
F.E. Sandnes et al. (Eds.): UIC 2008, LNCS 5061, pp. 119–130, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Framework for Context-Aware
Home-Health Monitoring

Alessandra Esposito, Luciano Tarricone, Marco Zappatore, Luca Catarinucci,
Riccardo Colella, and Angelo DiBari

University of Salento, Lecce, Italy
{alessandra.esposito,luciano.tarricone,

luca.catarinucci}@unile.it

Abstract. This paper presents a proposal for a context-aware framework. The
framework is organized according to a general purpose architecture, centred
around an ontological context representation. The ontology provides the
vocabulary upon which software agents interoperate and perform rule-based
reasoning, in order to determine the system response to context changes. The
system components and their coordinated operations are described by providing
a simple example of concrete application in a home-care scenario.

Keywords: context-aware, ontology, rule, logic, agent, ubiquitous, health.

1 Introduction

Progress in mobile devices, wireless networks and software technologies is bringing
healthcare a new generation of systems, which are known under the name of pervasive
and context-aware systems. The term ‘pervasive’ [1] refers to the seamless integration
of devices into the user’s everyday life. Appliances vanish into the background to make
the user and his tasks the central focus rather than computing devices and technical
issues. Context-aware systems adapt their operations to the current context without
explicit user intervention. These kinds of applications pose several technological
challenges. First of all, a pervasive application is made up of heterogeneous and
dispersed components which must be able to interoperate in a transparent manner.
Moreover, in order to adapt to context variations, the system must elaborate raw data
sensed by context sources, such as sensors, and extract high level context information
from them. Both requirements lead to the identification of the core component of the
system: a robust, reusable and sharable context representation. However, the definition
of a shared context model provides the basis for 1) allowing the system components to
cooperate and build together the system reaction to incoming events, 2) structuring
sensed data in a meaningful and interpretable form. Currently, there is no standard
modelling option for context [2]. Therefore, available frameworks adopt proprietary
approaches. Among them, ontology-based ones [3,4,5] are more and more recognized as
the most promising [6], as they provide a rich formalism for specifying contextual
information and are reusable and sharable. The adoption of ontologies is encouraged by
their capability of being embedded within multi-agent and rule-based systems. Indeed,
designing the application in a multi-agent fashion allows one to organize it around the

120 A. Esposito et al.

coordinated interaction of autonomous reasoning entities, which wrap the “natural”
components of the pervasive system (such as sensing devices and consumer services).
Rule-based logic supports agents in implementing advanced reasoning and in deriving
high-level concepts from sensed information thus opening the application to
sophisticated adaptation and pro-active behaviour.

This work proposes a framework for context-aware pervasive systems built around
the three above mentioned technologies: ontology representation, multi-agent
paradigm and rule-based logic. The amenability of these technologies for context-
aware pervasive environments has been demonstrated in a number of recent works.
Among them, we recall CoBrA [5], an agent-based framework for intelligent meeting
rooms centred around an OWL ontology. Gu et al. [6] propose SOCAM which is an
ontology-based middleware for context-aware services in smart space domains. An
ontology-based context model and context reasoning for ubiquitous health-care is
presented in [4]. Health-care is the focus of Paganelli and Giuli [3] work as well,
which describes a system built around OWL and rule-based inference. A further
impulse to the integration of the three technologies is provided with our work, which
is the result of an effort to enhance their interoperability. As a result, the ontology
provides the knowledge codification needed to support both agent reasoning and
communication. The effectiveness of the adopted model is shown by using a simple
and concrete example in a home-care scenario.

The paper is organized as follows. Section 2 introduces the general-purpose
framework and its prototypal implementation. Section 3 is centered around context
modeling. First the ontology representation, then the rule-based reasoning are
illustrated. Section 4 focuses on how agent-based reasoning supports context
elaboration. Section 5 focuses on data collection strategies. It describes “S-tag”, a
novel low cost device enabling the integration of sensor networks with RFID systems.
A home-health scenario is adopted throughout the entire paper as specific example of
application and practical result.

2 System Architecture

The architecture of our system (Fig. 1) follows a widely accepted abstraction [7],
according to which context-aware systems are organized into three layers: context
sources. Context management middleware and context consumer level

Context sources include entities providing raw context data. They are conceptually
partitioned into two groups: physical and virtual sources [8]. Physical sources include
all hardware devices able to sense context data, such as RFID, sensors, positioning
systems, etc. Virtual sources include software services able to gather context data,
such as GUIs for user preferences input, databases, etc. Such data must be elaborated
in an “intelligent” manner, so that the overall system reacts properly to context
changes. This requires the availability of a machine-interpretable representation of
context and of software components (agents) able to suitably process such
knowledge. Both of them are conceptually situated at the intermediate level of the
system architecture, the so-called middleware layer, as they provide the core building
blocks of a context-aware application. Agents interoperate with one another thanks to
the availability of a unified model of reality. Their behaviour is strongly influenced by

 A Framework for Context-Aware Home-Health Monitoring 121

data provided by context sources and substantially determines the activities to be
performed at the highest layer. Indeed, the context consumer layer includes all the
entities, such as mobiles, Web interfaces, laptops, which interact with final users in
response to meaningful context changes, thus determining the behaviour of the
context-aware application as a whole.

Context Sources

Context Management Middleware

Context Consumer

Inference
Engine

Context
Model JADE APIs …

Applications PDAs …

Physical
Sensors

Virtual
Sensors

GUIs Mobiles PCs

Fig. 1. The three-layer system architecture. The lowest layer includes physical and virtual
sensors, i.e. devices and software entities forwarding context data. The middle level hosts
middleware components, such as software development kits and APIs. The context model is the
core of the system and belongs to the middle level as well. End user devices and applications
are positioned at the highest level.

The prototypal implementation of the framework is drawn in Fig.2. As shown in
the figure, the distributed system is made up of a team of interoperating agents, which
share a common knowledge representation and reason through an inference engine.
The agents are dispersed over several nodes and play different roles. As explained in
Section 4, Context Provider Agents (CPA) wrap context sources and are in charge of
converting raw context data into high level context information. CPAs cooperate with
Context Interpreter Agents (CIA) which are responsible for managing high level
context information and of identifying the set of actions to be triggered as a
consequence of an emergence. Finally, Context Consumer Agents (CCA) forward the
message/signal describing the alarm situation to the most suited destination. Input
data are provided by a physical context source obtained by integrating sensors with an
RFID device (see Section 5) and by a virtual context source containing static
information.

In the following sections, the system components and their way of operating are
described, with reference to a home-care scenario.

122 A. Esposito et al.

S-tag
CPA

CIA

CCA

Agent Inference Engine

Agent Behaviours

CN1
CN2

CN3

CPA

CPA CCA

Fig. 2. System Prototype. The system was implemented on three nodes (CN) connected by a
local area network. It follows a multi-agent paradigm. Context Provider Agents (CPA) filter
and integrate data coming from physical and virtual sensors, thus converting raw context data
into high level context. Context Interpreter Agents (CIA) process high level context information
to identify the actions and the actors best suited for managing an emergency. Context
Consumer Agents (CCA) forward the alarm information to the final destination.

3 Context Representation

An application is context-aware if it is able to adapt its behaviour to context by
suitably reacting to context variations. In other terms, a context-aware application
must exhibit a sort of “situation awareness”, i.e. it must manage and interpret context
and its real-time evolution. Moreover, a context-aware application is generally made
up of several components, possibly deployed on dispersed nodes, which need to
interact with one another. Therefore it is fundamental for such components to share a
common representation of context knowledge.

These premises cast a twofold approach to context modelling.
First of all, the fundamental entities, objects and relations of a situation must be

represented. This is needed in order to ground system knowledge on a common basis
and provide a unified concept taxonomy to the several components interacting in the
application framework. Secondly, context changes originated by meaningful data
variations must originate recognizable “high-level” events, so that situation switching
can be interpreted and suitably managed by the system. In other terms, the system
must be enabled to deduce high-level, implicit context from the low-level, explicit
context directly acquired from sensors. This operation often requires reasoning over
complex combinations of different data and context information. For example, an

 A Framework for Context-Aware Home-Health Monitoring 123

increase of blood pressure (low level context) exceeding the patient threshold (low
level context) may produce a switching to an “alarm” situation (high level context),
which, on its turn may produce a series of operations finalized at identifying and
invoking the most suited available and reachable doctor.

Our system attacks the former need, i.e. machine representation of context entities,
by the use of ontologies which enable to describe meaningful events, objects and
relations of context and support several fundamental forms of reasoning, such as
concept satisfiability, class subsumption, consistency and instance checking.

The latter need, situation switching management, is approached by implementing
logical rules and by embedding context events into facts. In this way, an iterative
process is activated every time rules are matched. Indeed, fired rules infer new
facts, i.e. new scenario switchings, which on their turn may fire other rules. This
process allows the system to convert low level context into high level context, with
the final result of producing the system reaction to the context switching which
originated the process. For example the occurrence of low level events sensed by
physical and virtual sensors, may originate the “diastolic blood pressure of patient
X=100” and “threshold of patient X=90” facts. These facts may fire a rule inferring
the high level fact “alarm for patient X=true”. The alarm situation, combined with
facts concerning the availability of doctors, may produce the fact “doctor Y has to be
called”, which generates the system response to the detected patient anomaly.

As explained in the following subsections, the ontologies were implemented in the
OWL language, whilst the rule-based domain knowledge was implemented with Jess
on top of OWL ontologies.

3.1 Context Ontology

Several context modeling techniques [9] exist such as key value, mark-up scheme,
graphical, object-oriented, and ontology-based modeling. According to [9], the
ontology-based approach fits well with the requirements of ubiquitous/context-aware
computing. Indeed. ontologies facilitate knowledge sharing and reuse. Knowledge
sharing is enabled by providing a common knowledge model to computational
entities, such as agents and services, which need to interoperate with one another.
Knowledge reuse is promoted by ontology amenability to be extended to different
domains and to be integrated within wider ontology-based frameworks.

Many ontology languages exist including Resource Description Framework
Schema (RDFS) [10], DAML+OIL [11], and OWL [12]. OWL is a key to the
Semantic Web and was proposed by the Web Ontology Working Group of W3C.
Therefore, it was chosen for our prototype.

A common practise, when developing ontologies, is to adopt a top level (upper)
shared conceptualization [13] on top of which domain ontologies are built. Top level
ontologies codify general terms which are independent of a particular problem or
domain. Once the top level ontology is available, several lower level ontologies can
be introduced, with the scope of incrementally specializing concepts from the high
level generic point of view of the upper ontology to the low level practical point of
view of the application. This way of structuring knowledge promotes sharing and
reuse of ontologies in different application domains.

124 A. Esposito et al.

hasDevice

hasPhysiological
Parameter

measuresBloodPressure

Sphygmomanometer

PhysiologicalParameter

BloodPressure

MeasuringDevice

Person

Patient

Device

ContextualEntity

Sensor

WearableSensor

hasCurrentSBPValue

hasNormalMaxSBPValue

Upper Context
Ontology Class

Context Ontology Class

Is-A Relationship

Object Property

Datatype Property

hasDevice

hasPhysiological
Parameter

measuresBloodPressure

Sphygmomanometer

PhysiologicalParameter

BloodPressure

MeasuringDevice

Person

Patient

Device

ContextualEntity

Sensor

WearableSensor

hasCurrentSBPValue

hasNormalMaxSBPValue

Upper Context
Ontology Class

Context Ontology Class

Is-A Relationship

Object Property

Datatype Property

Fig. 3. Some classes from the context domain ontology referring to the “patient environment”

Therefore, we divided context ontology into two levels: the top-level context and
the domain context ontology. The top-level context ontology includes concepts which
refer to context-aware computing, independently from the application domain. The
domain context ontology refers explicitly to the health-care domain.

The vocabulary related to context entities was defined starting from the widely
accepted definition of context, provided in [14]: “Context is any information that can
be used to characterize the situation of an entity.” Therefore, an entity is a person,
place, computational entity, or object which is considered relevant for determining the
behavior of an application. Therefore, as shown in Fig.3 and Fig.4, “person”, “device”
and “TriggeredAction” are contextual entities which specialize into different con?epts
depending on the context subdomain they belong to. For instance, a person can be a
patient, a relative of the patient or a health operator. Devices can be of different types
as well. For the sake of brevity, the figures show just small ontology fragments
referring to the example used throughout the remaining part of the paper.

3.2 Context Rules

The proposed framework utilizes Jess [15] to structure knowledge in the form of
declarative rules. Jess is a widely adopted rule engine and scripting environment
written in Java. It adopts the Rete algorithm [16] to implement efficiently the rule
matching.

Jess rules are used to convert low-level information, given in a raw form by
sensors, into high-level context. This is conceptually performed in an incremental

 A Framework for Context-Aware Home-Health Monitoring 125

Person

Patient

ContextualEntity

HealthcareOperator

Relative

Nurse

Physician

hasRelative

isInChargeOf

TriggeredAction

Alarm

AlertLevel

hasAlert
Level

ContactProcedure

triggersProcedure

Availability

hasAvailability

Upper Context
Ontology Class

Context Ontology Class

Is-A Relationship

Object Property

Person

Patient

ContextualEntity

HealthcareOperator

Relative

Nurse

Physician

hasRelative

isInChargeOf

TriggeredAction

Alarm

AlertLevel

hasAlert
Level

ContactProcedure

triggersProcedure

Availability

hasAvailability

Upper Context
Ontology Class

Context Ontology Class

Is-A Relationship

Object Property

Fig. 4. Some classes from the context domain ontology referring to the “application consumer
environment”

fashion.When the system starts to work, the sensor network or other devices get data
from physical world. Depending on the incoming events captured by sensors and
context, the facts in the Jess working memory are updated. A set of first-order rules
determines if an alarm has to be triggered and which alarm level should be activated,
according to measurement values and corresponding thresholds. Jess pattern matcher
then searches automatically through the available combinations of facts to figure out
which rules should be fired. Such rules, when matched, infer new facts which express
the context switching to “situation of alarm”. In other terms, the system acquires a
sort of anomaly awareness, i.e. the raw data interpretation infers facts which express
the occurrence of an anomaly.

For instance, the following example shows a rule activating an alarm when the
systolic blood pressure (“sbp-c” variable) exceeds the patient threshold (“spb-max”
variable). When the rule is fired, the fact “status abnormal is true” (“sbp-s” variable)
is inferred and the action “notify the abnormal event” is activated (“sbp-anomaly-
notification” action):

(defrule verify-SystolicBloodPressure
 (measurement
 (hasPID ?m-pid)
 (hasMeasurementDate ?d)
 (hasMeasurementTime ?t))
 (patient (hasPatientID ?pid)
 (hasCurrentSBPValue ?sbp-c)
 (hasNormalMaxSBPValue ?sbp-nmax)

126 A. Esposito et al.

 (SBPStatusAbnormal ?sbp-s))
 (test (> ?sbp-c ?sbp-max))
 =>
 (bind ?sbp-s true)
 (sbp-anomaly-notification)
)

The “anomaly awareness” facts may fire other rules, which may on their turn infer
other facts. This determines the switching to the higher level context. In other terms,
the context switches to a new situation, which we may call “procedure awareness”, in
which the activities to be performed in order to manage the alarm situation are known.

The following example shows a rule fired as a consequence of an abnormal status
due to both systolic and diastolic blood pressure. The rule infers the fact “alarm is
true” and the action “find-available-physician”

(defrule set-alert-level
 (patient (hasPatientID ?pid)
 (SBPStatusAbnormal ?sbp-s)
 (DBPStatusAbnormal ?dbp-s)
 (HighAlertLevel ?hal))
 (test (eq ?sbp-s ?dbp-s true))
 =>
 (bind ?hal true)
 (find-available-physician)
)

Once that the procedures needed to manage the anomaly have been identified, the
context consumers come into action by performing suited “anomaly management”
actions.

As detailed in the following section, the kind of reasoning above described is
carried out with the support of suited agents.

4 Agent-Based Reasoning

All the agents are implemented by using the Java Agent Development Environment
(JADE). JADE [17] is a software framework to develop and run agent applications in
compliance with the FIPA specifications [18] for interoperable intelligent multi-agent
systems. Inter-Agent communication is based on the FIPA ACL which specifies a
standard message language by setting out the encoding, semantics and pragmatics of
the messages. As shown in Fig.5, the semantics of agent messages and reasoning is
built over OWL concepts and predicates, which are matched with Jess and JADE
vocabulary.

Figure 6 shows the proposed multi-agent framework, which assigns three
fundamental roles to agents:

Context provider agents (CPA). These agents wrap context sources to capture raw
context data and instantiate the ontology representation. CPAs may encapsulate single

 A Framework for Context-Aware Home-Health Monitoring 127

(deftemplate
MAIN::MAIN::SystolicBloodPressureSystolicBloodPressure
"$JAVA-OBJECT$.SystolicBloodPressure"
(declare (from-class
.SystolicBloodPressure)))

public class SystolicBloodPressure
extends BloodPressure{
{private int hasNormalMaxSBPValue;
public void
setHasNormalMaxSBPValue(int value)
{this.hasNormalMaxSBPValue=value;}

}}

<owl:Class
rdf:ID="SystolicBloodPressure">
<rdfs:subClassOf>
<owl:Class
rdf:about="#BloodPressure"/>

</rdfs:subClassOf> </owl:Class>
OWL

JADE

JESS

Fig. 5. The system implementation is based on the matching between OWL vocabulary with
agent inner context representation (in the form of Java classes) and Jess facts codification

sensors or multiple sources. In the former case (“single domain CPAs”) they are
mainly responsible for gathering and filtering data and info from sensor devices. In
the latter case, [19] they interact with single domain CPAs, in order to aggregate
context information from various context sources (for instance sensed data must be
aggregated with patient thresholds). Both kinds of CPAs are responsible also of
making low level context inference and putting relevant context information into the
rule engine as facts.

Context interpreter agent (CIA). Context Interpreter Agents are responsible for
observing context changes sensed by CPAs, and, as consequence of these changes, to
identify the set of actions that should be performed by context consumer agents.

Context consumer agent (CCA). Context consumer agents are responsible for
performing the actions triggered by CIAs. Actions provide the application reaction to
context information changes, which may assume diverse forms, such as the generation
of a signal, the delivery of a notification or a web services request.

5 Context Sources

As previously stated, the input raw data of the proposed architecture is represented by
the set of values, usually physical parameters, collected by the so-called physical
sources. Nevertheless, in order to be effectively and conveniently integrated in the
scheme proposed in Fig.2, the capability to measure a physical value (such as
temperature, blood pressure or oxygen saturation), is only one of the several

128 A. Esposito et al.

Intra-Agent Communications
Inter-Agent Communications

Data Data Retrieval

Working Memory
Manipulation

Anomaly Awareness

Agent Behaviours
Working Memory

Working Memory
Manipulation

Procedure Awareness

Anomaly
Management

CPA

CIA

CCA

Fig. 6. The multi-agent framework. Context Provider Agents (CPA) are responsible for
inferring a potential “anomaly awareness” situation from data provided by context sensors.
Context Interpreter Agents (CIA) process high level knowledge provided by CPAs to acquire a
sort of “procedure awareness”. Context Consumer Agents (CCA) forward signals and messages
to the suited destination as requested by CIAs (anomaly management). The three categories of
agents embed a Jess rule engine, update the working memory of Jess and interoperate by using
ACL messages.

requirements a physical source should satisfy. The measured data, for instance, should
be sent to a data collector by using a wireless connection, and the choice of the most
adequate one is not univocal: wi-fi, Bluetooth, GPRS, UMTS, GSM are only a few of
the many possible candidates. In order to allow the indispensable capillary diffusion
of physical sources, though, the ratio benefit/cost cannot be left out of consideration,
thus imposing the choice of a cost-saving wireless technology. Moreover, the
capability to be easily interfaced with Internet could be another added value.

On such basis, the integration of sensor-networks with RFID systems appears to be
the most practicable way. RFID technology, in fact, is quite inexpensive (passive
RFID tags are as cheap as few euro-cents) and naturally compatible with Internet
[20]. Moreover, as demonstrated in the following, it could be slightly modified in
order to transmit sensor-like data.

Indeed, the scheme proposed in Fig.7 represents the actually designed and realized
(patent pending) general purpose Sensor-Tag (S-Tag) connected to a generic sensor.
The architecture of the S-Tag does not substantially differ from standard RFID
systems, thus allowing us to maintain the compatibility between this system and
devices already available and internationally standardized. The working principle is as

 A Framework for Context-Aware Home-Health Monitoring 129

S-tag

DIGITAL
IN/OUT

SENSOR

SENSOR-TAG ANTENNA

SWITCH

MULTI-ID CHIPCHIP
(ID4)

CHIP
(ID3)

CHIP
(ID2)

CHIP
(ID1)

S-tag

DIGITAL
IN/OUT

SENSOR

SENSOR-TAG ANTENNA

SWITCH

MULTI-ID CHIPCHIP
(ID4)

CHIP
(ID3)

CHIP
(ID2)

CHIP
(ID1)

Fig. 7. A simplified scheme of the RFID sensor tag (S-tag)

easy as effective: data measured from a generic sensor are used as input to the S-Tag;
when the Tag is in the region covered by the RFID reader, it sends back a signal
containing a different combination of several identity codes (IDs) depending on the
value of the input itself, thus facilitating the transmission of sensor data. More
specifically, the internal microwave circuit of the S-Tag samples the value at its input
(which has been measured by the sensor) and quantizes it by using a number of bits
equal to the number of available different IDs. For each bit with value equal to 1, the
integrated micro-switch selects the corresponding ID to be transmitted; the
combination of bits can be hence received by a standard RFID reader and easily
decoded in order to rebuild the sensor-measured waveform.

This is not the most adequate context for a more exhaustive explanation of the
implementation issues of the S-Tag; we only would like to observe that, as apparent
from the picture, the sensor is an external unit. In such a way, generic sensors, with
the only requirement of a digital output, can be used. Such sensors are not integrated
into the S-Tag, so that they do not influence the tag-cost. Moreover, thanks to an
accurate electromagnetic design of the tag antenna and of the microwave circuit
(microcontroller, RF-switch and so on), also the implemented technological
innovation is reasonably inexpensive.

6 Conclusions

In this paper we presented a framework for context-aware computing and its
prototypal implementation to a home-care scenario. The framework is based on a
context codification obtained by integrating an ontology model and a rule-based
representation. The main components of the proposed system are its multi-agent

130 A. Esposito et al.

behaviour, as well as the harmonization of heterogeneous technologies, such as
agents, ontologies and rule-based inference engines, combined with the low-cost and
flexible properties of RFID systems.

The overall system is now available and tested in real-life situations in home-
health applications.

References

1. Weiser, M.: The computer for the 21st century. Scientific American, 94–104 (1991)
2. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Int. J. Ad

Hoc and Ubiquitous Computing 2(4), 263–277 (2007)
3. Paganelli, F., Giuli, D.: An Ontology-based Context Model for Home Health Monitoring

and Alerting in Chronic Patient Care Networks. In: 21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW 2007) (2007)
0-7695-2847-3/07

4. Ko, E.J., Lee, H.J., Lee, J.W.: Ontology-Based Context Modeling and Reasoning for U-
HealthCare. IEICE Trans. Inf. & Syst. E90–D(8), 1262–1270 (2007)

5. Chen, H., Finin, T., Joshi, A.: An ontology for context-aware pervasive computing
environments. Special Issue on Ontologies for Distributed Systems, Knowledge
Engineering Review (2003)

6. Gu, T., Pung, H.K., Zhang, D.Q.: A service oriented middleware for building context-
aware services. Journal of Network and Computer Applications 28, 1–18 (2005)

7. Indulska, J., Sutton, P.: Location management in pervasive systems. In: CRPITS 2003
Proceedings of the Australasian Information Security Workshop, pp. 143–151 (2003)

8. Strang, T., Popien, C.L.: A context modeling survey. In: Workshop on Advanced Context
Modeling, Reasoning and Management as Part of UbiComp 2004, The 6th International
Conference on Ubiquitous Computing, pp. 33–40 (2004)

9. W3C, RDFS (RDF Vocabulary Description Language 1.0: RDF Schema),
Recommendation (February 10, 2004), http://www.w3.org/TR/rdf-schema/

10. DAML site, http://www.daml.org
11. W3C, OWL Web Ontology Language Overview, Recommendation, (February 10, 2005),

http://w3.org/TR/2004/RDC-owl-features-20040210/
12. Guarino, N.: Formal Ontology and Information Systems. In: Guarino, N. (ed.) Proceedings

of the 1st International Conference on Formal Ontologies in Information Systems, FOIS
1998, Trento, Italy, pp. 3–15. IOS Press, Amsterdam (1998)

13. Chen, H., Finin, T., Joshi, A.: An ontology for context-aware pervasive computing
environments. In: The Knowledge Engineering Review, vol. 18, pp. 197–207. Cambridge
University Press, Cambridge (2003)

14. Dey, A.K., Abowd, G.D.: Toward a better understanding of context and context-
awareness, GVU Technical Report, GIT-GUV-99-22 (1999)

15. Ernest Friedman-Hill “Jess In Action”, Edited by Manning
16. http://herzberg.ca.sandia.gov/jess/docs/52/rete.html
17. Jade, http://jade.cselt.it
18. Fipa, http://fipa.org/repository/index.html
19. Dockhorn Costa, P., Ferreira Pires, L., van Sinderen, M.: Architectural patterns for

context-aware services platforms. In: 2nd International Workshop on Ubiquitous
Computing (IWUC 2005), in conjunction with ICEIS 2005, Miami, USA (2005)

20. Finkenzeller, K.: RFID Handbook: Fundamentals and Applications in Contactless Smart
Cards and Identification. John Wiley and Sons Ltd, Chichester

	A Framework for Context-Aware Home-Health Monitoring
	Introduction
	System Architecture
	Context Representation
	Context Ontology
	Context Rules

	Agent-Based Reasoning
	Context Sources
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

