
An Analysis of the

Manufacturing Messaging Specification Protocol

Jan Tore Sørensen1 and Martin Gilje Jaatun2

1 mnemonic as, NO-0167 Oslo, Norway
2 SINTEF ICT, NO-7465 Trondheim, Norway

jantore@mnemonic.no

Abstract. The Manufacturing Messaging Specification (MMS) protocol
is widely used in industrial process control applications, but it is poorly
documented. In this paper we present an analysis of the MMS protocol
in order to improve understanding of MMS in the context of information
security. Our findings show that MMS has insufficient security mecha-
nisms, and the meagre security mechanisms that are available are not
implemented in commercially available industrial devices.

Keywords: Process control; Industrial Networks; Protocols; Security.

1 Introduction

We will in this paper present an analysis of the Manufacturing Messaging Specifi-
cation (MMS1) protocol and propose improvements based on our findings. MMS
is defined in the ISO 9506 standard [1], and there is also some information avail-
able in white-papers from SISCO2 [2,3,4]. We have tested the MMS protocol as
implemented in a major brand of controller used in the process control industry.
We will in the following look closer into the construction of MMS packages and
how they may be altered and forged.

MMS is an application-layer protocol which specifies services for exchange of
real-time data and supervisory control information between networked devices
and/or computer applications. It is designed to provide a generic messaging
system for communication between heterogeneous industrial devices, and the
specification only describes the network-visible aspects of communication. By
choosing this strategy, the MMS does not specify the internal workings of an
entity, only the communication between a client and a server, allowing vendors
full flexibility in their implementation. In order to provide this independence, the
MMS defines a complete communication mechanism between entities, composed
of [3]:

1. Objects: A set of standard objects which must exist in every conformant
device, on which operations can be executed (examples: read and write local
variables, signal events).

1 In this paper, MMS does not stand for Multimedia Messaging Service, as is often
the case elsewhere.

2 System Integration Specialists Company - not to be confused with Cisco.

F.E. Sandnes et al. (Eds.): UIC 2008, LNCS 5061, pp. 602–615, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Analysis of the Manufacturing Messaging Specification Protocol 603

2. Messages: A set of standard messages exchanged between a client and a
server station for the purpose of controlling these objects

3. Encoding Rules: A set of encoding rules for these messages (how values
and parameters are mapped to bits and bytes when transmitted)

4. Protocol: A set of protocols (rules for exchanging messages between
devices).

MMS composes a model from the definition of objects, services and behavior
named the Virtual Manufacturing Device (VMD) Model. The VMD uses an
object-oriented approach to represent different physical industrial (real) devices
in a generic manner. Some of these objects are variables, variable type definitions,
programs, events, historical logs (called journals) and semaphores. Along with
the definition of these objects, MMS defines a set of communications services
that an application can use to manipulate these objects.

We observe that in the literature the terms services, service primitives and
messages are all used to describe the functions that manipulate objects or their
attributes. We will therefore in this paper use the term service primitive as this
is used in the ISO 9506 standard [1], unless we are citing directly from a written
source, in which case the quote will be evident in the text. The standard also
refers to physical industrial devices as “real devices” and we will continue to use
this terminology to avoid confusion.

As MMS is based on an object oriented approach, we will give a brief intro-
duction to the addressing and object hierarchy of MMS, before focusing on the
network communication.

1.1 Architecture and Addressing

The MMS architecture is based on a common client server model. Real devices
used in industrial networks often contain an MMS server allowing the device to
be monitored and managed from an MMS client. An MMS client is typically
part of an control builder application or an MMS-to-OPC gateway (MMS/OPC
GW). A control builder is an application used to program and monitor industrial
controllers. Both the control builder and the MMS/OPC GW use service prim-
itives provided in the MMS to manage devices containing MMS servers. This is
depicted in Fig. 1 [2].

As MMS does not specify how to address clients and servers, an entity contain-
ing an MMS client or server must rely on the addressing scheme of underlying
protocols in the process of establishing an application association to support the
MMS environment[1]. In practice, clients and servers are addressed by their IP
address and the MMS server uses port number 102. The addressing allows for
an MMS context to be negotiated between two peer applications.

To address an MMS object variable, MMS provides several different address
modes. MMS allows an address to have different syntax, based on the imple-
menter’s choice of what is most appropriate for that device. The specification
separates between named and unnamed variables.

604 J.T. Sørensen and M.G. Jaatun

Fig. 1. The VMD model depicting communication between an MMS client and an
MMS server

1.2 MMS Objects, Services Primitives and Access Control

Associated with each object is a set of variables that describe values in a given
instance of the object. For each object there are corresponding MMS service
primitives that allow client applications to access and manipulate those objects.
The top level object in the MMS is the VMD which has at least one network-
visible address.

Each real device is represented by a real object with vendor-specific features
associated with them. The VMD model maps the real object and devices onto
virtual objects and devices, described in a generic manner which is in confor-
mance to the VMD model. In other words, a real variable is an element of typed
data that is contained within a VMD object. An MMS variable is part of a vir-
tual object that represents a mechanism for the MMS client to access the real
variable. The MMS server containing the virtual MMS object can be understood
as a communication driver which hides the specifics of a real device from the
client. From the client’s point of view the virtual MMS variable represents a
pointer or an access method to the real variable and it is only the MMS server
with its objects and its behavior that is visible to the client. The MMS client
can never interact with real device variables directly.

All MMS objects contain an access method variable. This attribute contains
the information which a device needs to identify the real variable as described
above. It contains values which are necessary to find the memory location of
the real variable with the contents that lie outside MMS. A special method, the
method PUBLIC, is standardized for accessing the real variables.

An Analysis of the Manufacturing Messaging Specification Protocol 605

Table 1. The basic methods inherited from the VMD object

MMS General
methods

Description

Get This method is used to obtain the value of a specified object.

Set This method is used to write/put value or contents into a
specified object.

Query Attributes This method is used to obtain structure or capability infor-
mation of a specified object.

Create This method allows objects of particular classes to be instan-
tiated.

Rename This method allows instantiated objects to be renamed.

Delete This method allows instantiated objects to be destroyed.

For each object there are corresponding MMS service primitives that allow
client applications to access and manipulate those objects. The MMS defines
the service primitives of both clients and servers, but the VMD focuses only on
specifying the network-visible behavior of MMS servers. And thus, each vendor
of an MMS server device is responsible for hiding vendor specific details of the
real objects and devices by providing an executive function which maps the
real entities up to the virtual level, which shall comply with the VMD model
definitions. To ensure vendor implementation compliance with the VMD model,
it specifies how MMS devices containing an MMS server shall provide a consistent
and well-defined view of the object contained in the VMD. And thus, MMS
provides a common interface for communication with different devices through
the generic virtual objects.

All MMS objects except the Operator Station object inherit six abstract ser-
vices from the VMD object. These are depicted and described in table 1. E.g. ser-
vice primitives read and RequestDomainUpload for the objects Named Variable
List and Domain respectively inherit from the abstract service primitive get.

MMS uses access control lists to provide explicit control of the ability to access
or alter MMS objects. Protection requirements for an MMS variable are inherited
from the underlying real variable in the real device. These requirements are es-
tablished by the access method in the MMS object. ISO 9506 [1] states that each
object within an MMS implementation must contain a reference to an Access Con-
trol List object that specifies the conditions under which services directed at the
named object may succeed. For the purposes of specifying the control conditions,
services are grouped into six classes as described in table 1. Access control is en-
forced through special mechanisms provided by MMS. These mechanisms include
possession of a semaphore, identity of user (Application Reference), and the sub-
mission of a password (which may be arbitrarily complex).

1.3 Network Services

As we have stated earlier, MMS is not by itself a communication protocol, as
it only defines messages that have to be transported by an unspecified network.

606 J.T. Sørensen and M.G. Jaatun

MMS was originally developed as a part of the MAP specification [5], and is
therefore specified on all seven OSI layers as depicted in figure 3. MAP was orig-
inally created by General Motors as an internal standard for communications
in industrial automation networks. It is now a public, multivendor communica-
tions standard for industrial automation equipment. MMS supports the use of
both confirmed and unconfirmed services, but we will in this paper focus on the
confirmed services. The MMS defines the following Protocol Data Unit (PDUs)
for a confirmed service exchange:

– Confirmed-RequestPDU
– Confirmed-ResponsePDU
– Confirmed-ErrorPDU
– Cancel-RequestPDU
– Cancel-ResponsePDU
– Cancel-ErrorPDU
– RejectPDU

These messages will be used in the communication between a MMSclient and
server. When a client wishes to invoke a service primitive on the server side
application (the VMD), the transitions depicted in Fig. 2 may occur, depending
on the responce from the VMD.

Before a service primitive is called through a Confirmed-RequestPDU, the
server is in a Responder Idle state. Upon receipt of a Confirmed-RequestPDU (1)
for any of the confirmed services, the MMS-provider issues an indication primi-
tive to the application, specifying the particular service being requested and an
invoke ID that specifies the service instance and enters the state Service Pend-
ing Responder. Upon receipt of a response service primitive, from the overlaying
application, containing a result parameter specifying the service previously in-
dicated and an invoke ID that identifies the service instance, the MMS-provider
sends a Confirmed-ResponsePDU (2) which specifies the service type and the
invoke ID from the response primitive along with the requested data. Then a
state transition into the Responder Idle state occurs.

If the application can not provide the requested data, the MMS-layer will
receive a response service primitive containing a Result parameter specifying an
errorstate along with the invoke ID used to identify the the requesting MMS ser-
vice instance. The MMS-layer then sends a Confirmed-ErrorPDU (3) containing
the service type and the invoke ID from the response primitive. When sending
the Confirmed-ErrorPDU a state transition back into the Responder Idle state
occurs.

Upon receipt of a Cancel-RequestPDU from the client containing the invoke
ID of the matching service instance request, the MMS-layer on the server issues a
cancel indication service primitive to the overlaying application. This indication
specifies the invoke ID of the service request to be canceled; this information
is obtained from the Cancel-RequestPDU parameters. The state Canceling Ser-
vice Responder (4) is then entered. Now two things may occur on the server
side: 1) If the application has provided the requested data, the server sends a

An Analysis of the Manufacturing Messaging Specification Protocol 607

Fig. 2. The MMS Confirmed Service Request as seen by the Service Responder (server)

Cancel-ResponsePDU containing the data and Confirmed-ErrorPDU entering
the Responder Idle state through transition 6 (T6). 2) If the application has not
provided the requested data the server sends a Cancel-ResponsePDU without
any data and enters the Service Pending Responder state through T5. The server
then sends a Confirmed-ErrorPDU through T3 and returns to the Responder
Idle state.

According to [1] the MMS runs on the network stack depicted in Fig. 3. Like
all ISO standards this network stack relates to the Open System Interconnection
stack describing the abstract service layers such as session and presentation layer.
We will now give a short description of some of the protocols/layers based on
their relevance to this paper theme.

2 ASN.1

MMS uses ASN.1 to encode data at the OSI presentation layer before trans-
mission. The ASN.1 representation of data is independent of machine-oriented
structures and encodings and also of the physical representation of the data (re-
ferred to as transfer syntax in communication terminology). MMS uses BER to
encode ASN.1 data before transmission. As we will be decoding BER code, we
will explain BER encoding in the next section.

3 BER

The Basic Encoding Rules are one of the original encoding rules specified by the
ASN.1 standard for encoding abstract information into a concrete data stream.
The rules, collectively referred to as a transfer syntax in ASN.1 parlance, specify

608 J.T. Sørensen and M.G. Jaatun

Fig. 3. The MMS communication stack specified as OSI layers

the exact octet sequences which are used to encode any given data item before it
is transmitted over a network. The BER syntax is defined by the ITU-T’s X.690
standards document, which is part of the ASN.1 document series.

BER is a self-identifying and self-delimiting encoding scheme, which means
that each data value can be identified, extracted and decoded individually [6].
Each data element is encoded using a triplet consisting of a type identifier (tag),
a length description and the actual data element. The use of such a triplet
for encoding is commonly referred to as a tag-length-value (TLV) encoding. A
generic triplet is depicted below.

[identifier (tag)] [length (of the contents)] [contents]

The use of TLV encoding allows any receiver to decode the ASN.1 information
from an incomplete information stream, without any pre-knowledge of the size,
content or semantic meaning of the data. Assuming that the communicating
parties share the same context specific module definitions.

BER uses a unique code as an identifier for an ASN.1 data type. This iden-
tifier is encoded as one or more bytes of every data type and creates the tag.
The identifier is well-structured to allow the representation of three levels of

Table 2. Description of the BER identifier

Bit number 7 6 5 4 3 2 1 0 Implication

0 0 UNIVERSAL
0 1 APPLICATION SPECIFIC
1 0 CONTEXT SPECIFIC
1 1 PRIVATE

0 primitive data type
1 constructed data type

X X X X X numeric identifier

An Analysis of the Manufacturing Messaging Specification Protocol 609

information within one such code, as illustrated in table 2. On the highest level,
represented by the highest-order two bits of the tag octet(s), the class of the
data type is encoded [6]. The third highest bit of the identifier indicates whether
the represented data type is a primitive or constructed one. A constructed data
type can be seen as a complex or compound data type hierarchically based on
one or more primitive data types. The remainder of the identifier is a numeric
tag associated with a data type within a class. Tags ranging from 0 to 30 can be
associated with the remaining 5 bits of the octet. For larger tags, these 5 bits
are set to 111111, and one or more subsequent octets are used to encode the tag.

4 Analysis of MMS Communication

ISO 8823 states that the OSI transport protocol exchanges information between
peers in discrete units of information called Transport Protocol Data Units (TP-
DUs) [7]. This is a fundamental difference between the TCP and the network
service expected by Transport Protocol Class 0 (TP 0). The difference is that
TCP manages a continuous stream of octets, with no explicit boundaries, while
TP0 expects information to be sent and delivered in discrete objects termed net-
work service data units. Therefore RFC 1006 [8] describes that all TPDUs shall
be encapsulated in discrete units called TPKTs. The TPKT layer, depicted in
figure 4, is used to provide these discrete packets to the OSI Connection-Oriented
Transport Protocol (COTP) on top of TCP.

We have intercepted some packages using Wireshark. As Wireshark did not
support the MMS protocol at the time of testing, we were forced to manually
decode the MMS PDUs. When looking at MMS communication in Wireshark
we found the underlying MMS protocol stack depicted in 4.

As there was no publicly available documentation on how the vendor had
implemented the MMS protocol we had to analyse the protocol stack. As we
see in Fig. 4, there are two protocols running on top of TCP. Above TCP we
find TPKT, which is a packet format used to emulate the ISO transport services
COTP on top of TCP. RFC 1006 [8] describes how to implement ISO’s transport
protocol class 0 on top of TCP. ISO 9506 [1] stipulates the use of OSI transport
class 4 in conjunction with MMS. Nevertheless RFC 1006 [8] describes the use of
OSI transport class 0 to emulate an ISO Transport Service on top of the TCP.

Fig. 4. The MMS communication stack as Wireshark detects it

610 J.T. Sørensen and M.G. Jaatun

Fig. 5. Format of TPKT header

Fig. 6. Format of COTP PDU

The reason for using ISO’s OSI transport class 0 on top of TCP/IP instead
of transport class 4 is that transport class 0 achieves identical functionality as
transport class 4 when running on top of TCP. The TCP layer provides reliable
transport service through error detection and retransmission. It also handles
segmentation and reassembly of PDUs. As TCP provides all these properties
as part of its service to the next layer, there is no reason to implement them
again.

A TPKT consists of two parts: a packet-header and a TPDU. The format of
the header is constant regardless of the type of packet, as illustrated in Fig. 5.

The field labeled vrsn is the version number which according to RFC 1006
[8] always is three. The next field, reserved, is reserved for further use. The
last field is the packet length. This field contains the length of entire packet in
octets, including packet-header. The maximum TPDU size is 65531 octets, with
a payload of maximum 65524 octets.

According to Wireshark we find COTP above the TPKT layer. RFC 0905 [9]
describes the ISO 8073 specification. The COTP PDU is described in Fig. 6.

The header length in octets is indicated by a binary number in the length
indicator (LI) field. This field has a maximum value of 254 (1111 1110)3. The
next field is divided into two parts, first the PDU type specification (T), which
describes the structure of the rest of the PDU, e.g., Data Transfer (1111) as
described in Figure 6. The PDU type is encoded as a four bit word. The full list
of codes for data types can be found in [9]. The second part, is the credit part
(CDT) which is used to indicate a reliable transport service, but this is always
set to 0000 as TP 0 does not offer reliable transport. The third field contains the
TPDU number and an end of transfer indication flag. In all data transfer packets

3 The value 255 (1111 1111) is reserved for possible extensions.

An Analysis of the Manufacturing Messaging Specification Protocol 611

the EOT flag is set and the TPDU number is zero; this might be because the
service relies on TCP sequence numbering on the transport layer, but we have
not found any written documentation to support this theory.

We wish to note that there is no reference to ACSE in our packet dump. We
verified through Wireshark’s documentation that ACSE is a supported protocol
[10]. That leaves us with two possible conclusions:

1. The MMS protocol uses an implementation of ACSE which is not in con-
formance with the standard, which leaves Wireshark unable to decode the
packet layer.

2. The implementors of the MMS protocol have omitted the ACSE layer when
implementing the protocol.

We are fully capable of decoding the whole payload of the COTP PDU to MMS
structured ASN.1 text. We therefore conclude that the current implementation
of the MMS has omitted the ACSE layer, making the ACSE authentication
facilities forfeit. This means that there are no authentication or access control
facilities at the lower layers of the MMS stack.

5 Decoding MMS Communication

Now knowing the underlying protocols which MMS is running on, we will study
the MMS message communication between the MMS client and the MMS server
and try to determine if there are any signs of security mechanisms. We used the
client software to create a small program which we downloaded to the controller
over MMS. The program was a very simple counting application as decribed in
C code below:

int i=0;

while(TRUE)
i=i+1;

The controller will now report the value of i back to the client at regular
intervals using MMS. Once the program was downloaded to the controller and
running, we used Wireshark to capture MMS communication on the network.
The first thing we noticed when we examined the packet dump in Wireshark,
was that there is a pattern in packet communication repeating itself in a period
of eight. This pattern was first identified by packet sizes repeating themselves at
a period of eight.

We wish to note that we chose an arbitrary packet in our packet dump as our
starting point and decoded packages sequentially from that point. We chose this
strategy to simulate an attacker tapping into a network at an arbitrary point
in time.

612 J.T. Sørensen and M.G. Jaatun

5.1 Decoding the First PDU

We will now look closer at the first PDU and attempt to decode it. We have ex-
tracted the payload of the COTP package at our randomly chosen starting point.
We know from the manufacturer’s web page that the equipment employs MMS.

a0 41 02 01 7b a4 3c a1 3a a0 38 30 0c a0 0a
80 08 24 4d 53 47 24 31 24 24 30 15 a0 13 80
11 24 48 57 53 34 35 38 35 34 33 32 30 3a 4e
4f 52 4d 30 11 a0 0f 80 0d 24 4d 53 47 24 35
35 32 36 35 38 39 36

The package above is encoded in BERs TLV format. We know this from [2] and
[3] which are whitepapers publicly available on the internet. We must therefor
use the decoding rules described in section 3 to decode each TLV pair. When
decoding this first PDU, with the help of the MMS syntax module[11], we found
that this is a confirmed-Request PDU. This confirmed-Request PDU contains
an integer id named invokeID with value 123 and confirmedServiceRequest for
an read operation. The read-request specifies a listOfVariables with three items.
Each item is a vmd-specific object name containing the identifier. We decoded
these identifiers to:

– MSG1$$
– $HWS45854320:NORM
– MSG55265896

Space does not permit going through the entire decoding process, but for
illustrtive purposes, the beginning of the first PDU is decoded below. Using
table 2 we decode the first PDU to the following textual ASN.1 structure:

1

a0 CONTENT SPECIFIC cons t ruc ted nr 0
3 41 LENGTH=65

5 02 UNIVERSAL pr im i t i v e nr 2 (INTEGER)
01 LENGTH=1

7 7b 123

9 a4 CONTENT SPECIFIC cons t ruc ted nr 4
3c LENGTH=60

11

a1 CONTENT SPECIFIC cons t ruc ted nr 1
13 3a LENGTH=58

15 a0 CONTENT SPECIFIC cons t ruc ted nr 0
38 LENGTH=56

17

30 UNIVERSAL cons t ruc ted nr 16 (SEQUENCE)

An Analysis of the Manufacturing Messaging Specification Protocol 613

19 0c LENGTH=12

21 a0 CONTENT SPECIFIC cons t ruc ted nr 0
0a LENGTH=10

23

80 CONTENT SPECIFIC pr im i t i v e nr 0
25 08 LENGTH=8

27 24 $
4d M

29 53 S
47 G

31 24 $
31 1

33 24 $
24 $

35 . . . e t c .

We observe that MMS utilizes many CONTENT SPECIFIC tags to identify
MMS specific data types. As stated earlier we can use the MMS module definition
to decode these tags. This module is publicly available for anyone at [11] or
through Google

TM
.

6 Security in MMS

After analysing MMS protocol communications we will in this section look into
the security mechanisms defined by the MMS standard. The standard does spec-
ify means for access control through accessControlList objects. We quote from
the ISO standard [1]:

The &accessMethod field for an Named Variable object shall specify
the mode of access. If the Address is declarable (and obtainable) using
MMS services, the &accessMethod field shall have the value public, and
the Address attribute shall be defined and available to MMS clients
requesting the attributes of the Named Variable object. Otherwise, the
value of this field is a local issue. The public access method shall not be
available unless vadr is supported.

From the quote above we see that each Named Object Variable has an access-
Method field, which specify the mode of access. According to the standard, if the
address is declarable and obtainable using MMS service primitives the access-
Method shall have the value public. Access to all objects can be controlled by a
special object, the Access Control List, that tells which client can read, delete
or modify the object. On a general level MMS specifies that if the accessMethod
is public the following field shall appear and if the &accessMethod is anything
but public, the following field shall not appear. But there are some exceptions.

614 J.T. Sørensen and M.G. Jaatun

An MMS server may declare an MMS variable that exists only at the instant of
access. Such a variable does not have an address per se, but is still accessible at
that instant. We see that the standard provides mechanisms for access control,
but to our knowledge there are no other security mechanisms included in the
MMS standard. We quote from the Security Considerations section in the ISO
standard [1]:

When implementing MMS in secure or safety critical applications, fea-
tures of the OSI security architecture may need to be implemented.
This International Standard provides simple facilities for authentication
(passwords) and access control. Systems requiring a higher degree of
security will have to consider features beyond the scope of this Interna-
tional Standard. This International Standard does not provide facilities
for non-repudiation.

As stated above, MMS itself is not designed with information security in mind.
This indicates that security should be enforced at some lower layer, but as we
have seen through our analysis of the MMS, there is no security enforced at
any layer. The ACSE layer could have offered some security features, but as the
ACSE layer is omitted from our implementation those features are forfeit.

According to the ISO standard the MMS protocol should have implemented
some simple facilities for password authentication and access control. We wanted
to study these mechanisms to see what security they really offer, but as they are
at best optional and at worst not implemented they provide no security what so
ever. We have through our analysis seen that they do not exsist.

When analysing the MMS we have found no protection against replay attacks.
This is a major concern, as anyone with access to the network may sniff up a
packet and then replay it on the network at a an inappropriate moment. We do
not regard the invokeID field as such a mechanism as it is easily changed.

7 Conclusion

The Manufacturing Messaging Protocol (MMS) is a complex protocol that is
rendered even more complex by the implementation of an OSI transportation
protocol on top of TCP. MMS offers very limited security mechanisms, and
equipment we have studied does not appear to have implemented even these
mechanisms. It is clear that if MMS is to be used in process control networks
that have to fulfil information security requirements, major modifications have
to be made to the protocol.

Acknowledgements

The research for this paper was conducted while Mr. Sørensen was a student at
the Norwegian University of Science and Technology (NTNU).

An Analysis of the Manufacturing Messaging Specification Protocol 615

References

1. Industrial automation systems, Manufacturing Message Specification. Part 1, ISO
ISO Standard ISO 9506-1:2003(E) (2003)

2. Overview and introduction to the Manufacturing Message Specification (MMS),
System Integration Specialists Company (SISCO), 6605 19,5 Mile Road, Sterling
Heights, MI 48314-1408, USA, Tech. Rep. (1995),
http://www.sisconet.com/downloads/mmsovrlg.pdf

3. Falk, H., Robbins, J.: An Explanation of the Architecture of the MMS standard.
System Integration Specialists Company (SISCO), 6605 19, 5 Mile Road, Sterling
Heights, MI 48314-1408, USA, Tech. Rep. (1995)

4. Falk, H., Burns, D.M.: MMS and ASN.1 Encoding. System Integration Specialists
Company (SISCO), 6605 19, 5 Mile Road, Sterling Heights, MI 48314-1408, USA,
Tech. Rep. (2001)

5. Floyd, L., Ronald, D.: Manufacturing automation protocol. In: Conference Record
- International Conference on Communications, pp. 620–624 (1985)

6. Basic encoding rules, Vijay Mukhi’s Computer Institute, India (February 2007),
http://www.vijaymukhi.com/vmis/ber.htm

7. Information technology – Open Systems Interconnection – Connection-oriented
presentation protocol: Protocol specification. ISO ISO Standard ISO/IEC 8823-
1:1994 (1994)

8. Rose, M.T., Cass, D.E.: RFC 1006: ISO transport services on top of the TCP:
Version 3 (May 1987), obsoletes RFC0983. Updated by RFC 2126. Status: STAN-
DARD, ftp://ftp.internic.net/rfc/rfc1006.txt

9. McKenzie, A.M.: RFC 905: ISO transport protocol specification ISO DP 8073
(April 1984), ftp://ftp.internic.net/rfc/rfc905.txt

10. Wireshark wiki on ACSE, Published on Wireshark’s wiki page (June 2006),
http://wiki.wireshark.org/ACSE

11. SISCO’s MMS syntax, Published on Systems Integration Specialists Company
(SISCO), Inc. Homepage (February 2007),
http://www.sisconet.com/downloads/mms abstract syntax.txt

http://www.sisconet.com/downloads/mmsovrlg.pdf
http://www.vijaymukhi.com/vmis/ber.htm
ftp://ftp.internic.net/rfc/rfc1006.txt
ftp://ftp.internic.net/rfc/rfc905.txt
http://wiki.wireshark.org/ACSE
http://www.sisconet.com/downloads/mms_abstract_syntax.txt

	An Analysis of the Manufacturing Messaging Specification Protocol
	Introduction
	Architecture and Addressing
	MMS Objects, Services Primitives and Access Control
	Network Services

	ASN.1
	BER
	Analysis of MMS Communication
	Decoding MMS Communication
	Decoding the First PDU

	Security in MMS
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

