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Summary. Solving exactly Combinatorial Optimization Problems (COPs) using a
Branch-and-Bound algorithm (B&B) requires a huge amount of computational re-
sources. The efficiency of such algorithm can be improved by its hybridization with
meta-heuristics such as Genetic Algorithms (GA) which proved their effectiveness,
since they generate acceptable solutions in a reasonable time. Moreover, distributing
at large scale the computation, using for instance Peer-to-Peer (P2P) Computing, pro-
vides an efficient way to reach high computing performance. In this chapter, we propose
ParallelBB and ParallelGA, which are P2P-based parallelization of the B&B and GA
algorithms for the computational Grid. The two algorithms have been implemented
using the ProActive distributed object Grid middleware. The algorithms have been
applied to a mono-criterion permutation flow-shop scheduling problem and promis-
ingly experimented on the Grid5000 computational Grid.

Keywords: P2P Computing, Branch and Bound, Genetic Algorithms, Grid Middle-
ware, Flow-Shop Scheduling.

11.1 Introduction

In practice, many problems can be modelled as combinatorial optimization prob-
lems. These problems are often large and classed NP-hard [20] such as scheduling
and quadratic assignment problems. To solve these problems, various methods
were proposed in the literature. Meta-heuristics proved their effectiveness, since
they generate acceptable solutions, in a reasonable time. Searching an exact so-
lution for this kind of problem remains unpractical when the problem size grows,
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because the execution time increases in an exponential way. To mitigate this con-
straint, hybridization between exact and heuristic methods and their paralleliza-
tion are two effective ways in terms of improving the computing performances,
in particular the use of large scale parallelism based on Grid Computing [19] or
Peer-to-Peer Computing [34, 36].

Grid and P2P Computing are emerging technologies allowing to share various
resources at a large scale. Grid Computing uses an infrastructure for globally
sharing compute-intensive resources such as supercomputers or computational
clusters. P2P Computing, using for instance XtremWeb [18] or ProActive [1], is
based on the exploitation of non used CPU cycles or completely idles. Nowadays,
these two technologies provide effective tools to achieve high performance in
solving large-scale problems. Particularly, solving exactly complex combinatorial
optimization problems is a good challenge for GRID/P2P Computing.

The Branch-and-Bound algorithm (B&B) is the most known method for ex-
act resolution of combinatorial optimization problems (COP ). B&B explores the
search space by implicitly enumerating subtrees. The whole exploration of this
space is impossible considering the exponential increase in the number of solu-
tions when the size of the problem increases. The use of good lower and upper
bounds reduces the number of subtrees to enumerate. Meta-heuristics provide
sub-optimal solutions in a reasonable time (they allow us to reach an acceptable
solution in a short time). Genetic Algorithms (GAs) belongs to Evolutionary
Algorithms (EAs) which make use of a randomly generated population of solu-
tions. The initial population is enhanced through a natural evolution process.
At each generation of the process, the whole population or a part of the pop-
ulation is replaced by newly generated individuals. Several parallel versions of
B&B [11, 13, 35, 39, 40, 41] and GA [3, 22, 30] are studied in the literature. The
B&B algorithm is suitable to be parallelized given that the subtrees can be ex-
plored independently. The only shared information in the algorithm is the value
of the best known solution (upper bound). Likewise, the parallelism is necessary
to not only reduce the resolution time of GAs, but also to improve the quality
of the provided solutions. The hybridization of these two categories permits to
improve the performances of the total execution time.

Recently, some approaches [5, 6, 8, 12, 33] aiming at exploiting P2P/GRID
computing and at deploying scientific applications requiring a great computing
power, have been developed. [5, 6] are based on the Master/Worker paradigm [23,
38]. The main drawback of this approach is bottlenecks created on the master
process because the inter-worker communications transit throw the master. Our
work presents two parallel B&B and GA Algorithms and their hybridization
based on master/worker paradigm with direct communications between workers.
Therefore, bottlenecks are eliminated. We develop the peer-to-peer version using
ProActive middleware which enables direct communications between the various
peers (workers) of the network without flowing throw an intermediary (master).
We applied the two algorithms and their combination version to mono-criterion
permutation flow-shop problem PFSP. PFSP consists to find a schedule of a set
of jobs on a set of machines that minimizes the completion time (makespan).
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Jobs are scheduled in the same order on all machines and each machine can not
be simultaneously assigned to two jobs.

The remainder of this chapter is structured as follows : Section 11.2 high-
lights the major points for the parallelization of a Branch-and-Bound algorithm
and a brief description of parallel genetic algorithms. The concept of P2P Com-
puting, ProActive middleware and the various tools that it offers to develop a
distributed application on a peer-to-peer system are presented in Section 11.3.
In Section 11.4, we present our parallelization of the Branch and Bound algo-
rithm ParallelBB and genetic algorithm ParallelGA intended to be deployed on a
large scale computing. In Section 11.5, its peer-to-peer implementation on top of
ProActive middlware (namely PHyGABaB). Preliminary large scale deployment
and performance evaluation on a P2P computing network formed and managed
by ProActive showed in Section 11.6. We conclude this chapter in Section 11.7.

11.2 Parallel Combinatorial Optimization

Combinatorial optimization problems are often NP-hard, complex and CPU
time-consuming. Exact methods and meta-heuristics are two major tradition-
ally used approaches [7]. Exact techniques may be useful for solving small prob-
lem instances, but in realistic cases they are inefficient as they are extremely
time-consuming. Conversely, meta-heuristics provide near-optimal solutions and
allow to meet the resolution delays often imposed in the industrial field. The
parallelization of these two categories is an efficient way to solve larger instances
of problems in a reasonable time. In the following, we present parallelization of
theses two categories as described in the literature.

11.2.1 Parallel Branch-and-Bound Algorithms

Branch-and-Bound algorithms are the most known techniques for an exact res-
olution of COPs. They make an implicit enumeration of the whole search space,
because of the impossibility of a complete enumeration of all solutions of the
search space due to the exponential growing of the potential solutions. B&B
algorithms are characterized by four operations: branching, bounding, selection
and elimination. In the first operation, the solution space of a given problem
is partitioned into a number of smaller subsets on which the same optimization
problem is defined. The bounding rule is used to compute the lower bound of the
optimal solution of the considered problem. When a new solution (upper bound)
is identified, it is compared to the actual lower bound in order to decide whether
it is necessary to decompose the subproblem or not. The elimination rule uses
these bounds to determine when further decomposition of a subproblem is un-
necessary, so it identifies nodes which do not lead to the optimal solution and
eliminates them. The subproblems are explored according to the selection rule.
We can find the following exploration methods: depth first search, breath first
search, best bound,... etc. A serial implementation of the algorithm consists of a
sequential execution of these four operations.
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The subtrees generated when executing a B&B algorithm can be explored
independently, this makes the parallelization of these algorithms easier. The
only global information in the algorithm is the value of the upper bound. Its
parallelization may be attached to the architecture of the calculator machine,
synchronization, granularity of generated tasks, communication between differ-
ent processes and the number of computing processors. In the literature, several
works on parallelization of B&B had been conducted [11, 13, 35, 39, 40, 41].
Geondron and Crainic [11] classified the parallelization strategies into three
classes according to the degree of parallelization: parallelism of type 1 introduces
parallelism when performing the operations (generally the bounding operation)
on generated subproblems (e.g. executing the bounding operation in parallel for
each subproblem). This type of parallelism depends on the problem to be solved.
In parallelism of type 2 the search tree is built in parallel (e.g. processes work on
several subproblems simultaneously). The parallelism of type 3 also implies the
building of several trees in parallel. The information generated when building
one tree can be used for the construction of another. Thus the tree is explored
concurrently.

The processes which participate in the computation of the parallel algorithm
select their tasks from a work pool. A work pool is a memory where the pro-
cesses select and store their work units (generated and not yet explored sub-
problems). Two types of work pool can be distinguished: single work pool and
multiple work pool. Generally the first type is implemented on shared memory
systems [13] and the second type uses several allocation memories. The first type
is more adequate for the applications based on the master/worker [5] paradigm.
Indeed, master process distributes part of computing (tasks) on a set of workers
processes. When workers finishes their execution, the main process collects the
obtained results. This paradigm is very used in scientific applications dedicated
to be deployed on massively parallel systems (cluster, Grid computing). How-
ever, this paradigm presents a major drawback, it creates bottlenecks on the
master process [4, 5].

11.2.2 Parallel Genetic Algorithms

Evolutionary Algorithms (EAs) [7] are stochastic search techniques and
population-based algorithms. Genetic Algorithms (GAs), proposed by Hol-
land [25] are the most known algorithms in this field [17]. They are powerful
search techniques that are used successfully to solve problems in different dis-
ciplines. They are based on principles of natural selection and recombination.
They attempt to find the optimal solution to the problem at hand by manipu-
lating a population of candidate solutions. The population is evaluated and the
best solutions are selected to reproduce and mate to form the next generation.
Over a number of generations, good traits dominate the population, resulting in
the improvement of the quality of the solutions.

Starting with a randomly generated population, a new generation is pro-
duced with three genetic operators: selection, reproduction and mutation. With
the Selection operator we decide which individuals to survive. In the reproduc-
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tion operator, two individuals are selected to produce a child which inherits its
two parents. The mutation operator alters the genetic code of an individual to
promote diversity (see [17] for more details on GAs).

In the literature, several works have been dedicated to parallel GAs (see [14,
21, 24, 32]) and classified them into two categories: parallelization of computa-
tion (fine grained) and parallelization of population (coarse-grained). In the first
model, the operations commonly applied to each of the individuals are performed
in parallel. The coarse-grained type is the most popular and used category. In
this type, an initial population is divided into sub-populations which will evolve
separately (in parallel) and exchange individuals following a migration protocol.
They are usually implemented on distributed memory computers (MIMD) and
based on the island model. The most recent example is the work of Mezmaz et
al [33]. The authors proposed a P2P hybrid Genetic-Mimetic Algorithm based
on the island model aiming at exploiting P2P/GRID-Computing.

11.3 P2P Computing and the ProActive Middleware

Distributed systems and applications are called Peer-to-Peer (P2P) if they em-
ploy distributed resources to perform a function in a decentralized manner. Here,
resources includes (computer power, data storage and network bandwidth), the
function concerns (distributed computing, data sharing, communication and col-
laboration) and decentralization (algorithms, data or both of them). That is
the definition given in [34]. In distributed computing area, the idea is to ex-
ploit sparse computing resources (idle CPU cycles) and high performance can
be obtained by using a large number of standard machines. XtremWeb [18],
SETI@Home [8] and ProActive [1] are some examples of Peer-to-Peer middle-
wares dedicated to distributed computing. In this chapter we are interested in
ProActive. It is a Java library which proposes an API, a graphical interface
and parallel, distributed and concurrent programming tools [1]. A distributed
application built with ProActive is composed of active objects AO [15]. An ac-
tive object is a remote object having its own thread and receives calls on its
public methods. Each AO has its own activity and the capability to decide in
which order it will serve the method calls. The AOs are created on a support
called Virtual Nodes V N . Association between a JVM and a VN is made by
an XML deployment descriptor. ProActive is a SPMD (Single Program Multiple
Data) middleware where a great number of interconnected nodes execute the
same application operating on several distributed data. As the majority of P2P
middlewares, designed to a distributed computing, the ProActive motivation is
to use idle CPU cycles. A P2P network formed by ProActive, is a set of dynamic
JVMs or V N which operates as a network of computing nodes. The concept of
resource in ProActive is reduced to JVMs. Each JVM which wants to take part
in calculation, launches a P2P Service which is a “daemon” executing on each
node [16].

With ProActive, communications are done by remote method calls between
AOs. It includes three types of communications: (1) Synchronous calls: the
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method call is blocking, the execution is suspended until the arrival of the called
method result; (2) Asynchronous calls: calls are not blocking and the execution
of the program can continue without waiting for the result. An appointment
ensures that the request arrives well at the called before continuing the activity.
A future object is created waiting for any result. A future object represents the
result of one of method call of this object which did not arrive yet; (3) Single
direction calls: calls are not blocking (the appointment is always present), no
result is awaited and no future is created.

The groups of communication[9] are another power tool provided in ProActive
for distributed programming. A group of communication is the local representant
of a set of objects distributed on interconnected machines. When a method is
called upon a group, the execution environment sends an invocation request of
the method on the group members, awaits one or more answers of the members
according to the defined policy, and returns back the result to the caller. For
more details on ProActive middleware see [9]).

11.4 Parallel B&B and GA for P2P Environment

11.4.1 ParallelBB

The Parallel B&B algorithm “ParallelBB” we developed is a high level paral-
lelization algorithm, and belongs to type 2 of the Gendron and Crainic classifi-
cation. ParallelBB is developed with the (Master/Worker) paradigm with direct
communication worker/worker and worker/master, to avoid the bottlenecks cre-
ated on the master process. The master divides the initial problem into a set
of subproblems (tasks). Indeed, it builds reduced, independent and fine grained
subproblems which can be treated in parallel by mono-processors. A single work
pool is available on the master process which distributes the tasks among the
workers. After this blocks waiting for the results of each one of them. In the
following, we present principal operations of parallelBB.

Branching

The branching operation is performed serially by the master process. The mas-
ter prepares an initial tree (Fig. 11.1) with a depth equal to K. Let n be
the number tasks explored by the workers, N the initial size of the problem:
n ≤

∏
0≤i≤k (N − i).

T1, T2 . . . Tn, in the figure represent subtrees, each one contains a partial so-
lution having a size equal to the current level in the tree. K is a parameter of
ParallelBB which depends on two important factors: initially, it depends on the
size of the considered problem, for example, the number of jobs in the case of
a permutation Flow Shop Problem. The depth of the tree increases with the
increasing of the number of jobs. Therefore, K must be sufficiently great to gen-
erate a large number of subtrees which will be treated in parallel by the workers.
Thus, we allow to generate subproblems of a reasonable granularity to be per-
formed by each worker. K also depends on (the size of the computing network).
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Fig. 11.1. General scheme of ParallelBB

In our case, K depends on the number of workers available in the network. If
there is a reduced number of peers in the network, it is more interesting to have
a reduced number of parallel tasks. Otherwise, we will loose more time in the
communication between the workers and the distribution of the tasks. Among
the roles of the master, the attribution of tasks (subtrees) to the workers. If
the number of workers is greater than the number of tasks, the master consid-
ers only the workers which it needs. On the contrary, the master will make a
redistribution of tasks to each new available1 worker.

Selection and Elimination

The elimination operation is used only to eliminate subtrees having a lower
bound greater than or equal to the upper bound. The policy of the tree explo-
ration used by the master and the workers is different. The master explores the
initial tree in width to build subtrees which will be explored in parallel. The
master explores nodes by priority to the most promising nodes i.e. nodes having
a lower bound less than or equal to the upper bound found until now, by all
other workers. These subtrees are qtored in a priority-based queue. The workers
explore their subtrees in depth and use Best First Search policy. They use a
stack with opposite priority stacking of the subtrees nodes according to least
promising ,i.e. at the top of the stack we find the most promising nodes. Thus,
the workers start initially with promising nodes.
1 A worker is said available if it accomplished its task or it finished the calculation

which was assigned to it.
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Communication and knowledge sharing

The global knowledge (all processes knowledge) related to the upper bound
is increased and updated each time a given worker finds a new upper bound.
This operation is performed by broadcasting the upper bound to all workers.
The collaborative work between the workers, using the communication of the
upper bound, allows us to gain much in computation time. Several branches
can be eliminated, more quickly than in a traditional B&B (sequential B&B)
before their exploration, quite simply by consulting the solution found so far.
Unlike traditional B&B, where this same upper bound is known only when the
exploration process reaches into the current node. By using this algorithm, a
significant number of branches can be eliminated. These branches can’t be cut
in a sequential B&B because the upper bound making it possible can be found
only in the future. This solution is situated in a search space which will be
explored only later.

W3W1 W2

1 2 3

3.1 3.2 1.1 1.2

1 2 3

Branche cuted

Upper bound

Intermediary node

Sending of the upper bound to workers

Sending of data + tasks + list of workers + upper bound

Sending of the upper bound to the manager

Master

S*

Fig. 11.2. Communications between processes of ParallelBB

In Fig. 11.2, the upper bound (solution S∗) was found by the worker W3.
This solution is in a future search space2 compared to the search spaces of W1
and W2. When W3 sends the upper bound S* to W1 and W2, it allows then to
eliminate the branches: (2 and 3.1) in the subtree of W1 and (1.1, 2 and 3) in
the subtree of W2.

The master increases also the workers knowledge concerning all other workers
executing in the system (dynamic management). The various types of commu-
nication can be summarized as follows (see Fig. 11.2) :
2 In a serial execution, S∗ will not be found before exploring all subtrees belonging to

the search space of W1 and W2.
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• The Master to a Worker: (1) Sending of the task to perform (data of the
problem and the subtree to explore). (2) Sending of the pool of executing
workers. This knowledge allows each worker to know its environment con-
cerning other workers in progress for a collaborative work. (3) Initialization
of the global upper bound. This knowledge allows each worker to eliminate
branches from the beginning in its search space.

• A Worker to the Master: (1) Sending of the final solution obtained by the
worker (if the worker finishes the exploration of the subtree). (2) Sending of
the upper bound which is better than the global current knowledge of the
algorithm. this allows the master to improve the knowledge of the future
workers with this upper bound.

• A Worker to a Worker: Each worker sends the upper bound to all the
workers in its communication window (workers in progress) so that these
workers will be able to reduce the search space by eliminating a great num-
ber of branches. The communication window of a worker is reduced to its
neighbors i.e. a worker communicates only with the workers in progress (its
neighbors).

11.4.2 ParallelGA

In this section, we present briefly the parallel genetic algorithm we developed
ParallelGA. As ParallelBB, ParallelGA is a master/worker-based algorithm with
direct communications between workers. The master process divides the initial
population into subpopulations with a reduced size. The exploration of these
subpopulations will be considered as parallel tasks and can be handled by a single
processor. All sub-populations will evolve in parallel by the available workers,
each worker executes its instance of the algorithm. The master redistributes not
handled subpopulation each time a worker terminates its part of calculation.
The size of initial generated population must be sufficiently great to increase the
search space and then increase chances to reach acceptable solution. The master
fixes the size of sub-populations according to the number of available workers
and the power of processors.

Like in ParallelBB, communications are very important in the case of a Par-
allelGA. The workers communicate their best individuals to their neighbors (see
Fig. 11.3). This migration of individuals allows us to prevent convergence and to
prevent workers to turn in locals minimum. After a fixed number of generations
(or after a fixed time interval), the migration of elite individuals occurs.

The different types of communications of ParallelGA can be summarized as
follows:

• Master to Workers: The master communicates the task to perform (data of
the problem, subpopulation and different parameters of the GA) as well as
the pool of executing workers.

• A worker to the master: the only information that a worker sends to the
master is the final result when it terminates its part of computation.

• a worker to a worker: The communication between workers consists in the
exchange of individuals (see Fig. 11.3).
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BBWorkers GAWorkers
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Fig. 11.4. Behavior of the different workers

11.4.3 Hybridization

A quick execution of an exact algorithm like ParallelBB needs to start compu-
tation with a near-optimal upper bound that we can obtain by ParallelGA. As
shown in (Fig. 11.4), we launch first ParallelGA to obtain an acceptable ini-
tial value of the upper bound which is passed to ParallelBB. We use two types
of workers: workers participating in the exploration of the B&B search space
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BBWorkers and those participating in the exploration of the GA population
GAWorkers. ParallelBB starts computation before the termination of Paral-
lelGA and run in parallel. BBWorkers receive the value of the upper bounds
from GAWorkers each time new ones have been found. At the end of explo-
ration of all ParallelGA’s subpopulations, the concerned GAWorkers migrate
and join the exploration of ParallelBB search tree process, thus they take a
BBWorkers behavior.

11.5 Peer-to-Peer Implementation on Top of ProActive

The implementation of ParallelBB and ParallelGA on ProActive gave rise to
our Active Application3 PHyGABaB. This application is based on two entities
(active objects AOs): P2PWorker and P2PMaster. ProActive provides active
nodes ANs (JVMs), recovered on the whole of the network, which are ready
to receive calculation. These ANs are P2PWorkers receiving tasks (subtrees or
subpopulation to explore). In the case of a static grid managed by ProActive, the
P2P services P2PService are already launched, i.e., each host shares its JVM and
at least one P2PWorker which can receive AOs. An AN can receive one or more
AOs. When the P2PMaster is created on the local JVM, it consults an XML
deployment descriptor where P2PMaster will find ANs. At the end of this stage,
P2PMaster will have a list of P2PWorkers ready to receive calculation. When
such nodes are ready, they can directly receive computational work coming from
the P2PMaster, new active objects will be launched otherwise. In this case, the
XML descriptor must be modified so that it can deal with the dynamic nature of
a P2P network and that receive new peers which arrive into the initial network
(see Section. 11.5.3 for the handling of new arrivals).

11.5.1 Distribution of the Computation among Workers

After initializing the workers, P2PMaster generates a set of independent tasks
(subtrees and/or subpopulations). These tasks are represented by passive objects
(see Fig. 11.5). Before the P2PMaster sends a task to a P2PWorker, it increases
the knowledge of each P2PWorker concerning its environment. This knowledge
concerns the set of workers executing other tasks, the best solution found so far
(when the worker participates in the branch and bound tree exploration) or only
the initial subpopulation (when the worker participates in the exploration of the
GA population).

Each time a task is assigned to a P2PWorker, a future object is created
and added to the future list (futureList)of P2PMaster. P2PMaster waits all
the future objects coming from the P2PWorkers appearing in its list. The fu-
ture P2PWorker represents the result of the calculation of its task that the
P2PMaster assigned to it. This is accomplished by listening its response (the
3 An Active Application is an application based on active objects. Any application

developed using the ProActive middleware must be Active so that it can be deployed
on the Computing Network.
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computation result) in the future. The listening is of type wait for any event
made by the method waitForAny(futureList) and is accomplished by waiting for
any event coming from P2PWorkers appearing in the list futureList. The event
is started with each termination of a task treatment. After that the P2PMaster
recovers the result produced by the future P2PWorker, it creates and reallocates
a new passive object to it.
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The chronology of events presented in (Fig. 11.5) is not really true because
all operations are in asynchronous mode i.e. an event of type redistribution can
arrive before other events of type distribution when one of P2PWorkers returns
back result before P2PMaster finishes distributing of all tasks. We can see well
on (Fig. 11.6) the sequence diagram of the chronology of all events of the tasks
distribution.

11.5.2 Communications

Communication between different components (P2PMaster and P2PWorkers)
is very important for its good functioning. We have seen previously that the
workers communicate frequently to ensure the freshness of the upper bound
and the migration of individuals. The use of classic communication between
P2PWorkers, i.e., by sending one message for each P2PWorker is not efficient
in this type of application where the communication cost is very high. If we use
the classical communication we will need to broadcast the same message to all
P2PWorkers in our computing pool. This procedure requires the traversal of the
whole P2PWorkers list (thousands or millions), in other words, each P2PWorker
must have one copy of all P2PWorkers taking part in the computation. This so-
lution is not interesting because of huge amount of time required by the traversal
of the entire list and the memory space necessary to store requiring when saving
the set of P2PWorkers while this space is to be minimized.

With ProActive, we opted for the communication groups with single di-
rection, non blocking and asynchronous methods invocation. We created BB-
WorkerGroup and GAWorkerGroup which are the two local representants of
a set of P2PWorker recipients of a message. BBWorkerGroup represents all
P2PWorkers participating in ParallelBB computation and GAWorkerGroup rep-
resents P2Pworkers participating in the exploration of subpopulations in the
ParallelGA. When a P2PWorker wants to send a message to its colleagues, it
passes by these two groups, which implement the same communication method
which is even implemented on all the P2PWorkers. We developed two commu-
nication methods: shareBestValue and shareSubPopulationallowing the workers
to share respectively the best value of the current solution (upper bound) and
their selected individuals (elite). A P2PWorker calls these two communication
methods in order to share their upper bound or subpopulation. Thus BBWork-
erGroup and GAWorkerGroup call this same method on the set of P2PWorkers
they represent.

11.5.3 New Arrivals (New Peers)

The dynamic availability of peers is one of the P2P networks characteristics
where the resources (here JVMs) join and leave frequently the system. Each JVM
is at the same time client and server for other JVMs. The ProActive middleware
manages the new coming peers in the system by a listener implemented with
the method (nodeCreated). P2PMaster implements this interface which listens
for eventually peers connections in the network. A P2P daemon is launched on
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each machine participating in the computation. When a new node is connected,
an AN is created there and one P2PWorker is established to receive the compu-
tation units. P2PMaster decides the affiliation of this new peer, indeed, it will
behave as a BBWorker or as GAWorker. P2PMaster adds this new P2PWorker
to the P2PWorkers set list and to the corresponding group of communication
(BBWorkerGroup or GAWorkerGroup). After that, if this new P2PWorker be-
longs to BBWorkerGroup it could be informed of the global upper bound. Other
P2PWorkers will be able to have an idea on the progress and the solutions ob-
tained by this new P2PWorker. Whatever the affiliation of this new peer, the
P2PMaster sends to it its task and will behave as other P2PWorkers. A new
peer, arriving at the computational network, adheres to the group of communi-
cation. The peers forming the old group of communication update their group
by adding this new peer. This operation is managed by P2PMaster which sends
to all the group of communication members the new configuration of the group,
i.e., the adding of this new peer. This operation allows new BBWorkerGroup
members to avoid the exploration of subtrees unnecessarily, this allows reduce
execution time. To obtain the real global upper bound, the new peer selects
randomly a peer and then sends its initial upper bound. If the upper bound of
this selected peer is inferior to the received one, it proceeds to its correction by
broadcasting the real global upper bound.

11.5.4 Fault Tolerance

The peers failure is taken into account by both ProActive (middleware-level)
and our application (application-level). With ProActive we create tow types of
servers: Resource server and Fault tolerance servers.

The resource server returns a free node that can host the recovered AO, this
server can store free nodes by two different ways:

• At deployment time: the user can specify in the deployment descriptor a
resource virtual node. Each node mapped on this virtual node will automat-
ically register itself as free node at the specified resource server.

• At execution time: the resource server can use an underlying P2P network
(see [1]) to reclaim free nodes when a hosting node is needed.

The fault tolerance servers are used for checkpointing operations, the local-
ization of AOs, and the failure detection.

In our application, when a peer disconnects, the P2PMaster sends its part of
calculation to one or more other available peer(s) and recover(s) only the first
returned solution of the same task and ignores other results representing the
same task. This process is performed at the end of the computation of all tasks.

11.6 Large Scale Deployment and Performance
Evaluation

In the following, we present the different experiments and obtained results of the
exact algorithm ParallelBB hybridized with the heuristic ParallelGA applied to
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the permutation flow-shop problem (PFSP) which is a reference problem in the
given its importance in many industrial areas.

11.6.1 PFSP Formulation

A Permutation Flow-Shop Problem (PFSP) is a scheduling in which all tasks
of all jobs are scheduled on all machines in the same order. The execution of
a job Ji on the machine Mk is called operation Oi,k and its execution time
will be noted pi,k, ti,k represents its starting date and ci,k its release time. We
designate also by ri,k =

∑
l<k pi,l the early instant in which the job Ji can start

its operation on Mk and by qi,k =
∑

l>k pi,l the latency duration (minimal time
selling between the end of Ji on Mk and the end of the total scheduling).

11.6.2 Modeling and Lower Bound Calculation

We applied our algorithm to the PFSP and we considered the total completion
time Makespan (CMax) cost function. In ParallelGA, an individual (permuta-
tion) is considered as a vector of jobs. The root of the tree generated by Par-
allelBB represents a configuration where no task is assigned to any machine. A
node with depth n will have a configuration with n assigned tasks.

The effectiveness of B&B algorithms resides in the use of a good estimation
of the optimal solution. M. R. Garey, D. S. Johnson and R. Sethi (Garey and
al., 1976) proved that the PFSP problem becomes NP-hard beyond 3 machines.
The calculation of the lower bound for a PFS problem is based on two results.
The first one is found by Johnson [27] (rule of Johnson). A transitive rule � is
defined as follows:

Ji � Jj ⇔ min(pi,1; pj,2) ≤ min(pi,2; pj,1) (11.1)

If Ji � Jj , then there exists an optimal scheduling for a FSP (P) in which
the job Ji precedes the job Jj [27]. Thus, the PFS problem with two machines
F2||Cmax can be solved in O(nlogn) [31]. The optimal solution is obtained by
sorting the jobs having the execution times on the first machine shorter than the
second in the ascending order. Then, sort jobs having their execution time on
the second machine shorter than on the first one in the descending order. This
result was extended by Jackson [28] and Mitten [29] for the resolution of a two
machines PFS problem with lags F2|lj, permut|Cmax where each job has a lag lj
which represents the minimal duration between tj,2 and cj,1. They demonstrated
that the optimal solution of this problem is obtained using the Johnson to the
values pi,1 + li for the jobs on the 1st machine and li + pi,2 on the 2nd one.

Ji � Jj ⇔ min(pi,1 + li; lj + pj,2) ≤ min(li + pi,2; pj,1 + lj) (11.2)

The most known lower bound for the PFS problem with m machines is the
bound proposed by Lageweg et al. [26]. They used the optimal solutions values
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for all 2 machines subproblems with lags. Given two machines Mk and Ml (with
c k < l), it is indeed possible to extract such problem posing:

pj,1 = pj,k; lj =
∑

k<μ<l

pj,μ; pj,2 = pj,l (11.3)

In practice, we consider all couples of machines Mk et Ml (with k < l) and
we extract for each couple a PFS with two machines lags substituting the values
pi,1 by pi,1+ li and pi,2 by li+pi,2. We notate P ∗

Ja(j, Mk, Ml) the Jackson-Mitten
optimal solution of the obtained subproblem considering the set of jobs j and
machines Mk and Ml. B.J. Lageweg et al obtained thus the lower bound (with
O(m2nlogn) complexity) which we used in our work :

LB(j) = max
1≤k<l≤m

{P ∗
Ja(j, Mk, Ml) + min

(i,j)∈j2,i�=j
(ri,k + qj,l)} (11.4)

11.6.3 Experiments

The studied problem instances are those of E.Taillard [37]. We treated the bench-
marks: ta 20 5 2, ta 20 5 3, ta 20 10 1, ta 20 10 2 and ta 100 5 1

4. Parameters of Par-
allelGA are fixed as follows: 500 individuals in the population, the size of each
subpopulation is fixed to 20, migrations occur every 10 generations with 10
migrants.

Table 11.1. Experimentation hardware platform

Site CPU characteristic Number Number
x number of CPU / node of nodes CPUs

Lille AMD Opteron 248, 2.2 GHz x 2 70 140
Lyon AMD Opteron 246, 2.0 GHz x 2 55 110
Nancy AMD Opteron 246, 2.0 GHz x 2 35 70
Orsay AMD Opteron 246, 2.0 GHz x 2 290 580
Rennes Intel Xeon 5148 LV, 2.33 GHz x 2 60 120

AMD Opteron 246, 2.0 GHz x 2 90 180
AMD Opteron 248, 2.2 GHz x 2 50 100

Nice AMD Opteron 246, 2.0 GHz x 2 55 110
AMD Opteron 275, 2.2 GHz x 2 50 100

Total 775 1510

We made large scale deployment of the application (more than 1500 proces-
sors) gathered on six geographically distributed sites located at (Lille, Rennes,
Orsay, Nice, Lyon and Nancy) belonging to the French grid GRID’5000 [2]. The
experimentation hardware platform characteristics are presented in Table 11.1.
As we said previously, our objective is the development of hybrid algorithm
4 ta i j k: a Taillard benchmark with i: number of jobs, j: number of machines and k:

the instance number.
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Table 11.2. Some obtained execution times

Number of Deployment ta 20 5 2 ta 20 5 3 ta 20 10 1 ta 20 10 2 ta 100 5 1

Processors Time

06 (1/5) 15 (3) 4 (492) 401 (1815) 1287 (277) 234 -
20 (5/15) 46 (10) 8 (409) 391 (170) 129 (111) 98 -
50 (15/35) 112 (16) 11 (277) 263 (100) 97 (59) 51 -
100(20/80) 234 17 193 81 50 -
200(40/160) 504 - 151 77 - -
300(60/240) 713 - 152 - - 7h

[5572]
600(100/400) 1949 - - - - 6h 57min

[5571]
1500(300/1200) 4186 - - - - 6h 57min

[5571]

to solve exactly complex instances of benchmarks with large scale deployment.
Here, we made this preliminary deployment just to show that the application is
scalable and can be used in this sense.

We made other deployments of our application on 6, 20, 100, 200 and 300 pro-
cessors on GRID’5000. In this experiments a portion of workers are assigned to
ParallelGA computation and the rest to ParallelBB. As shown in Section 11.4.3,
when GAWorkers terminate their calculation parts they join BBWorkers, so
after they terminate, ParallelBB exploits the whole pool of workers. The ap-
plication was launched in P2P mode where all processes run with the lowest
priority to reach one of P2P Computing characteristic which is the exploitation
of idle CPU cycles. Table 11.2 shows the execution times obtained by our hybrid
application compared to an older version of P2P non hybrid parallel branch and
bound algorithm [10]. The old times are presented in the table in parentesis.
In the first column we have the number of used processors (i/j): i number of
GAWorkers and j number of BBWorkers.

The first point we notice is that the hybridization improves efficiency. Com-
paring with the non hybrid method, practically, all benchmarks are solved more
efficiently when using hybridization. For example, the exact resolution of the
benchmark ta 20 10 01 on 20 machines took 129 seconds using the hybrid algo-
rithm whereas it was solved in 170 using non hybrid version. This same bench-
mark was solved in 97 seconds whereas it took 100 sec. The only exception is
when solving ta 20 05 02 it was solved three times more quickly on 6 machines
than on 20 and 5 times more efficient more than on 50. This can be explained if
we take a look on the situation of the solution regarding the space of solutions. It
was found in the 3rd node of the solutions tree, this means that the six machines
was sufficient to find the solution in short time, and the 50 machines take an
additional time to manage tasks and free all workers deployed.

In the second column we have deployment times (deployment time includes,
detection and handling of nodes and distribution of tasks). For small instances of
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benchmarks, we don’t need a large scale deployment, ta 20 5 2 was exactly solved
on 50 machines in 11 seconds whereas the deployment time is 112 seconds. This
is not the case for large instances where the deployment time is insignificant
compared to time of resolution. Though, instance ta100 5 1 wasn’t exactly solved,
but we remark easily that this time is negligible. The calculation of these two
instances wasn’t terminated, values in the table represent the time of calculation
and reached upper bound between square brackets.

11.7 Conclusions

Using exact methods for the resolution of COPs, such as B&B which is the
most used for an exact resolution of these problems, is very important. However,
their use on applications of industrial size is possible only by the use of a great
computational power. Hybridization and large scale parallelism based on the
use of Grid Computing or P2P Computing proves today a potential tool which
offers such power. Several factors have to be taken into account for a better
parallelization of these methods, for their implementations on a Peer-to-Peer
systems such as ProActive and for a better exploitation of the computing power.
(1) A study and a good choice of a suitable model of parallelism; (2) A good
management of the knowledge generated by these algorithms; (3) Exploitation
of all the tools that P2P middlewares offers for controlling of the computational
network.

In this chapter, we developed a parallel branch-and-bound algorithm hy-
bridized with a parallel genetic algorithm for resolution of COPs on a Peer-
to-Peer system. We applied it to the Permutation Flow-Shop problem which is
a reference problem in this area. We chose a high level parallelism of branch-
and-bound and a coarse grained parallel genetic algorithm. In this direction, we
developed ParallelBB, ParallelGA and a hybrid version based on master/worker
paradigm which is a most appropriate technique for the development of scientific
applications dedicated to an intensive computing on large scale systems. The per-
formances of the algorithm were improved with the knowledge sharing between
the workers. This was realized by the use of the master/worker paradigm with
direct communications between workers.

We implemented the peer-to-peer version of our algorithms on top of ProAc-
tive and we took benefits from the maximum of its functionalities. We took
advantage of the communication groups and the asynchronous methods invoca-
tion in single direction for the knowledge sharing between workers and master.
We used the listeners and daemons in order to take into account the new arrivals,
their detection and the management of their connections. Finally, we used the fu-
ture active objects for collecting of computation results. The experiments made
on a P2P network managed by ProActive showed the interest of collaborative
work between nodes of the computation network as well as the importance of hy-
bridization. We have shown the ability of our application to support scalability
and dynamic availability of peers in the network.
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As a perspective, we project to extend our work to other type of COPs
(Quadratic Assignment Problems QAP and Quadratic three dimensional As-
signment Problems Q3AP). In addition, we plan to improve the performances of
ParallelBB with: (1) The load balancing of the tasks generated by the algorithm
so that they become more equitable; (2) The production of several forms of gran-
ularity of tasks and their distribution to the corresponding station (Calculator,
PC, laptop...).
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pliquées, Université Catholique de l’Ouest (May 27, 2002)

32. Mejia-Olvera, M., Cantu-Paz, E.: DGENESIS-software for the execution of de-
stributed genetic algorithms. In: Proceedings XX Conference Latinoamerica de
Informatica, pp. 935–946 (1994)

33. Melab, N., Talbi, E.-G., Mezmaz, M., Wei, B.: Parallel Hybrid Multi-objective
Meta-heuristics on P2P Systems. In: Olaru, S., Zomaya, A.Y. (eds.) Handbook of
Bioinspired Computing, pp. 649–663. CRC Press, Boca Raton (2006)



11 P2P B&B and GA for the Flow-Shop Scheduling Problem 321

34. Milojicic, D., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B.,
Rollins, S., Xu, Z.: HP Laboratories Palo Alto. Peer-to-Peer Computing. Technical
Report HPL-2002-57, HP (March 8, 2002)

35. Mitten, L.G.: Branch-and-bound Methods: General formulation and properties.
Operations Research 18, 24–34 (1970)

36. Schollmeier, R.: A definition of Peer-to-Peer networking for the classification of
Peer-to-Peer architectures and applications. In: 2001 International Conference on
Peer-to-Peer Computing (P2P 2001), Linko pings Universitet, Sweden. IEEE, Los
Alamitos (2001)

37. Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Op-
erations Research 64, 278–285 (1993)

38. Tanaka, Y., Sato, M., Hirano, M., Nakada, H., Sekiguchi, S.: Performance evalua-
tion of firewall compliant globus-based wide-area cluster system. In: IEEE Sympo-
sium on High-Performace Distributed Computing (HPDC), vol. 9, p. 121 (2000)

39. Trienekens, H.W.J.M.: Parallel Branch and Bound on an MIMD System. Report
8640/A, Econometric Institute, Erasmus University Rotterdam (1989)

40. Trienekens, H.W.J.M., Bruin, A.: Towards a Taxonomy of Parallel Branch and
Bound Algorithms. Report EUR-CS-92-01, Dept. of Computer Science, Erasmus
University, Rotterdam (1992)

41. Yang, M.K., Das, C.R.: A Parallel Branch-and-Bound Algorithm for MIN-Based
Multiprocessors, pp. 222–223. ACM, New York (1991)


	P2P B&B and GA for the Flow-Shop Scheduling Problem
	Introduction
	Parallel Combinatorial Optimization
	 Parallel Branch-and-Bound Algorithms
	 Parallel Genetic Algorithms

	P2P Computing and the ProActive Middleware 
	Parallel B&B and GA for P2P Environment
	 ParallelBB
	 ParallelGA
	 Hybridization

	Peer-to-Peer Implementation on Top of ProActive
	 Distribution of the Computation among Workers
	 Communications
	 New Arrivals (New Peers)
	 Fault Tolerance

	Large Scale Deployment and Performance Evaluation
	 PFSP Formulation
	 Modeling and Lower Bound Calculation
	 Experiments

	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




