sig-
naling, and then respond to different SIP Methods. To handle the movements of the
mobile users in the Ad-hoc network, we designed the Mobility Management module
to synchronize the user lists. The user lists are updated and stored in the User-list
cache. On the other hand, if one user is not in the User-list cache, the User Discovery
module is called to locate the user followed by the update in the User-list cache. Fi-
nally, the SIP Presence module applied the Subscribe and Notify mechanisms in RFC
3856 [11] to update and synchronize the user lists during registration.

3.4 System Flow Chart

It is important to take into accounts the memory space and resource dispatch of the
pseudo SIP server, because it is middleware embedded in the mobile devices. More-
over, we need to maintain the ability of mobility management for Ad-hoc VoIP ser-
vices. Therefore, we retrench the unnecessary process and refine the signaling process
flow of the pseudo SIP server. Also, pseudo SIP server takes only the most common

 Intelligent VoIP System in Ad-Hoc Network with Embedded Pseudo SIP Server 647

Start

receive SIP
signaling

select()Y

N

parser request

qualified requestNdiscard request

Y

classify request

A CB

REGISTER
Provisional
Response

INVITE

End

Fig. 6. The Pseudo SIP Server flow chart

do{
 //listening port 5060, wait for SIP signaling
 recvfrom(sip_signaling);

 //determine qualify SIP signaling or not
 if(qualified_request(sip_signaling) == FALSE){
 drop_packet(sip_signaling);
 return;
 }
 //parser SIP method
 method = parser_method(sip_signaling);
 //allocate function
 switch(method){
 case "REGISTER":

 register(sip_signaling);//REGISTER function
 break;
 case "INVITE":
 invite(sip_signaling);//INVITE function
 break;
 case "Provision":
 //Provisional response function
 provision(sip_signaling);
 break;
 } }

Fig. 7. The Pseudo SIP Server pseudo code

648 L. Chang et al.

SIP signaling, such as REGISTER, INVITE and ACK messages. Under such circumstance,
pseudo SIP server has to drop the signaling or packets which can not be recognized.

The pseudo SIP server flow chart is shown in figure 6. When the service is started,
pseudo SIP server is ready to handle the SIP signaling. Upon receiving the SIP
packet, the system uses the select() library in Linux Socket to create the sub process
and to parser the SIP method. If the SIP signaling is defined in pseudo SIP server, it
further parsers and classifies the request and conducts the corresponding response.
Otherwise, it drops the packet and ends the process. The pseudo codes of the designed
pseudo SIP server is shown in figure 7.

4 System Implementation and Analyses

In this research, we applied three mobile devices with embedded pseudo SIP server
for a series of experiments, including SIP signaling exchanges and transmission of
voice data in Ad-hoc network. The performance is also analyzed.

4.1 Experimental Environments

The experimental environments for Ad-hoc VoIP was set up as shown in figure 8
where every node conducted the Ad-hoc mode as independent basic service set
(IBSS) to connect to other nodes. In the experimental design, the User 1 signal cov-
ered User 2 and User 3, but User 2 signal did not cover User 3 and vice versa. The
communica-tion between User 2 and User 3 was relayed via User 1. In the networking
layer, we employed the IPv6 auto-configuration for link-local addressing.

The network topology was set up to analyze the performance of the embedded
pseudo SIP server in Ad-hoc network as well as to measure the influence of perform-
ance in Ad-hoc hopping issue.

U ser2 User 1 User 3

fe8 0 ::2e0:81ff:fe 2e:c643 fe80 ::2e0:81 ff:fe2e:c642 fe80:: 2e0:81ff:fe2e: c641

Fig. 8. Ad-Hoc network topology

4.2 System Implementation

The system was implemented using Ubuntu Linux 6.10 [18] as the operating system,
and applying Kphone 4.2 [15] to be the UA on top of the embedded pseudo SIP
server. For the Ad-hoc network routing protocol, we also employed the open source
codes to realize the OLSR [16][17] routing mechanism. By using iwconfig command
in our implementation setup, the designed Ad-hoc VoIP system with embedded
pseudo SIP server was accomplished. The configuration of the experimental setup is
shown in figure 9.

 Intelligent VoIP System in Ad-Hoc Network with Embedded Pseudo SIP Server 649

#!/bin/bash

iwconfig eth1 mode ad-hoc
iwconfig eth1 essid x32
iwconfig eth1 channel 6
ifconfig eth1 up
ifconfig eth1 192.168.10.22 netmask 255.255.255.0 up
route add -net 224.0.0.0 netmask 240.0.0.0 dev eth1

Fig. 9. Ad-Hoc network configuration

Table 1. The detail of experimental hardware

Notebook:
Version IBM ThickPAD x32
CPU Pentium 1.8 GHZ
Memory 512 Mbytes
Wireless card Intel PRO/Wireless 2200
Operating System Obuntu 6.10
Access Point:
Version ASUS WL-HDD 2.5

We used three laptops acting as mobile device for embedded pseudo Sip server de-
velopment and Ad-hoc VoIP implementation. Table 1 shows the detail of the hard-
ware.

4.3 Performance Analysis

For the Ad-hoc VoIP performance analyses, one of the most important parameters is
the delay issue. Therefore, we aimed at the delay of signaling exchange and voice
data transmission. The experimental results of Ad-hoc VoIP with embedded pseudo
SIP server were also compared with those in the infrastructure architecture. The hop-
ping issue at Ad-hoc network will play an important role in delay. We conducted the
experiments for Ad-hoc VoIP with two hops. The experimental results and analyses
discussed below will exhibit the feasibility of Ad-hoc VoIP using embedded pseudo
SIP server.

4.3.1 Local Host Registration Delay
In this experiment, we measured the registration delay from local host UA to the em-
bedded pseudo SIP server. In order to map to the practical operating environment, the
mobile nodes were executing video games and streaming videos at the same time
while conducting the local host registration. The experimental result is shown in fig-
ure 10. We measured the signaling delay between the registration initiated from local
host UA and 200 OK response received by UA. The measurement was conducted
continuously 1000 times and then we averaged the data and determined the one-way
registration delay. In figure 10, the x-axis represents the number of measurements.
The y-axis represents the measured registration delay in microseconds. According to
our experimental results, the average registration delay when simultaneously

650 L. Chang et al.

Fig. 10. The delay for the local host register

executing video games and streaming videos for the embedded pseudo SIP server is
around 0.301 ms which is negligible compared to other delays.

4.3.2 Registration Delay for Different Architectures
In this experimental scenario, we compared the registration delay from caller to callee
in different network architectures. The network architectures with embedded pseudo
SIP server in Ad-hoc mode and standalone VoIP server in the infrastructure topology
are shown in figures 11(a) and 11(b), respectively. In the standalone VoIP architec-
ture, we connected the access point (AP) to the infrastructure SIP server.

The experimental result is shown in figure 12 where we conducted the experiments
for 100 times, labeled at x-axis. The delay time in second, labeled in y-axis, is meas-
ured the period from sending out the registration request to receiving the 200 OK
response by the remote UA.

Fig. 11. The REGISTER time with different architectures

The average registration delays for standalone VoIP architecture and Ad-hoc VoIP
with embedded pseudo SIP server are 0.0016 and 0.0012 seconds, respectively. Al-
though the CPU resources are shared by embedded pseudo SIP servers and other
processes, the distributed peers with SIP server functionality communicate with each
other directly. This results in a lower registration delay.

 Intelligent VoIP System in Ad-Hoc Network with Embedded Pseudo SIP Server 651

Fig. 12. Performance of the delay time with the different architectures

4.3.3 Signaling Delay in Ad-Hoc VoIP
The delay due to calling process by using INVITE method is contributed from the
processes of INVITE, TRYING, RINGING, 200 OK and ACK signals, which corre-
sponds to the signals from pushing the dial tone by caller to the ringing back by
callee. We conducted the Ad-hoc VoIP experiments with two hops. User 2 calling
User 3 hopped via User 1, as shown in figure 8.

We conducted 100 measurements with this scenario and the results are illustrated
in Figure 13. The average signaling delay was 0.022 seconds and it varied from 0.016
to 0.04 seconds which represents excellent signaling quality for VoIP services.

Fig. 13. Performance of the signaling delay with two hops

4.3.4 Voice Data Delay in Ad-Hoc VoIP
Besides the signaling delay conducted earlier, we measured the delay of RTP packets
to provide information for realization of Ad-hoc VoIP services.

652 L. Chang et al.

Fig. 14. Performance of the voice delay by end to end transmission

The first experiment was set up to be one hop only and measured the one-way
RTP packet delay for 1000 times. The performance of the voice delay for end to end
trans-missions is illustrated in Figure 14. The average voice data delay with no
hopping is about 0.5 ms and it varied from 0.3 ms to 5.6 ms which are relatively
low. According to G.711 [6] defined by ITU-T, this delay belongs to excellent VoIP
service.

The second experiment was set up to be a two-hop Ad-hoc VoIP and we measured
1000 one-way RTP packet delays. The result is shown in Figure 15. The average
voice data delay with two hops is around 19 ms and it varied from 1 ms to 136 ms in
which about 90% of the RTP packets are conveyed within 40 ms. This belongs to
acceptable level according to ITU-T standard.

Furthermore, as seen in Figure 15, we found the periodical increase of the RTP
packet delay, for example starting from packet numbers 20, 120 and 350, etc. We
applied the Wireshark tool [20] to trace and analyze the packets and deduced that the
increases of delay for OLSR packets resulted from ARP, RARP protocols. Due to the
periodical signaling of ARP and/or RARP for OLSR packets, the delay increase ex-
isted periodically. However, most of the RTP packets were conveyed within an ac-
ceptable limit of 40 ms. On the other hand, starting from packet number 800, the
overall voice delay increased. The reason for such increase of delay is believed to be
due to the accumulation of the RTP packets at the relayed Ad-hoc nodes. The buffers
of NIC cards at the relayed nodes become the bottle neck of the transmission. The
average RTP packet delay after packet number 80 is around 35 ms which is still
within acceptable limits.

From the experimental results discussed above, we have provided a primary reali-
zation of Ad-hoc VoIP system with embedded pseudo SIP server. The designed sys-
tem is suitable for two hop of Ad-hoc VoIP service. The embedded pseudo SIP server
is also compatible with all UAs.

 Intelligent VoIP System in Ad-Hoc Network with Embedded Pseudo SIP Server 653

Fig. 15. The VoIP hop delay

5 Conclusions

In this paper, we have implemented an intelligent VoIP system with embedded
pseudo SIP servers in an Ad-hoc network. We employed the standard SIP protocol
and integrated SIP presence to handle SIP signaling and discovery mechanism for Ad-
hoc VoIP services. The embedded pseudo SIP server, acting as the middleware be-
tween transport and application layers, is compatible with common SIP-based VoIP
UAs. Our testbed demonstrated acceptable VoIP QoS levels in terms of transmission
delays for both signaling and voice packets.

Acknowledgements

This research is partially supported by the National Science Council of Republic of
China, Taiwan under contracts, NSC 96-2221-E-142-007 and NSC 95-2221-E-324-
020. The authors would also like to thank the comments of professor Sandnes from
Oslo University College, Norway.

References

1. Chang, L.H., Chuang, P.D., Chen, Y.J., Yang, C.Y.: The Innovation of Pseudo SIP Server
on Ad-Hoc VoIP System. In: Proceeding of World Wireless Congress 2005(WWC 2005),
United States, May 25-27, 2005, pp. 313–317 (2005)

2. Chang, L.H., Chuang, P.D., Chen, Y.J.: An Ad-Hoc VoIP System Implementation using
UPnP Protocol over IPv6. In: Proceedings of International Computer Symposium (ICS),
Taipei, Taiwan, December 15-17, 2004, pp. 265–270 (2004)

3. Day, M., Rosenberg, J., Sugano, H.: A Model for Presence and Instant Messaging, IETF
Request for Comments 2778 (February 2000)

4. Day, M., Aggarwal, S., Mohr, G., Vincent, J.: Instant Messaging / Presence Protocol Re-
quirements, IETF Request for Comments 2779 (February 2000)

654 L. Chang et al.

5. Huitema, C.:Real Time Control Protocol (RTCP) attribute in Session Description Protocol
(SDP), IETF Request for Comments 3605 (October 2003)

6. ITU-T Recommendation G.711, Pulse Code Modulation (PCM) of Voice Frequencies
(November 1988)

7. Khlifi, H., Agarwal, A., Grégoire, J.-C.: A Framework To Use SIP in Ad-Hoc Networks.
In: Proceedings of IEEE 2003 Canadian Conference on Electrical and Computer Engineer-
ing, pp. 985–988 (May 2003)

8. Leggio, S., Manner, J., Hulkkonen, A., Raatikainen, K.: Session Initiation Protocol De-
ployment in Ad-Hoc Networks: A Decentralized Approach. In: Proceedings of the Interna-
tional Workshop on Wireless Ad-Hoc Networks (IWWAN 2005), London, UK (May 23 -
26, 2005)

9. Chuang, P.D., Chen, Y.J., Chang, L.H.: Design and Implement a VoIP System on Ad-Hoc
Network using UPnP Protocol. In: Proceedings of TANET 2004 Conference, National Tai-
tung Univ., Taitung, Taiwan, October 27-29, 2004, pp. 533–537 (2004)

10. Resenberg, J., et al.: SIP:Session Initiation Protocol. IETF Request for Comments 3261
(June 2004)

11. Rosenberg, J.: A Presence Event Package for The Session Initiation Protocol (SIP), IETF
Request for Comments 3856 (August 2004)

12. Rosenberg, J.: A Session Initiation Protocol Event Package for Registrations, IETF Re-
quest for Comments 3680 (March 2004)

13. Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V.: RTP: A Transport Protocol for
Real-Time Application, IETF Request for Comments 3550 (July 2003)

14. CPU Usage Limiter for Linux, http://sourceforge.net/projects/cpulimit/
15. Kphone, http://sourceforge.net/projects/kphone
16. OLSR Multicast Forwarding Plugin, http://sourceforge.net/projects/olsr-bmf/
17. olsr.org, http://www.olsr.org
18. Ubuntu Linux, http://www.ubuntu.org.tw
19. WIRLAB Network Research Lab, KPhone, http://www.wirlab.org/kphone
20. WireShark, http://www.wireshark.org/

C. Rong et al. (Eds.): ATC 2008, LNCS 5060, pp. 655–663, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Weighted Routing Protocol Using Grey Relational
Analysis for Wireless Ad Hoc Networks

Hung-Chi Chu*, Yi-Ting Hsu, and Yong-Hsun Lai

Graduate Institute of Networking and Communication Engineering,
Chaoyang University of Technology,

Taichung, 41349, Taiwan
Fax: 886-4-23305539

{hcchu,s9530603,s9530616}@cyut.edu.tw

Abstract. Issues relating to routing protocols are important in wireless ad hoc
network research. In this paper we present a weighted ad-hoc routing protocol
that exhibit low cost and high efficiency. In our method, important factors
including hop count, end-to-end delays, and nodes’ residual energy are
considered. Grey Relational Analysis is utilized for discovering the importance
of these factors and to decide their weighted values. Simulation result shows
that the performance of our method is better than traditional wireless ad hoc
network routing protocols.

Keywords: Routing protocol, grey relational analysis, wireless ad hoc
networks.

1 Introduction

With the rapid progress of wireless communications technology, wireless networks
are being applied to the military, agriculture, commerce, and so on. Mobile devices
such as notebooks, personal digital assistants, cell phones, etc, make it convenient for
us to communicate any time and any place.

The IEEE 802.11 wireless network standard describes two communication modes:
namely the infrastructure mode and the ad hoc mode. The former utilizes the access
point to help establish a connection to the internet. Access points act as intermediate
nodes that connect wired and wireless networks. The latter mode relies on mobile
nodes within direct communication range to communicate directly with each other.
Each mobile node in an ad hoc mode also forwards the message from one to another
neighboring node. Wireless communication models that do not rely on access points
are known as Mobile Ad Hoc Networks [1].

One of important challenge in wireless networks is the routing problem. We know
that routing is the process of selecting paths in a network along which to send data. In
infrastructure mode, the routing problem can be solved by traditional routing
techniques. Typically, each access point can be seen as a router that has a priori
knowledge of its neighboring nodes. According to this information, a routing table
can be created to deal with the routing problem. In ad hoc mode, each mobile node is

* Correponding author.

656 H.-C. Chu, Y.-T. Hsu, and Y.-H. Lai

responsible for packet routing that can be seen as a router without a priori knowledge
of the network topology. In this scenario, each mobile node listens to the broadcast
announcements from its neighbors to establish its local network topology. The
announcements may contain the neighbors of mobile node and the ways to reach
them. Over time, it is possible for mobile nodes to uncover the entire network
topology via announcement messages.

One challenge in ad hoc routing is that the routing mechanism may fail to work when
the network topology changes with the movement of mobile node. To overcome the
challenge and to keep the quality of service (QoS), an ad hoc routing protocol should be
designed by considering the changed of network topology, energy consumption and
end-to-end delay and so on. In this paper, we present a weighted routing protocol for
wireless ad hoc networks that yields low cost and is highly efficient. The decision of
important factors with suitable weights is determined by the grey relational analysis. A
brief description of grey relational analysis is presented in section 3.

2 Related Work

Routing in wireless ad hoc network is different from routing in traditional wired
network. Ad hoc routing is achieved by sending data from a source node to the target
node via neighboring nodes. That is, neighboring nodes receives data that from others
and relays it to another. This is called ad hoc routing. However, routing mechanism
for traditional wired network is not suitable for ad hoc network, because the router
that is responsible for data routing is not present. Therefore, ad hoc routing for
wireless ad hoc network should be considered carefully.

Generally speaking, wireless ad hoc routing [2] can be divided into three major
classes, active routing, passive routing, and hybrid routing. The basic operations of
these classes are summarized in the following subsections.

2.1 Active Routing Methods

In active routing, also called as table driven routing, a routing table is created on the
mobile nodes. When the network topology changes, the routing table should be
updated immediately. A typical table driven routing method is Destination Sequenced
Distance Vector (DSDV) [3] routing. In DSDV, each mobile node maintains its
routing table via exchanging the routing information between its neighboring nodes
periodically. This is an intuitive routing method that select the lowest cost (or
minimal hop count) routing path to be the best route. An improvement of DSDV
routing method, Cluster-head Gateway Switch Routing (CGSR) [4], has been
proposed. In CGSR, a clustering technique for data aggregation is used to reduce the
power consumption and communication overhead. In general, the active routing
methods have simple operation mechanism, but exhibit high control overheads and
high power consumption.

2.2 Passive Routing Methods

The basic concept of passive routing is on-demand routing. When a necessary routing
request occurs, the routing path will be established by utilizing control packets.
A typical on-demand routing method is Ad-hoc On-demand Distance Vector (AODV)

 A Weighted Routing Protocol Using Grey Relational Analysis 657

[5]. The AODV routing method had become a Request for Comments (RFC) that is
released by Internet Engineering Task Force (IETF) in July, 2003. When necessary, a
source node sends the control packets of Route Requests (RREQs) to destination
node. After receiving the RREQs, the destination node replies with Route Reply
(RREPs) control packets. Finally, the on-demand routing path can be created via these
control packets. One of the enhancement routing methods of AODV is Dynamic
Source Routing (DSR) [6]. In DSR, a source node sends control packets to establish
an on-demand routing path and stores the other possible routing path in its cache
memory. When a communication link on the routing path fails, the source node can
select another routing path from its cache and transfer data packets immediately. In
general, the passive routing methods have lower routing table maintenance costs, but
have high packet delays.

2.3 Hybrid Routing Methods

Hybrid routing methods combine active and passive routing. A typical hybrid routing
method is the Zone Routing Protocol (ZRP) [7]. In ZRP, the entire network topology
is divided into several smaller routing zones. When source node and destination node
are within the same zone, the active routing method is applied to rapidly provide a
routing path. When source node and destination node are located in different zone, the
passive routing method is applied on demand to establish a routing path between
zones. The Fisheye Zone Routing protocol (FZRP) [8] is also a hybrid routing
method. It uses the view point of fisheye to divide the entire working area into two
zones, basic zone and extended zone. In FZRP method, an active routing method is
used in basic zone and a passive routing method is used in extended zone. In general,
the Hybrid routing method has short routing delay for an intra-zone routing, low
control overhead for an inter-zone routing, and high system complexity.

Active routing methods have low packet delays but high control overheads and the
passive routing methods have low control overheads but high packet delays. By
considering the tradeoff between packet delays and control overheads, the hybrid
routing methods try to find the balance between active and passive routing methods
that can maximize the system performance. However, hybrid routing methods just
only reduce the defect of active and passive routing method slightly. In recent years,
on-demand routing is proposed for improving the system performance such as packet
delays or energy consumption. It is obvious that several factors such as nodes’
residual energy, end-to-end delay, hop count, and so on affect the performance of
routing method [9-11]. By considering some important routing factors, the routing
method will be more reliable and outstanding. Therefore, this paper proposes a grey
relational routing (GRR) method that considers important routing factors using grey
relational analysis. The GRR is a passive weighted routing method that is modified by
AODV.

3 Grey Relational Routing

Grey relational analysis is useful for finding the importance of factors for a system
with limited sampling data. In this section, we introduce the basic concept of grey

658 H.-C. Chu, Y.-T. Hsu, and Y.-H. Lai

theory and grey relational analysis. And then the detail of the weighted routing
method is proposed.

3.1 Grey Theory

Grey theory [12] was introduced in 1982 by Julong Deng. A grey system comprises
partially known information and partially unknown information. In general, the
analysis of system characteristics is based on the statistical model which finds the
statistical properties between data in a large sample set. However, a large sample set
may not be readily available; therefore, many systems are said to be in a state of poor
information. The characteristic of a grey system is that it can utilize only a few known
data through accumulated generating operation (AGO) to establish a prediction
model. Grey system has been widely applied to control, medical, agriculture, military,
and engineering problems [13, 14].

3.2 Grey Relational Analysis

Based on grey theory, the grey relational space (GRS) was originally proposed to
relate the main factor to the other reference factors in a given system. We applied this
technique here to select some input variables which show stronger impact to the
system output. Let γ(y0(k),xi(k)) be the grey relational coefficient at point k between
output sequence y0 and input sequence xi. The followings describe the four basic
axioms for the grey relational space:

(1) γ(y0(k), xi(k))∈(0, 1], ∀k.
(2) γ(y0(k), xi(k)) = γ(xi(k), y0(k)) if and only if it is a single-input and single output

system.
(3) γ(y0(k), xi(k)) ≠ γ(xi(k), y0(k)) almost holds if and only if it is a multi-input and

single-output system.
(4) γ(y0(k), xi(k)) decrease with the increase of Δ(k), where Δ(k)=| y0(k) - xi(k)|

From the above axioms we can understand that if an input sequence shows a higher
similarity than the others to the output, then this input variable can be said to be more
important to the output. To calculate the grey relational degrees between the output
and input variables and then to compare the relative importance, the following
procedures are usually used:

Step 1: Let the output sequence be y0 = (y0(1), y0(2), …, y0(n)), where n stands for the
number of data.

Step 2: Denote the m sequences to be compared by xi =(xi(1), xi(2), …, xi(n)), i=1,
2, …, m.

Step 3: Calculate

|)()(|maxmax|)()(|

|)()(|maxmax|)()(|minmin
))(),((

00

00

0 kxkykxky

kxkykxky
kxky

j
kj

j

j
kj

j
kj

i −+−

−+−
=

ξ

ξ
γ

Where ξ∈(0, 1] is the distinguishing coefficient. j=1, 2, …, m. k=1, 2,…, n. γ(y0(k),
xi(k)) is called the grey relational coefficient at point k. Note that a normalization

 A Weighted Routing Protocol Using Grey Relational Analysis 659

operation on the data sequences is normally required since the range or unit in one
data sequence may differ from the others. Aggregating the grey relational coefficient
calculated at each point, we can obtain the grey relational grade for an entire
sequence.

Step 4: The grey relational grade between the output and a specific input sequence is
derived as follows:

∑
=

=
n

k
ii kxky

n
xy

1
00))(),((

1
),(γγ

Here γ(y0, xi) represents to what degree of influence the sequence xi can exert on the
output sequence y0. In other words, the system output can grasp some useful
information about the variation of data points from input sequence. Thus, the analysis
of grey relational grade provides us an alternative to decide which input variables
show the crucial effect to the output.

According to the grey relational analysis, we consider the impact factors about end-
to-end delay, nodes’ residual energy, and hop count from source to destination in the
network topology with uniform distribution. Then the relational degree about hop
count, end-to-end delay, and nodes’ residual energy are 26%, 36% and 38%,
respectively.

3.3 Weighted Evaluation Function

Recent research [9-11] present a routing method that only considers one factor for
improvement. We know that many factors influence the performance of the routing
protocol. Therefore, we propose a Grey Relational Routing (GRR) method using a
weighted evaluation function. The weighted value of the impact factors is decided by
grey relational analysis that we mentioned in previous section. Our method will choose
the routing path with the smallest value of weighted evaluation function. Assume that
one of a routing path has t intermediate nodes n1, n2, …, and nt. The source node is n0
and the destination node is nt+1.The weighted evaluation function Eva is:

∑ ∑
= =

+ ++−=
t

i

t

i
HiiDiEva HWDWEWE

1 0
1,)1(

Where Ei presents the normalization of residual energy of node i, Di,i+1 presents the
normalization of end-to-end delay from node i to node i+1, and H presents the
normalization of hop count of this routing path. The symbol of WE, WD, and WH
present the weighted value of nodes’ residual energy, end-to-end delay, and hop
count, respectively.

As shown in Fig. 1, some data packets will be sent from source node S to
destination node D. In this scenario, we have four possible routing paths P1
(S→A→B→C→D), P2 (S→E→F→G→D), P3 (S→H→I→D), and P4
(S→A→F→G→D). The value on the link between two adjacent nodes is the end-to-
end delay and the value above the node is its residual energy. By using a routing
protocol with the shortest delay, the maximal residual energy and the minimal hop
count, the path P1, P2 and P3 will be selected, respectively. However, our method
considers these factors via weighted evaluation function to choose the path P4. The
factors are listed in Table 1.

660 H.-C. Chu, Y.-T. Hsu, and Y.-H. Lai

Fig. 1. An example of routing path with different factors

Table 1. The factors from path P1 to path P4

Path Hop count Delay Energy Eva Routing protocol

P1 4 2.28 600 0.73 Minimal delay

P2 4 3.76 1000 0.78 Maximal residual energy

P3 3 4.37 200 0.88 Minimal hop count

P4 4 2.39 900 0.68 Our method (GRR)

3.4 Grey Relational Routing Method

The energy issue is very important in wireless networks. As we mentioned in
section 2, the passive routing method has the advantage of low energy consumption.
Therefore, the grey relational routing (GRR) method that we proposed is based on the
traditional passive routing method such as AODV relies on hop count, nodes’ residual
energy and end-to-end delays. We use the weighted evaluation function to choose a
suitable routing path. Our GRR method contains the two main phases.

In the first phase, we need to perform a route discovery process. As shown in
Fig. 2(a), a source node S broadcasts Route Request (RREQ) control packets to
discovery a path to destination node D. The RREQ control packet contains the
following information:

{Source ID, Destination ID, Total Hop count, Total Delay, Total Residual Energy}

For each intermediate node, it computes the weighted evaluation function Eva from
source node to it, updates the RREQ control packet in the fields of Total Hop count,
Total Delay, and Total Residual Energy, stores this modified RREQ packet and its Eva
in cache memory, and forwards the modified RREQ to its neighboring nodes. To
avoid the overabundant of RREQ control packets, the intermediate node discards the
redundant RREQ packet without the smallest Eva value. When destination node
receives the RREQ packet, the path with the smallest Eva will be selected to be the
routing path.

In the second phase, we need to perform a route reply process to establish the
discovered routing path. As shown in Fig. 2(b), according to the smallest Eva,
destination node D sends the Route Reply (RREP) control packet to intermediate
node I and to confirm the routing path. For each intermediate node, it always selects

 A Weighted Routing Protocol Using Grey Relational Analysis 661

the path that has the smallest Eva and forwards the RREP packet by unicast. When the
source node S receives the RREP control packet that reply from destination node D,
the on-demand routing path is established by weighted evaluation function.

 (a) (b)

Fig. 2. (a) Route Discovery Process. (b) Route Replay Process.

4 Simulation Result

We evaluated the proposed method by using the Network Simulator version 2 (NS2)
[15]. IEEE 802.11 MAC protocol and energy model are considered. In initial state,
the bandwidth was 2M bits per second. The simulation consisted of 10, 20, 30, 40,
and 50 nodes distributed randomly in a 1000m×1000m square field. For each node, its
transmission range was 250m. For each traffic flow, we generated 512 bytes User
Datagram Protocol (UDP) data packet with constant bit rate per second. As the
number of nodes increased, two, four, six and eight packet traffic flow were
considered. Assuming that each node’s initial energy was 1000J, the transmitted
power dissipation was 15J, the received power dissipation was 10J, the power
dissipation of idle state was 5J and the duration of simulation was 100 seconds.
Average end-to-end delay, average energy variance and number of living node were
considered in our simulation.

Average end-to-end delay: The end-to-end delay measures the time for source node to
send a data packet to destination node. This measurement shows the total latency that
includes the routing path discovery, routing path reply and one packet propagation
time. As shown in Fig. 3(a), the end-to-end delay of our method is better than AODV
when the number of nodes in the network is larger than 30. On the contrary, ours is
worse than AODV when the number of nodes is less than 30. This is because that in
sparse network, the distance between two adjacent nodes is large that incurs long
point-to-point delay. In this scenario, the factor of hop count is more important than
others. The defect will be considered by using dynamic GRR method to immediately
update the weighted value.

Average energy variance: Energy is one of important factors in wireless ad hoc
networks. When a node run out of energy, it will lose its functionality and fail to
work. Therefore, we consider the variance of average energy consumption to show
that our method has lower energy consumption than AODV. In Fig. 3(b), the x-axis

662 H.-C. Chu, Y.-T. Hsu, and Y.-H. Lai

indicates the simulation time (sec) and y-axis indicates the variance of energy
consumption. Because the factor of nodes’ residual energy is considered in our
method, the proposed method can reduce the energy consumption compared to
AODV.

Number of living node: In order to show the balance of nodes’ residual energy, we
present the number of living nodes. As shown in Fig. 3(c), our method keeps all of the
nodes alive when the simulation time is less than 70 sec that is better than AODV.
When some nodes run out of energy and fail to work, the node’s energy consumption
of living nodes might increase. This outcome rapidly aggravate the node’s life time in
both of GRR and AODV routing methods after the simulation time between 70 sec to
100 sec. However, our method also has higher living rate of nodes than AODV.

 (a)

 (b) (c)

Fig. 3. (a) Average end-to-end delay. (b) Average energy variance. (c) Number of living node.

5 Conclusion

Considering some impact factors of routing mechanism such as end-to-end delay,
nodes’ residual energy, and hop count, a passive routing method, Grey Relation
Routing (GRR), is presented. For each factor, we assign a weighted value that is
decided by grey relational analysis to indicate its importance. By simulation results,

 A Weighted Routing Protocol Using Grey Relational Analysis 663

the GRR method is better than traditional passive routing method such as AODV. Our
method can effectively reduce the energy consumption, reduce the end-to-end delay
and prolong the network lifetime.

References

1. Corson, M.S., Macker, J.P., Cirincione, G.H.: Internet-Based Mobile Ad Hoc Networking.
IEEE Internet Computing, 63–70 (July/August 1999)

2. Lee, S.J., Hsu, J., Hayashida, R.: Selecting a routing strategy for your ad hoc networks.
Computer Communications 26, 723–733 (2003)

3. Perkins, C.E., Bhagwat, P.: Highly Dynamic Destination-Sequenced Distance-Vector
Routing (DSDV) for Mobile Computers. In: Proc. of the ACM SIGCOMM, vol. 24(4), pp.
234–244 (Octiber 1994)

4. Chiang, C.C., Wu, H.K., Winston, L., Mario, G.: Routing in Clustered Multihop, Mobile
Wireless Networks With Fading Channel. In: IEEE International Conference on Networks,
pp. 197–211 (1997)

5. Perkins, C.E., Belding-Royer, E.M., Das, S.R.: Ad Hoc On-Demand Distance Vector
(AODV) Routing., IETF Mobile Ad Hoc Networks Working Group, RFC 3561 (July
2003)

6. Johnson, D.B., Maltz, D.A., Hu, Y.C.: The Dynamic Source Routing Protocol for Mobile
Ad Hoc Networks. Internet- Draft, draft-ietf- manet-dsr-10.txt (July 2004)

7. Zhang, X., Jacob, L.: Multicast zone routing protocol in mobile ad hoc wireless networks.
In: Proc. Of the 28th Annual IEEE International Conference on Local Computer Networks,
pp. 150–159 (2003)

8. Yang, C.C., Tseng, L.P.: Fisheye Zone Routing Protocol: A Multi-Level Zone Routing
Protocol for Mobile Ad Hoc Networks. Computer Communications 30, 261–268 (2007)

9. Lin, X.H., Kwok, Y.K., Lau, V.K.N.: BGCA: Bandwidth Guarded Channel Adaptive
Routing for Ad Hoc Networks. In: Wireless Communications and Networking Conference,
pp. 433–439 (March 2002)

10. Kim, D., Lee, W., Park, B.N.: A Power Balanced Multipath Routing Protocol in Wireless
Ad-Hoc Sensor Networks. In: IEEE International Conference on Computer and
Information Technology, pp. 222–227 (2006)

11. Li, L., Li, C., Yaun, P.: Performance evaluation and simulations of routing protocols in ad
hoc networks. Computer Communications 30, 1890–1898 (2007)

12. Deng, J.-L.: Introduction to grey system theory. The Journal of Grey System 1, 1–24
(1989)

13. Deng, J.-L.: Control problems of grey systems. System and Control Letters 5, 228–294
(1982)

14. Huang, Y.-P., Huang, C.-C.: The integration and application of fuzzy and grey modeling
methods. Fuzzy Sets and Systems 78, 107–119 (1996)

15. The Network Simulator 2, http://www.isi.edu/nsnam/ns/index.html

Author Index

Albrechtsen, Eirik 527
Amini, Morteza 47
An, Gaeil 36
Anthony, Richard 373
Astarloa, Armando 603

Bai, Baoming 279
Baumgarten, Matthias 249
Bidarte, Unai 603
Bistarelli, Stefano 481
Botia, Juan A. 403
Branke, Jürgen 219

Caballero, Alberto 403
Cao, Jiannong 106
Cayirci, Erdal 1
Chang, Lin-huang 641
Chang, Yue-Shan 615
Che, Hao 106
Chen, Jianxin 555
Chen, Xiaowei 86
Chiu, Shih-yi 641
Chu, Hung-Chi 655
Chu, Xiaowen 86
Curran, Kevin 249

Dohi, Tadashi 206
Dong, Yan 455
Dorn, Christoph 162
Dustdar, Schahram 162

Ernst, Rolf 331
Eto, Hiroyuki 206

Gill, Christopher 149
Glaubius, Robert 149
Goebel, Vera 21
Goi, Bok-Min 100
Gómez-Skarmeta, Antonio 403
Greer, Kieran 249
Grøtan, Tor Olav 121
Gui, Chunmei 444

Hawthorne, James 373
He, Li 540

Hemmati, Hadi 289
Heng, Swee-Huay 100
Hinchey, Mike 316
Hsieh, Shang-Lin 629
Hsu, Yi-Ting 655
Hu, Ning 567
Huang, Benxiong 13, 540
Huang, Bin-Yuan 629
Huang, Chen 134, 279
Huang, Ye 555
Hwang, Wen-Jyi 388

Jaatun, Martin Gilje 121, 527
Jakimovski, Bojan 177
Jalili, Rasool 47, 289
Jay Siegel, Howard 470
Jiménez, Jaime 603
Jin, Hai 302
Jiru, Josef 358
Johnsen, Stig Ole 527
Juang, Tong-Ying 615

Kim, Kiyoung 36
Kim, Ung Mo 264
Kluge, Florian 343
Komarova, Maryna 429

Lai, Yong-Hsun 655
Lázaro, Jesús 603
Lee, Byong 2
Lee, Eunseok 577
Leung, Ho-fung 191
Li, Ying 13
Li, Yunfa 73
Liao, Xiaofei 302
Liaw, Jiun-jian 641
Line, Maria B. 121, 527
Liu, Sanmin 302
Liu, Xin 567
Longva, Odd Helge 527
Lu, Zhengxin 134
Luo, Junzhou 588

Ma, Jianhua 206
Maehle, Erik 177

666 Author Index

Marinescu, Dan C. 470
Marinescu, Gabriela M. 470
Martinelli, Fabio 481
Martinez de Alegŕıa, Iñigo 603
Meling, Hein 496
Milligan, Peter 418
Ming, Jiuqiang 13
Mische, Jörg 343
Mo, Yijun 540
Mörgenthaler, Reinhard 358
Morrison, John P. 470
Müller-Schloer, Christian 219
Mulvenna, Maurice 249

Nam, Junghyun 264
Niemi, Valtteri 455
Norvik, Christoffer 470
Nugent, Chris 249

Ou, Chien-Min 388

Paik, Juryon 264
Park, Jeongmin 577
Pelc, Mariusz 373
Piao, Shunshan 577
Pietzowski, Andreas 60
Plagemann, Thomas 21
Prothmann, Holger 219

Qiang, Jian 444
Qiang, Weizhong 73
Qu, Yipeng 279

Riguidel, Michel 429
Rochner, Fabian 219
Rong, Chunming 134, 555

Sage, Paul 418
Santini, Francesco 481
Satzger, Benjamin 60
Schmeck, Hartmut 219
Shaw, Peter 418
She, Yingni 191
Skevik, Karl-André 21
Smart, William D. 149
Stein, Steffen 331
Su, Chen-Yi 615
Sung, Chun-hui 641

Taherian, Mohsen 47
Teich, Jürgen 234
Tidwell, Terry 149

Tomforde, Sven 219
Trumler, Wolfgang 60
Truong, Hong-Linh 162
Tsai, I-Ju 629
Tung, Yi-Chih 388
Tøndel, Inger Anne 527

Uhrig, Sascha 343
Ungerer, Theo 60, 343

Vassev, Emil 316

Wang, Furong 134, 279
Wang, Huaimin 444
Wang, Junze 540
Wang, Xiaogang 588
Wang, Zhijun 106
Ward, Paul 373
Wærø, Irene 527
Wen, Jie 540
Wu, Pei-Da 629
Wu, Quanyuan 444
Wu, Song 73
Wu, Wei-De 388

Xu, Darren 588

Yan, Zheng 455
Yang, Bo 516
Yang, Geng 555
Yang, Jianhua 2
Yang, Jun 13
Yang, Sirui 302
Yang, Tao 555
Yau, Wei-Chuen 100
Yoo, Kee-Young 507
Yoon, Eun-Jun 507
Youn, Hee Yong 264
Yu, Chen 470
Yu, Guoliang 455

Zeller, Markus 358
Zhang, Fan 279
Zhang, Mingwu 516
Zhang, Wenzheng 516
Zhao, Kaiyong 86
Zhu, PeiDong 567
Zhu, Shenglin 516
Ziener, Daniel 234
Zou, Deqing 73
Zou, Peng 567

	Title Page
	Preface
	Organization
	Table of Contents
	Sensor Network Applications Implemented by Industry and Their Security Challenges
	Detecting Stepping-Stone Intrusion and Resisting Evasion through TCP/IP Packets Cross-Matching
	Introduction
	Intruder’s Evasion Approaches and Assumptions
	Time-Jittering
	Chaff-Perturbation

	TCP/IP Cross-Matching Algorithm
	Motivation
	TCP/IP Packets Cross-Matching Algorithm
	Resistance Analysis
	The Algorithm

	Experimental Results
	Experimental Setup
	Resisting Time-Jittering and Its Analysis
	Resisting Chaff-Perturbation and Its Analysis

	Conclusions and Future Work
	References

	Preventing DDoS Attacks Based on Credit Model for P2P Streaming System
	Introduction
	System Design
	Framework
	Credit Model (CM)
	Message Rate Control Model (MRCM)

	Performance Evaluation
	Conclusion
	References

	Design, Prototype, and Evaluation of a Network Monitoring Library
	Introduction
	Related Work and Network Awareness
	ANA: Autonomic Network Architecture
	Library Design
	Library Interface
	Query Specification
	Network Measurements
	Optimizations
	Examples
	Implementation
	Summary

	Custcom Monitoring Brick
	MRP Overview
	MRP Syntax
	MRP Brick Implementation

	Evaluation
	Library Optimizations
	MRP Brick
	Compartments

	Conclusion
	References

	Real-Time IP Checking and Packet Marking for Preventing ND-DoS Attack Employing Fake Source IP in IPv6 LAN
	Introduction
	IP Spoofing Attack and ND-DoS Attack
	Prevention of ND-DoS Attack Employing Fake Source IP
	Real-Time IP Checking and Packet Marking
	Architecture of IPv6 Access Router Supporting Our Scheme

	Simulation and Performance Evaluation
	Conclusion
	References

	A Semantic-Aware Ontology-Based Trust Model for Pervasive Computing Environments
	Introduction
	Related Work
	The Trust Model
	Trust Ontology
	Classes of the Trust Ontology.
	Properties of the Trust Ontology

	Trust Manager
	Security Rules

	Trust Inference
	Trust Inference Protocol
	Updating the Trust Values
	Semantic Relations among Trust Categories

	Conclusions and Future Works

	Using Automated Planning for Trusted Self-organising Organic Computing Systems
	Introduction
	Automated Planning
	Self-organising Production Cell
	Scenario
	System State
	Objectives
	Action Description

	Planning Process
	Optimisations
	Evaluation
	Conclusions and Outlook

	A Trusted Group Signature Architecture in Virtual Computing Environment
	Introduction
	Related Work
	Trusted VMM Based Group Signature Architecture
	Group Signature Architecture
	Group Signature Scheme

	The Analysis of Group Signature Scheme in Virtual Computing Environment
	Security Analysis of Group Signature Scheme
	Security Analysis of Group Signature Architecture

	Conclusions and Future Work
	References

	SepRep: A Novel Reputation Evaluation Model in Peer-to-Peer Networks
	Introduction
	Background
	Motivation

	Related Works
	SepRep Model Methodology
	The SepRep Model Concept
	Initial Reputation and Trust Model
	Reputation Propagation Model

	Experiment and Analysis
	Simulation
	Analysis

	Conclusions
	References

	Off-Line Keyword Guessing Attacks on Recent Public Key Encryption with Keyword Search Schemes
	Introduction
	Attacks on BSS’s SCF-PEKS Scheme
	Review of SCF-PEKS Scheme
	Off-Line Keyword Guessing Attacks on SCF-PEKS Scheme

	Attacks on BSS’s PKE/PEKS Scheme
	Review of PKE/PEKS Scheme
	Off-Line Keyword Guessing Attacks on PKE/PEKS Scheme

	Comparison of Off-Line Keyword Guessing Attacks on Various PEKS Schemes
	Conclusion
	References

	An Integrated Solution for Policy Filtering and Traffic Anomaly Detection
	Introduction
	Two Dimensional Matching
	Integrated Solution of Policy Filtering and Anomaly Detection
	TCAM Coprocessor
	Data Structure
	Description of the Integrated Solution
	Computational Load on Local CPU
	Rule Update
	Table Overflow

	Performance Evaluation
	Related Work
	Conclusions

	Secure Safety: Secure Remote Access to Critical Safety Systems in Offshore Installations
	Introduction
	Related Work
	Method
	Structuring the Remote Access Path
	The ``Onion Model''
	Threats and Countermeasures
	Access Modes
	Access Examples
	Physical Mapping
	Barriers between Zones
	Security Mechanisms in Individual Zones
	OPC Communication

	Additional Mechanisms
	Read-Only Status Server
	Inner DMZ Proxy Functionality

	The SeSa Method
	Conclusion
	Further Work

	SEMAP: Improving Multipath Security Based on Attacking Point in Ad Hoc Networks
	Introduction
	Related Works
	Security Enhancement Mechanism Based on Attacking Point
	Assumption
	The Design Details of SEMAP

	Simulation
	Conclusion
	References

	Scheduling for Reliable Execution in Autonomic Systems
	Introduction
	Related Work
	Scheduling Policy Design
	Verification
	Evaluation
	Conclusions and Future Work

	Measuring and Analyzing Emerging Properties for Autonomic Collaboration Service Adaptation
	Introduction
	Motivation
	Contributions

	Team Properties and Adaptation
	Team Metrics
	The Team Analysis and Adaptation Framework
	Monitoring Team Behavior
	Analysis and Management of Team Metrics
	Prototype Implementation

	Experiments
	Testbed
	Examples for Emergence-Based Adaptation

	Related Work
	Conclusion and Future Work

	Artificial Immune System Based Robot Anomaly Detection Engine for Fault Tolerant Robots
	Introduction
	Artificial Immune System
	Robot Anomaly Detection Engine (RADE)
	Results of Experimental Test Cases
	Conclusions
	References

	Maximising Personal Utility Using Intelligent Strategy in Minority Game
	Introduction
	Related Work
	An Intelligent Strategy
	Motivation
	An Intelligent Strategy
	Experiment Results

	Discussions and Analysis
	Impact of M and S
	Comparisons with Related Work
	Equivalence to the Experience Method

	Conclusions and Future Work

	Simulation-Based Optimization Approach for Software Cost Model with Rejuvenation
	Introduction
	Multistage Degradation Software System
	Semi-Markov Decision Process
	Reinforcement Learning Algorithm
	An Illustrative Example
	Concluding Remarks

	Organic Control of Traffic Lights
	Introduction
	State of the Art
	Traffic Control
	Evolutionary Computation
	Evolutionary Computation in Traffic Control

	Architecture
	Overview
	On-Line Selection of TLC Parameters

	Results
	Experimental Setup
	Simulation Results

	Summary and Outlook

	Concepts for Autonomous Control Flow Checking for Embedded CPUs
	Introduction
	Related Work
	Branches and Jumps
	Methods for Autonomous Control Flow Checking
	Control Flow (CF) Method
	Control Flow Instruction (CFI) Method
	Methods Conclusions

	An Architecture for Lightweight Control Flow Checking
	Handling of Direct Jumps/Branches
	Handling of Calls and Returns
	Correction by Reexecution

	Implementation
	Overhead Analysis
	Conclusions and Future Work

	Autonomous Querying for Knowledge Networks
	Introduction
	Related Work
	Knowledge Representation
	Autonomous Querying

	The Querying Problem
	The Query Process
	Autonomic Knowledge Updating
	Test Results

	System Details
	Autonomic Aspects

	Discussion

	Discovery of Useful Patterns from Tree-Structured Documents with Label-Projected Database
	Introduction
	Problem Definition
	Scheme of SEAMSON
	Label-Projected Database
	Construction Phase
	Refinement Phase
	Derivation Phase

	Experimental Evaluation
	Conclusion

	Using Multiple Detectors to Detect the Backoff Time of the Selfish Node in Wireless Mesh Network
	Introduction
	Related Work
	Problem Statement
	Multiple Detectors Approach
	Mathematic Analysis
	Algorithm Analysis

	Simulation Scenario
	Simulation Results
	Conclusion
	References

	Self-reconfiguration in Highly Available Pervasive Computing Systems
	Introduction
	Assured Dynamic Reconfiguration Framework
	ADRF Architecture
	Reconfiguration Process in ARDF

	Monitoring and Analysis of Reconfiguration Process in ARDF
	Freezing the Affected Area
	Structural Analysis
	Behavioral Analysis

	Availability Issues of Reconfigurable Software in PCSs
	Availability Definition in Reconfigurable Software
	Availability Factors for Reconfigurable Software in PCSs

	Availability Evaluation in ADRF
	Conclusions and Future Work
	References

	Modeling Modern Social-Network-Based Epidemics: A Case Study of Rose
	Introduction
	The Rose Epidemic
	The Mechanism of Rose
	Three Propagation Scenes

	Epidemic Modeling
	Modeling Print Service Office Scene
	Modeling Internet Cafe Scene
	Modeling Friendship Network

	Analysis and Implications of Parameters
	Related Work
	Conclusion and Future Work
	References

	An Evaluation Study of the Effectiveness of Modeling NASA Swarm-Based Exploration Missions with ASSL
	Introduction
	Related Work
	ANTS
	ASSL
	ASSL Specification Models for ANTS
	Current ASSL Models for ANTS
	Prospective ASSL Models for ANTS

	Overall Evaluation of ASSL
	Pros
	Cons

	Conclusion and Future Work
	References

	Distributed Performance Control in Organic Embedded Systems
	Introduction
	Related Work
	Problem Formulation
	Performance Control Framework
	Analysis Methodology
	Experimental Study
	Conclusion

	An Operating System Architecture for Organic Computing in Embedded Real-Time Systems
	Introduction
	Related Work
	Requirements
	Architectural Design
	Overview
	Thread Management
	Resource Management
	Dynamic Memory Management
	Runtime Linker
	Security Management

	Prototypical Implementation
	The CarCore Processor
	Implementation of CAROS

	Benefits for Organic Computing
	Self-configuration
	Self-healing
	Self-optimisation
	Self-protection

	Conclusion and Future Work

	Towards an Autonomic Peer-to-Peer Middleware for Wireless Sensor Networks
	Introduction
	Related Work
	Requirements
	Sensor Network
	Middleware
	Overall Requirements

	System Architecture
	Network Structure
	Medium Access Control of WSN Nodes
	Sensor Association and Description
	Gateway Layer Peer-to-Peer
	Super Peers in Process Layer
	Tasks
	Self-organization

	Results
	Energy Consumption
	Association and Authentication
	Selection of Super Peers
	Evaluation of Network Traffic

	Conclusion and Future Work

	Embedding Dynamic Behaviour into a Self-configuring Software System
	Introduction
	Related Work
	Self-managing System Overview
	Embedding into Software Components
	Implementation in the DySCAS Project
	Automated Trust Decisions in DySCAS

	Conclusions and Future Work
	References

	Service Discovery of IP Cameras Using SIP and Zeroconf Protocols
	Introduction
	Preliminaries
	SIP
	Zeroconf

	STDP
	Experimental Results
	Conclusion Remarks

	Adaptability of the TRSIM Model to Some Changes in Agents Behaviour
	Introduction
	Motivation and Related Work
	Model Structure
	Domain-Dependent Functions: Quality and Similarity

	Experiments Scenario
	Bootstrapping the Model
	Stability of the Model
	Recognition of Types of Agents Using Trust and Reputation

	Adaptability of the Model to Changes on the Behaviour of Provider Agents
	Simulation of Changes in the Behaviour of Provider Agents
	A $High-Quality$ Agent Degrades Their Behaviour and Returns to Improve
	Behavioural Changes of a Group of $Low-Quality$ Agents
	A set of Low-quality agents improve its behaviour and degrade again.

	Conclusions

	Trusting Groups in Coalition Formation Using Social Distance
	Introduction
	Related Work
	Trust as Social Capital
	Team Formation Environment
	Previous Work
	Baseline Results
	Correlations and Social Distance
	Preliminary Results
	Conclusion

	Adjustable Trust Model for Access Control
	Introduction
	Concepts and Notions
	Our Understanding of Trust
	The Agents
	Sources of Trust

	Requirements, Assumptions and Limitations
	Model for Service Access Control
	Trust: Generalized Model
	Computing General Trust
	Trust Development

	Observation-Based Trust
	Model Description
	Trust Formula
	Optimism and Tendency

	The Memory Model and Forgiving
	Adapting Access Policies
	Conclusions

	Towards Trustworthiness Establishment: A D-S Evidence Theory Based Scorer Reliability Tuned Method for Dishonest Feedback Filtering
	Introduction
	The Dempster-Shafer Evidence Theory
	The D-S Evidence Theory Based Unfair Rating Filtering Approach
	The Model of Reputation Evidence
	Detecting Architecture of Reputation Evidence
	Selecting Features of Reputation Evidence
	The D-S Evidence Theory Based Unfair Rating Filtering Engine
	Adaptive Mechanism

	Experiment and Result
	 Related Work
	 Conclusions and Future Work

	A User Behavior Based Trust Model for Mobile Applications
	Introduction
	Background and Related Work
	Trust Model (From a Psychological View Towards an Engineering View)
	Human-Computer Trust
	Trust Management

	Hypotheses
	Methods
	Scale Development
	Data Collection
	Data Processing and Analysis

	Results
	Principle Components Analysis
	Reliability Analysis
	Achieved Model and Correlations

	Further Discussions
	Limitation Analysis
	Practical Significance

	Conclusions and Future Work
	References

	Managing Contracts in Pleiades Using Trust Management
	Introduction
	Related Work
	Trust Management
	Virtualization Software
	Contracts
	Trust Management Contracts and Reimbursements
	Summary and Future Work

	A Semantic Foundation for Trust Management Languages with Weights: An Application to the RT Family
	Introduction and Motivations
	Background
	A Weighted Extension of Datalog
	Extending the RT Family with ${{\rm Datalog}^W}$
	Some Examples with Levels of Trust
	RT2W: Logical Rights
	RTWT: Threshold and Separation-of-Duty Policies
	RTWD: Delegation of Role Activations

	Conclusions and Future Work

	Annotation Markers for Runtime Replication Protocol Selection
	Introduction
	The EGMI Architecture
	The Client-Side and Server-Side Proxies

	Replication Protocol Selection
	Supporting a New Protocol
	Concurrency Issues

	The Leadercast Protocol
	The Atomic Multicast Protocol
	Runtime Adaptive Protocol Selection
	Conclusions

	Enhanced Three-Round Smart Card-Based Key Exchange Protocol
	Introduction
	Review of SKE Protocol
	Registration Phase
	Session Key Agreement Phase
	Password Updating Phase

	Cryptanalysis of SKE Protocol
	Impersonation Attack
	Integrity Violence of the Session Key from Illegal Modification

	Enhanced SKE Protocol
	Enhanced Session Key Agreement Phase
	Security Analysis

	Conclusions

	Assertions Signcryption Scheme in Decentralized Autonomous Trust Environments
	Introduction
	Cryptographic Blocks
	Pairings and Complexity Assumptions
	Assertions Signcryption Scheme
	Security Notions

	Proposed Scheme in Multiple Autonomous Trust Domain
	Security Analysis
	Efficiency Analysis
	Conclusion

	A Study of Information Security Practice in a Critical Infrastructure Application
	Introduction
	Empirical Sources and Methods
	Findings
	Interviews
	A Case Study at an Oil and Gas Installation in the North Sea
	Risk and Vulnerability Assessment
	Assessment of Information Security Challenges at an Installation
	Workshop on Information Security and Integrated Operations
	Workshop on Main Findings from IRMA
	System Dynamics Workshops and Cooperation with the AMBASEC Project

	Discussion
	Few Incidents are Observed
	Combining Two Different Worlds
	Learning Based on Few Incidents

	Conclusion
	References

	Web Search Results Clustering Based on a Novel Suffix Tree Structure
	Background and Related Work
	Suffix Tree with N-Gram
	The Clustering Algorithm Based on Suffix Tree with X-Gram
	Experiments
	Experiment Setup
	Space Complexity
	Execution Time
	More Readable Description

	Conclusion
	References

	Di-GAFR: Directed Greedy Adaptive Face-Based Routing
	Introduction
	Previous Work
	Di-GAFR Algorithm
	Node Storage and Message Format
	Di-GAFR
	Di-GAFR's Asymptotical Optimality

	Algorithm Analysis
	Conclusion

	Cooperative Management Framework for Inter-domain Routing System
	Introduction
	Background and Motivation
	Cooperative Management Framework
	Design Considerations
	Architecture
	AS Alliance
	Reputation Mechanism
	Information Sharing Mechanism
	Incentive Mechanism
	Simulation

	Application
	Cooperative Configuration
	Cooperative Monitor

	Related Work
	Conclusion
	References

	Performance Problem Determination Using Combined Dependency Analysis for Reliable System
	Introduction
	Related Work
	Performance Problem Determination
	Probabilistic Dependency Analysis Based on Bayesian Network
	Combined Dependency Analysis Using Temporal Inference

	Illustration on Performance Evaluation
	Conclusion
	References

	Free-Roaming Mobile Agent Security Protocol Based on Anonymous Onion Routing and k Anonymous Hops Backwards
	Introduction
	Notations and Security Properties
	The Protocol
	Anonymous Onion Routing
	Agent Starting at ${S_0}$
	Agent Migrating at ${S_i}$
	Agent at ${S_{i+1}}$
	Agent Returns to ${S_0}$

	Security Analysis
	General Security Properties
	Colluded Truncation Attacks

	Implementation and Evaluation
	Implementation
	Results and Evaluation

	Conclusion
	References

	Secure Ethernet Point-to-Point Links for Autonomous Electronic Ballot Boxes
	Introduction
	Secure Electronic Ballot Box
	OSCRYB SoPC Architecture
	MULTI-OSCRYB SoPC Architecture
	Implementation Results
	Conclusions

	Wireless Sensor Network Assisted Dynamic Path Planning for Transportation Systems
	Introduction
	Traffic Network Model
	Network Components and Assumptions
	Network Model

	Traveling Time Estimation
	Time Estimation of Sub-link
	Time Estimation in a Link
	Time Estimation of Traveling Path
	Algorithms

	Simulation
	Related Works
	Conclusions and Future Work
	References

	A Recoverable Semi-fragile Watermarking Scheme Using Cosine Transform and Adaptive Median Filter
	Introduction
	Related Background
	Torus Automorphism
	Adaptive Median Filter

	The Proposed Recoverable Semi-fragile Watermarking Scheme
	Main Stages in the Proposed Scheme
	The Algorithms of the Two Phases

	Experimental Results
	Common Image Processing Operations
	Malicious Attacks

	Conclusions
	References

	Intelligent VoIP System in Ad-Hoc Network with Embedded Pseudo SIP Server
	Introduction
	Backgrounds and Related Works
	Ad-Hoc Network
	Ad-Hoc VoIP System
	Related Works

	System Design
	System Architecture
	Mobility Management Functionality
	System Module Design
	System Flow Chart

	System Implementation and Analyses
	Experimental Environments
	System Implementation
	Performance Analysis

	Conclusions
	References

	A Weighted Routing Protocol Using Grey Relational Analysis for Wireless Ad Hoc Networks
	Introduction
	Related Work
	Active Routing Methods
	Passive Routing Methods
	Hybrid Routing Methods

	Grey Relational Routing
	Grey Theory
	Grey Relational Analysis
	Weighted Evaluation Function
	Grey Relational Routing Method

	Simulation Result
	Conclusion
	References

	Author Index

