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Preface

Grid computing has emerged as one of the most promising computing para-
digms of the new millennium! This paradigm can be seen as a main facet of
Sun’s lemma “The internet is the computer”: Grid computing systems are about
sharing computational resources, software and data at a large scale. Grid com-
puting, although recent, is attracting each time more large masses of researchers,
projects, applications and investment from academia and industry. We are wit-
nessing thus an explosion in Grid research projects (Google web search returns
about 2,810,000 entries for “Grid project”!) To make the Grid computing fully
beneficial to researchers, practitioners, academia and industry, there are still
plenty of issues to deal with and currently researchers are very actively inves-
tigating. One such issue is the performance requirement on the resulting Grid
system or the Virtual Grid-enabled Supercomputer. Achieving high performance
Grid computing requires techniques to efficiently and adaptively allocate jobs
and applications to available resources in a large scale, highly heterogenous and
dynamic environment.

This volume presents meta-heuristics approaches for Grid scheduling prob-
lems. Due to the complex nature of the problem, meta-heuristics are primary
techniques for the design and implementation of efficient Grid schedulers. The
volume brings new ideas, analysis, implementations and evaluation of meta-
heuristic techniques for Grid scheduling, which make this volume novel in several
aspects. First, Grid scheduling is tackled as a family of problems, it takes dif-
ferent forms depending on system requirement, application requirements, user
requirements, etc. The chapters of this volume have identified several impor-
tant formulations of the problem, which we believe will serve as a reference for
the researchers in the Grid computing community. Second, the selected chap-
ters for this volume comprise a variety of successful meta-heuristic approaches
including: (a) Local Search based meta-heuristics (Local search, Simulated An-
nealing, Variable Neighborhood Search, ...); (b) Population-based approaches
(Genetic Algorithms, Memetic Algorithms, Ant Colony Optimization, Particle
Swarm Optimization, ...); (c) Fuzzy, QoS, dynamic programming and optimiza-
tion approaches; and, (d) Hybridization of meta-heuristics among them as well
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as with other approaches. All these approaches aim to explore the capabilities
of the meta-heuristics in dealing with many facets of the Grid scheduling. This
is actually the best way to deal with the complexity of the problem, in particu-
lar with its multi-objective nature. Third, the contributed chapters in the book
include formal definitions and theoretical results, implementation and experi-
mental studies as well as practical insights on how to approach Grid scheduling.

All in all, Grid scheduling and novel meta-heuristics approaches for its resolu-
tion are presented in a comprehensive way, which we believe, makes this volume
an important contribution to Grid computing, meta-heuristics and optimization
research areas.

Chapters were selected after a careful review process by at least three re-
viewers on the basis of the originality, soundness and their contribution to both
meta-heuristics and Grid scheduling. The volume consists of 13 chapters, which
are organized as follows.

In Chapter 1, Xhafa and Abraham present Grid scheduling problems by
first introducing different types of current Grid systems. Several computational
models for the problem and multi-objective optimization criteria that arise in
Grid scheduling are presented. An in depth analysis in the chapter shows why
meta-heuristics are a defacto approach for this problem.

Montana and Zinky in Chapter 2 address the problem of optimizing the flow
of compute jobs in a distributed system of compute servers through a hybrid
approach of dynamic programming and a Genetic Algorithm.

In Chapter 3, Gu and Welch study task allocation and scheduling approach for
dynamic, distributed real-time systems. The authors present an approach that
offers systems explicit real-time guarantees as well as maximized robustness of
unpredictable changes in computing environment.

LaTorre et al. in the fourth Chapter propose a theoretical framework to com-
bine multi evolutionary algorithms and use it to combine multiple codings and
genetic operators for Supercomputer scheduling.

In the fifth Chapter Kaya et al. consider the problem of scheduling an appli-
cation on a computing system consisting of heterogeneous processors and one
or more file repositories. The authors present iterative-improve-based heuris-
tics by exploring complex neighborhood structures for the considered scheduling
problem.

Byun et al. in the sixth Chapter report an advanced job scheduler based on
Markov model in desktop Grid computing environment. The authors propose
and analyze several advanced resource selection schemes in order to satisfy time
requirements to complete job allocation and adapt to the needs of the user and
the application on the fly.

In the seventh Chapter Yu et al. present workflow scheduling algorithms for
Grid computing. Several heuristic methods and meta-heuristics including Simu-
lated Annealing and Genetic Algorithms for Grid workflow scheduling are consid-
ered. Examples of experimental comparisons for workflow scheduling algorithms
are also given.
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Iordache et al. in the eighth Chapter address a Genetic Algorithms approach
for decentralized Grid scheduling. GAs are combined with lookup services for
obtaining a scalable and highly reliable Grid scheduler. The authors experimen-
tally analyze their approach and compare it with other scheduling approaches
using a monitoring environment.

Abraham et al. in the ninth Chapter introduce several nature inspired meta-
heuristics for Grid scheduling including Simulated Annealing, Genetic Algo-
rithms, Ant Colony optimization and Particle Swarm Optimization. Also, the
authors illustrate the usage of Multi-objective Evolutionary Algorithm for two
scheduling problems.

In the tenth Chapter Xhafa et al. exploit the capabilities of a new class of
population-based meta-heuristics, namely the Cellular Memetic Algorithms aim-
ing, at minimizing the makespan and flowtime simultaneously using a weighted
sum method. The approach is analyzed under a simulation model and showed
to be effective for batch scheduling problem in Grids.

Bendjoudi et al. in the eleventh Chapter present a P2P hybrid approach that
combines B&B and GA for the Flow-Shop Scheduling Problem. The authors aim
at distributing at large scale the computation, using Peer-to-Peer computing to
reach high computing performance. To this end, the authors propose P2P-based
parallelization of the B&B and GA algorithms for the computational Grid.

In the eleventh Chapter, Liu et al. introduce the Peer-to-Peer neighbor se-
lection problem for which single and multi-objective population-based meta-
heuristics are presented. Specifically, the authors address the Particle Swarm
Optimization and Genetic Algorithms for the problem. The performance and
effectiveness of the proposed approach is also illustrated with computational
examples.

Khoo and Veeravalli in the last Chapter propose an approach for resource-
scheduling strategy capable of handling multiple resource requirements for jobs
that arrive in a Grid Computing Environment. The authors include in their
method the resource availabilities in the Grid environment. The performance of
the proposed approach is experimentally analyzed.

We are very much grateful to the authors of this volume and to the reviewers
for their great efforts by reviewing and providing interesting feedback to authors
of the chapter. The editors would like to thank Dr. Thomas Ditzinger (Springer
Engineering Inhouse Editor, Studies in Computational Intelligence Series), Pro-
fessor Janusz Kacprzyk (Editor-in-Chief, Springer Studies in Computational In-
telligence Series) and Ms. Heather King (Editorial Assistant, Springer Verlag,
Heidelberg) for the editorial assistance and excellent cooperative collaboration
to produce this important scientific work. We hope that the reader will share
our joy and will find it useful!

Fatos Xhafa acknowledges partial support by Projects ASCE TIN2005-09198-
C02-02, FP6-2004-ISO-FETPI (AEOLUS) and MEC TIN2005-25859-E and
FORMALISM TIN2007-66523. Ajith Abraham acknowledges the support by the
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gian Centre of Excellence, appointed by The Research Council of Norway, and
funded by the Research Council, Norwegian University of Science and Technol-
ogy and UNINETT.
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Meta-heuristics for Grid Scheduling Problems

Fatos Xhafa1 and Ajith Abraham2

1 Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de
Catalunya Barcelona, Spain
fatos@lsi.upc.edu

2 Center of Excellence for Quantifiable Quality of Service, Norwegian University of
Science and Technology, Trondheim, Norway
ajith.abraham@ieee.org

Summary. In this chapter, we review a few important concepts from Grid computing
related to scheduling problems and their resolution using heuristic and meta-heuristic
approaches. Scheduling problems are at the heart of any Grid-like computational sys-
tem. Different types of scheduling based on different criteria, such as static vs. dy-
namic environment, multi-objectivity, adaptivity, etc., are identified. Then, heuristics
and meta-heuristics methods for scheduling in Grids are presented. The chapter reveals
the complexity of the scheduling problem in Computational Grids when compared to
scheduling in classical parallel and distributed systems and shows the usefulness of
heuristics and meta-heuristics approaches for the design of efficient Grid schedulers.

Keywords: Grid Computing, Scheduling, Independent Scheduling, Grid workflow,
Multi-objective Optimization, Heuristics, Meta-heuristics.

1.1 Introduction

Grid Computing is a powerful computing paradigm penetrating each time more
in every activity of our lives! Grid computing is about benefiting from large
computing power never known before, is about scientific progress, business and
much more! What would it mean if:

• A researcher from Computer Science could solve to optimality his favorite
NP-hard problem within a few hours?
• A researcher from Chemistry could obtain a new drug design not known

before?
• A researcher from Biomedicine could discover the DNA sequencing and use

it for investigating diseases?
• A climate forecast center could predict in advance a possible tsunami?
• A medical team could remotely run a complex surgery operation using virtual

laboratories?
• An economist could analyze almost on real time portfolio values?
• A student of online distance university could contribute his computer to a

computational infrastructure and work online with his team for achieving
the academic goals?

F. Xhafa, A. Abraham (Eds.): Meta. for Sched. in Distri. Comp. Envi., SCI 146, pp. 1–37, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



2 F. Xhafa and A. Abraham

• An enterprise could never run short of computational resources?
• ...an many more real life scenarios?

It would really mean increasing our knowledge on complex problems, im-
proving our lives, improving our productivity and achieving ambitious goals not
possible before! Today all these are possible thanks to advances in Grid Com-
puting!

Grid computing and Grid technologies have primarily emerged for scientific
and technical work, where geographically distributed computers, linked through
Internet, are used to create virtual supercomputers of vast amount of computing
capacity able to solve complex problems from eScience in less time than known
before. Thus, within the last years we have witnessed how Grid Computing has
helped to achieve breakthroughs in meteorology, physics, medicine and other
computing-intensive fields. Examples of such large scale applications are known
from optimization (e.g. Casanova et al. [17], Goux et al. [34], Wright [66], Wright
et al. [43]), Collaborative/eScience Computing (e.g. Newman et al. [51], Paniagua
et al. [54]), Data-Intensive Computing (e.g. Beynon al. [6]), to name a few.

Grid computing is still in the development stage, and most projects are still
from academia and large IT enterprises; it has however developed very quickly
and more and more scientists are currently engaged to solve many challenges
in Grid Computing. Among these, improving its efficiency is imperative! The
question is:

“How to make use of millions of computers world-wide, ranging from
simple laptops, to clusters of computers and supercomputers connected
through heterogenous networks in an efficient, secure and reliable man-
ner?”

The above question is a real challenge for Grid computing community. The
good news are the reported advances in both scientific research in Grid Com-
puting and technological achievements and software development for enabling
Grid computing systems. Software packages exist and have been successfully de-
ployed and it is now possible to build Grid systems joining together both single
computers and clusters of computers yet, the challenging problem of dynami-
cally and adaptively allocating resources in response to demanding application
requests remains unsolved. For the majority of grid systems, scheduling is a very
important mechanism. In the simplest of cases, scheduling of jobs can be done
in a blind way by simply assigning the incoming tasks to the compatible re-
sources according to their availability. Nevertheless, it is a lot more profitable to
use more advanced and sophisticated schedulers. Moreover, the schedulers would
generally be expected to react to the dynamics of the grid system, typically by
evaluating the present load of the resources, and notifying when new resources
join or drop from the system. Additionally, schedulers can be organized in a
hierarchical form or can be distributed in order to deal with the large scale of
the grid.

In this chapter, we focus on the design of efficient Grid schedulers using heuris-
tics and meta-heuristics methods. Heuristic and meta-heuristics methods have
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proven to be efficient in solving many computationally hard problems. They
are showing their usefulness also in the Grid Computing domain, especially
for scheduling and resource allocation. We analyze why heuristics and meta-
heuristics methods are good alternatives to more traditional scheduling tech-
niques and what make them appropriate for Grid scheduling. An important issue
here is how to formally define the Grid scheduling problem. We have presented
the most important and useful computational models for this purpose.

The rest of the chapter is organized as follows. We present in Section 1.2 a
few important concepts from Grid computing, introduce a few types of Grids
in view of needs for different types of scheduling and resource allocation. Then,
in Section 1.3 we identify different types of scheduling problems arising in Grid
systems. In Section 1.4, we focus in the current state of using heuristic and meta-
heuristic methods for solving scheduling problems in Grid systems, as de facto
approaches for dealing with the complexity of the problem. A few other issues
such as security and grid services scheduling are discussed in Section 1.5. We
end the chapter in Section 1.6 with a few conclusions.

1.2 The many Grids

The present state of the computation systems is, in some aspects, analogous
to that of the electricity systems at the beginning of the 20th century. At that
time, the generation of electricity was possible, but still it was necessary to
have available generators of electricity. The true revolution that permitted its
establishment was the discovery of new technologies, namely the networks of dis-
tribution and broadcast of electricity. These discoveries made possible to provide
a reliable, low price service and thus the electricity became universally accessible.

By analogy, the term grid is adopted to designate a computational infrastruc-
ture of distributed resources, highly heterogeneous (as regards their computing
power and architecture), interconnected by heterogeneous communication net-
works and by a middleware that offers reliable, simple, transparent, efficient and
global access to their potential of computation.

The Grid Computing domain has witnesses a fast development over a rel-
atively short time period, pushed by important technology advancements and
interest of large IT companies such as IBM, Sun Microsystems, Oracle and HP.
The roots of Grid Computing can be traced back to the late 1980s and the first
concept that laid the basis of today’s Grid systems were developed by researchers
from distributed super-computing for numerical or optimization with particu-
lar emphasis on scheduling algorithms to achieve high performance computing
(e.g. Condor-G). By the late 1990s, the term of Computational Grids and Grid
Computing were popularized by Foster et al. [26, 27] who developed the Globus
toolkit as a general middleware for Grid Systems. Since then, Grid Computing,
Grid systems and Grid technology are advancing in unstoppable way! In the
following subsections we briefly review most important types of Grids pushing
Grid technology, actually, it is by large impossible to review all existing types of
Grids and Grid projects running world-wide!
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1.2.1 Computational Grids

One of the first questions raised by this emerging technology is its utility or
the need of disposing computational grids. On the one hand, the computational
proposals have usually shown to have a great success in any field of the human
activity. Guided by the increase of the complexity of the real life problems, and
prompted by the increment of the capacity of the technology, the human activ-
ity (whether scientific, engineering, business, personal, etc.) is highly based on
computation. Computers are very often used to model and to simulate complex
problems, for diagnoses, plant control, weather forecast, and many other fields
of interest. Even so, there exist many problems that challenge or exceed our
ability to solve them, typically because they require processing a large quantity
of operations or data. In spite of the fact that the capacity of the computers con-
tinues improving, the computational resources do not respond to the continuous
demand for more computational power.

On the other hand, statistical data show that computers are usually infra-
utilized. Most of computers from companies, administration, etc. are most of the
time idle or are used for basic tasks that do not require the whole computation
power. It is pointed out however by several statistic studies that a considerable
amount of money is spent for the acquisition of these resources. One of the main
objectives of the grid technology is, therefore, to benefit from the existence of
many computation resources through the sharing. As pointed out by Foster &
Kesselman “the sharing that we are concerned with is not primarily file exchange
but rather direct access to computers, software, data, and other resources...”

1.2.2 Scavenging Grids

In a simple Computational Grid, such as united devices, the politics of “scaveng-
ing” is applied. This means, each time a machine remains idle, it reports its state
to the grid node responsible for the management and planning of the resources.
Then, this node usually assigns to the idle machine the next pending task that
can be executed in that machine. Scavenging normally hinders the owner of the
application, since in the event that the idle machine changes its state to be busy
with tasks not coming from the grid system, the application is suspended or
delayed. This situation would create completion times not predictable for grid-
based applications. With the objective of having a predictable behavior, the
resources participating in the grid often are dedicated resources (exclusive use
in the grid), and they do not suffer from preemptions caused by external works.
Moreover, this permits the tools associated to the schedulers (generally known
as profilers) to compute the approximate completion time for an assembly of
tasks, when their characteristics are known in advance. Sethi@home project is
an example of scavenging Grids.

1.2.3 eScience Grids

Under the name of eScience Grids are known types of Grids that are primarily
devoted to the solution of problems from science and engineering. Such Grids give
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support to the computational infra-structure (access to computational and data
resources) needed to solve many complex problems arising in areas of science
and engineering. Representative examples are UK eScience Grid, German D-
Grid, BIG GRID (the Dutch e-Science Grid) and French Grid’5000, to name a
few.

1.2.4 Data Grids

Data grids are Grid computing systems that primarily deal with data reposi-
tories, sharing, access and management of large amounts of distributed data.
Many scientific and engineering applications require access to large amounts of
distributed data, however, different data could have their own format. An ap-
plication that needs access to data in different source data needs transparent
and secure access to the data. In such Grid systems many types of algorithms,
such as replication, are important to increase the performance of Grid enabled
applications that use large amount of data. Also, data movement is an issue here
in order to achieve high throughput.

1.2.5 Enterprise Grids

Although Grid technologies were motivated by High Performance Computing
and have been used for several years now in scientific labs, nowadays Grid
computing is becoming a significant component of business. Indeed, today’s e-
business must be able to respond to increasing costumer demands and adjust
dynamically and efficiently to marketplace shifts and customer demands. Enter-
prise Grids make possible to run several projects within one large enterprise or
many departments to share resources (computational and/or data) in a trans-
parent way. It should be noted that in such Grids the security and resource
policy management issues are not of first concern. Enterprise Grids are thus
showing great and innovative changes on how computing is used. Indeed, Grid
Computing is envisaged as a significant factor for increasing the productivity
and efficiency to the world-wide business. The Grid offers a large potential to
solving business problems by facilitating global access to enterprise computing
services and data. Examples of enterprise grids are “Sun Grid Engine”, “IBM
Grid”, “Oracle Grid” and “HP Grid”.

A new form of enterprise grids is also emerging in institutions, the so called
desktop grids, which use the idle cycles of mainly desktop PC’s. Small enterprises
and institutions usually are equipped with hundreds or thousands of desktops
mainly used for office tasks. This amount of PCs is thus a good source for setting
up a Grid system for the institution. In this case, the particularity of the Grid
system is its unique administrative domain, which makes it easier to manage
due to low heterogeneity and volatility of resources (for instance, all PC’s could
be running under the same OS). Of course, the desktop Grid can cross many
administrative domains and in this case the heterogeneity and volatility of the
resources is an issue as in a general Grid system setting.
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1.3 Scheduling Problems in Computational Grids

Rather than a problem, scheduling in Grid systems can be viewed as a whole
family of problems. This is due to the many parameters that intervene scheduling
as well as to the different needs of Grid-enabled applications. In the following,
we give some basic concepts of scheduling in Grid systems and identify most
common scheduling types. Needless to say, job scheduling in its different forms
is computationally hard; it has been shown that the problem of finding optimum
scheduling in heterogeneous systems is in general NP-hard [30].

1.3.1 Basic Concepts and Terminology

Although many types of resources can be shared and used in a Computational
Grid, normally they are accessed through an application running in the grid.
Normally, an application is used to define the piece of work of higher level in the
Grid. A typical grid scenario is as follows: an application can generate several
jobs, which in turn can be composed of sub-tasks, in order to be solved; the grid
system is responsible for sending each sub-task to a resource to be solved. In a
simpler grid scenario, it is the user who selects the most adequate machine to
execute its sub-tasks. However, in general, grid systems must dispose of sched-
ulers that automatically and efficiently find the most appropriate machines to
execute an assembly of tasks.

New characteristics of Scheduling in Grids

The scheduling problem in distributed systems is not new at all; as a matter of
fact it is one of the most studied problems in the optimization research com-
munity. However, in the grid setting there are several characteristics that make
the problem different from its traditional version of conventional distributed
systems. Some of these characteristics are the following:

• The dynamic structure of the Computational Grid. Unlike traditional dis-
tributed systems such as clusters, resources in a Grid system can join or
leave the Grid in an unpredictable way. It could be simply due to loosing
connection to the system or because their owners switch off the machine or
change the operating system, etc. Given that the resources cross different
administrative domains, there is no control over the resources.
• The high heterogeneity of resources. Grid systems act as large virtual super-

computers, yet the computational resources could be very disparate, ranging
from laptops, desktops, clusters, supercomputers and even small devices of
limited computational resources. Current Grid infrastructures are not yet
much versatile but heterogeneity is among most important features to take
into account in any Grid system.
• The high heterogeneity of jobs. Jobs arriving to any Grid system are diverse

and heterogenous in terms of their computational needs. For instance, they
could be computing intensive or could be data intensive; some jobs could be
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full applications having a whole range of specifications other could be just
atomic tasks. Importantly, Grid system could not be aware of the type of
tasks, jobs or applications arriving in the system.
• The high heterogeneity of interconnection networks. Grid resources will be

connected through Internet using different interconnection networks. Trans-
mission costs will often be very important in the overall Grid performance
and hence smart ways to cope with the heterogeneity of interconnection
networks is necessary.
• The existence of local schedulers in different organizations or resources. Grids

are expected to be constructed by the “contribution” of computational re-
sources across institutions, universities, enterprises and individuals. Most of
these resources could eventually be running local applications and use their
local schedulers, say, a Condor batch system. In such cases, one possible re-
quirement could be to use the local scheduler of the domain rather than an
external one.
• The existence of local policies on resources. Again, due to the different owner-

ship of the resources, one cannot assume full control over the Grid resources.
Companies might have unexpected computational needs and may decide to
reduce their contribution to the Grid. Other policies such as rights access,
available storage, pay-per-use, etc. are also to be taken into account.
• Job-resource requirements. Current Grid schedulers assume full availability

and compatibility of resources when scheduling. In real situations, however,
many restrictions and/or incompatibilities could be derived from job and
resource specifications.
• Large scale of the Grid system. Grid systems are expected to be large scale,

joining hundreds or thousands of computational nodes world-wide. More-
over, the jobs, tasks or applications submitted to the Grid could be large in
number since different independent users and/or applications will send their
jobs to the Grid without knowing previous workload of the system. There-
fore, the efficient management of resources and planning of jobs will require
the use of different types of scheduling (super-schedulers, meta-schedulers,
decentralized schedulers, local schedulers, resource brokers, etc.) and their
possible hierarchical combinations.
• Security. This characteristic, which is inexisting in classical scheduling, is

an important issue in Grid scheduling. Here the security can be seen as a
two-fold objective: on the one hand, a task, job or application could have
a security requirement to be allocated in a secure node, that is, the node
will not “watch” or access the processing and data used by the task, job or
application. On the other hand, the node could have a security requirement,
that is, the task, job or application running in the resource will not “watch”
or access other data in the node.

A general definition and terminology

A precise definition of a Grid scheduler will much depend on the way the sched-
uler is organized (whether it is a super-scheduler, meta-scheduler, decentralized
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scheduler or a local scheduler) and the characteristics of the environment such as
dynamics of the system. In a general setting, however, a Grid scheduler will be
permanently running as follows: receive new incoming jobs, check for available
resources, select the appropriate resources according to feasibility (job require-
ments to resources) and performance criteria and produce a planning of jobs
(making decision about job ordering and priorities) to selected resources.

Usually the following terminology is employed for scheduling in Grids:

Task: represents a computational unit (typically a program and possibly asso-
ciated data) to run on a Grid node. Although in the literature there is no
unique definition of task concept, usually a task is considered as an indivisi-
ble schedulable unit. Tasks could be independent (or loosely coupled) among
them or there could have dependencies, as it is the case of Grid workflows.

Job: A job is a computational activity made up of several tasks that could
require different processing capabilities and could have different resource
requirements (CPU, number of nodes, memory, software libraries, etc.) and
constraints, usually expressed within job description. In the simplest case, a
job could have just one task.

Application: An application is a software for solving a (large) problem in a
computational infrastructure; it may require splitting the computation into
many jobs or it could be a “monolithic” application. In the later case, the
whole application is allocated in a computational node and is usually referred
to as application deployment. As in the case of jobs, applications could have
different resource requirements (CPU, number of nodes, memory, software
libraries, etc.) and constraints, usually expressed within application descrip-
tion.

Resource: A resource is a basic computational entity (computational device
or service) where tasks, jobs and applications are scheduled, allocated and
processed accordingly. Resources have their own characteristics such as CPU
characteristics, memory, software, etc. Several parameters are usually associ-
ated with a resource, among them, the processing speed and workload, which
change over time. As in the case of jobs and applications, resource character-
istics are usually given by the resource description. It should be noted that
in a Grid computing environment resources are geographically distributed
and may belong to different administrative domains implying different usage
policies and access rights.

Specifications: Task, job and application requirements are usually specified
using high level specification languages (meta-languages). Similarly, the re-
source characteristics are expressed using specification languages. One such
language is the ClassAds language [56].

Resource pre-reservation: The pre-reservation is needed either when tasks,
jobs or applications have requirements on the finishing time or when there
are dependencies/precedence constraints that require advance resource reser-
vation to assure the correct execution of the workflow. The advance reser-
vation goes through negotiation and agreement protocols between resource
providers and consumers.
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Planning: A planning is the mapping of tasks, jobs and applications to com-
putational resources.

Grid Scheduler: Software components in charge of computing a mapping of
tasks, jobs or applications to Grid resources under multiple criteria and
Grid environment configurations. Different levels within a Grid scheduler
have been identified in the Grid computing literature comprising: super-
schedulers, meta-scheduler, local/cluster scheduler and enterprise scheduler.
As a main component of any Grid system, Grid scheduler interacts with
other components of the Grid system: Grid information system, local re-
source management systems and network management systems. It should
be noted that in Grid environments, all these kinds of schedulers must co-
exists, and they could in general pursue conflicting goals, thus, there is need
for interaction between the different schedulers in order to execute the tasks.

Super-scheduler: This kind of schedulers corresponds to a centralized sche-
duling approach in which local schedulers are used to reserve and allocate
resources in the Grid. The local schedulers manage their job queue process-
ing. The super-scheduler is in charge of managing the advance reservation,
negotiation and service level agreement. Notice that tasks, jobs or applica-
tions are entirely completed in unique resource.

Meta-scheduler: This kind of schedulers (also known as Meta-broker in the
literature) arise when a single job or application is allocated in more than
one resource across different systems. As in the case of super-schedulers, a
meta-scheduler uses local schedulers of the particular systems. Thus, meta-
schedulers coordinate local schedulers to compute an overall schedule. Per-
forming load balancing across multiple systems is a main objective of such
schedulers.

Local/Cluster Scheduler: This kind of scheduler is in charge of assigning
tasks, jobs or applications to resources in the same local area network. The
scheduler manages the local resources and the local job queuing system and
is this a “close to resource” scheduler type.

Enterprise Scheduler: This type of scheduler arises in large enterprises having
computational resources distributed in many enterprise departments. The
enterprise scheduler uses the different local schedulers belonging to the same
enterprise.

Immediate mode scheduling: In the immediate mode scheduling, tasks, jobs
or applications are scheduled as soon as they enter the system.

Batch model scheduling: In the batch mode scheduling, tasks, jobs or appli-
cations are grouped into batches which are allocated to the resources by the
scheduler. The results of processing are usually obtained at a later time.

Non-preemptive/preemptive scheduling: This classification of scheduling
establishes whether a task, job or application can be interrupted or not,
once allocated to the resource. In the non-preemptive mode, a task, job or
application should entirely be completed in the resource (the resource cannot
be taken away from the task, job or application). In the preemptive mode,
the preemption is allowed, that is, the current execution of the job can be
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interrupted and the job is migrated to another resource. Preemption can be
useful if job priority is to be considered as one of the constraints.

High-throughput schedulers: The objective of this kind of scheduler is to
maximize the throughput (average number of tasks or jobs processed per unit
of time) in the system. These schedulers are thus task-oriented schedulers,
that is, the focus is in task performance criteria.

Resource-oriented schedulers: The objective of this kind of scheduler is to
maximize resource utilization. These schedulers are thus resource-oriented
schedulers, that is, the focus is in resource performance criteria.

Application-oriented schedulers: This kind of schedulers are concerned with
scheduling applications in order to meet user’s performance criteria. To this
end, the scheduler have to take into account the application specific as well
as system information to achieve the best performance of the application.
The interaction with the user could also be considered.

Phases of scheduling in Grids

In order to perform the scheduling process, the Grid scheduler has to follow a
series of steps which could be classified into five blocks: (1) Preparation and
information gathering on tasks, jobs or applications submitted to the Grid; (2)
Resource selection; (3) Computation of the planning of tasks (jobs or applica-
tions) to selected resources; (4) Task (job or application) allocation according to
the planning (the mapping of tasks, jobs or applications to selected resources);
and, (5) Monitoring of task, job or application completion (the user is referred
to [61] for a detailed description).

Preparation and information gathering: The Grid scheduler will have ac-
cess to the Grid information on available resources and tasks, jobs or appli-
cations (usually known as “Grid Information Service” in the Grid literature).
Moreover, the scheduler will be informed about updated information (accord-
ing to the scheduling mode). This information is crucial for the scheduler in
order to compute the planning of tasks, jobs or applications to the resources.

Resource selection: Not all resources could be candidates for allocation of
task, jobs or applications. Therefore, the selection process is carried out
based on job requirements and resource characteristics. The selection pro-
cess, again, will depend on the scheduling mode. For instance, if tasks were
to be allocated in a batch mode, a pool of as many as possible candidate re-
sources will be identified out of the set of all available resources. The selected
resources are then used to compute the mapping that meets the optimization
criteria.
As part of resource selection, there is also the advanced reservation of re-

sources. Information about future execution of tasks is crucial in this case.
Although the queue status could be useful in this case, it is not accurate,
especially if priority is one of the task requirements. Another alternative is
using prediction methods based on historical data or users specifications of
job requirements.
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Computation of the planning of tasks: In this phase the planning is com-
puted.

Task allocation: In this phase the planning is made effective: tasks (jobs or
applications) are allocated to the selected resources according to the plan-
ning.

Task execution monitoring: Once the allocation is done, the monitoring will
inform about the execution progress as well as possible failures of jobs, which
depending on the scheduling policy will be rescheduled again (or migrated
to another resource).

1.3.2 Types of Scheduling in Grids

As mentioned above, scheduling is a family of problems: on the one hand, differ-
ent applications could have different scheduling needs such as batch or immediate
mode, task independent or dependent; on the other hand, the Grid environment
characteristics itself imposes restrictions such as dynamics, use of local sched-
ulers, centralized or decentralized view of the system, etc. It is clear that in order
to achieve a good performance of the scheduler, both problem specifics and Grid
environment information should be “embedded” in the scheduler. In the follow-
ing, we describe the main types of scheduling arising in Grid environments.

Independent Scheduling

Computational Grids are parallel in nature. The potential of a massive capac-
ity of parallel computation is one of the most attractive characteristics of the
computational grids. Aside from the purely scientific needs, the computational
power is causing changes in important industries such as biomedical one, oil ex-
ploration, digital animation, aviation, in financial field, and many others. They
also appear in intensive computing applications and data intensive computing,
data mining and massive processing of data, etc. The common characteristic in
these uses is that the applications are written to be able to be partitioned into
almost independent parts (or loosely coupled). For instance, an application of
intensive use of CPUs can be thought of as an application composed by sub-
tasks (also known as bags-of-tasks applications in Grid computing literature),
each one capable to be executed in a different machine of the Computational
Grid. This kind of applications require independent scheduling, according to the
following scenario: the tasks being submitted to the grid are independent.

Grid workflows

Solving many complex problems in Grids require the combination and orches-
tration of several processes (actors, services, etc.). This arises due to the de-
pendencies in the solution flow (determined by control and data dependencies).
This class of applications are know as Grid workflows, which can take advan-
tage of the power of Grid computing, however, the characteristics of the Grid
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environment make the coordination of its execution very complex [15,76]. As in
other types of scheduling, performance is an important issue in order to enable
high performance Grid applications. Unlike independent scheduling, it is more
difficult to achieve efficient allocation of workflow tasks to the appropriate Grid
resources, which largely depends on data movement between tasks and services
as well as interaction with different data sources.

Besides the efficiency, Grid workflows should deal with robustness. Certainly,
on the one hand, a Grid workflow could run for a long period, which in a dynamic
setting increases the possibility of process failure, which could cause failure of
the whole workflow if failure mechanisms are not used.

Centralized, hierarchical and decentralized scheduling

Both centralized and decentralized scheduling are useful in Grid computing,
showing advantages and limitations. Essentially, they differ in the control of
the resources as well as knowledge of the overall Grid system. In the case of
centralized scheduling, there is more control on resources, the scheduler has
knowledge of the system by monitoring of the resources state and therefore, it’s
easier to obtain efficient schedulers. This type of scheduling, however, suffers
from limited scalability. Therefore such type of scheduling are not appropriate
for large scale Grids.

Centralized schedulers have a single point of failure. Another way to orga-
nize different Grid schedulers is in a hierarchic way, which allows to coordinate
scheduler at a certain level. In this case, schedulers at the lowest level in the hier-
archy has knowledge of the resources. This scheduler type still suffers from lack
of scalability and fault-tolerance, yet it scales better and is more fault-tolerant
than centralized schedulers.

In the decentralized or distributed scheduling there is no central entity con-
trolling the resources. The autonomous Grid sites makes it more challenging to
obtain efficient schedulers. In decentralized schedulers, the local (site) schedulers
play an important role. The scheduling requests, either by local users or other
Grid schedulers, are sent to local schedulers, which manage and maintain the
state of the queue job. This type of scheduling is more realistic for real Grid
systems of large scale although decentralized schedulers could be less efficient
than centralized schedulers.

Static vs. dynamic scheduling

There are essentially two main aspects that determine the dynamics of the Grid
scheduling, namely:

• The dynamics of job execution: This refers to the situation when job execu-
tion could fail or, in the preemptive mode, job execution is stopped due to
the arrival in the system of high priority jobs.
• The dynamics of resources: Resources can join or leave the Grid in an un-

predictable way, their workload can significantly vary over time, the local
policies on usage of resources could change over time, etc.
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The above factors decide the behavior of the Grid scheduler, ranging from
static to highly dynamic scheduling. For instance, in the static case, there is no
job failure and resources are assumed available all the time and fluctuations on
computing capacity and workload are not considered. Although this is unrealis-
tic for real Grids, it could be useful to consider for batch mode scheduling: the
number of jobs and resources is considered fixed during short intervals of time
(time interval between two successive activations of the scheduler) and the com-
puting capacity is also considered unchangeable. Other variations are possible
to consider, for instance, just the dynamics of resources but not that of jobs.

Immediate vs. batch mode scheduling

Immediate and batch scheduling are well-known methods, largely explored for
many computing environments and different types of applications. They are also
useful for Grid scheduling. In immediate mode, jobs are scheduled as soon as they
enter the system, without waiting for the next time interval when the scheduler
will get activated or the job arrival rate is small having thus available resources
to execute jobs immediately.

In batch mode, tasks jobs or applications are grouped in batches and sched-
uled as a group. Batch mode scheduling methods are simple and yet powerful
heuristics that are distinguished for their efficiency. In contrast to immediate
scheduling, batch scheduling could take better advantage of job and resource
characteristics in deciding which job to allocate to which resource since they
dispose of the time interval between two successive activations of the batch
scheduler. Immediate scheduling methods include Opportunistic Load Balanc-
ing, Minimum Completion Time, Minimum Execution Time, Switching Algo-
rithm and k-Percent Best and among batch mode methods there are Min-Min,
Max-Min, Sufferage, Relative Cost and Longest Job to Fastest Resource - Short-
est Job to Fastest Resource [1, 9, 44, 67].

Adaptive Scheduling

The changeability over time of the Grid computing environment requires adap-
tive scheduling techniques [42] which will take into account both current status
of the resources and predictions for their future status with the aim of detect-
ing and avoiding performance deterioration. Rescheduling can also be seen as a
form of adaptive scheduling in which running jobs are migrate to more suitable
resources.

Casanova et al. [18] considered a class of Grid applications with large numbers
of independent tasks (Monte Carlo simulations, parameter-space searches, etc.),
also known as task farming applications. For these applications with loosely cou-
pled tasks, the authors developed a general adaptive scheduling algorithm. The
authors used NetSolve [17] as a testbed for evaluating the proposed algorithm.

Othman et al. [52] stress the need for the Grid system’s ability to recognize
the state of the resources. The authors presented an approach for system adap-
tation, in which Grid jobs are maintained, using an adaptable Resource Broker.
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Huedo et al. [38] reported a scheduling algorithm built on top of the GridWay
framework, which uses internally adaptive scheduling to reflect the dynamic Grid
characteristics.

Scheduling in Data Grids

Grid computing environments are making possible applications that work on
distributed data and even across different data centers. In such applications, it
is not only important to allocate tasks, jobs or application to fastest and reliable
nodes but also to minimize data movement and ensure fast access to data. In
other terms, data location is important in such type of scheduling. In fact, the
usefulness of large computing capacity of the Grid could be compromised by
slow data transmission, which could be affected by both network bandwidth and
available storage resources. Therefore, data should be “close” to tasks, jobs or
applications to achieve efficient access.

1.3.3 Computation Models for Formalizing Grid Scheduling

Given the versatility of scheduling in Grid environments, one needs to consider
different computation models for Grid scheduling that would allow to formal-
ize, implement and evaluate –either in real Grid or through simulation– differ-
ent scheduling algorithms. Following we present some important computation
models for Grid scheduling. It should be noted that such models have much
in common with computation models for scheduling in distributed computing
environments. We notice that in all the models described below, tasks, jobs or
applications are submitted for completion to a single resource.

Expected Time To Compute model

In the model proposed by Ali et al. [5], it is assumed that we dispose of esti-
mation or prediction of the computational load of each task (e.g. in millions of
instructions), the computing capacity of each resource (e.g. in millions of instruc-
tions per second, MIPS), and an estimation of the prior load of each one of the
resources. Moreover, the Expected Time to Compute matrix ETC of size num-
ber of tasks by number of machines, where each position ETC[t][m] indicates
the expected time to compute task t in resource m, is assumed to be known or
computable in this model. In the simplest of cases, the entries ETC[t][m] could
be computed by dividing the workload of task t by the computing capacity of
resource m. This formulation is usually feasible, since it is possible to know the
computing capacity of resources while the computation need of the tasks (task
workload) can be known from specifications provided by the user, from historic
data or from predictions [36, 37].

Modelling heterogeneity and consistency of computing

The ETC matrix model is able to describe different degrees of heterogeneity
in distributed computing environment through consistency of computing. The
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consistency of computing refers to the coherence among execution times obtained
by a machine with those obtained by the rest of machines for a set of tasks. This
feature is particularly interesting for Grid systems whose objective is to join in
a single large virtual computer different resources ranging from laptops and PCs
to clusters and supercomputers. Thus, three types of consistency of computing
environment can be defined using the properties of the ETC matrix: consistent,
inconsistent and semi-consistent.

An ETC matrix is said to be consistent if for every pair of machines mi

and mj , if mi executes a job faster than mj then mi executes all the jobs
faster than mj . On the contrary, in an inconsistent ETC matrix, a machine mi

may execute some jobs faster than another machine mj and some jobs slower
than the same machine mj . Partially-consistent ETC matrices are inconsistent
matrices having a consistent sub-matrix of a predefined size. Further, the ETC
matrices are classified according to the degree of job heterogeneity, machine
heterogeneity and consistency of computing. Job heterogeneity expresses the
degree of variance of execution times for all jobs in a given machine. Machine
heterogeneity indicates the variance of the execution times of all machines for a
given job.

Problem instance

From the above description, it can be seen that formalizing the problem instance
is easy under the ETC model; it consists of: a vector of tasks workloads, a vector
of computing capacity of machines and the matrix ETC. As we will see in next
subsection, it is almost straightforward to define several optimization criteria
in this model to measure the quality of a feasible schedule. It is worth noting
that incompatibilities among tasks and resources can also be expressed in ETC
model, for instance, a value of +∞ to ETC[t][m] would indicate that task t is
incompatible with resource m. Other restrictions of running a job on a machine
can be simulated using penalties to ETC values. It is, however, more complicated
to simulate communication and data transmission costs.

Total Processor Cycle Consumption model

Despite of its interesting properties, the ETC model has an important limita-
tion, namely, the computing capacity of resources remains unchanged during
task computation. This limitation becomes more evident when we consider Grid
systems in which not only the resources have different computing capacities
but also they could change over time due to Grid system’s computing overload.
The computing speed of resources could be assumed constant only for short or
very short periods of time. In order to remedy this, Fujimoto and Hagihara [28]
introduced the Total Processor Cycle Consumption (TPCC) model. The total
processor cycle consumption is defined as the total number of instructions the
Grid resources could complete from the starting time of executing the sched-
ule to the completion time. As in ETC model, task workload is expressed in
number of instructions and the computing capacity of resources in number of
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instructions computed per unit time. However, now is measured the total con-
sumption of computing power due to Grid application completion. Clearly, this
model takes into account that resources could change their computing speed
over time, as it happens in large-scale computing systems whose workload is in
general unpredictable.

Problem instance

A problem instance in TPCC model consists of the vector of task workloads
(denoted task lengths in [28]) and a matrix expressing the computing speed of
resources. Since the computing speed can change over time, one should fix a short
time interval in which the computing speed remains unchanged (for instance, a
unit time interval could be considered). Then a matrix PS (for processor speed)
is built overtime in which one dimension is processor number and the other di-
mension is time (discretized by unit time); the component PS[p][t] represents
the processor’s speed during interval time [t, t + 1). As the availability and pro-
cessing speed of a resource vary over time, the processor speed distribution is
used.

This model has shown to be useful for independent and coarse-grain task
scheduling, i.e., scheduling in which the computation time in Grid nodes is su-
perior to data transmission time, such as stand-alone applications.

Grid Information System model

The computation models for Grid scheduling presented so far allow for a precise
description of problem instance however they are based on predictions, distribu-
tions or simulations. Currently, other Grid scheduling models are developed from
a higher level perspective. In the Grid Information System model the Grid sched-
uler uses task (job or application file descriptions) and resource file descriptions
as well as state information of resources (CPU usage, number of running jobs per
grid resource), provided by the Grid Information System. The Grid scheduler
then computes the best matching of tasks to resources based on the up-to-date
workload information of resources. This model is more realistic for Grid environ-
ments and is especially suited for the implementation of simple heuristics such as
FCFS (First Come First Served), EDF (Earliest Deadline First), SJF (Shortest
Job First), etc.

Problem instance

The problem instance in this model is constructed, at any point in time, from the
information on task file descriptions, resource file descriptions and the current
state information on resources.

Cluster and Multi-Cluster Grids model

Cluster and Multi-Cluster Grids refer to Grid model in which the system is made
up of several clusters. For instance the Cluster Grid of an enterprise comprises
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different clusters located at different departments of the enterprise. One main
objective of cluster grids is to provide a common computing infrastructure at
enterprise or department levels in which computing services are distributed to
different clusters. More generally, clusters could belong to different enterprises
and institutions, that is, are autonomous sites having their local users (both
local and grid jobs are run on resources) and usage policies.

The most common scheduling problem in this models is a Grid scheduler
which makes use of local schedulers of the clusters. The benefit of cluster grids
is to maximize the usage of resources and at the same time, increase throughput
for user tasks (jobs or applications). This model has been exploited in Lee and
Zomaya [47] for scheduling data-intensive bag-of-tasks applications.

Problem instance

The problem instance in this model is constructed, at any point in time, from
the information on task file descriptions; again, it is assumed that the workload
of each task is known a priori. On the other hand, the (multi-)cluster grid can
be formally represented as a set of clusters, each one with the information on
its resources. Note that in this model the Grid scheduler need not to know the
information on resources within a cluster nor the state information or control on
every Grid resource. In this way, it is possible to reduce dependencies on Grid
information services and respect local policies on resource usage.

1.3.4 Grid System Performance and Scheduling Optimization
Criteria

Several performance requirements and optimization criteria can be considered
for Grid scheduling problem –the problem is multi-objective in its general for-
mulation. We could distinguish proper Grid system performance criteria from
scheduling optimization criteria although both performance and optimization
objectives allow to establish the overall Grid system performance.

Grid system performance criteria include: CPU utilization of Grid resources,
load balancing, system usage, queuing time, throughput, turnaround time, cu-
mulative throughput (i.e. cumulative number of completed tasks) waiting time
and response time. In fact other criteria could also be considered for characteriz-
ing Grid system’s performance such as deadlines, missed deadlines, fairness, user
priority, resource failure, etc. Scheduling optimization criteria include: makespan,
flowtime, resource utilization, load balancing, matching proximity, turnaround
time, total weighted completion time, lateness, weighted number of tardy jobs,
weighted response time, etc. Both performance criteria and optimization criteria
are desirable for any Grid system; however, their achievement depends also on
the considered model (batch system, interactive system, etc.). Importantly, it
should be stressed that these criteria are conflicting among them; for instance,
minimizing makespan conflicts with resource usage and response time.

Among most popular and extensively studied optimization criterion is
the minimization of the makespan. Makespan is an indicator of the general



18 F. Xhafa and A. Abraham

productivity of the grid system: small values of makespan mean that the sched-
uler is providing good and efficient planning of tasks to resources. Considering
makespan as a stand alone criterion not necessarily implies optimization of other
objectives. As mention above, its optimization could in fact go in detriment to
other optimization criteria. Another important optimization criterion is that of
flowtime, which refers to the response time to the user submissions of task exe-
cutions. Minimizing the value of flowtime means reducing the average response
time of the Grid system. Essentially, we want to maximize the productivity
(throughput) of the grid and at the same time we want to obtain planning of
tasks to resources that offer an acceptable QoS.

Makespan, completion time and flowtime

In Grid scheduling we aim, among other criteria, to minimize the makespan and
flowtime. Makespan is the time when finishes the latest task and flowtime is the
sum of finalization times of all the tasks. Formally they can defined as:

• minimization of makespan: minSi∈Sched{maxj∈Jobs Fj} and,
• minimization of flowtime: minSi∈Sched{

∑
j∈Jobs Fj}

where Fj denotes the time when the task j finalizes, Sched is the set of all pos-
sible schedules and Jobs the set of all jobs to be scheduled. Note that makespan
is not affected by any particular execution order of tasks in a concrete resource,
while in order to minimize flowtime of a resource, tasks that have been assigned
to should be executed in a ascending order of their workload (computation time).

Completion time of a machine m is the time in which machine m will finalize
the processing of the previous assigned tasks as well as of those already planned
tasks for the machine. This parameter measures the previous workload of a
machine. Notice that this definition requires knowing both the ready time for a
machine and the expected time to complete of the tasks assigned to the machine.

The expression of makespan, flowtime and completion time depends on the
computational model. For instance, in the ETC model, completion[m] is calcu-
lated as follows:

completion[m] = ready times[m] +
∑

{j∈Tasks | schedule[j]=m}
ETC[j][m].

where ready times[m] is the time when machine m will have finished the previ-
ously assigned tasks.

Makespan can be expressed in terms of the completion time of a resource, as
follows:

makespan = max{completion[i] | i ∈Machines}.
Similarly, for the flowtime we use the completion times of machines, but now

by first sorting in ascending order according to their ETC values the tasks
assigned to a machine. Thus for machine m the flowtime flowtime[m] can be
expressed as follows (S[m] is a vector representing the schedule for machine m):
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flowtime[m]=0;
completion = ready_times[m];
for (i = 0; i < S[m].size(); ++i) {

completion += ETC[S[m][i]][m];
flowtime[m] += completion;

}

In the case of TPCC model, for a schedule S of makespan M , the TPCC is
expressed as follows:

m∑

p=1

�M�−1∑

t=0

S[p][t] +
m∑

p=1

(M − �M�)S[p][�M�],

where m is the total number of Grid resources used in the schedule, p denotes
a processor (resource) and S[p][t] is the speed of processor during time interval
[t, t+1). Note that there is no direct relation between TPCC value and makespan
value, however the longer makespan, the larger the value of TPCC and vice-versa.
In other terms it could be established that any schedule with good TPCC value
is a schedule also with good makespan value. In fact it is claimed that the set of
makespan optimal schedules is the same as the set of TPCC optimal schedules.

It should be noted that this model is appropriate not only for heuristic-based
scheduling methods without guarantee of fitness value of the TPCC but also for
approximation1-based schedulers ensuring a quality of delivered schedule.

Resource utilization

Maximizing the resource utilization of the grid system is another important ob-
jective. This criterion is gaining importance due to the economic aspects of Grid
systems such as the contribution of resources by individuals or institutions in
exchange for economic benefits. Achieving a high resource reutilization becomes
a challenge in Grid systems given the disparity of computational resources of
the Grid. Indeed, to increment the benefit of the resource owners, the scheduler
should use any resource, yet this contradicts with the high performance criteria
since limited resources could be the bottleneck of the system. It could then be
said that from the resource owners perspective, resource utilization is a quality
of service criterion.

One possible definition of this parameter is to consider the average utilization
of resources. For instance, in the ETC model, for a schedule S, it can be defined
as follows:

avg utilization =

∑
{i∈Machines} completion[i]

makespan× nb machines
.

and we aim at maximizing this value over all possible schedules.
1 An approximation algorithm is one that delivers a feasible solution whose fitness

value is within a certain bound of the fitness of the optimal solution. Constant
factor approximation algorithms, for instance, deliver a solution whose fitness is
within a constant factor of the fitness of the optimal solution.
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Matching proximity

The Grid scheduler should not only map tasks onto resources according to task
requirements and resource characteristics but also it aims at matching the tasks
to resources that best fit them according to desired computational criteria.
Matching proximity is one such facet of the Grid scheduler, which is usually
implicitly pursued in Grid schedulers. Expressing this criterion explicitly is sort
of more difficult, as compared to other criteria.

In the ETC model, matching proximity could be defined as the degree of
proximity of a given schedule with regard to the schedule produced by Minimum
Execution Time (MET) method. MET assigns a job to the machine having the
smallest execution time for that job. Observe that a large value of matching
proximity means that a large number of jobs is assigned to the machine that
executes them faster. Formally, for a schedule S, matching proximity can be
computed as follows:

matching proximity =
∑

i∈Tasks ETC[i][S[i]]
∑

i∈Tasks ETC[i][MET [i]]
.

Turnaround time

Turnaround time is a useful criterion when the (mean) elapsed time of computa-
tion, from the submission of the first task to the completion of the last submit-
ted task, is to be measured. Dominguez et al. [21] considered this objective for
scheduling bags-of-tasks applications in desktop Grids. This objective is usually
more important in batch scheduling than in interactive applications. Kondo [40]
and Kondo et al. [41] characterized four real desktop grid systems and designed
scheduling heuristics based on resource prioritization, resource exclusion, and
task replication for fast application turnaround.

Total weighted completion time

This criterion is appropriate when user’s tasks, jobs or applications have pri-
orities. As usually, this criterion is implemented through weights associated to
tasks [33, 25] and thus the weighted completion time is expressed as:

Total weighted completion time =
∑

j∈Jobs

wjFj ,

where wj is the priority (weight) of job j and Fj denotes the time when the task
j finalizes (completion time of job j). As in the case of flowtime, this criterion
can be seen as QoS to the Grid user.

In a similar way are defined the total weighted tardiness and the weighted
number of tardy jobs for the case of jobs having due dates.
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Average Weighted Response Time

In interactive Grid applications, response time is an important parameter. Let wj

be the weight associated to job j, Fj its finalization time and Rj its submission
time to the Grid system. This criterion can then be expressed as follows:

∑
j∈Jobs wj(Fj −Rj)
∑

j∈Jobs wj
,

where (Fj − Rj) is the response time of job j. In [24, 60], the response time of
a job is weighted by its resource consumption (long jobs have larger resource
consumption than short jobs) to balance the impact of short jobs vs. long jobs
with a higher resource consumption.

Similarly can be defined the average weighted wait time, in which the wait time
is defined as the difference between the starting time (when job starts execution)
and submission time.

1.3.5 Multi-objective Optimization Approaches

As described in the previous subsections, Grid scheduling is multi-objective in
its general formulation. Therefore, the optimization criteria, when considered
together, have to be combined in a way that a good tradeoff among them is
achieved. There are several approaches in multi-objective optimization theory
to deal with the multi-criteria condition of the problem. Among them we could
distinguish the hierarchical and the simultaneous approach.

Hierarchical approach

This approach is useful when we would like, depending on the type of the appli-
cation or Grid scenario, to establish the priority among the criteria. For instance,
in a high performance computing we could give more priority to the makespan
and less priority to the response time; yet, if the user requirements are concerned,
we could consider the reverse priority. Let ci, 1 ≤ i ≤ N be a set of optimization
criteria. In the hierarchic approach, these criteria are sorted by their priority,
in a way that if a criterion ci is of smaller importance than criterion cj , the
value for the criterion cj cannot be varied while optimizing according to ci.
These approach has the limitations that one should a priori establish the prior-
ity among the criteria and it is not possible to optimize more than one criterion
at a time. Nonetheless, its is especially useful when the criteria are measured in
different units and can’t be combined in a single aggregate objective function
(for instance, optimizing makespan and the number of tardy jobs).

This approach has been considered in Xhafa [16, 68, 73] for the independent
job scheduling under ETC model.

Simultaneous approach

In this approach, an optimal planning is that in which any improvement with
respect to a criterion causes a deterioration with respect to another criterion.
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Dealing with many conflicting optimization criteria at the same time has
certainly a high computation cost. It should be addressed through Pareto2 opti-
mization theory [23, 62]. However, in the Grid scheduling problem, rather than
knowing many Pareto points in solution space, we could be interested to know
a schedule having a tradeoff among the considered criteria and which could be
computed very fast. Therefore, we can consider a small number of objectives at
the same time, which in general suffices for practical applications (usually two
or three criteria at the same time would suffice for practical purposes).

In the Pareto optimization theory we could distinguish two different ap-
proaches:

(a) Weighted sum approach: in this case the optimization criteria are com-
bined in a single aggregate function, which is then solved via heuristic, meta-
heuristic, AI and hybrid approaches for single-objective problems. There are
two issues here: the first is how to combine the different objectives in a mean-
ingful way in a single objective function –in fact this is not always possible!
The other problem is that suitable values to the weights of the criteria should
be found, which per se introduces new variables to the problem definition. For
practical cases, however, one could fix a priori the weights either based on a
certain (user, application, system performance) priority or conduct a tuning
process to identify appropriate values.

(b) General approach: In the general approach the objective is to efficiently
compute the Pareto optimal front [23, 62]. Many classes of meta-heuristics
algorithms have been developed for multi-objective optimization, e.g., Multi-
objective Genetic Algorithms (MOGA) [22].

As an example let’s consider the case a)whenmakespan and flowtime are consid-
ered simultaneously. As mention before, the first concern is to combine them into
a single meaningful objective function. Indeed, when summing them up, we have
to take into account that even though makespan and flowtime are measured in the
same time unit, the values they can take are in incomparable ranges, due to the fact
that flowtime has a higher magnitude order over makespan, and its difference in-
creasesasmore jobsandmachinesare considered in theGrid system. Inorder todeal
with this we consider the normalized or mean flowtime: flowtime/nb machines.
Next we have to weight both values to balance their importance:

fitness = λ ·makespan + (1− λ) ·mean flowtime.

In Xhafa et al. [16, 68, 71, 72, 73] the value of λ is fixed, based on preliminary
tuning, to λ = 0.75, that is, more priority is given to makespan. In many meta-
heuristic implementations, it was observed that this single aggregate objective
function shows good performance and outperforms known approaches in the
literature for the independent Grid scheduling.
2 Vilfredo Pareto, 1848-1923, Italian economist. He introduced the notion of Pareto-

optimality, the idea that a society is enjoying maximum ophelimity (economic sat-
isfaction) when no one can be made better off without making someone else worse
off.
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1.4 Heuristics and Meta-heuristics Methods for
Scheduling in Grids

From the exposition in the previous sections, it is clear that Grid scheduling prob-
lem is really challenging. Dealing with the many constraints and optimization
criteria in a dynamic environment is very complex and computationally hard.
Meta-heuristic approaches are considered undoubtedly the de facto approach.
Why meta-heuristics are useful for scheduling in Computational Grids? Follow-
ing we point out the main reasons that explain the strength of meta-heuristics
approaches for designing efficient Grid schedulers:

• Meta-heuristics are well-understood : there is a vast body of literature for
meta-heuristic approaches. Meta-heuristics have been studied for a large
number of optimization problems, from theoretical, practical and experi-
mental perspectives. Certainly, the known studies, results and experiences
with meta-heuristic approaches are a good starting point for designing meta-
heuristics based Grid schedulers.
• No “need” for optimal solutions : In Grid scheduling problem, for most prac-

tical applications, any scheduler delivering good quality planning of jobs
would suffice rather than searching for optimality. In fact, in highly dynamic
Grid environment, there is not possible to even define optimality of planning,
as it is defined in combinatorial optimization. This is so due to the fact that
Grid schedulers run as long as the Grid system exist and thus the perfor-
mance is measured not only for particular applications but also in the long
run. It is well-known that meta-heuristics are able to compute in short time
high quality feasible solutions. Therefore, in such situation meta-heuristics
are among best candidates to cope in practice with Grid scheduling.
• Efficient solutions in short time: the research work on meta-heuristics has

by large tried to find ways to avoid getting stuck in local optima and ensure
convergence to sub-optimal or optimal solutions. However, meta-heuristics
dispose of mechanisms that allow to “play” with the convergence speed. For
instance, in Genetic Algorithms, by choosing appropriate genetic operators
one can achieve a very fast convergence of the algorithm to local optima.
Similarly, in Tabu Search method, one can work with just short-term mem-
ory (recency) in combination with intensification procedure to produce high
quality feasible solutions in very short time. This feature of meta-heuristics
is very useful for Grid schedulers in which we might want to have a very fast
reduction in makespan, flowtime and other parameters.
• Dealing with multi-objective nature: Meta-heuristics has proven to efficiently

solve not only single objective optimization problems but also multi-objective
optimization problems as is the case of Grid scheduling.
• Appropriateness for periodic and batch scheduling: Periodic scheduling is a

particular case of Grid scheduling. It arises often when companies and users
submit their applications to the Grid system periodically. For instance, a
bank may wish to run once a month an application that processes the log
file keeping bank’s clients transaction activity with the bank online system.
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In this case suitable resource provisioning can be done in the Grid infrastruc-
tures and, which is more important in our context, there are no strong time
restrictions. This means that we can run meta-heuristics based schedulers
for longer execution times and increase significantly the quality of plan-
ning of jobs to resources. Similarly, in batch scheduling, we could run the
meta-heuristics based scheduler for the time interval comprised within two
successive batches activations.
• Appropriateness for decentralized approaches: Since Grid systems are ex-

pected to be large or very large scale, decentralization and co-existence of
many Grid schedulers in the system is desirable. We could thus have many in-
stances of the meta-heuristics based schedulers running in the system which
are coordinated by higher level schedulers.
• Hybridization with other approaches: Meta-heuristics can be easily hybridized

with other approaches. This is useful to make Grid schedulers to better re-
spond to concrete types of Grid infrastructures, specific types of applications
etc. The hybridization has in general shown to produce better solutions than
those delivered by single approaches; in fact, meta-heuristics are themselves
hybrid approaches.
• Designing robust Grid schedulers: The changeability of the Grid environment

over time is among the factors that directly influences the performance of the
Grid scheduler. A robust scheduler would be one that is able to deliver high
quality planning even under constant changes of the characteristics of the
Grid infrastructure such as changeability in heterogeneity of resources, of the
underlying interconnection networks, in heterogeneity of jobs, etc. Evidence
in meta-heuristics literature exist that in general meta-heuristic approaches
are robust.
• Libraries and frameworks for meta-heuristics: Since meta-heuristic approaches

are high level approaches, many libraries and frameworks have been developed
in the literature. For instance, Mallba library [1], Paradiseo [14] and Easy-
Local++ [45] are such libraries. These libraries can be easily used for Grid
scheduling problem; for instance, the meta-heuristic approaches in Xhafa et
al. [16,72,73] use skeletons defined in Mallba Library. It is worth to note that
libraries have been also developed for the meta-heuristics to deal with multi-
objective optimization case.

In the next subsections we briefly review most important heuristic and meta-
heuristic approaches and the benefits of using them for Grid scheduling problem
(the reader is referred to [31, 48] for a survey on meta-heuristic approaches).

1.4.1 Local Search Based Heuristic Approaches

Local search heuristics [39] is a family of methods that explore the solution space
by jumping from one solution to another one and constructing thus a path in
solution space with the aim of finding the best solution for the problem. Methods
in this family range from simple ones such as Hill Climbing, Simulated Annealing
to more sophisticated ones such as Tabu Search method.
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Simple local search methods (Hill Climbing-like) are of interest, at least, for
two reasons: (1) they produce a feasible solution of certain quality within very
short time; and, (2) they can be used to feed (initialize) population-based meta-
heuristics with genetically diverse individuals. Such methods has been studied
for the scheduling under ETC model in Ritchie and Levine [58]. Xhafa [68] used
several local search methods in implementing Memetic Algorithms for the same
problem.

Simulated Annealing (SA) is more powerful than simple local search by ac-
cepting also worse solutions with certain probability. This method has been
proposed for Grid scheduling problem by Abraham et al. [1] and Yarkhan and
Dongarra [75].

Tabu Search [32] is more sophisticated and usually requires more computation
time for computing good solutions. However, its mechanisms of tabu lists, as-
piration criteria, intensification and diversification make it very powerful search
algorithm. Abraham et al. [1] also considered Tabu Search as candidate solution
method for the problem. Ritchie [57] implemented the TS for the problem under
ETC model and used it in combination with ACO approach. Recently, Xhafa et
al. [74] has presented the design, implementation and evaluation of a full TS for
the scheduling problem under ETC model. The proposed TS approach showed
to outperform Ritchie’s approach for the problem.

Following we present the design of simple local search methods for Grid
scheduling problem and present some computational results for the problem
under ETC model. Makespan and flowtime objectives are considered for this
purpose.

Design of local search methods for Grid scheduling

Local search methods like Hill Climbing can be applied straightway to the Grid
scheduling problem. However, many variations of these methods can be designed
by considering different neighborhood structures and move types in order to
increase their performance. Indeed, many Hill Climbing versions are obtained by
defining appropriate neighborhood relationships. Moreover, different variations
are due to the order and the way in which neighboring solutions are visited.
For instance, if in each iteration the best neighboring solution is accepted, we
have the steepest descent version (in minimization case) and steepest ascent, in
maximization case.

• Move-based local search: In this group of methods, the neighborhood is fixed
by moving a task from one resource to another one. Thus, two solutions
are neighbors if they only differ in a position of their vector of assignments
task-resource. The following methods are obtained: (a) Local Move (LM):
moves a randomly chosen task from the resource where it was assigned to,
to another randomly chosen resource; (b) Steepest Local Move (SLM): moves
a randomly chosen task to the resource yielding the largest improvement; (c)
Local MCT Move (LMCTM): this method is based on the MCT (Minimum
Completion Time) heuristic. Here, a task is moved to the resource yielding
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the smallest completion time among all the resources; (d) Local Minimum
Flowtime Move (LMFTM): applies the movement of a randomly chosen task
that yields the largest reduction in the flowtime.
• Swap-based local search: In this group of methods, the neighborhood is fixed

by swapping two tasks of different resources. This group includes: (a) Lo-
cal Swap (LS): the resources of two randomly chosen tasks are swapped;
(b) Steepest Local Swap (SLS): the movement swap yielding the largest im-
provement is is applied; (c) Local MCT Swap (LMCTS): in this case, a
randomly chosen task t1 is swapped with a task t2 so that the maximum
completion time of the two implied resources is the smallest of all possible
exchanges; (d) Local MFT Swap (LMFTS): the exchange of the two tasks
yields the largest reduction in the value of flowtime; and, (e) Local Short
Hop (LSH): this method is based on the the process of Short Hop [7]. In our
case, pairs of resources are chosen one from the subset of the most loaded
resources and the other from the subset of the less loaded resources together
with the subset of tasks that are assigned to these resources. In each itera-
tion (hop) the swap of a task of a most loaded resource with a task assigned
to a less loaded resource is evaluated and accepted if the completion time of
the implied resources is reduced.
• Rebalance-based local search: load balancing of resources is used as a crite-

rion for the neighborhood definition. We can thus design: (a) Local Rebalance
(LR): the movement from a solution to a neighboring one is done by rebal-
ancing the most loaded resources; (b) Deep Local Rebalance (DLR): applies a
movement with the largest improvement in rebalancing; (d) Local Flowtime
Rebalance (LFR): the swap is done for a task from the most loaded resource
and a task of a resource that reduces the value of the flowtime contributed
by the most loaded resource; (e) Emptiest Resource Rebalance (ERR): in
this method the aim is to balance the workload of the resources but now the
less loaded resource are used as a basis; and, (f) Emptiest Resource Flowtime
Rebalance (ERFR): this is similar to the previous method but now the less
loaded resource is considered the one that contributes the smallest flowtime.
• Variable Neighborhood Search (VNS): in this method a generalized concept

of neighborhood is considered. More precisely, the neighborhood relationship
is defined so that two solutions are considered neighbors if they differ in k po-
sitions of their vectors of assignments task-resource, where k is a parameter.
This method in general could yield better solutions, however its computa-
tional cost is higher since the size of the neighborhood is much larger than
in the case of simple neighborhood (for k = 1, VNS is just the Local Move).

Computational results for local search methods (ETC model)

We exemplify the usefulness of the local search methods presented above through
their implementation for the independent Grid scheduling under ETC model (see
subsection 1.3.3).

For the purposes of this experimental study problem instances from ETC
model consisting of 512 jobs and 16 resources are used. The aim was to study
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Fig. 1.1. Comparison of makespan (in arbitrary time units) reductions obtained with
different local search procedures

the makespan reduction of different local search methods presented above (the
initial solution –staring point– of the local search was generated randomly). Since
local search methods are based on random decisions, 20 independent runs (of
500 iterations each) were performed on the same instance and the performance
evaluation is done based on averaged makespan values. We show in Fig. 1.1 the
graphical representation of the makespan reduction for 11 of the local search
methods introduced above; the rest of them (LMFTS, SLS, SLM, ERFR) per-
formed worse and are omitted from the graph.

From Fig. 1.1, we can see that: (a) all the considered local search methods
achieve a reduction of makespan in very short time; (b) the fastest reduction in
makespan is achieved by LR (Local Rebalance) although in the long run LM-
CTM (Local MCT Move) obtained better makespan reduction; (c) the method
ERFR (Emptiest Resource Flowtime Rebalance) based on flowtime reduction
performed poorly, which is expected since it tries to minimize flowtime, not the
makespan.

On the other hand we measured the makespan reduction of the VNS method
for k = 3 and k = 8. We show in Fig. 1.2 the graphical representation of the
makespan reduction; we have also included in the graph the LR and LMCTM
methods for ease of comparison between VNS and simple local search methods
presented above.

From Fig. 1.2 we can see that VNS(18) achieves the fastest reduction of the
maksepan but is soon “stagnated” and VNS(3) performs better. This could
be explained by the fact that doing a considerable number of movements (8
movements in this case as compared to just three movements in VNS(3)) could
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Fig. 1.2. Comparison of makespan (in arbitrary time units) reductions obtained with
VNS(k) method for k = 3 and k = 8

damage the structure of the schedule. It is therefore suggestive to keep the value
of k small. It should also be noted that VNS, despite of being considered more
powerful method than simple local search, does not perform significantly better
than; in fact, LMCTM seems to perform better than VNS in the long run.

1.4.2 Population-Based Heuristic Approaches

Population-based heuristics is a large family of methods that has shown their effi-
ciency for solving combinatorial optimization problems. Population based meth-
ods usually require large running times if sub-optimal or optimal solutions are
to be found. However, when the objective is to find feasible solutions of good
quality in short execution times, as in case of Grid scheduling, we can exploit
the inherent mechanisms of these methods to increase the convergence rapidity
of the method.

We could distinguish three different categories of population-based meth-
ods: Evolutionary Algorithms (Genetic Algorithms (GAs), Memetic Algorithms
(MAs) and their variations), Ant Colony Optimization (ACO) and Particle
Swarm Optimization (PSO).

GAs for Grid scheduling problems have been addressed by Abraham et al. [1],
Braun et al. [9], Zomaya and Teh [81], Martino and Mililotti [46], Page and
Naughton [53], Carretero and Xhafa [16], Gao et al. [29], Xhafa et al. [70, 73].

MAs [49] is a relatively new class of population-based methods, which combine
the concepts of evolutionary search and local search by taking advantage of good
characteristics of both of them. In this sense MAs could be considered as hybrid
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evolutionary algorithms, in fact, MAs arose as an attempt to combine concepts
and strategies of different meta-heuristics. There has been few work on MAs
for Grid scheduling problem. Xhafa [68] applied unstructured MAs and Xhafa
et al. [71] proposed Cellular MAs (structured MAs) for the independent schedul-
ing problem under ETC model.

An ACO implementation for the problem under ETC model has been reported
by Ritchie [57]. Abraham et al. [3] proposed an approach for scheduling jobs on
Computational Grids using fuzzy PSO algorithm.

Specific methods for population initialization

In population-based methods, its is important to dispose a wide variety of ini-
tialization methods for the generation the first population. Typically, the initial
solutions are generated randomly, however, introducing a few genetically good
individuals would be helpful to accelerate the search. Thus, besides a random
method, other specific or ad hoc methods can be used to generate solutions,
among them, the ad hoc heuristics Opportunistic Load Balancing (OLB), Min-
imum Completion Time (MCT), Minimum Execution Time (MET), Switch-
ing Algorithm (Switch), K-percent Best (KPB), Min-min, Max-min, Suffer-
age, Relative-cost and Longest Job to Fastest Resource-Shortest Job to Fastest
Resource (LJFR-SJFR) [1, 9, 44, 67].

In [73], the LJFR-SJFR method was used for generating one individual (the
rest were generated through random perturbations, that is, by reassignment of
a subset of tasks). By monitoring some of the runs, we observed that our GA
spends roughly 55-70% of the total number of iterations to reach a solution of
the quality of Min-Min method, which is due to the fact that Min-Min performs
much better than LJFR-SJFR.

1.4.3 Hybrid Heuristics Approaches

Meta-heuristic methods are per se hybridized approaches. For instance, MAs
combine evolutionary search with local search. However, hybridization among
different meta-heuristics has shown to be effective for many problems by out-
performing single methods [63]. However, hybrid meta-heuristics have been less
explored for the problem. Abraham et al. [1] addressed the hybridization of GA,
SA and TS heuristics; the hybridization GA+SA is expected to have a better
convergence than pure GA search and GA+TS could improve the efficiency of
GA. In these hybridizations a heuristic capable to deal with a population of
solutions, such as GA, is combined with two other local search heuristics, such
as TS and SA, that deal with only one solution at a time. Another hybrid ap-
proach for the problem is due to Ritchie and Levine [57, 59] who combine an
ACO algorithm with a TS algorithm for the problem. In [68], a basic unstruc-
tured MA is combined with 16 local search algorithms in order to identify the
best performance of the resulting MA.
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1.4.4 Other Approaches

Many other approaches can be applied to Grid scheduling problem. We briefly
present them next.

Hyper-heuristic approaches

Hyper-heuristic approaches [9] are methods that guide the search, at a higher
level as compared to the meta-heuristics approaches, through other heuristic
methods for the resolution of optimization problems. Hyper-heuristics have
shown effective for scheduling and timetabling (Burke et al. [11]). Hyper-
heuristics can also be combined to design hybrid approaches for general schedul-
ing and timetabling problems [8, 10]. They are therefore candidate approaches
also for Grid scheduling problem.

Xhafa [69] presented a simple hyper heuristic for the problem, which uses as
underlying heuristics a set of ad hoc (immediate and batch mode) scheduling
methods to provide the scheduling of jobs to Grid resources according to the
Grid and job characteristics.

The hyper-heuristic is a high level algorithm, which examines the state and
characteristics of the Grid system (jobs and resources), and selects and applies
the ad hoc method that yields the best planning of jobs. The resulting hyper-
heuristic based scheduler can be thus used to develop network-aware applications
that need efficient planning of jobs to resources.

Reinforced learning

Some research work in the literature addressed the use of reinforced learning
techniques for scheduling in Grid systems. Perez et al. [55], proposed to im-
plement a Reinforcement Learning based scheduling approach for large Grid
computing systems. Vengerov [64] presented a utility-based framework for mak-
ing repeated scheduling decisions dynamically; the observed information about
unscheduled jobs and system’s resources is used for this purpose.

Fuzzy logic, neural networks and QoS approaches

Zhou et al. [80] used Fuzzy Logic techniques to design an adaptive Fuzzy Logic
scheduler, which utilizes the Fuzzy Logic control technology to select the most
suitable computing node in the Grid environment. A Fuzzy Neural Networks was
proposed by Yu et al. [77] to develop a high performance scheduling algorithm.
The algorithms uses Fuzzy Logic techniques to evaluate the Grid system load
information, and adopt the Neural Networks to automatically tune the mem-
bership functions. Hao et al. [35] presented a Grid resource selection based on
Neural Networks aiming at offering QoS on distributed, heterogeneous resources.
To this end, the authors propose to select Grid resources constrained by QoS
criteria. The resource selection problem is solved using a novel neural networks.

Chunlin and Layuan [20] proposed a joint QoS optimization approach to opti-
mize global QoS by adopting cross-layer design and information exchange among
multiple Grid layers.
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Economy-based scheduling

Economy-based models are important for the design of resource management
architecture for Grid systems. Several recent works [4,12,13,19,78] are addressing
the resource allocation through market-oriented approaches. These approaches
are suitable, on the one hand, to exploit the interaction of different scheduling
layers, and on the other, different negotiation and agreement strategies can be
implemented for resource allocation.

Grid services scheduling

W3C defined a service is a set of actions that form a coherent whole from the
point of view of service providers and service requesters. Although this defini-
tion originated for web systems, services were defined similarly for Grid systems.
There are two aspectes related to Grid scheduling and Grid services: (a) Grid ser-
vices need to be discovered and scheduled to appropriate resources; for instance,
scheduling a service in the Grid system to process a requested transaction; and
(b) achieving Grid scheduling functionalities through services. Several recent re-
search work [50,65,79] explore these aspects, yet there is still few research work
in this direction.

1.5 Further Issues

Besides the many aspects and facets of Grid scheduling problem presented in
the previous sections, there still remain other issues to be considered. We briefly
mention here the Grid security as an important aspect to be considered in Grid
scheduling. The security can be seen as a two-fold objective: on the one hand, a
task, a job or application could have a security requirement to be allocated in
a secure node, that is, the node will not “watch” or access the processing and
data used by the task, job or application. On the other hand, the node could
have a security requirement, that is, the task, job or application running in the
resource will not “watch” or access other data in the node.

It should be noted that current security approaches are treated at different
levels of Grid systems and independently of the Grid schedulers. It is challenging
to incorporate the security/trust level as one of the objectives of the scheduling
by using trust values that span from very trustworthy to very untrustworthy
scale. Moreover, one of the aims to pursue here is to reduce the possible overhead
to the Grid scheduler and to the overall system that would introduce a secure
scheduling approach.

1.6 Conclusions

In this Chapter, we have reviewed the most important concepts from Grid com-
puting related to scheduling problems and their resolution using heuristic and
meta-heuristic approaches. After introducing a few important Grid types that
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have appeared in the Grid computing domain, we identify different types of
scheduling based on different criteria, such as static vs. dynamic environment,
multi-objectivity, adaptivity, etc. Our exposition aims to reveal the complexity of
the scheduling problem in Computational Grids when compared to scheduling in
classical parallel and distributed systems and shows the usefulness of heuristics
and meta-heuristics approaches for the design of efficient Grid schedulers. We
have reasoned about the importance and usefulness of meta-heuristic approaches
for the design of efficient Grid schedulers when considering the scheduling as a
multi-objective optimization problem. Also, a few other approaches and current
research issues in the context of Grid scheduling are discussed.
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Summary. We address the problem of optimizing the flow of compute jobs through a
distributed system of compute servers. The goal is to determine the best policy for how
to route jobs to different compute clusters as well as to decide which jobs to backlog
until a future time. We use an approach that is a hybrid of dynamic programming and
a genetic algorithm. Dynamic programming determines the routing and backlog deci-
sions about individual flows of homogeneous jobs, while a genetic algorithm optimizes
the order in which the different flows are fed to the dynamic programming algorithm.
We demonstrate the effectiveness of this approach on sample problems, some designed
to yield a known correct answer and others designed to test the scaling.

Keywords: Distributed System, Job Flows, Cluster, Genetic Algorithms, Dynamic
Programming, Routing and Backlog of Jobs.

2.1 Introduction

Distributed computing is the ability to share computational load among multi-
ple computers across a network, and it is a powerful way to increase compute
capacity. Effective usage of this joint compute power depends on making good
decisions about how to assign the compute tasks to the compute resources. The
question of how best to distribute the tasks to the resources can often be formu-
lated as an optimization problem. However, this optimization problem can vary
widely depending on the assumptions about the nature of the compute tasks,
resources, connectivity, and criteria for what is a good set of assignments.

2.1.1 Overview of the Problem

We have defined an optimization problem based on the needs of a customer who
controls a large distributed network of computing devices, also referred to as an
enterprise grid. It is formulated in general enough terms that it is applicable to
other enterprise grids, and not just that of the customer. Some distinguishing
properties of this problem are:

• The jobs are aggregated into job flows, where the jobs in a flow are
homogeneous in their properties and follow certain arrival statistics. The

F. Xhafa, A. Abraham (Eds.): Meta. for Sched. in Distri. Comp. Envi., SCI 146, pp. 39–59, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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optimization considers only flows and not individual jobs. The assumption
is that there are enough jobs in a flow that they can be modeled accurately
and more efficiently as an aggregate flow.
• The resources are aggregated into clusters, each with its own local sched-

uler that assigns individual jobs to individual resources. We assume that the
local scheduling at a cluster is handled separately and focus on the high-level
problem of routing the jobs flows between clusters. The resource configura-
tion is an enterprise grid, and the problem is to design a meta-scheduler.
• Each job consists of a sequences of steps, also referred to as tasks. In gen-

eral, the tasks for a job require different compute resources, and hence fully
scheduling a job requires finding a sequence of different clusters for the job
to visit, i.e. a route through the clusters. When considering a job flow rather
than an individual job, this route is potentially multipath, as different jobs
in the flow can follow different routes. Note that these routes are not routes
in the networking sense, i.e. a set of intermediate points leading to a desti-
nation, but closer to routes in the vehicle routing sense, i.e. a sequence of
destinations.
• The jobs can have varying utilities and deadlines, although the utilities

and average deadlines need to be homogeneous among jobs within each job
flow. This reflects the reality that some jobs, such as providing an interactive
response to a human, require fast turnaround to be useful, while others, such
as overnight batch jobs, do not. Similarly, some jobs are more important to
complete than others based on the mission of the enterprise. Balancing the
tradeoff between jobs with tighter deadlines and those with higher utility is
an important functionality of the meta-scheduler.
• Jobs can be stored in backlog until a future time as a means of ceding

resources to other jobs. This is generally used to prevent jobs with longer
deadlines from blocking the execution of jobs with shorter deadlines when
the latter jobs have lesser or equal utility than the former. One assumption is
that the local schedulers simply schedule the higher-utility jobs first without
considering the deadlines, leaving consideration of deadlines to the meta-
scheduler (which makes sense because the meta-scheduler has the global
view needed to make tradeoffs between utility and deadlines). A second
assumption is that the meta-scheduler is provided predictions about what
the future job flow loads and resource availabilities will be to provide a basis
for these tradeoffs.

The details of the problem definition are given in Section 2.2.

2.1.2 Previous Work

There is a long history of work in distributed computing, and we do not attempt
to summarize it all. Past research has addressed various aspects of distributed
computing, including both how to write algorithms that execute on distributed
infrastructure and how to create the infrastructure. Just on the infrastructure
side, which is our focus, many issues have been studied, such as how hosts connect
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and communicate, how hosts coordinate to share tasks, and security. An example
of an application that addresses a wide range of these issues is Condor [19]. We
limit our attention to job scheduling, i.e. how best to share tasks among the
assorted compute resources.

Many of the techniques for assigning compute tasks to resources are referred
to as load balancing, since a key objective is to minimize the amount of time
that resources are idle. Adaptive load balancing is when the assignment algorithm
reacts online to the current situation. Many of the schemes for load balancing are
application-specific and need to be revised for each usage, but others are more
general [14]. Scheduling is potentially more general than load balancing, since
scheduling can have more complex objectives than just the immediate correction
of imbalances in processing loads.

One important issue to address is scaling. If there are a very large number of
compute resources and tasks, it is challenging to efficiently use all the resources.
A common approach to scaling is a hierarchical decomposition of the load bal-
ancing or scheduling responsibilities. The resources are divided into clusters.
Each cluster has its own local scheduler that assigns tasks to resources, while a
high-level scheduler dispatches tasks to clusters (essentially treating clusters as
resources). Such a high-level scheduler is now often referred to as a grid meta-
scheduler, with the distributed collection of compute resources under its control
called a grid [12, 20]. There are different development environments for the cre-
ation of grid metaschedulers including Community Scheduler Framework, Grid-
way, and Condor-G [19]. Grimme [9] distinguishes three types of grids: a global
grid is a loose confederation across a wide geography with different owners; a
high-perfomance-computing grid is a tight clustering of resources; and an enter-
prise grid (which is the focus of our chapter) is a loose cluster like the global grid
but with all machines under the ownership of a single organization [17]. There
are different scheduling requirements for each type of grid.

We now mention some previous research that addresses aspects of the schedul-
ing problem not commonly investigated but highly relevant to our work. Lo et
al. [11], in their work on metascheduling, address the issue of the effect of time
zones on scheduling, allowing the scheduler to anticipate lower loads on compute
resources when it is night in their local time zones. In general, the ability to pre-
dict loads in the future can help inform scheduling decisions made in the present,
particularly if some tasks can wait until the future to be executed [7,3]. Bose et
al. [3] show that it is possible to use a genetic algorithm as a meta-scheduler and
that it can execute fast enough to be used online under certain circumstances.
This genetic algorithm uses a direct encoding with a chromosome that maps
each task to its assigned resource. Andresen and McCune [1] define the concept
of a task chain, a sequence of compute tasks that must be performed to complete
a compute jobs, and scheduling a job means routing the job in sequence between
resources. Stone [16] uses a network flow algorithm for determining routes of
jobs through the resource; this differs from most techniques for scheduling of
distributed computing, which consider each task in isolation rather than as part
of a flow.
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A flow-based view of scheduling leads to a fundamentally different scheduling
problem, one that is less reactive and more predictive and one that focuses more
on statistical trends rather than individuals jobs and tasks. While uncommon
for scheduling of distributed processing, a flow-based approach is common for
network routing, and some techniques for determining routes in networks are ac-
tually more similar to our approach than those from distributed computing. For
example, Casetti et al. [4] has used hierarchical load balancing in the network
routing context with the statically determined routing strategy based on the of-
fered loads, which are the average flows of different types of traffic. Oueslati and
Roberts [15] have demonstrated the benefits in networks of flow-aware routing,
i.e. considering each packet as part of a larger flow, as opposed to flow-oblivious
routing, i.e. treating each packet separately. Barolli et al. [2] use a genetic algo-
rithm whose chromosomes directly encode a routing tree to determine optimal
routes through a network. Okuhara et al. [13] also use a genetic algorithm whose
chromosomes directly encode a route, or multiple routes, for optimizing flow-
based routing. They include the concept of optimizing flow control, which is the
prevention of certain flows from entering the network in order to prevent con-
gestion and which is very similar to our use of backlog. Key and Massoullie [10]
integrate the concept of utility associated with a flow into their optimization
criterion used with their fluid model for network routing.

2.1.3 Overview of Our Approach

A distinguishing property of our solution to this problem is that it is a hybrid
approach, i.e. a combination of different techniques for handling different parts
of the problem. These different techniques are the following.

• A simple greedy algorithm selects the assigned resource cluster for a given
task in a given job at a given time. For each cluster that can handle the task,
the algorithm temporarily assigns the task to that cluster, propagates the
consequences of this assignments, and determines which assignment mini-
mizes the overall increase in the score.
• The question of when and for how long to place a given job in backlog is

addressed using dynamic programming. For each task/step in a job, it
explores different lengths of time for which to backlog the job at this step,
creating a new branch in a search tree for each choice and pruning the tree to
explore only the best possibilities. This cannot properly be done as a greedy
search because the selection of the backlog times at earlier steps constrains
the options at later steps, and the effects cannot be determined until handling
the later steps.
• The order in which to consider the flows for routing and backlog decisions

is determined by a genetic algorithm. The dynamic programming and
greedy algorithms determine the routing and backlog decisions one flow at
a time, and the order in which these flows are handled greatly affects these
decisions. Genetic algorithms have proven good at rapidly searching spaces
of permutations, and hence we use one to find the ordering of flows that
produces the best overall score.
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This general approach is a common one for genetic-algorithm-based scheduling
and was first described by Whitley et al. [22] and Syswerda [18]. A fast schedule
builder incrementally constructs a schedule one job/task at a time with dif-
ferent schedules resulting from different presentation orders of the jobs/tasks;
a genetic algorithm optimizes the presentation order. The details of the opti-
mization algorithm are presented in Section 2.3. Experiments that demonstrate
the effectiveness and good scaling properties of the algorithms are described in
Section 2.4.

2.2 Problem Definition

We now discuss the various components of the problem definition.

2.2.1 Jobs, Tasks and Flows

Compute jobs consist of a set of steps, or tasks, which are the atomic units of
computational work to be performed. Each step must be executed in sequence,
so a task cannot begin until its predecessor has completed. Fig. 2.1 illustrates
a job with six tasks labeled A-F, which is the standard task breakdown for all
jobs in the experiments described below. Each task is assigned to and executed
by a single cluster, but the various tasks in a job can be, and generally will be,
assigned to different clusters. Therefore, a job will in general visit a sequence of
clusters, which means that it will follow a route through the distributed system
of computational resources.

Step A Step B Step C Step D Step E Step F

Fig. 2.1. A sample compute job consisting of six steps/tasks

Each job is part of a job flow. The jobs in a flow are homogeneous, i.e. they
all possess the same properties. These include

• the sequence of tasks to execute
• the mean execution time of each task
• the mean lifespan of the job, i.e. the time between the arrival time and the

deadline
• utility, i.e. how important it is to accomplish the job before the deadline
• the routing constraints, which specify for each task which clusters are allowed

to be assigned to that task (The constraints can arise from a variety of causes
including network connectivity and the inherent capabilities of the clusters.)

The jobs in a flow enter the system with a known mean time between arrivals.
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2.2.2 Resources and Clusters

A cluster is an aggregation of individual compute resources together with a
manager to distribute the tasks among the resources and a local scheduler that
decides how to assign the tasks to resources. In the work described here, we are
not performing the local scheduling but rather just the metascheduling, i.e. the
routing of jobs between the clusters. To support the meta-scheduler, we do need
a model of the behavior of a local scheduler.
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Fig. 2.2. Example load-to-throughput map for a cluster

Not all jobs/tasks that enter a cluster can be completed by the cluster, as
each cluster has a finite capacity. We define the capacity of a cluster as the
maximum number of task-seconds (where a task-second is the amount of com-
putation accomplished on a single task by a “standard” compute engine) that
can be completed every second. If the cluster consists of all “standard” resources,
then the capacity equals the number of resources. The load on a cluster is the
number of task-seconds entering the cluster per second, or alternatively, this
quantity normalized by dividing by the capacity. The throughput of a cluster
is the number of task-seconds of processing completed per second, or alterna-
tively, this quantity normalized by dividing by the capacity. The average (normal-
ized) throughput is constrained to be less than 100% and less than the average
load.

We characterize the aggregate behavior of a cluster and its local scheduler us-
ing a piecewise-linear load-to-throughput mapping, which specifies the expected
throughput for a given load. Fig. 2.2 shows an example of such a mapping, which
is the one that we used for all the clusters of the experiments described below.
To determine which tasks are the ones that are completed, we order the tasks
according to the utility of their jobs. The highest-utility tasks are completed at a
rate equal to the throughput-to-load ratio of just these tasks, the next-highest-
utility tasks at a rate which is the ratio of the additional throughput to the
additional load, and so on.

Each cluster has an input queue and an output queue. Jobs wait in the input
queue until a resource becomes available. The output queue is for backlog, where
jobs can be saved until a future time when they are released for the next step
in their processing sequence. Any job whose deadline passes while waiting in a
queue is removed from the queue and discarded.
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2.2.3 Routing/Backlog Policies and Routing Constraints

A routing/backlog policy determines the decisions for where (i.e., at which cluster)
and when the steps of each job are executed. A policy for a given job flow is
represented as a set of probabilities. For each step of a job in the flow, the policy
specifies for each cluster the probability that the step will be executed at that
cluster, as well as the probability that the job will instead be held in backlog
until a future time. Jobs held in backlog are released back into the system and
re-evaluated when the routing policy is updated. Fig. 2.3 illustrates a sample
routing policy for a job flow whose jobs have six steps.
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Fig. 2.3. Graphical depiction of a routing/backlog policy for a flow

The routing/backlog policy is the one aspect of the system under external
control and is what we can vary to optimize the performance of the system.
Section 2.3 discusses how to determine an optimal routing/backlog policy.

Routing constraints limit the possibilities of which clusters can have non-zero
probabilities. For each step of each job flow, there is a list of legal clusters that are
allowed to handle this step. These constraints can reflect underlying constraints
of the system, such as limitations on network connectivity, or can serve to aid
the optimization process (either automated or manual) by limiting the choices
available and hence reducing the size of the search space.

2.2.4 Epochs and Time Dependence

An epoch is a time interval over which we can assume that all aspects of the
system remain constant. This includes the job flows and all their properties, and
the clusters and their capacities. We say that the routing policies will remain the
same throughout an epoch, as there is no reason for them to change, although the
policies will in general change at epoch boundaries. This assumption of piecewise
constant behavior for the system allows us to apply a model based on mean-value
analysis, as discussed in Section 2.2.5.

The changes in the properties of the job flows and clusters across epochs
reflect predictions about how the loads and capacities will vary with time. For
example, in Section 2.4 we will consider job flows whose arrival rates follow a
24-hour cyclical pattern, with arrival rates higher during the local daytime and
lower during the local nighttime. Similarly, knowledge of future scheduled service
times for a resource can be reflected by changing the capacity of its cluster in
future epochs. Predictions of future conditions are important for determining
not just future policy but also current policy, since backlogs and deadlines can
extend across epoch boundaries.
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2.2.5 Evaluation Function

To evaluate the effectiveness of a particular policy, we simulate the system with
this policy in place. The simulation does not consider individual jobs but rather
examines the aggregate flows using a mean-value analysis. The results of the
simulation can be scored using an optimization criterion.

The simulator propagates each flow in each epoch over a multipath route
through the network of clusters. It multiplies the system arrival rate of a flow
by the probability of the first step being assigned to a cluster to obtain the rate
of the flow entering this cluster at this step. Similarly, multiplying the system
arrival rate by the probability of backlog for the first step yields the rate at which
the flow is backlogged before its first step is executed. If more than one of the
probabilities is non-zero, the flow will split along multiple paths, which is why we
refer to the route as multi-path. The simulator uses the load-to-throughput map
for a cluster to determine the output rate of the flow following this step. This
process is continued for the subsequent steps, with the cumulative throughput
for step N multiplied by the probabilities for step N+1 to give the input rates
at the various clusters for step N+1.

While the simulator is relatively simple, there are a few details that complicate
it. One is the need sometimes to retract throughput that has been allocated to a
flow. If a cluster that handles a flow is then assigned a new flow of utility greater
than or equal to that of the original flow, it may be that the original flow loses
some of its throughput to the new flow. When this happens, there is in general a
chain reaction, since downstream steps of the original job now have lower rates,
which in turn can allow other flows to grab some of the forfeited throughput,
and so on. The simulator propages these perturbations until they die out.

A second detail is what happens to jobs that are backlogged or waiting in
queues across epoch boundaries. Such jobs are added to the flows at the appro-
priate step in the process for the new epoch, with flow rates that cumulatively
across the epoch would integrate to the right number of jobs.

The goal is to minimize the number of dropped jobs, i.e. jobs not completed
within their deadline, with an emphasis on not dropping higher-utility jobs.
Therefore, the primary component of the optimization criterion is the sum of
the utilities of all the dropped jobs. A secondary component of the optimization
criterion is a penalty for delaying the execution of jobs into future epochs. The
rationale is that the strategy of backlogging jobs for the future depends on the
future occurring as predicted, which it often will not in a dynamic environment,
so there is benefit to finishing a job earlier rather than later. (We originally
discovered the need for such a penalty when the optimizer, faced with jobs
identical except for utility, chose as often as not to defer the high-utility jobs to
the future and execute the low-utility jobs first, which defies the logic that all
else being equal it should schedule the high-utility jobs first.) Optionally, we can
add other penalties, such as one for jobs traveling between clusters in order to
minimize network traffic, but we do not consider these other types of penalties
in this chapter.
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We now provide a mathematical definition of the optimization criterion. From
the viewpoint of individual jobs (as opposed to job flows), the criterion is

∑

j∈Jd

u(j) +
∑

j /∈Jd

u(j)(1 − P t(j)) (2.1)

where Jd is the set of all dropped jobs (i.e. jobs that did not complete before
their deadline), u(j) is the utility of job j, t(j) is the time in the future at which
j is completed, and P < 1 is a constant whose role is to penalize the deferral of
jobs to the future. This translates into the following formula at the flow level

∑

e∈E

P t(e)(
∑

f∈F (e)

u(f)[d(f) + b(f)(1− P τ(e))]) (2.2)

where E is the set of all epochs, F (e) is the set of all job flows during epoch e,
t(e) is the start time of e, u(f) is the utility of flow f , d(f) is the rate at which
jobs in flow f are dropped, b(f) is the rate at which jobs in f are backlogged, and
τ(e) is the duration of epoch e. Note that we choose the penalty for deferring
completion of jobs to the future to have an exponential decay purely because this
makes it easier mathematically to separate the effects of deferral across epochs.

2.3 Scheduling Algorithm

The policy optimization algorithm has three levels, with each of the lower two
levels feeding results to the next higher level. We now present these.

2.3.1 Level 1: Single-Flow, Single-Epoch Optimization

This component determines a routing/backlog policy for the jobs from a single
flow entering the system during a single epoch. If a flow is small enough, then
a single set of decisions is used for all the jobs in the flow, i.e. for each step the
policy has a single non-zero probability and hence all the jobs follow the same
route. The test for whether the flow is small enough is whether the flow cannot
load any cluster more than x% of its capacity, where we have used x=20%.

Alternatively, if the flow is large, i.e. can produce a load of more than x% on
a cluster, it is instead split into N identical smaller subflows, where N is just
large enough to reduce the maximum load on a cluster below the threshold. A
single-path route is determined for each of these subflows independently and in
succession. The results are then aggregated into a single policy, or equivalently a
multipath route, using probabilities to specify what fraction of the flow follows
each path. (If a flow is large enough to require a division into subflows and
hence a multipath route, the discretization and stochastic effects of probabilistic
routing will not usually produce large transient deviations from steady-state.)
Splitting large flows allows the routing to distribute the load across multiple
clusters, which may be necessary for efficiently handling the flow.
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Fig. 2.4. Assignment of a single flow uses dynamic programming to select an epoch for
each step. A step can be assigned to any epoch not earlier than that for the previous
step.

We now discuss how to determine the single-path route for one of these in-
divisible subflows. For each step/task in the process, there are two decisions to
make: (i) to which cluster to assign the tasks and (ii) in which epoch to execute
the tasks (i.e., how long, if at all, to backlog the tasks). The former is done using
a purely greedy approach; in the epoch of choice, select the cluster for which
the overall penalty (i.e., the increase in the value of the optimization criterion)
is minimized by the assignment. Note that the assignment of a flow to a cluster
can result in another flow losing throughput at this cluster, and this effect is
accounted for in the optimization criterion and hence the greedy selection.

The selection of the epoch in which to execute each step of a flow’s processing
chain (i.e., decisions about backlog policy) is done using dynamic programming.
The rationale is that the choice to postpone the processing of one step can have
large consequences for downstream steps that cannot be foreseen when deciding
about the current step. So, instead of a greedy selection of the epoch for each
step one at a time, we perform a more computationally intensive optimization
over all combinations of legal selections of epochs for each step. Note that an
epoch is legal for a step if it is not earlier than the epoch of the previous step
and not later than the deadline of the flow.

The combinatorics of considering all possible combinations of epochs per step
means that it is important to find an efficient optimization technique. Dynamic
programming is such a technique because it (i) eliminates entire branches of the
search tree early in the process and (ii) pursues the most promising branches first.
The first branch point in the search tree is based on the selection of the epoch for
the first step, with subsequent branch points under each of these branches based
on the selection of the epoch for the second step, etc. The different branches
correspond to the different paths through the graph shown in Fig. 2.4. For each
epoch E and step S, the search procedure eliminates all but the single best
path leading up to the selection of epoch E at step S, which quickly prunes
many branches. Furthermore, since the penalty (i.e., change in the optimization
criterion) is non-decreasing with each step, we can restrict the search to pursuing
only the path with the lowest penalty so far, declaring the search finished when
a path that has completed all the steps has a score less than or equal to the
score of any partial path.
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2.3.2 Level 2: Multi-flow, Single-Epoch Optimization

Using the single-flow route optimizer, we can define what we call the rapid route
builder, which creates an entire set of routes, i.e. a full set of routing/backlog
policies, for the jobs flows in an epoch. Given an ordering of the flows, the rapid
route builder uses the single-flow optimizer to create the routes for each flow in
succession in the order given. Due to interactions between the flows, the policies
produced are potentially very different depending on the order in which the flows
are routed. Therefore, finding the best ordering of jobs to feed the rapid route
builder is an optimization problem we need to solve.

To perform this optimization, we use an order-based genetic algorithm. The
development of order-based genetic algorithms [6, 8] was inspired by the recog-
nition that for problems like the traveling salesman problem, the goal is to find
the best ordering of N objects. Its chromosome is a direct representation of a
permutation of N objects, labeled 1 through N, and its operators are designed
to manipulate chromosomes of this type. Order-based genetic algorithms have
been demonstrated to be very effective and efficient at searching the space of
permutations, which is why we have chosen this technique.

(1 2 3 4 5 6 7)

(4 7 2 5 6 1 3)

(1 2 3 4 5 6 7)

crossover
(2 5 1 4 3 6 7)

* * *

* * * mutation
(2 5 1 4 3 6 7)

Fig. 2.5. The crossover and mutation operators. The *’s indicate the randomly selected
positions that remain fixed in the (first) parent.

The crossover operator used by the genetic algorithm is position-based
crossover [18], and its operation is illustrated in Fig. 2.5. It works as follows.
A set of positions is randomly selected (which in the example of Fig. 2.5 are
positions 4, 6 and 7). The elements at these selected positions in the first par-
ent (which in the example are the integers 4, 6 and 7) are maintained at these
positions in the child. The remaining elements (which in the example are the
integers 1, 2, 3 and 5) are used to fill in the remaining slots in the child, but
will in general be at different positions in the child than in the first parent. The
order of these elements in the child will be the same as their order in the second
parent (which in the example means that 2 is placed in the first empty position,
followed in order by 5, 1 and 3).

Also illustrated in Fig. 2.5 is the mutation operator. It works the same as the
crossover operator except without a second parent to provide the ordering for
the subset of elements that are reordered in the child. Instead, the new order of
the shuffled elements is randomly selected.

Note that there are other possible definitions for the crossover and mutation
operators with an order-based genetic algorithm. Some of these are discussed in
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Fig. 2.6. The operation of the genetic algorithm

[21] and [5]. The differences in performance between the good ones are relatively
minor, so we have not experimented with different operators.

Each member of the initial population is generated by selecting a random
ordering. The flow of operations of the genetic algorithm is shown in Fig. 2.6.

The genetic algorithm is steady-state, which means that it generates and
replaces one individual at a time rather than an entire population. The advan-
tage of a steady-state replacement strategy is that the search generally proceeds
faster, since the genetic algorithm can use good individuals as soon as they are
created rather than waiting for generational boundaries. Since there are no gen-
erations, the amount of work done by the search algorithm is measured by the
number of individuals evaluated.

Two key parameters that control performance are the population size and
the number of evaluations. Increasing them increases the expected quality of
the solution found, at the expense of increasing the search time. Hence, the
selection of these parameters controls the inherent tradeoff between solution
quality and search time. We have found empirically for this problem that it is
generally good to have the number of evaluations five times the population size,
since on average this provides enough time for the search to converge without
spending too much time at the end of the run stuck without making progress.
So, for each run, we specify the number of evaluations and automatically set
the population size to be one-fifth of that quantity. (Ideally, we would vary both
the population size and the number of evaluations, along with other parameters,
to find the best combination. However, since we are running many experiments
with different problem definitions, it is more practical to reduce the number of
free parameters.)
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In general, the number of evaluations (and population size) needs to be larger
when there are more flows, since the search space is larger. However, we can
choose a smaller number of evaluations and quicker search time in exchange for
a worse expected solution. This ability to shorten the search is important, since
the policy optimizer is potentially used adaptively to update the routing policy
in real time (in response to an unexpected change in operating conditions such
as a surge in load or disabled resources). Note that taking advantage of the
inherent parallelism of genetic algorithms by using multiple processors can also
improve the execution speed, but without sacrificing solution quality.

2.3.3 Level 3: Multi-epoch Optimization

This component of the optimization algorithm steps through the epochs one at
a time and executes the Level 2 optimization for all the flows in the current
epoch. It starts with the final epoch and works backwards in time, as shown
in Fig. 2.7. The rationale for working backwards in time is that flows from a
particular epoch can be postponed to the future, hence requiring knowledge of
the future loads on the clusters to make good decisions about whether to backlog
the flows or not. Furthermore, the earlier epochs are the more important ones to
do correctly, since they will be the ones executed first without the opportunity
for revision.

Fig. 2.7. The optimization algorithm starts by optimizing the routing policies for the
last epoch and working backwards

The result of the entire process is a set of routing/backlog policies, one for
each epoch. While these generally will be good policies, usually optimal or near
optimal, there are three places in the process which can lead to suboptimality:

• The best policy for an epoch is not guaranteed to be generated by any job
ordering fed to the rapid route builder.
• The genetic algorithm is not guaranteed to find an optimal ordering, since

it is a heuristic search technique.
• Optimizing each epoch in succession rather than all in single large optimiza-

tion is potentially suboptimal.

What our approach does provide is a good tradeoff between finding a good so-
lution and keeping the search time relatively small, so that using this procedure
is actually practical even for large distributed systems. In the next section, we
demonstrate experimentally both the ability to find good policies and the rela-
tively rapid execution times even as the problem size grows.
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2.4 Experiments

We start with a set of experiments that show that the approach just described
finds the right solution on a set of problems for which we can determine a good
solution by analysis. The next experiments examine the scaling properties of the
approach, i.e. how the performance, and in particular the execution speed, of
the algorithm increases as the problem size increases.

2.4.1 Sample Scenario and Perturbations

This set of experiments involves a relatively small (though not trivially small)
problem containing 24 job flows and 18 clusters and lasting for 6 epochs. Because
of its symmetries, this particular problem lends itself to analysis by a human,
so we can determine whether our approach finds a good solution. Perturbing
the problem causes the optimal strategy to change. We introduce perturbations
that include losses of resources in the present, anticipated losses of resources in
the future, and surges in the loads, and we verify that the algorithm makes the
proper adjustments to the policy.

Spoke 1

1A 1B 1C 1D 1E 1F

2D 2E 2F

3D 3E 3F

Spoke 2

2A 2B 2C

Spoke 3

3A 3B 3C

Hub

Fig. 2.8. The topology of the clusters is determined by the routing constraints on the
flows. Steps A-C must all be performed in a prespecified one of the three spokes, while
steps D-F can be performed in any of three clusters in the hub.

Baseline Problem - We now describe the initial problem on which we test our
approach. There are 18 clusters in total. Each cluster is specialized to handle one
of the six steps of the jobs, whose sequence of steps is shown in Fig. 2.1, with
three clusters per step. Each cluster has a capacity of 13, with the underlying
assumption that there are 13 identical compute resources aggregated at each
cluster. The load-to-throughput map for each cluster is that shown in Fig. 2.2.

The routing constraints of the job flows induce an inherent connectivity on
the clusters, which is the hub-and-spokes configuration shown in Fig. 2.8. The
first three steps, i.e. steps A-C of a job flow, are constrained to be executed in
one of the three spokes. For example, some of the job flows are constrained to
spoke 1, and hence must be assigned to clusters 1A, 1B and 1C for their first
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Fig. 2.9. The six different arrival rate patterns and their associated spikes

three steps. The final three steps, steps D-F, are handled in the hub, and the job
flow is free to be assigned to any of the three clusters specializing in that step.

There are 24 different job flows. The job flows have all different combinations
of the following three properties.

• There are two different utilities, high (numerical value = 2) and low (numer-
ical value = 1).
• There are two different deadlines, short (numerical value = 1 hour) and long

(numerical value = 16 hours).
• There are six different arrival rate patterns, i.e. arrival rates as a function

of time. These are pictured in Fig. 2.9. The six patterns are all cyclical over
24 hours and all essentially the same pattern with different offsets, so that
the peaks and valleys of each are at different times. (This captures in an
idealized form the daily cycles in usage requests, with more requests during
the local daytime.) Each pattern is associated with a particular spoke, with
two patterns adjacent in their offsets assigned to each spoke.

The six steps in every job flow each require one minute to complete.
There are six epochs each of duration four hours. The entire problem covers

a 24-hour period. The result of the optimization will be six routing/backlog
policies, one for each epoch.

An analysis of this scenario yields the following. During epoch 1, spoke 1 is
overloaded. There are eight flows associated with spoke 1, and each of the flows
has arrival rate of 2 jobs/minutes. Therefore, there is an aggregate arrival rate of
16 jobs/minute that are constrained to use the clusters in spoke 1. These clusters
have a capacity of 13 jobs/minute, and a maximum throughput of even less. So,
not all these jobs can be processed during the first epoch. If all these jobs are
allowed to enter the clusters, as opposed to being backlogged until future epochs,
the high-utility flows will receive most of the throughput, with the low-utility
jobs waiting in the input queues. Most of the low-utility, short-deadline jobs will
time out and hence be dropped.
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Fig. 2.10. A graphical depiction of the results for the baseline problem set. For each
spoke in each epoch, the figure shows the relative size of the backlog (B), dropped jobs
(D), aggregate arrival rate (A), cluster loads (L), and cluster throughputs (T). The
units for A, L and T are jobs/minute, while those for B and D are jobs.

So, a better strategy is to backlog enough long-deadline flows from spoke 1 at
the entry to the system to allow the short-deadline flows to all complete in the
first epoch. These long-deadline jobs are released from backlog into the clusters
of spoke 1 during epochs 3 and 4, when the there is spare capacity compared to
the load due purely to arrivals.

Spoke 2 is similarly overloaded in epochs 2-4, with a peak in epoch 3. Hence,
the best strategy is to backlog the flows from spoke 2 during epoch 3 and release
them during epochs 5 and 6, when the arrival load is lightest.

The arrivals for spoke 3 peak during epoch 5. Because there are no epochs
included beyond epoch 6, there is no advantage to backlogging the flows here,
and hence the best strategy is to let all the jobs into the system and allow the
local schedulers to give first priority to the high-utility jobs. [A lesson here is that
it is important to include enough epochs beyond the last epoch whose optimized
policy might actually be used so that all policies of interest are not influenced
by this type of “boundary effect”.]

As partially illustrated in Fig. 2.10, the results from the optimization were as
expected from the analysis, so the algorithm found an approximately optimal
set of policies.

Perturbation 1: Current Loss of Hub Cluster - This scenario is the same
as the baseline problem except with the capacity of cluster 1E set to zero for
epochs 1 and 2. In the hub, unlike in the spokes, there is a choice of multiple
clusters for each step of the job flows, and tasks that would have been assigned
to the missing cluster can instead be sent to the two alternative clusters, 2E and
3E. Because the two clusters cannot quite handle the full load, some of the long-
deadline jobs are backlogged until the anticipated return of the disabled cluster.
Optimizing the policies produces the expected behavior; this demonstrates how
our approach can be used to modify the routing policy to adapt to changes in
the distributed system.

Perturbation 2: Future Loss of Spoke Resources - This scenario is the
same as the baseline except with the capacity of cluster 1B set to 6 instead of 13
in epochs 3-6. This anticipated future loss of resources changes the current (i.e.,
epoch 1) optimal backlog policy for the job flows associated with spoke 1. Since
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there no longer will be excess capacity available in the future, the best current
policy is to complete the high-utility jobs and allow some of the low-utility jobs
to be dropped. Our algorithm finds this new optimal policy, demonstrating the
ability to adapt current policy to anticipated future changes in the distributed
system.

Perturbation 3: Surge in Load in a Spoke - This scenario is the same as the
baseline except one of the high-utility, long-deadline job flows in spoke 1 has an
arrival rate that is increased from 2 jobs/minute to 5 jobs/minute during epochs
1 and 2. This surge means that the optimal backlog policy for spoke 1 now has
to focus on completing all the high-utility jobs, letting the low-utility jobs be
dropped during the first four epochs. Some of the additional high-utility jobs
that are part of the surge are immediately sent to the clusters for processing,
while others are backlogged until there is excess capacity in fuure epochs. Note
that low-utility jobs continue to be dropped even after the surge has ceased in
order to handle the backlog of high-utility jobs accumulated during the surge.
Our approach finds this new policy, demonstrating the ability to adjust policy
to adapt to changes in the load.

The solutions are generated within roughly 12 seconds on a single 2.8GHz
CPU, showing that the approach not only finds a good solution but does so in
a reasonably short time.

2.4.2 Scaling Properties

It is important to understand how our approach performs not just on relatively
small problems but also on larger problems. A second set of experiments investi-
gate the scalability of the algorithm, i.e. how increasing the size of the problem
affects the algorithm’s performance.

The problem size can vary along multiple different dimensions. We have iden-
tified what the different dimensions of problem scale are, and we have developed
the capability for varying the problem size along one dimension at a time. This
allows us to investigate the effects of changing only one, or some subset, of these
dimensions, as well as all of them simultaneously. We now enumerate these dif-
ferent dimensions along with our theoretical analysis of how they effect search
time:

• (average) number of legal clusters per task - For each task, the greedy
selection process needs to evaluate the effect on the optimization criterion
of assigning that task to each legal cluster. Since each such evaluation is
independent of the others, the total time required is proportional to the
number of legal clusters to evaluate. Therfore, the overall search time should
scale linearly along this dimension.
• total number of epochs - For each epoch, the algorithm needs to perform a

separate genetic algorithm run. These runs are independent, so the execution
time should scale linearly in this dimension.
• (average) number of epochs before a job’s deadline - For each step

of the dynamic programming process, i.e. each task in the job, the algorithm
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maintains potentially one branch for each epoch before the deadline. For
the next step of each branch, it can explore a number of branches that is
on average half as many as the number of epochs before the deadline. So,
the algorithm potentially scales as a square of this dimension. However, in
practice, dynamic programming should eliminate most of these potential
branches, and the scaling could be closer to linear.
• (average) number of steps per job - The dynamic programming process

needs to take one more step in its chain for each step in the job. Since
these steps are largely independent, we would predict linear scaling in this
dimension.
• number of job flows - There are two ways that the number of job flows

effects search time. For each individual in the genetic algorithm, the rapid
route builder needs to route this many flows. Each flow is mostly independent
(although not entirely independent because of competition for throughput at
the clusters), so the time should increases linearly. Secondly, increasing the
number of job flows increases the number of possible orderings of these flows,
and hence the size of the search space for the genetic algorithm. This will
increase the number of individuals the genetic algorithm must evaluate to
find a near optimal one. Based on past experience with order-based genetic
algorithms, we predict that the increase in the required number of evaluations
is between linear and quadratic, but this is problem-dependent and can only
be determined empirically.

Additionally, there can be assorted costs or savings due to secondary interactions.
For example, a decrease in the capacity of each cluster can cause the flows to
be split into more subflows during the rapid schedule building process, hence
leading to longer execution times.

We have devised methods to increase the scale in one of these dimensions at
a time maintaining approximately the same optimization problem.

• To increase the number of legal clusters per task by a factor of N, replace
each cluster in the original problem with N clusters, each with 1/N times as
much capacity as the original. For every task for which the original cluster
was legal, make all N new clusters be legal.
• To increase the number of epochs, convert each epoch in the original problem

into N epochs identical to the original except with duration 1/N as long. Note
that this changes both the total number of epochs and the number of epochs
before the deadline by a factor of N.
• To increase the number of steps per job, convert each step of each job flow

of the original problem into N steps identical to the original, in particu-
lar allowing the same legal clusters, except each requiring 1/N the time to
complete.
• To increase the number of job flows, convert each job flow into N job flows

each identical to the original except with arrival rate 1/N of the original
rate.
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Table 2.1. Results of the scaling experiments

Dataset 100-Eval Time Evals for Time for
Description (secs) Optimum Optimum

baseline 12 100 12
10x clusters 166 100 166
10x flows 352 4000 14080

10x epochs 1091 100 1091
10x steps 358 100 358

10x clusters
720 4000 28800

10x flows
2x clusters

406 250 8372x flows
2x epochs
2x steps

We have applied these transformations to the baseline data set described in
Section 2.4.1. For each transformed data set, we measure three quantities. One is
the amount of time required for the full optimization to execute with the number
of evaluations for the genetic algorithm specified to be 100. This measures the
change in exeucution time of the rapid route builder. The second quantity is
the number of evaluations required of the genetic algorithm to reach a near
optimal solution. We determine this value by executing with different numbers
of evaluations and finding at what point the result stops improving significantly
(no more than 1%). The third quantity is the time required to reach this near
optimal solution, which should approximately equal the product of the first two
quantities divided by 100. These three quantities are shown in the following table
for each of the datasets. Note that all runs are performed on the same single
machine with a single 2.8GHz processor.

The results are largely as predicted with a few exceptions, which we now dis-
cuss. Perhaps the biggest deviation from predicted behavior is when the number
of flows is increased by a factor of ten (10x flows). This leads to an 100-evaluation
execution time that is 30 times larger than that for the baseline problem. This
execution time was predicted to be linear in the number of flows, and hence
we would have instead expected a factor of 10. A possible explanation is that
increasing the flows without increasing the number of clusters resulted in ten
times as many flows at each cluster, leading to overhead in accounting, most
importantly the propagation of retracted throughput, for all these flows. Note
that when the number of flows and the number of clusters are both increased by
a factor of ten, the 100-evaluation execution time is only increased by a factor
of 60, which is even less than the factor of 100 predicted.

If the problem is such that the time it takes to optimize is longer than the
desired time, there are some techniques to reduce the search time. The simplest
is just to reduce the number of evaluations of the genetic algorithm, accepting
the lesser quality of the solution. A similar method that may sacrifice less of



58 D. Montana and J. Zinky

the solution quality is based on the recognition that epochs further in the future
are less important to optimize well than epochs closer to the present. Therefore,
using less evaluations for the genetic algorithm on these future epochs leads to
faster execution with an acceptable decrease in solution quality. An alternative
method to decreasing optimization time is to decrease the number of epochs,
number of flows, etc. by merging them, blurring some of the finer distinctions
of the model (and hence the quality of the solution when applied to the real
system), but decreasing the problem size. Again, this technique can be applied
more heavily to the epochs further in the future to reduce the effects on the
policies that need to be in place soon.

2.5 Conclusions and Future Work

We have defined a problem involving optimizing the routing and backlog policy of
a large distributed computing system. Our approach to this scheduling problem
involves a combination of dynamic programming and a genetic algorithm. This
approach allows the optimization to proceed rapidly over a large search space
while still finding good solutions. One set of experiments has proven the ability
of the approach to find an optimal policy, while another set of experiments has
demonstrated its scalability.

We have integrated this policy optimization algorithm into a prototype de-
sign tool and demonstrated its effectiveness on sample problems; the next steps
involve moving this tool into an operational setting. Initially, it would be used
off-line with data collected from a functioning enterprise grid used to define the
optimization problem. The ultimate goal is to integrate this policy optimization
algorithm into an online adaptive controller that adjusts routing/backlog policies
in real time based on automated data feeds.
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Summary. A challenge facing real-time computing is the need to deploy real-time
systems in dynamic operational environments. The systems have explicit deadline re-
quirements, but their execution times are often affected by unpredictable environmental
inputs that cannot be known a priori and have no worst-case estimates. As a result,
traditional real-time task allocation and scheduling techniques do not apply.

This research proposes a new task allocation and scheduling approach for these dy-
namic, distributed real-time systems. The approach offers these systems explicit real-
time guarantees as well as maximized tolerance (robustness) of unpredictable changes
in environmental inputs. This work consists of (1) a real-time computing model that
incorporates environmental factors, (2) metrics that characterize robustness, and (3)
algorithms that find robust allocations with feasible schedules for local schedulers. An-
alytical bounds were derived to guarantee the performance of the algorithms. The work
produces a dependable foundation for task allocation and scheduling so that real-time
systems may be designed and deployed for many time-critical but unpredictable real
world environments.

Keywords: Real Time Computing, Real Time Allocation, Scheduling, Dynamic En-
vironment, Heuristics.

3.1 Introduction

Distributed real-time systems provide guarantees on timing requirements while
boosting performance through concurrency in computing resources. They are
used to build large and complex real-time applications. In order to both achieve
timing requirements and maximize resource utilization, resource management for
these systems involves both the allocation of tasks to processors and the local
scheduling of tasks on each processor. Usually, the allocation and scheduling
algorithms make use of a set of predetermined task and processor parameters,
and when exact values cannot be obtained, worst-case estimates are often used.

However, a new problem arises when real-time systems need to be engineered
for those real world environments where such parameters have no worst-case
estimates, and the values only become known after each event. The execution
times of algorithms in real-time tasks generally depend on input sizes, but in
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these environments (labeled “dynamic environments”), some of the inputs orig-
inate in the environment external to the system. Values of these inputs are a
result of man or nature that no one can predict. An example in case is the num-
ber of aircrafts tracked by a radar system. Real-time systems deployed in these
environments may experience bursts of inputs from time to time which drive
up the execution times of certain tasks. If traditional allocation and schedul-
ing approaches were applied, the systems would suffer deadline misses due to
an ill-conceived allocation. Intuitively, it is not desirable to allocate those tasks
heavily influenced by one environmental input onto the same processor, even if
they initially seem to fit feasibly. This research follows up on that intuition.

The notion of tasks that have dependencies on environmental factors origi-
nated from the study of a generic air defense system [1]. The detect task identifies
threats to a defended entity. The task runs periodically and performs the func-
tions of filtering and evaluating radar tracks. When a threat is detected, the
detect task triggers the engage task, which fires a missile at the threat. After a
missile is in flight, the guide missile task keeps the missile on the correct course.
The guide missile task executes periodically; uses sensor data to track the threat;
recalculates the flight path for the missile; and issues guidance commands to the
missile. During operation, there may be multiple replicas of the three tasks run-
ning concurrently. When the number of radar tracks grows too large for a single
replica of the detect task to process within the required time, one or more repli-
cas are created and the radar tracks are partitioned among them. In a similar
manner, the guide missile task is replicated as necessary to meet deadlines, and
replication is also used for the engage task when heavy workloads are anticipated.
All three of the tasks have resource needs that are environment dependent. The
execution time of the detect task is primarily workload-dependent. Since the
task evaluates each radar track to determine if it is a potential threat, its exe-
cution time is a function of the number of radar tracks in the environment. The
workload of the engage task is also variable since it is activated by the number
of tracks deemed as threats. Similarly, the work performed by the guide missile
depends on the number of missiles in flight. Thus, an important problem to solve
for this system is how to allocate resources to the tasks and schedule them in a
manner that allows real-time constraints to be met and that minimizes the need
for reallocations (which create overhead in the system). Also, it is desirable to
know the maximum numbers of missiles and radar tracks that can be sustained
by a given configuration.

Execution times of tasks in these dynamic distributed real-time systems must
be regarded as functions of unpredictable environmental factors because the
running times of their algorithms depend on sizes of these environmental inputs
[2, 3]. Researchers engineering these systems have realized that employing the
systems in unpredictable environments may affect these input sizes and result in
varying execution times of tasks that cannot be known in advance [4]. Meaningful
worst-case execution times (WCET ’s) cannot be obtained. Therefore, many have
pointed out that traditional periodic task scheduling and allocation based on
worst-case estimation are not applicable [5, 6, 7, 8].
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Existing approaches to address the problem in these systems include adap-
tive resource allocation, proactive robust allocation, and probabilistic deadline
guarantee. However, these approaches have not been satisfactory.

Adaptive resource allocation reacts to changes in environment and a system’s
resource needs by passively reallocating the system [4, 9, 10]. Thus it is vulnerable
to frequent environment changes that trigger costly reallocations and result in
thrashing, and no guarantees can be made. Further, it is often infeasible to
reallocate stateful applications in real-time.

A current area of active research is proactive resource allocation with an objec-
tive of robustness. It seeks to maximize an allocation’s tolerance of unpredictable
environment changes without jeopardizing feasibility. Such robust allocation re-
duces the necessity of reallocations, which are time-consuming both to compute
and to enact. Additionally, reallocations are not appropriate for stateful real-
time applications whose complex states are costly to recover. The problem is
being studied and solutions are still primitive. An approximation algorithm was
developed to maximize the allowable workload in an allocation [2], but the op-
timization was limited to one environmental input. The algorithm and analysis
were developed to produce robust allocation in the case of multiple environmen-
tal inputs [11]; however, rate monotonic scheduling was required and the analysis
was pessimistic about execution time functions. [12] reported a set of heuristic al-
gorithms useful in finding robust allocations for independent, periodic real-time
tasks. A mixed-integer programming approach was proposed by [13] to maxi-
mize the allowable increase in load for a static allocation. However, heuristics
were applied before MIP and processors were assumed to be fair-shared. Several
heuristic algorithms were used in [14] to find robust allocations for periodic task
strings. A special scheduler based on tightness was assumed, but no guarantee
was developed. An l-2 norm based robustness metric was introduced in [15] for
multiple inputs. The metric partially characterizes feasible regions by using an
intangent sphere, and no algorithm was developed to optimize it.

The probabilistic model characterizes unpredictable task execution times as
random variables, and the objective is to derive statistical confidence in dead-
line misses [5, 6]. The task allocation problem was studied for systems with
dependencies and multiple processors by [8]. However, the allocation search and
evaluation were expensive; certain knowledge of input (such as distribution) has
to be assumed.

The solution from this research addresses these shortcomings. First, a new
model that explicitly incorporates environmental input factors is introduced
based on a widely accepted model of real-time systems [16]. Task execution
times are characterized as functions of multiple environmental inputs. Second,
metrics characterizing the robustness of allocations are defined, and the prob-
lem of robust task allocation and scheduling is defined based on the metrics.
Third, allocation and scheduling algorithms are designed that use the metrics
to find feasible and robust allocations. The heuristics build upon results from
classic real-time scheduling algorithms (RMS and EDF [17]), as well as real-
time task allocation algorithms [18, 19]. The algorithms have fast running time
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and scalability, which are crucial for modern distributed systems that may con-
tain hundreds of processors and thousands of tasks. In addition to experimental
evaluation of the performance, theoretical bounds for the solution quality are
also derived, warranting the robustness that may be achieved by the systems in
operation while meeting all deadline requirements.

Besides the impact on engineering and deployment of real-time applications,
allocation and scheduling algorithms from this research will also benefit resource
management software. For example, QARMA, short for the Quality-based Adap-
tive Resource Management Architecture in Fig. 3.1, serves as a basis for inte-
gration of existing CORBA services and management mechanisms into a single,
coherent framework for resource management, and it is easily extendable to allow
the use of new resource management mechanisms [20]. It consists of three major
components: the System Repository Service, the Resource Management Service,
and the Enactor Service. The System Repository stores both static and dynamic
information that describe the software systems and resources in the computing
environment. Information is provided from specification files and gathered by
various monitors at run-time. The Resource Management Service (dashed box)
is responsible for using information in a system repository to decide what actions
should be performed to ensure that performance requirements are satisfied and
system performance is optimized. The Enactor Service receives instructions from
the resource management service about actions to perform and enacts them. The
actions may include the adjustment of quality settings, the assignment or mi-
gration of tasks, and the replication of tasks. The algorithms incorporated into
the Resource Management Service would offer both feasibility and robustness in
these adjustments.

Rest of the chapter is organized as follows. Section 3.2 re-examines a tradi-
tional real-time computing model and makes the necessary extensions to incor-
porate environment factors. Based on the extended model, section 3.3 formally
poses the research problem and presents the solution of robust allocation and
scheduling heuristics. Section 3.4 then provides experimental validations for the
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theoretical analysis. Finally, section 3.5 brings this work into perspective by
reviewing related research.

3.2 System Model

As a first step, a new real-time computing paradigm is introduced. The model
captures features relevant to the problems. It is based on periodic real-time tasks
characterized by environment-dependent execution time functions, as opposed
to the traditional model with hard periodic real-time tasks characterized by
worst case execution times. In this paradigm, occasional deadline misses can
be tolerated when unpredictable environmental factors drive a demand beyond
the limit of available resources. This section introduces the new system model
by beginning with a traditional model, and then making necessary extensions
to incorporate environmental factors. An example will follow to illustrate the
model.

Traditional Model

The system model used in this work is derived from the standard periodic task
model given in [16]. In this model, the software system consists of a set of n
periodic tasks S = {T1, T2, . . . , Tn}. Each Ti is released periodically with period
pi and has a deadline equal to its period. The execution time of each task Ti ∈ S
is a constant ei that represents the worst case execution time of Ti. There is a
set of m processors H = {P1, P2, ..., Pm}.

Model Extensions

Traditional models do not capture dynamic environmental factors, since the
execution times are modeled as constants. The models are inadequate for some
real-time systems operating in dynamic environments. For example, a general
distributed control system is depicted in Fig. 3.2. It has filter, analysis, action
planning, and actuation tasks. One or more of the tasks may contain algorithms
and execution times that are affected by unpredictable environmental factors.
Systems with these properties include building surveillance, air defense, and
intelligent vehicles. Accurate modelling of such systems will supply the necessary
information to allocate resources to them so that they are resilient to many
unpredictable scenarios.

Action PlanningAnalysisFilter Actuation

Environmental factors

Sensor

Fig. 3.2. Example of a general control system
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The changing environmental factors that affect a system are modeled as l
environmental variables, w = (w1, w2, ..., wl), where wi (1 ≤ i ≤ l) is a non-
negative integer. Each task Ti ∈ S has an execution time ei(w) that is a func-
tion of these environmental variables. System utilization is the resource demand
from all tasks and thus a function of their execution times. It can be written as
U(w) =

∑n
i=1

ei(w)
pi

. Like execution times, it becomes a function of the environ-
mental variables. U(0) corresponds to the portion of system utilization that is
independent of the environment. Each task Ti can be allocated to any Pj ∈ H .
All processors Pj are assumed to be identical, and rate monotonic scheduling
(or earlier deadline first scheduling) is assumed to be used on every processor.
An allocation M of the system is a many-to-one mapping of the task set to the
processor set, S → H .

Task execution times are modeled as functions because they may be dependent
on environmental conditions. For example, a building surveillance system may
contain a task implementing an object-identification algorithm, whose running
time depends on the number of objects in a room. According to the model, l = 1,
and w1 is the number of objects. As another example, an air defense system
contains filtering, situation assessment, and missile guidance tasks. These tasks
can depend on such factors as the number of radar tracks and the number of
missiles. Thus, l = 2, w1 is the number of radar tracks and w2 is the number
of missiles. The model can make the following characterization: T1, the filtering
task, has an execution time function e1(w1, w2) = w1 + w2; for T2, the situation
assessment task, e2(w1, w2) = w1; T3, the missile guidance task, e3(w1, w2) = w2.
Tasks T1,T2,T2 have periods p1 = p2 = p3 = 2 seconds. There are 3 processors:
P1, P2, P3. In an allocation M , task T1 is on P1, task T2 is on P2, and task T3 is
on P3.

3.3 Robust Task Allocation for Dynamic Distributed
Real-Time Systems

In this section, a task allocation strategy is developed that not only guarantees
the feasibility of allocations but also explicitly maximizes the robustness of fea-
sible allocations in unpredictable environments. Intuitively, a robust allocation
allows the system to absorb a large amount of environmental variation, while
continuing to deliver feasible real-time services. Significance of the robustness
lies in the fact that no new allocation has to be recomputed, and no reallocation
needs to be enacted. Both actions can be very time consuming, and deadline
violations may result from a poorly allocated system, when changes in envi-
ronmental variables frequently trigger reallocations. The problem definition is
introduced next.

Problem definition: Define a robustness metric R = R(W1, W2..., Wl) (R ∈
R+) that characterizes the ranges, [0, Wk] (1 ≤ k ≤ l), of environmental variable
values allowed simultaneously by an allocation. For any instantaneous value of
(w1, w2, ..., wl) falling within these ranges, the allocation should be feasible (no
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deadline misses). Next find the allocation S → H under which the robustness
metric R is maximized, while the allocation satisfies the following feasibility
constraints,

- when EDF scheduling is used, ∀j : 1 ≤ j ≤ m,
∑

i: Ti→Pj

ei(w)
pi
≤ 1,

- when RMS scheduling is used, ∀j : 1 ≤ j ≤ m,
∑

i: Ti→Pj

ei(w)
pi
≤ nj(2

1
nj − 1),

where nj is the number of tasks allocated to processor Pj . Return the set of
maximum allowable ranges [0, Wmax

k ] (1 ≤ k ≤ l). (The acronym EDF refers to
Earliest Deadline First scheduling, and RMS refers to Rate Monotonic Schedul-
ing. They will be used in the remainder of the chapter for convenience.)

The problem calls for the maximization of a robustness measure against multi-
ple environmental variables while the allocation stays feasible on every processor.
This involves two issues: the choice of a meaningful robustness metric to maxi-
mize, and the development of an algorithm that finds the robust allocation based
on the metric. It is also necessary to guarantee the quality of robustness it finds.
These issues will be addressed in this section.

The problem is not a regular constrained optimization problem, because the
constraints are not given explicitly but are functions of allocations and they
need to be discovered. Exhaustively enumerating all allocations is not desirable
because of the expensive running time. Therefore, to still be able to obtain
assurance on quality, allocation strategies are used that may help provide explicit
bounds on these constraints. One such strategy is the well-known greedy first-fit
heuristic. The analysis will be able to leverage the existing results such as the
worst case utilization bound by [18] for rate monotonically scheduled systems
and a similar bound developed by [19] for EDF systems.

The section is organized as follows. Section 3.3.1 discusses finding robust al-
locations in the case of one environmental variable. An approximation ratio is
developed for the robustness found by a greedy first-fit based allocation algo-
rithm. The result will build the foundation for subsequent extensions to multiple
environmental variables. Section 3.3.2 develops a robustness metric appropriate
for the case of multidimensional environmental variables, and then properties
of the metric are examined. Section 3.3.3 proposes an allocation algorithm that
works for the multi-dimensional case, and an approximation ratio is then derived.

3.3.1 Robust Allocation for the One-Dimensional Problem

When a dynamic distributed real-time system (DDRTS ) is affected by a single
environmental variable w, the robust allocation means a feasible allocation (all
deadlines are met) that maintains feasible for any possible value of w in the
range [0, Wmax]. Thus Wmax is regarded as the robustness metric of an allo-
cation and maximized. An allocation algorithm has been developed based on
greedy first-fit that maximizes robustness using this metric, named the maximal
allowable workload [12]. The algorithm is next referred to as RAFF-1, or the
Robust Allocation algorithm based on First-Fit under 1 environmental variable.
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A two-component approximation ratio of the algorithm was developed in [21]
for rate-monotonic (RM ) systems by assuming two well-behaved conditions. In
this section, the approximation ratio for the robustness of allocations by RAFF-1
will be derived for more general cases and with better results. Processors may be
scheduled either by RMS or EDF, and both cases will be discussed. The section
begins with an examination of a DDRTS ’s dependency on the environment, and
then the order of such dependency is characterized. The characterization will
later be helpful to show that systems of higher orders can attain much better
approximation ratios.

Order of dynamic real-time systems

In the one-dimensional case, the environment affects a DDRTS through the vari-
able w that alters execution times of tasks according to profile functions, ei(w).
The function characterizes the time complexity of algorithms implemented in
each task and provides a new type of task information useful for the optimiza-
tion problem. Before using these profile functions in subsequent discussions, we
make some mathematical preparations and qualifications on them.

When there is no workload (w = 0), a task should only have a constant
workload independent execution time ei(0) = c. To fulfill this requirement when
a profile function involves a logarithmic function, it may be shifted by 1 as
log(w + 1) to satisfy this requirement. The domains of profile functions ei(w)
are expanded from Z+ to R+, since the profile function forms (e.g. polynomial,
logarithmic, exponential...) generally have mathematical definition on R+. For
instance, ei(w) = cwlog(w +1) that profiles a sorting task is indeed well defined
for w ∈ R and w ∈ [0,∞). Usually their domains are restricted to integers due
to practical considerations. However, working with the full domain of a function
enables us to conveniently exploit intrinsic function properties via derivatives,
which are useful to speculate global function behaviors. The profile functions are
assumed at least twice differentiable. This is not a problem for normal functions.
If a profile function is gathered in some non-continuous manner, it is always pos-
sible to bound or interpolate it using polynomial functions [22]. Two definitions
are introduced next to differentiate DDRTSs based on derivative properties of
their system utilization functions. This helps to characterize the level of influence
that the environment has on the DDRTSs.

Definition 3.1. A function f(w) is well-behaved to the k-th order, k ∈ {1, 2, ..},
if there are, f (i)(w) ≥ 0 for 1 ≤ i ≤ k + 1, and f (k)(w) 
= 0.

Definition 3.2. A DDRTS is order-k dependent on the environment via variable
w (or “order-k dynamic” for short), if the execution time profile function of every
task, ei(w), is non-decreasing in w, and its total utilization, U(w) =

∑n
i=1

ei(w)
pi

,
is well-behaved to the k-th order by definition 3.1.

These k constants will later be shown to contribute to approximation ra-
tios about the robustness of DDRTS s achievable by RAFF-1 allocations. To



3 Robust Allocation and Scheduling Heuristics 69

illustrate how a DDRTS may easily be classified as order-k dynamic, a few simple
examples of various kinds are listed.

- If ei(w)
pi

= ciw
i for 1 ≤ i ≤ 10, then this system of 10 tasks is order-10

dynamic.
- If ei(w)

pi
= ciw for 1 ≤ i ≤ 9, and e10(w)

p10
= c10w

2, then this system of 10
tasks is order-2 dynamic.

- If ei(w)
pi

= ciw for 1 ≤ i ≤ 9, and e10(w)
p10

= c10e
w, then this system of 10 tasks

is order-∞ dynamic.
- If ei(w)

pi
= ciw for 1 ≤ i ≤ 9, and e10(w)

p10
= c10w log2 (w + 1), then this system

of 10 tasks is order-1 dynamic.
If ei(w)

pi
= ciw for 1 ≤ i ≤ 9, and e10(w)

p10
= c10w

2 log2 (w + 1), then this
system of 10 tasks is order-2 dynamic. The two examples above show that
functions like wn log2 w are allowed.

- If ei(w)
pi

= w log2(w + 1) for 1 ≤ i ≤ 5, and ej(w)
pj

= log2 (w + 1) for 6 ≤ j ≤
10, then this system of 10 tasks is order-1 dynamic. This example shows that
tasks with logarithmic execution times may also be allowed if other tasks in
the system with super-linear execution time can outweigh them. If a system
does have tasks with log w execution time yet cannot be outweighed, the next
treatment is to bound it with a linear function to render it well-behaved.
Consequently, the extra savings of execution time would be ignored.

Robustness analysis

After characterizing the environment dependency order of a DDRTS, we pro-
ceed to analyze its robustness quality when allocated by RAFF-1. As shown in
Algorithm 3.1, RAFF-1 combines a binary search with a first-fit allocation (see
Algorithm 3.3) to find the allocation with maximum robustness. It uses the ro-
bustness metric defined as the upper limit of the allowable workload range by an
allocation. The algorithm performs binary search along the workload value and
uses the greedy first-fit allocation algorithm by [18] to assign tasks to processors
using execution time values at that workload; the search terminates when the
workload value cannot be increased any further. The largest feasible workload
is the MAW (acronym for Maximal Allowable Workload) and the allocation by
first-fit is the most robust allocation.

If this algorithm is used and the DDRTS being allocated is order-k dynamic,
the system is found to have an absolute approximation ratio and an asymptotic
performance ratio. For this maximization problem, the former is the tightest
bound on RA(I) = OPT (I)

A(I) for all instances I, and the latter is the bound
under large instances [23]. Let OPT (I) be the optimal Wmax that exists in
the allocation problem I, and FF (I) be the Wmax produced by the RAFF-
1 algorithm; let r1

FF denote the absolute approximation ratio for 1 dimension
(single environmental variable) and r1∗

FF be the asymptotic ratio, then there is:

Lemma 3.1. If a DDRTS system has utilization function such that U ′(w) ≥ 0
and U ′′(w) ≥ 0, and RAFF-1 is used to allocate the system,
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Algorithm 3.1. RAFF-1
1: Input: 〈S, H〉.
2: Output: The max workload w for a feasible allocation S → H .
3: set w = 1;
4: while FirstFitAllocation( S(w), H ) = “Feasible” do
5: set w = w · 2;
6: end while
7: set low = w

2 , high = w;
8: while high �= low do
9: set w = low+high

2 ;
10: if FirstFitAllocation( S(w), H ) = “Feasible” then
11: set low = w;
12: else
13: set high = w;
14: end if
15: end while
16: return w

(a) if processors are scheduled by RMS, then r1
FF (RM) < 2−2δ√

2−1−δ
, where δ =

U(0)
m and m is the number of processors; asymptotically when OPT (I)→∞,

r1∗
FF (RM) ≤

1−δ√
2−1−δ

.
(b) if processors are scheduled by EDF, then r1

FF (EDF ) < 4−4δ
1+1/m−2δ ; asymptot-

ically when OPT (I)→∞, r1∗
FF (EDF ) ≤

2−2δ
1+1/m−2δ .

The technical proof is provided in Appendix A. Lemma 3.1 results in the follow-
ing theorem.

Theorem 3.1. If a DDRTS is order-k dynamic (k ≥ 1), and RAFF-1 is used
to allocate the system,

(a) if processors are scheduled by RMS, then r1
FF (RM) < 2−2δ√

2−1−δ
, where δ =

U(0)
m and m is the number of processors; asymptotically when OPT (I)→∞,

r1∗
FF (RM) ≤ 1−δ√

2−1−δ
.

(b) if processors are scheduled by EDF, then r1
FF (EDF ) < 4−4δ

1+1/m−2δ ; asymptot-
ically when OPT (I)→∞, r1∗

FF (EDF ) ≤ 2−2δ
1+1/m−2δ .

Proof. By definition of order-k dynamic (Definition 3.2), the DDRTS’s utiliza-
tion function U(w) is well-behaved to the k-th order. According to Definition
3.1, it has U (i)(w) ≥ 0 for 1 ≤ i ≤ k + 1 (k ≥ 1). Thus U ′(w) and U ′′(w) ≥ 0 for
i = 1 and 2. Therefore, conditions of Lemma 3.1 are sufficiently satisfied and its
results follow.

Next we proceed to show that for systems that are higher order dynamic (k > 1),
it turns out an even better asymptotic approximation ratio can be derived.
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Fig. 3.3. Asymptotic approximation ratio as a function of order k and independent
utilization δ

Theorem 3.2. If a DDRTS is order-k dynamic (k > 1), then asymptotically

when OPT (I)→∞, r1∗
FF (RM) ≤

(
1−δ√
2−1−δ

) 1
k

, and r1∗
FF (EDF ) ≤

(
2−2δ

1+1/m−2δ

) 1
k

.

Proof for the theorem is listed in Appendix B. The result can be visualized in
Fig. 3.3. The asymptotic approximation ratio is plotted as a function of two
variables: the order of the system, k, and the workload independent system
utilization as a fraction of overall resource, δ. The upper surface corresponds to
the ratio for systems scheduled by RMS, and the lower surface corresponds to
the ratio for systems scheduled by EDF (at m = 5).

3.3.2 A Multi-dimensional Robustness Metric

When a system is affected by multiple environmental variables, the range of a
single variable is obviously inadequate to capture the overall robustness of the
system, and a more comprehensive multi-dimensional robustness metric needs
to be defined. Although the set of environmental variables may be regarded as a
vector, norm of the vector is not a good choice for robustness metric. For instance,
l2 norm is defined as: l2 ≡ ‖x‖2 = (

∑n
i=1 x2

i )
1/2, where the xi corresponds to

environmental variables. This norm, however, implies that a given robustness
value may potentially be achieved by any point of environmental variables on
a sphere of the radius ‖x‖2, even if the point has all components equal to 0
but just one, xk = ‖x‖2. This is not desirable since environmental variables
may not be tradable with each other in value. For example, (a) the ability to
handle 15 missile tracks alone cannot substitute (b) the ability to handle 5 missile
tracks and 5 torpedo tracks, even though scenario (a) may appear to offer more
robustness than (b) with the norm of 15 >

√
52 + 52 = 7.07. It can misguide
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Fig. 3.4. Contour lines of robustness metric in two dimensions

the optimization algorithm to prefer the case (a) and cause undesirable results.
The non-tradability between environmental variables has to be considered in the
metric definition.

Another consideration in the choice of metric is the relative importance among
the components. Naturally, certain environmental variable dimension may be re-
garded more important than others. For instance, military statistics may indicate
that for a certain combat type A, incoming missiles are twice as likely as torpe-
does. Then handling more missile tracks becomes more important than torpedo
tracks. Therefore, the metric definition needs to take weights into consideration.

The robustness metric is defined similar to l∞, but rather than the maxi-
mal component, the minimal component is chosen. To address the relative im-
portance, each workload dimension is weighted. Let ki > 0, and Wi ≥ 0, the
robustness metric R is defined as,

R(W) ≡ min
1≤i≤l

(ki|Wi|) = min
1≤i≤l

(kiWi). (3.1)

Similar choice was made by [13, 24, 25]. The minimal range of value among
weighted environmental variables is maximized. A system optimized by this met-
ric will be able to absorb maximum changes in any dimension of environmental
variable. When this metric is used in scenarios (a) and (b), now (a) would have
a robustness of 0 while (b) would have a robustness of 5 (equal weights), thus
(b) would be preferred.

To illustrate properties of this metric, the equi-value contour lines for R(W) =
1, 2 are plotted in Fig. 3.4 in two dimensions. As shown, the metric value increases
as the lines spread out, and the lines are shaped as right angles parallel to the
coordinate frame. In addition, it is easy to see that ’origins’ of these contour
lines reside on a diagonal line, y = k1

k2
x, which can be generalized in the multi-

dimensional space to,
kiWi = t, (3.2)

where t is the parameter in the parametric format of the line.
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In the graph, the point W0 = (x0, y0) = (1/k1, 1/k2) was shown on this line.
It has k1x0 = k2y0 = 1 and thus a metric R(W) = min(1, 1) = 1. Generally, if
W is on the line, R(W) = min1≤i≤l(kiWi) = t, and thus parameter t turns out
to be the value of robustness metric itself. So the line may also be given as,

Wi =
R(W)

ki
(1 ≤ i ≤ l). (3.3)

As shorthand, the diagonal line is referred to as the ray of origins. Geometrically,
any point on it helps determine the whole R(W) = c contour line through the
point.

Search space reduction

Next the robustness metric will be employed in the optimization problem. This
subsection will show that it suffices to concentrate the search for the maximum
metric value on a subset of the total search space. This allows to design an
efficient algorithm to maximize robustness in the next section.

Generally, an algorithm’s running time does not decrease as its input size
grows larger, thus it was assumed that execution time functions are non-
decreasing in one dimension [12]. When an execution time function depends
on multiple environmental variables, it is reasonable to assume the function is
also non-decreasing along every dimension, or mathematically,

∂ei(w)
∂wj

≥ 0 (1 ≤ j ≤ l, 1 ≤ i ≤ n). (3.4)

For instance, a bin-packing algorithm may run in O(mn), where m and n is the
numbers of bins and blocks. Clearly, its execution time function is non-decreasing
in either dimension. This yields an important property.

Lemma 3.2. If tasks of a DDRTS have execution time functions that are non-
decreasing in all dimensions, then for every allocation of the DDRTS, there
can exist only one tangent point between the boundary line (or surface) of its
feasible area, f(W) = c, and the robustness metric’s contour line (or surface),
R(W) = c′. The tangent point occurs at the metric contour’s origin.

Proof. Without loss of generality, the proof is given for the two-dimensional case.
Let the feasibility boundary of an allocation be described by f(W1, W2) = c, or
equivalently W2 = g(W1).

We first show that for every allocation, everywhere on the feasibility boundary
line there is dW2

dW1
≤ 0. Assume that somewhere dW2

dW1
> 0. Let there be W2 =

g(W1) and W ′
2 = g(W ′

1). Then it is possible that when W ′
1 = W1 + Δ (for any

Δ > 0), W ′
2 > W2. It follows that since the allocation is feasible at (W ′

1, W
′
2), it

should also be feasible at (W1, W
′
2), because W1 < W ′

1 decreases execution times
of all tasks and tasks allocated on every processor stays schedulable. However,
since (W1, W2) is on the feasibility boundary, (W1, W

′
2) should not be feasible
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because W ′
2 > W2. Thus we have reached a contradiction and the assumption

was false. There is dW2
dW1
≤ 0 everywhere on the feasibility boundary line.

This means that at any point on the feasibility boundary line of each alloca-
tion, the angle is greater than π

2 , and a tangent contact with the metric’s right
angle contour at its origin will prevent any further crossing of the two lines.

Here are some ideas to prove the generalized n-dimensional case. The ori-
entation of the surface of f(W) can be abstracted by the vectors normal to
it, ∇f(W). Due to the non-decreasing assumption, these vectors ∇f(W) =∑

i ei
∂f
∂wi

have positive projections on all coordinate frame base vectors ei. If
there is a tangent point other than the origin, the convexity there will lead to
vector ∇f(W) with negative projections, which results in a contradiction to the
assumption.

An illustration is given in Fig. 3.5(a). An illustration of an ill-behaved feasibility
boundary without the non-decreasing condition is given in a counterexample in
Fig. 3.5(b). As can be seen in (a), the tangent point corresponds to the origin of
the metric contour and is easily found; while in the ill-behaved case, the tangent
points have to be searched in general or solved for in special functions. Every
allocation of a non-decreasing DDRTS contains one such special point, which
resides on the same “ray of origins” line. Next, one of the points will be shown
to correspond to the maximum robustness metric value, and the corresponding
allocation will be the robust allocation.
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Theorem 3.3. If a DDRTS has tasks with non-decreasing execution time func-
tions, then its maximum achievable robustness metric value, Rmax, can be
found by incrementally searching along the “ray of origins” line of the metric,
Wi = 1

ki
t (1 ≤ i ≤ l), until the metric value fails to have any feasible alloca-

tion. The resulting maximum allowable values for environmental variables are
Wmax

i = Rmax

ki
(1 ≤ i ≤ l).

Proof. For each allocation, the tangent point(s) between the feasibility boundary
and the metric contour mathematically means that the metric value is the max-
imum at the point(s). Because such point is unique now and resides on the “ray
of origins” line (by the lemma above), to find the overall maximum of this value
among all allocations, the line should be searched incrementally starting from
t = R(W) = 0. The search proceeds while at each value a feasible allocation is
found (with task execution times fixed by the value). If no feasible allocation can
be found for R(W)+1, then Rmax = R(W). This is because if R(W)+2 or more
were to produce a feasible allocation (say A) again, then R(W)+ 1 must have a
feasible allocation (at least the same A) due to the non-decreasing condition (a
contradiction). Therefore it must be Rmax = R(W), and the resulting maximum
allowable values for environmental variables are Wmax

i = Rmax

ki
(1 ≤ i ≤ l) since

the point resides on the “ray of origins.”
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The search literally “pushes the boundary” of allocations at their maximally
valuable points until they cannot be expanded any further. An illustration is
given in Fig. 3.6. The pyramid shape is the robustness metric function surface
in two dimensions. The boundaries of four allocations were plotted and the
maximum robustness of each allocation is its interception point with metric
surface where the R value is highest (the tangent point mentioned earlier). The
arrow (“ray of origins”) points at the direction of the search which pushes the
feasibility boundary and discovers the allocations 1, 2, 3, 4 in increasing order
of their maximum robustness value, until it cannot be increased any further
under available resource. The observation helps to develop the robust allocation
algorithm for multiple dimensions in the next section.

3.3.3 Robust Allocation for the Multi-dimensional Problem

The previous section showed that, when the robustness metric is used, it is un-
necessary to exhaustively explore the whole l dimensional space of environmental
variables to find the maximum metric value. In fact, it is sufficient to just search
a diagonal line across the space. This valuable result can significantly reduce the
running time of the search.

In this section, an approximation algorithm is developed to find robust alloca-
tions under multiple dimensions of environmental variables, and its performance
is analytically evaluated. It was demonstrated in the one-dimensional case that
a binary search coupled with first-fit allocation efficiently produces good max-
imal allowable workload [12, 26]. A linear search along the ray of origins will
now serve as a driver to determine a set of constant environmental variable
values used to evaluate task’s execution times. With these constant execution-
time values, a greedy first-fit allocation algorithm will test for the existence of
a feasible allocation. If the allocation algorithm finds a feasible allocation, the
search advances to the next set of environmental variable values; if the allocation
algorithm does not find any feasible allocation, the search terminates, and the
largest feasible values of environmental variables are returned along with the
corresponding allocation.

Algorithm 3.2. RAFF-n
1: Input: 〈S, H〉
2: Output: A set of environmental variable (EV) values found to have maximal

robustness metric and their associated allocation

3: metric = 0
4: while FirstFitAllocation(S({metric+1

ki
}), H)=“Feasible” do

5: metric = metric + 1
6: save FeasibleAllocation
7: end while
8: {wmax

i } = {metric
ki

}
9: return {wmax

i }, FeasibleAllocation
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Algorithm 3.3. FirstFitAllocation
1: Input: 〈S({wi}), H〉
2: Output: “Feasible” or “Not Feasible,” and FeasibleAllocation : S −→ H

3: for each task i do
4: set j = 1; n = |H |;
5: while job i has not been allocated and j ≤ n do
6: set nj = |{Tk|alloc(Tk) = Pj}| + 1;
7: if processors scheduled by RMS then

8: set unibound = nj(2
1

nj − 1);
9: else if processors scheduled by EDF then

10: set unibound = 1;
11: end if

12: if

(
∑

alloc(Tk)=Pj

Tk.e({wi})
Tk.p

)

+ ei({wi})
pi

≤ unibound then

13: set alloc(Ti) = Pj ;
14: else
15: set j = j + 1;
16: end if
17: end while
18: if j > n then
19: return “Not Feasible”;
20: end if
21: end for
22: FeasibleAllocation = alloc
23: return “Feasible”

The first part of the algorithm is listed in Algorithm 3.2. A linear search
is coupled with the greedy first-fit algorithm, shown in Algorithm 3.3, which
works for variable execution times and processors scheduled by either RMS or
EDF. The two algorithms together are referred to as RAFF-n. The quality of
the algorithm will be given next as approximation ratios.

Earlier in section 3.3.1, approximation ratios have been derived for the one
dimensional case of environmental variable. The results will be extended next to
the multi-dimensional case. As before, the extension begins with a definition of
order-k dynamic systems, under a higher dimension of environmental variables.

Definition 3.3. A DDRTS is order-k dynamic in the l-dimensional environ-
mental variable space if the execution time function of every task, ei(w), is
non-decreasing in every dimension, wi (1 ≤ wi ≤ l); define derivatives on the
system utilization to be,

U (i)(w) ≡ ∂iU(w)
∂wm1∂wm2 . . . ∂wmi

,

and there are:

- ∀m1, m2..mi ∈ [1, l], U (i)(w) ≥ 0 for 1 ≤ i ≤ k + 1, and
- ∃m1, m2, ..mi ∈ [1, l] such that U (k)(w) 
= 0.
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Many functions satisfy these conditions. For example, O(n2 + mn) is order-2
dynamic in the dimension of m and n.

Theorem 3.4. If a DDRTS is order-k dynamic in l dimensions and allocated
by the algorithm of RAFF-n, its robustness, as measured by the metric, has an
absolute approximation ratio of rl

FF (RM) < 2−2δ√
2−1−δ

and rl
FF (EDF ) < 4−4δ

1+1/m−2δ .

Asymptotically, it has rl∗
FF (RM) ≤

(
1−δ√
2−1−δ

) 1
k

, and rl∗
FF (EDF ) ≤

(
2−2δ

1+1/m−2δ

) 1
k

.

Proof. Intuitively, since the algorithm searches along the “ray of origins,” which
is actually one dimensional, previous approximation ratios seem helpful for ob-
taining the approximation ratio in the l-dimensional case. Notice that execution
time functions of tasks in order-k dynamic systems are non-decreasing, therefore
the previous linear search approach is applicable.

We first express the ray of origins in vector form, i.e.,

l =
l∑

i=1

t

ki
ei, (3.5)

where t ∈ R and t ≥ 0. The system utilization is a function of the environmental
variable vector, thus its change with respect to t along the ray of origins is,

dU(w) = ∇U(w) · dl =
l∑

i=1

(ei
∂U(w)

∂wi
) ·

l∑

j=1

(ej
dt

kj
)

=
l∑

i=1

1
ki

∂U(w)
∂wi

dt ⇒ dU(w)
dt

=
l∑

i=1

1
ki

∂U(w)
∂wi

,

(3.6)

In addition, its double derivative is

d2U(w)
dt2

=
l∑

i=1

1
ki

d

dt
(
∂U(w)

∂wi
)

=
l∑

i=1

1
ki

l∑

j=1

∂2U(w)
∂wj∂wi

dwj

dt
=

l∑

i=1

l∑

j=1

1
ki

∂2U(w)
∂wi∂wj

1
kj

,

(3.7)

similarly, the ith derivative is,

diU(w)
dti

=
l∑

m1=1

. . .

l∑

mi=1

1
km1

. . .
1

kmi

∂iU(w)
∂wm1 . . . ∂wmi

. (3.8)

When a DDRTS is order-k dynamic in l-dimension, it follows from the above
results and definition 3.3 that, diU(w)

dti ≥ 0 for 1 ≤ i ≤ k + 1 and dkU(w)
dtk 
= 0.

Therefore, the system utilization function U(w(t)) = U(t) is well-behaved to the
k-th order in the dimension of t, which is effectively identical to the workload
variable earlier. Further, we note that it was previously shown in equation (3.3)
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that parameter t is equivalent to the robustness metric R(W). Therefore, by
Theorem 3.1 and Theorem 3.2, there are: rl

FF (RM) < 2−2δ√
2−1−δ

and rl
FF (EDF ) <

4−4δ
1+1/m−2δ ; asymptotically, there are: rl∗

FF (RM) ≤
(

1−δ√
2−1−δ

) 1
k

, and rl∗
FF (EDF ) ≤

(
2−2δ

1+1/m−2δ

) 1
k

.

3.4 Experiments

Three experiments are designed to test the performance and scalability of RAFF-
n algorithm. Experiment 1 compares solutions of the algorithm against optimal
solutions and validates the theoretical approximation ratios using the solutions.
Experiment 2 compares performance of the RAFF-n with several baseline
algorithms for large problem instances. The purpose is to show that the algorithm
has both good and scalable performance. Experiment 3 illustrates a use of the
algorithm to solve a toy problem of missile-defense system.

The experiments are performed using simulations on a Pentium 4 PC run-
ning Fedora Linux. Problem instances are generated in which various system
parameters are set. These include task period, deadline, number of processors,
processor speed, number of environmental variables, number of environmental
variable-dependent tasks, number of environmental variable-independent tasks,
and the execution time function of each task. Given an order-k DDRTS, the
execution-time function of each task is constructed by means of linear combina-
tions of basis functions chosen from the set, {wj

i log wi, w
j
i |1 ≤ i ≤ l, 1 ≤ j ≤ k}.

The elements used are chosen randomly according to a user-defined distribu-
tion, and their coefficients are randomly generated. By doing so, it is intended
to represent general problem instances by the randomly produced samples. Two
environmental variables are assumed. Results of the first experiment are pre-
sented next.

3.4.1 Experiment 1

This experiment compares solutions of the RAFF-n algorithm with optimal solu-
tions, and it also demonstrates the theoretical approximation ratios based on the
solutions. To obtain optimal solutions, an exhaustive search algorithm, named
RABB-n, has been developed. Problem instances are generated with 5 proces-
sors, and the number of tasks varies from 5 to 20. Systems of order 1 to 3 are
generated. Both cases of RM and EDF scheduling are tested for each problem
instance.

The robustness values of allocations produced by the RAFF-n and RABB-n
for each instance are recorded and plotted. In addition, in order to visualize
the approximation ratios on the same graph, each ratio is computed and then
converted to the unit of robustness by multiplying with the optimal robustness
value by RABB-n. Thus, the approximation ratios are represented as robustness
lower bounds to RAFF-n, and obviously, the lower bounds corresponding to
asymptotic ratios are tighter than those of absolute ratios.
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Fig. 3.7. Comparisons of robustness values found by RAFF-n, RABB-n, and bounds
from absolute and asymptotic approximation ratios under RMS or EDF scheduling for
three orders of DDRTS

Robustness results are shown in Fig. 3.7. In the figure, the row number cor-
responds to the order of the system, and the column tells whether a system
is scheduled by RMS (left) or EDF (right). As shown, the robustness value
of RAFF-n is 97% of the optimal value (by RABB-n) on average, overlapping
on many occasions. This shows RAFF-n is near-optimal under these small in-
stances (in the next experiment, large instances will also be examined). When
EDF-scheduling is used, RAFF-n achieves higher robustness compared to RM-
scheduling, and this is due to a higher schedulable utilization on every processor.
When the order of a system increases, its robustness value generally drops. This
is because utilization of a higher-order system rises much faster under the same
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Fig. 3.8. Comparisons of robustness values found by RAFF-n, RARN-n, RAHC-n,
and RASA-n for large problem instances under RMS and EDF scheduling for three
orders of DDRTS

workload change, compared to a lower-order system, and thus it takes much less
workloads to reach resource limits. The approximations ratios have correctly
bounded the performance of RAFF-n. On average, lower bounds by the abso-
lute ratio are 25% of optimal, while lower bounds by the asymptotic ratio are
66% of optimal. The lower bounds can be seen to further improve as the sys-
tem order becomes higher. This is because a k-th root can be taken in the ratio
expression (k is the system order).

The experiment has demonstrated the good performance of the RAFF-n al-
gorithm and verified its approximation ratios in small problem instances. The
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Fig. 3.9. Comparisons of running times of RAFF-n, RARN-n, RAHC-n, and RASA-n
for large problem instances under RMS or EDF scheduling for three orders of DDRTS

small problem instances are necessary for the use of the RABB-n algorithm to
find optimal solutions. In order to demonstrate that its good performance is
also scalable, the algorithm will be tested next under much larger problem
instances.

3.4.2 Experiment 2

This experiment aims at demonstrating RAFF-n has both good and scalable
performance. Problems are generated that have 100 processors, and the num-
ber of tasks ranges from 100 to 1000. As before, the order of systems varies
from 1 to 3, and both cases of RM and EDF scheduling are tested. Since the
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Fig. 3.10. Significance test for RAFF-n with RMS and EDF scheduling systems under
three orders of DDRTS

problem size renders RABB-n inapplicable, several standard optimization al-
gorithms have been developed and used as baselines for comparison. These
are random-search (RARN-n), hill-climbing (RAHC-n), and simulated-annealing
(RASA-n). For each problem size, 10 random instances are generated. Robust-
ness and running time data from every algorithm are gathered and averaged
among 10 instances. The comparison of maximum robustness values produced
by these algorithms is shown in Fig. 3.8. The comparison of their running times
is shown in Fig. 3.9.

Plots in Fig. 3.8 show that the robustness quality from RAFF-n is consistently
higher than the other algorithms. As can be seen, its advantage is significant and
more than 50% better on average. Besides the advantage in robustness quality,
Fig. 3.9 shows that RAFF-n also has the most efficient running-time, costing 0.1
to 10 seconds among all instances. It is followed by random-search and simulated-
annealing. Hill-climbing has the worst running time, because it has to explore
a large number of neighbors every step. A cutoff time of one minute has been
implemented to speed up the experiment, so its running times in the figure all
stop at 60 seconds.

Significance tests are performed for the data above. The samples from the
RAFF-n are compared with the samples from the second best RARN-n. The
purpose is to ensure the mean of the entire population of RAFF-n is larger than
that of RARN-n, that is, its performance advantage is statistically significant.
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The null hypothesis H0 is that the mean of RAFF-n is equal to the mean of
RARN-n; the alternative hypothesis Ha is that the mean of RAFF-n is larger
than the mean of RARN-n (one-tailed). It is assumed the variances of the two
are unknown but the same, and therefore, t-test for two samples is used.

For each problem size, the P-value is calculated based on the test statistic
value. The results are shown in Fig. 3.10. P-value is shown on the y-axis as a
percentage in log scale. The acceptable significance value of 1% and 5% are plot-
ted as straight lines. Mathematically, when the P-value is 1%-5%, it is considered
significant; when the P-value is below 1%, it is considered highly significant. As
shown, all instances are significant except just one at 800 tasks. A vast majority
of the instances are highly significant. As a result, the alternative hypothesis is
accepted. This means although 10 samples are tested for each problem size, there
is the statistical confidence to say that RAFF-n performs better than RARN-n
for all population.

The experiments have shown that the algorithm of RAFF-n is both a good
and scalable robust allocation solution in the presence of multiple environmental
variables.

3.4.3 Experiment 3

In this experiment, the algorithms are employed for the problem in the Dynbench
missile defense testbed [1]. There are three types of tasks in the system: Detect,
Engage and Guidance, and their execution times depend on two environmental
variables: r and m, which stands for the number of radar tracks and real threats.
Their execution time functions are determined experimentally in [27]:

Detect : e1(r, m) = 0.0869r2 + 15.4374r + 615 μs,
Engage: e2(r, m) = 12897m + 45610 μs,
Guidance: e3(r, m) = 0.0869r2 + 15.4374r + 12903.909m + 46476 μs.

The objective is to produce an allocation that maximizes the minimum of r and
m values. Three scenarios have been tested. As shown in Table 3.1, the scenarios

Table 3.1. Max robustness value found with RARN-n, RAFF-n, RABB-n algorithms
under three scenarios

# Detect Engage Guide Procs RARN-n RAFF-n RABB-n(OPT)
1 20 5 10 8 170 178 178
2 6 5 3 5 98 105 105
3 8 8 8 5 53 54 54

differ in the number of replicas of each task and the number of processors. It
is assumed that for Detect tasks, the deadlines and periods are 0.1 sec; for
Engage tasks, the deadlines and periods are 0.01 sec; for Guidance tasks, the
deadlines and periods are 0.05 sec. Results show that similar to the previous
experiment, RAFF-n has produced very good robustness, in this case same as
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the optimal achieved by RABB-n, while random search does not perform as well.
This experiment has corroborated previous findings.

3.5 Literature Review

This section compares and contrasts this work with related research in the area.
A problem of maximum allowable increase in load was introduced in [13]. Its
goal was to find a feasible allocation that maximizes a system runtime param-
eter. A mixed-integer-programming (MIP) algorithm was designed to find the
allocation. The work used end-to-end latency requirements and considered both
computation and communication latencies. However, for these end-to-end real-
time tasks, no real-time scheduling issues were considered to guarantee feasibility,
such as sub-release time and deadline assignments in [28, 29]. It was assumed
that all execution times can vary, but the variances were treated as linear func-
tions of just one system parameter. The proposed algorithm solved the problem
using MIP but a simplifying heuristic had to be applied first. No provable op-
timality bound was provided. Its performance was tested through simulations.
A norm-based robustness metric was proposed in [15]. Multiple runtime param-
eters were considered. The metric was defined as a radius for maximum allow-
able perturbation along any direction in the parameter space without violating
system performance bounds. The upper and lower bounds defined for system
performance form a hyperplane in the space, and the radius is the perpendicular
distance from the operating point to the plane. However, the metric directly used
l2 norm of the parameters, which cannot reflect importance differences among
parameters. More seriously, only the generic robustness metric was proposed,
and no optimization algorithm was actually developed.

[12] studied a robust task allocation problem for dynamic systems with one
workload variable. The problem was to find the maximum allowable workload
(MAW) for the system, when real-time tasks can be feasibly scheduled on every
processor using rate-monotonic scheduler. The task’s execution times were mod-
eled to have a workload-independent portion and a dependent portion, which
is non-decreasing with respect to workload. An algorithm was developed that
searches the workload using binary search and allocates tasks under each of the
workload using greedy first-fit. The schedulable utilization of rate-monotonic
scheduling was used to test feasibility on each processor. Several heuristic algo-
rithms were introduced to experimentally compare with the performance of this
approach, and they were simulated annealing, hill-climbing and random search.
An approximation ratio for the maximal allowable workload was proved in [21]
for identical processors and tasks with well-behaved execution times defined by
two conditions, which are satisfied by many algorithmic running-time functions.
[26] expanded the set of allocation algorithms to include tabu search, genetic
algorithm, dynamic programming, and optimal branch-and-bound search. The
experimental results indicated that the greedy first-fit algorithm performs quite
well in finding the MAW compared to these heuristic or exhaustive algorithms,
and it offers great cost-efficiency in time and space complexity. However, the



86 D. Gu and L. Welch

work was limited to only one workload variable, although having multiple vari-
ables is very likely in many systems. [30] further considered the problem of robust
allocation when tasks are replicable, and several heuristics were developed.

A different approach regarded task’s unpredictable execution times as random
variables and statistical guarantees for deadline misses were derived. The semi-
periodic task model by [5] assumed execution times are profiled with probability
histograms, and two methods were presented to compute each task’s deadline
miss probability. The first method assumed fix-priority scheduler in order to
develop a probabilistic time-demand analysis. Traditional time-demand analysis
was extended to consider randomness in task’s execution time and probabilistic
bounds were developed. The second method separated the semi-periodic task into
a fixed execution time task and a sporadic task, which arrives with a probability
depending on the partitioning. Then the former was scheduled with RM or EDF
normally, while the latter was run in a sporadic server or slack stealer. However,
the analysis was restricted to a single processor, and task allocation was treated
by simply evening the worst-case total utilization on every processor. [8] similarly
viewed execution time as a probability-density distribution. In addition, tasks
had dependencies and there are multiple processors. Given probability thresholds
for deadline misses in tasks, the optimization goal was to minimize their sum
of deviation beyond the thresholds. Tabu-search was used to explore the space
of processor assignment and task priority. The approach was shown to achieve
a much better goal than allocating simply based on average execution times.
However, the search and deviation evaluation were expensive.

Event stream model by [7] attributed varying execution times to a finite set
of event types that incur different workloads. It was argued when there is certain
regularity among events, it can be exploited to give better workload estimation
than using worst-case estimation. The workload estimation was based on type-
rate curves characterizing event regularity, which can be analytically generated
using finite state machine. The capture of the regularity in MPEG-2 I-P-B frame
sequence was demonstrated. In practice however, the type-rate curves have to be
profiled when no pre-knowledge is given, and they may be as poor as worst-case
estimation.

Varying task execution times were treated by [31] as distributed generalized
multi-frame tasks (DGMF). Each task has multiple frames with different execu-
tion times, deadlines, and periods. The release of a latter frame must be later
than the release of a former frame plus period of the frame. Each frame of a task
can be executed on a different host. A deadline was given separately for each
frame. An optimal but computationally intensive feasibility test was given for
the schedulability of a set of the DGMF tasks, using concept similar to critical
instance. A less expensive schedulability criterion was also given. It derived so-
lutions for priority assignment in several special cases: the deadline-monotonic
assignment is optimal for tasks with same frame deadlines and for tasks with
equal frame execution times; the rate-monotonic assignment is optimal for tasks
with frame deadline equaling period. However, the sequence of frames with varied
execution times had to be known in advance.
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3.6 Conclusions

Real-time systems are expected to operate predictably even when they are de-
ployed in highly dynamic and unpredictable environments. The average through-
put of computation is often not as important as the guarantee that work is always
completed on time. The allocation and scheduling of the systems are key
to offering such predictability. Research introduced in this chapter addresses
the problem by making the following contributions: (1) an accurate model
of environment-dependent systems, (2) metrics characterizing an allocation’s
robustness against environment variations, (3) allocation and scheduling algo-
rithms solving the robustness optimization problem, and the theoretical perfor-
mance guarantees.

Traditionally, real-time computing models do not incorporate environmental
factors and are not suitable for systems sensitive to environment changes. This
research has introduced a new model that captures the environmental factors so
that this valuable information is an active factor of consideration in the resource
optimization problem. For the systems, sources of environmental influences are
identified as environmental variables that are unpredictable, and tasks’ resource
needs are modeled as functions of the variables. Resource allocation problems
are posed that not only find allocations that are feasible but also maximize their
robustness against these unpredictable variables.

Robustness metrics have been defined to quantitatively characterize an al-
location’s robustness. The metric guides optimization algorithms to the most
robust allocations. A metric is defined based on max-of-min, which is found to
significantly reduce the necessary search space and boost search speed.

Algorithms to find robust allocations have been developed, and they are found
to have good and scalable performance. The fast running times meet the needs of
modern distributed real-time systems that may contain hundreds of processors
and thousands of tasks. Meanwhile, the quality of their allocations is warranted
by approximation ratios and lower bounds that have been derived. Experiments
demonstrated that they deliver the theoretical guarantee and have good perfor-
mance and fast running time. The advantage over baseline algorithms is found
statistically significant.

This is an interesting but difficult research problem to work on. Assumptions
have been made to make the problem manageable, such as execution time func-
tions are non-decreasing, identical processors are used, and only cpu resource is
considered. What comes out is a simple yet power algorithm, and we believe it
can serve as a solid foundation to be expanded on. It is certainly our goal that
as more research is done on this problem, these restrictions will be gradually
removed in the future work.
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A Proof for Lemma 3.1

Intuition of the proof was to use the knowledge of derivatives in system utilization
function U(w) to speculate its global behavior without knowing its exact form.
A good mathematical tool to exploit this is the Taylor expansion. U(w) can be
accurately expanded as a Taylor series when the integral remainder is used [22].
The expansion has this general form:

f(x) =
n∑

k=0

1
k!

f (k)(x− c)k + Rn(x), where

Rn(x) =
1
n!

∫ x

c

f (n+1)(t)(x − t)ndt.

(3.9)

It will be used in the proof next.

Let w0 be the real value for which U(w0) =
∑n

i=1
ei(w0)

pi
= (
√

2− 1)m, which
is the worst case utilization bound for first-fit allocation on rate-monotonically
scheduled processors [18]. We may assume w0 ≥ 1 since otherwise only zero
workload (�w0� = 0) can satisfy this utilization for feasible allocation, which
becomes the problem of fixed execution time task allocation, and there is no
value to consider the feasible range for allowed workload. Now for all w ≤ w0,
there is U(w) ≤ U(w0) since the system utilization function has U ′(w) > 0.
Therefore, by [18], all workload value w ≤ �w0� has a feasible allocation by first
fit. Thus FF (I) ≥ �w0�.

If we use the Taylor expansion to expand the system utilization U(w) to first
order about w = 0 and evaluate at w0, we have:

U(w0) = U(0) + U ′(0)w0 +
∫ w0

0
U ′′(t)(w0 − t)dt. (3.10)

Similarly, if we evaluate at point cw0 where c ≥ 1 and c ∈ R:

U(cw0) = U(0) + U ′(0)cw0 +
∫ cw0

0
U ′′(t)(cw0 − t)dt. (3.11)

Then,

U(cw0)− U(0)
cw0

− U(w0)− U(0)
w0

=
1

cw0

∫ cw0

0
U ′′(t)(cw0 − t)dt− 1

w0

∫ w0

0
U ′′(t)(w0 − t)dt

= . . . =
c− 1
cw0

∫ w0

0
U ′′(t)t dt +

1
cw0

∫ cw0

w0

U ′′(t)(cw0 − t)dt.

(3.12)

The first term c−1
cw0

∫ w0

0 U ′′(t)t dt ≥ 0 because c ≥ 1 , U ′′(t) ≥ 0, and t ≥ 0 for
t ∈ [0, w0]; the second term 1

cw0

∫ cw0

w0
U ′′(t)(cw0 − t)dt ≥ 0 because U ′′(t) ≥ 0

and cw0 ≥ t for t ∈ [w0, cw0]. As a result, U(cw0)−U(0)
cw0

− U(w0)−U(0)
w0

≥ 0, thus:

U(cw0) ≥ U(0) + c[U(w0)− U(0)]. (3.13)



3 Robust Allocation and Scheduling Heuristics 91

If we choose c = m−U(0)
U(w0)−U(0) , then U(cw0) ≥ m. Because it is impossible to utilize

processors more than full, and U(w) is non-decreasing, we have:

OPT (I) ≤ cw0 =
m− U(0)

U(w0)− U(0)
w0. (3.14)

Since FF (I) ≥ �w0�, there is:

OPT (I)
FF (I)

≤ OPT (I)
�w0�

≤ m− U(0)
U(w0)− U(0)

· w0

�w0�
<

m− U(0)
U(w0)− U(0)

· 2 =
2− 2δ

U(w0)
m − δ

.

(3.15)
We have expressed the workload independent system utilization U(0) as δm, and
used the fact that w0

�w0� < 2 since w0 ≥ 1. For the RAFF-1 on rate-monotonically

scheduled processors, we recall U(w0)
m =

√
2−1. Thus the absolute approximation

ratio r1
FF (RM) < 2−2δ√

2−1−δ
.

Asymptotically when OPT (I)→∞, the bound becomes tighter. From equa-
tion (3.14), there is w0 ≥ OPT (I)/c. When OPT (I)→∞, w0 →∞. This leads
to w0

�w0� = 1. Plugging it into equation (3.15), we have:

OPT (I)
FF (I)

≤ 1− δ
U(w0)

m − δ
, (3.16)

and thus the asymptotic approximation ratio r1∗
FF (RM) ≤ 1−δ√

2−1−δ
.

In the case when first-fit allocation is used on processors scheduled according
to EDF, let w′

0 be the real value for which,

U(w′
0) =

n∑

i=1

ei(w′
0)

pi
=

m + 1
2

.

Then there is,

U(�w′
0�) ≤ U(w′

0) =
m + 1

2
≤ βm + 1

β + 1
(β ≥ 1).

According to the worst case utilization bound by [19], the utilization U(�w′
0�) ≤

βm+1
β+1 sufficiently guarantees feasible EDF schedules using first-fit allocation (m

is the number of processors and β is the max number of the task with largest
utilization schedulable on one processor). As a result,

FF (I) ≥ �w′
0�.

Based on the same argument leading to Equation (3.15) and substituting
U(w0) by U(w′

0), there is,

OPT (I)
FF (I)

<
2− 2δ

1
m ·

m+1
2 − δ

=
4− 4δ

1 + 1/m− 2δ
.
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Similarly in the asymptotic case, Equation (3.16) leads to,

OPT (I)
FF (I)

≤ 2− 2δ

1 + 1/m− 2δ
.

Thus, the EDF -based robustness bound for first-fit is: r1
FF (EDF ) < 4−4δ

1+1/m−2δ ,
and asymptotically, r1∗

FF (EDF ) ≤
2−2δ

1+1/m−2δ .
Notice that there also exists a special case where FF (I) = OPT (I) (a ratio

of 1). That is when there is a task Ti for which ei(wp)/pi = 1 and U(wp) ≤
(
√

2 − 1)m (or βm+1
β+1 ). Then wp = OPT (I). Since first-fit can always find an

allocation when system utilization is less than Oh and Baker (or Lopez) bound,
it will have feasible allocation for wp: FF (I) = wp. Thus FF (I) = OPT (I), and
the approximation ratios equal 1.

B Proof for Theorem 3.2

We notice that by definition order-k dynamic systems automatically have
U ′(w) ≥ 0 and U ′′(w) ≥ 0. Therefore, for k > 1 all results from the proof
of lemma 3.1 still hold. We will make use of these during the proof.

If we use the Taylor expansion to expand the system utilization U(w) to kth
order about w = 0 and evaluate at w0, we have:

U(w0) = U(0) +
k∑

i=1

1
i!

U (i)(0)wi
0 +

1
k!

∫ w0

0
U (k+1)(t)(w0 − t)kdt, (3.17)

and equivalently,

U(w0) = U(0)+wk
0

(
k−1∑

i=1

U (i)(0)
i!

1
wk−i

0

+
U (k)(0)

k!

)

+
1
k!

∫ w0

0
U (k+1)(t)(w0−t)kdt.

(3.18)
From equation 3.14, when asymptotically OPT (I) → ∞, w0 → ∞. Therefore,

1
wk−i

0
→ 0 (k − i ≥ 1) against the constant U(k)(0)

k! where U (k)(0) 
= 0 (by

definition). So asymptotically,

U(w0) = U(0) +
1
k!

U (k)(0)wk
0 +

1
k!

∫ w0

0
U (k+1)(t)(w0 − t)kdt. (3.19)

Similarly, if we evaluate at point cw0 where c ≥ 1 and c ∈ R, asymptotically:

U(cw0) = U(0) +
1
k!

U (k)(0)(cw0)k +
1
k!

∫ cw0

0
U (k+1)(t)(cw0 − t)kdt. (3.20)
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Then,

U(cw0)− U(0)
(cw0)k

− U(w0)− U(0)
wk

0

=
1

wk
0k!

[
1
ck

∫ cw0

0
U (k+1)(t)(cw0 − t)kdt−

∫ w0

0
U (k+1)(t)(w0 − t)kdt

]

=
1

wk
0k!

[
1
ck

∫ w0

0
U (k+1)(t)[(cw0 − t)k − (cw0 − ct)k]dt

+
1
ck

∫ cw0

w0

U (k+1)(t)(cw0 − t)kdt

]

≥ 0.

(3.21)

Since (cw0 − t)k > (cw0 − ct)k for c > 1, and U (k+1)(t) ≥ 0, the first integration
is positive; it is also easy to see the second integration is also positive. Then,

U(cw0) ≥ U(0) + ck[U(w0)− U(0)]. (3.22)

When c = ( m−U(0)
U(w0)−U(0) )

1
k , U(cw0) ≥ m. Therefore,

OPT (I) ≤ cw0 =
(

m− U(0)
U(w0)− U(0)

) 1
k

w0. (3.23)

The asymptotic approximation ratio becomes,

OPT (I)
FF (I)

≤ OPT (I)
�w0�

≤
(

m− U(0)
U(w0)− U(0)

) 1
k w0

�w0�
=

(
1− δ

U(w0)
m − δ

) 1
k

,

where δ = U(0)
m . Since w0 tends to ∞, the ratio is 1. We used FF (I) ≥ �w0� as

before because for systems running RMS schedulers, we would choose w0 such
that U(w0)

m =
√

2−1 based on [18]; for systems running EDF schedulers, we would
choose w0 such that there is U(w0)

m = m+1
2m , using the previous discussion based

on [19]. Therefore, r1∗
FF (RM) ≤

(
1−δ√
2−1−δ

) 1
k

, and r1∗
FF (EDF ) ≤

(
2−2δ

1+1/m−2δ

) 1
k

.
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Summary. Scheduling is a very important problem in many real-world scenarios. In
the case of supercomputers it is even more important because available resources are
limited and expensive. The optimal use of supercomputer facilities is a critical question.
We have found that the definitions of traditional scheduling problems do not provide an
appropriate description for Supercomputer Scheduling (SCS). Thus, a new definition
for this kind of problems is proposed. The research already done in the field of other
scheduling problems can be modified to be applied in this new scenario. Nevertheless,
new techniques can also be developed. Thus, we have proposed a theoretical framework
to combine multi evolutionary algorithms called Multiple Offspring Sampling (MOS).
We have used this approach to combine multiple codings and genetic operators in this
scheduling problem. To summarise: first, we introduce a formal definition of super-
computer scheduling; second, we propose Multiple Offspring Sampling formalism; and
third, we have carried out an experimental test to compare the performance of this
formalism to solve SCS problems against traditional (non-combinatorial) techniques
and single genetic algorithms.

Keywords: Scheduling, Supercomputing, Evolutionary Algorithms, Multiple Off-
spring Sampling, Genetic Algorithms.

4.1 Introduction

Scheduling problems are part of many real-world scenarios, such as logistics,
manufacturing and engineering. Although on each of these scenarios the schedul-
ing problem appears with different characteristics and restrictions, this kind of
problems has been divided into a classical taxonomy: flow-shop scheduling (FSS),
job-shop scheduling (JSS), multiprocessor scheduling (MPS), and so on.

Job scheduling for supercomputers presents particular characteristics from the
ones named before and, therefore, it should be defined in a different way. Many
current supercomputers are large cluster systems, as ranked on the TOP500
supercomputers sites1. They are composed by hundreds or thousands of proces-
sors interconnected by a high-speed network. These facilities are designed to run
1 http://www.top500.org

F. Xhafa, A. Abraham (Eds.): Meta. for Sched. in Distri. Comp. Envi., SCI 146, pp. 95–120, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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parallel programs that are partitioned into a set of concurrent tasks. In general,
only one of these tasks should be running on each processor (there should be
no competing tasks on the same processor). Task scheduling for these systems
consists in the partition of the resources (processors, in most of the cases) for
the sequence of jobs to be run on the system with the objective of minimising
the total execution time.

Supercomputers are designed to run jobs divided into hundreds of parallel
tasks. Tasks of the same job are concurrent and interact among them exchanging
messages while running. A clear example are MPI parallel programs, common in
many scientific (e.g., physics simulations, protein docking) and engineering (e.g.,
fluid dynamics, finite elements calculus) fields. This means a significant difference
regarding the classical scheduling (e.g., multiprocessor scheduling) where the set
of interdependent sequenced tasks were described originally by means of a direct
acyclic graph (DAG).

Traditional solutions to schedule jobs in a supercomputer have been taken
from batch process scheduling algorithms. These algorithms are deterministic
criteria to order waiting jobs and to submit them into execution. They are usually
implemented on scheduling services, sometimes called resource managers. The
most advanced systems provide the possibility to be configured to use many
different algorithms, or even ad-hoc-defined variants that are more appropriate
to the administrative policies of a given site.

State-of-the-art cluster-based supercomputers are equipped with intercon-
nected multiprocessor nodes. Each node has two, four or, in the near future,
more processors (or multiple cores) sharing the same main memory (RAM).
Under this configuration, scheduling policies should satisfy an additional restric-
tion: the total amount of memory required by the processes running on a specific
node must not exceed its available shared memory. Although swapping virtual
memory is common in modern operating systems, if there is only one process
running on a system, swapping in and out memory pages significantly influences
on its performance.

Considering more than two restrictions (requested processes and free shared
memory on the available nodes) increases also the complexity of the scheduling
problem. Evolutionary algorithms have been used to solve complex optimisation
problems, including scheduling problems. The evolutionary paradigm is inspired
by natural selection, and genetic algorithms are the most representative ap-
proach.

This chapter presents the formal definition of supercomputer scheduling (SCS)
for parallel programs. To solve scheduling within this environment, traditional
methods have been applied, as well as an hybrid evolutionary approach (based on
genetic algorithms). For scheduling problems with moderate complexity, simple
evolutionary methods provide better results in both resource usage and times-
pan, compared to classical approaches. But in the case of complex problems,
with many waiting jobs and supercomputers with thousands of nodes, simple
evolutionary techniques might not find the best scheduling as it is not easy to
select the appropriate coding and genetic operators among all the available ones.
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In these cases, combined heuristic methods are a quite interesting alternative.
Results show how these combined methods help finding the best representation
and genetic operators. Thus, the combined algorithm outperforms both simple
traditional and evolutionary methods.

The experimental results shown in this chapter has been taken from the regu-
lar operations of the Magerit supercomputer hosted at the CeSViMa (Centro de
Supercomputación y Visualización de Madrid)2 . This system manages a queue
of a hundred waiting jobs (in average), and the experimental datasets have been
taken from the log files of previous executions.

Section 4.2 presents the state-of-the-art on different scheduling problems, while
Section 4.3 proposes the definition of the new supercomputer scheduling problem.
Section 4.4 presents traditional (non-combinatorial) methods. In Section 4.5, the
Multiple Offspring Sampling formalism is introduced. Section 4.6 shows the ex-
perimentation performed on Magerit supercomputer system. Finally, Section 4.7
concludes this study.

4.2 Related Work on Scheduling Problems

There are several kinds of scheduling problems defined in the literature. Although
none of them fits perfectly in our specific scheduling problem, it is important to
review them, as we borrow from scheduling literature the most relevant codings
and operators.

Scheduling problems deal with the allocation of resources over time to perform
a set of tasks and they are characterised by three main components:

• A number of machines and a number of jobs that must be submitted.
• A set of constraints that must be satisfied.
• A target function that must be optimised.

In this section we analyse the flow shop, job shop and multiprocessor schedul-
ing problems, which are relevant for the supercomputer scheduling introduced
in this work. There are other variants and subtypes which are not included in
this review.

4.2.1 Flow-Shop Scheduling Problem

The general flow-shop problem, defined by [1], is denoted as n/m/Cmax in the
literature. It involves n jobs, each requiring operations on m machines, in the
same machine sequence. The processing time for each operation is pij , where
i ∈ {1, 2, . . . , n} denotes a job and j ∈ {1, 2, . . . , m} a machine. The problem is
to determine the sequence of these n jobs that produces the smallest makespan
assuming no preemption of operations. In the simplest situation, all jobs are
available and ready to start at time zero. In more realistic situations jobs are
released at different times.
2 http://www.cesvima.upm.es
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Scheduling literature has a lot of solution procedures for the general flow-
shop scheduling problem. An excellent review about heuristic approaches can
be found in [1]. Furthermore, several meta-heuristic methods like tabu search,
genetic algorithms, simulated annealing and ant-colony have been used to solve
this problem.

The best results have been obtained with tabu search [14, 31] and genetic
algorithms [4, 36], which are the most popular methods. Besides, simulated an-
nealing [32] and ant-colony [50] have also been applied.

4.2.2 Job-Shop Scheduling Problem

The n×m minimum-makespan general job-shop scheduling problem can be de-
scribed by a set of n jobs {Ji}, i ∈ {1, 2, . . . , n} which has to be processed on
a set of m machines {Mj}, j ∈ {1, 2, . . . , m}. Each job must be processed in a
sequence of machines. The processing of the job Ji on machine Mj is called the
operation Oij . Operation Oij requires the exclusive use of Mj for an uninter-
rupted duration pij , its processing time. A schedule is a set of completion times
for each operation that satisfies those constraints.

In many different works have been proposed to solve the job shop scheduling
problem. The best results seem to be reached with tabu search [3, 31, 43]. An
explanation of this behaviour can be found in [47].

GAs have also been applied to the job-shop scheduling problem in a number
of ways. The first attempt for solving the problem using evolutionary methods
is carried out by [11]. One of the most successful GAs for scheduling is the GA3
algorithm by [27]. Other relevant works are [5, 26, 49] and [6]. In all cases it is
shown that conventional GAs are limited for this problem. Several improvements
over different elements are proposed to produce results comparable to the most
competitive methods. Typically these articles present methods that: (i) include
hill-climbers, (ii) take into account the application of problem specific knowledge,
or (iii) use more advanced evolutionary models.

4.2.3 Multiprocessor Scheduling Problem

The problem of scheduling a set of dependent or independent tasks to be pro-
cessed in a parallel fashion is a field where some authors, such as [48], have done
interesting works. A program can be decomposed into a set of smaller tasks.
These tasks can have dependencies or precedence requirements, defined by a di-
rect acyclic graph (DAG). The goal of the scheduler is to assign tasks to available
processors such that dependencies are satisfied and the makespan is minimised.

In [21], it is possible to find a good review and classification of deterministic
or static scheduling algorithms.

Genetic algorithms have been widely applied to the multiprocessor task
scheduling problem [2, 24, 42, 44, 48]. Two main approaches are: (i) methods
that use a GA in combination with other scheduling techniques and (ii) meth-
ods that use a GA to evolve the actual assignment and order of tasks over the
processors.
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4.2.4 Other Packing and Knapsack Problems

Together with the scheduling problems reviewed above, other combinatorial
problems share a similar structure.

Packing problems try to minimise the size of a container which is able to
contain a certain number of items. Some packing problems are actually puzzles
in which finding the minimal size of a 2D shape to contain a given number of
items with other shapes. Beside this type of problems, there are other interesting
variants of packing problems, such as: (i) bin packing (N objects of different
sizes must be packed into a finite number of bins of capacity V in a way that the
number of used bins is minimised), (ii) multi-dimensional bin packing (objects
have 2 or more dimensions and containers have different sizes depending on the
dimension), (iii) set packing (several subsets of the same set of elements are
provided and the objective is to maximise the number of selected subsets such
as all pair-wise intersections between each two selected subsets are empty).

Knapsack problems try to maximise the value of the objects carried in a
knapsack. Each of the objects has a certain weight and the knapsack has a weight
limit. There are different variants of knapsack problems: (i) bounded knapsack
(one object may be chosen several times), (ii) multiple-choice knapsack (items are
subdivided into k classes and exactly one item must be taken from each class),
(iii) subset sum knapsack (for each item the value and weights are identical),
(iv) multiple knapsack (there are m knapsacks with capacities Wi), to name a
few. A review of several knapsack problems can be found in [34].

4.3 Supercomputer Scheduling Problem

Supercomputer scheduling is introduced as a new scheduling problem. Real world
problems belonging to supercomputing have shown that none of the traditional
scheduling problems match with the requirements of this scenario. Jobs in a
supercomputer are usually a set of tasks that must be executed in parallel. This
means that tasks have no sequential dependencies but must be run concurrently.
Execution restrictions are based on memory and processor availability.

Each job running on the system is defined as: Ji = (Ti, Mi, ti), where Ti is
the number of parallel tasks, Mi is the amount of memory per task and ti is the
total execution time of all and each of the tasks.

A supercomputer in this domain is defined as a set of n nodes: S =
(N1, N2, ..., Nn). Each node is defined as: Nj = (Pj , Aj), where Pj are the avail-
able processors on the same node and Aj is the available shared main memory.

When a job is running on the supercomputer, several tasks are assigned to
a subset of the supercomputer nodes: k = assign(Ji, Nj), that means that k
tasks from job Ji are running on node Nj. The number of tasks running on each
node should not exceed the number of processors in that node. The number of
assigned tasks should be equal to the number of total tasks belonging to this
job, Ti. All the tasks must be run at the same time (in parallel).
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Ti =
n∑

j=1

assign(Ji, Nj) /

n∑

i=1

assign(Ji, Nj) ≤ Pj (4.1)

In this context, job scheduling is an ordered sequence of jobs to be run on
the supercomputer. Jobs are dispatched to the supercomputer if it has available
resources to process the first job on this sequence (job queue), depending on two
restrictions:

➀ There are enough free processors on the system

∀j ∈ [1, n] :
∑

i

assign(Ji, Nj) ≤ Pj (4.2)

➁ There is enough free memory in each of the nodes

∀j ∈ [1, n] :
∑

i

Mi × assign(Ji, Nj) ≤Mj (4.3)

SCS could be considered as a particular case of multi-dimensional packing
problems. Time, number of CPUs and memory are the three different dimen-
sions to take into account. Although the general structure is similar to these
types of packing problems, memory usage restrictions are defined not for all the
system but for a partition of the system (the nodes). There exists the possi-
bility of defining SCS as a multi-dimensional packing problem with additional
constraints, but SCS is considered as a different problem subtype based on the
real-world application that inspired it.

4.4 Related Work on Cluster and Supercomputer
Scheduling

Scheduling is a key policy in the performance of expensive HPC facilities. The
goal of this policy is to reduce the execution time required for a parallel job (when
only one of these jobs is considered) or to maximise the resource processor usage
(when multiple jobs are taken into account). Additional criteria could also be
considered as, for example, the minimisation of the turnaround time (time during
different submission and termination). Scheduling policy should be aware of the
requirements of the jobs. These requirements are usually expressed as execution
constraints (termination deadline) or, mainly, resource requirements.

Valid scheduling policies must ensure both resource provision and constraint
boundaries; but once these basic restrictions are provided, the policies have
significant degrees of freedom to arrange the jobs. Commonly-used process
scheduling and workload managers use non-combinatorial deterministic strate-
gies implemented by commercial or free software solutions. An extended overview
on non-combinational scheduling can be referred in [13].
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4.4.1 Non-combinatorial Policies

Non-combinatorial policies are implemented for a broad range of schedul-
ing systems in HPC clusters. Combinatorial techniques are those which use
permutation-based functions (such as insertion, deletion or swapping), either
deterministically (brute force) or stochastically. Non-combinatorial techniques
use greedy approaches or other direct methods.

FCFS (First-Come-First-Serve) policy [40] is one of the most popular ap-
proaches. In this case, parallel jobs are scheduled in the same order they arrive.
The order in the queue of waiting jobs is used to dispatch them. If there are
enough resources available in the system, these resources are allocated and the
first job in the queue starts its execution. This selection is repeated while the
requirements of the next job can be fulfilled. If not, the next job in the queue
waits until one of the already running jobs finishes and its resources are released.

Backfilling [25] improves FCFS policy allowing small jobs to be scheduled
before their actual order if there are only few resources available. This policy
prevents the waste of idle resources, in short term, but they would lead large jobs
to starvation. EASY, the Extensible Argonne Scheduling sYstem, developed by
IBM for SP1 clusters, reduces this unbalanced effect by means of a reservation
mechanism, for the jobs waiting in the queue. Reservations are computed using
the expected time when the resources, required by the first waiting job, will be
available. This deadline is used to avoid the execution of smaller jobs that will
finish after this deadline. The number of reservations may be parameterised. For
example, in Conservative Backfilling [30], reservations are made for all of the
waiting jobs in the queue. Reservations are computed using the expected time
when the required resources by the first waiting job will be available.

Another important alternative in job scheduling is SJF (Shortest-job-first)
[8]. SJF changes the order in the queue according to the expected execution
time. This model can be generalised by the amount of any of the resources re-
quired, instead of execution time. If there are more than one resource considered
(processors or memory), then different ordering criteria in the queue would be
possible.

Many of these alternatives consider the runtime estimation as one important
input to the scheduler. This assumption is quite usual, and scheduling system
implementations use different alternatives to deal with it. In many cases, jobs ex-
ceeding their expected execution time are directly killed. This policy encourages
users to be as exact as possible in their estimations.

4.4.2 Scheduling Tools

The implementation of the theoretical aspects of the different scheduling policies
is also an important decision for cluster and supercomputer facilities. Based on
the general policies mentioned above, many different toolkits and systems have
been developed for job scheduling and workload management.
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PBS family of resource managers (PBS, OpenPBS, and Torque)3 implements
a default FCFS scheduler, but also provide mechanisms to implement other
simple schedulers. PBS includes a resource manager that acts as an interface for
users to access the cluster. It can accept jobs and let users view the status of the
queue. The scheduler reads the state of this queue, makes a scheduling decision,
and informs the resource manager of its decision.

The Maui Cluster Scheduler offers compatibility with the Torque resource
manager. It comes with a wide variety of scheduling policies to try to accom-
modate different scheduling needs. The Moab Cluster Suite4 is the successor to
Maui. Among other improvements, it provides a large set of graphical tools which
help an administrator to monitoring the state of the cluster and the queue. These
tools are strategy-dependent, allowing administrators to monitor and change in-
formation contained in strategy-dependent parameters of jobs.

Simple Linux Utility for Resource Management (SLURM)5 [16] is an open
source, fault-tolerant, and highly scalable cluster management and job scheduling
system for Linux clusters of thousands of nodes. Components include machine
status, partition management, job management, scheduling, and stream copy
modules.

A well-known commercial system is IBM’s LoadLeveler [19]. LoadLeveler pro-
vides basic queue management, based on priorities. This system allows adminis-
trators to configure dynamic priority updates using different policies. LoadLeveler
is sometimes used as a lower-level interface to more advanced resource managers,
like Maui. Any higher-level system can interact with LoadLeveler using an appli-
cation programming interface (API).

4.5 Multiple Offspring Sampling and the Supercomputer
Scheduling Problem

From the point of view of Evolutionary Algorithms, the Supercomputer Schedul-
ing problem can be considered as a combinatorial problem where the goal is to
find the most suitable ordered sequence of jobs according to a given criterion. In
this case, the objective is to maximise the CPU usage. There exist a huge amount
of works in the literature where Evolutionary Algorithms have been successfully
applied to solve this type of problems [7, 33, 41].

Many different codings have been proposed for combinatory problems. In [22],
the authors propose the following, not exhaustive, taxonomy:

• Binary representation.
• Path representation.
• Adjacency representation.
• Ordinal representation.
• Matrix representation.

3 http://www.openpbs.org/
4 http://www.clusterresources.com/
5 http://www.llnl.gov/linux/slurm/download.html
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All these different ways for representing an individual in the context of an
Evolutionary Algorithm could be used to code the SCS problem. Selecting the
appropriate coding for individuals among all the available representations with-
out any previous knowledge about their performance is a critical decision. If we
consider the different genetic operators that have been proposed for each of these
encodings, it is even harder to make this decision.

As an alternative to traditional Evolutionary Algorithms, we propose Multi-
ple Offspring Sampling as an effective technique to solving combinatorial prob-
lems. This new approach proposes the simultaneous use of different techniques (a
proper definition of technique in the context of MOS will be given in subsection
4.5.3) to create new individuals (candidate solutions).

In this work we have focused on Path representation and Ordinal representa-
tions. These encodings should be different enough so that they could contribute
with different properties to the overall optimisation process. A more detailed
explanation of these two codings and their specific related genetic operators can
be found in subsection 4.6.2.

To show how MOS modifies the behaviour of classic Evolutionary Algorithms
(EA), we should first present a general schema of EA functioning, which will be
given in the next subsection, and then give a functional formalisation in subsec-
tion 4.5.2. Afterwards, Multiple Offspring Sampling will be briefly presented in
subsection 4.5.3.

4.5.1 Evolutionary Algorithms

Evolutionary algorithms and, in particular, Genetic Algorithms, are bio-inspired
algorithms based on Darwin’s Theory of Evolution. [15] was one of the first to
use this approach to solve search and optimisation problems. Since then, they
have been applied to many different domains with a remarkable success.

Evolutionary algorithms are population-based meta-heuristic optimisation al-
gorithms. They evolve an initial population of candidate solutions to the problem
being solved by means of certain recombination operators under the principle of
the survival of the fittest.

Generally, the operation of these algorithms can be divided into different
phases:

➀ Creation of the initial population P0.
➁ Evaluation of the initial population P0.
➂ Checking of the algorithm termination (convergence or generation limit), if

so then finish, otherwise continue.
➃ Generation, using some individuals from Pi, of new individuals for the next

generation, called offspring population Oi.
➄ Evaluation of the new individuals in Oi.
➅ Combination of offspring and previous populations to define the next popu-

lation Pi+1.
➆ Go back to ➂.
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Based on this schema, different evolutionary algorithms and approaches have
been developed. For example, in step ➅ classical GAs take the offspring as the
next population (Pi+1 = Oi). Other approaches, such as steady state algorithms
generate only one offspring individual that replaces the worst individual in Pi,
and intermediate approaches, based on elitism, take the best individuals from
both Oi and Pi to generate Pi+1.

For step ➃, the literature also offers a wide array of approaches, such as
selecting different genetic operators. Other evolutionary algorithms, such as es-
timation of distribution algorithms [23], use statistical approaches for modelling
the population and later sampling the offspring.

4.5.2 Functional Formalisation of an Evolutionary Algorithm

In order to introduce the contributions of this chapter, some preliminary formal-
isations should be defined.

In the context of evolutionary computation, for the description of one problem
two different sets of elements should be considered:

• S is the set of all possible phenotypes (candidate solutions to the problem).
• C is the set of all possible combinations of the coding format (genotypes).

This set denotes the search space of the evolutionary algorithm.

It should be taken into account that, in the general schema mentioned above,
operations are performed on different sets of elements. For example, the evalu-
ation of the solutions is a phenotype operation: the individual is the one that
behaves well or bad in the environment. On the other hand, recombination of
individuals to generate offspring is based on the genotype codification.

For an evolutionary algorithm there must also be a coding function code
that transforms elements of the genotype set into elements in the phenotype set
(coding into solutions):

C code−−−−→ S

c −−−−→ code(c) = s
(4.4)

This function can be extended to operate on a set of elements. The function
code generates a set of solutions (S ⊂ S) from a set of genotypes (C ⊂ C):

P(C) code−−−−→ P(S)

C −−−−→ code(C) = S
(4.5)

code(C) = {s ∈ S/∃c ∈ C : s = code(c)} (4.6)

The phenotype and genotype pair, (s, c) ∈ S×C∧s = code(c), identifies both
the individual and the coding used for this solution.

To drive the search mechanism, all the evolutionary algorithms require the
existence of an evaluation function that determines the individual’s chances of
survival in the environment, a fitness function fit :
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S
fit−−−−→ R

s −−−−→ fit(s)
(4.7)

This approach is quite restrictive, as some methods, specially co-evolutionary
algorithms, define order relations to compare the quality of the phenotypes.

To complete these definitions, the construction of iterative generations should
be formalised.

Let off be the Offspring Sampling Function. This function defines how new
individuals are generated by recombination of the individuals in previous gen-
erations. This is a genotype-level function. The Offspring Sampling Function in
GAs is defined as the combinations of gene operators (crossover, mutation and
selection). In other approaches, such as EDAs, these functions are statistical
modelling and model sampling.

P(C)
off−−−−→ P(C)

Ci −−−−→ off (Ci) = Ci+1

(4.8)

Offspring size restriction: ∀i : |off (Ci)| = σ (4.9)

Let σ be the size of the new offspring population. Usually this size does not
vary during different generations.

Finally, a method to combine the previous generation and the new individuals
generated from this offspring should be included, resulting in the population
combination function comb:

P(S)× P(S) comb−−−−→ P(S)

(Si, Oi) −−−−→ comb(Si, Oi) = Si+1

(4.10)

Previous population: Si ⊂ S/Si = code(Ci)
Offspring population: Oi ⊂ S/Oi = code(off (Ci))

(4.11)

There are many different population combination functions, for example clas-
sical elitism function is comb(Si, Oi) = Si+1:

Si+1 = {s ∈ Si ∪Oi/�t ∈ Si ∪Oi : t /∈ Si+1 ∧ fit(t) � fit(s)} (4.12)

In this formula, � represents better-fitness-than, which is “greater than” or
“less than” depending on the sense of optimisation, maximisation or minimisa-
tion, respectively.

4.5.3 Multiple Offspring Sampling Formalism

Multiple Offspring Sampling Basics

We introduce the Multiple Offspring Sampling (MOS) approach as a com-
bined alternative to the way steps ➃ and ➅ of an Evolutionary Algorithm
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are performed. MOS proposes the definition of multiple techniques to gener-
ate new individuals, and makes them compete during the evolutionary process.
Each technique creates its own offspring O

(j)
i (i is the generation and j is the

technique).
The fitness of the individuals generated by each technique is used to evaluate

the quality of this particular recombination technique. The most obvious measure
that could be used for this purpose is the average fitness of the population, but
more sophisticated measures can be proposed to take into account not only the
current performance of the technique but its potentiality.

Finally, in phase ➅, previous population Pi and all the offsprings O
(j)
i are

merged to produce the next population Pi+1. This process is usually done by
using an elitist population merge function.

These MOS techniques, or techniques, as they are referred at the beginning
of Section 4.5, could be defined as a technique to create new individuals, i.e.,
(a) a particular evolutionary algorithm model, (b) with an appropriate coding,
(c) using specific operators (if required), and (d) configured with its necessary
parameters.

According to the definition above we can consider different parameters and
thus divide MOS into several categories. A rough taxonomy of how MOS can be
divided could be:

• Algorithm-based MOS: different algorithms (GAs, EDAs) are used to create
new individuals.

Fig. 4.1. MOS overview
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• Coding-based MOS: different codings (genotypes) can be used to represent
one candidate solution (phenotype) of the problem.
• Operator-based MOS: for a single coding of candidate solutions there could

exist different genetic operators (if using GAs) that could be used simulta-
neously.
• Parameter-basedMOS: different values for evolutionary parameters (crossover

and mutation ratios, selection techniques, etc.) are used within each tech-
nique.
• Hybrid MOS: a combination of any of the previous.

A general view of MOS functioning is depicted in Fig. 4.1.

Genotype Codes as a Different Offspring Production Method

The selection of a genetic coding (genotype format) influences on how individu-
als are recombined to generate the next offspring. Recombination is a genotype
operation previous to the evaluation of the actual individuals (phenotypes).
There are many problems in which solutions could be coded in several dif-
ferent ways, considering for them different genotype formats. In all the cases,
all of these formats are able to represent individuals, points on the solution
space.

There are different approaches to profit from this solution space translation.
Variable neighbourhood search (VNS), introduced by [29], has been used as a
meta-heuristic for solving combinatorial and global optimisation problems whose
basic idea is the systematic change of neighbourhood within a local search. VNS
has been used in conjunction with other heuristic methods, like tabu search or
GRASP.

In our approach, a genetic algorithm will combine the individuals in the pop-
ulation (in generation i) using all the different encodings available with their
respective recombination operators. In order to generate the next offspring, each
of the encoding methods is allowed to produce a fixed amount of individuals.
To give more chances to the mechanisms that are producing the best individ-
uals, the amount of offspring individuals is adjusted on each generation. This
approach reduces the participation of worse methods and increases the number
of individuals produced by better methods.

The effect of coding on the heuristic search techniques is very important due
to the relationship between the coding criteria and the fitness landscape. The
fitness landscape is a representation of the whole solution space assigning fitness
values to each point on this space.

Studies, carried out by [17], on the difficulty of different optimisation problems
have measured one of the aspects of problem complexity by the correlation of
the difference between fitness function values and the Euclidean distance on the
solution space.
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Although considering that representation issues is one of most important as-
pects in the performance of the algorithm, only few references can be found in
the literature. [39] introduced the use of multiple representations in evolutionary
algorithms providing both Cartesian and pseudo-polar representations to solve
real-valued minimisation functions. Each element of the offspring takes the same
representation (in 95% of the cases) that the first parent, and only in 5% of
it selects the opposite. This approach adapts the most suitable representation
based on the selection pressure.

In this sense, for example, a pure binary coding landscape differs from a Gray
code one for the same fitness function. This could make the problem easier or
more difficult to be solved as mentioned by [35]. Similar studies on the effect of
different codings for a common problem have been published by [9, 18, 38, 46]
and [20].

Coding-based MOS: Case Study

In this section we will analyse one of the most interesting alternatives within
MOS framework which is the use of several genotype encodings.

Using MOS techniques, one genotype encoding can be transformed into an-
other, making the translation of a point from one solution space (and fitness
landscape) into another solution space.

To generalise, it could be considered that the different offspring techniques use
also different genotype encodings. So, let C(j) be the encoding space produced
by the mechanism j.

As different genotype formats are allowed, there must also be different coding
functions (for both, a genotype code code(j) and a set of codes code (j)):

C(j) code(j)

−−−−→ S

c −−−−→ code(j)(c) = s

(4.13)

P(C(j)) code(j)

−−−−→ P(S)

C −−−−→ code (j)(C) = S

(4.14)

code (j)(C) = {s ∈ S/∃c ∈ C : s = code(j)(c)} (4.15)

In MOS, a solution (the phenotype) would have the possibility to participate
in multiple genotype recombination mechanisms. If the different mechanisms
also use different genotype formats, then, once an individual is created (and
evaluated), it could be coded back to take part on different possible genotype
formats (and their operators). To manage these transformations, a group of
functions is required to transform genotypes between the two different encodings
(transi,j).
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C(i) transi,j−−−−−→ C(j)

⏐
⏐
�code(i)

⏐
⏐
�code(j)

S S

(4.16)

Unique phenotype encoding : ∀i, j code(i)(c(i)) = code(j)(trans i,j(c(i))
(4.17)

Individual definition, in the case of MOS algorithms, should include informa-
tion from the phenotype, but also from all the genotype encodings. The individ-
ual identification in MOS is (s, c(1), c(2), cdots, c(n)) ∈ S×C(1)×C(2)×· · ·×C(n).
This tuple should also validate ∀j : s = code(j)(c(j)) as well as the Unique Phe-
notype Encoding restriction (equation 4.17, mentioned above).

Additionally, the previous formalism should be extended to include different
offspring sampling functions:

P(C(j))
off (j)

−−−−→ P(C(j))

Ci −−−−→ off (j)(Ci) = Ci+1

(4.18)

In the case of single offspring functions there is a restriction on the size of the
offspring production |off (Ci)| = σ. In the case of multiple offspring functions,
this restriction could change dynamically to balance the offspring sampling ac-
cording to the strategy defined by the algorithm. By this feature, MOS can select
among different offspring generation alternatives in a generation-by-generation
way. Section 4.5.3 presents how this sampling sizes should be defined.

In MOS, the population merge function comb� should also be defined in order
to combine multiple offspring populations with the population from the previous
generation:

(P(S))n+1 comb�

−−−−→ P(S)

(Si, O
(1)
i , O

(2)
i , · · · , O(n)

i ) −−−−→ comb�(Si, O
(1)
i , O

(2)
i , · · · , O(n)

i ) = Si+1

(4.19)

Previous population: Si ⊂ S/Si = code(Ci)

Offspring population: O
(j)
i ⊂ S/O

(j)
i = code(off (j)(Ci))

(4.20)

Definition of Offspring Sampling Sizes

The calculation of the amount of new individuals created on each generation,
for the n different offspring sampling methods, is obtained using a Participation
Function (PF ). A Participation Function evaluates the quality of the offspring
populations generated on each generation and defines the sampling size for the
next one.
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(P(S))n PF−−−−→ Nn

(O(1)
i , O

(2)
i , · · · , O(n)

i ) −−−−→ PF (O(1)
i , O

(2)
i , · · · , O(n)

i ) = (σ1, σ2, · · · , σn)
(4.21)

Offspring sampling size limit : |off (j)(Ci)| = σj (4.22)

These PF functions evaluate the quality of the offspring populations produced
by each mechanism in the generation i and recalculate the amount of individuals
that each of these techniques will produce in the next generation.

P(S)
qual−−−−→ R

O
(j)
i −−−−→ qual(O(j)

i ) = θ
(4.23)

Other dynamic adaptive methods in the literature have used the evolution-
ary pressure to adjust dynamic parameters of the algorithms. In [39] the ef-
fective representation or in [45] the recombination and mutation operators are
parameterised. This means that the parameter is included in the genome as one
additional gene and it is evolved and selected according to the fitness of the
individual it belongs to.

To measure the quality of a population several strategies can be used, de-
pending on the characteristic to focus on. One possibility is to consider that one
population is better than another if its average fitness value is better than the
other’s.

qual(O(j)
i ) = AvgFit(O(j)

i , γ) (4.24)

Where γ is the top percentage of the population to be considered to calculate
the average fitness value.

A special case: two different optimisation techniques

All previous equations deal with the case of n different optimisation techniques.
Nevertheless, the experiments performed for this chapter have focused on the
case of two competing techniques. Therefore, the next equations will be presented
for this particular situation to facilitate their comprehension.

Different functions have already been proposed in other scenarios by [37]. In
this contribution the following dynamic function is used:

PF dy(O
(1)
i , O

(2)
i ) =

{
(|O(1)

i |+ δ, |O(2)
i | − δ) if qual(O(1)

i ) > qual(O(2)
i 1),

(|O(1)
i | − δ, |O(2)

i |+ δ) otherwise
(4.25)

Where δ is a trade-off factor that represents the relative difference between the
fitness of the best and the worst offspring populations.

δ = α
qual(best(O(1)

i , O
(2)
i ))− qual(worst(O(1)

i , O
(2)
i ))

qual(best(O(1)
i , O

(2)
i ))− β

|worst(O(1)
i , O

(2)
i )|

(4.26)
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where α is the factor from the ratio transferred from one offspring to the other
(usually 0.05), and β is a reduction factor obtained from the fitness value of the
worst individual in the first population.

best and worst are functions that compare the quality of two different popu-
lations selecting the best (or worst, respectively) according to the specified com-
parison criterion (maximisation or minimisation), as shown in equation 4.27.
worst is defined in an analogous way.

P(S)× P(S) best−−−−→ P(S)

(O(1)
i , O

(2)
i ) −−−−→ best(O(1)

i , O
(2)
i ) = Oi

(4.27)

best(O(1)
i , O

(2)
i ) =

{
O

(1)
i if qual(O(1)

i ) > qual(O(2)
i ),

O
(2)
i otherwise

(4.28)

For example, let the sizes of the offspring population of two given techniques,
in a certain iteration, be |O(1)

i | = 89 and |O(2)
i | = 111. If it is considered that

the quality of an offspring population is the average fitness of the top 25% of the
individuals in this population, it could be for example:

qual(O(1)
i ) = 0.045 (4.29)

qual(O(2)
i ) = 0.027 (4.30)

If the following values are defined: α = 0.05 and β = 0.010 (the best fitness
value obtained in the first iteration) the value of δ is computed as:

δ = α
qual(best(O(1)

i , O
(2)
i ))− qual(worst(O(1)

i , O
(2)
i ))

qual(best(O(1)
i , O

(2)
i ))− β

|worst(O(1)
i , O

(2)
i )|

(4.31)

= 0.05
0.045− 0.027
0.045− 0.010

· 111 (4.32)

= 0.0257 · 111 = 2.85 � 3 (4.33)

Then, the participation function for the next iteration is:

PF dy(O(1)
i , O

(2)
i ) = (|O(1)

i |+ δ, |O(2)
i | − δ) (4.34)

= (89 + 3, 111− 3) (4.35)

4.6 Experiments

In this section, we describe the experimental scenario and a comparison of
the results obtained by classical methods (FCFS, Backfilling, Backfilling with
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reservations, SJF and LJF), single genetic algorithms and a hybrid evolutionary
technique (MOS).

This experimentation tries to optimise the scheduling policy of the Magerit
cluster, located at the CeSViMa (Centro de Supercomputación y Visualización
de Madrid)6. This system consists of 1080 eServer BladeCenter JS20, each of
them with 2 Power970 2.2 GHz processors and 4 GB of shared RAM. All the
results presented hereafter have been obtained for this machine configuration.

4.6.1 Evolutionary Techniques for Supercomputer Scheduling

Solutions generated by the algorithms represent ordered sequences of jobs to
be dispatched by the supercomputer. In this sense, these solutions are actu-
ally permutations of the jobs. Thus, any of the possible codings that represent
permutations could be applied.

Once the supercomputer receives the queue of jobs to be executed it uses a
deterministic policy to process it. If the supercomputer has no available resources
to run the next job from the queue, it will wait until the end of a running job.
When one job terminates all the assigned resources are released. Therefore the
waiting job has a new chance to be able to run.

The following scenario is played on the Magerit system. In this scenario, shown
in Fig. 4.2, the first two jobs in the queue are dispatched to the supercomputer
simultaneously (see Fig. 2(a)). Job3 can not be executed because there are not
enough available processors, so it must wait until both jobs have finished (see
Fig. 2(b)). Once the number of processors required by Job3 are available it is
submitted to the computer (see Fig. 2(c)). At this moment Job4 can not be sent
to the supercomputer, in this case due to the lack of available memory. This job
will run once the previous job has released its resources (see 2(d)).

4.6.2 First Experimental Scenario

We have first tested our approach with three datasets with sizes ranging from
sixty to one hundred and twenty jobs. Each job is described by the required
amount of CPUs, memory and execution time. These datasets can be freely
downloaded from our homepage7.

The experiments were executed on the aforementioned Magerit system, mak-
ing use of 2 of its 2160 processors. They have been coded using a parallel asyn-
chronous genetic algorithm implemented in GAEDALib coded by [12] with the
configuration described in Table 4.1.

For this experiment, MOS algorithm uses two different codings: path and order
representation. The first one uses integer numbers to represent the permutation
of the execution order of jobs. The second one uses real numbers to code the
individuals. The real values are sorted to obtain the execution order of the jobs
(which are implicitly coded as the position in the real vector).

6 http://www.cesvima.upm.es
7 http://laurel.datsi.fi.upm.es/research/mos/scs
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Job1    Running

Job2    Running

Job3    Queued

Job4    Queued

 Job        State

Job1   Job2   Job3   Job4

Job3       180       1.8 GB    21 hours

 Job    # CPUs     Mem        Time

Job1       200       2.0 GB    23 hours

Job4       115       2.5 GB    15 hours

Job2       130       1.5 GB    11 hours

Jobs that can execute

(a) t = t0

Job3       180       1.8 GB    21 hours

 Job    # CPUs     Mem        Time

Job1       200       2.0 GB    23 hours

Job4       115       2.5 GB    15 hours

Job2       130       1.5 GB    11 hours

Job1    Running

Job3    Queued

Job4    Queued

 Job        State

Job2    Finished

Job3   Job4

Can not be executed

(b) t = t0 + 11 hours

Job3       180       1.8 GB    21 hours

 Job    # CPUs     Mem        Time

Job1       200       2.0 GB    23 hours

Job4       115       2.5 GB    15 hours

Job2       130       1.5 GB    11 hours

Job3    Running

Job4    Queued

 Job        State

Job2    Finished

Job3   Job4

Now it can execute

Job1    Finished

Not this one

(c) t = t0 + 23 hours

Job3       180       1.8 GB    21 hours

 Job    # CPUs     Mem        Time

Job1       200       2.0 GB    23 hours

Job4       115       2.5 GB    15 hours

Job2       130       1.5 GB    11 hours

Job3    Finished

Job4    Running

 Job        State

Job2    Finished

Job4

Now it can execute

Job1    Finished

(d) t = t0 + 44 hours

Fig. 4.2. Scheduler description

This approach faces the problem of mixing individuals of both types. This
issue has been overcome by implementing two conversion functions for converting
from integer to real coding and vice versa. The first function sorts the real vector
contained in the genome and takes as integer value the position of each gene in
the ordered vector. The second function simply generates for each gene a random
real number within an interval bounded by two values proportional to the integer
value of the gene.

Different genetic operators have been proposed for the codings used in this
experiment. For the real-valued coding we have used the classical one-point
crossover and uniform mutator operators [15]. For the integer-valued coding we
selected the Order Crossover operator [10] and the Exchange Mutation operator
[33]. Another crossover operator was tested for the integer coding (Cycle Cross
operator [33]) but with poorer results, as previously stated [28].

Finally, the fitness of each individual is calculated as the percentage of pro-
cessor time the system is busy (% of CPU usage):
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Table 4.1. Experimental scenario

(a) GA configuration

(Global) Pop. size 100
Termination Pop. convergence

Convergence % 99 %
Individuals selection Roulette wheel

Crossover % 90 %
Mutation % 1 %

(b) Parallel configuration

Paradigm islands model
Model asynchronous

Topology mesh
Migration rate 10 gens.
Migration pop. Top 20 %

Nodes 2

fitness =
total processor time

scheduled time ∗ cpus
(4.36)

In addition, in order to evaluate the performance of MOS approach, the same
datasets would be scheduled using some classical non-combinatorial techniques
(described in subsection 4.4.1). These techniques are:

➊ FCFS,
➋ Backfilling without reservations,
➌ Backfilling with one reservation,
➍ two variants of SJF (shortest job first), considering the required amount of

processors and the expected execution time as the criterion to sort the queue
of jobs, and

➎ two variants of LJF (longest job first), which are similar to SJF but in
reverse order, both in number of processors and in the expected execution
time.

4.6.3 Results and Discussion of First Experiment

A summary of the obtained results can be found in Table 4.2. We can see that
MOS performs as well as the best other technique for the first dataset and that it
clearly outperforms classical approaches solving the two bigger datasets. All the
problems have been executed ten times and the results are the average of all the
executions, except for the deterministic methods (classical scheduling models)
that were executed only once.

The result on the first dataset is the optimal overall value. The hybrid evo-
lutionary technique, as well as three of the other techniques, are able to reach
this value. This circumstance does not happen on the more complex schedul-
ing problems where hybrid evolutionary techniques are able to improve the re-
sults of other techniques. These problems are too difficult for most of the other
techniques.

It is also interesting to check that the standard deviation of the evolutionary
techniques, although they are heuristic/stochastic methods, is very low. This
makes this approach stable and reliable for real-world applications.

The convergence to solutions with the same fitness does not mean that the
actual same job order is obtained. Many different job combinations would lead
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Table 4.2. Results summary of first experiment

60 Jobs 80 Jobs 120 Jobs
MOS 0.5321 ± 0.0000 0.9821 ± 0.0318 1 ± 0.0000
FCFS 0.3674 0.6499 0.7068

Backfilling 0.5321 0.7029 0.8065
Backfilling Res. 0.3582 0.7398 0.7503

SJF Procs. 0.5321 0.6564 0.7022
LJF Procs. 0.4050 0.6305 0.6957
SJF Time 0.4349 0.6766 0.6483
LJF Time 0.5321 0.7779 0.9047

to a similar, or even equal, performance (CPU usage). This feature is explained
because it is more important to keep groups of jobs together, that are able to
fit with the highest CPU usage in the parallel system. These groups of jobs may
be swapped among them. Also the jobs belonging to one of these groups may be
swapped within the group context.

These two kinds of organisations are preserved by the two evolutionary tech-
niques combined by MOS. Integer-based encoding crossover operator keeps large
portions of the parents’ orders (preserving job groups). Real-based mutation
would move jobs inside the same job group.

Focusing on the classical techniques, we can see that LJF, when dealing
with expected execution time, behaves the best compared with the other non-
combinatorial methods. This performance is due to the fact that the longer the
job is the earlier it is scheduled. This makes shortest jobs be submitted at the
end of the execution time, filling the gaps in the last part of the execution.

It can be noted that the hardness of the scheduling problem is not directly pro-
portional to the number of jobs. Although the number of possible permutations
is bigger, there could be more equivalent solutions with the best performance.
The number of best solutions (with different ordering) depends on other char-
acteristics of the problem, rather than the number of jobs. Sometimes, with a
reduced number of jobs, the possible combinations are so limited that there is
no job ordering schema with more than 60% of the CPU usage, similar to the
figures obtained by classical methods.

4.6.4 Second Experimental Scenario

For this second experiment we have used a bigger dataset of 248 jobs, described
in the same way (#CPUs, memory and execution time). The same configuration
for the genetic algorithm has been used (see Table 4.1).

In this case, instead of using two different codings we have focused our
attention at two different mutation operators for the same genetic represen-
tation (integer-valued representation). These mutation operators are the afore-
mentioned Exchange Mutation operator [33] and the Simple Inversion Mutation
operator [15].
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Again, the performance of the hybrid genetic algorithm is compared against
the non-combinatorial techniques but also with the single genetic algorithm each
of them using a different mutation operator.

Finally, the fitness of each individual is calculated in the same way as it was
done in the previous experiment.

4.6.5 Results and Discussion of Second Experiment

The proposed dataset, even if it doubles in size the biggest dataset used in
the first experiment, presents the same properties as those seen before, i.e., the
hardness of the problem does not increase proportionally to the problem size.
These problems can be solved by multiple different solutions with the same
fitness. Nevertheless, we can observe that even under those circumstances, MOS
is able to obtain better results in terms of average fitness and standard deviation
than any other technique. The whole result list is provided in Table 4.3.

Table 4.3. Results summary of second experiment

248 Jobs
MOS 0.9632 ± 0.0002

GA-SIM 0.9237 ± 0.0137
GA-EM 0.9451 ± 0.0015
FCFS 0.7399

Backfilling 0.7819
Backfilling Res. 0.7783

SJF Procs. 0.7861
LJF Procs. 0.7596
SJF Time 0.7529
LJF Time 0.8626

Finally, the non-parametric Wilcoxon test was applied to MOS and the single
genetic algorithm (using different mutation operators) to test the null hypothe-
sis of both algorithms (MOS and single GAs) having the same distribution. The
p-values obtained were p = 0.0002 and p = 0.02 for GA-SIM and GA-EM respec-
tively, which let us reject the null hypothesis and state that there is statistical
significance. Thus, MOS outperforms each single genetic algorithms.

4.7 Conclusions

In this chapter a new definition for a scheduling problem has been presented.
Supercomputer scheduling (SCS) has been solved as a particular case of per-
mutation ordering problems. To illustrate this problem the sample scenario of
a supercomputer called Magerit hosted at the CeSViMa (Centro de Supercom-
putación y Visualización de Madrid)8 has been used.
8 http://www.cesvima.upm.es
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Alternative coding models and genetic operators have been proposed for a
large number of optimisation problems, but in all the cases the studies were
based on comparing the whole search process for two or more encoding formats
(or recombination operators). We propose a dynamic alternative to combine
the benefits of different encodings. This approach has been developed under
the formalism of Multiple Offspring Sampling (MOS) also introduced in this
contribution.

MOS approach is, somehow, close to the work started by [39], but it differs
in the following key aspects:

• This work considers permutation-based problems extending any preliminary
work of benchmark functions retrieved from the literature.
• In MOS approach, the creation of an offspring from a given population is

the central element when multiple alternatives are handled. This offspring
creation includes not only coding formats or operators, but also selection
operators and other evolutionary aspects.
• MOS would perform the selection of the most appropriate features using

different criteria. Evolutionary pressure is one option, but other alternatives
to evaluate the quality of populations might be more interesting. These new
alternatives might consider diversity, coverage and overall fitness of the pop-
ulation. The reason to use the selection pressure to select this parameter
is not clear. The GA evolves to optimise the fitness function. Thus, coding
additional information in the individual’s genotype represents that the al-
gorithm is able to optimise both objectives and they are not contradictory.
There is no clear assumption under which this might be always true, and
in some cases, it would mislead the optimisation process. MOS is open to
define both adaptive techniques (based on selection pressure or using any
population quality measure).
• MOS also introduces a formal framework to represent multiple individual

creation techniques. This mathematical model, together with the proposed
taxonomy, open very interesting issues in a future work. Many of the pre-
vious works on dynamic and self-adaptive evolutionary techniques can be
translated into MOS formalism.

In addition, experimental results have been tested for statistical significance,
including a more detailed discussion about the performance of the combined
techniques.

The work presented on this chapter has dealt with CPU usage, which is a
key factor in the resource management of expensive supercomputing facilities.
However, the user has a different perception of the system: for him, it is more im-
portant the waiting time of the submitted jobs. More complex approaches would
take into account both aspects (or even more). In these cases, classical heuristic
methods are not able to adapt properly. Instead, evolutionary techniques are able
to deal with them, once a well-balanced fitness function is provided to evaluate
all the desired aspects of the scheduling.

This chapter shows that combined meta-heuristic methods are able to out-
perform traditional approaches. MOS provides also the possibility of combining
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different meta-heuristic methods and selecting the most appropriate to optimise
the given problem. This abstraction is quite interesting when the behaviour of
different techniques is previously unknown.
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Summary. We consider the problem of scheduling an application on a computing
system consisting of heterogeneous processors and one or more file repositories. The
application consists of a large number of file-sharing, otherwise independent tasks. The
files initially reside on the repositories. The interconnection network is heterogeneous.
We focus on two disjoint problem cases. In the first case, there is only one file repository
which is called as the master processor. In the second case, there are two or more
repositories, each holding a distinct set of files. The problem is to assign the tasks
to the processors, to schedule the file transfers from the repositories, and to order
the executions of tasks on each processor in such a way that the turnaround time is
minimized.

This chapter surveys several solution techniques; but the stress is on our two re-
cent works [22, 23]. At the first glance, iterative-improvement-based heuristics do not
seem to be suitable for the aforementioned scheduling problems. This is because their
immediate application suggests iteratively improving a complete schedule, and hence
building and exploring a complex neighborhood around the current schedule. Such com-
plex neighborhood structures usually render the heuristics time-consuming and make
them stuck to a part of the search space. However, in both of the our recent works,
we show that these issues can be solved by using a three-phase approach: initial task
assignment, refinement, and execution ordering. The main thrust of these two works is
that iterative-improve-based heuristics can efficiently deliver effective solutions, imply-
ing that iterative-improve-based heuristics can provide highly competitive solutions to
the similar scheduling problems.

Keywords: Scheduling File-Sharing Tasks, Iterative-Improvement Heuristics, Hetero-
geneous Platforms, Neighborhood exploration.

5.1 Introduction

Task scheduling in heterogeneous systems is an important problem for today’s
computational Grid environments [9], as heterogeneous systems become more

F. Xhafa, A. Abraham (Eds.): Meta. for Sched. in Distri. Comp. Envi., SCI 146, pp. 121–151, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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and more prevalent. There are important Grid applications [10] which are typi-
cally composed of a large number of independent but file-sharing tasks. There-
fore, the problem of scheduling a large number of independent but file-sharing
tasks on heterogeneous platforms has recently attracted much attention, see for
example [12, 13, 17, 18, 19, 20, 22, 23, 25] and the references therein. By file shar-
ing, we mean that a file may be requested by a number of tasks. The computing
system consists of heterogeneous processors and one or more repositories that
store input files. The files are not replicated, i.e., if there are two or more reposi-
tories, each one stores a distinct set of files. The repositories are decoupled from
the processors. The processors and the repositories are connected through a
heterogeneous interconnection network. The problem is to schedule the task ex-
ecutions on processors and to schedule the input file transfers in such a way that
the turnaround time, i.e., the completion time of the application is minimized.

Once the tasks are assigned to the processors, the files should be transferred
from the repositories to the processors. A task execution can start only after its
input files are delivered to the respective processor. Once a file is transferred to a
processor, it can be used by all tasks assigned to the same processor without any
additional cost. Since the interconnection network is heterogeneous, the costs of
transferring a certain file between different source and destination pairs are not
necessarily equal. We assume the one-port communication model in which a data
repository or a processor can, respectively, send or receive at most one file at a
given time. In order to minimize the turnaround time, the scheduler must decide
the task-to-processor assignment, the order of file transfers, and the order of task
executions on each processor.

Task scheduling for heterogeneous environments is harder than task schedul-
ing for homogeneous ones, since in a heterogeneous environment, different tasks
which need the same files might have different favorite processors. Therefore,
it may not be feasible to assign them to the same processor on the grounds
of efficient resource utilization. Even if such tasks may have the same favorite
processor, that processor might have relatively low bandwidth so that assigning
these tasks to that processor can increase the file transfer time while decreasing
the file transfer amount.

The application and computing models and the objective function which char-
acterize the scheduling problems at hand are introduced formally in Sect. 5.2.
In Sect. 5.3, we discuss the single repository case and review the heuristics from
the works [12,13,17,20,22]. Then, in Sect. 5.4, we discuss the multiple repository
case and review the heuristics from the works [18, 19, 23, 25].

5.2 Framework

5.2.1 Application Model

The application is defined as a two tuple A = (T ,F), where T = {1, 2, . . . , T}
denotes the set of T tasks, and F = {1, 2, . . . , F} denotes the set of F input files.
Each task t depends on a subset of files denoted by files(t); these files should be
delivered to the processor that will execute the task t. We extend the operator
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Fig. 5.1. Hypergraph model HA = (T , F) for an application with a set of 8 tasks
T = {1, 2, . . . , 8} and a set of 5 files F = {1, 2, . . . , 5}. Vertices are shown with empty
circles and correspond to the tasks; nets are shown with filled circles and correspond to
the files. File requests are shown with lines connecting vertices and nets. For example,
task t6 needs files f1 and f2 and hence vertex t6 is in the nets f1 and f2. A 3-way
partition on the vertices of the hypergraph is shown with dashed curves encompassing
the vertices.

files(·) to a subset of tasks S ⊆ T such that files(S) =
⋃

t∈S files(t) denotes the
set of files that the set S of tasks depend on. Apart from sharing the input files,
there are no dependencies and interactions among the tasks. The size of a file
f is denoted by w(f). We extend the operator w(·) to a subset E ⊆ F of files
such that w(E) denotes the total size of the files in E , i.e., w(E) =

∑
f∈E w(f).

We use |A| to denote the total number of file requests in the application, i.e.,
|A| =

∑
t∈T |files(t)|.

It seems natural to use a hypergraph HA = (T ,F) to model the application
A = (T ,F), see [22, 23]. Recall that a hypergraph is defined as a set of vertices
and a set of hyperedges (nets) each of which contains a subset of vertices [8]. We
use T and F to denote, respectively, the vertex and net sets of the hypergraph.
In this setting, the net corresponding to the file f contains the vertices that
correspond to the tasks depending on f . Fig. 5.1 contains an example hypergraph
model.

5.2.2 Computing Model

The tasks are to be executed on a heterogeneous system consisting of a set
P = {1, 2, . . . , P} of P computing resources, and a set R = {1, 2, . . . , R} of
R repositories. Each computing resource can be any computing system ranging
from a single processor workstation to a parallel computer. Throughout this
chapter we use “processor” to refer to any type of computing resource. The set
of files stored on a repository r is denoted as F(r). We assume that the files are
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not duplicated, i.e., F(r) ∩ F(s) = ∅ for distinct repositories r and s. We use
store(f) to denote the repository which holds the file f .

We use Π = {T1, T2, . . . , TP } to denote a partition on the vertices of the
hypergraph HA and hence an assignment of the tasks to the processors. In other
words, we denote the set of tasks assigned to processor p as Tp. Given a task
assignment, we use Λf to denote the set of processors to which the file f is to be
transfered, i.e., Λf = {p | f ∈ files(Tp)}. The three dashed curves encompassing
the vertices in Fig. 5.1 show a partition on the vertices of the hypergraph, and
hence an assignment of tasks to processors. For example, the tasks t1 and t2 are
assigned to the processor 1 since the vertices t1 and t2 are in T1.

The authors of [12,13,17,20,22,23] assume the one-port communication model
for the file transfers from the repositories to the processors. In this model, a pro-
cessor can receive at most one file, and a repository can send at most one file at a
given time. This model is deemed to be realistic [5,7,30] and it is prevalent in the
scheduling for Grid computing literature, however, alternatives exist (see [4,11]).
Task executions and file transfers can overlap at a processor. That is, a proces-
sor can execute a task while it is downloading a file for other tasks. The file
transfer operations take place only between a repository and a processor. The
congestion in the communication network during the file transfers is ignored.
In other words, each processor is assumed to be connected to all repositories
through direct communication links. Note that the resulting topology is a com-
plete bipartite graph (KP×R). Computing platforms of this topology are called
heterogeneous fork-graphs [17,20] when R = 1. Such complete graph models are
used to abstract wide-area networking infrastructures [11]. The network hetero-
geneity is modeled by assigning different bandwidth values to the links between
the repositories and the processors. We use brp to represent the bandwidth from
the repository r to the processor p. The heuristics in the literature generally use

Fig. 5.2. Computing system
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the linear cost model [6,11] for file transfers, i.e., transferring the file f from the
repository r to the processor p takes w(f)/brp time units. Fig. 5.2 displays the
essential properties of the computing system described.

The task and processor heterogeneity are modeled by incorporating different
execution costs for each task on different processors. The execution-time val-
ues of the tasks are stored in a T×P expected-time-to-compute (ETC) matrix.
We use xtp to denote the execution time of the task t on the processor p. The
ETC matrices are classified into two categories [1]. In the consistent ETC ma-
trices, there is a special structure which implies that if a machine has a lower
execution time than another machine for some task, then the same is true for
the other tasks. The inconsistent ETC matrices have no such special structure.
In general, the inconsistent ETC matrices are more realistic for heterogeneous
computing environments, since they can model a variety of computing systems
and applications that arise in Grid environments.

5.2.3 Objective Function

The cost of a schedule is the turnaround time, i.e., the length of the time interval
whose start and end points are defined by the start of the first file transfer
operation and the completion of the last task execution, respectively. Therefore,
the objective of the scheduling problem is to assign the tasks to processors, to
determine the order in which the files are transfered from the repositories to the
processors, and to determine the task execution order on each processor in order
to minimize the turnaround time. Scheduling file-sharing tasks on heterogeneous
systems with R = 1 repository is NP complete [17]. The NP completeness of the
multiple repositories case, i.e., R > 1 case, follows easily.

5.3 Scheduling File-Sharing Tasks with Single Repository

In this section, we survey the heuristics proposed for the scheduling problem on
heterogeneous systems with R = 1 repository, e.g., heterogeneous master-slave
environments where the master processor stores all files. This framework has
been studied in [10,12,13,17,20,22] for adaptive scheduling of parameter-sweep-
like applications in Grid environments. Such applications arise in the Application
Level Scheduling (AppLeS) project [10].

For the single-repository case, Casanova et al. [12,13] extend three heuristics,
namely MinMin, MaxMin and Sufferage, which are initially proposed in [28] for
scheduling independent tasks. They use these extended heuristics in the AppLeS
Parameter Sweep Template (APST) project [10]. They also proposed a new
heuristic XSufferage exclusively for APST. After this work, Giersch et al. [17,20]
proposed several different heuristics which reduce the time complexity while
preserving the quality of schedules.

The heuristics in [12,13,17,20] are based on the greedy choices that depend on
the momentary completion time values of tasks. Kaya and Aykanat claim that
this greedy decision criterion cannot use the file sharing information effectively,
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since the completion time values are not sufficient to extract the global view of
the interaction among the tasks [22]. Instead of a direct construction of schedules,
Kaya and Aykanat propose a three-phase scheduling approach which involves
initial task assignment, refinement and execution ordering phases.

Kaya and Aykanat argue in [22] that an iterative-improvement-based method
which uses task reassignments to improve the actual length of the schedule, i.e.,
the turnaround time, have a global perturbation on the given schedule. However,
the effectiveness and efficiency of the iterative-improvement-based heuristics,
which are widely and successfully used for hypergraph partitioning, depend on
the perturbations being local [2]. When the perturbations are local, the objective
functions become smooth over the search space, and the iterative-improvement-
based heuristics explore a relatively large part of the search space in relatively
small time.

In the refinement phase of the proposed three phase approach, Kaya and
Aykanat use two novel smooth objective functions in a hypergraph-partitioning-
like formulation to refine task-to-processor assignments. The first objective func-
tion represents an upper bound while the second one represents a lower bound
for the turnaround time of a schedule by considering only the task-to-processor
assignments. The first and the second objective functions relate, respectively, to
a pessimistic and an optimistic view of the execution time of an application. In
the rest of this section, we will investigate the heuristics in detail.

The notation described in Sect. 5.2 is slightly modified for the master-slave
case. In this section, we will omit the notation for the repositories since in this
framework there is a single repository. As an example, the bandwidth of a pro-
cessor p will be denoted as bp instead of brp. Similarly, for a file f the notation
store(f) is not used.

5.3.1 Greedy Constructive Scheduling Heuristics

Algorithm 5.1 shows the structure of the heuristics used by Casanova et al. [12,
13]. In Alg. 5.1, the completion time CT (t, p) of task t on processor p is computed

Algorithm 5.1. Structure of heuristics by Casanova et al. [12,13]
1: while there remains a task to schedule do
2: for each unscheduled task t do
3: for each processor p do
4: Evaluate completion time CT (t, p) of t on p
5: end for
6: Evaluate schedule cost g(CT (t, p1), . . . , CT (t, pP )) for t
7: end for
8: Choose task tb with the “best” schedule cost
9: Pick the best processor pb for tb with min. completion time

10: Schedule tb on pb and its file transfers
11: Mark tb as scheduled
12: end while
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by taking the previously scheduled tasks into account. That is, the file transfers
for unscheduled tasks cannot be initialized before the file transfers for scheduled
tasks, and the executions of unscheduled tasks on a candidate processor cannot
be initialized before the completion of the scheduled tasks on the same processor.
The scheduling objective function g and the meaning of the “best” character-
ize these heuristics as shown in Table 5.1. As seen in Alg. 5.1, computing the
completion times for all task-processor pairs takes O(TP + P |A|) time for each
scheduling decision. As this decision is made once for each task, the total time
complexity of these heuristics is O(T 2P + TP |A|).

Table 5.1. Definitions for the heuristics proposed by Casanova et al. [12,13]

Heuristics Function g best
MinMin minimum of all CT (t, p) values minimum
MaxMin minimum of all CT (t, p) values maximum
Sufferage difference between 2nd minimum and maximum

minimum of all CT (t, p) values

After Casanova et al. [12,13], Giersch et al. [17,20] proposed several different
heuristics. These heuristics have better time complexity and their solution qual-
ity is comparable with those of the previous heuristics. Algorithm 5.2 shows the
structure of these heuristics. Table 5.2 displays the objective functions proposed
by Giersch et al. [17,20] for a task-processor pair (t, p) based on the computation
time Comp(t, p) = xtp and communication time Comm(t, p) = w(files(t))/bp val-
ues of the task t when it is executed on the processor p. The additional policies

Algorithm 5.2. Structure of heuristics by Giersch et al. [17,20]
1: for each processor p do
2: for each task t do
3: Evaluate OBJECTIVE (t, p)
4: end for
5: Build the list L(p) of the tasks sorted according

according to the value of OBJECTIVE (t, p)
6: end for
7: while there remains a task to schedule do
8: for each processor p do
9: Let t be the first unscheduled task in L(p)

10: Evaluate completion time CT (t, p) of t at p
11: end for
12: Pick a task-processor pair (tb,pb) with

minimum completion time
13: Schedule tb on pb and its file transfers
14: Mark tb as scheduled
15: end while
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Table 5.2. Definitions for the heuristics proposed by Giersch et al. [17,20]

Heuristic Objective Function Task Selection
Order w.r.t.
Objective Func.

Computation Comp(t, p) increasing
Communication Comm(t, p) increasing
Duration Comp(t, p) + Comm(t, p) increasing
Payoff Comp(t, p) / Comm(t, p) decreasing
Advance Comp(t, p) − Comm(t, p) decreasing

Additional Policy Explanation
Readiness Selects a ready task for a processor if one

exists. A task is called ready for processor p
if the transfers of all input files of the task to
p are previously scheduled.

Shared While calculating w(files(t)), scaled versions
of file sizes are used. The scaled size of a file is
calculated by dividing its original size to the
number of tasks that need this file as an input.
This policy is redundant with the Computation
objective function

Locality To reduce the file transfer amount, locality tries
to avoid assigning a task to a processor if some
files used by the task were already scheduled to
be transferred to another processor.

readiness, shared and locality proposed by Giersch et al. [17, 20] are also ex-
plained in Table 5.2. As seen in Alg. 5.2, the heuristics construct a task list for
each processor. These lists are sorted with respect to various objective values in
step 4. For an efficient implementation, we compute the total file sizes for all
tasks, i.e., w(files(t)) values, in Θ(|A|) time in a preprocessing step. In this way,
the objective value computations for all task-processor pairs take Θ(TP + |A|)
time, so the construction of all sorted lists takes O(TP log T + |A|) time. The
while loop for scheduling tasks in step 5 takes O(TP |A|) time. Therefore, the
overall time complexity becomes O(TP log T + TP |A|).

Flaws of the Greedy Heuristics

The task-processor pair selection according to the momentary completion time
values is the greedy decision criterion commonly used in all existing constructive
heuristics. Kaya and Aykanat show that this criterion suffers from ineffective
use of information about file sharing among the tasks [22]. This flaw is likely
to increase with the increasing amount of file sharing and can incur extra file
transfers in the resulting schedule. Since the amount of the total file transfers
from the server is a bottleneck under the one-port communication model, extra
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Fig. 5.3. A flaw of the greedy constructive approach for communication-intensive tasks

Executions
Task

Task
Executions

File
Transfers

File
Transfers

p
1

p
2

p
1

p
2

Executions
Task

Task
Executions

File
Transfers

File
Transfers

{< << >{< <> > }
1 22

t
3

t
11

p p p

1
f f

2

1

b

2

4

7

7

116

17

p
1

p
2

1 2
t

3
t

{< << >{< <>
1

> }
1 12

t
3

t
1

ppp

Cost:26

Cost:35

Better Schedule:

Schedule by MinMin:

t

t

t

7 5

162 7

7

2

7 5

16

7

57

Fig. 5.4. Another flaw of the greedy constructive approach

file transfers can deteriorate the quality of the schedule. This effect is amplified
for communication-intensive tasks where the cost of file transfers is considerably
higher than the cost of task executions.

Fig. 5.3 displays a sample communication-intensive application with three
tasks and two large files. As seen in the figure, MinMin schedules t3 on p2 after
scheduling t1 on p1 ignoring the fact that t2 needs both files. This greedy choice
incurs an extra transfer of file f1. However, there is another schedule without
this extra file transfer and with much less turnaround time as shown in Fig. 5.3.

Although extra file transfers constitute crucial bottleneck, it is stated in [22]
that they can also be necessary for efficient utilization of computational re-
sources, especially when tasks have comparable computation and communication
times. However, if initial scheduling decisions create a computational imbalance,
the following greedy decisions may aggravate this problem. The processors that
are computationally overloaded due to the previous scheduling decisions are
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likely to be more favorable for future task assignments since in addition to being
already favorable, they have lots of file transfers already scheduled.

Fig. 5.4 illustrates a sample application with three tasks and two small files.
As seen in the figure, MinMin schedules t2 on p1 after scheduling t1 on p1
because of the cost of the extra transfer of file f1 in case of scheduling t2 on p2.
However, MinMin ignores the fact that scheduling t3 on p1 does not require any
extra file transfer. After faster processor p1 is overloaded by these two scheduling
decisions, it becomes more favorable since both f1 and f2 are already transferred
to p1. Finally, MinMin schedules t3 on the overloaded processor p1 because of
the extra transfer of file f1 required for the other choice of scheduling t3 on the
empty processor p2. However, there is a much better schedule that utilizes both
processors as shown in Fig. 5.4.

5.3.2 Iterative-Improvement-Based Scheduling Heuristics

In [22], Kaya and Aykanat propose an iterative-improvement-based heuristic
for scheduling file-sharing tasks on a heterogeneous framework with a single
repository. They propose a three-phase scheduling approach which involves ini-
tial task assignment, refinement and execution ordering phases. For the refine-
ment phase, they model the target application as a hypergraph and with a
hypergraph-partitioning-like formulation, they propose iterative-improvement-
based heuristics for refining the task assignments according to two novel objec-
tive functions. Unlike the turnaround time, which is the actual schedule cost,
the smoothness of proposed objective functions enables the use of iterative-
improvement-based heuristics successfully.

Before a detailed analysis of the heuristics in [22], we first give the background
material on hypergraph partitioning and iterative-improvement heuristics which
are exploited in the scheduling approach.

Hypergraph Partitioning Problem

A hypergraph H = (V , N ) is defined as a set of vertices V and a set of nets
(hyperedges)N among these vertices [8]. Every net n in N is a subset of vertices,
i.e. n ⊆ V . The vertices in a net n are called its pins. The set of nets that contain
vertex v is denoted as nets(v). The total number of pins denotes the size of the
hypergraph. Weights can be associated with vertices and nets. Graph is a special
instance of hypergraph such that each net has exactly two pins.

Π = {V1,V2, . . . ,VK} is a K-way vertex partition of H if each part Vk is
nonempty, parts are pairwise disjoint and the union of parts gives V . In Π , a net
is said to connect a part if it has at least one pin in that part. The connectivity set
Λn of a net n is the set of parts that n connects and the connectivity λn = |Λn|
of n is the number of parts it connects. In Π , the weight of a part is the sum of
the weights of the vertices in that part.

The K-way hypergraph partitioning (HP) problem is defined as finding a K-
way vertex partition that optimizes a given objective function while preserving
a given partitioning constraint. The connectivity−1 metric is frequently used
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in hypergraph partitioning [26]. The partitioning objective in this metric is the
minimization of CutSize(Π) which is given as:

CutSize(Π) =
∑

n∈N
w(n)(λn − 1), (5.1)

where w(n) denotes the weight of net n. The partitioning constraint is to main-
tain a balance on the part weights, i.e.,

(Wmax −Wavg)/Wavg ≤ ε, (5.2)

where Wmax is the weight of the part with the maximum weight, Wavg is the
average part weight, and ε is a predetermined imbalance ratio.

Iterative-Improvement Heuristics

The refinement heuristics proposed by Kaya et al. [22, 23] are based on the
iterative-improvement heuristics introduced by Kernighan-Lin (KL) [24] and
Fidducia-Mattheyses (FM) [16] for graph/hypergraph partitioning. Both KL and
FM are move-based approaches with the neighborhood operator of swapping a
pair of vertices between parts and shifting a vertex from one part to another,
respectively. These heuristics have been widely used for graph/hypergraph par-
titioning by the VLSI [26] and scientific computing [3,14,15,21,32] communities
because of their effectiveness with good-quality results and efficiency with short
run times.

The FM algorithm, starting from an initial bipartition, performs a number
of passes until it finds a locally-optimal partition, where each pass contains a
sequence of vertex moves. The fundamental idea is the notion of gain, which is
the decrease in the cost of a bipartition by moving a vertex to the other part.
Several FM variants are proposed for the generalization of the approach to the
K-way refinement [31].

Iterative-Improvement-Based Refinement Approach

Both effectiveness and efficiency of FM-based heuristics depend on “the smooth-
ness” of the objective function over the neighborhood structure [2], i.e., the neigh-
borhood operator should be small and local. However, a direct generalization of
FM-based heuristics to the task scheduling problem suffers from disturbing this
smoothness criterion. Removing a task from a processor and scheduling it among
previously scheduled tasks of another processor incurs a global perturbation in
the schedule, because previously scheduled tasks affect the initialization and
completion times of executions of the waiting tasks. Due to this global effect of
a task move, computing the gain, which is the change in the turnaround time,
is a time consuming work and its time complexity is as high as computing the
turnaround time of a given schedule.



132 K. Kaya, B. Uçar, and C. Aykanat

In order to alleviate the above problem, Kaya and Aykanat [22] consider
the task scheduling problem as involving two consecutive processes: task assign-
ment process which determines the task-to-processor assignment, and execution-
ordering process which determines the order of inter- and intra-processor task
executions. This view enables the use of FM-based heuristics effectively and effi-
ciently in the task-assignment process by proposing smooth assignment objective
functions that are closely related to the turnaround time of a schedule. This re-
fined task-to-processor assignment can then be used to generate better schedules
during execution-ordering process.

HP Models for Task Assignment in Heterogeneous Environments:

Kaya and Aykanat use the hypergraph model HA = (T ,F) described in
Sect. 5.2.1 to represent the interaction among the tasks of the target appli-
cation A = (T ,F). Recall that in this model, the vertices of the hypergraph
represent the tasks and the nets represent the files. The pins of a net correspond
to the tasks that use the respective file. Because of this natural correspondence
between a target application and a hypergraph, we describe the heuristics using
the problem-specific notation of Sect. 5.2 instead of hypergraph-specific notation,
as much as possible, for clarity of presentation. For example, we will use files(t)
instead of nets(t). The size of a file f is the weight of the corresponding net.
Recall also from Sect. 5.2.2 that a P -way vertex partition Π = {T1, T2, . . . , TP }
of HA is decoded as inducing a task-to-processor assignment for a target sched-
ule. That is, all tasks in a part Tp will be executed by processor p in the target
schedule.

Successful hypergraph partitioning formulations have been recently proposed
for solving the task-to-processor assignment problem arising in the parallelization
of several applications on homogeneous platforms [3,14,15,32]. If the master-slave
platform is homogeneous, i.e., processors are identical and server-to-processor
bandwidth values are equal, the partitioning objective given in (5.1) and the
load balancing constraint given in (5.2) can be used effectively and efficiently for
the refinement. However, the heterogeneity of the environment brings difficulties
to the formulation of the task assignment problem. For this reason, Kaya and
Aykanat propose new assignment objectives, which can be generalized as par-
titioning objectives of the hypergraph partitioning problem for heterogeneous
environments.

In a given task-to-processor assignment Π , each file will be transferred at least
once since it is used by at least one task. Consider a cut net n with connectivity
λn in Π . Let fn be the corresponding file for n. is clear that λn − 1 denotes the
number of additional transfers of file fn incurred by Π . Hence w(fn)(λn − 1)
represents the additional transfer volume, whereas w(fn)λn denotes the total
transfer volume for file fn. That is, the connectivity metric is the correct metric,
rather than the connectivity−1 metric, for encoding the total file transfer volume
in a given task-to-processor assignment as shown below:
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CommVol(Π) =
∑

fn∈F
w(fn)λn. (5.3)

Note that minimizing CommVol(Π) is equal to minimizing CutSize(Π) since
CommVol(Π)=CutSize(Π)+

∑
f∈F w(f) and the second term is only a constant

factor.
Equation (5.2) can also be used to represent the total file transfer time if the

network is homogeneous by normalizing file sizes with respect to the bandwidth
value. That is, minimization of the total file transfer volume and the total file
transfer time are equivalent in the homogeneous case. To encapsulate the net-
work heterogeneity of the target master-slave platform, we need to modify the
conventional definition of the connectivity λn of a net n in which different parts
connected by n make equal contribution to λn. Since we want to formulate the
total file transfer time as the real communication cost and bandwidth values of
the links are different, Kaya and Aykanat define a heterogeneous connectivity λ

′

f

of a file f as:

λ
′

f =
∑

p∈Λf

1
bp

, (5.4)

where Λf denotes the set of processors that have at least one task needing f as
input. Then the total communication time, i.e., the total file transfer time, for
the single-repository case can be defined as:

CommTime(Π) =
∑

fk∈F
w(fk)λ′

k. (5.5)

The computational cost of a task-to-processor assignment Π to the environ-
ment is the load of the maximally loaded processor since computations are done
in parallel. That is,

CompTime(Π) = max
p

⎛

⎝
∑

t∈Tp

xtp

⎞

⎠. (5.6)

Since the assignment Π is clear from the context, we drop Π while referring to
CompTime and CommTime in the following text. The processor heterogeneity
creates difficulties in modeling the computational cost of a task-to-processor as-
signment Π . In homogeneous environments, the average part weight – Wavg in
(5.2) – can be considered as a lower bound for CompTime if a vertex weight rep-
resents a computational cost. Similarly, Wmax can be considered as CompTime
which is the exact parallel computational cost of the partition. Therefore in ho-
mogeneous environments, the load balancing constraint given in (5.2) can be used
for minimizing CompTime. However, in heterogeneous environments, since the
same task incurs different computational costs to different processors, a lower
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bound for parallel computational cost of Π cannot be treated as a balancing
constraint as in the hypergraph partitioning formulation for homogeneous envi-
ronments. Therefore, CompTime should be explicitly included in the assignment
objective function as well as CommTime.

By using CompTime and CommTime, Kaya and Aykanat propose two novel
objective functions. The first one represents an upper bound for the turnaround
time of a schedule with a pessimistic view that assumes no overlap between
communication and computation. It is a pessimistic view since it excludes the
possibility of communication-computation overlap between different processors
as well as on the same processor. For example, a schedule, in which all task exe-
cutions commence only after the completion of all file transfers from the server,
constitutes a typical schedule for this pessimistic view. Under this pessimistic
view, the turnaround times of all possible schedules that can be derived from a
given task-to-processor assignment Π are bounded above by

UBTime = CommTime + CompTime. (5.7)

Note that this upper bound is independent of the order of task executions for a
given task-to-processor assignment Π .

The second assignment objective function represents a lower bound for the
turnaround time of a schedule. As mentioned in Sect. 5.2, a processor can execute
a task while that or another processor is transferring a file from the server,
i.e., computation and communication can overlap. Even with an optimistic view
that assumes complete overlap between communication and computation, the
turnaround times of all possible schedules that can be derived from a given
task-to-processor assignment Π are bounded below by:

LBTime = max{CommTime, CompTime}. (5.8)

Note that this lower bound is also independent of the order of task executions
for a given task-to-processor assignment Π . This bound is unreachable because
of the non-overlapping cases at the very beginning and the end of a schedule. A
schedule must begin with a file transfer, and the respective task execution cannot
be initialized until the completion of this file transfer. A schedule must end with
a task execution on the bottleneck processor. All file transfers from the server
to all processors should be completed before the completion of the execution of
this task. The length of these non-overlapping intervals are negligible compared
to the turnaround time of a schedule due to the large number of tasks.

These two assignment objectives are closely related to the turnaround time
of a schedule, and their minimization can generate good task-to-processor as-
signments. The resulting task-to-processor assignments can be used to obtain
schedules with better turnaround times. Instead of one objective as in the hy-
pergraph partitioning problem, we have two assignment objectives and there are
various options to improve them. The details of the iterative-improvement-based
approach are given in the following subsection.
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Structure of the Refinement Heuristics

It is clear that the effectiveness of the refinement phase depends on considering
both objective functions simultaneously. Since the objective functions represent
upper and lower bounds for the turnaround time, the overall objective should be
closing the gap between these two objective functions while minimizing both of
them. For this purpose, Kaya and Aykanat propose to use an alternating refine-
ment scheme in which refinement according to one objective function follows the
refinement according to the other one in a repeated pattern. The refinement of
a task-to-processor assignment Π according to UBTime or LBTime is referred
to here as UB-Refinement or LB-Refinement stage, respectively.

Kaya and Aykanat state that using FM-based heuristics separately and in-
dependently for the minimization of the respective objective function is only a
partial remedy for satisfying the overall objective. While choosing the best move
according to one objective function, the effect of the move according to the other
one should also be considered indirectly since the minimization of one objective
function may degrade the value of the other one. For this purpose, the authors
propose to modify the move selection policy of FM-based approach accordingly
in the LB-Refinement stage and/or in the UB-Refinement stage.

In the general FM-based approach, the best move associated with a task cor-
responds to reassigning the task to another processor that incurs maximum
decrease in the respective objective function. In the proposed modification, a
two-level gain scheme is applied to determine the best move associated with a
task through considering the respective objective function as the primary one
while considering the other objective function as the secondary one. For the first
level, a good move concept is introduced, which selects the moves that decrease
the primary objective function. In the second level, the best move associated
with that vertex is selected among these good moves that incurs the minimum
increase to the secondary objective function.

In [22], the proposed two-level gain computation scheme is used in the LB-
Refinement stage. The rationale behind this decision is explained as follows:
First, the variations in the task-move gains are expected to be larger in UBTime
compared to LBTime. Second, UBTime is a relatively loose bound compared to
LBTime. Therefore, providing more freedom in the minimization of the loose
upper bound while incorporating the constraint to the minimization of the rel-
atively tight lower bound is expected to be more effective for reducing the gap
between these two bounds. Based on these two reasons, they also recommend to
start the alternating refinement sequence with UB-Refinement stage.

In [22], both UB- and LB-Refinement stages contain multiple FM-like passes.
In each pass, all tasks are visited in random order. The best move associated with
each visited task is computed according to the adopted gain computation scheme,
and this move is realized if it incurs a positive gain according to the respective
objective function. Note that each task is visited exactly once in a pass and these
passes are repeated until a stopping criterion is met. Algorithms 5.3 and 5.4 show
the general structures of UB- and LB-Refinement stages, respectively. In these
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Algorithm 5.3. UB-Refinement(Π)
1: while a stopping criterion is not met do
2: Create a random visit order of tasks
3: for each task t in this random order do
4: leaveGain ← UB-ComputeLeaveGain(t)
5: if leaveGain > 0 then
6: pb ← UB-SelectBestMove(t, leaveGain)
7: if pb is not equal to Map(t) then
8: UpdateGlobalData(t, pb)
9: Map(t) ← pb

10: end if
11: end if
12: end for
13: end while

Algorithm 5.4. LB-Refinement(Π)
1: while a stopping criterion is not met do
2: Create a random visit order of tasks
3: for each task t in this random order do
4: {commLeaveGain, compLeaveGain} ←textbfLB-ComputeLeaveGain(t)
5: if (CommCost(Π) > CompCost(Π) and commLeaveGain > 0) or

(CompCost(Π) > CommCost(Π) and compLeaveGain > 0) then
6: {pb, bestCommGain, bestCompGain} ←

LB-SelectBestMove(t, commLeaveGain, compLeaveGain)
7: if pb is not equal to Map(t) then
8: UpdateGlobalData(t, pb)
9: CommCost(Π) ← CommCost(Π) − bestCommGain

10: CompCost(Π) ← CompCost(Π) − bestCompGain
11: Map(t) ← pb

12: end if
13: end if
14: end for
15: end while

figures, Map(t) denotes the processor to which task t is currently assigned. For
a more detailed structure of the refinement phase, we refer the reader to [22].

The Three-Phase Approach

In the first phase, initial task-to-processor assignments are derived from the
schedules created by some of the existing constructive scheduling heuristics.
Kaya and Aykanat prefer this approach to a direct task-to-processor assignment
heuristic, because the proposed refinement heuristics are developed by taking
the flaws of existing constructive scheduling heuristics into account. They use
the heuristics proposed by Giersch et al. [17,20] because of their short execution
times. The additional policies are not used, but all of the five heuristics, each
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having a different objective function, are used since their relative performances
vary with the characteristics of applications, e.g., with the number of tasks and
files, the average execution time of the tasks, and the average transfer time of
the files. Each one of the five initial task-to-processor assignments obtained in
this way is fed to the next two phases to obtain five schedules. At the end, the
best schedule in terms of the turnaround time is taken as the schedule for the
target application.

After the initial task assignment phase, these task assignments are refined
with respect to the UBTime(Π) and LBTime(Π), the two proposed objective
functions. The authors state that the main improvement in the turnaround time
of a schedule can be obtained within only a few passes, whereas the following
passes incur negligible improvement. Likewise, the main improvement in the
turnaround time of a schedule can be obtained within the first two alternating
sequences of UB- and LB-Refinement stages, whereas the following alternat-
ing sequences incur negligible improvement. For this reason, a constant number
of alternating sequences of UB- and LB-Refinement stages is allowed in the
implementation.

In the execution ordering phase, each task-to-processor assignment Π obtained
in the refinementphase ispreservedwhiledetermining the inter- and intra-processor
ordering of the task executions. Note that CommTime, CompTime and hence the
improved values of both objective functions remain the same as determined in the
refinement phase. The structure of the execution ordering heuristic is similar to the
scheduling heuristics proposed by Giersch et al. [17, 20]. However, the execution
ordering heuristic is asymptotically faster since the same task-to-processor assign-
mentΠ is usedduring the course of theheuristic.For eachΠ, the executionordering
heuristic is run five times by using each one of the five objective functions proposed
by Giersch et al. [17, 20] and the best schedule is selected for this Π .

We omit the details of the subroutines used in LB- and UB-Refinement stages.
Slightly different versions of some of them will be explained in detail for the gen-
eral framework with multiple repositories. The time complexity of the iterative-
improvement-based scheduling heuristic is O(TP log T + TP |A|). A detailed
explanation of the heuristics and complexity analysis can be found in [22].

Experimental Analysis

Kaya and Aykanat give various experimental results for the assessment of
the proposed iterative-improvement-based approach. To make the section self-
contained, we give the details of the experimental framework in [22] and restate
some important results to show the effectiveness of the proposed heuristic. A
detailed and complete list of the experiments conducted to analyze the perfor-
mance of the heuristics can be found in [22].

Kaya and Aykanat demonstrate the performance of the proposed heuris-
tic in comparison with the existing constructive heuristics. They simulate a
total of 250 applications, each consisting of T = 2000 tasks and F = 2000
files. Each task in an application uses a random number of files between 1
and 10. The file sizes are randomly selected to vary between 100 Mbytes and
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Rmax

N

R(N)

Fig. 5.5. Piecewise linear approximation for task-execution time estimation

200 Gbytes. The experiments vary with the computation-to-communication
ratio ρ = Compavg/Commavg of the target application, where Compavg =
(1/P )

∑
t∈T
∑

p∈P xtp, and Commavg = (1/bavg)
∑n

i=1 w(files(ti)). Note that
bavg=(1/P )

∑
p∈P bp denote the average server-to-processor bandwidth. They

show results with five different ratios ρ = 10.0, 5.0, 1.0, 0.2, and 0.1, where
for each ρ value there are 50 randomly created applications; thus totaling 250
applications. These choices of ρ characterize a range of applications containing
including computation intensive (ρ = 10) and communication intensive (ρ = 0.1)
ones.

Kaya and Aykanat use the GridG topology generator [27] for creating a het-
erogeneous master-slave platform with P=32 processors. The network contains
communication links with bandwidth values varying between 20 Mbit/s and 1
Gbit/s.

The Top500 supercomputer list maintained by Dongarra et al. [29] is used to
generate the task execution times. Since the Top500 list depends on the LIN-
PACK benchmark, the individual tasks are instances of the same problem approx-
imately incurring (2/3)N3 floating point operations for an instance size N . The
benchmark values Rmax, Nmax and N1/2, provided in [29] for each supercom-
puter, are used to make realistic approximations (inconsistent ETC matrices) for
task execution times in a heterogeneous Grid system. Here, Rmax denotes the
maximum processor performance (in terms of FLOPS) that can be achieved for a
task with an instance size greater than or equal to Nmax. Here, N1/2 represents
the instance size for which half of the Rmax is achieved. For specific ρ value,
the instance sizes for the tasks are uniformly distributed on an interval which is
selected judiciously to achieve ρ. Therefore, the performance variation of a task
with instance size N can be represented approximately with a piecewise linear
function R(N) as shown in Fig. 5.5. The execution time of a task t with instance
size N on a processor p is estimated as xtp=(2/3)N3/Rp(N).

Table 5.3 summarizes the results of the experiments conducted to validate
the relation between the proposed assignment objective functions and the ac-
tual schedule cost which is the turnaround time of a schedule. The values in
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the table are derived by using scheduling heuristics individually in the initial
task assignment phase as follows: For each heuristic used, the amount of de-
crease achieved in both UBTime and LBTime during the refinement phase are
normalized with respect to the amount of the resulting decrease in the actual
schedule cost. That is, these values display the amount of improvements needed
in UBTime and LBTime simultaneously to attain one time unit of improvement
in the actual schedule cost. Note that performance results are also given for
MinMin and Sufferage, which are not adopted in IIS, in the last two rows of the
table. As seen in Table 5.3, close to one time-unit (between 0.91 and 1.00) of
improvements are needed in LBTime which is a rather tight bound, whereas a
large variation (between 0.16 and 1.95) can be seen for the improvements needed
in UBTime which is a loose bound.

Table 5.3. Effectiveness of the objective functions

Heuristic in Min Max Avg
the first phase UB LB UB LB UB LB
Communication 0.703 0.955 1.879 0.996 1.281 0.980
Computation 0.331 0.928 1.718 0.993 0.989 0.966
Duration 0.570 0.905 1.647 0.997 1.049 0.964
Payoff 0.746 0.988 1.790 1.000 1.291 0.994
Advance 0.747 0.975 1.470 0.999 1.378 0.992
MinMin 0.266 0.923 1.759 0.986 0.923 0.958
Sufferage 0.160 0.993 1.951 0.999 1.128 0.995

The amount of improvements in LBTime and UBTime objective values re-
quired to obtain one unit of improvement in the turnaround time, i.e.,
Δ(LBTime)/Δ(TurnaroundTime) and Δ(UBTime)/Δ(TurnaroundTime), respectively.
Here, Δ(Obj) is the difference between Obj values after the first and the third phases
of the proposed heuristic.

Table 5.4. Relative performances of the heuristics for the single-repository case

Heuristic Cost Execution Time
Iterative-Improvement-Based Heu. 1.000 46.5
Sufferage 1.251 606.9
MinMin 1.303 655.6
Computation+Readiness 1.415 3.9
Communication+Shared+Readiness 1.418 1.3
Computation+Shared 1.426 1.1
Computation 1.435 3.6
Advance+Shared+Readiness 1.439 4.6
Communication+Readiness 1.455 1.3
Communication 1.468 1.0

Table shows the averages of the relative performances of good heuristics normalized
with respect to the best/fastest heuristic for each scheduling instance.



140 K. Kaya, B. Uçar, and C. Aykanat

Table 5.4 summarizes the results of the experiments conducted to compare
the performance of the proposed iterative-improvement-based approach with the
best greedy constructive heuristics. The last column of the table also shows the
relative runtime performances of these heuristics. For each scheduling instance,
the relative runtime performance of every heuristic is calculated by dividing
the execution time of the heuristic to that of the fastest heuristic. As seen in
Table 5.4, the iterative-improvement-based heuristic performs significantly bet-
ter than all existing heuristics on the average. For example, Sufferage, which is
the second best heuristics for the single-repository case, produces 25.1% worse
schedules than the iterative-improvement-based heuristic on the average.

5.3.3 An Extension: Clustered Platform

In [12, 20, 22], a slightly different version of the basic platform, a clustered plat-
form, is also considered as the target computing environment. The clustered
platform also has a single-repository but differs from the above-mentioned basic
one in the following aspects: Each processor node of the basic master-slave plat-
form effectively becomes a cluster of processors, which is served by a local file
storage unit for that cluster. That is, we have a set CL = {cl1, cl2, . . . , clc} of c
clusters and a set FS = {fs1, fs2, . . . , fsc} of c local file storage units, where
fsi is the file storage unit of cluster cli. fsi is responsible for storing the files,
that are transferred to cluster cli, until the end of the schedule. The network
heterogeneity is modeled by assigning different bandwidth values to the links
between the server and the file storage units of the clusters. The intra-cluster
communication costs due to the local file transfers from a file storage unit are
not considered, because intra-cluster file transfers are assumed to be much faster
than the file transfers from the server.

Table 5.5. Relative performances of the heuristics for the single-repository case: clus-
tered platform

Heuristic Cost Execution Time
Iterative-Improvement-Based Heu. 1.000 22.4
XSufferage 1.164 280.8
MinMin 1.193 263.0
Sufferage 1.236 263.5
Computation+Readiness 1.270 3.6
Computation 1.275 3.5
Duration+Readiness 1.358 3.7
Duration 1.370 3.7
Communication+Shared 1.445 1.0
Communication+Shared+Readiness 1.446 1.1

Table shows the averages of the relative performances of every heuristic normalized
with respect to the best/fastest heuristic for each scheduling instance.
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The greedy constructive heuristics [12, 13, 17, 20] and the iterative-improve-
ment-based heuristic [22] can be easily extended for the clustered platform. In
addition to the heuristics given in Table 5.1, Casanova et al. [12] also propose a
new heuristic called XSufferage for the clustered master-slave platforms. Unlike
other three scheduling heuristics, XSufferage computes cluster-based minimum
completion times for each task t from CT (t, p) values. The function g is defined as
the difference between the second minimum and the minimum of these minimum
completion times and “best” is defined as maximum. For the case of the heuristics
by Giersch et al. [17, 20], to adapt the readiness policy, a task is called ready
for a cluster if all of its input files are available at that cluster. Similarly for
adapting the locality policy, assignment of a task to a processor of a cluster
is avoided if some of the input files of that task were already transferred to
another cluster. Experiments in [22] show that the iterative-improvement-based
approach performs better than all other heuristics. The results are summarized
in Table 5.5.

5.4 Scheduling with Multiple Repositories

For the multiple-repository case, Giersch et al. [18, 19] assume a fully decen-
tralized system composed of servers linked through an interconnection network.
Each server acts both as a file repository and as a computing node consisting
of a cluster of heterogeneous processors. This system is slightly different from
the framework given in Sect. 5.2. In [18, 19], files can be replicated and they
are initially assumed to be stored at one or more repositories. In addition to the
objectives stated above for the single-repository case, the scheduler has to decide
how to route the files from repositories to other servers. The paper [18] estab-
lishes NP-completeness results for this instance of the scheduling problem and
proposes several practical heuristics. The proposed heuristics include extensions
of the MinMin heuristic, Sufferage heuristic, and the heuristics presented in the
previous works of the authors [17, 20]. The structure of the extended MinMin,
MaxMin, and Sufferage and the heuristics by Giersch et al. [17, 20] is similar to
Algs. 5.1 and 5.2. We refer the reader to [18, 19, 23] for a detailed explanation
and analysis of the extended heuristics.

Khanna et al. [25] deal with a scheduling problem for a slightly different com-
puting system. They assume a decoupled system consisting of processors and
storage nodes (repositories) connected in a local area network. As in the works
discussed above, the application consists of file-sharing otherwise independent
tasks. They assume that the computation time of a task is a linear function of
the total size of the requested files, and hence the expected execution time of a
task can be calculated as a constant multiple of the total size of the requested
files. This execution time model incorporates the local disk access costs in ad-
dition to the file transfer and processing costs. Under these assumptions, the
problem addressed in [25] can be specified as scheduling file-sharing tasks on a
set of homogeneous processors connected to a set of storage nodes through a uni-
form (homogeneous) network. Khanna et al. also use a hypergraph to model the
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application. They propose a two-stage strategy for scheduling task executions
and file transfers. In the first stage, they partition the tasks into groups—one
group to be assigned to a processor—using a hypergraph partitioning tool. In
the second stage, they order the tasks in each group and file transfers from the
storage nodes. Due to the homogeneous processors and network assumptions,
hypergraph partitioning objective and constraint correspond, respectively, to
minimizing total volume of file transfers (excluding local access) and maintain-
ing a balance on the loads (including I/O) of the processors. Khanna et al. report
better performance than some existing heuristics, including MinMin, MaxMin,
and Sufferage, on two real world applications.

Kaya et al. [23] extend the approach in [22] for the multi-repository case
and propose a similar three phase heuristic for scheduling file-sharing tasks on
a heterogeneous network with multiple data repositories. They state that, the
objective functions given in Sect. 5.3.2 cannot be used for the general framework
because of the existence of distributed repositories. We will give the details of the
new objective functions in this section. Kaya et al. also implement the MinMin,
MaxMin, and Sufferage heuristics [12, 13] and compare the performances of the
greedy constructive and iterative-improvement-based approach.

5.4.1 Iterative-Improvement-Based Scheduling Heuristics

Since we are dealing with heterogeneous environments, existing hypergraph par-
titioning techniques and iterative-improvement-based approaches that are used
by Khanna et al. [25] are not applicable. Therefore, Kaya et al. adopt the tech-
niques proposed in [22] and reviewed in the previous section. The objective
functions proposed in [22] cannot be used when the files are stored in mul-
tiple repositories. Hence, new smooth objective functions are required to de-
sign iterative-improvement-based heuristics on heterogeneous environments with
multiple repositories. Here, we give the details of the heuristics proposed in [23].

Iterative-Improvement-Based Refinement Approach

Objective Functions for Scheduling with Multiple Repositories

In an attempt to obtain bounds on the turnaround time, Kaya et al. [23] make
the following observations. The computational cost, CompTime, for the single-
repository case given in (5.6) is applicable as is in the multiple repositories case.
However, the communication cost, CommTime, for the single repository case
given in (5.5) is not applicable to the multiple repository case. Kaya et al. identify
two other cost components that are associated with the turnaround time and
that can be used instead of the CommTime. These are:

• UploadTime(Π): File transfer cost from the repositories’ perspective. In par-
ticular, this is the maximum file transfer time spent by a single repository.
• DownloadTime(Π): File transfer cost from the processors’ perspective. In par-

ticular, this is the maximum file download time spent by a single processor.
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Since the assignment Π is clear from the context, we drop Π in the following
text. Suppose that the file f is stored in the repository r, i.e., store(f) = r.
Recall that Λf denotes the set of processors to which file f is to be uploaded.
The time spent by the repository r on transferring the file f is

Upload(f) = w(f)
∑

p∈Λf

1
brp

. (5.9)

For each repository r, the total upload time Ur is defined as the summation of
Upload(f) costs over all files stored in r, i.e.,

Ur =
∑

f∈F(r)

Upload(f) . (5.10)

Since the files can be transfered in parallel, with an optimistic view, the maxi-
mum upload time spent by a single repository is

UploadTime = max
r
{Ur} . (5.11)

The time spent by the processor p on downloading the file f is

Download(f, p) =
w(f)

bstore(f),p
. (5.12)

Recall that files(Tp) =
⋃

t∈Tp
files(t) is the set of files to be transferred to pro-

cessor p. For each processor p, the total download time Dp is defined as the
summation of Download(f, p) costs over all files that are needed by the tasks
assigned to the processor p, i.e.,

Dp =
∑

f∈files(Tp)

Download(f, p) . (5.13)

Since the files can be downloaded in parallel, with an optimistic view, the max-
imum download time spent by a single processor is

DownloadTime = max
p
{Dp} . (5.14)

Although the three cost components given in (5.6), (5.11), and (5.14) do not
represent the turnaround time, they are closely related to it. By using these
components, Kaya et al. define lower and upper bounds on the turnaround time.
First, observe that the turnaround time cannot be less than any of these com-
ponents. Therefore, a lower bound on the turnaround time is

LBTimeEX = max {CompTime, UploadTime, DownloadTime} . (5.15)

Furthermore, these components can be used to define an upper bound. A
trivial upper bound is
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UBTimeEX =
∑

f∈F
Upload(f) + CompTime . (5.16)

Kaya et al. state that this bound is too pessimistic to be useful; it states that
task executions start after all files have been transfered to the processors, where
there are no concurrent file transfers and it is hard to define a tighter upper
bound that is smooth over the search space generated by task reassignments.
Therefore, they define an objective function which is estimated to be an upper
bound. By assuming concurrent transfers, they obtain

EstUBTime = max{UploadTime, DownloadTime}+ CompTime , (5.17)

which is likely to be an upper bound on the turnaround time. Note that this is
an estimation, since it is not guaranteed to be an upper bound. This objective
function is a combination of the aforementioned optimistic and pessimistic views.
It expects full parallelism among the file transfers and no overlap among the task
executions and file transfers.

Structure of the Refinement Heuristics

Similar to [22], for the multiple-repository case, we have two different objective
functions, LBTimeEX and EstUBTime. As in [22], Kaya et al. [23] choose a
similar approach and use an FM [16] based refinement heuristic to close the gap
between these two bounds while minimizing both of them. For this purpose,
they use an alternating refinement scheme in which first LBTimeEX and then
EstUBTime are improved repeatedly until there exists no improvement in these
two bounds.

Since we have two bounds to improve, a task reassignment which improves one
of these functions may worsen the other one. To solve this problem, Kaya et al.
use the two-level gain approach proposed in [22] which modifies the gain con-
cept as described in Sect. 5.3.2. They adopt this modification in improving the
LBTimeEX as the primary objective and refine EstUBTime without the two-
level gain approach. Similar to [22], the authors state that this latter scheme gives
more freedom in EstUBTime refinement and provides the future LBTimeEX re-
finements with a larger search space to explore.

The objective functions LBTimeEX and EstUBTime depend highly on the
communication cost incurred by the file transfers. If a file f is required to be
transfered to a processor p for only one task, reassigning that task from p to
another processor will save the cost of transferring f to p. We call such files
as critical to the processor p and maintain a list of such critical file and pro-
cessor pairs. The critical file concept corresponds to the critical net concept in
hypergraph partitioning.

Algorithm 5.5 displays the LB-RefinementEX heuristic. The heuristic first finds
thevalues of thevariablesC1, C2, andC3 that areused to refer to the three cost com-
ponents. The variable C1 refers to the maximum of UploadTime, DownloadTime,
and CompTime, i.e., LBTimeEX = C1. The variable C2 refers to the cost com-
ponent which in conjunction with C1 defines EstUBTime = C1 + C2, e.g., if C1
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is CompTime, C2 will be the maximum of UploadTime and DownloadTime, oth-
erwise it will be CompTime – see (5.17). Effectively, C1 becomes the primary ob-
jective, and C1 + C2 becomes the secondary one. The heuristics run until the cost
component that defines LBTimeEX changes. If the largest cost component C1 is
the UploadTime, then a randomly permuted list of tasks that request files from
the bottleneck repository is constructed. Otherwise, a randomly permuted list of
tasks that are assigned to the bottleneck processor is constructed. For the sake of
run time efficiency, the visit orders are constructed using only the tasks that are
associated with the bottleneck repositories and processors.

Algorithm 5.5. LB-RefinementEX(Π)
1: 〈C1, C2, C3〉 ← DefBounds{UploadTime(Π),DownloadTime(Π),CompTime(Π)}
2: while C1 ≥ C2 and C1 ≥ C3 do
3: Create a random visit order of the tasks associated with C1

4: for each task t in this random order do
5: 〈gain, q〉 ←LB-ComputeGain(t, C1, C2)
6: if gain > 0 then
7: UpdateGlobalData(t, q)
8: Assign(t) ← q
9: if C1 < C2 or C1 < C3 then

10: return
11: end if
12: if bottleneck repository or processor is changed then
13: goto 2
14: end if
15: end if
16: end for
17: end while

The procedure LB-ComputeGain(t, C1, C2) computes the reassignment gains
associated with task t and returns the reassignment with positive gain in the
primary objective C1 and the maximum gain in the secondary objective C1 +C2.
If such a reassignment is found, the task is reassigned from its current owner
p = Assign(t) to a new processor q.

The gain computations for the cost components are performed as follows.
Let X(2) denote the execution time of the processor with the second maximum
task execution time. Then, the gain of reassigning the task t from a bottleneck
processor p to processor q is

gcomp(t, p, q) = min

⎧
⎨

⎩

xtp

Xp −X(2)
Xp − (Xq + xtq)

⎫
⎬

⎭
, (5.18)

according to the objective CompTime. The first argument out of the three, xtp,
corresponds to the case in which the processor p remains to be the bottleneck
processor after the reassignment. The second argument Xp −X(2) corresponds
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to the case in which Xq < X(2) and the second bottleneck processor before the
reassignment becomes the bottleneck processor afterwards. The third argument
Xp − (Xq + xtq) handles the cases in which processor q becomes the bottleneck
processor after the reassignment.

Let D(2) denote the download cost on the processor with the second maxi-
mum file download time. Then, the gain of reassigning task t from a bottleneck
processor p to processor q is

gdownload(t, p, q) = min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

f∈critical(files(t),p)

w(f)
bstore(f),p

Dp −D(2)

Dp −
(

Dq +
∑

f∈notNeed(files(t),q)

w(f)
bstore(f),q

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (5.19)

according to the objective DownloadTime. The first argument corresponds to the
case in which the processor p remains to be the bottleneck processor after the
reassignment. In this argument, the set critical(files(t), p) contains the files that
are needed by task t and are critical to the processor p before the reassignment.
The second argument Dp−D(2) corresponds to the case in which Dq < D(2) and
the second bottleneck processor before the reassignment becomes the bottleneck
processor afterwards. The third argument handles the cases in which processor q
becomes the bottleneck processor after the reassignment. In this argument, the
set notNeed(files(t), q) contains those files of task t that are not needed by any
task in Tq before the reassignment. Note that the set of files notNeed(files(t), q)
become critical to processor q after the reassignment.

Let U(1) denote the upload cost of the repository with the maximum file up-
load time. Then, the gain of reassigning task t from the processor p to processor
q is

gupload(t, p, q) = U(1)−max
r

⎧
⎪⎨

⎪⎩

Ur −
∑

f∈critical(files(t)∩F(r),p)

w(f)
brp

+
∑

f∈notNeed(files(t)∩F(r),q)

w(f)
brq

⎫
⎪⎬

⎪⎭
, (5.20)

according to the objective UploadTime. Here, U(1) gives the bottleneck value
before the reassignment. The max

r
{·} corresponds to the bottleneck value upon

realizing the reassignment. The set files(t) ∩ F(r) contains those files that are
needed by task t and are stored in repository r. Reassigning task t changes the
upload times of the repositories in which files(t) are stored. The first summation
corresponds to the decrease in the upload time of the repository r due to relieving
r of transferring the critical files of t to processor p. The second summation
corresponds to the increase in the upload time of the repository r due to the
files in the set notNeed(files(t), q).

The procedure UpdateGlobalData(t, q) computes the new loads of the repos-
itories and the processors, and it keeps track of the changes in the cost compo-
nents that define LBTimeEX and EstUBTime. It also maintains the identities
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Algorithm 5.6. EstUB-Refinement(Π)
1: 〈C1, C2, C3〉 ← DefBounds{UploadTime(Π),DownloadTime(Π),CompTime(Π)}
2: while C1 ≥ C3 and C2 ≥ C3 do
3: Create a random visit order of the tasks
4: for each task t in this random order do
5: 〈gain, q〉 ←EstUB-ComputeGain(t, C1, C2)
6: if gain > 0 then
7: UpdateGlobalData(t, q)
8: Assign(t) ← q
9: if C1 < C3 or C2 < C3 then

10: return
11: end if
12: if bottleneck repository or processor is changed then
13: goto 2
14: end if
15: end if
16: end for
17: end while

of the repositories and the processors that attain the maximum and the second
maximum load in terms of the three cost components.

The EstUB-Refinement heuristic is similar to the LB-RefinementEX heuris-
tic with a few differences. This procedure visits all tasks in a random order
and computes the reassignment gains of the tasks as the total gain obtained
for the cost components that define EstUBTime. For example, gcomp(t, p, q) +
gdownload(t, p, q) is computed as the gain of reassigning the task t from processor p
to processor q, if EstUBTime is defined by CompTime and DownloadTime. Here,
gcomp(t, p, q) and gdownload(t, p, q) are computed according to (5.18) and (5.19),
respectively. The best reassignment of a task is realized if the total gain is non-
negative. The procedure adapts itself to the cost components that define the
EstUBTime and discards the tasks that are not associated with the bottleneck
cost components. Observe that the CompTime is always one of the bottleneck
cost components and the other may change because of the tasks reassignments
throughout the execution of the EstUB-Refinement procedure.

A refinement pass consists of an LB-RefinementEX and an EstUB-Refinement.
Similar to [22], Kaya et al. [23] choose to apply three refinement passes and
run the LB-RefinementEX and EstUB-Refinement heuristics with at most five
iterations of the while loops (see line 2 of Algs. 5.5 and 5.6).

Three-Phase Approach

Kaya et al. use the same three-phase approach described in Sect. 5.3.2. In the
first phase, they use the greedy constructive heuristics [17, 20] to find an initial
task-to-processor assignment. They modify these heuristics to handle multiple
data repositories and implement them in such a way that their outputs are task-
to-processor assignments rather than complete schedules. After refining these
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task assignments in the second phase by using the above-mentioned refinement
approach, they use the modified versions of the greedy constructive heuristics to
find the inter- and intra-processor ordering of task executions. For more details,
we refer the reader to [23].

Experimental Analysis

Kaya et al. give various experimental results for the assessment of the proposed
heuristics and objective functions. Here we restate some important results to show
the effectiveness of theproposedheuristic.Adetailedandcomplete list of the exper-
iments conducted to analyze the performance of the heuristics can be found in [23].

The experimental setting of [23] is similar to the one in [22]. The authors gen-
erate five sets of applications, where the computation-to-communication ratio, ρ,
is different for each application set. For each application set, they generate three
groups of problem instances in which the number of files requested by a task was
in the range [1–5] or [1–10] or [1–20]. The applications contains T = 3000 tasks
and F = 3000 files where file sizes were random integers ranging from 50 Mbytes
to 70 Gbytes.

Similar to [22], to create a heterogeneous system, they use the GridG network
topology generator [27]. The generated framework has P = 32 processors and up
to nine data repositories. The bandwidths of the communication links between
repositories and processors were in between 10 Mbit/s and 1 Gbit/s.

Table 5.6 summarizes the results of the experiments conducted to validate the
relation between the objective functions proposed for refining task assignments
and the turnaround time. That is, these values display the amount of improve-
ments needed in LBTimeEX and EstUBTime to attain one unit of improvement
in the turnaround time. As seen in Table 5.6, close to one unit (between 0.97 and
1.29) of improvements are needed in LBTimeEX, whereas the required improve-
ment in EstUBTime is in between 1.28 and 4.42. This shows that the EstUBTime
is not a tight upper bound on the turnaround time in the problem instances that

Table 5.6. Effectiveness of the Objective Functions

Heuristic in Min Max Avg
the first phase EstUB LB-EX EstUB LB-EX EstUB LB-EX
Communication 1.880 1.004 3.151 1.191 2.348 1.071
Computation 1.275 0.973 2.097 1.051 1.682 1.005
Duration 1.699 0.989 2.994 1.273 2.166 1.086
Payoff 1.949 1.031 3.443 1.160 2.484 1.083
Advance 1.951 1.036 4.423 1.287 2.871 1.161

The amount of improvements in LBTimeEX and EstUBTime objective val-
ues required to obtain one unit of improvement in the turnaround time, i.e.,
Δ(LBTimeEX)/Δ(TurnaroundTime) and Δ(EstUBTime)/Δ(TurnaroundTime), re-
spectively. Here, Δ(Obj) is the difference between Obj values after the first and the
third phases of the proposed heuristic.
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Table 5.7. Relative performances of the heuristics for the multiple-repository case

Heuristic Cost
Iterative-Improvement-Based Heu. 1.005
Sufferage 1.108
MinMin 1.133
MaxMin 1.459

Table shows the averages of the relative performances of every heuristic normalized
with respect to the best/fastest heuristic for each scheduling instance.

we consider. It is clear that, different and tighter estimations would increase the
efficiency of the proposed heuristic in terms of the turnaround time.

Kaya et al. also perform some experiments to compare the performance of their
approach with some greedy constructive scheduling heuristics. They also mod-
ify the MinMin, MaxMin and Sufferage to compare their approach with these
heuristics. The experimental results show that Sufferage is the best among the
three heuristics. The proposed iterative-improvement-based heuristic has been
reported to be considerably faster than the Sufferage heuristic (approximately
90 times) while obtaining 10% improvement on the average in the turnaround
times. Table 5.7 summarizes the results of these experiments.

5.5 Conclusions

This chapter surveys the heuristics for scheduling file-sharing tasks on hetero-
geneous environments and shows a generic approach to adapt the iterative-
improvement-based refinement heuristics to the task scheduling problem.

In this approach, the task scheduling problem is considered as involving two
consecutive processes: task assignment which determines the task-to-processor
assignments, and execution ordering which determines the order of inter- and
intra-processor task executions. This approach enables the use of iterative-
improvement heuristics effectively and efficiently in the task assignment process
by proposing smooth assignment objective functions that are closely related to
the cost of a schedule. This refined task-to-processor assignment is then used to
generate a better schedule during execution ordering process.

The presented heuristics are static in the sense that the schedule is determined
before the program execution begins. Real-life environments with large and non-
dedicated computing platforms may require dynamic scheduling to adapt to
the run-time changes such as increases in the workload, processor failures, and
link failures. The refinement heuristics seem to be viable to adapt the original
schedule to the run-time changes. However, dynamic scheduling methods interact
with other system components such as process migration mechanism whose costs
should be considered in the refinement heuristics.

The presented heuristics can be used in population-based heuristics. First, the
solutions found by the heuristics can be used to generate an initial generation.
Note that the randomized part of these heuristics is the creation of the visit orders
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during the refinement phases. Therefore, we believe that this approach can create
initial generations of very small sizes. Second, the refinement heuristics can be used
to improve the current individuals before producing the next generation. In other
words, the refinement heuristics can be used to let the individuals mature for a
while (for a number of refinement phases) before producing the next generation.
We have confidence that this approach will deliver promising solutions.
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32. Uçar, B., Aykanat, C.: Encapsulating multiple communication-cost metrics in par-
titioning sparse rectangular matrices for parallel matrix-vector multiplies. SIAM
Journal on Scientific Computing 25(6), 1837–1859 (2004)



6

Advanced Job Scheduler Based on Markov
Availability Model and Resource Selection in
Desktop Grid Computing Environment

EunJoung Byun1, SungJin Choi1, HongSoo Kim1, ChongSun Hwang1,
and SangKeun Lee1

Dept. of Computer Science & Engineering, Korea University, Korea
{vision,lotieye,hera,hwang}@disys.korea.ac.kr, yalphy@korea.ac.kr

Summary. This chapter reviews dynamism in desktop Grid computing and explains
the advanced stochastic scheduling scheme with the Markov Job Scheduler based on
Availability (MJSA) in the environment.

In recent years, Grid computing [1] has received considerable interest in the field
of academics and enterprise. Numerous attempts have been made to organize cost
efficient large-scale Grid computing. Desktop Grid computing [13,19,2] is a more flexible
paradigm that is used to achieve high performance and high throughput with desktop
resources that are less stable and has more inferior performance compared to traditional
Grid. It is comprised of a diverse set of desktops interconnected with various network
forms ranging from Local Area Network (LAN) to the Internet. Desktop Grid system
has played a leading role in the development of large scale aggregated computing power
harvested from the edge of the Internet at lower cost. The main goals of the system are
to accomplish high throughput and performance by mobilizing the potential colossal
computational resources of idle desktops.

However, since a desktop peer is a fluctuating resource that connects to the sys-
tem, performs computations and disconnects to the network at will, desktop volatility
makes the system unstable and unreliable. To develop a reliable desktop Grid comput-
ing system, a scheduling scheme must consider the dynamic nature (i.e., volatility) of
volunteers and a resource selection scheme should adapt to such a dynamic environ-
ment, as the selection is getting complicated due to the uncertain behavior of desktops.

This chapter demonstrates desktop state change modelling and an advanced resource
selection scheme, Selection of Credible Resource with Elastic Window (SCREW), to
choose reliable resources in dynamic computational desktop Grid environments. Markov
modelling of the dynamic state turning provides understanding of the pattern of desktop
behavior while SCREW selects qualified desktops that satisfy time requirements to com-
plete given workloads and adapts to the needs of the user and the application on the fly.

Keywords: Desktop Grid computing, Stochastic scheduling, Markov modelling, Hid-
den Markov Model, Resource selection scheme.

6.1 Introduction

In a traditional Grid system environment, performance becomes both irregular
and sporadic due to resource sharing among other applications [7]. The desktop

F. Xhafa, A. Abraham (Eds.): Meta. for Sched. in Distri. Comp. Envi., SCI 146, pp. 153–171, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Grid system is more dynamic and unreliable compared to typical Grid systems
since desktop Grid is affected by user activities or owner preferences in use. The
diverse network-based architecture helps the system bring together a number
of desktops through various networks, whereas dynamic peers threaten system
stability and dependability. Particularly, the desktop Grid systems that do not
exclude volatile resources have suffered from performance degradation since they
cannot prevent unstable and unpredictable system behavior. It is important to
recognize that desktop Grid is different from typical Grid in terms of resource
stability (i.e. volatility and autonomous donation). The issues related to re-
sources including selection, scheduling (i.e. mapping between job and resource),
management, etc. must be dealt with differently from the former Grid. Most
desktop Grid computing systems steal widespread available cycles. In a desktop
Grid computing environment, voluntary desktops (i.e., resource providers) are
free to leave and join independently in the middle of execution. Existing desktop
Grid computing systems, however, do not consider volatility in their scheduling
procedures. As a result, job execution is often suspended, resulting in delayed
completion time and degraded performance and reliability.

Although desktop Grid computing is considered to be a promising solution to
compute large-scale problems at a lower cost, it frequently experiences blocked
job execution and delayed execution time since variable desktops are engaged or
turned off at the whim of individual users. Previous studies do not consider the
volatile aspects of desktops. They suffer from the following problems: delayed
makespan (i.e., total execution time), degraded performance, unreliability and
instability of systems, and unpredictable execution patterns of desktops. The
stochastic scheduling scheme based on the reliable resource selection method
is demonstrated to face these limitations. The Markov Job Scheduler based on
Availability (MJSA) consists of two main modules: THE Markov modeling and
resource selection part, Selection of Credible Resource with Elastic Window
(SCREW). In the modeling, MJSA considers volatility, the state in which a re-
source is unavailable for utilization caused by participant dynamics, availability,
and the responsiveness of participants. The MJSA models the temporal avail-
ability of desktops stochastically when measuring the dynamic characteristics of
participants as well as determining the probability that a desktop will be acti-
vated. The modeled probabilistic resource prediction based on a state transition
model considers the flow of time. Since analysis and prediction of the resource
state affect the scheduling procedure to select an appropriate desktop, MJSA
suggests a refined resource selection scheme, to accurately predict resource state
changes in unpredictable and dynamic changing environments. As a result, it
can efficiently manage the volatility of a participant. To further improve reliabil-
ity and stability of the system, MJSA supports three scheduling schemes based
on the Markov chain: OPTIMIST, PESSIMIST, and REALIST. These schedul-
ing schemes are based on stochastic modeling of desktop availability. In the
OPTIMIST scheme, in which time constraints are relaxed, the MJSA provides
reliable resource selection at low cost. In the PESSIMIST scheme, where time
constraints are rigid, the MJSA enables stable makespan in strict time. Finally,
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in the REALIST scheme, where time constraints are only partially relaxed, the
MJSA provides enhanced cost efficiency. In conclusion, the MJSA improves per-
formance and reliability by adapting the appropriate scheduling scheme when
selecting volunteers according to the needs of applications.

SCREW is designed for MJSA to provide reliable resource management and
efficient resource selection. In addition, SCREW provides flexible and tailored
selection methods satisfying user and application requirements. The proposed
SCREW gives a strong and reliable basis to make a decision whether a partic-
ular resource is eligible or suitable for the given condition from the system or
workload.

This chapter starts with the description of the Hidden Markov Model. In
Section 6.3, the Markov modeling based on availability is demonstrated. Section
6.4 discusses the advanced scheduling schemes based on the Markov model. In
Section 6.5, SCREW is explained. Section 6.6 provides performance evaluations
through mathematical analysis and experimentation of the MJSA on top of
Korea@Home. Finally, Section 6.7 presents the conclusions.

6.2 Hidden Markov Model

Since the MJSA is not based on statistical analysis but on stochastic model-
ing that presents state transition over time, it gives a well-defined structure to
manifest the dynamic facets. Even though statistical modeling has been widely
employed to classify patterns at low cost, it is inadequate to present complex and
dynamic fluctuating features that differ over time. A more elaborate approach is
necessary. The fluctuation of desktop states can be modeled with a parametric
random process. In addition, the parameters of stochastic variables can be esti-
mated with higher accuracy. The proposed method supports a reliable method
to recognize states and predicts state changes for a volatile resource desktop in
the Internet.

The probabilistic model relies upon a hidden Markov model (HMM) [25] in
which a Markov process with unknown (i.e. hidden) parameters determines the
hidden parameters from observable parameters. The extracted model parameters
are used to extract further analysis applications. In a hidden Markov model,
the state is not directly visible but variables influenced by the state are visible
while each state has a probability matrix among the possible outcomes and the
sequence of state products generated by an HMM gives some information about
the sequence of desktop states. As shown in Eq. 6.1, the Markov model consists of
the following five complete parameters given in Eq. 6.2 through Eq. 6.6, in which
N indicates the number of states and M illustrates the number of observable
symbols. In addition, A denotes the state transition probabilistic matrix while
B presents the observation probability distribution and π means the initial state
distribution.

λ = {N, M, A, B, π} (6.1)
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Q consists of the state variable gt as the state of the system at discrete time t.

Q = {q1, q2, q3, ..., qN} (6.2)

Observation sequence consists of a series of events. O is known as

O = {o1, o2, o3, ..., oM} (6.3)

The state transition probability distribution A = {aij} where

aij = P (qt+1 = j|qt = i) (6.4)

The observation probability distribution, B = {bj(k)} where

bj(k) = P (Ot = k|qt = i), i ≤ k ≤M (6.5)

The initial state distribution π = {πi}

π = P [q1 = i], 1 ≤ i ≤M (6.6)

The Markov model designs daily updates while considering each state and
calculating the probability of its state transition. The state of each participant
is checked and is updated each thirty-minute time unit. The reason why the
model updates every thirty-minute is that most subtask units require between
twenty and thirty minutes described in [5]. The shorter the window (i.e. less than
30 minutes) the more accurate preclearance of reliability. Conversely, the larger
the window (i.e. above 30 minutes) the less accurate the prediction. I close 30
minutes as that is the average fine of assigned tasks.

Three different states are used: Idle (I), Use (U), and Stop (S). The I state
indicates a condition that can be used to execute a job without personal activities
from the users own. The U state presents a status of being unable to work because
of user occupancy or intervention. The S state indicates a disabled state such
as machine crash or network disconnection. SCREW focuses on I which is a
meaningful state for execution.

P (O|Q, λ) =
N∏

n=1

P (om|qn, λ), m = {1, ...M} (6.7)

The forward variable can be derived by

αt+1(j) =
N∑

i=1

(αt(i) · aij) · bj(Ot+1) (6.8)

The backward variable can be derived by

βt(i) =
N∑

i=1

(aij · bj(Ot+1) · βt+1(j)) (6.9)
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δt+1(i) = [max(δt(i)aij)bj(ot+1)] (6.10)

P (O|λ) =
k∑

r=1

ar(j)βr(j)∀j, 1 ≤ j ≤ n (6.11)

Likelihood L is defined by

L =
n∑

i=1

N∑

j=1

(αt(i) · aij · bj(Ot+1) · βt+1(j) (6.12)

6.3 Markov Job Scheduler Based on Availability

One of the major concerns in desktop Grid systems is reliability. The proposed
scheduling scheme resolves system reliability problems resulting from participant
volatility through modeling temporal behaviors of each desktop. Although some
statistical scheduling approaches [24] are used to predict the available perfor-
mance of a participant, they do not accurately represent participant execution
patterns. The proposed MJSA employs the Markov chain based on availabil-
ity [18] since the stochastic availability model is used to represent participant
experiences in scheduling. The MJSA targets to provide a more reliable execution
through the stochastic process. As the Markov chain provides time-travel-like ac-
tivities of desktop execution [25], the MJSA can accurately determine the intent
of all state changes made by a desktop user as a Markov chain is built anew for
each time unit. The state of each desktop is checked and updated every thirty
minutes. A thirty-minute state update is used because [5] described that most
subtask units require between twenty and thirty minutes.

Our model has five parameters in which N is 48 (2 X 24=48 time units per
day while each time unit is thirty-minute), and M is 3 due to state kinds of
I, U , and S. A gives the time unit transition probability matrix, B shows the
observation probability (i.e. state of I, U , and S), and the initial state is π. The
independent observation sequence is represented by Eq. 6.7.

To find the optimal sequence, a Viterbi algorithm [25], which finds most prob-
able sequence with forward and backward algorithm, is introduced as given in
Eq. 6.7 through Eq. 6.12.

The state sequence which maximizes P (O, Q|λ) to decode with Viterbi is
shown in the following equation.

The probability of the entire consecutive sequence is as follows. Eventually,
most probable state occurrence in time unit, state credit (SC), presents the most
feasible state and derives the probabilities of each state.

Three different states are used: Idle (I ), Use (U ), and Stop (S ). The I state
indicates that a desktop can execute a job without user intervention. The U state
presents a state of being unable to work owing to user occupancy or intervention
while the S state denotes a disabled state caused by machine crash, system
termination, network disconnection, etc. The Markov model is updated daily
while calculating the probability of each state transition.
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Fig. 6.1. Markov Model for Availability

To reduce server overhead the server evaluates, stores, updates, and maintains
state credit values whereas each desktop resource records their state changes. The
size of Markov model influences the efficiencies of scheduling in terms of Grid
size. As the number of desktop resource increases and the size of desktop Grid
system grows, the server in the model could be overloaded. To solve this scal-
ability problem the probability of previous state is simply calculated according
to Markov chain property. To reduce server overhead hierarchical architecture
supporting sub-manager can be considered.
The Markov model suggests a simple way to process multiple sequences that
would otherwise be very difficult to manipulate. Fig. 6.1 presents the Markov
chain modeled with forty-eight time units in a twenty-four hour period, and
represents each thirty-minute interval. As represented in Fig. 6.1, Ii means I
state in ith time unit and PIiIj indicates transition probability from I state in
ith time unit to I state in jth time unit. Each transition in the Markov chain
state diagram has an associated transition probability. The matrix of transition
probabilities is shown in Eq. 6.13. The sum of each column is one. The state
transition probability matrix, A, aij , is given by PStatejStatek

PStatejStatek
=

⎛

⎝
PIjIk

PIjUk
PIjSk

PUjIk
PUjUk

PUjSk

PSjIk
PSjUk

PSjSk

⎞

⎠ (6.13)

The Viterbi algorithm [26] is used to draw an accumulated likelihood score
(i. e., probability associated with the state) of the most likely state. To find the
most likely transition and update the state probability for each state at the next
time unit, the most likely transition probability is found in the given states. Each
credit value is calculated based on the Viterbi algorithm applied to the Markov
model. The Viterbi algorithm helps to find the most-likely state transition se-
quence of states that performs sub-optimally. A credit value is introduced, State
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Credit (SC), which is derived from the probability of a value going through the
I state in the Markov chain model. The SC suggests the most-likely probability
for each state, indicating a reliability value. The probability of all paths going
through the I state is computed by multiplying the Forward State Credit (FSC)
by the Backward State Credit (BSC). As shown in Eq. 6.2, the FSC is the total
sum of the multiplied credit of the previous stage by the transition probability
from the previous stage (i.e. (i-1)th time unit) to the current stage (i.e. ith time
unit). In contrast, the BSC, which is a time reversed version of the FSC, is the
total sum of the multiplied credit of the next stage by transition probability from
the next stage(i.e (i+1)th time unit) to the current stage (i.e. ith time unit). The
state of the desktop calculating probability in each time unit helps to estimate
and predict the next state of the desktop. The FSC of Ii and the BSC of Ii are
given in Eq. 6.14 and Eq. 6.15.

FSCIi = SCIi−1 × PIi−1Ii + SCUi−1 × PUi−1Ii + SCSi−1 × PSi−1Ii (6.14)

BSCIi = SCIi+1 × PIiIi+1 + SCUi+1 × PIiUi+1 + SCSi+1 × PIiSi+1 (6.15)

The credit value of all paths going through Ii are calculated as shown in Eq. 6.16
of SC of Ii, SCIi .

SCIi = FSCIi ×BSCIi . (6.16)

Initially, the FSC in the first stage without forward transition probabilities in
the Markov chain is given by the rate of frequency in generating the Markov
chain. That is, the FSC is the ratio of fI1 to sum of fI1 , fU1 , and fS1 , whereas
frequency of I1, U1, and S1 are fI1 , fU1 , and fS1 , respectively. In addition, the
BSC at the last stage without backward transition probabilities is given by same
manner. They are denoted by FSCI1 =

fI1
fI1

+fU1
+fS1

and BSCI48 =
fI48

fI48
+fU48

+fS48
.

This predictable availability factor, SC, is measured based on desktop availabil-
ity. Each of the participants records the state onto profiles every thirty minutes
and transmits the current state to the central server whereupon the MJSA in
the central server refreshes and updates the Markov model of the desktop for
credit values. The MJSA calculates and manages the credit values of the state
of the desktops while updating the Markov model. The availability of the par-
ticipant is assumed to follow hyper-exponential distribution according to [5, 6].
The Markov model of the MJSA predicts availability and duration to improve
performance, reliability, and execution completion.

6.4 Scheduling Algorithms on the MJSA

As efficient and reliable scheduling scheming is most formidable in desktop Grid
computing since resource management and performance are highly related to the
scheme, we propose three scheduling schemes based on the Markov chain previ-
ously modeled with desktop availability and duration: OPTIMIST, PESSIMIST,
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and REALIST. The OPTIMIST scheme uses an advanced availability measure-
ment method as well as resource selection for the desktops. The PESSIMIST
aims to provide rapid makespan or to satisfy time requirements by imposing
punishment to unpredictable participants enabling more restricted availability
estimation and confined resource selection. The REALIST scheme combines ele-
ments of the OPTIMIST (ease of use) and the PESSIMIST (accuracy) to obtain
benefits from both, providing intermediate load for availability quantification and
semi-limited resource selection. The MJSA prevents the problems of unstable re-
sources and frequent job resubmission by selecting an appropriate participant
and allocating jobs to them on the basis of these three schemes. Although each
scheduling scheme has different features, the basic idea is that the scheduler
must reliably consider desktop execution patterns.

6.4.1 OPTIMIST

The OPTIMIST is fundamentally based on the idea that the desktops can com-
plete the workload eventually and therefore workloads can be simply allocated.
As a result, there are few severe constraints to resource selection.

The OPTIMIST is used in cases of little or no time restrictions concern-
ing task completion. Applications of this scheme are usually characterized by
long, large, independent, and identical workloads. A well-known example is
SETI@HOME [11]. However, workload failure probability is not low even though
the OPTIMIST outperforms previously existing schemes.

The essence of the OPTIMIST is SCIi , which is calculated by Eq. 6.16. The
algorithm of the OPTIMIST functions are as follows. First, the scheduler sets
a starting point to the present time unit in the Markov chain of a desktop.
Second, it forms a window from the starting point. Finally, all SCIi in the
window are summed up and compared with Required Time Factor (RTF). As
given in Eq. 6.17, where n is window size and RTF depicts the time required
to finish the workload, when the sum of SCIi is larger than RTF, the scheduler
allocates the workload to the desktop. If not, the window is enlarged in a forward
direction until its value reaches the given Due Time Factor (DTF) describing the
allowed time period. Whereupon the sum of SC reaches the RTF, the scheduler
allocates the workload to the desktop. If not, the MJSA repeats this process to
ascertain eligible desktops.

n∑

i=1

SCIi > RTF (6.17)

6.4.2 PESSIMIST

In contrast to the OPTIMIST, the PESSIMIST is based on the assumption
that the desktops can fail to deliver owing to their inherent volatility. In the
PESSIMIST, the workload must be allocated to reliable desktops. To do so, the
PESSIMIST is based on assigning a penalty for unpredictable or irregular execu-
tion using the entropy of availability in order to more accurately predict desktop
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execution patterns. The PESSIMIST is applied in case of strict time constraints,
for example large amounts of business or government data (such as census pro-
cessing) that must adhere to deadlines or realtime problem solving and mission-
critical projects. In these cases, completion time is more important. However,
this scheme has some overhead to estimate availability. The PESSIMIST is use-
ful in cases where desktops outnumber workloads. The PESSIMIST uses a severe
factor, Representative Credit (RC) of I state in ith time unit, RCIi , representing
availability with high probability, since SCIi is not enough to determine whether
the desktop is available or not, or how long it will remain available. RCIi con-
siders executable probability to credit values as given by Eq. 6.18. RC provides
prediction of ability and duration of desktop execution by adapting mining data
about desktop state transition. We introduce the concept of entropy, information
entropy measuring the amount of information from an unknown quantity, to con-
sider dynamism. The entropy suggests how predictably a desktop participates
and how efficiently desktop Grid computing systems can handle scheduling. In
particular, the penalty is computed through execution patterns by introducing
desktop execution entropy as represented in Eq. 6.18. We modeled a probability
system for RCIi in each time unit in the Markov chain to derive entropy. The
PESSIMIST requires stern penalties in terms of execution predictability and
accuracy for prediction. In case of strict time constraints, a reasonable penalty
for expected reliability deviation is imposed. RC improves estimation accuracy
by considering the probability of I state once again to SC. The manifest credit
value, RC, is given by Eq. 6.18.

RCIi = (FSCIi × PIi−1Ii)× (PIiIi+1 ×BSCIi) (6.18)

We propose the condition of inspecting whether the desktop is suitable to
execute reliably or not, according to a given workload. The eligibility condition
of the desktops to execute a job is given by Eq. 6.19, where n is the size of
windows.

(
n∑

i=1

RCIi + θ) · (1 − ϕ) > RTF (6.19)

Entropy of RCIi , εRCIi
, we obtain:

θ =
κ

εRCIi

(6.20)

εRCIi
= −

48∑

i=1

PRCIi
logPRCIi

(6.21)

In Eq. 6.20, θ is a penalty value imposed to irregular, uncertain or otherwise
volatile execution. θ deals with unpredictability of the desktop appropriately
by using the entropy with specific intensity. κ is a constant value assigned for
each thirty-minute interval, which is changeable according to system policy for
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penalty intensity. The entropy is derived from the probability system of RCIi

modeled with a rate of each RCIi to the sum of RCIi . ϕ suggests accuracy of
prediction implicitly where ϕ stands for fault rate and 1− ϕ stands for success
rate. Fault rate ϕ is computed by ϕ = #offailure

#offailure+#ofsuccess .

6.4.3 REALIST

The REALIST is introduced in cases of partial time constraints or performance
enhancement. This scheme solves the problems of time limitation and delays at
lower cost. As described in [23], uncompleted workloads must be redistributed
efficiently since total completion time (i.e. makespan or turnaround time) is
delayed by them. In this chapter, we emphasize the reallocation of the unfinished
workload to stable and reliable desktops through the hybrid scheme.

The REALIST uses elements of the two above-mentioned schemes by varying
degrees. Loose and strict policies in time limit are applied to the REALIST ac-
cording to workload requirements. The REALIST is a hybrid scheduling scheme
of the OPTIMIST and the PESSIMIST, utilizing the OPTIMIST in usual situa-
tions and incorporating the PESSIMIST in urgent cases resulting from execution
failure or time constraints. Actually this scheme was motivated by [23], which
reported that job completion time is delayed due to workload failure near the
end of the execution. Therefore, we propose the hybrid REALIST scheme to pre-
vent highly volatile and unpredictable desktop resources with low cost. In the
REALIST, the scheduler selects a desktop by using the OPTIMIST according
to the time required to finish the work load at the time of job allocation. After a
specific timeout, the scheduler chooses another desktop by using the PESSIMIST
according to strict time limitations for more reliable job completion. The REAL-
IST not only enhances performance but also guarantees job completion within
time constraints.

6.5 Selection of Credible Resource with Elastic Window

This section describes Selection of Credible Resource with Elastic Window
(SCREW) and depicts how it works in detail. Since a desktop is an autonomous
computing unit, the desktop is free to take part in computation in desktop
Grids. Desktops freely share their resources and, in the same breath, can termi-
nate their participation. Some desktops may even disappear without producing
any results. If a desktop fails to finish a workload, the system must reschedule
the failed workload to another desktop, thus delaying total execution time (i.e.
completion time or makespan). According to [19], uncompleted workloads and
repeated reallocation cause deferred makespan. The systems which are negligent
to distinguish between volatile resources suffer from unstable and unpredictable
system behavior. To reduce such deterioration in system performance in terms of
time and computational capacity due to the volatile nature of desktop participa-
tion, SCREW provides advanced resource selection sorting of reliable desktops
as well as flexibility in meeting application requirements. As a result, SCREW
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can choose more dedicated desktop peers, which can complete the allocated
workloads within the time requirement. Through this chapter, we will illustrate
how SCREW enables the system to select a reliable, sound, and stable desk-
top by using an elastic window. SCREW is a novel resource selection scheme to
overcome the restrictions caused by resource volatility while taking into account
dynamic state changes. SCREW concentrates on solving critical system stabil-
ity and performance degradation problems caused by desktop volatility. On the
other hand, it supports a self-adjusting formula for workload requirements and
selects eligible desktops according to the user and the application requests. We
reach a solution for problems caused by volatility with a stochastic approach,
considering the dynamic features and their behavioral patterns as time varies,
unlike the existing approaches which use a simple statistical approach. Further-
more, we add flexibility, meeting the requirements of the workloads and adapting
the needs from the user or the application dynamically.

The fundamental characteristics of a desktop platform are autonomy, volatil-
ity, malice, etc. To provide a reliable and stable system environment, the system
must consider these unstable features. SCREW confronts volatile resources to
select reliable resources using a flexible window based on stochastic state mod-
eling in desktop Grid environments. In addition, it forms the basis of desktop
availability and duration. Elastic Window (EW) is a self-adjusting window that
supports curtailing and expanding the window and calculating a consecutive SC
while SC represents the probability of state occurrence (i.e. especially I state).
The EW is based on the probabilistic observation prediction model solving the
time-unit-oriented architecture and transition relationships with representative
probabilities. The EW is used to select a desktop more reliably as well as to
adapt to workload requirements flexibly while giving the system what it needs,
no more and no less, based on a probabilistic model. The window size is related
to time constraint and is operated by time-related value needed by workloads
or desired by users or the application. SCREW computes the desktops’ usable
window to consider how much execution desktops can process over time. This
elastic window moves to the right as SCREW calculates SCIi and compares it
with SCneed in which SCIi represents a desktop’s SC of I state in ith time unit
and SCneed denotes needed SC to complete the workload. It has a flexible struc-
ture supporting extension and contraction operations on window size. To control
the size of the window, SCREW supports forward and backward operation in
which the starting point is the left most edge representing the first part of the
checking spot and the ending point is the right most edge representing the last
part of the checking spot. There are two cases to lengthen the window: increase
of SCIi due to stable execution of the desktop, and the relief of the required
time amount coming from workload changes or user requirement. The enlarged
window, through extension operations, includes a much wider time scope (i.e.,
the number of states). On the other hand, there are two cases to shorten the
window: the decrease of SCIi and the increase of the required time amount in
the same manner. The contraction operation curtails window size in order to
impose penalties to prevent volatile activities. The reason why the window is
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Fig. 6.2. Selection of Credible Resource with Elastic Window

called EW is that it can extend or contract according to workload requirements
and conditions. The left edge of window is fixed (i.e. closed), leaving the right
side extended. Since the left edge is set as the starting point, the left edge of
the window cannot move backward. On the other hand, the right edge of the
window is open to advance to the right, allowing for condition checks. Also the
right edge contracts to the left side by applying penalties. The ending point of
the Window Period presents the deadline in which the ending point of Basic
Window Period should finish by the deadline. SCREW shrinks the window by
moving the right edge to the left. If the left edge reaches the right edge, it is
called a point window. In the point window, since SCREW just checks the SCIi

of the pointed time unit, the point window is used to check the present state
of the desktop. We illustrate the dynamics of the elastic window operation and
activity and show how it calculates the SCIi within given time constraints and
checks conditions to decide eligibility.

SCREW has to keep checking the state from the starting time unit to the
deadline until the measurement meets requirements related to workload execu-
tion completion time. SCREW must adjust the window to the number of time
units available under workload conditions. The window expands only in a forward
direction because we focus on predicting desktop state (i.e. activity) in subse-
quent time units. The EW is interested in the flow of time in the model based on
time-travel structure. Fig. 6.2 shows the position changes of the window in the
probabilistic model according to contraction and expansion. If the requirements
of the workload vary as time goes by, the size of the window expands. SCREW
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extends its window and calculates SCIi. SCREW repeats this process until it
satisfies the given condition about the expected value of SCIi. This process is
related to the workload characteristics, resulting in the expansion of the window
size. SCREW controls the measurement and selection quantifying the amount of
workload that a peer desktop can provide before allocation. In an extreme case,
a desktop cannot process the workload allocated since the desktop frequently
suspends execution or declines to donate the necessary time or physical capacity
necessary to complete the workload. We define a window that is imposed on the
availability model of the desktop. The system allocates a workload amount is
measured by EW. To accomplish dependable resource selection, SCREW uses
EW. EW spans a portion of the desktop capability containing the time that the
desktop can execute before workload allocation. The amount of time capability,
SCIi being calculated in the probabilistic model, is measured and adjusted by
EW.

6.6 Performance Evaluation

6.6.1 Mathematical Analysis of Execution Completion Probability

In mathematical analysis, the execution completion probability is chosen to de-
termine how much the MJSA is leveraged for system performance. In this chap-
ter, we assume that the availability of desktop follows a hyper-exponential distri-
bution according to [5] indicating that desktop availability in enterprise and the
Internet fits the hyper-exponential or Weibull distribution. The probability of
execution success measures the probability of continuous execution. The success
probability of each scheduling scheme is compared with the proposed MJSA as
shown in equations Eq. 6.22 through Eq. 6.26, where MJSA-P, MJSA-O, MJSA-
R represents PESSIMIST, OPTIMIST, and REALIST, respectively.

P{SFCFS
exe } =

n∑

i=1

piλie
−λi(Δ+(1−(α+β))Δ) (6.22)

P{SEager
exe } =

n∑

i=1

piλie
−λi(Δ+(1−α)Δ) (6.23)

P{SMJSA−O
exe } =

n∑

i=1

piλie
−λiΔ (6.24)

P{SMJSA−P
exe } =

n∑

i=1

piλie
−λiΔ, λi = min{λ1, λ2, ...} (6.25)
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Fig. 6.3. Comparisons of Execution Completion Probability

P{SMJSA−R
exe } =

n∑

i=1

piλie
−λiΔ, λi = mid{λi, min{λ1, λ2, ...}} (6.26)

λ means execution stop rate and Δ means the time required to execute a
workload. Execution time deteriorates when the workload is repeatedly allocated.

The FCFS scheme requires time for reallocation and delays; α and β, respec-
tively, in Eq. 6.22. Eq. 6.23 shows that eager scheduling exceeds execution time
because it makes Δ increase by requiring additional reallocation time, denoted
by α. In these schemes, execution time worsens when the workload is reallocated
repeatedly. The results indicate steadily lower execution success probability. In
Eq. 6.24, MJSA-O maintains the initial execution time, promising a high execu-
tion success probability since it considers the quality of execution, (i.e. duration
of availability) in advance. In addition, MJSA-P obtains good success probabil-
ity by declining to min{λ1, λ2, ...} as shown in Eq. 6.25 while MJSA-R attains
λi with median of λi and min{λ1, λ2, ...} in Eq. 6.26. Fig. 6.3 indicates that the
proposed schemes result in greater execution success as the stop rate increases.

6.6.2 Problem Solving with SCREW

This section shows how SCREW solves the given problems from user needs or
meets application requirements with mathematical approaches. The probability
estimation for each sequence of states in the model, the most probable sequence,
as well as the probability of the visits meaningful states and remains the sequence
of the states. In addition, we illustrate how SCREW meets user and application
requirements. The probability of computation and resource selection are done by
SCREW, given diverse conditions through probability in terms of state sequence,
selection range, accuracy rate, etc.
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Solicitation of Certain Consecutive States Problem

Problem: Users require the desktop to have the probability that the desktop state
has ten successive state sequences such as “I I I S S I U I I S” (i.e. successive
states of “idle-idle-idle-stop-stop-idle-used-idle-idle-stop”) corresponding to the
model. What is the probability of consecutive state conditions?

Solution: The observation sequence (OS) is given as “I I I S S I U I I S” desk-
top state conditions over a ten-time unit period. In this problem, we summarized
the states and the observations. To calculate the probability of observation se-
quence O given in the model,P (q1, q2, ..., q48|O, λ), we can calculate

P (O|λ) = P [I, I, I, I, S, S, I, U, I, I, S|λ]
= P [I]P [I|I]2P [S|I]P [S|S]P [I|S]P [U |I]P [I|U ]P [S|I]2

= π1 · (bII)2bISbSSbSIbSUbUIbIIbIS

(6.27)

Satisfaction of Probability of Durability Problem

Problem:How can SCREW compute the probability of remaining in a certain
state in which the system is in a known state?

Solution: The duration is an expected number of state observations. The prob-
ability of durability is calculated from the expected number of observations in
a state by taking the expectation (i.e. mean) of the quantity. The probability
of the duration is evaluated with the probability of the observation given the
model using the Bayesian Rule as follows.

P (O|λ, q1 = i) =
P (O, q1 = i|λ)

P (q1 = i)
=

=
πi · (bII)d−1 · (1− bII)

πi
= (bII)d−1 · (1− bII) = Pi(d)

Since the measure Pi(d) is the probability distribution function (pdf) of du-
ration d in state I, we expect the number of successive desktop states as

d̄i =
∞∑

d=1

dPi(d) =
∞∑

d=1

d(bII)d−1(1− bII) =
1

1− bII
(6.28)

K -step transition probabilities Problem

Problem: What is the probability that the model makes remain certain states
after k -step (i.e. length of time unit)?

Solution: The k -step transition probabilities of the model are developed from
the previous state at step k. The k -step transition matrix is given as

Pij
(k) = Pr{Xn+k = j|Xn = i}∀k ≥ 1 (6.29)
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P (1) = [Pij
(k)]i,j∈S = [Pij ]i,j∈S = P, wherePij

(1) = Pij (6.30)

P (0) = [Pij
(0)]i,j∈S = I (6.31)

P (k) = P k ∀k ≥ 0 (6.32)

After all, the k -step transition matrix is the power k of the one step transition.
This fact helps prevent radical increase of the amount of the calculation as the
length of the step (i.e. the number of path state).

Pij
k =
{

Pij , k = 1
Pij

k, k > 1
(6.33)

Pij
k ==

{
π(0)P, π(0) = initialprobability

π(0)Pn, π(0) = initialprobability
(6.34)

Satisfaction of Revisit Probabilities Problem

Problem:How can SCREW compute the probability that the model makes revisit
in a certain state?

Solution: The total number of visits state is important to measure quality of
resource donation of the desktop. This means that the state stays at j state in
the first n steps, starting from state i. The expected number of visits is given as

ε[νij
(n)] =

n−1∑

k=0

Pij
k =

n−1∑

k=0

P (k) =
n−1∑

k=0

P k, whereε[Iij
(n)] = P{I(k)

ij = 1} = Pij
k (6.35)

6.6.3 Experimental Evaluation of Makespan

To evaluate the performance of these scheduling schemes, the experiment was
tested on Korea@Home [17]. Korea@Home attempts to harness massive com-
puting power using great numbers of personal desktops distributed over the
Internet based on P2P technology. The MJSA was tested as an independent
module on top of Korea@Home to improve reliability. We tested the scheduling
schemes using the MJSA with New Drug Candidate Discovery running on fifty
different desktops at Korea University and at the Korea Institute of Science and
Technology Information (KISTI), with ten-unit increases from ten to fifty. We
measured the availability of each volunteer every thirty minutes. We measured
and updated the Markov chain over one month. Fig. 6.4 compares the makespan
according to each scheduling scheme. Usually, the makespan is parameterized to
measure performance reflecting computational power.

As shown in Fig. 6.4, the MJSA-P outperforms in makespan, especially when
the number of desktops increases. The MJSA-R performs quite well, which pos-
sesses merits in both performance and cost efficiency. The MJSA-O performs
better than either FCFS or eager scheduling in terms of reliability and stability.
The MJSA-P adds ingenuity to the system by providing a more precise basis for
reliable desktop selection, thus enhancing performance as well as stability.
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Fig. 6.4. Comparisons of Makespan

6.7 Conclusions

To solve the problems arising from volatility, this chapter demonstrates advanced
desktop state modeling with the Markov chain, MJSA and a sophisticated re-
source selection scheme based on the stochastic model. A Markov-chain-based
scheduler for desktop Grids consisting of machines that have high volatility, is
presented. The Markov chain (three types of states for each forty-eight time units
with thirty minutes intervals making up a full day) is represented with a credit
assignment for the idle states on which the scheduler bases its decisions. In addi-
tion, the credit values, FSC, BSC, and SC, to measure the degree of desktop state
reliability is presented. By using these accurate metrics, the MJSA improves sys-
tem performance in terms of makespan and execution success when compared
to earlier studies. In practice, the MJSA provides three advanced scheduling
schemes: OPTIMIST, PESSIMIST, and REALIST in order to overcome limi-
tations such as increasing makespan, decreasing performance, and unpromising
job completion.

SCREW aims at giving a stable execution environment and suggests depend-
able resource selection. SCREW helps desktop systems to ensure requirements
for reliable execution by measuring execution capability of each desktop through
the elastic window (EW) based on the Markov desktop state model. EW is a
method to derive a typical sequence of states for pattern recognition of state
transition and compares it with similarities. The proposed SCREW adjusts a
window size according to volatility as well as time constraint in order to adapt
to an unpredictable and dynamic changing environment when predicting a re-
source’s state in a selection procedure. SCREW advances system performance
and improves system readability while satisfying needs from users and appli-
cations in dynamically changing circumstances. The approach provides good
quality recognition performance on desktop behavior for a variety of desktop
activities.
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Enhanced performance has been achieved from mathematical analysis as well
as experimental results. Consequently, the proposed MJSA helps to improve not
only system performance but also stability.
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Summary. Workflow scheduling is one of the key issues in the management of work-
flow execution. Scheduling is a process that maps and manages execution of inter-
dependent tasks on distributed resources. It introduces allocating suitable resources to
workflow tasks so that the execution can be completed to satisfy objective functions
specified by users. Proper scheduling can have significant impact on the performance
of the system. In this chapter, we investigate existing workflow scheduling algorithms
developed and deployed by various Grid projects.

Keywords: Workflow scheduling, Inter-dependent tasks, Distributed resources,
Heuristics.

7.1 Introduction

Grids [22] have emerged as a global cyber-infrastructure for the next-generation
of e-Science and e-business applications, by integrating large-scale, distributed
and heterogeneous resources. A number of Grid middleware and management
tools such as Globus [21], UNICORE [1], Legion [27] and Gridbus [13] have been
developed, in order to provide infrastructure that enables users to access remote
resources transparently over a secure, shared scalable world-wide network. More
recently, Grid computing has progressed towards a service-oriented paradigm
[7,24] which defines a new way of service provisioning based on utility computing
models. Within utility Grids, each resource is represented as a service to which
consumers can negotiate their usage and Quality of Service.

Scientific communities in areas such as high-energy physics, gravitational-
wave physics, geophysics, astronomy and bioinformatics, are utilizing Grids to
share, manage and process large data sets. In order to support complex sci-
entific experiments, distributed resources such as computational devices, data,
applications, and scientific instruments need to be orchestrated while managing
the application workflow operations within Grid environments [36]. Workflow
is concerned with the automation of procedures, whereby files and other data
are passed between participants according to a defined set of rules in order to
achieve an overall goal [30]. A workflow management system defines, manages
and executes workflows on computing resources.

F. Xhafa, A. Abraham (Eds.): Meta. for Sched. in Distri. Comp. Envi., SCI 146, pp. 173–214, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 7.1. Grid Workflow Management System

Fig. 7.1 shows an architecture of workflow management systems for Grid com-
puting. In general, a workflow specification is created by a user using workflow
modeling tools, or generated automatically with the aid of Grid information ser-
vices such as MDS(Monitoring and Discovery Services) [20] and VDS (Virtual
Data System) [23] prior to the run time. A workflow specification defines work-
flow activities (tasks) and their control and data dependencies. At run time, a
workflow enactment engine manages the execution of the workflow by utilizing
Grid middleware. There are three major components in a workflow enactment
engine: the workflow scheduling, data movement and fault management. Work-
flow scheduling discovers resources and allocates tasks on suitable resources to
meet users’ requirements, while data movement manages data transfer between
selected resources and fault management provides mechanisms for failure han-
dling during execution. In addition, the enactment engine provides feedback to
a monitor so that users can view the workflow process status through a Grid
workflow monitor. Workflow scheduling is one of the key issues in the workflow
management [59].

A scheduling is a process that maps and manages the execution of inter-
dependent tasks on the distributed resources. It allocates suitable resources to
workflow tasks so that the execution can be completed to satisfy objective func-
tions imposed by users. Proper scheduling can have significant impact on the per-
formance of the system. In general, the problem of mapping tasks on distributed
services belongs to a class of problems known as NP-hard problems [53]. For such
problems, no known algorithms are able to generate the optimal solution within
polynomial time. Solutions based on exhaustive search are impractical as the
overhead of generating schedules is very high. In Grid environments, scheduling
decisions must be made in the shortest time possible, because there are many
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users competing for resources, and time slots desired by one user could be taken
up by another user at any moment.

Many heuristics and meta-heuristics based algorithms have been proposed
to schedule workflow applications in heterogeneous distributed system environ-
ments. In this chapter, we discuss several existing workflow scheduling algorithms
developed and deployed in various Grid environments.

7.2 Workflow Scheduling Algorithms for Grid Computing

Many heuristics [33] have been developed to schedule inter-dependent tasks in
homogenous and dedicated cluster environments. However, there are new chal-
lenges for scheduling workflow applications in a Grid environment, such as:

• Resources are shared on Grids and many users compete for resources.
• Resources are not under the control of the scheduler.
• Resources are heterogeneous and may not all perform identically for any

given task.
• Many workflow applications are data-intensive and large data sets are re-

quired to be transferred between multiple sites.

Therefore, Grid workflow scheduling is required to consider non-dedicated and
heterogeneous execution environments. It also needs to address the issue of large
data transmission across various data communication links.

The input of workflow scheduling algorithms is normally an abstract workflow
model which defines workflow tasks without specifying the physical location
of resources on which the tasks are executed. There are two types of abstract
workflow model, deterministic and non-deterministic. In a deterministic model,
the dependencies of tasks and I/O data are known in advance, whereas in a
non-deterministic model, they are only known at run time.

The workflow scheduling algorithms presented in the following sections are
based on the deterministic type of the abstract workflow model and are rep-
resented as a Directed Acyclic Graph (DAG). Let Γ be the finite set of tasks
Ti(1 ≤ i ≤ n). Let Λ be the set of directed edges. Each edge is denoted by (Ti, Tj),
corresponding to the data communication between task Ti and Tj , where Ti is
called an immediate parent task of Tj , and Tj the immediate child task of Ti.
We assume that a child task cannot be executed until all of its parent tasks are
completed. Then, the workflow application can be described as a tuple Ω(Γ, Λ).

In a workflow graph, a task which does not have any parent task is called an
entry task, denoted as Tentry and a task which does not have any child task is
called an exit task, denoted as Texit. If a workflow scheduling algorithm requires
a single entry task or a single exit task, and a given workflow contains more than
one entry task or exit task in the workflow graph, we can produce a new workflow
by connecting entry points to a zero-cost pseudo entry and exiting nodes to an
exit task, without without affecting the schedule [45].

To date, there are two major types of workflow scheduling (see Fig. 7.2), best-
effort based and QoS constraint based scheduling. The best-effort based schedul-
ing attempts to minimize the execution time ignoring other factors such as the
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Fig. 7.2. A taxonomy of Grid workflow scheduling algorithms

monetary cost of accessing resources and various users’ QoS satisfaction levels.
On the other hand, QoS constraint based scheduling attempts to minimize per-
formance under most important QoS constraints, for example time minimization
under budget constraints or cost minimization under deadline constraints.

7.3 Best-Effort Based Workflow Scheduling

Best-effort based workflow scheduling algorithms are targeted towards Grids
in which resources are shared by different organizations, based on a community
model (known as community Grid). In the community model based resource allo-
cation, monetary cost is not considered during resource access. Best-effort based
workflow scheduling algorithms attempt to complete execution at the earliest
time, or to minimize the makespan of the workflow application. The makespan
of an application is the time taken from the start of the application, up until all
outputs are available to the user [14].

In general, best-effort based scheduling algorithms are derived from either
heuristics based or meta-heuristics based approach. The heuristic based approach
is to develop a scheduling algorithm which fit only a particular type of problem,
while the meta-heuristic based approach is to develop an algorithm based on a
meta-heuristic method which provides a general solution method for developing
a specific heuristic to fit a particular kind of problem [29].Table 7.1 7.2 show the
overview of best-effort based scheduling algorithms.
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Table 7.1. Overview of Best-effort Workflow Scheduling Algorithms (Heuristics)

Scheduling Method Algorithm Project Organization Application

Individual task scheduling Myopic Condor
DAG Man

University of
Wisconsin-
Madison, USA.

N/A

L
is
t

sc
he

du
lin

g

Batch mode

Min-Min

vGrADS Rice Univer-
sity, USA.

EMAN bio-
imaging

Pegasus University
of Southern
California,
USA.

Montage as-
tronomy

Max-min vGrADS Rice Univer-
sity, USA.

EMAN bio-
imaging

Sufferage vGrADS Rice Univer-
sity, USA.

EMAN bio-
imaging

Dependency mode HEFT ASKALON University of
Innsbruck,
Austria.

WIEN2K
quantum
chemistry
& Invmod
hydrological

Dependency-batch mode Hybrid Sakellarious
& Zhao

University of
Manchester,
UK.

Randomly
generated
task graphs

THAN Ranaweera &
Agrawal

University of
Cincinnati,
USA

Randomly
generated
task graphs

Cluster based scheduling
Duplication based scheduling

Table 7.2. Overview of Best-effort Workflow Scheduling Algorithms (Meta-heuristics)

Scheduling Method Project Organization Application

Greedy randomized adaptive
search procedure (GRASP)

Pegasus University of
Southern Califor-
nia, USA.

Montage astron-
omy

Genetic algorithms (GA) ASKALON University of Inns-
bruck, Austria.

WIEN2K quantum
chemistry

Simulated annealing (SA) ICENI London e-Science
Centre, UK.

Randomly gener-
ated task graphs

7.3.1 Heuristics

In general, there are four classes of scheduling heuristics for workflow applica-
tions, namely individual task scheduling, list scheduling, and cluster and dupli-
cation based scheduling.
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Individual task scheduling

The individual task scheduling is the simplest scheduling method for scheduling
workflow applications and it makes schedule decision based only on one individual
task. The Myopic algorithm [55] has been implemented in some Grid systems such
as Condor DAGMan [49]. The detail of the algorithm is shown in Algorithm 7.1.
The algorithm schedules an unmapped ready task to the resource that is expected
to complete the task earliest, until all tasks have been scheduled.

Algorithm 7.1. Myopic scheduling algorithm
1: while ∃t ∈ Γ is not completed do
2: task ← get a ready task whose parent tasks have been completed
3: r ← for t ∈ task, get a resource which can complete t at the earliest time
4: schedule t on r
5: end while

List scheduling

A list scheduling heuristic prioritizes workflow tasks and scheldules the tasks
based on their priorities. There are two major phases in a list scheduling heuris-
tic, the task prioritizing phase and the resource selection phase [33]. The task
prioritizing phase sets the priority of each task with a rank value and generates a
scheduling list by sorting the tasks according to their rank values. The resource
selection phase selects tasks in the order of their priorities and map each selected
task on its optimal resource.

Different list scheduling heuristics use different attributes and strategies to
decide the task priorities and the optimal resource for each task. We catego-
rize workflow-based list scheduling algorithms as either batch, dependency or
dependency-batch mode.

The batch mode scheduling group workflow tasks into several independent
tasks and consider tasks only in the current group. The dependency mode ranks
workflow tasks based on its weight value and the rank value of its inter-dependent
tasks, while the dependency-batch mode further use a batch mode algorithm to
re-ranks the independent tasks with similar rank values.

Batch mode

Batch mode scheduling algorithms are initially designed for scheduling parallel
independent tasks, such as bag of tasks and parameter tasks, on a pool of re-
sources. Since the number of resources is much less than the number of tasks,
the tasks need to be scheduled on the resources in a certain order. A batch mode
algorithm intends to provide a strategy to order and map these parallel tasks on
the resources, in order to complete the execution of these parallel tasks at earli-
est time. Even though batch mode scheduling algorithms aim at the scheduling
problem of independent tasks; they can also be applied to optimize the execu-
tion time of a workflow application which consists of a lot of independent parallel
tasks with a limited number of resources.
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Batch Mode Algorithms. Min-Min, Max-Min, Sufferage proposed by Mah-
eswaran et al. [39] are three major heuristics which have been employed for schedul-
ing workflow tasks in vGrADS [4] vGrADS [4] and pegasus [11]. The heuristics is
based on the performance estimation for task execution and I/O data transmis-
sion. The definition of each performance metric is given in Table 7.3.

Table 7.3. Performance Matrices

Symbol Definition

EET (t, r) Estimated Execution Time: the amount of time the resource r will
take to execute the task t, from the time the task starts to execute
on the resource.

EAT (t, r) Estimated Availability Time: the time at which the resource r is
available to execute task t.

FAT (t, r) File Available Time: the earliest time by which all the files required
by the task t will be available at the resource r.

ECT (t, r) Estimated Completion Time: the estimated time by which task
t will complete execution at resource r: ECT (t, r) = EET (t, r) +
max(EAT (t, r), FAT (t, r))

MCT (t) Minimum Estimated Completion Time: minimum ECT for task
t over all available resources.

Algorithm 7.2. Min-Min and Max-Min task scheduling algorithms
1: while ∃t ∈ Γ is not scheduled do
2: availTasks ← get a set of unscheduled ready tasks whose parent tasks have

been completed
3: schedule(availTasks)
4: end while
5: PROCEDURE: schedule(availTasks)
6: while ∃t ∈ availTasks is not scheduled do
7: for all t ∈ availTasks do
8: availResources ← get available resources for t
9: for all r ∈ availResources do

10: compute ECT (t, r)
11: end for
12: // get MCT (t, r) for each resource

Rt ← min
r∈availResources

ECT (t, r)

13: end for
14: // Min-Min: get a task with minimum ECT (t, r) over tasks

T ← arg min
t∈availTasks

ECT (t,Rt)

// Max-Min: get a task with maximum ECT (t, r) over tasks
T ← arg max

t∈availTasks
ECT (t,Rt)

15: schedule T on RT

16: remove T from availTasks
17: update EAT (RT )
18: end while
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Algorithm 7.3. Sufferage task scheduling algorithm.
1: while ∃t ∈ Γ is not completed do
2: availTasks ← get a set of unscheduled ready tasks whose parent tasks have

been completed
3: schedule(availTasks)
4: end while
5: PROCEDURE: schedule(availTasks)
6: while ∃t ∈ availTasks is not scheduled do
7: for all t ∈ availTasks do
8: availResources ← get available resources for t
9: for all r ∈ availResources do

10: compute ECT (t, r)
11: end for
12: // compute earliest ECT

R1
t ← arg min

r∈availResources
ECT (t, r)

13: // compute second earliest ECT
R2

t ← arg min
r∈availResources&r �=R1

t

ECT (t, r)

14: // compute sufferage value for task t
suft ← ECT (t,R2

t ) − ECT (t,R1
t )

15: end for
16: T ← arg max

t∈availTasks
suft

17: schedule T on R1
T

18: remove T from availTasks
19: update EAT (RT )
20: end while

The Min-Min heuristic schedules sets of independent tasks iteratively
(Algorithm 7.2: 1-4). For each iterative step, it computes ECTs(Early Com-
pletion Time) of each task on its every available resource and obtains the
MCT(Minimum Estimated Completion Time) for each task (Algorithm 7.2: 7-
12). A task having minimum MCT value over all tasks is chosen to be scheduled
first at this iteration. It assigns the task on the resource which is expected to
complete it at earliest time.

The Max-Min heuristic is similar to the Min-Min heuristic. The only differ-
ence is the Max-Min heuristic sets the priority to the task that requires longest
execution time rather than shortest execution time. After obtaining MCT values
for each task (Algorithm 7.2: 7-13), a task having maximum MCT is chosen to
be scheduled on the resource which is expected to complete the task at earli-
est time. Instead of using minimum MCT and maximum MCT, the Sufferage
heuristic sets priority to tasks based on their sufferage value. The sufferage value
of a task is the difference between its earliest completion time and its second
earliest completion time (Algorithm 7.3: 12-14).

Comparison of batch mode algorithms. The overview of three batch mode
algorithms is shown in Table 7.4. The Min-Min heuristic schedules tasks hav-
ing shortest execution time first so that it results in the higher percentage of
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Table 7.4. Overview of batch mode algorithms

Algorithm Features
Min − Min It sets high scheduling priority to tasks which have the shortest exe-

cution time.
Max − Min It sets high scheduling priority to tasks which have long execution

time.
Sufferage It sets high scheduling priority to tasks whose completion time by the

second best resource is far from that of the best resource which can
complete the task at earliest time.

tasks assigned to their best choice (which can complete the tasks at earlist time)
than Max-Min heuristics [12]. Experimental results conducted by Maheswaran
et al. [39] and Casanova et al. [14] have proved that Min-Min heuristic outper-
form Max-Min heuristic. However, since Max-min schedule tasks with longest
execution time first, a long execution execution task may have more chance of
being executed in parallel with shorter tasks. Therefore, it might be expected
that the Max-Min heuristic perform better than the Min-Min heuristic in the
cases where there are many more short tasks than long tasks [12, 39].

On the other hand, since the Sufferage heuristic considers the adverse effect
in the completion time of a task if it is not scheduled on the resource having
with minimum completion time [39], it is expected to perform better in the cases
where large performance difference between resources. The experimental results
conducted by Maheswaran et al. shows that the Sufferage heuristic produced the
shortest makespan in the high heterogeneity environment among three heuristics
discussion in this this section. However, Casanova et al. [14] argue that the
Sufferage heuristic could perform worst in the case of data-intensive applications
in multiple cluster environments.

Extended batch mode algorithms. XSufferage is an extension of the Suf-
fereage heuristic. It computes the sufferage value on a cluster level with the
hope that the files presented in a cluster can be maximally reused. A modified
Min-Min heuristic, QoS guided Min-Min, is also proposed in [28]. In addition
to comparing the minimum completion time over tasks, it takes into account
different levels of quality of service (QoS) required by the tasks and provided by
Grid resources such as desirable bandwidth, memory and CPU speed. In general,
a task requiring low levels of QoS can be executed either on resources with low
QoS or resources with high QoS, whereas the task requiring high levels of QoS
can be processed only on resources with high QoS. Scheduling tasks without
considering QoS requirements of tasks may lead to poor performance, since low
QoS tasks may have higher priority on high QoS resources than high QoS tasks,
while resources with low QoS remain idle [28]. The QoS guided Min-Min heuris-
tic starts to map low QoS tasks until all high QoS tasks have been mapped.
The priorities of tasks with the same QoS level are set in the same way of the
Min-Min heuristic.
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Fig. 7.3. A weighted task graph example

Dependency Mode

Dependency mode scheduling algorithms are derived from the algorithms for
scheduling a task graph with interdependent tasks on distributed computing
environments. It intends to provide a strategy to map workflow tasks on hetero-
geneous resources based on analyzing the dependencies of the entire task graph,
in order to complete these interdependent tasks at earliest time. Unlike batch
mode algorithms, it ranks the priorities of all tasks in a workflow application at
one time.

Many dependency mode heuristics rank tasks based on the weights of task
nodes and edges in a task graph. As illustrated in Fig. 7.3, a weight wi is as-
signed to a task Ti and a weight wi,j is assigned to an edge (Ti, Tj). Many list
scheduling schemes [33] developed for scheduling task graphs on homogenous
systems set the weight of each task and edge to be equal to its estimation exe-
cution time and communication time, since in a homogenous environment, the
execution times of a task and data transmission time on all available resources
are identical. However, in a Grid environment, resources are heterogeneous. The
computation time varies from resource to resource and the communication time
varies from data link to data link between resources. Therefore, it needs to con-
sider processing speeds of different resources and different transmission speeds
of different data links and an approximation approach to weight tasks and edges
for computing the rank value.

Zhao and Sakellariou [62] proposed six possible approximation options, mean
value, median value, worst value, best value, simple worst value, and simple best
value. These approximation approaches assign a weight to each task node and
edge as either the average, median, maximum, or minimum computation time
and communication time of processing the task over all possible resources. In-
stead of using approximation values of execution time and transmission time,
Shi and Dongarra [46] assign a higher weight task with less capable resources.
Their motivation is quite similar to the QoS guided min-min scheduling, i.e., it
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may cause longer delay if tasks with scarce capable resources are not scheduled
first, because there are less choices of resources to process these tasks.

Dependency Mode Algorithm. The Heterogeneous-Earliest-Finish-Time
(HEFT) algorithm proposed by Topcuoglu et al. [51] has been applied by the
ASKALON project [18,55] to provide scheduling for a quantum chemistry appli-
cation, WIEN2K [10], and a a quantum chemistry application, and a hydrological
application, Invmod [43], on the Austrian Grid [2].

As shown in Algorithm 7.4, the algorithm first calculates average execution
time for each task and average communication time between resources of two
successive tasks. Let time(Ti, r) be the execution time of task Ti on resource r
and let Ri be the set of all available resources for processing Ti. The average
execution time of a task Ti is defined as

�i =

∑

r∈Ri

time(Ti, r)

|Ri|
(7.1)

Let time(eij , ri, rj) be the data transfer time between resources ri and rj

which process the task Ti and task Tj respectively. Let Ri and Rj be the set of
all available resources for processing Ti and Tj respectively. The average trans-
mission time from Ti to Tj is defined by:

cij =

∑

riεRirjεRj

time(eij, ri, rj)

|Ri||Rj |
(7.2)

Then tasks in the workflow are ordered in HEFT based on a rank fuction. For
a exit task Ti, the rank value is:

rank(Ti) = �i (7.3)

The rank values of other tasks are computed recursively based on Eqs. 7.1,
7.2, 7.3 as shown in 7.4.

Algorithm 7.4. Heterogeneous-Earliest-Finish-Time (HEFT) algorithm
1: compute the average execution time for each task t ∈ Γ according to equation 7.1
2: compute the average data transfer time between tasks and their successors accord-

ing to equation 7.2
3: compute rank value for each task according to equations 7.3 and 7.4
4: sort the tasks in a scheduling list Q by decreasing order of task rank value
5: while Q is not empty do
6: t ← remove the first task from Q
7: r ← find a resource which can complete t at earliest time
8: schedule t to r
9: end while
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rank(Ti) = �i + max
Tjεsucc(Ti)

(cij + rank(Tj)) (7.4)

where succ(Ti) is the set of immediate successors of task Ti. The algorithm then
sorts the tasks by decreasing order of their rank values. The task with higher rank
value is given higher priority. In the resource selection phase, tasks are scheduled
in the order of their priorities and each task is assigned to the resource that can
complete the task at the earliest time.

Even though original HEFT proposed by Topcuoglu et al. [51] computes the
rank value for each task using the mean value of the task execution time and
communication time over all resources, Zhao and Sakellariou [62] investigated
and compared the performances of the HEFT algorithm produced by other dif-
ferent approximation methods on different cases. The results of the expeirments
showed that the mean value method is not the most effiecient choice, and the
performance could differ significantly from one application to another [62].

Dependency-Batch Mode

Sakellariou and Zhao [45] proposed a hybrid heuristic for scheduling DAG on het-
erogeneous systems. The heuristic combines dependency mode and batch mode.
As described in Algorithm 7.5, the heuristic first compute rank values of each task
and ranks all tasks in the decreasing order of their rank values (Algorithm 7.5: line
1-3). And then it creates groups of independent tasks (Algorithm 7.5:line 4-11).
In the grouping phase, it processes tasks in the order of their rank values and add
tasks into the current group. Once it finds a task which has a dependency with
any task within the group, it creates another new group. As a result, a number
of groups of independent tasks are generated. And the group number is assigned

Algorithm 7.5. Hybrid heuristic
1: compute the weight of each task node and edge according to equations 7.1 and 7.2

2: compute the rank value of each task according to equations 7.3 and 7.4
3: sort the tasks in a scheduling list Q by decreasing order of task rank value
4: create a new group Gi and i = 0
5: while Q is not empty do
6: t ← remove the first task from Q
7: if t has a dependence with a task in Gi then
8: i + +; create a new group Gi

9: end if
10: add t to Gi

11: end while
12: j = 0
13: while j <= i do
14: scheduling tasks in Gi by using a batch mode algorithm
15: j + +
16: end while
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based on the order of rank values of their tasks, i.e., if m > n, the ranking value
of tasks in group m is higher than that of the tasks in group n. Then it schedules
tasks group by group and uses a batch mode algorithm to reprioritize the tasks in
the group.

Cluster based and Duplication based scheduling

Both cluster based scheduling and duplication based scheduling are designed to
avoid the transmission time of results between data interdependent tasks, such
that it is able to reduce the overall execution time. The cluster based scheduling
clusters tasks and assign tasks in the same cluster into the same resource, while
the duplication based scheduling use the idling time of a resource to duplicate
some parent tasks, which are also being scheduled on other resources.

Bajai and Agrawal [3] proposed a task duplication based scheduling algorithm
for network of heterogeneous systems(TANH) . The algorithm combines cluster
based scheduling and duplication based scheduling and the overview of the al-
gorithm is shown in Algorithm 7.6. It first traverses the task graph to compute
parameters of each node including earliest start and completion time, latest start
and completion time, critical immediate parent task, best resource and the level
of the task. After that it clusters tasks based on these parameters. The tasks in
a same cluster are supposed to be scheduled on a same resource. If the number
of the cluster is greater than the number of resources, it scales down the number
of clusters to the number of resources by merging some clusters. Otherwise, it
utilizes the idle times of resources to duplicate tasks and rearrange tasks in order
to decrease the overall execution time.

Algorithm 7.6. TANH algorithm
1: compute parameters for each task node
2: cluster workflow tasks
3: if the number of clusters greater than the number of available resources then
4: reducing the number of clusters to the number of available resources
5: else
6: perform duplication of tasks
7: end if

7.3.2 Meta-heuristics

Meta-heuristics provide both a general structure and strategy guidelines for
devoping a heuristic for solving computational problems. They are generally
applied to a large and complicated problem. They provide an efficient way of
moving quickly toward a very good solution. Many metahuristics have been ap-
plied for solving workflow scheduling problmes, including GRASP, Genetic Algo-
rithms and Simulated Annealing. The details of these algorithms are presented
in the sub-sections that follow.
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Greedy Randomized Adaptive Search Procedure (GRASP)

A Greedy Randomized Adaptive Search Procedure (GRASP) is an iterative ran-
domized search technique. Feo and Resende [19] proposed guidelines for develop-
ing heuristics to solve combinatorial optimization problems based on the GRASP
concept. Binato et al. [8] have shown that the GRASP can solve job-shop schedul-
ing problems effectively. Recently, the GRASP has been investigated by Blythe
et al. [11] for workflow scheduling on Grids by comparing with the Min-Min
heuristic on both computational- and data-intensive applicaitons.

Algorithm 7.7. GRASP algorithm
1: while stopping criterion not satisfied do
2: schedule ← createSchedule(workflow)
3: if schedule is better than bestSchedule then
4: bestSchedule ← schedule
5: end if
6: end while
7: PROCEDURE: createSchedule(workflow)
8: solution ← constructSolution(workflow)
9: nSolution ← localSearch(solution)

10: if nSolution is better than solution then
11: return nSolution
12: end if
13: return solution
14: END createSchedule
15: PROCEDURE: constructSolution(workflow)
16: while schedule is not completed do
17: T ← get all unmapped ready tasks
18: make a RCL for each t ∈ T
19: subSolution ← select a resource randomly for each t ∈ T from its RCL
20: solution ← solution

⋃
subSolution

21: update information for further RCL making
22: end while
23: return solution
24: END constructSolution
25: PROCEDURE: localSearch(solution)
26: nSolution ← find a optimal local solution
27: return nSolution
28: END localSearch

Algorithm 7.7 describes a GRASP. In a GRASP, a number of iterations are
conducted to search a possible optimal solution for scheduling tasks on resources.
A solution is generated at each iterative step and the best solution is kept as
the final schedule (Algorithm 7.7:line 1-6). A GRASP is terminated when the
specified termination criterion is satisfied, for example, after completing a cer-
tain number of interations. In general, there are two phases in each interation:
construction phase and local search phase.
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The construction phase (Algorithm 7.7:line 8 and line 15-24) generates a fea-
sible solution. A feasible solution for the workflow scheduling problem is required
to meet the following conditions: a task must be started after all its predecessors
have been completed; every task appears once and only once in the schedule. In
the construction phase, a restricted candidate list (RCL) is used to record the
best candidates, but not necessarily the top candidate of the resources for pro-
cessing each task. There are two major mechanisms that can be used to generate
the RCL, cardinality-based RCL and value-based RCL.

Algorithm 7.8. Construction phase procedure for workflow scheduling
1: PROCEDURE: constructSolution(Ω)
2: while schedule is not completed do
3: availTasks ← get unmapped ready tasks
4: subSolution ← schedule(availTasks)
5: solution ← solution

⋃
subSolution

6: end while
7: return solution
8: END constructSolution
9: PROCEDURE: schedule(tasks)

10: availTasks ← tasks
11: pairs ←
12: while ∃t ∈ tasks not scheduled do
13: for all t ∈ availTasks do
14: availResources ← get available resources for t
15: for all r ∈ availResources do
16: compute increaseMakespan(t, r)
17: pairs ← pairs

⋃
(t, r)

18: end for
19: end for
20: minI ← minimum makespan increase over availPairs
21: maxI ← maximum makespan increase over availPairs
22: availPairs ← select pairs whose makespan increase is less than minI+α(maxI−

minI)
23: (t′, r′) ← select a pair at random from availPairs
24: remove t′ from availTasks
25: solution ← solution

⋃
(t′, r′)

26: end while
27: return solution
28: END schedule

The cardinality-based RCL records the k best rated solution components,
while the value-based RCL records all solution components whose performance
evaluated values are better than a better than a given threshold [31]. In the
GRASP, resource allocated to each task is randomly selected from its RCL
(Algorithm 7.7: line 19). After allocating a resource to a task, the resource in-
formation is updated and the scheduler continues to process other unmapped
tasks.
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Algorithm 7.8 shows the detailed implementation of the construction phase
for workflow scheduling presented by Blythe et al. [11] which uses a value-based
RCL method. The scheduler estimates the makespan increase for each unmapped
ready task (Algorithm 7.8: line 3-4 and line 13-19) on each resource that is able to
process the task. A makespan increase of a task t on a resource r is the increase of
the execution length to the current completion length (makespan) if r is allocated
to t. Let minI and maxI be the lowest and highest makespan increase found
respectively. The scheduler selects a task assignment randomly from the task
and resource pair whose makespan increase is less than minI+α(maxI−minI),
where is a parameter to determine how much variation is allowed for creating
RCL for each task and 0 ≤ α ≤ 1.

Once a feasible solution is constructed, a local search is applied into the solu-
tion to improve it. The local search process searches local optima in the neigh-
borhood of the current solution and generates a new solution. The new solution
will replace the current constructed solution if its overall performance is better
(i.e. its makespan is shorter than that of the solution generated) in the construc-
tion phase. Binato et al. [8] implementation of the local search phase for job-shop
scheduling. It identifies the critical path in the disjunctive graph of the solution
generated in the construction phase and swaps two consecutive operations in the
critical path on the same machine. If the exchange improves the performance, it
is accepted.

Genetic Algorithms (GAs)

Genetic Algorithms (GAs) [25] provide robust search techniques that allow a
high-quality solution to be derived from a large search space in polynomial time
by applying the principle of evolution. Using genetic algorithms to schedule
task graphs in homogeneous and dedicated multiprocessor systems have been
proposed in [31, 56, 64]. Wang et al. [54] have developed a genetic-algorithm-
based scheduling to map and schedule task graphs on heterogeneous envoriments.
Prodan and Fahringer [42] have employed GAs to schedule WIEN2k workflow
[10] on Grids. Spooner et al. [47] have employed GAs to schedule sub-workflows
in a local Grid site.

A genetic algorithm combines exploitation of best solutions from past searches
with the exploration of new regions of the solution space. Any solution in the
search space of the problem is represented by an individual (chromosome). A
genetic algorithm maintains a population of individuals that evolves over gener-
ations. The quality of an individual in the population is determined by a fitness
function . The fitness value indicates how good the individual is compared to
others in the population.

A typical genetic algorithm is illustrated in Fig. 7.4. It first creates an initial
population consisting of randomly generated solutions. After applying genetic
operators, namely selection, crossover and mutation, one after the other, new
offspring are generated. Then the evaluation of the fitness of each individual in
the population is conducted. The fittest individuals are selected to be carried over
next generation. The above steps are repeated until the termination condition
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Fig. 7.4. Genetic Algorithms

Table 7.5. Fitness Values and Slots for Roulette Wheel Selection

Individual Fitness value Slot Size Slot
1 0.45 0.25 0.25
2 0.30 0.17 0.42
3 0.25 0.14 0.56
4 0.78 0.44 1
Total 1.78 1

is satisfied. Typically, a GA is terminated after a certain number of iterations,
or if a certain level of fitness value has been reached [64].

The construction of a genetic algorithm for the scheduling problem can be
divided into four parts [32]: the choice of representation of individual in the
population; the determination of the fitness function; the design of genetic op-
erators; the determination of probabilities controlling the genetic operators.

As genetic algorithms manipulate the code of the parameter set rather than
the parameters themselves, an encoding mechanism is required to represent in-
dividuals in the population. Wang et al. [54] encoded each chromosome with two
separated parts: the matching string and the scheduling string. Matching string
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Fig. 7.5. (a) Workflow application and schedule. (b) seperated machine string and
scheduling string. (c) two-dimensional string.

Table 7.6. Fitness Values and Slots for Rank Selection

Individual Fitness value Rank Slot Size Slot
1 0.45 3 0.3 0.3
2 0.30 2 0.2 0.5
3 0.25 1 0.1 0.6
4 0.78 4 0.4 1

represents the assignment of tasks on machines while scheduling string represents
the execution order of the tasks (Fig. 7.5a.). However, a more intuitive scheme,
two-dimensional coding scheme is employed by many [32, 56, 64] for scheduling
tasks in distributed systems. As illustrated in Fig. 7.5c, each schedule is simpli-
fied by representing it as a 2D string. One dimension represents the numbers of
resources while the other dimension shows the order of tasks on each resource.

A fitness function is used to measure the quality of the individuals in the
population. The fitness function should encourage the formation of the solution
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to achieve the objective function. For example, the fitness function developed
in [32] is Cmax−FT (I), where Cmax is the maximum completion time observed
so far and FT (I) is the completion time of the individual I. As the objective
function is to minimize the execution time, an individual with a large value of
fitness is fitter than the one with a small value of fitness.

After the fitness evaluation process, the new individuals are compared with the
previous generation. The selection process is then conducted to retain the fittest
individuals in the population, as successive generations evolve. Many methods
for selecting the fittest individuals have been used for solving task scheduling
problems such as roulette wheel selection, rank selection and elitism.

The roulette wheel selection assigns each individual to a slot of a roulette
wheel and the slot size occupied by each individual is determined by its fitness
value. For example, there are four individuals (see Table 7.5) and their fitness
values are 0.45, 0.30, 0.25 and 0.78, respectively. The slot size of an individual is
calculated by dividing its fitness value by the sum of all individual fitness in the
population. As illustrated in Fig. 7.6, individual 1 is placed in the slot ranging
from 0 − 0.25 while individual 2 is in the slot ranging from 0.26 − 0.42. After
that, a random number is generated between 0 and 1, which is used to determine
which individuals will be preserved to the next generation. The individuals with
a higher fitness value are more likely to be selected since they occupy a larger
slot range.

The roulette wheel selection will have problems when there are large dif-
ferences between the fitness values of individuals in the population [41]. For
example, if the best fitness value is 95% of all slots of the roulette wheel, other
individuals will have very few chances to be selected. Unlike the roulette wheel
selection in which the slot size of an individual is proportional to its fitness value,
a rank selection process firstly sorts all individuals from best to worst according
to their fitness values and then assigns slots based on their rank. For example,
the size of slots for each individual implemented by DOǦAN and Özgüner [16]
is proportional to their rank value. As shown in Table 7.6, the size of the slot
for individual I is defined as PI = R(I)∑

n
i=1 R(i) , where R(I) is the rank value of I

and n is the number of all individuals. Both the roulette wheel selection and the
rank selection select individuals according to their fitness value. The higher the
fitness value, the higher the chance it will be selected into the next generation.
However, this does not guarantee that the individual with the highest value goes
to the next generation for reproduction. Elitism can be incorporated into these
two selection methods, by first copying the fittest individual into the next gener-
ation and then using the rank selection or roulette wheel selection to construct
the rest of the population. Hou et al. [32] showed that the elitism method can
improve the performance of the genetic algorithm.

In addition to selection, crossover and mutation are two other major genetic
operators. Crossovers are used to create new individuals in the current popula-
tion by combining and rearranging parts of the existing individuals. The idea
behind the crossover is that it may result in an even better individual by combin-
ing two fittest individuals [32]. Mutations occasionally occur in order to allow a
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Fig. 7.6. Roulette Wheel Selection Example

certain child to obtain features that are not possessed by either parent. It helps
a genetic algorithm to explore new and potentially better genetic material than
was previously considered. The frequency of mutation operation occurrence is
controlled by the mutation rate whose value is determined experimentally [32].

Simulated Annealing (SA)

Simulated Annealing (SA) [38] derives from the Monte Carlo method for statis-
tically searching the global optimum that distinguishes between different local
optima. The concept is originally from the way in which crystalline structures
can be formed into a more ordered state by use of the annealing process, which
repeats the heating and slowly cooling a structure. SA has been used by YarKhan
and Dongarra [57] to select a suitable size of a set of machines for scheduling a
ScaLAPACK applicaton [9] in a Grid environment. Young et al. [58] have inves-
tigated performances of SA algorithms for scheduling workflow applications in a
Grid envrionment.

A typical SA algorithm is illustrated in Fig. 7.7. The input of the algorithm
is an initial solution which is constructed by assigning a resource to each task at
random. There are several steps that the simulated annealing algorithm needs to
go through while the temperature is decreased by a specified rate. The annealing
process runs through a number of iterations at each temperature to sample the
search space. At each cycle, it generates a new solution by applying random
change on the current solution. Young et al. [58] implemented this randomization
by moving one task onto a different resource. Whether or not the new solution
is accepted as a current solution is determined by the Metropolis algorithm
[38, 58] shown in Algorithm 7.9. In the Metropolis algorithm, the new solution
and the current solution are compared and the new solution is unconditionally
accepted if it is better than the current one. In the case of the minimization
problem of workflow scheduling, the better solution is one which has a lower
execution time and the improved value is denoted as dβ. In other cases, the new
solution is accepted with the Boltzmann probability e

−dβ
T [38] where T is the

current temperature. Once a specified number of cycles have been completed,
the temperature is decreased. The process is repeated until the lowest allowed
temperature has been reached. During this process, the algorithm keeps the
best solution so far, and returns this solution at termination as the final optimal
solution.
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Fig. 7.7. Simulated Annealing

Algorithm 7.9. Metropolis algorithm
1: if dβ then
2: return true
3: else if a random number less than e

−dβ
T then

4: return true
5: else
6: return false
7: end if
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7.3.3 Comparison of Best-Effort Scheduling Algorithms

The overview of the best effort scheduling is presented in Table 7.7 and 7.8. In
general, the heuristic based algorithms can produce a reasonable good solution
in a polynomial time. Among the heuristic algorithms, individual task scheduling
is simplest and only suitable for simple workflow structures such as a pipeline in
which several tasks are required to be executed in sequential. Unlike individual
task scheduling, list scheduling algorithms set the priorities of tasks in order to
make an efficient schedule in the situation of many tasks compete for limited
number of resources. The priority of the tasks determines their execution order.
The batch mode approach orders the tasks required to be executed in parallel
based on their execution time whereas the dependency mode approach orders the
tasks based on the length of their critical path. The advantage of the dependency
mode approach is that it intent to complete tasks earlier whose interdependent
tasks required longer time in order to reduce the overall execution time. However,
its complexity is higher since it is required to compute the critical path of all
tasks. Another drawback of the dependency mode approach is that it cannot
efficiently solve resource competition problem for a workflow consisting of many
parallel tasks having the same length of their critical path. The dependency-
batch mode approach can take advantage of both approaches, and Sakellariou
and Zhao [45] shows that it outperforms the dependency mode approach in
most cases. However, computing task priorities based on both batch mode and
dependency mode approach results in higher scheduling time.

Even though data transmission time has been considered in the list scheduling
approach, it still may not provide an efficient schedule for data intensive workflow
applications, in which the majority of computing time is used for transferring
data of results between the inter-dependent tasks. The main focus of the list
scheduling is to find an efficient execution order of a set of parallel tasks and
the determination of the best execution resource for each task is based only
on the information of current task. Therefore, it may not assign data inter-
dependent tasks on resources among which an optimized data transmission path
is provided. Both cluster based and duplication based scheduling approach focus
on reducing communication delay among interdependent tasks. The clustering
based approach minimizes the data transmission time by grouping heavily com-
municating tasks to a same task cluster and assigns all tasks in the cluster to
one resource, in order to minimize the data transmission time, while duplication
based approach duplicates data-interdependent tasks to avoid data transmission.
However, the restriction of the algorithms based on these two approaches up to
date may not be suitable for all Grid workflow applications, since it assumes
that heavily communicating tasks can be executed on a same resource. Tasks
in Grid workflow applications can be highly heterogeneous and require different
type of resources.

The meta-heuristics based workflow scheduling use guided random search
techniques and exploit the feasible solution space iteratively. The GRASP gen-
erates a randomized schedule at each iteration and keeps the best solution as the
final solution. The SA and GAs share the same fundamental assumption that
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Table 7.7. Comparison of Best-effort Workflow Scheduling Algorithms (Heuristics)

Scheduling Method Algorithm Complexity* Features

Individual task scheduling Myopic O(vm) Decision is based on one
task.

L
is
t

sc
he

du
lin

g

Batch mode Min-min O(vgm) Decision based on a set
of parallel independent
tasks.

Dependency mode HEFT O(v2m) Decision based on the
critical path of the task.

Dependency-batch mode Hybrid O(v2m + vgm) Ranking tasks based on
their critical path and re-
ranking adjacent indepen-
dent tasks by using a
batch mode algorithm.

THAN O(v2)

Replicating tasks to
more than one resources
in order to reduce
transmission time.

Cluster based scheduling
Duplication based scheduling

*where v is the number of tasks in the workflow, m is the number of resources and g
is the number of tasks in a group of tasks for the batch mode scheduling.

Table 7.8. Comparison of Best-effort Workflow Scheduling Algorithms (Meta-
heuristics)

Scheduling Method Features

Greedy randomized adaptive
search procedure (GRASP)

Global solution obtained by comparing differences be-
tween randomized schedules over a number of iteration.

Genetic algorithms (GA) Global solution obtained by combining current best solu-
tions and exploiting new search region over generations.

Simulated annealing (SA) Global solution obtained by comparing differences be-
tween schedules which are generated based on current
accepted solutions over a number of iterations, while the
acceptance rate is decreased.

an even better solution is more probably derived from good solutions. Instead of
creating a new solution by randomized search, SA and GAs generate new solu-
tions by randomly modifying current already know good solutions. The SA uses
a point-to-point method, where only one solution is modified in each iteration,
whereas GAs manipulate a population of solutions in parallel which reduce the
probability of trapping into a local optimum [65]. Another benefit of producing
a collection of solutions at each iteration is the search time can be significantly
decreased by using some parallelism techniques.

Compared with the heuristics based scheduling approaches, the advantage of
the meta-heuristics based approaches is that it produces an optimized scheduling



196 J. Yu, R. Buyya, and K. Ramamohanarao

solution based on the performance of entire workflow, rather than the partial of
the workflow as considered by heuristics based approach. Thus, unlike heuris-
tics based approach designed for a specified type of workflow application, it
can produce good quality solutions for different types of workflow applications
(e.g. different workflow structure, data- and computational-intensive workflows,
etc). However, the scheduling time used for producing a good quality solution
required by meta-heuristics based algorithms is significantly higher. Therefore,
the heuristics based scheduling algorithms are well suited for a workflow with a
simple structure, while the meta-heuristics based approaches have a lot of po-
tential for solving large and complex structure workflows. It is also common to
incorporate these two types of scheduling approaches by using a solution gener-
ated by a heuristic based algorithm as a start search point for the meta-heuristics
based algorithms to generate a satisfactory solution in shorter time.

7.3.4 Dynamic Scheduling Techniques

The heuristics presented in last sections assume that the estimation of the per-
formance of task execution and data communication is accurate. However, it is
difficult to predict accurately execution performance in community Grid envi-
ronments due to its dynamic nature. In a community Grid, the utilization and
availability of resources varies over time and a better resource can join at any
time. Constructing a schedule for entire workflow before the execution may re-
sult in a poor schedule. If a resource is allocated to each task at the beginning of
workflow execution, the execution environment may be very different at the time
of task execution. A ‘best’ resource may become a ‘worst’ resource. Therefore,
the workflow scheduler must be able to adapt the resource dynamics and update
the schedule using up-to-date system information. Several approaches have been
proposed to address these problems. In this section, we focus on the approaches
which can apply the algorithms into dynamic environments.

For individual task and batch mode based scheduling, it is easy for the sched-
uler to use the most up-to-date information, since it takes into account only the
current task or a group of independent tasks. The scheduler could map tasks
only after their parent tasks become to be executed.

For dependency mode and metahueristics based scheduling, the scheduling de-
cision is based on the entire workflow. In other words, scheduling current tasks
require information about its successive tasks. However, it is very difficult to es-
timate execution performance accurately, since the execution environment may
change a lot for the tasks which are late executed. The problems appear more
significant for a long lasting workflow. In general, two approaches, task parti-
tioning and iterative re-computing, have been proposed to allow these scheduling
approaches to allocate resources more efficiently in a dynamic environment.

Task partitioning is proposed by Deelman et al. [17]. It partitions a work-
flow into multiple sub-workflows which are executed sequentially. Rather than
mapping the entire workflow on Grids, allocates resources to tasks in one sub-
workflow at a time. A new sub-workflow mapping is started only after the last
mapped sub-workflow has begun to be executed. For each sub-workflow, the
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scheduler applies a workflow scheduling algorithm to generate an optimized
schedule based on more up-to-date information.

Iterative re-computing keeps applying the scheduling algorithm on the remain-
ing unexecuted partial workflow during the workflow execution. It does not use
the initial assignment to schedule all workflow tasks but reschedule unexecuted
tasks when the environment changes. A low-cost rescheduling policy has been
developed by developed by Sakellariou and Zhao [44]. It reduces the overhead
produced by rescheduling by conducting rescheduling only when the delay of a
task execution impacts on the entire workflow execution.

In addition to mapping tasks before execution using up-to-date information,
task migration [4,42] has been widely employed to reschedule a task to another
resource after it has been executed. The task will be migrated when the task
execution is timed out or a better resource is found to improve the performance.

7.4 QoS-Constraint Based Workflow Scheduling

Many workflow applications require some assurances of quality of services (QoS)
. For example, a workflow application for maxillo-facial surgery planning [16]
needs results to be delivered before a certain time. For thus applications, work-
flow scheduling is required to be able to analyze users’ QoS requirements and
map workflows on suitable resources such that the workflow execution can be
completed to satisfy users’ QoS constraints.

However, whether the execution can be completed within a required QoS not
only depend on the global scheduling decision of the workflow scheduler but
also depend on the local resource allocation model of each execution site. If the
execution of every single task in the workflow cannot be completed as what the
scheduler expects, it is impossible to guarantee the entire workflow execution. In-
stead of scheduling tasks on community Grids, QoS-constraint based schedulers
should be able to interact with service-oriented Grid services to ensure resource
availability and QoS levels. It is required that the scheduler can negotiate with
service providers to establish a service level agreement (SLA) which is a contract
specifying the minimum expectations and obligations between service providers
and consumers. Users normally would like to specify a QoS constraint for entire
workflow. The scheduler needs to determine a QoS constraint for each task in
the workflow, such that the QoS of entire workflow is satisfied.

In general, service-oriented Grid services are based on utility computing mod-
els. Users need to pay for resource access and service pricing is based on the QoS
level and current market supply and demand. Therefore, unlike the scheduling
strategy deployed in community Grids, QoS constraint based scheduling may
not always need to complete the execution at earliest time. They sometimes
may prefer to use cheaper services with a lower QoS that is sufficient to meet
their requirements.

To date, supporting QoS in scheduling of workflow applications is at a very
preliminary stage. Most QoS constraint based workflow scheduling heuristics are
based on either time or cost constraints. Time is the total execution time of the
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Table 7.9. Overview of deadline constrained workflow scheduling algorithms

Algorithm Project Organization Application

Back-tracking Menascé& Casalicchio George Mason
University, USA
Univ. Roma “Tor
Vergata”, Italy

N/A

Deadline distribution Gridbus University of
Melbourne,
Australia

Randomly gener-
ated task graphs

Genetic algorithms Gridbus University of
Melbourne,
Australia

Randomly gener-
ated task graphs

Table 7.10. Overview of budget constrained workflow scheduling algorithms

Algorithm Project Organization Application

LOSS and GAIN CoreGrid University of
Cyprus, Cyprus
University of
Manchester, UK

Randomly gener-
ated task graphs

Genetic algorithms Gridbus University of
Melbourne,
Australia

Randomly gener-
ated task graphs

Genetic algorithms Gridbus University of
Melbourne,
Australia

Randomly gener-
ated task graphs

workflow (known as deadline). Cost is the total expense for executing workflow
execution including the usage charges by accessing remote resources and data
transfer cost (known as budget). In this section, we present scheduling algo-
rithms based on these two constraints, called Deadline constrained scheduling
and Budget constrained scheduling. Table 7.9 and 7.10 presents the overview of
QoS constrained workflow scheduling algorithms.

7.4.1 Deadline Constrained Scheduling

Some workflow applications are time critical and require the execution can be
completed within a certain timeframe. Deadline constrained scheduling is de-
signed for these applications to deliver results before the deadline. The distinc-
tion between the deadline constrained scheduling and the best-effort scheduling
is that the deadline constrained scheduling also need to consider monetary cost
when it schedules tasks. In general, users need to pay for service assess. The price
is based on their usages and QoS levels. For example, services which can process
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faster may charges higher price. Scheduling the tasks based on the best-effort
based scheduling algorithms presented in the previous sections, attempting to
minimize the execution time will results in high and unnecessary cost. Therefore,
a deadline constrained scheduling algorithm intends to minimize the execution
cost while meeting the specified deadline constraint.

Two heuristics have been developed to minimize the cost while meeting a
specified time constraint. One is proposed by Menasc and Casalicchio [37] de-
noted as Back-tracking, and the other is proposed by Yu et al. [60] denoted as
Deadline Distribution.

Back-tracking

The heuristic developed by Menascè and Casalicchio assigns available tasks to
least expensive computing resources. An available task is an unmapped task
whose parent tasks have been scheduled. If there is more than one available
task, the algorithm assigns the task with the largest computational demand
to the fastest resources in its available resource list. The heuristic repeats the
procedure until all tasks have been mapped. After each iterative step, the execu-
tion time of current assignment is computed. If the execution time exceeds the
time constraint, the heuristic back-tracks the previous step and remove the least
expensive resource from its resource list and reassigns tasks with the reduced
resource set. If the resource list is empty the heuristic keep back-tracking to the
previous step, reduces corresponding resource list and reassign the tasks.

Deadline/Time Distribution (TD)

Instead of back-tracking and repairing the initial schedule, the TD heuristic
partitions a workflow and distributes overall deadline into each task based on
their workload and dependencies. After deadline distribution, the entire workflow
scheduling problem has been divided into several sub-task scheduling problems.

As shown in Fig. 7.8, in workflow task partitioning, workflow tasks are cate-
gorized as either synchronization tasks or simple tasks. A synchronization task
is defined as a task which has more than one parent or child task. For exam-
ple, T1, T10 and T14 are synchronization tasks. Other tasks which have only one
parent task and child task are simple tasks. For example, T2− T9 and T11 − T13
are simple tasks. Simple tasks are then clustered into a branch. A branch is a
set of interdependent simple tasks that are executed sequentially between two
synchronization tasks. For example, the branches in the example are {T2, T3, T4}
and {T5, T6}, {T7}, {T8, T9}, {T11} and {T12, T13}.

After task partitioning, workflow tasks Γ are then clustered into partitions and
the overall deadline is distributed over each partition. The deadline assignment
strategy considers the following facts:

• The cumulative expected execution time of a simple path between two syn-
chronization tasks is same.
• The cumulative expected execution time of any path from an entry task to

an exit task is equal to the overall deadline.
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Fig. 7.8. Workflow Task Partition

• The overall deadline is divided over task partitions in proportion to their
minimum processing time.

After distributing overall deadline into task partitions, each task partition is
assigned a deadline. There are three attributes associated with a task partition
Vi : deadline(dl[Vi]), ready time (rt[Vi]), and expected execution time(eet[Vi] ).
The ready time of Vi is the earliest time when its first task can be executed. It
can be computed according to its parent partitions and defined by:

rt[Vi] =

{
0 , Tentry ∈ Vi

max
Vj∈PVi

dl[Vj ] , otherwise (7.5)

where PVi is the set of parent task partitions of Vi. The relation between three
attributes of a task partition Vi follows that:

eet[Vi] = dl[Vi]− rt[Vi] (7.6)

A sub-deadline can be also assigned to each task based on the deadline of its
task partition. If the task is a synchronization task, its sub-deadline is equal
to the deadline of its task partition. However, if a task is a simple task of a
branch, its sub-deadline is assigned by dividing the deadline of its partition
based on its processing time. Let Pi be the set of parent tasks of Ti and Si is
the set of resources that are capable to execute Ti. tji is the sum of input data
transmission time and execution time of executing Ti on Si. The sub-deadline
of task in partition is defined by:

dl[Ti] = eet[Ti] + rt[V ] (7.7)
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where

eet[Ti] =
min

1≤j≤|Si|
tji

∑

Tk∈V

min
1≤l≤|Sk|

tlk
eet[V ]

rt[Ti] =

{
0, Ti = Tentry

max
Tj∈Pi

dl[Tj], otherwise

Once each task has its own sub-deadline, a local optimal schedule can be gen-
erated for each task. If each local schedule guarantees that their task execution
can be completed within their sub-deadline, the whole workflow execution will
be completed within the overall deadline. Similarly, the result of the cost mini-
mization solution for each task leads to an optimized cost solution for the entire
workflow. Therefore, an optimized workflow schedule can be constructed from all
local optimal schedules. The schedule allocates every workflow task to a selected
service such that they can meet its assigned sub-deadline at low execution cost.

7.4.2 Budget Constrained Scheduling

As the QoS guaranteed resources charges access cost, users would like to execute
workflows based on the budget they available. Budget constrained scheduling
intends to minimize workflow execution time while meeting users’ specified bud-
gets. Tsiakkouri et al. [52] present budget constrained scheduling called LOSS
and GAIN.

LOSS and GAIN

LOSS and GAIN scheduling approach adjusts a schedule which is generated by
a time optimized heuristic and a cost optimized heuristic to meet users’ bud-
get constraints, respectively. A time optimized heuristic attempts to minimize
execution time while a cost optimization attempts to minimize execution cost.

If the total execution cost generated by time optimized schedule is not greater
than the budget, the schedule can be used as the final assignment; otherwise, the
LOSS approach is applied. The idea behinds LOSS is to gain a minimum loss in
execution time for the maximum money savings, while amending the schedule
to satisfy the budget. The algorithm repeats to re-assign the tasks with smallest
values of the LossWeight until the budget constraint is satisfied. The LossWeight
value for each task to each available resource is computed and it is defined by:

LossWeight(i, r) =
Tnew − Told

Cold − Cnew
(7.8)

where Told and Cold are the execution time and corresponding cost of task Ti on
the original resource assigned by the time optimized scheduling, Tnew and Cnew

are the execution time of task Ti on resource r respectively. If Cold is not greater
than Cnew, the value of LossWeight is set to zero.
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If the total execution cost generated by a cost optimized scheduler is less
than the budget, the GAIN approach is applied to use surplus to decrease the
execution time. The idea behinds GAIN is to gain the maximum benefit in
execution time for the minimum monetary cost, while amending the schedule.
The algorithm repeats to re-assign the tasks with biggest value of the GainWeight
until the cost exceeds the budget. The GainWeight value for each task to each
available resource is computed and it is defined by:

GainWeight(i, r) =
Told − Tnew

Cnew − Cold
(7.9)

where Tnew, Told, Cnew and Cold have the same meaning as in the LOSS ap-
proach. If Tnew is greater than Told or Cnew is equal to Cold, the value of Gain-
Weight is set to zero.

7.4.3 Meta-heuristic Based Constrained Workflow Scheduling

A genetic algorithm [61] is also developed to solve the deadline and budget
constrained scheduling problem. It defines a fitness function which consists of two
components, cost-fitness and time-fitness. For the budget constrained scheduling,
the cost-fitness component encourages the formation of the solutions that satisfy
the budget constraint. For the deadline constrained scheduling, it encourages the
genetic algorithm to choose individuals with less cost. The cost fitness function
of an individual I is defined by:

Fcost(I) =
c(I)

Bα(maxCost(1−α))
, α = {0, 1} (7.10)

where c(I) is the sum of the task execution cost and data transmission cost of I,
maxCost is the most expensive solution of the current population and B is the
budget constraint. α is a binary variable and α = 1 if users specify the budget
constraint, otherwise α = 0.

For the budget constrained scheduling, the time-fitness component is designed
to encourage the genetic algorithm to choose individuals with earliest completion
time from the current population. For the deadline constrained scheduling, it
encourages the formation of individuals that satisfy the deadline constraint. The
time fitness function of an individual I is defined by:

Ftime(I) = t(I)
Dβ(maxTime(1−β)) , β = {0, 1} (7.11)

where t(I) is the completion time of I, maxTime is the largest completion time
of the current population and D is the deadline constraint. β is a binary variable
and β = 1 if users specify the deadline constraint, otherwise β = 0.

For the deadline constrained scheduling problem, the final fitness function
combines two parts and it is expressed as:

F (I) =
{

Ftime(I), ifFtime(I) > 1
Fcost(I), otherwise

(7.12)
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For the budget constrained scheduling problem, the final fitness function com-
bines two parts and it is expressed as:

F (I) =
{

Fcost(I), ifFcost(I) > 1
Ftime(I), otherwise

(7.13)

In order to applying mutation operators in Grid environment, it developed
two types of mutation operations, swapping mutation and replacing mutation.
Swapping mutation aims to change the execution order of tasks in an individual
that compete for a same time slot. It randomly selects a resource and swaps the
positions of two randomly selected tasks on the resource. Replacing mutation re-
allocates an alternative resource to a task in an individual. It randomly selects
a task and replaces its current resource assignment with a resource randomly
selected in the resources which are able to execute the task.

7.4.4 Comparison of QoS Constrained Scheduling Algorithms

The overview of QoS constrained scheduling is presented in Table 7.11 7.12. Com-
paring two heuristics for the deadline constrained problem, the back-tracking
approach is more nave. It is like a constrained based myopic algorithm since it
makes a greedy decision for each ready task without planning in the view of
entire workflow. It is required to track back to the assigned tasks once it finds
the deadline constraint cannot be satisfied by the current assignments. It is re-
stricted to many situations such as data flow and the distribution of execution
time and cost of workflow tasks. It may be required to go through many itera-
tions to modify the assigned schedule in order to satisfy the deadline constraint.
In contrast, the deadline distribution makes a scheduling decision for each task
based on a planned sub-deadline according to the workflow dependencies and
overall deadline. Therefore, it has a better plan while scheduling current tasks
and does not require tracing back the assigned schedule. However, different dead-
line distribution strategies may affect the performance of the schedule produced
from one workflow structure to another.

To date, the LOSS and GAIN approach is the only heuristic that addresses the
budget constrained scheduling problem for Grid workflow applications. It takes
advantage of heuristics designed for a single criteria optimization problem such
as time optimization and cost optimization scheduling problem to solve a multi-
criteria optimization problem. It amends the schedule optimized for one factor to
satisfy the other factor in the way that it can gain maximum benefit or minimum
loss. Even though the original heuristics are targeted at the budget-constrained
scheduling problem, such concept is easy to apply to other constrained schedul-
ing. However, there exist some limitations. It relies on the results generated by
an optimization heuristics for a single objective. Even though time optimization
based heuristics have been developed over two decades, there is a lack of workflow
optimization heuristics for other factors such as monitory cost based on different
workflow application scenarios. In addition, large scheduling computation time
could occur for data-intensive applications due to the weight re-computation for
each pair of task and resource after amending a task assignment.
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Table 7.11. Comparison of deadline constrained workflow scheduling algorithms

Algorithm Features

Back-tracking It assigns ready tasks whose parent tasks have been
mapped to the least expensive computing resources
and back-tracks to previous assignment if the cur-
rent aggregative execution time exceeds the dead-
line.

Deadline distribution It distributes the deadline over task partitions in
workflows and optimizes execution cost for each task
partition while meeting their sub-deadlines.

Genetic algorithms It uses genetic algorithms to search a solution which
has minimum execution cost within the deadline.

Table 7.12. Comparison of budget constrained workflow scheduling algorithms

Algorithm Features

LOSS and GAIN It iteratively adjusts a schedule which is generated by
a time optimized heuristic or a cost optimized heuristic
based on its corresponding LOSS or GAIN weight rate
of each task-resource pair, until the total execution cost
meets users’ budget constraint.

Genetic algorithms It uses genetic algorithms to search a solution which has
minimum execution time within the budget.

Unlike best-effort scheduling in which only one single objective (either op-
timizing time or system utilization) is considered, QoS constrained scheduling
needs to consider more factors such as monetary cost and reliability. It needs
to optimize multiple objectives among which some objectives are conflicting.
However, with the increase of the number of factors and objectives required to
be considered, it becomes infeasible to develop a heuristic to solve QoS con-
strained scheduling optimization problems. For this reason, we can believe that
metahueristics based scheduling approach such as genetic algorithms will play
more important role for the multi-objective and multi-constraint based workflow
scheduling.

7.5 Simulation Results

In this section, we show an example of experimental comparisons for workflow
scheduling algorithms. Basically, we compares deadline constrained scheduling
heuristics which are presented in previous section.
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7.5.1 Workflow Applications

Given that different workflow applications may have a different impact on the
performance of the scheduling algorithms, a task graph generator is developed to
automatically generate a workflow based on the specified workflow structure, and
the range of task workload and the I/O data. Since the execution requirements
for tasks in scientific workflows are heterogeneous, the service type attribute is
used to represent different types of services. The range of service types in the
workflow can be specified. The width and depth of the workflow can also be
adjusted in order to generate workflow graphs of different sizes.

a) balanced-structure application b) unbalanced-structure application

task

Fig. 7.9. Small portion of workflow applications

According to many Grid workflow projects [11, 35, 55], workflow application
structures can be categorized as either balanced structure or unbalanced structure.
Examples of balanced structure include Neuro-Science application workflows [63]
and EMAN refinement workflows [35], while the examples of unbalanced struc-
ture include protein annotation workflows [40] and Montage workflows [11].
Fig. 7.9 shows two workflow structures, a balanced-structure application and an
unbalanced-structure application, used in our experiments. As shown in Fig. 7.9a,
the balanced-structure application consists of several parallel pipelines, which re-
quire the same types of services but process different data sets. In Fig. 7.9b, the
structure of the unbalanced-structure application is more complex. Unlike the
balanced-structure application, many parallel tasks in the unbalanced structure
require different types of services, and their workload and I/O data varies sig-
nificantly.

7.5.2 Experiment Setting

GridSim [48] is used to simulate a Grid environment for experiments. Fig. 7.10
shows the simulation environment, in which simulated services are discovered by
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Fig. 7.10. Simulation environment

Table 7.13. Service speed and corresponding price for executing a task

Service ID Processing Time(sec) Cost($/sec)
1 1200 300
2 600 600
3 400 900
4 300 1200

Table 7.14. Transmission bandwidth and corresponding price

Bandwidth(Mbps) Cost ($/sec)
100 1
200 2
512 5.12
1024 10.24

querying the GridSim Index Service (GIS). Every service is able to provide free
slot query, and handle reservation request and reservation commitment.

There are 15 types of services with various price rates in the simulated Grid
testbed, each of which was supported by 10 service providers with various pro-
cessing capability. The topology of the system is such that all services are con-
nected to one another, and the available network bandwidths between services
are 100Mbps, 200Mbps, 512Mbps and 1024Mbps.

For the experiments, the cost that a user needs to pay for a workflow execution
comprises of two parts: processing cost and data transmission cost. Table 7.13
shows an example of processing cost, while Table 7.14 shows an example of
data transmission cost. It can be seen that the processing cost and transmission
cost are inversely proportional to the processing time and transmission time
respectively.

In order to evaluate algorithms on a reasonable deadline constraint we also
implemented a time optimization algorithm, HEFT, and a cost optimization
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algorithm, Greedy Cost(GC). The HEFT algorithm is a list scheduling algo-
rithm which attempts to schedule DAG tasks at minimum execution time on a
heterogeneous environment. The GC approach is to minimize workflow execu-
tion cost by assigning tasks to services of lowest cost. The deadline used for the
experiments are based on the results of these two algorithms. Let Tmax and Tmin

be the total execution time produced by GC and HEFT respectively. Deadline
D is defined by:

D = Tmin + k(Tmax − Tmin) (7.14)

The value of k varies between 0 and 10 to evaluate the algorithm performance
from tight constraint to relaxed constraint. As k increases, the constraint is more
relaxed.

7.5.3 Backtracing(BT) vs. Deadline/Time Distribution (TD)

In this section, TD is compared with BackTracking denoted as BT on the two
workflow applications, balanced and unbalanced. In order to show the results
more clearly, we normalize the execution time and cost. Let Cvalue and Tvalue

be the execution time and the monetary cost generated by the algorithms in the
experiments respectively. The execution time is normalized by using Tvalue/D,
and the execution cost by using Cvalue/Cmin, where Cmin is the minimum cost
achieved Greedy Cost. The normalized values of the execution time should be
no greater than one, if the algorithms meet their deadline constraints.

A comparison of the execution time and cost results of the two dead-
line constrained scheduling methods for the balanced-structure application and
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Fig. 7.11. Execution time for scheduling balanced- and unbalanced-structure
applications
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Fig. 7.12. Execution cost for scheduling balanced- and unbalanced-structure applica-
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Fig. 7.13. Scheduling overhead for deadline constrained scheduling

unbalanced-structure application is shown in Fig. 7.11 and Fig. 7.12 respec-
tively. From Fig. 7.11, we can see that TD slightly exceeds deadline at k = 0,
while BT can satisfy deadlines each time. For execution cost required by the
two approaches shown in Fig. 7.12, TD significantly outperforms BT. TD saves
almost 50% execution cost when deadlines are relatively low. However, the two
approaches produce similar results when deadline is greatly relaxed.

Fig. 7.13 shows the comparison of scheduling running time for two approaches.
The scheduling time required by TD is much lower than BT. As the deadline
varies, BT requires more running time when deadlines are relatively tight. For
example, scheduling times at k = 0, 2, 4 are much longer than at k = 6, 8, 10 .
This is because it needs to back-track for more iterations to adjust previous task
assignments in order to meet tight deadlines.
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7.5.4 TD vs. Genetic Algorithms

In this section, the deadline constrained genetic algorithm is compared with
the non-GA heuristics (i.e. TD) on the two workflow structures, balanced and
unbalanced workflows.

The genetic algorithm is investigated by starting with two different initial pop-
ulations. One initial population consists of randomly generated solutions, while
the other initial population consists of a solution produced by TD together with
other randomly generated solutions. In the result presentation, the results gener-
ated by GA with a completely random initial population is denoted by GA, while
the results generated by GA which include an initial individual produced by the
TD heuristic are denoted as GA+TD. The parameter settings used as the default
configuration for the proposed genetic algorithm are listed in Table 7.15.

Fig. 7.14 and Fig. 7.15 compare the execution time and cost of using three
scheduling approaches for scheduling the balanced-structure application and
unbalanced-structure application with various deadlines respectively.

We can see that it is hard for both GA and TD to successfully meet the low
deadline individually. As shown in Fig. 7.14a and 7.15a, the normalized execu-
tion times produced by TD and GA exceed 1 at tight deadline (k = 0), and

Table 7.15. Default settings

Parameter Value/Type
Population size 10
Maximum generation 100
Crossover probability 0.9
Reordering mutation probability 0.5
Replacing mutation probability 0.5
Selection scheme elitism-rank selection
Initial individuals randomly generated
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Fig. 7.15. Normalized Execution Time and Cost for Scheduling Unbalanced-structure
Application

GA performs worse than TD since its values is higher than TD, especially for
balanced-structure application. However, the results are improved when incor-
porating GA and TD together by putting the solution produced by TD into the
initial population of GA. As shown in Fig. 7.15a, the value of GA+TD is much
lower than that of GA and TD at the tight deadline.

As the deadline increases, both GA and TD can meet the deadline (see
Fig. 7.14a and 7.15a) and GA can outperform TD. For example, execution time
(see Fig. 7.14a) and cost (see Fig. 7.14b) generated by GA at k = 2 are lower
than that of TD. However, as shown in Fig. 7.14b) the performance of GA is re-
duced and TD can perform better, when the deadline becomes very large (k = 8
and 10). In general, GA+TD performs best. This shows that the genetic algo-
rithm can improve the results returned by other simple heuristics by employing
these heuristic results as individuals in its initial population.

7.6 Conclusions

In this chapter, we have presented a survey of workflow scheduling algorithms for
Grid computing. We have categorized current existing Grid workflow schedul-
ing algorithms as either best-effort based scheduling or QoS constraint based
scheduling.

Best-effort scheduling algorithms target on community Grids in which re-
source providers provide free access. Several heuristics and metahueristics based
algorithms which intend to optimize workflow execution times on community
Grids have been presented. The comparison of these algorithms in terms of com-
puting time, applications and resources scenarios has also been examined in
detail. Since service provisioning model of the community Grids is based on best
effort, the quality of service and service availability cannot be guaranteed. There-
fore, we have also discussed several techniques on how to employ the scheduling
algorithms in dynamic Grid environments.
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QoS constraint based scheduling algorithms target on utility Grids in which
service level agreements are established between service providers and con-
sumers. In general, users are charged for service access based on the usage and
QoS levels. The objective functions of QoS constraint based scheduling algo-
rithms are determined by QoS requirements of workflow applications. In this
chapter, we have focused on examining scheduling algorithms which intend to
solve performance optimization problems based on two typical QoS constraints,
deadline and budget.
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Summary. The chapter describes a solution to the key problem of ensuring high
performance behavior of the Grid, namely the scheduling of tasks. It presents a dis-
tributed, fault-tolerant, scalable and efficient solution for optimizing task assignment.
The scheduler uses a combination of genetic algorithms and lookup services for ob-
taining a scalable and highly reliable optimization tool. The experiments have been
carried out on the MonALISA monitoring environment and its extensions. The results
demonstrate very good behavior in comparison with other scheduling approaches.

Keywords: Decentralized Grid Scheduling, Genetic Algorithms, Task assignment,
Lookup services.

8.1 Introduction

The increased interest in scheduling in heterogeneous computing systems, is due
partly to the fact that a single parallel architecture may not be adequate for
exploiting needs for parallelism especially when dealing with a computational
power Grid for wide-area parallel and distributed computing. In some cases, het-
erogeneous systems have been shown to produce higher performance for lower
costs than a single large computing machine. Grid computing developed in re-
cent years in response to challenges raised by complex problems solving and
resource sharing in collaborative, dynamic environments. Grid computing con-
cerns large-scale interconnected systems and has the main purpose to aggregate
and to efficiently exploit the power of widely distributed resources. This means,
among other things, a proper assignment of tasks to the available resources.
In grid computing, load-balancing plays an essential role, in cases where one
is concerned with optimized use of resources. A well-balanced task distribution
contributes to reducing execution time for jobs and to using resources, such as
processors, efficiently, in the system. On the other hand, the problem of schedul-
ing heterogeneous tasks onto heterogeneous resources is intractable, thus making
room for good heuristic solutions. We denote heterogeneous tasks as tasks that
have different execution times, memory and storage requirements. Concerning
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springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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the platforms, heterogeneity refers to hardware, software, communication char-
acteristics and protocols, network irregularities, etc.

Scheduling in Grid computing must take into account additional issues such
as resource consumer and owner requirements, the need to continuously adapt
to changes in the availability of resources, etc. Based on this Grid characteristic,
a number of challenging issues need to be addressed: maximization of system
throughput and user satisfaction, the sites’ autonomy (the Grid is composed of
resources owned by different users, which retain control over them), scalability,
and fault-tolerance.

Various strategies for scheduling have been developed, in order to achieve
optimized task planning in distributed systems. Researchers have directed their
studies toward static schedulers [1, 24, 28], in which the assignment of tasks to
processors and the time at which tasks start execution are determined a priori.
In the static model, every task is assigned only once to a resource. A realistic
prediction of the cost of the computation can be made before to the actual
execution. The static model adopts a “global view” of tasks and computational
costs. One of the major benefits is the easy of implementation. On the other
hand, static strategies cannot be applied in a scenario where tasks appear a-
periodically, and the environment undergoes various state changes. Cost estimate
does not adapt to situations in which one of the nodes selected to perform a
computation fails, becomes isolated from the system due to network failures, is
so heavily loaded with jobs that its response time becomes longer than expected,
or a new computing node enters the system. These changes are possible in Grids.

In dynamic scheduling techniques, which have been widely explored in liter-
ature [2, 3, 5, 26, 32], tasks are allocated dynamically at their arrival. Dynamic
scheduling is usually applied when it is difficult to estimate the cost of applica-
tions, or jobs are coming online dynamically (in this case, it is also called online
scheduling). Dynamic task scheduling has two major components: one for sys-
tem state estimation (other than cost estimation in static scheduling) and one for
decision making. System state estimation involves collecting state information
through Grid monitoring and constructing an estimate. On this basis, decisions
are made to assign tasks to selected resources. Since the cost for an assignment
is not always available, a natural way to keep the whole system healthy is by
balancing the loads of all resources.

To-date research on the subject has been focused on both centralized and de-
centralized scheduling approaches. In centralized scheduling algorithms [1, 2, 3, 5],
a single processor collects the load information in the system and determines the
optimal allocation. Due to the overall control, this organization has various ad-
vantages, including speed, easy management, simple deployment, and the ability
to co-allocate resources. Unfortunately, because of the Grid organizational model,
the centralized approach lacks the scalability, robustness, and fault-tolerance.

Decentralized algorithms [7, 12, 15, 21] come with reliable solutions for robust
systems, at the expense of high communication costs. The centralized con-
trol is substituted in distributed approaches by an increased level of decision-
making authority for the nodes involved in running the scheduling algorithm. It
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Fig. 8.1. Decentralized Scheduler Architecture. There are many collaborating sites,
each of them having a local coordinator.

naturally addresses the issues of fault-tolerance, scalability, site-autonomy, and
multi-policy scheduling. However, decentralized organizations introduce several
problems of management, usage tracking, co-allocation. The coordination be-
tween controllers running the scheduling algorithm introduces an overhead but,
at the same time, increases the efficiency of the resulting schedules.

A decentralized scheme (see Fig. 8.1) distributes the responsibility of scheduling
to every site [7, 12, 15]. Each site in theGrid acts as both a scheduler and a computa-
tional resource. User applications are submitted to the local Grid scheduler where
the applications originate.The local scheduler is responsible for scheduling its local
applications, thus it possibly maintains a local queue to hold its own pending ap-
plications. Meanwhile, it should be able to respond to other schedulers requests by
acknowledging or denying it. Since the responsibility of scheduling is distributed,
the failure of a single scheduler does not affect others working. So the decentralized
scheme delivers better fault-tolerance and reliability than the centralized scheme.
But the lack of a global scheduler, which knows the information of all applications
and resources, usually results in low efficiency. Nevertheless, different scheduling
policies on the local sites are possible. Therefore, site-autonomy can be achieved
easily as the local schedulers can be specialized for the site owners needs.
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Since optimal schedules are difficult to compute, current research aims
to find algorithms for suboptimal solutions. The approximate algorithms use
formal computational models, but instead of searching the entire solution space
for an optimal solution, they stop when a solution that is sufficiently “good”
is found. The applicability of this approach depends on the availability of a
function to evaluate a solution, the time required to evaluate a solution, and
the availability of a mechanism for intelligently pruning the solution space. The
heuristic solutions are based on experiments in the real world or on simulation.
Not restricted by formal assumptions, heuristic algorithms are more adaptive to
the Grid scenarios where both resources and applications are highly diverse and
dynamic. Heuristic approaches include algorithms such as: Opportunistic Load
Balancing, Minimum Execution Time, Minimum Completion Time, Min-min,
Max-min, genetic algorithms etc.

Genetic Algorithms are used for searching large solution spaces. Multiple pos-
sible mappings are computed, which are considered chromosomes in the popu-
lation. Each chromosome has a fitness value, which is the result of an objective
function designed in accordance with the performance criteria of the problem
(for example maxpan). At each iteration, all of the chromosomes in the popula-
tion are evaluated based on their fitness value, and only the best of them survive
in the next population, where new allocations are generated based on crossover
and mutation operators. The algorithm usually stops after a predefined number
of steps, or when no noticeable improvements are foreseen.

Genetic algorithms have been largely used for the task allocation problem
[1, 2, 3, 5]. The successful results obtained by means of GAs have proved their
robustness and efficiency in the field. Research has been done recently, particu-
larly in the area of hybrid algorithms, which use problem-specific knowledge to
speed up the search or lead to a better solution [2]. In a novel approach, Wu
et al. [1] focus on a thorough exploration of the search space by means of an incre-
mental fitness function and a flexible representation of chromosomes. Moreover,
the optimization of scheduling via GAs using the load balancing performance
metric has been a key concern for genetic research [1, 3, 5].

Genetic algorithms (GAs) have been widely used to solve difficult NP com-
plete problems like scheduling problem. Hao Yin at al. [19] present an improved
genetic algorithm for scheduling independent tasks in Grid environment, which
can increase search efficiency with a limited number of iterations by improving
the evolutionary process while meeting a feasible result. A fault tolerance-genetic
algorithm for Grid task scheduling using check point was proposed by Bagha-
vathi Priya et al. in [29]. Aggarwal et al. developed a genetic algorithm based
scheduler for computational grids that minimize make-span, idle time of the
available computational resources, turn-around time and the specified deadlines
provided by users. The proposed architecture is hierarchical and the scheduler
is usable at either the lowest or the higher tiers. It can also be used in both
the intra-grid of a large organization and in a research Grid consisting of large
clusters, connected through a high bandwidth dedicated network [6].
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This paper presents DIOGENES (“DIstributed near-Optimal GENEtic
algorithm for Grid applications Scheduling”), a decentralized solution for task
scheduling in heterogeneous environments [16]. The chapter is structured as fol-
lows: Section 8.2 is a general presentation of the DIOGENES features. Section 8.3
describes the structure and functionality of the proposed system. Section 8.4 in-
troduces the main implementation issues and decribe the genetic algorthm. We
describe and comment on the experimental results in the 5th section. Section 8.6
contains conclusions and directions for future research.

8.2 General Presentation of the DIOGENES Features

In this section we describe the scheduling requirements approached in our solu-
tion and present its main characteristics. Our approach deals with three types
of possible requirements: timing constraints (deadlines), resource requirements,
and priorities.

Timing Constrains

In Grid systems, the time at which the results of real tasks are delivered are as im-
portant as the logical soundness of the results [13]. Depending on the consequences
of missing a deadline, real-time tasks are typically classified as hard real-time sys-
tems, in which catastrophic consequences may result from missing the deadlines
(e.g. space stations, patient monitoring systems, nuclear plant control, and avion-
ics control systems), firm real-time systems, in which the results produced by a
task are not useful after the expiration of its deadline (e.g. online transactions
processing systems, such as airline reservation and banking), and soft real-time
systems, in which usefulness of results produced by a task decreases over time after
the deadline expires without causing any damage to the controlled environment
(e.g. telephone switching systems and image processing applications).

Resource Requirements

Resource Requirements are also important and must be compared with available
resources. CPU-intensive or data-intensive applications require computation re-
sources with a specific processing power or available memory. We have focused on
the resource characteristics described by the tuple: <CPU Power, Free Memory,
Swap Memory>.

Priority

Priority is a measure of the precedence in a group of tasks. If two tasks are
allocated to the same computation resource, the task with the higher precedence
is executed first. Therefore, the priorities determine the order of execution of
tasks assigned to a specific resource. If pi is the priority of task i and pj is the
priority of task j, we have:

pi > pj ⇒ tspi < tspj (8.1)
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In this forumla we considered that tspi is the time at which task i starts
execution on processor p and tspj is the time at which task j starts execution on
processor p.

Some of the Grid tasks are periodic in nature, and need to be cyclically exe-
cuted at constant rates. Other real-time tasks are a-periodic, and they are acti-
vated only upon the occurrence of particular events [14]. Hence, periodic tasks
consist of an infinite sequence of identical tasks that are regularly activated at
a constant rate. Each particular task in the sequence represents an instance of
the same task.

Performance Metrics

Different scheduling performance metrics can be taken into account in the design
of a feasible scheduling algorithm. They can also represent optimization criteria
and are based on various constraints such as deadline, guaranteed completion
time, average service time, start and end time, etc. Some of the metrics that
can be used to measure the performances of a Grid scheduling algorithm are
summarized in Table 8.1.

The description of a scheduling request specifies the tasks’ requirements to-
gether with other information of interest such as the task ID, path to the

Table 8.1. Performance Metrics Description

Metric Description

global job success rate the percentage of submited jobs that were finished
successfully before their deadline

local job kill rate percentage of local jobs that have been killed
total load average percentage of busy processors over the en-

tire system
global load percentage of the total computing power that is

used for computing the global jobs. It represents
the effective computing power that the scheduler
has been able to get from the grid

processor wasted time percentage of the total computing power (MIPS)
that is wasted because of claiming processors be-
fore the actual deadlines of jobs

makespan total execution time of tasks in the system, and
is practically equal to the largest processing time
over all processors

average processor utilization average times of processors’ utilization relative to
the maximum execution time

load-balance the uniformity of the tasks disposal on the proces-
sors, with the purpose to obtain similar execution
times on processors, and reduce idle times and
overloading
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<task>
<taskId>24</taskId>
<path>/home/student/pi/mpi999999999.sh</path>
<arrivingDate>2007/05/04</arrivingDate>
<arrivingTime>01:45:05</arrivingTime>
<arguments>999999999</arguments>
<input></input>
<output>mpi.out</output>
<error>mpi.err</error>
<requirements>

<memory>2.95MB</memory>
<swapSpace>2.95MB</swapSpace>
<cpuPower>2682.41MHZ</cpuPower>
<processingTime>39</processingTime>
<deadlineTime>2006/06/09 00:00:01</deadlineTime>
<schedulePriority>10</schedulePriority>

</requirements>
<nrexec>1</nrexec>

</task>

Fig. 8.2. The XML description of a task

executable, the arguments, the input data file, the output and error files, and
the arriving time. The task description adopted in our system is presented in
Fig. 8.2.

The requirements specified for each task include:

• resource requirements (CPU Power, Free Memory, Free Swap)
• restrictions (deadlines), and
• priorities.

Some functional and descriptive information about the task are indicated in
the XML description, such as:

• the path to the executable
• the arguments received by the executable, in case they are needed
• the input file received by the program
• files for redirection of: output, and error
• arriving date (arrivingDate) and time (arrivingTime) of the task, for a pos-

sible insertion in the task queue ordered by arriving time.

Requirements are specified for each task, as follows:

• memory, disk space (swapSpace) and CPU power (cpuPower) requirements
• processing time (processingTime), which is an initial value of the time nec-

essary for the task to be processed in the conditions specified by the memory
and CPU power requirements
• deadline restrictions (deadlineTime), representing the date and time by

which the task must finish execution
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• schedule priority (schedulePriority), representing a priority associated with
the task, and denoting its precedence over other tasks considered for alloca-
tion, which have a smaller priority.

Moreover, the task description specifies the number of executions (nrexec) of
the specific task that may occur.

A user may ask for the scheduling of more than one task at a time. The assign-
ment of a task to a given computing node is conditioned by meeting the resource
requirements. We have focused our study on classes of independent tasks, as de-
scribed in [23], which avoids communication costs due to dependencies. We have
built a model based on a real scenario in which groups of tasks are submitted
by independent users, to be executed on a group of nodes.

In our scheduling scheme, tasks may arrive simultaneously and resources may
dynamically join or leave the system. Aspects of heterogeneity of tasks and pro-
cessors are also considered in [3], which reports results of simulated experiments.
In our work, we present a simulation study, and supplement it with experimental
results obtained in existing monitoring and job execution platforms. For experi-
ments, we used the MonALISA monitoring platform and its extensions [18, 20].
Another major accomplishment of this research is the migration towards a decen-
tralized scheduler by means of lookup services. Using this feature, we overcome
one of the main drawbacks of centralized schedulers, which is the lack of robust-
ness in realistic scenarios. Decentralized scheduling approaches have focused on
partitioning the task sets or the computation resources into subparts and on
running the algorithm on each of them [7, 12, 15, 21]. The results generally in-
dicate high overloads and low balancing, which lead to scarce performance. We
also directed our research towards speeding up the convergence of genetic algo-
rithms by using multiple agents (see Section 8.3.2) and different populations to
schedule sets of tasks. The experimental results show that the number of gener-
ations necessary for the algorithm to converge is significantly reduced. The use
of multiple initial search points in the problem space favors a high probability
to converge towards a global optimum. Combined with the lookup services, this
approach offers a solution to high scalability and reliability.

8.3 Architecture

Designing the proposed system started from the requirements for an efficient
Grid scheduling solution. The DIOGENES architecture takes into account two
main issues that are intrinsic to a de-centralized Grid scheduler: how to monitor
resources and how to discover available services.

With DIOGENES, the scheduler receives job execution requests from users
and maps the application to resources and services according to some optimiza-
tion criteria. In order to address the first issue, related to resource monitoring, we
observe that the Grid scheduler doesn’t control the clusters/resources directly.
Rather, it gathers information about the available resources by calling available
Grid monitoring services, and submits the schedules for execution by calling the
local schedulers of the target systems.
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Fig. 8.3. Anatomy of the DIOGENES system

The second issue, concerning the discovery of available resources, is closely re-
lated to the de-centralized nature of the DIOGENES scheduler. Several scheduler
components must run on different nodes, which have the common characteristics
of Grid resources: dynamicity, volatility, etc. Since the usual solution is to use a
discovery service, it was adopted also for our system.

8.3.1 System Anatomy

A schematic view of the DIOGENES system is presented in Fig. 8.3. Users sub-
mit Scheduling requests. A near-optimal schedule is computed by the Scheduler
based on the Scheduling requests and the Monitoring data provided by the Grid
Monitoring Service (MonALISA). The schedule is then sent as a Request for
task execution to the Execution Service. The user receives feedback related to
the solution determined by the scheduler, as well as to the status of the executed
jobs in the form of the Schedule and task information. Furthermore, the system
can easily integrate new hosts in the scheduling process, or overcome failure
situations by means of the Discovery Service.

The characteristics and functionalities of the services that interact with the
scheduler - Grid Monitoring Service, Execution Service and Discovery Service -
are further detailed.

Grid Monitoring Service

The Grid Monitoring Service gathers real-time information in a heterogeneous
and dynamic environment such as the Grid. It plays an essential role in the
scheduling system, since it collects data about the shared resources provided in
the distributed environment. The monitoring information is used by the internal
DIOGENES scheduling algorithm to generate automated decisions that maintain
and optimize the assignation of jobs on the resources of the computational Grid.

We are using the MonALISA [18] distributed service system in conjunction
with ApMon [20]. ApMon is a library that can be used to send status information
in the form of UDP datagrams to MonALISA services. MonALISA provides
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system information for computer nodes and clusters, network information for
WAN and LAN, monitoring information about the performance of applications,
jobs or services. It proved its reliability and scalability in several large scale
distributed systems [18]. We have extended the existing implementation of the
MonALISA Web Service Client with new features, in order to connect to the
monitoring service via proxy servers and obtain data for the genetic algorithm.
A daemon application performs task monitoring is using ApMon. This daemon
provides information regarding task status parameters on each node (amount
of memory, disk and CPU time used by the tasks). The up-to-date information
offered by the Grid Monitoring Service leads to realistic execution times for
assigned tasks, as shown by experimental results.

Execution Service

Given its capability to dynamically load modules that interface existing job
monitoring with batch queuing applications and tools (e.g. Condor [9], PBS
[27], SGE [31], LSF [30]), the Execution Service can send execution requests to
an already installed batch queuing system on the computing node to which a
particular group of tasks was assigned. Sets of tasks are dynamically sent to
computing nodes in the form of a specific command.

The time ordering policy established by the genetic algorithm for tasks as-
signed on the same processor is preserved at execution time. Discovery Service.
Lookup processes are triggered by the Discovery Service and determine the pos-
sibility of achieving a decentralized schedule by increasing the number of hosts
involved in the genetic scheduling. The apparition or dysfunction of agents in
the system can easily be intercepted, resulting in a scalable and highly reliable
optimization tool. If one agent ceases to function, the system as a whole is not
prejudiced, but the probability of reaching a less optimal solution for the same
number of generations increases.

8.3.2 Functional Aspects

In our approach, the grid nodes are part of a group, according to their specific
function, as described below:

• Scheduling Group. The computers in this group run the scheduling algo-
rithm. They receive requests for tasks to be scheduled, and return a near-
optimal schedule according to the genetic algorithm.
• Execution Group. The computers in this group execute the tasks that

have been previously scheduled and assigned to them. The use of real-time
monitoring information about the Execution Group by means of MonALISA
implies that computers in the Grid may well take part in both scheduling
and execution, provided that they have enough resources to support the load
produced by the scheduling algorithm. In the case of less stringent deadline
requirements, the solution of using the computers for both scheduling and
execution is valid, and employs a reduced number of resources.
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Fig. 8.4. Communication model

The computers in the Scheduling Group are either brokers or agents. The
brokers are designated to receive user requests, and the agents run the genetic
algorithm in order to find a near-optimal solution.

The Broker develops communication in two directions (see Fig. 8.4): with the
user on one side and with all the other nodes in the Grid on the other side. The
following features are implemented by the Broker:

• A listener to the input, which perceives user quests on that node. The quest
input is namely a file and contains a XML description of the tasks to be
scheduled. In this way, a user may request the scheduling of more than one
task at a time;
• A parser of the input file that results in creating an object of type “batch of

tasks”, containing all the tasks to be scheduled.

Each Agent has a local task queue in which the tasks are inserted sorted
according to one of the following criteria:

• the arriving time,
• the scheduling priority assigned by the user.

The genetic algorithm starts when the task queue is not empty and either a
predefined waiting period has elapsed or there are enough tasks in the queue to
complete a chromosome. At the same time the agents communicate with each
other, exchanging best individuals. In this way, the fittest chromosomes deter-
mined by each Agent may be selected and subsequently used at the following
step and implicitly at the final step. The migration of the best individuals leads
to a better optimal result in a shorter time.

We have experimented three types of communication among the agents run-
ning the Genetic Algorithm:
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1. synchronous, with best scheduling chromosome exchanged after a given pe-
riod of time has passed (TIMEOUT)

2. asynchronous, with each of the agents sending their current best scheduling
chromosome after a number of generations. Depending on the running speed
of each agent, they may not get to the same number of generations in an
equal amount of time

3. without communication; the working nodes are sending the Best Scheduling
Chromosome at the end of the algorithm

One major objective of our research is to fit in real scenarios of Grid schedul-
ing. In this context, DIOGENES can well be mapped on two scenarios that may
appear. In the first scenario, the Scheduling requests are sent from remote sites
by means of a portal to the computers in the Scheduling Group. In this case, the
brokers provide the input for our scheduling algorithm, but do not actually run
it. In the second scenario, all the computers in the Scheduling Group run the
scheduling algorithm and are open to Scheduling requests at the same time. The
execution of the genetic algorithm is not limited to only a part of the computers
in the Scheduling Group, and that translates into an efficiency increase. The
first approach is preferable when users are somewhere remote and would rather
not overload their computer with running the scheduling algorithm. In the sec-
ond case, the resources available are not preferentially treated and therefore the
number of resources used is reduced. Depending on the situation, the intended
objectives or cost limits, one of the two scenarios may be adopted.

8.4 Genetic Algorithm

Genetic algorithms (GAs) are a well known optimization heuristic, especially
when dealing with combinatorial problems, and particularly with NP-Complete
ones [17], which are not solvable in a polynomial time. The GA was first intro-
duced by Holland (1975) and represent a machine learning optimization method
based on a metaphor of the evolution process observed in nature. These search
procedures are based on the evolution of a population of individuals (a vector of
possible solutions). GAs are part of evolutionary supervised learning methods,
as they require an evaluation function provided by the one who creates of the
algorithm (instead of reinforcement learning agents for example).

As described by Goldberg [17], in general terms, a genetic algorithm consists
of four parts, each of them with a well defined role (see Fig. 8.5):

1. Generate an initial population
2. Select pair of individuals based on the fitness function
3. Produce next generation from the selected pairs by performing random

changes on the selected parents (by applying pre-selected genetic operators).
4. Test for stopping criterion:
• return the solutions/individuals if satisfied, or
• go to step 2. if not.
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Fig. 8.5. Genetic Algorithms’ main steps

The termination condition can be either:

1. No improvement in the solution after a certain number of generations.
2. The solution converges to a predetermined threshold.

8.4.1 Chromosome Encoding

In Genetic Algorithms, each chromosome (individual in the population) represents
a possible solution to a problem. In the case of scheduling, each chromosome repre-
sents a schedule of a group (batch) of tasks on a groupof processors.A chromosome
can be represented as a sequence of individual schedules (one for each processor in
the group) separatedby a special value. Each individual schedule is a queue of tasks
assigned to that processor. In another representation, each gene is a pair of values
(Tj , Pi), indicating that task Tj is assigned to processor Pi. The execution order of
tasks allocated to the same processor is given by the positions of the corresponding
genes in the chromosome. Tasks allocated to different processors can be executed
in parallel. A third representation adopts a matrix structure with processors rep-
resented on one dimension and queues represented on the second dimension.

In our chromosome encoding, we adopted the second representation, in which
each gene is a pair of values (Tj , Pi), indicating that task Tj is assigned to
processor Pi, where j is the index of the task in the batch of tasks and i is the
processor id. For example, in the chromosome representation of Fig. 8.6, tasks
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Fig. 8.6. Chromosome representation

5 and 1 are allocated to processor 1, while tasks 2, 3 and 4 are allocated to
processor 2. Also task 5 will be executed before task 1.

This representation has been regarded in literature [1, 2] as efficient and com-
pact, with reduced computational costs (crossover and mutation are easier to
implement on this type of representation).

8.4.2 Population Initialization

The initial population is initialized by randomly placing each task on a proces-
sor. To ensure that the search space is thoroughly explored, the chromosomes
are created using different random number generators. Various probabilistic dis-
tributions are used by each agent for population initialization (Poisson, Normal,
Uniform, Laplace). This random generation of chromosomes can lead to con-
figurations that do not correspond to valid schedules (e.g. the tasks’ priorities
do not correspond to the specification). The problem can be solved by applying
corrections to make the generated chromosome compliant with the specification
or by including penalties in the fitness function (see later).

8.4.3 Genetic Operators

A thorough analysis of the genetic operators is essential for an efficient inspection
of the solution space. The current section presents design features of the genetic
operators that we have used during the experiments.

Crossover

We have experimentally tested three types of crossover: single-point crossover,
two-point crossover and uniform crossover. Single-point crossover functioned bet-
ter in most of the cases and delivered the best scheduling solutions. For the
selected chromosome representation, the single point crossover is performed as
follows (see example in Fig. 8.7 for chromosomes of length 6):

• a cut position is randomly selected (for our example, the cut position is
between genes three and four); for each chromosome, this produces a head
segment and a trail segment;
• the first offspring is generated by retaining the head segment from the Parent

1 and combining it with a segment obtained by combining the trail segments
of the parents; more specific, for each gene, the first value of the pair is taken
from Parent 1, while the second value is taken from Parent 2;
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Fig. 8.7. Single-point crossover between two chromosomes in GA scheduling

• the second offspring retains the first segment from parent 2; for each gene
of the new trail segment, the first value of the pair is taken from parent 2,
while the second value is taken from Parent 1.

With these rules, the tasks identities and order are inherited by the first
offspring from the first parent, and by the second offspring from the second
parent. Similar considerations can be made for the other forms of crossover.

The likelihood of crossover being applied is typically between 0.6 and 1.0[8]. We
have adopted the same probability interval for our experiments. If crossover is not
applied, offspring are produced simply by duplicating the parents. This gives each
individual a chance of passing on its genes without the disruption of crossover.

Mutation

All new chromosomes have a certain probability of being affected by mutation.
The search space expands to the vicinity of the population by randomly altering
certain genes. The result is the tendency to converge to a global rather than to a
local optimum[8, 10, 22, 33]. We have opted for an adaptive mutation operator,
which gave better results than the usual static ones. Research has been carried
out in the field of dynamic operators, but such studies usually focus on either
increasing or decreasing the probability of mutation continuously during the
entire run[8]. The adaptive operator that we introduced is more flexible. The
novelty of our mutation operator is to dynamically adjust the mutation rate,
depending on the fitness variation. In our experiments, we modeled a linear
increase in mutation rate when the population stagnates, and a decrease towards
a predefined threshold when population fitness varies and the search space has
moved to a vicinity.

Based on the mutation rate, we first decide whether the current chromosome
will be affected by mutation. If mutation has been decided, the next step is to
modify the chromosome. We have conducted experiments with three different
mutation operators, which are further described:

Partial-gene Mutation randomly selects a chromosome and change a randomly
selected gene assigning the task to a new processor where it has earliest start
time [10];
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Order-based (Swap) Mutation randomly selects two processors, and then ran-
domly selects a task on each processor. The tasks are interchanged between
processors if they have similar properties (for example, the same priority);
otherwise, the search continues [4];

Additive Mutation randomly selects two processors, then randomly selects a
task on the first processor. Next, a starting point is randomly selected, after
which the processor substring is searched for an insertion position. The task
must be inserted such that the property rules (for example, priority order)
still hold. After that, it is erased from the first processor string.

Selection

Genetic operators apply to chromosomes that are selected from the actual pop-
ulation and produce a new generation. Our algorithm implements the roulette
wheel selection method, which proved to work well in similar studies [3, 5, 11].
According to the roulette wheel selection technique, the chance p(i) of an indi-
vidual to become a parent is directly proportional with its fitness value F (i) (see
Section 8.4.3):

p(i) =
F (i)
Ft

(8.2)

Ft is the total fitness of the population and p represents the population size.

Fig. 8.8. The roulette wheel method

The three steps of a roulette wheel selection method are (see Fig. 8.8):

1. Sum the fitness of all the population members. Call this Ft (total fitness)

Ft =
p∑

i=1

F (i) (8.3)

2. Generate a random number n, between 0 and Ft.
3. Return the first individual whose fitness added to the preceding population

members is greater than or equal to n.
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8.4.4 Fitness Function

The fitness (or objective) function measures the quality of each individual in
the population according to some criteria. For the scheduling problem, the goal
is to obtain task assignments that ensure minimum execution time, maximum
processor utilization, a well balanced load across all processors, or a combination
of these.

The objective selected for our research was to obtain a well-balanced assign-
ment of tasks to processors. This has, as a side effect, reduction of the overall
completion time of tasks assigned to processors, which means minimization of
makespan [5, 21]. Makespan is defined as:

tM = max
1≤i≤n

{ti} (8.4)

In this formula, n is the number of processors and ti is the total execution time
for processor i, computed as the sum of processing times for all tasks assigned
to this processor in the current or previous schedules:

ti = tpi + tci =
Ti∑

j=1

(ti,j) (8.5)

We have considered Ti to be the total number of tasks assigned to processor i
for execution and ti,j the running time of task j on processor i. tpi is the execution
time for previously assigned tasks to processor i, and tci is the processing time
for currently assigned tasks.

A mapping of makespan in the [0, 1] interval leads to the factor 1
tM

that is
often considered for fitness computing [5, 21]. We optimized this factor for a more
efficient search of well-balanced schedules. In our approach, we determined that
reducing the difference between the minimum and the maximum processing times
is a factor worth considering for fitness, in terms of load-balancing optimization.
Therefore, one factor introduced for fitness computation is:

f1 =
tm
tM

=
min1≤i≤n{ti}
max1≤j≤n{tj}

, 0 ≤ f1 ≤ 1 (8.6)

The factor converges to 1 when tm approaches tM , and the schedule is perfectly
balanced.

The second factor considered for fitness computation is the average utilization
of processors:

f2 =
1
n

n∑

i=1

ti
tM

, 0 ≤ f2 ≤ 1 (8.7)

Zomaya [5] pointed out its utility of reducing idle times by keeping processors
busy. Division by makespan is pursued in order to map the fitness values to the
interval [0, 1]. In the ideal case, the total execution times on the processors are
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equal and equal to makespan, which leads to a value of 1 for average processor
utilization.

Another factor considered in our research represents meeting the imposed
restrictions. In a realistic scenario, task scheduling must meet both deadline and
resource limitations (in terms of memory, cpu power). In deadline computation
for a task t, we must consider the execution times for each of the tasks assigned
to run before task t on the same processor. These tasks occupy a previous slot
on the respective processor in our encoding of a chromosome [2, 13]. The fitness
factor is subsequently defined as:

f3 =
Ts

T
, 0 ≤ f3 ≤ 1 (8.8)

We consider that Ts denotes the number of tasks which satisfy deadline and
computation resource requirements, and T represents the total number of tasks
in the current schedule.

This factor acts like a contract penalty on the fitness. Its value varies reaching
1 when all the requirements are satisfied and proportionally decreases with each
requirement that is not met. The chance of being selected for future generations
is reduced due to the penalty introduced by this factor. Still, the schedule is not
dismissed, but may be used in subsequent reproduction stages that lead to valid
chromosomes.

The fitness function applied in our research consists of the contribution of the
factors presented:

F = f1 × f2 × f3 =
(

tm
tM

)

×
(

1
n

n∑

i=1

ti
tM

)

×
(

Ts

T

)

, 0 ≤ F ≤ 1 (8.9)

8.4.5 Algorithm Description

The description of the scheduling algorithm in pseudo-code is given below:

L = length of the chromosome;
S = number of steps for the GA;
T = waiting time;

Broker:
Receive user request (input_file);
Parse the input file and obtain a TaskBatch object;
Broadcast the TaskBatch object to all the Agents in the

Scheduling Group;

Agent:
Queue taskQueue;
Actively listens to the Brokers for new tasks and insert

them sorted in the taskQueue;
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While (NOT((length(taskQueue)>0 AND curr_waiting_time==T)
OR taskQueue.length>=L)) do

Wait for new tasks to come;
Endwhile

current length = min{taskQueue.length, L);

If current length < L then
Fill chromosome with padding;

Interrogate the Grid Monitoring Service about the status
of the processors in the Execution Group;

Initialize the GA algorithm;

While current step <= S do
If current step == S then

Determine the optimal individual (schedule);
Save the optimal schedule in the history file;
break;

Endif

Run the current step of the GA;
Exchange the fittest individuals in the current

generations (computed on every Agent) and insert
them in the next population;

Endwhile

On the Brokers side, requests for the scheduling of a group of tasks are re-
ceived. The input file from the user is parsed, and a TaskBatch object (which
contains objects of the type Task) is obtained and sent to all the active Agents
in the Scheduling Group. More than one Broker at a time may receive requests
for task scheduling.

On the Agents side, the Tasks are stored in a local queue, on each of them. If
the queue is not empty and either a given interval of time has passed or the length
of the queue exceeds the length of the chromosome, the Agents start to run the
genetic algorithm, otherwise wait for new tasks to come. Before GA running, the
Agents interrogate the Grid Monitoring Service about the status of processors
in the Execution Group, and find out the idle cpu and free memory on each of
them. At each step of the GA or at a predefine interval, the fittest individuals
computed by the Agents are exchanged, in order to improve the population. At
the final step, the schedule is saved in a history file on the agents.

Here is a description of the scheduling algorithm in a logical flow of activities:

Step 1. A user requests that one or more tasks are scheduled. His request has as
a parameter the name of the file containing a description of the tasks. The
file has a standard XML format and presents requirements for each task
relative to memory, cpu usage, execution time, etc.
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Step 2. The input file is processed and a batch of tasks (group of tasks) object
is constructed.

Step 3. The batch of tasks is broadcast to all the nodes in the cluster.
Step 4. The nodes receive the group of tasks to be scheduled. The tasks are

inserted sorted in a queue according to a sorting criteria like arriving time
or scheduling priority. If the number of tasks in the queue is less than a
predefined length of the chromosome, they wait for T units of time before
starting the genetic algorithm. If the chromosome is still not complete at
the end of the waiting period, a non-influential padding is added. On the
contrary, if the length of an arriving group of tasks exceeds the predefined
dimension of the chromosome, some tasks are saved in the waiting queue
and will be scheduled at the next time.

Step 5. On each node, a daemon keeps an up-to-date status of the computers in
the Grid on which tasks are sent for execution, by constantly interrogating
a monitoring system (we have used the MonALISA service). The Grid is a
dynamic environment in which nodes’ characteristics such as free memory
or cpu utilization vary over time. The current configuration information is
necessary for an accurate scheduling process. The nodes interrogate the dae-
mon for at the beginning of the algorithm, to find out the current status of
the Grid.

Step 6. The nodes in the cluster run the GA. Each node starts with a different,
specific initialization of the genetic algorithm. The subsequent steps of the
GA are similar for all the nodes in the cluster, and so is the fitness formula.
In this way, the clients will compute different optima from which the best
one will be chosen.

Step 7. The migration of the best current solutions is performed after each step
of the GA, thus ensuring that the population finds a better optima. The
nodes exchange the fittest individuals and insert them in the next generation.

Step 8. The generation of populations stops after a finite, predefined number of
steps. At this point, each client in the cluster computes its optimal individual.

Step 9. The same communication procedure as above is used for the final step of
the GA. Each node sends its optimum to all the other nodes in the cluster and
the final optimal individual is decided by each one. The fittest chromosome
is selected from the optimal individuals only. The result is the same on every
node, because the computing procedure and the individuals at the last step
of the GA are the same.

Step 10. The scheduling obtained is saved in a history file on each node in the
cluster.

8.5 Experimental Results

The experimental cluster was configured with 11 computers, named P1, P2, . . .,
P11, which represent heterogeneous computing resources with various process-
ing capabilities and initial loads. The input tasks represent typical cpu-intensive
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computing programs. The processing time (in seconds), use for graphics,
represents the execution time of scheduled tasks.

Default parameters for the genetic algorithm were established at 0.9 for
crossover rate and 0.005 for mutation rate threshold. The chromosome length
is 50. The values were experimentally determined, in order to widely and thor-
oughly explore the search space.

The reproduction operators applied were single point crossover and adaptive
mutation, as described in section 8.4.3. We used the roulette wheel selection
method to choose individuals who will survive in the next generation.

8.5.1 Algorithm Convergence

We have studied the improvement achieved by the algorithm throughout gen-
erations. The metric used for performance measurements is load-balancing, a
performance attribute of high demand in distributed environments.

In this work, the load-balancing of the system was investigated according to
the following definition:

L = 1− Δ

u
, 0 ≤ L ≤ 1 (8.10)

u is the average processor utilization of the system, where ui represents the
utilization rate of processor i:

u =
1
n

n∑

i=1

ui (8.11)

We consider n to denote the number of processors in the system. The processor
utilization rate is computed as:

ui =
ti
tM

=
ti

max1≤i≤n{ti}
(8.12)

In the formula above, ti and tM have the same significance as described in
section 8.4.4.

Furthermore, Δ in the load-balancing formula denotes the square deviation
of from the mean u:

Δ =

√
√
√
√ 1

n

n∑

i=1

(ui − u)2 (8.13)

Load-balancing in the system converges to 1 when the tasks are equitable
disposed on processors, so that the processing times are approximately equal
relative to one another and equal to makespan. In this case, the dispersion of
processor utilization rates from the average tends to zero:

ui → u⇒ Δ→ 0⇒ L→ 1 (8.14)
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Fig. 8.9. Convergence of load-balancing in the system over 500 generations

For the purpose of this experiment, we use a GA scheduler with one 3. Fig. 8.9
shows the dispersion of load-balancing in the system over 500 generations, as well
as the average and maximum load-balancing.

A number of 10 distinct experiments were pursued during the convergence
study. The points in the figure represent values obtained at different generations.
At reduced numbers of generations, the results are spread over a larger interval
and usually achieve low values, as the algorithm does not have enough time
to cover a larger search space. The algorithm converges for higher numbers of
generations. For the set of tasks considered, little improvement is obtained over
200 generations.

8.5.2 Decentralization

Convergence speed-up

The influence of decentralization on the load-balancing performance metric was
subsequently analyzed. Experiments were pursued with one, two, three and four
agents, averaged over ten runs in each case. Fig. 8.10 shows the results obtained
over 200 generations.

The increase in the number of agents gives best results in terms of conver-
gence speed up when we are running the genetic algorithm with fewer genera-
tions, less than 100 on the tasks set used. This was expected since the GA is
a stochastic algorithm, in which every run is initialized randomly. More agents
mean more start points for the genetic algorithm in order to find a near opti-
mal solution. While incrementing the number of agents, the improvement rate
decreases. In our case, the benefit of four agents over three is almost negligible be-
cause the convergence is already established al low generations, below which the
chances of finding optimal individuals are very low, although positive. At higher
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Fig. 8.10. Load-balancing with various number of agents

generations, the cost of employing multiple agents is not justified, because the
algorithm has already converged to an optimum.

The α = 0.85 threshold is used to illustrate speed-up for each situation. The
one agent experiment reaches this threshold at approximately 150 generations,
while the two agents experiment finds a solution of the same quality at 74 gen-
erations. Furthermore, three agents deliver an equally optimal solution at 38
generations and four agents at 30 generations.

Table 8.2 shows the speed-up increase rate for achieving an optimal solution at
the 0.85 load-balancing threshold for different numbers of agents. The speed-up
relative to the previous experiment (first column) is computed as:

sα
i =

gα
i−1 − gα

i

gα
i−1

× 100% (8.15)

Table 8.2. Speed-up increase rates for various decentralization levels at α = 0.85
load-balancing threshold

Speed-up Speed-up Relative
increase rate increase rate execution

Experiment no. relative to relative to time decrease
previous exp. centralized alg. (%)

(%) (%)

Exp1: 1 agent - - -
Exp2: 2 agents 50.66 50.66 5.46
Exp3: 3 agents 48.64 74.66 14.10
Exp4: 4 agents 21.05 80 -0.55
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with gα
i representing the number of generations at which the threshold is

reached in the experiment with i agents, and gα
i−1 is the number of generations

at which the threshold is reached in the experiment with i− 1 agents.
The increase rate is high (50.66%) with 2 agents, meaning that the generations

were reduced to less than half. In the case of three agents, a rate almost as high
(48.64%) is obtained, while a low rate increase of 21.05% for the four agents
experiment shows that the improvement is extremely reduced.

The speed-up relative to the experiment with one agent (that mean pseudo-
centralized method) was computed as:

spcα
i =

gα
pc − gα

i

gα
pc

× 100% (8.16)

The gα
pc term is the number of generations at which the α threshold is achieved

in the experiment with 1 agent.
The method provides a substantial decrease as regards the execution time

for the scheduling algorithm. For our experimental configuration, an optimum is
achieved with 3 agents, when a decrease of over 14% execution time is registered
comparative to the 1-agent experiment. The communication time costs are higher
when running the algorithm with four agents, and therefore the performance
is diminished. It is also worth noticing that not only execution performance,
but also the probability to obtain a global optimum is improved by employing
multiple agents with various start points in the solution space.

Scalability and robustness

We also pursued experiments for studying the capability of the system to resist
to failure situations. Fig. 8.11 illustrates a scenario in which the system started
to function with two agents and one of them dysfunctions after running the
algorithm for 40 generations. For the purpose of comparison, we also represented
the estimated evolution averaged over 10 runs with one agent and two agents.

Although in the initial phases the algorithm has performed well with two
agents, achieving load-balancing values similar to those obtained during normal
functioning, the improvement is reduced after one agent ceases to function. The
convergence rate decreases, leading to slightly better results than in the case of
a normal functioning with one agent. The performance is visible decreased, but
the system resists failure and continues to perform scheduling.

8.5.3 Estimated Times Versus Real Execution Times

The quality of estimated times is essential for the quality of the schedule. We
want the computed processing times to closely approximate the real execution
times. That is especially important in hard real-time scheduling problems, in
which missing deadlines is extremely problematic [2].

Fig. 8.12 provides a comparison between estimated time and real processing
time achieved during the experiment. A configuration of the algorithm with 200
generations was used for computation of estimated times. Job execution was
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Fig. 8.11. Reliability: 1 agent out of 2 dysfunctions after 40 generations

Fig. 8.12. Estimated and real processing times on each processor

pursued with PBS and job monitoring information was achieved by means of
MonALISA Service and its extensions (ApMon and MonALISA Client).

The error of approximation is computed according to the method subsequently
described.

The relative deviation of the estimated time from the real time for processor
i is noted δi and determined as:

δi =
tri − tei

tri
(8.17)
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In this formula, tri represents the real processing time obtained by running the
jobs in the execution system, and tei is the estimated processing time provided
by the genetic algorithm .

The approximation error is further determined as:

ε =

√
√
√
√ 1

n

n∑

i=1

δ2
i , 0 ≤ ε ≤ 1 (8.18)

We obtained an average error value over 10 runs of approximately ε = 0.16.
The scheduling policy employing real monitoring data from the Grid environ-
ment is therefore a viable one, providing very good estimation results, with an
accuracy of about 84%.

8.5.4 Comparison of Various Scheduling Methods

Four different methods were compared with respect to load-balancing achieve-
ment. In the first stage, we use the First Come First Served algorithm in order
to assign 100 tasks on the eleven computation resources. The following exper-
iments test heuristic strategies based on genetic algorithms. The experiments
were pursued with 100 generations. The purpose was to demonstrate that very
good results can be obtained even at reduced numbers of generations, which
implies low computation costs.

First Come First Served Algorithm

In the First Come First Served policy, each task is assigned at its arrival on the
processor with the minimum expected start time.

In order to determine the fittest processor for task allocation, we must first
estimate the time at which already assigned tasks will finish execution on each
processor. The expected completion time for processor i is computed as follows,
where Ti and ti,j have the same significance as described in section 8.4.4:

tci =
Ti∑

j=1

ti,j , 1 ≤ i ≤ n (8.19)

We can now compute the estimated start time for a newly arrived task k:

tsk = min
1≤i≤n

{tci} = min
1≤i≤n

⎧
⎨

⎩

Ti∑

j=1

ti,j

⎫
⎬

⎭
(8.20)

The arriving times of the tasks influence the balancing level in the system, so
that early arrival times for the larger tasks would lead to better results. Improved
solutions are obtained if we use a heuristic, which would reorder the task set
on the expenses on algorithm complexity [21]. For the task set considered, the
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Fig. 8.13. Task assignment with First Come First Served algorithm

strategy obtains an average processor utilization of about 0.64 on a [0, 1] interval
and a load-balancing of about 0.754 (Fig. 8.13). The least loaded processor (P1),
has over 200 seconds (about half the total execution time) additional idle time
relative to the overloaded processor P8.

It is clear that heterogeneity of tasks is a highly influential factor and leads
to low values for load-balancing. The large tasks disposed on processors P3 and
P8 heavily overload these computation resources.

Fig. 8.14. Task assignment with the centralized genetic algorithm
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Centralized GA-based Scheduling Algorithm

This heuristic method searches for an optimal assignment of tasks in order
to achieve total execution time reduction and highly homogeneous loads on
processors.

In the second experiment, we have tested the centralized genetic algorithm on
the same set of input tasks with a stop point at 100 generations (see Fig. 8.14).
The load-balancing obtained is with Δl ≈ 0.2% lower in comparison with the
First Come First Served policy. The result is indeed satisfactory considering the
reduced number of generations run by the algorithm. Moreover, an important
makespan reduction of Δt = 33s was achieved, as well as an increase in average
processor utilization of Δu = 6%.

In a First Come First Served strategy, monitoring information must be col-
lected at the arrival of each job, in order to determine the processor with the
earliest start time. Although the complexity of this method is reduced compar-
ative to genetic algorithms, high execution times are induced by the need of
monitoring data. The genetic algorithms, on the other hand, have the advantage
of scheduling a whole group of tasks at a time, without the necessity of status
interrogation for every task assigned.

Decentralized Non-Cooperative Genetic Algorithm

In experiment 3, the decentralized non-cooperative genetic algorithm was stud-
ied. Based on the experimental results described in section 8.5.2, the decen-
tralized algorithm was pursued with a number of three agents. No cooperation
mechanism is applied among agents, therefore, optimal individuals are not inter-
changed at different stages during algorithm run. The genetic algorithm starts

Fig. 8.15. Task assignment with the decentralized non-cooperative genetic algorithm
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from different search points, and the fittest individual is chosen at the final step
from the optimal results determined by all agents.

The disposal of tasks after 100 generations can be seen in Fig. 8.15. Compared
to the previous experiments, all load-balancing, average processor utilization and
makespan performance metrics are improved. The load-balancing has a Δl ≈ 3%
increase relative to the centralized algorithm, and an average processor utiliza-
tion improvement of Δu = 4%. The maximum execution time has been reduced
by Δt = 18.5s.

All metrics indicate that resources are better utilized, although processors like
P3 or P6 are still idle 0.47% and 0.44% respectively of the total execution time,
to the detriment of overloaded processors like P9, P4 and P1.

Decentralized Cooperative Genetic Algorithm

The fourth experiment analysis the metrics previously discussed in a decentral-
ized scheduling scenario, in which a cooperative genetic strategy has been em-
ployed. The cooperative characteristic implies optimal individuals interchange
in order to speed up convergence. The input task set is the same as previously,
as well as the level of decentralization (3), and the number of generations (100).

Fig. 8.16 illustrates the schedule obtained. An essential improvement of all
metrics has been achieved, with a load-balancing of 0.94, in comparison with 0.78
determined by the non-cooperative strategy (Δl ≈ 16%). The average processor
utilization has increased with Δu = 12%(from 0.74 to 0.86), and the makespan
has been reduced by Δt = 52.5s, with processor P3 executing only the largest
task in the system.

It is clear that a substantial improvement could hardly be achieved. It could
only be possible if the largest task was assigned alone on one other processor

Fig. 8.16. Task assignment with the decentralized cooperative genetic algorithm
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with better computation capabilities. Therefore, we can appreciate that the re-
sult obtained was very close to the best possible distribution. The cooperative
algorithm represents a viable solution, with significant improvement of the solu-
tion quality.

Previous work on distributed strategies usually develops scheduling scenarios
in which the execution resources or the set of tasks are divided among agents. In a
distributed multi-agent mechanism, as described in [21], each agent has only up-
to-date information on its neighboring agents, which limits the scheduling effect.
Therefore, load-balancing at the global level of Grid is reduced, comparative to
a centralized strategy. As the experimental results show, our approach achieves
global load-balancing while also ensuring scalability and reliability.

8.6 Conclusions

In Grid environments, various real-time applications require dynamic schedul-
ing for optimized assignment of tasks. This paper describes a genetic scheduling
approach, which features a decentralized strategy for the problem of task allo-
cation. We carry out our experiments with complex scheduling scenarios and
with heterogeneous input tasks and computation resources. We improve upon
centralized genetic approaches with respect to scalability and robustness. Our
experimental results show that the system continues to work well even when
agents dysfunction. The use of lookup services also facilitates rapid integration
of new agents that arise in the system. Moreover, the strategy of starting the
search from multiple initial points in the problem space is favorable for obtain-
ing global convergence and avoiding premature blocking in a local optimum.
Also, significant convergence speed-up is achieved by means of the cooperative
scheduling strategy, although there is a trade-off in terms of implied communi-
cation costs.

We compare the performances of the Decentralized Cooperative Genetic Al-
gorithm with three other strategies: OLB, Centralized GA and Decentralized
Non-cooperative GA. It is shown that the algorithm clearly outperforms these
methods. Decentralization and cooperation provide significantly better results
of load-balancing and average processor utilization increase, as well as of total
execution time minimization.

Furthermore, instead of employing simulated scenarios, we have validated
our research in real-time environments by utilizing existing monitoring and job
execution systems. The experiments show a high level of accuracy in the results
obtained.

Future investigation would involve the extension of the algorithm towards
classes of dependent tasks, as well as the incorporation of new features into the
current framework (e.g. Recovery Service for task backup and migration). Also,
the slow nature of the GA method and node dynamics in a Grid may lead to less
suitable results for estimates of processing times. The solution would combine
grid monitoring with prediction of status for the Grid nodes [25].
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Summary. In this chapter, we introduce several nature inspired meta-heuristics for
scheduling jobs on computational grids. Our approach is to dynamically generate an
optimal schedule so as to complete the tasks in a minimum period of time as well
as utilizing the resources in an efficient way. We evaluate the performance of Genetic
Algorithm (GA), Simulated Annealing (SA), Ant Colony optimization (ACO) and
Particle Swarm Optimization (PSO) Algorithm. Finally, the usage of Multi-objective
Evolutionary Algorithm (MOEA) for two scheduling problems are also illustrated.
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9.1 Introduction

A computational grid is a large scale, heterogeneous collection of autonomous
systems, geographically distributed and interconnected by low latency and high
bandwidth networks [1]. The sharing of computational jobs is a major applica-
tion of grids. Grid resource management provides functionality for discovery and
publishing of resources as well as scheduling, submission and monitoring of jobs.
However, computing resources are geographically distributed under different own-
erships each having their own access policy, cost and various constraints. Every
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resource owners will have a unique way of managing and scheduling resources and
the grid schedulers are to ensure that they do not conflict with resource owner’s
policies. In the worst-case situation, the resource owners might charge different
prices to different grid users for their resource usage and it might vary from time
to time. The job schedule problem is known to be NP-complete [2]. Recently sev-
eral metaheuristics were introduced to minimize the average completion time of
jobs through optimal job allocation on each grid node in application-level schedul-
ing [3], [4]. Because of the intractable nature of the problem and its importance
in grid computing, it is desirable to explore other avenues for developing good
heuristic algorithms for the problem.

Particularly, with its sound exploration ability both global and local, some new
search techniques, nature inspired meta-heuristics, has become the new focus of
research. In this chapter, we introduce several nature inspired meta-heuristics
for scheduling jobs on computational grids. The nature inspired meta-heuristics
involved are Genetic Algorithm (GA), Simulated Annealing (SA), Ant Colony
optimization (ACO) and Particle Swarm Optimization (PSO) Algorithm. The
PSO approach for scheduling jobs on computational grids is based on fuzzy
matrices to represent the position and velocity of the particles in PSO [5], in
which a new mapping between the job scheduling problem and the particle is
constructed [13]. The approach is to dynamically generate an optimal schedule
so as to complete the tasks in a minimum period of time as well as utilizing
the resources in an efficient way. We also illustrate the use of Multi-objective
evolutionary algorithms for job scheduling [7].

The Chapter is organized as follows. Section 9.2 deals with some theoretical
foundations related to job scheduling. Various nature inspired heuristics are in-
troduced in Section 9.3. In Section 9.4, experiment results and discussions are
provided. Finally we conclude our work in Section 9.5.

9.2 Scheduling Problem Formulation

In the grid environment, there is usually a general framework focusing on the
interaction between grid resource broker, domain resource manager and the grid
information server [8]. Usually it is easy for the grid to get information about
the speed of the available grid nodes but quite complicated to know the com-
putational processing time requirements from the user. To conceptualize the
problem as an algorithm, we need to dynamically estimate the job lengths from
user application specifications or historical data. For clarity purposes, some key
terminologies are defined as follows:

• Grid Node (computing unit)
Grid node is a set of computational resources with limited capacities. It may
be a simple personal machine, a workstation, a super-computer, or a cluster
of workstations in the grid environment. The computational capacity of the
node depends on its number of CPUs, amount of memory, basic storage space
and other specializations. In other words, each node has its own processing
speed, which can be expressed in number of Cycles Per Unit Time (CPUT).



9 Nature Inspired Meta-heuristics for Grid Scheduling 249

• Jobs and Operations
A job is considered as a single set of multiple atomic operations/tasks. Each
operation will be typically allocated to execute on one single node without
preemption. It has input and output data, and processing requirements in
order to complete its task. The operation has the processing length expressed
in number of cycles.
• Schedule and Scheduling Problem

A schedule is the mapping of the tasks to specific time intervals of Grid
nodes. A scheduling problem is specified by a set of machines, a set of job-
s/operations, optimality criteria, environmental specifications, and by other
constraints.

To formulate the problem, we consider Jj (j ∈ {1, 2, · · · , n}) independent
user jobs on Gi (i ∈ {1, 2, · · · , m}) heterogeneous grid nodes with an objective
of minimizing the completion time and utilizing the nodes effectively. The speed
of each node is expressed in number of CPUT, and the length of each job in
number of cycles. Each job Jj has its processing requirement (cycles) and the
node Gi has its calculating speed (cycles/second). Any job Jj has to be processed
in the one of grid nodes Gi, until completion. Since all nodes at each stage are
identical and preemptions are not allowed, to define a schedule it suffices to
specify the completion time for all tasks comprising each job.

To formulate our objective, define Ci,j (i ∈ {1, 2, · · · , m}, j ∈ {1, 2, · · · , n})
as the completion time that the grid node Gi finishes the job Jj ,

∑
Ci represents

the time that the grid node Gi finishes all the jobs scheduling to itself. Define
Cmax = max{

∑
Ci} as the makespan, and

∑m
i=1(
∑

Ci) as the flowtime.
An optimal schedule will be the one that optimizes the flowtime and makespan.

The conceptually obvious rule to minimize
∑m

i=1(
∑

Ci) is to schedule Shortest
Job on the Fastest Node (SJFN). The simplest rule to minimize Cmax is to
schedule the Longest Job on the Fastest Node (LJFN). Minimizing

∑m
i=1(
∑

Ci)
asks the average job finishes quickly, at the expense of the largest job taking
a long time, whereas minimizing Cmax, asks that no job takes too long, at the
expense of most jobs taking a long time. Minimization of Cmax will result in
maximization of

∑m
i=1(
∑

Ci).

9.3 Nature Inspired Meta-heuristics

Combinatorial optimizationproblems are important in many real life applications
and recently, the area has attracted much research with the advances in nature in-
spired heuristics and multi-agent systems. For scheduling problems, the dramatic
increase in the size of the search space and the need for real-time solutions moti-
vated research ideas into solving scheduling problems using nature inspired heuris-
tic techniques. In this Chapter, we included evolutionary algorithms, simulated
annealing, ant colony optimization and particle swarm optimization algorithm.
The generic pseudo-code for the algorithms is illustrated in Algorithm 9.1.
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Algorithm 9.1. General Description for Nature Inspired Algorithm
01. Initialize the solution vectors randomly and other parameters.
02. Evaluate the candidate solution(s);
03. Repeat
04. Generate new candidate solutions following the nature or social behaviors;
05. Evaluate the candidate solution;
06. Until terminating criteria.

The termination criteria are usually one of the following:

• Maximum number of iterations: the optimization process is terminated after
a fixed number of iterations, for example, 1000 iterations.
• Number of iterations without improvement: the optimization process is ter-

minated after some fixed number of iterations without any improvement.
• Minimum objective function error: the error between the obtained objective

function value and the best fitness value is less than a pre-fixed anticipated
threshold.
• Cost threshold: allocated budget (computation time/cost) reached.
• Manual inspection: the process is executed by human-computer interactively.
• Combinations of the above.

9.3.1 Evolutionary Algorithms

In nature, evolution is mostly determined by natural selection, where individuals
that are better are more likely to survive and propagate their genetic material.
The encoding of genetic information (genome) is done in a way that admits
asexual reproduction which results in offspring’s that are genetically identical to
the parent. Sexual reproduction allows some exchange and re-ordering of chro-
mosomes, producing offspring that contain a combination of information from
each parent. This is the recombination operation, which is often referred to
as crossover because of the way strands of chromosomes crossover during the
exchange. Diversity in the population is achieved by mutation. A typical evolu-
tionary (genetic) algorithm procedure takes the following steps: A population of
candidate solutions (for the optimization task to be solved) is initialized. New

Algorithm 9.2. Evolutionary Algorithm
01. Initialize the population randomly, and other parameters.
02. Evaluate the fitness of each individual in the population.
03. Repeat
04. Select best-ranking individuals to reproduce;
05. Breed new generation through crossover operator and give birth to offspring;
06. Breed new generation through mutation operator and give birth to offspring;
07. Evaluate the individual fitness of the offspring;
08. Replace worst ranked part of population with offspring;
09. Until terminating criteria.
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solutions are created by applying genetic operators (mutation and/or crossover).
The fitness (how good the solutions are) of the resulting solutions are evaluated
and suitable selection strategy is then applied to determine which solutions will
be maintained into the next generation. The procedure is then iterated [9]. A
canonical version of the pseudo-code for the evolutionary algorithm is illustrated
in Algorithm 9.2.

9.3.2 Evolutionary Multi-objective Optimization

Even though some real world problems can be reduced to a matter of single ob-
jective very often it is hard to define all the aspects in terms of a single objective.
Defining multiple objectives often gives a better idea of the task. In single ob-
jective optimization, the search space is often well defined. As soon as there are
several possibly contradicting objectives to be optimized simultaneously, there is
no longer a single optimal solution but rather a whole set of possible solutions of
equivalent quality. When we try to optimize several objectives at the same time
the search space also becomes partially ordered. To obtain the optimal solution,
there will be a set of optimal trade-offs between the conflicting objectives. A
multiobjective optimization problem is defined by a function f which maps a set
of constraint variables to a set of objective values.

A solution could be best, worst and also indifferent to other solutions (neither
dominating or dominated) with respect to the objective values. Best solution
means a solution not worst in any of the objectives and at least better in one
objective than the other. An optimal solution is the solution that is not dom-
inated by any other solution in the search space. Such an optimal solution is
called Pareto optimal and the entire set of such optimal trade-offs solutions is
called Pareto optimal set. As evident, in a real world situation a decision making
(trade-off) process is required to obtain the optimal solution. Even though there
are several ways to approach a multiobjective optimization problem, most work
is concentrated on the approximation of the Pareto set.

Evolutionary algorithm is characterized by a population of solution candi-
dates and the reproduction process enables to combine existing solutions to gen-
erate new solutions. Finally, natural selection determines which individuals of
the current population participate in the new population. Multi-objective Evolu-
tionary Algorithms (MOEA) can yield a whole set of potential solutions, which
are all optimal in some sense. After the first pioneering work on multiobjective
evolutionary optimization in the eighties [10], several different algorithms have
been proposed and successfully applied to various problems. For comprehensive
overviews and discussions, the reader is referred to [11].

9.3.3 Simulated Annealing

Simulated Annealing (SA) exploits an analogy between the way in which a metal
cools and freezes into a minimum energy crystalline structure (the annealing
process) and the search for a minimum in a more general system. SA’s major
advantage over other methods is an ability to avoid becoming trapped at local
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minima [12]. The annealing schedule, i.e., the temperature-decreasing rate used
in SA is an important factor, which affects SA’s rate of convergence. The algo-
rithm employs a random search, which not only accepts changes that decrease
objective function “f”, but also some changes that increase it. The latter are
accepted with a probability p = exp

(
− δf

T

)
, where δf is the increase in objec-

tive function, and “f” and T are control parameters. Several SAs have been
developed with annealing schedule inversely linear in time (Fast SA), exponen-
tial function of time (Very Fast SA) etc. We explain a SA algorithm [13], which
is exponentially faster than Very Fast SA whose annealing schedule is given
by T (k) = T0

exp(ek) , where T0is the initial temperature, T (k) is the temperature
we wish to approach to zero for k = 1, 2, . . .. If the generation function of the
simulated annealing algorithm is represented as:

gk(Z) =
D∏

i=1

gk(zi) =
D∏

i=1

1
2(|zi|+ 1

ln(1/Ti(k)) ) ln (1 + ln(1/T i(k)))
(9.1)

where Ti(k)is the temperature in dimension i at time k. The generation proba-
bility will be represented by

Gk(Z) =
∫ z1

−1

∫ z2

−1
.....

∫ zD

−1
gk(Z)dz1dz2....dzD =

D∏

i=1

Gki(zi) (9.2)

where Gki(zi) = 1
2 + sgn(zi) ln(1+|zi| ln(1/Ti(k)))

2 ln(1+ln(1/Ti(k)))

It is straightforward to prove that an annealing schedule for

Ti(k) = T0i exp(− exp(bik
1/D)) (9.3)

A global minimum, statistically, can be obtained. That is,
∞∑

k=ko

gk =∞ (9.4)

Algorithm 9.3. Simulated Annealing
01. Set initial temperature T0, and other parameters.
02. Initialize the solution vectors randomly.
03. Repeat
04. Counter = 0;
05. Repeat
06. Evaluate the candidate solution;
07. Generate a neighbor and evaluate the cost of the neighbor solution;
08. Accept or reject the neighbor with a probability p;
09. Counter++;
10. Until (Counter = Number of Iterations at Ti);
11. Ti+1 = c ∗ Ti (temperature reduction);
12. Until terminating criteria.
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where bi > 0 is a constant parameter and k0 is a sufficiently large constant to
satisfy Eq.(9.4), if the generation function in Eq.(9.1) is adopted. The pseudo-
code for simulated annealing is illustrated in Algorithm 9.3.

9.3.4 Ant Colony Optimization

In nature, ants usually wander randomly, and upon finding food return to
their nest while laying down pheromone trails. If other ants find such a path
(pheromone trail), they are likely not to keep traveling at random, but to in-
stead follow the trail, returning and reinforcing it if they eventually find food.
However, as time passes, the pheromone starts to evaporate. The more time it
takes for an ant to travel down the path and back again, the more time the
pheromone has to evaporate (and the path to become less prominent). A shorter
path, in comparison will be visited by more ants (can be described as a loop
of positive feedback) and thus the pheromone density remains high for a longer
time.

ACO is implemented as a team of intelligent agents which simulate the ants
behavior, walking around the graph representing the problem to solve using
mechanisms of cooperation and adaptation. ACO algorithm requires to define
the following [14], [15]:

• The problem needs to be represented appropriately, which would allow the
ants to incrementally update the solutions through the use of a probabilistic
transition rules, based on the amount of pheromone in the trail and other
problem specific knowledge. It is also important to enforce a strategy to
construct only valid solutions corresponding to the problem definition.
• A problem-dependent heuristic function η that measures the quality of com-

ponents that can be added to the current partial solution.
• A rule set for pheromone updating, which specifies how to modify the

pheromone value τ .
• A probabilistic transition rule based on the value of the heuristic function η

and the pheromone value τ that is used to iteratively construct a solution.

ACO was first introduced using the Traveling Salesman Problem (TSP). Start-
ing from its start node, an ant iteratively moves from one node to another. When
being at a node, an ant chooses to go to a unvisited node at time t with a prob-
ability given by

pk
i,j(t) =

[τi,j(t)]α[ηi,j(t)]β∑
l∈Nk

i
[τi,j(t)]α[ηi,j(t)]β

j ∈ Nk
i (9.5)

where Nk
i is the feasible neighborhood of the antk, that is, the set of cities which

antk has not yet visited; τi,j(t) is the pheromone value on the edge (i, j) at the
time t, α is the weight of pheromone; ηi,j(t) is a priori available heuristic infor-
mation on the edge (i, j) at the time t, β is the weight of heuristic information.
Two parameters α and β determine the relative influence of pheromone trail and
heuristic information. τi,j(t) is determined by
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τi,j(t) = ρτi,j(t− 1) +
n∑

k=1

Δτk
i,j(t) ∀(i, j) (9.6)

Δτk
i,j(t) =

{
Q

Lk(t) if the edge (i, j) chosen by the antk

0 otherwise
(9.7)

where ρ is the pheromone trail evaporation rate (0 < ρ < 1), n is the number of
ants, Q is a constant for pheromone updating.

Reader is advised to consult [16], [17], [15] for more technical details and
other applications of ACO. A generalized version of the pseudo-code for the
ACO algorithm with reference to the TSP is illustrated in Algorithm 9.4.

Algorithm 9.4. Ant Colony Optimization Algorithm
01. Initialize the number of ants n, and other parameters.
02. Repeat
03. t + +;
04. For k= 1 to n
05. antk is positioned on a starting node;
06. For m= 2 to problem size
07. Choose the state to move into
07. according to the probabilistic transition rules;
08. Append the chosen move into tabuk(t) for the antk;
09. Next m
10. Compute the length Lk(t) of the tour Tk(t) chosen by the antk;
11. Compute Δτi,j(t) for every edge (i, j) in Tk(t) according to Eq.(9.7);
12. Next k
13. Update the trail pheromone intensity for every edge (i, j) according to Eq.(9.6);
14. Compare and update the best solution;
15. Until terminating criteria.

9.3.5 Particle Swarm Optimization

Particle swarm algorithm is inspired by social behavior patterns of organisms
that live and interact within large groups. In particular, it incorporates swarming
behaviors observed in flocks of birds, schools of fish, or swarms of bees, and even
human social behavior, from which the Swarm Intelligence (SI) paradigm has
emerged [11], [12]. It could be implemented and applied easily to solve various
function optimization problems, or the problems that can be transformed to
function optimization problems.

As an algorithm, its main strength is its fast convergence, which compares
favorably with many global optimization algorithms [9], [12]. The canonical PSO
model consists of a swarm of particles, which are initialized with a population
of random candidate solutions. They move iteratively through the d-dimension
problem space to search the new solutions, where the fitness, f , can be calculated
as the certain qualities measure.
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Each particle has a position represented by a position-vector xi (i is the index
of the particle), and a velocity represented by a velocity-vector vi. Each particle
remembers its own best position so far in a vector x#

i , and its j-th dimensional
value is x#

ij . The best position-vector among the swarm so far is then stored
in a vector x∗, and its j-th dimensional value is x∗

j . During the iteration time
t, the update of the velocity from the previous velocity to the new velocity is
determined by Eq.(9.8). The new position is then determined by the sum of the
previous position and the new velocity by Eq.(9.9).

vij(t + 1) = wvij(t) + c1r1(x
#
ij(t)− xij(t)) + c2r2(x∗

j (t)− xij(t)). (9.8)

xij(t + 1) = xij(t) + vij(t + 1). (9.9)

where w is called as the inertia factor, r1 and r2 are the random numbers,
which are used to maintain the diversity of the population, and are uniformly
distributed in the interval [0,1] for the j-th dimension of the i-th particle. c1 is
a positive constant, called as coefficient of the self-recognition component, c2 is
a positive constant, called as coefficient of the social component.

From Eq.(9.8), a particle decides where to move next, considering its own
experience, which is the memory of its best past position, and the experience
of its most successful particle in the swarm. In the particle swarm model, the
particle searches the solutions in the problem space with a range [−s, s] (If the
range is not symmetrical, it can be translated to the corresponding symmetrical
range.) In order to guide the particles effectively in the search space, the max-
imum moving distance during one iteration must be clamped in between the
maximum velocity [−vmax, vmax] given in Eq.(9.10):

vij = sign(vij)min(|vij | , vmax). (9.10)

xi,j = sign(xi,j)min(|xi,j | , xmax). (9.11)

The value of vmax is p× s, with 0.1 ≤ p ≤ 1.0 and is usually chosen to be s, i.e.
p = 1. The pseudo-code for particle swarm optimization algorithm is illustrated
in Algorithm 9.5.

The role of inertia weight w, in Eq.(9.8), is considered critical for the conver-
gence behavior of PSO. The inertia weight is employed to control the impact of
the previous history of velocities on the current one. Accordingly, the parameter
w regulates the trade-off between the global (wide-ranging) and local (nearby)
exploration abilities of the swarm. A large inertia weight facilitates global explo-
ration (searching new areas), while a small one tends to facilitate local explo-
ration, i.e. fine-tuning the current search area. A suitable value for the inertia
weight w usually provides balance between global and local exploration abilities
and consequently results in a reduction of the number of iterations required to
locate the optimum solution. Initially, the inertia weight is set as a constant.
However, some experiment results indicates that it is better to initially set the
inertia to a large value, in order to promote global exploration of the search
space, and gradually decrease it to get more refined solutions [20], [21]. Thus, an
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Algorithm 9.5. Particle Swarm Optimization Algorithm
01. Initialize the size of the particle swarm n, and other parameters.
02. Initialize the positions and the velocities for all the particles randomly.
03. Repeat
04. t + +;
05. Calculate the fitness value of each particle;
06. x∗ = argminn

i=1(f(x∗(t − 1)), f(x1(t)), f(x2(t)), · · · , f(xi(t)), · · · , f(xn(t)));
07. For i= 1 to n
08. x#

i (t) = argminn
i=1(f(x#

i (t − 1)), f(xi(t));
09. For j = 1 to Dimension
10. Update the j-th dimension value of xi and vi

10. according to Eqs.(9.8), (9.9), (9.10), (9.11);
12. Next j
13. Next i
14. Until terminating criteria.

initial value around 1.2 and gradually reducing towards 0 can be considered as
a good choice for w. A better method is to use some adaptive approaches (ex-
ample: fuzzy controller), in which the parameters can be adaptively fine tuned
according to the problem under consideration [22], [16].

The parameters c1 and c2, in Eq.(9.8), are not critical for the convergence
of PSO. However, proper fine-tuning may result in faster convergence and alle-
viation of local minima. As default values, usually, c1 = c2 = 2 are used, but
some experiment results indicate that c1 = c2 = 1.49 might provide even bet-
ter results. Recent work reports that it might be even better to choose a larger
cognitive parameter, c1, than a social parameter, c2, but with c1 + c2 ≤ 4 [23].

The particle swarm algorithm can be described generally as a population of
vectors whose trajectories oscillate around a region which is defined by each in-
dividual’s previous best success and the success of some other particle. Various
methods have been used to identify some other particle to influence the indi-
vidual. Eberhart and Kennedy called the two basic methods as “gbest model”
and “lbest model” [11]. In the lbest model, particles have information only of
their own and their nearest array neighbors’ best (lbest), rather than that of the
entire group.

In the gbest model, the trajectory for each particle’s search is influenced
by the best point found by any member of the entire population. The best
particle acts as an attractor, pulling all the particles towards it. Eventually all
particles will converge to this position. The lbest model allows each individual
to be influenced by some smaller number of adjacent members of the population
array. The particles selected to be in one subset of the swarm have no direct
relationship to the other particles in the other neighborhood.

Typically lbest neighborhoods comprise exactly two neighbors. When the
number of neighbors increases to all but itself in the lbest model, the case is
equivalent to the gbest model. Some experiment results testified that gbest model
converges quickly on problem solutions but has a weakness for becoming trapped
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in local optima, while lbest model converges slowly on problem solutions but is
able to “flow around” local optima, as the individuals explore different regions.
The gbest model has faster convergence. But very often for multi-modal prob-
lems involving high dimensions it tends to suffer from premature convergence.

9.3.6 A Fuzzy Scheme Based on Particle Swarm Optimization

In this section, we design a fuzzy scheme based on discrete particle swarm op-
timization to solve the job scheduling problem on computational grids. The
vectors to fuzzy matrices are extended to represent the position and velocity of
the particles for computational grid job scheduling.

Suppose G = {G1, G2, · · · , Gm}, J = {J1, J2, · · · , Jn}, then the fuzzy schedul-
ing relation from G to J can be expressed as follows:

S =

⎡

⎢
⎢
⎢
⎣

s11 s12 · · · s1n

s21 s22 · · · s2n

...
...

. . .
...

sm1 sm2 · · · smn

⎤

⎥
⎥
⎥
⎦

Here sij represents the degree of membership of the i-th element Gi in domain
G and the j-th element Jj in domain J to relation S. The fuzzy relation S
between G and J has the following meaning: for each element in the matrix S,
the element

sij = μR(Gi, Jj), i ∈ {1, 2, · · · , m}, j ∈ {1, 2, · · · , n}. (9.12)

μR is the membership function, the value of sij means the degree of membership
that the grid node Gj would process the job Ji in the feasible schedule solution.
In the grid job scheduling problem, the elements of the solution must satisfy the
following conditions:

sij ∈ [0, 1], i ∈ {1, 2, · · · , m}, j ∈ {1, 2, · · · , n}. (9.13)

m∑

i=1

sij = 1, i ∈ {1, 2, · · · , m}, j ∈ {1, 2, · · · , n}. (9.14)

For applying PSO successfully, one of the key issues is finding how to map the
the problem solution into the PSO particle, which directly affects its feasibility
and performance. We assume that the jobs and grid nodes are arranged in an
ascending order according to the job lengths and the node processing speeds.
The information related job lengths may be derived from historical data, some
kind of strategy defined by the user or through load profiling.

X =

⎡

⎢
⎢
⎢
⎣

x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

⎤

⎥
⎥
⎥
⎦
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Accordingly, the elements of the matrix X must satisfy the following condi-
tions:

xij ∈ [0, 1], i ∈ {1, 2, · · · , m}, j ∈ {1, 2, · · · , n}. (9.15)

m∑

i=1

xij = 1, i ∈ {1, 2, · · · , m}, j ∈ {1, 2, · · · , n}. (9.16)

We define similarly the velocity of the particle as:

V =

⎡

⎢
⎢
⎢
⎣

v11 v12 · · · v1n

v21 v22 · · · v2n

...
...

. . .
...

vm1 vm2 · · · vmn

⎤

⎥
⎥
⎥
⎦

The symbol “⊗” is used to denote the modified multiplication. Let α be a
real number, α ⊗ V or α ⊗ X means all the elements in the matrix V or X
are multiplied by α. The symbol “⊕” and symbol “�” denote the addition and
subtraction between matrices respectively. Suppose A and B are two matrices
which denote position or velocity, then A ⊕ B and A � B are regular addition
and subtraction operation between matrices.

Then we get the equations (9.8) and (9.9) for updating the positions and
velocities of the particles in the fuzzy discrete PSO:

V (t+1) = w⊗V (t)⊕(c1∗r1)⊗X#(t)�X(t))⊕(c2 ∗r2)⊗(X∗(t)�X(t)). (9.17)

X(t + 1) = X(t)⊕ V (t + 1)). (9.18)

The position matrix may violate the constraints (9.15) and (9.16) after some
iterations, so it is necessary to normalize the position matrix. First we make all
the negative elements in the matrix become zero. If all elements in a column of
the matrix are zero, they need be re-evaluated using a series of random numbers
with the interval [0,1]. Then the matrix undergoes the following transformation
without violating the constraints:

Xnormal =

⎡

⎢
⎢
⎢
⎣

x11/
∑m

i=1 xi1 x12/
∑m

i=1 xi2 · · · x1n/
∑m

i=1 xin

x21/
∑m

i=1 xi1 x22/
∑m

i=1 xi2 · · · x2n/
∑m

i=1 xin

...
...

. . .
...

xm1/
∑m

i=1 xi1 xm2/
∑m

i=1 xi2 · · · xmn/
∑m

i=1 xin

⎤

⎥
⎥
⎥
⎦

Since the position matrix indicates the potential scheduling solution, we should
“decode” the fuzzymatrix andget the feasible solution.Weuse aflagarray to record
whetherwehave selected the columnsof thematrix anda scheduling array to record
the scheduling solution.First all the columnsarenot selected, then for each columns
of the matrix, we choose the element which has the max value, then mark the col-
umn of the max element “selected”, and the column number are recorded to the
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scheduling array. After all the columns have been processed, we get the scheduling
solution from the scheduling array and the makespan of the scheduling solution.

To optimize the makespan and flowtime we propose to swap the usage of LJFN
and SJFN heuristic alternatively every time the new jobs are allocated to the grid
nodes. If the number of jobs is less than the number of grid nodes, we propose to
allocate the jobs based on a First-Come-First-Serve basis and LJFN heuristic (if
possible). In a grid environment, a scheduler might have to make a multi-criteria
decision analysis (access policy, access cost, resource requirements, processing
speed, etc.) for selecting an optimal solution. To formulate the algorithm, we
propose the following job lists and grid node lists. JList1 and GList1 are to
be dynamically updated through load profiling, grid node health status, and
forecasted load status, etc. along with grid information services. The entire job
and the grid node lists are to be arranged in the ascending order of the job lengths
and processing speeds/access-cost (based on multi-criteria decision analysis).
Frequency of updating the lists will very much depend on the grid condition,
availability of grid nodes and jobs.

• JList1 = Job list maintaining the list of all the jobs to be processed.
• JList2 = Job list maintaining only the list of jobs being scheduled.
• JList3 = Job list maintaining only the list of jobs already allocated (JList3 =

JList1 − JList2).
• GList1 = List of available grid nodes (including time frame).
• GList2 = List of grid nodes already allocated to jobs.
• GList3 = List of free grid nodes (GList3 = GList1 −GList2).

A scheme based on fuzzy discrete PSO for job scheduling is depicted in
Algorithm 9.6.

9.4 Experimental Illustrations

The scheduling problem is to determine both an assignment and a sequence
of the operations on all machines that minimize some criteria. The following
optimality criteria are to be minimized:

1. the maximum completion time (makespan): Cmax;
2. the sum of the completion times (flowtime): Csum.

The weighted aggregation is the most common approach to the problems.
According to this approach, the objectives, F1 = min{Cmax} and F2 =
min{Csum}, are aggregated as a weighted combination:

F = w1min{F1}+ w2min{F2} (9.19)

where w1 and w2 are non-negative weights, and w1 +w2 = 1. These weights can
be either fixed or adapt dynamically during the optimization. The fixed weights,
w1 = w2 = 0.5, are used in this article. In fact, the dynamic weighted aggrega-
tion mainly takes Cmax into account [25] because Csum is commonly much larger
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Algorithm 9.6. A scheduling scheme based on fuzzy discrete PSO
0 If the grid is active and (JList1 = 0) and no new jobs have been submitted, wait

for new jobs to be submitted. Otherwise, update GList1 and JList1.
1 If (GList1 = 0), wait until grid nodes are available. If JList1 > 0, update JList2.

If JList2 < GList1 allocate the jobs on a first-come-first-serve basis and if possible
allocate the longest job on the fastest grid node according to the LJFN heuristic.
If JList1 > GList1, job allocation is to be made by following the fuzzy discrete
PSO algorithm detailed below. Take jobs and available grid nodes from JList2
and GList3. If m ∗ n (m is the number of the grid nodes, n is the number of the
jobs) is larger than the dimension threshold DT , the jobs and the grid nodes are
grouped into the fuzzy discrete PSO algorithm loop, and the single node flowtime
is accumulated. The LJFN-SJFN heuristic is applied alternatively after a batch of
jobs and nodes are allocated.

2 At t = 0, represent the jobs and the nodes using fuzzy matrix.
3 Begin fuzzy discrete PSO Loop

3.0 Initialize the size of the particle swarm n and other parameters.
3.1 Initialize a random position matrix and a random velocity matrix for each particle,

and then normalize the matrices.
3.2 Repeat
3.2.0 t + +;
3.2.1 Defuzzify the position, and calculate the makespan and total flowtime for each

particle (the feasible solution);
3.2.2 X∗ =argminn

i=1(f(X∗(t−1)), f(X1(t)), f(X2(t)),· · · , f(Xi(t)), · · · , f(Xn(t)));
3.2.3 For each particle, X#

i (t) = argminn
i=1(f(X#

i (t − 1)), f(Xi(t))
3.2.4 For each particle, update each element in its position matrix and its velocity

matrix according to equations (9.17, 9.11, 9.18 and 9.10);
3.2.5 Normalize the position matrix for each particle;
3.3 Until terminating criteria.

4 End of the fuzzy discrete PSO Loop.
5 Check the feasibility of the generated schedule with respect to grid node availability

and user specified requirements. Then allocate the jobs to the grid nodes and
update JList2, JList3, GList2 and GList3. Un-allocated jobs (infeasible schedules
or grid node non-availability) shall be transferred to JList1 for re-scheduling or
dealt with separately.

6 Repeat steps 0-5 as long as the grid is active.

than Cmax and the solution has a large weight on Csum during minimization of
the objective. Alternatively, the weights can be changed gradually according to
the Eqs. (9.20) and (9.21). The changes in the dynamic weights (R = 200) are
illustrated in Fig. 9.1.

w1(t) = |sin(2πt/R)| (9.20)

w2(t) = 1− w1(t) (9.21)
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Fig. 9.1. Dynamic weight adaptation

9.4.1 Scheduling Using Fuzzy Particle Swarm Optimization
Algorithm

Since the position matrix indicates the potential scheduling solution, we choose
the element which has the max value, then tag it as “1”, and other numbers in
the column are set as “0” in the scheduling array. After all the columns have
been processed, we get the scheduling solution from the scheduling array and
the makespan (solution). In the experiments, genetic algorithm and simulated
annealing were used to compare the performance with PSO. Specific parameter
settings of all the considered algorithms are described in Table 9.1.

Each experiment (for each algorithm) was repeated 10 times with different
random seeds. Each trial had a fixed number of 50 ∗m ∗ n iterations (m is the
number of the grid nodes, n is the number of the jobs). The makespan values
of the best solutions throughout the optimization run were recorded and the
averages and the standard deviations were calculated from the 10 different trials.
In a grid environment, the main emphasis is to generate the schedules as fast as
possible. So the completion time for 10 trials were used as one of the criteria to
improve their performance.

To illustrate, we start with a small scale job scheduling problem involving 3
nodes and 13 jobs represented as (3, 13). The node speeds are 4, 3, 2 CPUT,
and the job lengths of 13 jobs are 6, 12, 16, 20, 24, 28, 30, 36, 40, 42, 48, 52, 60
cycles, respectively.

Fig. 9.2 illustrates the performance of GA, SA and PSO algorithms. The
empirical results (makespan) for 10 GA runs were {47, 46, 47, 47.3333, 46, 47,
47, 47, 47.3333, 49}, with an average value of 47.1167. The results of 10 SA runs
were {46.5, 46.5, 46, 46,46, 46.6667, 47, 47.3333, 47, 47}with an average value
of 46.6. The results of 10 PSO runs were {46, 46, 46, 46, 46.5, 46.5, 46.5, 46,
46.5, 46.6667}, with an average value of 46.2667. The optimal result is supposed
to be 46. While GA provided the best results twice, SA and PSO provided the
best results three and five times respectively. Table 9.2 depicts one of the best
job scheduling results for (3,13), in which “1” means the job is scheduled to the
respective grid node.
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Table 9.1. Parameter settings for the algorithms

Algorithm Parameter name Parameter value
Size of the population 20
Probability of crossover 0.8GA
Probability of mutation 0.02
Scale for mutations 0.1
Number operations before temperature adjustment 20
Number of cycles 10

SA Temperature reduction factor 0.85
Vector for control step of length adjustment 2
Initial temperature 50
Swarm size 20
Self-recognition coefficient c1 1.49PSO
Social coefficient c2 1.49
Inertia weight w 0.9 → 0.1

Table 9.2. An optimal schedule for (3,13)

JobGrid Node
J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13

G1 0 0 1 0 0 0 1 1 0 1 0 0 1
G2 1 0 0 1 1 0 0 0 1 0 1 0 0
G3 0 1 0 0 0 1 0 0 0 0 0 1 0

Table 9.3. Performance comparison between GA, PSO and SA

InstanceAlgorithm Item
(3,13) (5,100) (8,60) (10,50)

Average makespan 47.1167 85.7431 42.9270 38.0428
GA Standard Deviation ±0.7700 ±0.6217 ±0.4150 ±0.6613

Time 302.9210 2415.9 2263.0 2628.1
Average makespan 46.6000 90.7338 55.4594 41.7889

SA Standard Deviation ±0.4856 ±6.3833 ±2.0605 ±8.0773
Time 332.5000 6567.8 6094.9 6926.4
Average makespan 46.2667 84.0544 41.9489 37.6668

PSO Standard Deviation ±0.2854 ±0.5030 ±0.6944 ±0.6068
Time 106.2030 1485.6 1521.0 1585.7

Table 9.4. Run time performance comparison for large dimension problems

(G,J) PSO GA
(60,100) 1721.1 1880.6
100,1000) 3970.80 5249.80
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Fig. 9.2. Performance for job scheduling (3,13)
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Fig. 9.3. Performance for job scheduling (5,100)

Further, we considered the three algorithms for other three (G, J) pairs, i.e.
(5,100), (8,60) and (10,50). All the jobs and the nodes were submitted at one
time. Figs. 9.2, 9.3 illustrate the performance for GA, SA and PSO algorithms
during the search process for (3, 13), (5,100) respectively. The average makespan
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values, the standard deviations and the time for 10 trials are illustrated in
Table 9.3. Although the average makespan value of SA was better than that of
GA for (3,13), the case was reversed for bigger problem sizes. PSO usually had
better average makespan values than the other two algorithms. The makespan
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results of SA seemed to depend on the initial solutions extremely. Although the
best values in the ten trials for SA were not worse than other algorithms, it had
larger standard deviations. For SA, there were some “bad” results in the ten tri-
als, so the averages were the largest. In general, for larger (G, J) pairs, the time
was much longer. PSO usually spent the least time to allocate all the jobs on
the grid node, GA was the second, and SA had to spent more time to complete
the scheduling. It is to be noted that PSO usually spent the shortest time to
accomplish the various job scheduling tasks and had the best results among all
the considered three algorithms.

It is possible that (G, J) is larger than the dimension threshold DT . We con-
sidered two large-dimensions of (G, J), (60, 500) and (100, 1000) by submitting
the jobs and the nodes in multi-stages consecutively. In each stage, 10 jobs were
allocated to 5 nodes, and the single node flowtime was accumulated. The LJFN-
SJFN heuristic was applied alternatively after a batch of jobs and nodes were
allocated. Figs. 9.4, 9.5 and Table 9.4 illustrate the performance of GA and
PSO during the search process for the considered (G, J) pairs. As evident, even
though the performance were close enough, PSO generated the schedules much
faster than GA as illustrated in Table 9.4.

9.4.2 Job Scheduling Using ACO

For illustration, we considered two problem instances: (3,13) and (5,100) [26].
The parameters used for GA, SA and PSO were the same as depicted in Table 9.1
and the ACO algorithm parameters are as follows:

Parameter Value
Number of ants 5
Weight of pheromone trail α 1
Weight of heuristic information β 5
Pheromone evaporation parameter ρ 0.8
Constant for pheromone updating Q 10

Each experiment (for each algorithm) was repeated 10 times with different
random seeds. Each trial had a fixed number of 50 ∗ m ∗ n iterations (m is
the number of the grid nodes, n is the number of the jobs). The makespan
values of the best solutions throughout the optimization run were recorded and
the averages and the standard deviations were calculated from the 10 different
trials.

Fig. 9.6 illustrates the performance of GA, SA, PSO and ACO algorithms
for (3,13). The empirical results for 10 ACO runs were {46, 46, 46, 46, 46.5,
46.5, 46.5, 46, 46, 46.5}, with an average value of 46.2667. The optimal result is
supposed to be 46. While GA provided the best results twice, SA, PSO, ACO
provided the best results three, five and six times respectively. Empirical results
are summarized in Table 9.5 for (3,13) and (5,100). As evident, ACO algorithm
seems to work well but as the problem dimensions got bigger, the computational
time also increased drastically.
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Fig. 9.6. ACO algorithm performance for (3,13)

Table 9.5. Comparing the performance of the considered algorithms

InstanceAlgorithm Item
(3,13) (5,100)

Average makespan 47.1167 85.7431
GA Standard Deviation ±0.7700 ±0.6217

Time 302.9210 2415.9
Average makespan 46.6000 90.7338

SA Standard Deviation ±0.4856 ±6.3833
Time 332.5000 6567.8
Average makespan 46.2667 84.0544

PSO Standard Deviation ±0.2854 ±0.5030
Time 106.2030 1485.6
Average makespan 46.2667 88.1575

ACO Standard Deviation ±0.2854 ±0.6423
Time 340.3750 6758.3

9.4.3 Scheduling Using Evolutionary Multi-objective Optimization
Approach

Instead of considering the objectives involved by using techniques which com-
bines objectives and reduce the problem to a single objective one (as illustrated
in the previous Experiment sections), in this Section, we illustrate the use of
Pareto dominance concept and all the objectives are considered as independent.

Even though several optimization criteria can be considered, we considered a
bi-objective minimization problem with the task of minimization of makespan
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and flowtime. The most common approaches of a multiobjective optimization
problem use the concept of Pareto dominance as defined below:

Pareto Dominance Concept

Consider a maximization problem. Let x, ybe two decision vectors (solutions)
from the definition domain. Solution x dominate y (also written as x � y), if
and only if the following conditions are fulfilled:

(i)fi(x) ≥ fi(y); ∀i= 1,2,. . . , n;
(ii) ∃j ∈{1, 2,. . . ,n} : fj(x) > fj(y).
That is, a feasible vector x is Pareto optimal if no feasible vector y can increase

some criterion without causing a simultaneous decrease in at least one other
criterion.

Multi-objective Evolutionary Algorithms (MOEA) can yield a whole set of
potential solutions, which are all optimal in some sense. The main challenge
in a multiobjective optimization environment is to minimize the distance of
the generated solutions to the Pareto set and to maximize the diversity of the
developed Pareto set. A good Pareto set may be obtained by appropriate guiding
of the search process through careful design of reproduction operators and fitness
assignment strategies. To obtain diversification special care has to be taken in the
selection process. Special care is also to be taken care to prevent non-dominated
solutions from being lost.

Solution Representation and Genetic Operators

The solution is represented as a string of length equal to the number of jobs. The
value corresponding to each position i in the string represent the machine to which
job i was allocated. Consider we have 10 jobs and 3 machines. Then a chromosome
and the job allocation is represented as follows:

1 2 3 2 1 1 3 2 1 3

Machine 1: Job1, Job 5, Job 6, Job 9
Machine 2: Job 2, Job 4, Job 8
Machine 3: Job 3, Job 7, Job 10

Mutation and crossover are used as operators and binary tournament selec-
tion was used in the implementation. The Pareto dominance concept is used in
order to compare 2 solutions. The one which dominates is preferred. In case of
nondominance, the solution whose jobs allocation between machines is uniform
is preferred. This means, there will not be idle machines as well as overloaded
machines. The evolution process is similar to the evolution scheme of a stan-
dard evolutionary algorithm for multiobjective optimization. Reader is advised
to consult [11] more details about MOEA approach.
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Experiment Illustrations Using MOEA

We considered two scheduling instances (3,13) and (10,50). Specific parameter
settings for MOEA, SA, PSO and GA are depicted in Table 9.6. Each experiment
was repeated 10 times with different random seeds. Each trial (except for MOEA)
had a fixed number of 50∗m∗n iterations (m is the number of the grid nodes, n
is the number of the jobs). The makespan values of the best solutions throughout
the optimization run were recorded. First we tested a small scale job scheduling
problem involving 3 nodes and 13 jobs represented as (3,13). The node speeds
of the 3 nodes are 4, 3, 2 CPUT, and the job length of 13 jobs are 6, 12, 16, 20,
24, 28, 30, 36, 40, 42, 48, 52, 60 cycles, respectively. The results (makespan) for
10 runs are as follows:

Genetic Algorithm: {47, 46, 47, 47.3333, 46, 47, 47, 47, 47.3333, 49}, average
value = 47.1167

Table 9.6. Parameter settings for the different algorithms

Algorithm Parameter name Parameter value
Population size 20
Probability of crossover 0.8GA
Probability of mutation 0.02
Scale for mutations 0.1
Number operations

before temperature adjustment 20

Number of cycles 10
SA Temperature reduction factor 0.85

Vector for control step
of length adjustment 2

Initial temperature 50
Swarm size 20
Self-recognition coefficient c1 1.49PSO
Social coefficient c2 1.49
Inertia weight w 0.9 → 0.1
Population size 100 (500 for the second experiment)
Number of generations 200 (1000 for the second experiment)MOEA
Mutation probability 1 (0.9 for the second experiment)
Crossover probability 1 (0.9 for the second experiment)

Table 9.7. Performance comparison for (10, 50)

Algorithm Average makespan
GA 38.04
SA 41.78
PSO 37.66
MOEA 36.68
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Fig. 9.7. Makespan from 31 non-dominated solutions in the final population for
(10, 50)

Fig. 9.8. Flowtime from 31 non-dominated solutions in the final population for (10, 50)

Simulated Annealing: {46.5, 46.5, 46, 46, 46, 46.6667, 47, 47.3333, 47, 47}
average value = 46.6

Particle Swarm Optimization Algorithm: {46, 46, 46, 46, 46.5, 46.5, 46.5,
46, 46.5, 46.6667}, average value = 46.2667

Multi-objective Optimization Algorithm: 46, 46, 46, 46, 46, 46, 46, 46, 46,
46, average value = 46
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The optimal result for (3,13) makespan is supposed to be 46 and the MOEA
approach gave 46. It is to be noted that the MOEA approach obtained the best
results in each of the considered runs.

Further, we tested the MOEA approach for (10, 50). The average makespan
values for 10 trials are illustrated in Table 9.7. Although the average makespan
value of SA was better than that of GA for (3,13), the case was reversed for this
second case. Using the MOEA approach, the total average flow time obtained
is = 348.07. Figs. 9.7 and 9.4.3 illustrate the makespan and flow time given by
31 non-dominated solutions from the final population. The user would have the
option to go for a better flow time solution at the expense of a non-optimal
makespan. As evident from the figure, the lowest flow time was 343.72 with the
makespan of 44.75 for solution no. 27.

As evident from the empirical results, MOEA have given excellent results
when compared to other techniques modeled using a single objective approach.
Figs.9.7 and 9.4.3 illustrate the makespan and flow time given by 31 non-
dominated solutions from the final population. The user would have the option
to go for a better flow time solution at the expense of a non-optimal makespan.
As evident from the Figs. 9.7 and 9.4.3, the lowest flow time was 343.72 with
the makespan of 44.75 for solution no. 27. By seeing the population of solutions
as illustrated in Figs. 9.7 and 9.4.3, the user will have the option to choose a
particular schedule depending on the importance of the objectives. For example,
the user can give more preference to a schedule which could offer a minimal
flowtime but not an optimal makespan, etc.

9.5 Conclusions

In this Chapter, we illustrated the usage of several nature inspired meta-
heuristics for scheduling jobs. Our approach was to dynamically generate an
optimal schedule so as to complete the tasks in a minimum period of time
as well as utilizing the resources in an efficient way. We evaluated the perfor-
mance of the heuristic approaches using a single and multi-objective optimization
approaches.

Empirical results clearly illustrate the success of nature inspired heuristics
in providing real-time good solutions especially when the search space is very
huge. Our experiments also illustrate the importance and benefits of considering
the objectives separately (multi-objective optimization approach) rather than
combining them for the sake of simplicity.
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17. Stützle, T., Hoo, H.H.: MAX-MIN ant system. Future Generation Computer Sys-
tems 16, 889–914 (2000)

18. Kennedy, J., Eberhart, R.: Swarm Intelligence. Morgan Kaufmann, San Francisco
(2001)

19. Clerc, M.: Particle Swarm Optimization. ISTE Publishing Company, London
(2006)



272 A. Abraham et al.

20. Kennedy, J., Mendes, R.: Population structure and particle swarm performance.
In: Proceeding of IEEE conference on Evolutionary Computation, pp. 1671–1676
(2002)

21. Abraham, A., Liu, H., Chang, T.G.: Variable neighborhood particle swarm op-
timization algorithm. In: Genetic and Evolutionary Computation Conference
(GECCO 2006), Seattle, USA (2006)

22. Shi, Y.H., Eberhart, R.C.: Fuzzy adaptive particle swarm optimization. In: Pro-
ceedings of IEEE International Conference on Evolutionary Computation, pp. 101–
106 (2001)

23. Liu, H., Abraham, A.: Fuzzy Adaptive Turbulent Particle Swarm Optimization. In:
Proceedings of the Fifth International conference on Hybrid Intelligent Systems,
pp. 445–450 (2005)

24. Clerc, M., Kennedy, J.: The Particle Swarm-explosion, Stability, and Convergence
in A Multidimensional Complex Space. IEEE Transactions on Evolutionary Com-
putation 6, 58–73 (2002)

25. Parsopoulos, K.E., Vrahatis, M.N.: Recent Approaches to Global Optimization
Problems through Particle Swarm Optimization. Natural Computing 1, 235–306
(2002)

26. Abraham, A., Guo, H., Liu, H.: Swarm Intelligence: Foundations, Perspectives
and Applications. In: Nedjah, N., Mourelle, L. (eds.) Swarm Intelligent Systems.
Studies in Computational Intelligence, pp. 3–25. Springer, Germany (2006)



10

Efficient Batch Job Scheduling in Grids Using
Cellular Memetic Algorithms

Fatos Xhafa1, Enrique Alba2, Bernabé Dorronsoro3, Bernat Duran1,
and Ajith Abraham3

1 Dept. de Llenguatges i Sistemes Informàtics
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Summary. Due to the complex nature of Grid systems, the design of efficient Grid
schedulers is challenging since such schedulers have to be able to optimize many con-
flicting criteria in very short periods of time. This problem has been tackled in the
literature by several different meta-heuristics, and our main focus in this work is to
develop a new highly competitive technique with respect to the existing ones. For
that, we exploit the capabilities of Cellular Memetic Algorithms, a kind of Memetic
Algorithm with structured population, for obtaining efficient batch schedulers for Grid
systems, and the resulting scheduler is experimentally tested through a Grid simulator.

Keywords: Cellular Memetic Algorithms, Job Scheduling, Grid Computing, ETC
model, Makespan, Dynamic computing environment, Simulation.

10.1 Introduction

One of the main motivations of the Grid computing paradigm has been the com-
putational need for solving many complex problems from science, engineering,
and business such as hard combinatorial optimization problems, protein folding,
financial modelling, etc. [19,21,22]. One key issue in Computational Grids is the
allocation of jobs (applications) to Grid resources. The resource allocation prob-
lem is known to be computationally hard as it is a generalization of the standard
scheduling problem. Some of the features of the Computational Grids that make
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the problem challenging are the high degree of heterogeneity of resources, their
connection with heterogenous networks, the high degree of dynamics, the large
scale of the problem regarding number of jobs and resources, and other features
related to existing local schedulers, policies on resources, etc. (see Chapter 1,
this volume).

Meta-heuristic approaches have shown their effectiveness for a wide variety of
hard combinatorial problems and also for multi-objective optimization problems.
In this work we address the use of Cellular Memetic Algorithms (cMAs) [3, 4,
5, 6, 16] for efficiently scheduling jobs to Grid resources. cMAs are population-
based algorithms that maintain a structured population as opposed to GAs or
MAs of unstructured population. Research on cMAs has shown that, due to
the structured population, this family of algorithms is able to better control
the tradeoff between the exploitation and exploration of the solution space with
respect to other non-structured algorithms [3, 4, 5]. It should be noted that this
feature is very important if high quality solutions are to be found in a very short
time. This is precisely the case of the job scheduling in Computational Grids
whose highly dynamic nature makes indispensable the use of schedulers that
would be able to deliver high quality planning of jobs to resources very fast in
order to deal with the changes of the Grid. On the other hand, population-based
heuristics are potentially good also for solving complex problems in the long run
providing, for many problems, near optimal solutions. This is another interesting
feature to explore regarding the use of cMAs for the job scheduling problem.
The evidence reported in the literature that cMAs are capable to maintain a
high diversity of the population in many generations suggests that cMAs could
be appropriate for scheduling jobs that periodically arrive in the Grid system
since in this case the Grid scheduler would dispose longer intervals of time to
compute the planning of jobs to Grid resources. Finally, cMAs are used here to
solve the bi-objective case of the job scheduling, namely makespan and flowtime
are simultaneously optimized.

Many different cMA configurations have been developed and compared in this
study on a benchmark of static instances of the problem (proposed by Braun et
al. [9]). After that, we have also studied the behavior of the best obtained con-
figuration in a more realistic benchmark of dynamic instances. Our algorithms
will be validated by comparing the obtained results versus other results in the
literature for the same studied benchmarks (both the static and the dynamic
ones). Moreover, we studied the robustness of our cMA implementation since
robustness is a desired property of Grid schedulers, which are very changing in
nature. Because the cMA scheduler is able to deliver very high quality planning
of jobs to Grid nodes, it can be used to design efficient dynamic schedulers for
real Grid systems. Such dynamic schedulers are obtained by running the cMA-
based scheduler in batch mode for a very short time to schedule jobs arriving in
the systems since the last activation of the cMA scheduler.

This chapter is organized as follows. We give in Section 10.2 a description of
the job scheduling in computational grids. The cMAs and their particularization
for job scheduling in Grids together with the tuning process for the values of



10 Efficient Batch Job Scheduling in Grids Using cMAs 275

the parameters of the algorithm are given in Section 10.3. Some computational
results as well as their evaluation for a benchmark of static instances are pre-
sented in Section 10.4. In Section 10.5, the best of the tested cMA configurations
are evaluated in the more realistic case of dynamic instances, and the results are
compared versus those of other algorithms found in the literature. Finally, we
end in Section 10.6 with some conclusions.

10.2 The Batch Job Scheduling on Grids

In this work we consider the version of the problem1 that arises quite frequen-
tly in parameter sweep applications, such as Monte-Carlo simulations [11]. In
these applications, many jobs with almost no interdependencies are generated
and submitted to the Grid system. In fact, more generally, the scenario in which
the submission of independent jobs to a Grid system is quite natural given that
Grid users independently submit their jobs or applications to the Grid system
and expect an efficient allocation of their jobs/applications. We notice that the
efficiency means that we are interested to allocate jobs as fast as possible and
to optimize two conflicting criteria: makespan and flowtime.

In our scenario, jobs are originated from different users/applications, have
to be completed in unique resource unless it drops from the Grid due to its
dynamic environment (non-preemptive mode), are independent of each other and
could have their hardware and/or software requirements over resources. On the
other hand, resources could dynamically be added/dropped from the Grid, can
process one job at a time, and have their own computing characteristics regarding
consistency of computing. More precisely, assuming that the computing time
needed to perform a task is known (assumption that is usually made in the
literature [9, 15, 18]), we use the Expected Time to Compute (ETC) model by
Braun et al. [9] to formalize the instance definition of the problem as follows:

• A number of independent (user/application) jobs to be scheduled.
• A number of heterogeneous machines candidates to participate in the plan-

ning.
• The workload of each job (in millions of instructions).
• The computing capacity of each machine (in mips).
• Ready time readym indicates when machine m will have finished the previ-

ously assigned jobs.
• The Expected Time to Compute (ETC) matrix (nb jobs×nb machines) in

which ETC[i][j] is the expected execution time of job i in machine j.

10.2.1 Optimization Criteria

We consider the job scheduling as a bi-objective optimization problem, in which
both makespan and flowtime are simultaneously minimized. These criteria are
defined as follows:
1 The problem description and simultaneous optimization criteria are given in

Chapter 1 and are reproduced here for completeness.
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• Makespan (the finishing time of latest job) defined as minS max{Fj : j ∈
Jobs},
• Flowtime (the sum of finishing times of jobs), that is, minS

∑
j∈Jobs Fj ,

where Fj is the finishing time of job j in schedule S.
For a given schedule, it is quite useful to define the completion time of a ma-

chine, which indicates the time in which the machine will finalize the processing
of the previous assigned jobs as well as of those already planned for the machine.
Formally, for a machine m and a schedule S, the completion time of m is defined
as follows:

completion[m] = readym +
∑

j∈S−1(m)

ETC[j][m] . (10.1)

We can then use the values of completion times to compute the makespan as
follows:

min
S

max{completion[i] | i ∈ Machines′} . (10.2)

In order to deal with the simultaneous optimization of the two objectives we
have used a simple weighted sum function of makespan and flowtime, which
is possible since both parameters are measured in the same unit (time units).
This way of tackling multiobjective optimization problems is widely accepted in
the literature [12, 13], and its drawbacks are well known: only a single solution
from the Pareto front (a set containing the best non-dominated solutions to the
problem) is found in each run, and only solutions located in the convex region of
the Pareto front will be found. However, the use of a weighted function is justified
in our case by the convex search space of the considered problem and also by
the need of providing a unique solution to the grid system, since there is not any
decision maker to select the most suitable solution from a set of non-dominated
ones.

The makespan and flowtime values are in incomparable ranges, since flowtime
has a higher magnitude order over makespan, and its difference increases with the
number of jobs and machines to be considered. For this reason, the value of mean
flowtime, flowtime/nb machines, is used instead of flowtime. Additionally, both
values are weighted in order to balance their importance. Fitness value is thus
calculated as:

fitness = λ ·makespan + (1 − λ) ·mean flowtime , (10.3)

where λ has been a priori fixed after a preliminary tuning process to the value
λ = 0.75 for the studies made in this work. Hence, we are considering in this
work the makespan as the most important objective to optimize, while we give
less importance to the total flowtime obtained in our solutions.



10 Efficient Batch Job Scheduling in Grids Using cMAs 277

10.3 A cMA for Resource Allocation in Grid Systems

We present in this section a description of the cMA we are proposing in this
work (Section 10.3.1) and its application to the batch job scheduling problem
(Section 10.3.2).

10.3.1 Cellular Memetic Algorithms

In Memetic Algorithms (MAs) the population of individuals could be unstruc-
tured or structured. In the former, there is no relation between the individuals of
the population while in the latter individuals can be related to only some other
specific individuals of the population. The structured MAs are usually classified
into coarse-grained model and fine-grained (Cellular MAs) model [4,5,6,16]. In
Cellular MAs the individuals of the population are spatially distributed forming
neighborhoods and the evolutionary operators are applied to neighbor individu-
als making thus cMAs a new family of evolutionary algorithms. As in the case of
other evolutionary algorithms, cMAs are high level algorithms whose description
is independent of the problem being solved. Thus, for the purposes of this work,
we have considered the cMA template given in Algorithm 10.1.

As it can be seen, this template is quite different from the canonical cGA ap-
proximation [4,5], in which individuals are updated in a given order by applying
the recombination operator to the two parents and the mutation operator to the
obtained offspring. In the case of the proposed algorithm in this work, mutation
and recombination operators are applied to individuals independently of each
other, and in different orders. This model was adopted after a previous experi-
mentation, in which it performed better than the cMA following the canonical
model for the studied problems. After each recombination (or mutation), a local
search step is applied to the newly obtained solution, which is then evaluated.
If this new solution is better than the current one, it replaces the latter in the
population. This process is repeated until a termination condition is met.

10.3.2 Application of the cMA to job Scheduling

Given the generic template showed in Algorithm 10.1, we proceed in this sec-
tion to define the different parameters and operators we will use for solving the
problem of batch job scheduling in grids. In order to efficiently solve the prob-
lem, we have to particularize the template with operators incorporating some
specific knowledge of the problem at hand. The objective is to design an efficient
algorithm for optimizing the QoS and productivity of grid systems. For that,
we will use genetic operators focussed in balancing the load of all the available
machines, and taking into account the presence of heterogeneous computers. We
give next the description of the cMA particularization for job scheduling.

Regarding the problem representation, a feasible solution, schedule, is con-
sidered as a vector of size the number of jobs (nb jobs) in which its jth
position (an integer value) indicates the machine where job j is assigned:
schedule[j] = m, m ∈ {1, . . . , nb machines}.
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Algorithm 10.1. A Cellular MA template
Initialize the mesh of n individuals P(t=0);
Initialize permutations rec order and mut order ;
For each i ∈ P , LocalSearch(i);
Evaluate(P);
while not stopping condition do

for j = 1 . . .#recombinations do
SelectToRecombine S ⊆ NP [rec order.current];
i′ = Recombine(S);
LocalSearch(i′); Evaluate(i′);
Replace P [rec order.current] by i′;
rec order.next();

end for
for j = 1 . . .#mutations do

i = P [mut order.current()];
i′ = Mutate(i);
LocalSearch(i′); Evaluate(i′);
Replace P [rec order.current] by i′;
rec order.next();

end for
Update rec order and mut order ;

end while

As it can be seen in Algorithm 10.1, many parameters are involved in the
cMA template. Tuning these parameters is a crucial step in order to achieve a
good performance, since they influence in a straightforward way on the search
process. The tuning process was done by using randomly generated instances of
the problem according to the ETC matrix model. This way we would expect a
robust performance of our cMA implementation since no specific instance knowl-
edge is used in fixing the values of the parameters. An extensive experimental
study was done in order to identify the best configuration for the cMA. Thus, we
experimentally studied the choice of the local search method, the neighborhood
pattern, the selection, recombination and mutation operators, and the cell up-
date orders. The tuning process was made step by step, starting from an initial
configuration set by hand, and adding in each step the tuned parameters of the
previous ones. We give in Figs. 10.2 to 10.8 the graphical representation for the
makespan reduction of the cMA with the considered parameters. The results are
obtained after making 20 independent runs in standard configuration computer.

Population’s topology and neighborhood structure

Both the topology of the population and the neighborhood pattern are very
important parameters in deciding the selective pressure of the algorithm and,
therefore, they have a direct influence on the tradeoff between exploration and
exploitation of the algorithm [2, 7]. The topology of the population is a two-
dimensional toroidal grid of pop height× pop width size. Regarding the neigh-
borhood patterns, several well-known patterns are used for this work: L5 (5
individuals), L9 (9 individuals), C9 (9 individuals) and C13 (13 individuals)
(see Fig. 10.1). Additionally, in our quest for efficiency, we have considered the
case in which the neighborhood is equal to the whole population, so an indi-
vidual can interact with any other one in the population. Using this boundary
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Whole Pop. L5 (5 ind.) L9 (9 ind.) C9 (9 ind.) C13 (13 ind.)

Fig. 10.1. Neighborhood patterns

neighborhood we remove a typical feature of cellular populations from our cMA,
namely, the isolation by distance. The pursued effect is to accelerate the conver-
gence of the algorithm up to the limit in order to check if it is profitable for the
cMA.

We study in Fig. 10.2 the effects of using the different neighborhood structures
previously proposed in our cMA in order to identify the pattern that leads to
the best performance for the job scheduling problem. As it can be seen, we
obtain from this study that the obtained makespan worsens when increasing
the radius of the neighborhood (refer to [7] for a definition of the neighborhood
radius). Among the tested neighborhoods, L5 and C9 (those with the smallest
radii) perform the best exploration/exploitation tradeoffs of the algorithm for
this problem. Between them, we can see that L5 yields a very fast reduction,
although C9 performs better in the “long run” (see Fig. 10.2).

Finally, the case of considering the whole population as the neighborhood
throws the worst performance (slowest convergence) of the algorithm. This is
probably because the diversity in the population is quickly lost and thus the
speed of the population evolution becomes very slow.
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Population initialization

In this work we make use of some problem knowledge for creating the initial pop-
ulation of individuals. This way, one individual is generated using the Longest
Job to Fastest Resource - Shortest Job to Fastest Resource (LJFR-SJFR) heuris-
tic [1], while the rest are randomly obtained from the first individual by large
perturbations. The LJFR-SJFR method has been chosen because it tries to
simultaneously minimize both makespan and flowtime. LJFR minimizes the
makespan and it is alternated with the SJFR which minimizes the flowtime. The
method starts by increasingly sorting jobs with respect to their workload. At the
beginning, the first nb machines longest jobs are assigned to the nb machines
idle machines (the longest job to the fastest machine and so on). For the remain-
ing jobs, at each step the fastest machine (that has finished its jobs) is chosen
to which is assigned alternatively either the shortest job (SJFR) or the longest
job (LJFR).

Cell updating

Unlike many unstructured MAs, in cMAs the population is kept constant by
applying cell updating mechanisms by which an individual of the population
is updated with a new offspring obtained by either recombination or mutation
process (see later for the definition of these two operators). Two well-known
methods of cell updating are the synchronous and asynchronous updating. For
the purpose of this work, we have considered the asynchronous updating since
it is less computationally expensive and usually shows a good performance in
a very short time [8], which is interesting for the scheduling problem given the
dynamic nature of Grid systems. In the asynchronous mode, cell updating is
done sequentially (an individual is aware of other neighbor individual updates
during the same iteration). The following asynchronous mechanisms have been
implemented and experimentally studied for our job scheduling problem:

• Fixed Line Sweep (FLS): The individuals of the grid are updated in a
sequential order row by row.
• Fixed Random Sweep (FRS): The sequence of cell updates is at random.

This sequence is defined at the beginning of the algorithm and it is the same
during all the cMA iterations.
• New Random Sweep (NRS): At each iteration, a new cell update se-

quence (at random) is applied.

It should be noted that recombination and mutation are independent processes
in our cMAs (cf. rec order and mut order in the cMAs template) and therefore
different update orders are used for them. Next, we study some different update
policies and probabilities for applying them for the recombination and mutation
steps.

In Fig. 10.3 we provide a study of the three proposed update policies for the
recombination operator applied with two different probabilities. As regards to the
cell updating for the recombination operator, the three considered mechanisms
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performed similarly, the FLS being the best performer (see Fig. 10.3). For the
three update policies, the case of always recombining the individuals (pc = 1.0)
is advantageous versus applying the operator with probability pc = 0.5.

Regarding the mutation operator, it can be seen in Fig. 10.4 (left hand plot)
that, like in the case of the recombination operator, the three update policies
perform in a similar way, being FRS slightly better than the other two ones.
In the right hand plot of this same figure we study three different probabilities
of applying the mutation operator when using FRS. The main result that can
be drawn from this study is that the two lower probabilities (pm = 0.66 and
pm = 0.33) perform better than the highest one (pm = 1.0). When comparing
these two lowest probabilities between them, one can notice that the case pm =
0.33 converges faster, but after the 90 seconds allowed for the execution using
pm = 0.66 seems to be beneficial.
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Selection operator for recombination

We have considered in this work the use of six different well-known selection
policies in our cMA, namely linear ranking (LR), N -tournament (Ntour) with
N = 2, 3, 5, and 7, and selecting the best individual in the neighborhood (Best).
The results of our experiments are given in Fig. 10.5. As it can be seen, the slow-
est convergence is given by both linear ranking and binary tournament (Ntour
with N = 2), although at the end of the run the makespan found using these
two selection methods is close to that of the other compared ones, for which the
convergence is faster at the beginning of the run, although its speed is drastically
slowed after a few seconds. From all the compared selection methods, the one
reporting the best makespan at the end of the run is Ntour with N = 3.
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Fig. 10.5. Makespan reduction obtained with different selection methods

Recombination operator

Three recombination operators, very well known in the literature, were tested
in this study for tuning our cMA. They are the one-point (OP2), the uniform
(Uni2), and the fitness-based (FB2) recombination. The one-point operator lies
in splitting the two chromosomes into two parts (in a randomly selected point),
and joining each part of one parent chromosome with the other part of the
chromosome of the second parent. In the case of the uniform recombination, an
offspring is constructed by selecting for each gene the value of the corresponding
gene of one of the two parents with equal probability. Finally, in the case of
the fitness-based recombination both the structure and the relative fitness of the
two parents are taken into account. The offspring is obtained as follows. Let us
suppose that the two parents are P1 and P2, being P1[i] the ith gene of P1 and
fP1 its fitness. The offspring is noted as C. If the two parents have the same
value for a given gene i (P1[i] = P2[i]) this value is adopted for the same gene
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Fig. 10.6. Makespan reduction obtained with different recombination operators

of the offspring C[i] = P1[i]. In other case, when P1[i] 
= P2[i], C[i] = P1[i] with
probability p = fP2/(fP1 + fP2), while C[i] = P2[i] with probability 1− p.

From the results showed in Fig. 10.6, the one-point method has been chosen
as the one reporting the best performance from the three compared recombina-
tion operators. The other two tested recombination operators (Uni2 and FB2)
perform in a similar way, and slightly worse than OP2.

Mutation operator

We have tested four different mutation operators in our cMA. They are move,
swap, both, and rebalance:

• Move is a simple operator that lies in changing the location of a given job
in the chromosome of the individual, i.e. it assigns the machine of job i to
job j.
• Swap exchanges the value of two genes. In our problem, this means that we

are exchanging the machines assigned to two different jobs.
• Both. In this case we are applying one of the two previously explained oper-

ators (move and swap) with equal probability.
• Rebalance. The mutation is done by rebalancing of machine loads of the given

schedule. The load factor of a machine m is defined as load factor(m) =
completion[m]/makespan (load factor(m) ∈ (0, 1]). The idea behind this
choice is that in a schedule, some machines could be overloaded (when its
completion time is equal to the current makespan –load factor(m) = 1–) and
some others less overloaded (regarding the overloaded machines, we sort the
machines in increasing order of their completion times and 25% first ma-
chines are considered less overloaded), in terms of their completion times. It
is useful then to mutate the schedule by a load balancing mechanism, which
transfers a job assigned to an overloaded machine to another less loaded
machine.
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Three of the studied mutation operators (move, swap, and both) are generic
ones, while rebalance was specifically designed for this problem. They all are
compared in Fig. 10.7. As it can be seen, the best performance is given by the
rebalance operator (the unique specific method of the studied ones). Comparing
the generic operators, swap is the worst one, and move is the best, being the
results obtained by both between they two.

Local search methods

Local search is a proper feature of Memetic Algorithms. As it can be seen from
the template of Algorithm 10.1, each individual is improved by a local search
both after being generated by the recombination operator and after being mu-
tated. Improvement of the descendants is thus done not only by means of genetic
information but also by local improvements. The presence of this local search
method in the algorithm does not increase selection pressure too much due to
the exploration capabilities intrinsic to the cellular model. Four local search
methods have been implemented and experimentally studied. These are the Lo-
cal Move (LM), Steepest Local Move (SLM), Local Minimum Completion Time
Swap (LMCTS), and Local Tabu Hop (LTH).

• LM is similar to the mutation operator (a randomly chosen job is transferred
to a new randomly chosen machine).
• In SLM method, the job transfer is done to the machine that yields the best

improvement in terms of the reduction of the completion time.
• In LMCTS method, two jobs assigned to different machines are swapped; the

pair of jobs that yields the best reduction in the completion time is applied.
• Local Tabu Hop is a local search method based on the Tabu Search

(TS) meta-heuristic. The main feature of TS [17] is that it maintains an



10 Efficient Batch Job Scheduling in Grids Using cMAs 285

8000000

10500000

13000000

15500000

18000000

20500000

23000000

25500000

0 10 20 30 40 50 60 70 80 90

Execution time (sec.)

M
a

k
e

s
p

a
n

LM

SLM

LMCTS

LTH

Fig. 10.8. Makespan reduction obtained with four local search methods

7600000

7700000

7800000

7900000

8000000

8100000

8200000

8300000

8400000

8500000

8600000

Execution time (sec.)

0 10 20 30 40 50 60 70 80 90

  5 iterations
10 iterations
15 iterations
25 iterations

M
a

k
e

s
p

a
n

Fig. 10.9. Makespan reduction obtained with different intensities of the local search
method

adaptive memory of forbidden (tabu) movements in order to avoid cycling
among already visited solutions and thus escape from local optimal solutions.
In the LTH algorithm for job scheduling, the implemented neighborhood re-
lationship is based on the idea of the load balancing. The neighborhood of
solutions consists of all those solutions to which we can reach via swap of
the tasks of an overloaded resource with those of the less overloaded ones, or
via move of tasks of an overloaded resource to the less overloaded resources.
LTH is essentially a phase of Tabu Search and is taken from the Tabu Search
implementation for the problem by Xhafa et al. [23].

In Fig. 10.8 we compare the behavior of our cMAs implementing the four
proposed local search methods. From that graphical representation we can easily
observe that the LMCTS method performs best among the four considered local
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of the local search method when the solution is not improved

search methods. In fact, a clear difference in the behavior of the considered local
search methods is observed, though all of them provide an accentuated reduction
in the makespan value (see Fig. 10.8).

The bad behavior of the cMA using LTH is probably because this local search
method is very heavy (computationally speaking) with respect to the other com-
pared ones, and also the termination condition of the cMA is very hard (only 90
seconds of execution). Thus, the cMA only has time for making a few genera-
tions before the termination condition is met. Hence, it should be interesting to
try some other parameters in order to reduce the number of LTH steps made by
cMA+LTH in each generation, what hopefully should lead us to better results.

We present in Fig. 10.9 a study of the influence of the number of iterations
of the LMCTS local search algorithm in the behavior of the cMA. Specifically,
we study the cases of performing 5, 10, 15, and 25 iterations. As it can be seen
in the figure, the smaller the number of iterations is the slower the convergence
of the algorithm, and also the better the resulting makespan. Hence, the use of
a strong local search provokes a premature convergence of the population, and
this fast lost of diversity induces a bad behavior into the algorithm.

Once the number of iterations of the local search step is set, there is still one
parameter to be tuned for the local search. This parameter is the number of
iterations of the local search to perform even if no improvements were obtained
in the previous ones. We present in Fig. 10.10 a study in which the cases of
performing 1, 2, 4, and 5 iterations without any improvement are analyzed (recall
that the maximum number of iterations was previously set to 5). From the results
shown in Fig. 10.10 we decided to set the number of iterations of the local search
to 5 even if no improvements are found.

Population Size and Shape and Replacement Policy

In this final step of our tuning procedure, we set the population size and shape as
well as the replacement policy that we will use in our experiments. We compare
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in Fig. 10.11 the behavior of our cMA with two populations of different shapes
but having approximately the same size. The reason for this study is that the
shape of the population markedly influences the behavior of the search in cellular
evolutionary algorithms [3, 2]. The populations compared in Fig. 10.11 are a
rectangular ones composed by 65 individuals arranged in a 5 × 13 mesh and a
square 8 × 8 individuals population. As it can be seen in the figure, the latter
performs better than the former for the studied instance.

We now study the influence of the replacement policy of new individuals
into the population. Specifically, we considered two different options, namely,
allowing that worse individuals can replace the current ones in the population
(add only if better = false) or not (add only if better = true). As it can be seen in
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Fig. 10.12, we always obtained better (lower) makespan values when individuals
in the population can only be replaced by offsprings having better fitness values.

Additionally, we can see in Fig. 10.12 that the smallest of the three tested pop-
ulations was the one providing the best makespan value (the three populations
have square shape). The reason is that the use of a larger population allows to
maintain the diversity for longer, but as a consequence the convergence speed is
slowed down, so the algorithm generally requires a longer time to converge. This
property is desirable for very difficult problems and large computation times.
However, the computational time is fixed and very limited in our case of study,
so it is desirable to enhance the exploitation capabilities of our algorithm.

10.4 Computational Results on Static Instances

After tuning our cMA on a set of random instances of the problem according to
the ETC matrix model in Section 10.3.2, we present in this section some compu-
tational results obtained with our tuned cMAs for the benchmark of instances
by Braun et al. [9] for distributed heterogenous systems. This benchmark is de-
scribed in the next section, while the results of our algorithm are discussed and
compared versus those obtained by other algorithms in Section 10.4.2.

10.4.1 Benchmark Description

The instances of this benchmark are classified into 12 different types of ETC
matrices, each of them consisting of 100 instances, according to three parameters:
job heterogeneity, machine heterogeneity and consistency. Instances are labelled
as u x yyzz.k where:

• u stands for uniform distribution (used in generating the matrix).
• x stands for the type of consistency (c–consistent, i–inconsistent, and s

means semi-consistent). An ETC matrix is considered consistent when, if
a machine mi executes job j faster than machine mj , then mi executes all
the jobs faster than mj . Inconsistency means that a machine is faster for
some jobs and slower for some others. An ETC matrix is considered semi-
consistent if it contains a consistent sub-matrix.
• yy indicates the heterogeneity of the jobs (hi means high, and lo means low).
• zz indicates the heterogeneity of the resources (hi means high, and lo means

low).

Note that all instances consist of 512 jobs and 16 machines. We report com-
putational results for 12 instances, which are made up of three groups of four
instances each. These three groups represent different Grid scenarios regarding
the computing capacity. The first group corresponds to consistent ETC matri-
ces (for each of them combinations between low and high are considered), the
second represent instances of inconsistent computing capacity and the third one
to semi-consistent computing capacity.
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10.4.2 Evaluation and Discussion

In this section we present and discuss the results obtained by our algorithms,
and compare them versus some other algorithms in the literature. Specifically, we
propose two different cMAs: cMA+LMCTS and cMA+LTH. First, we compare
the results obtained with the two proposed cMAs. Since one of these versions
uses as a local search the Local Tabu Hop, we also compare the obtained results
with those obtained by Tabu Search implementation by Xhafa et al. [23]. The
algorithms run for 90 seconds (a single run) and 10 runs per instance are made.
These decisions are the same than those adopted for the compared algorithms
in order to make fair comparisons, since the compared results are directly taken
from the original papers.

Table 10.1. Parameterization of cMA+LMCTS

Termination condition Maximum of 90 seconds running
Population size 5×5
Probability of recombination pc = 1.0
Probability of mutation pm = 0.5
Population initialization LJFR-SJFR (Longest / Shortest Job to Fastest Resource)
Neighborhood pattern C9
Recombination order FLS (Fixed Line Sweep)
Mutation order NRS (New Random Sweep)
Selection method 3-Tournament
Recombination operator One-Point recombination
Mutation operator Rebalance
Local search method LMCTS (Local Minimum Completion Time Swap)
Number of iterations of the local search 5
Replacement policy Replace if better

The resulting configuration for cMA+LMCTS we decided to use after the
initial tuning step made in Section 10.3.2 is given in Table 10.1. The parameteri-
zations for cMA+LTH is similar to the one shown in Table 10.1, but in this case
the population was set to 3 × 3 in order to reduce the number of local search
steps due to the high computational requirements of LTH (see Section 10.3.2).
Because of the small population used in this case, we adopt the L5 neighborhood
pattern for cMA+LTH.

We give in Table 10.2 the computational results2 for the makespan objec-
tive, where the first column indicates the name of the instance, and the other
three ones present the average makespan with standard deviation (in %) ob-
tained by the two proposed CMA algorithms (cMA+LMCTS and cMA+LTH)
and TS [23]. Again, the results are averaged over 10 independent runs of the
algorithms for every instance. The algorithm cMA+LMCTS provides the worst
results in terms of average makespan, while the other proposed cellular memetic
algorithm, cMA+LTH, is the best one for all the consistent instances, and it
is the best performing algorithm if we do not take into account the inconsis-
tent instances. This observation is interesting if the Grid characteristics were
known in advance, since cMA+LTH seems to be more appropriate for consistent
2 Values are in arbitrary time units.
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Table 10.2. Comparison of the three proposed algorithms. Average makespan values.

Instance cMA+LMCTS TS cMA+LTH
u c hihi.0 7700929.751 ±0.73% 7690958.935 ±0.28% 7554119.350 ±0.47%
u c hilo.0 155334.805 ±0.13% 154874.145 ±0.41% 154057.577 ±0.10%
u c lohi.0 251360.202 ±0.62% 250534.874 ±0.59% 247421.276 ±0.47%
u c lolo.0 5218.18 ±0.30% 5198.430 ±0.52% 5184.787 ±0.07%
u i hihi.0 3186664.713 ±1.80% 3010245.600 ±0.26% 3054137.654 ±0.83%
u i hilo.0 75856.623 ±0.79% 74312.232 ±0.35% 75005.486 ±0.31%
u i lohi.0 110620.786 ±1.72% 103247.354 ±0.42% 106158.733 ±0.54%
u i lolo.0 2624.211 ±0.83% 2573.735 ±0.39% 2597.019 ±0.39%
u s hihi.0 4424540.894 ±0.85% 4318465.107 ±0.28% 4337494.586 ±0.71%
u s hilo.0 98283.742 ±0.47% 97201.014 ±0.56% 97426.208 ±0.21%
u s lohi.0 130014.529 ±1.11% 125933.775 ±0.38% 128216.071 ±0.83%
u s lolo.0 3522.099 ±0.55% 3503.044 ±1.52% 3488.296 ±0.19%

Table 10.3. Comparison versus other algorithms in the literature. Average makespan
values.

Instance Braun et al. GA GA Struggle GA cMA+LTH(Carretero&Xhafa) (Xhafa)
u c hihi.0 8050844.50 7700929.75 7752349.37 7554119.35
u c hilo.0 156249.20 155334.85 155571.80 154057.58
u c lohi.0 258756.77 251360.20 250550.86 247421.28
u c lolo.0 5272.25 5218.18 5240.14 5184.79
u i hihi.0 3104762.50 3186664.71 3080025.77 3054137.65
u i hilo.0 75816.13 75856.62 76307.90 75005.49
u i lohi.0 107500.72 110620.79 107294.23 106158.73
u i lolo.0 2614.39 2624.21 2610.23 2597.02
u s hihi.0 4566206.00 4424540.89 4371324.45 4337494.59
u s hilo.0 98519.40 98283.74 983334.64 97426.21
u s lohi.0 130616.53 130014.53 127762.53 128216.07
u s lolo.0 3583.44 3522.10 3539.43 3488.30

and semi-consistent Grid scenarios. Moreover, we consider that cMA+LTH is a
more robust algorithm with respect to TS because the standard deviation val-
ues of the results obtained by the former are lower than those of the latter, in
general.

We believe that it is possible to improve the results of cMA+LTH if we apply
longer steps of the LTH method. Additionally, as it happened in [4,5] for the case
of the satisfiability problem, we believe that the memetic algorithm (cMA+LTH)
should outperform the local search by itself (TS) for larger instances of the
problem. Moreover, it makes sense in our case to solve much larger instances of
the problem, since we are tackling grids composed by only 16 machines in this
preliminary study, and it is desirable to solve instances including hundreds or
even thousands of processors.

The comparison of our best cMA (cMA+LTH) with three other versions of
GAs taken from the literature is given in Table 10.3. Like in the case of Ta-
bles 10.2 and 10.3, values are the average makespan and standard deviation
obtained after 10 independent runs. The compared algorithms are the Braun et
al. GA [9], the GA by Carretero and Xhafa [10], the Struggle GA [26], and our
best memetic algorithm cMA+LTH. For all the compared algorithms, the termi-
nation condition is set to a 90 seconds runtime. As it can be seen, cMA+LTH is
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Table 10.4. Comparison versus other algorithms in the literature. Average flowtime
values.

Instance LJFR-SJFR Struggle GA TS cMA+LMCTS cMA+LTH(Xhafa)
u c hihi.0 2025822398.7 1039048563.0 1043010031.4 1037049914.2 1048630695.5
u c hilo.0 35565379.6 27620519.9 27634886.7 27487998.9 27684456.0
u c lohi.0 66300486.3 34566883.8 34641216.8 34454029.4 34812809.9
u c lolo.0 1175661.4 917647.31 919214.3 913976.2 922378.0
u i hihi.0 3665062510.4 379768078.0 357818309.3 361613627.3 370506405.1
u i hilo.0 41345273.2 12674329.1 12542316.2 12572126.6 12754803.6
u i lohi.0 118925453.0 13417596.7 12441857.7 12707611.5 12975406.6
u i lolo.0 1385846.2 440729.0 437956.9 439073.7 445529.3
u s hihi.0 2631459406.5 524874694.0 515743097.6 513769399.1 532276376.7
u s hilo.0 35745658.3 16372763.2 16385458.2 16300484.9 16628576.7
u s lohi.0 86390552.3 15639622.5 15255911.2 15179363.5 15863842.1
u s lolo.0 1389828.8 598332.7 597263.2 594666.0 605053.4

the best one of the four compared algorithms for all the studied instances, with
the exception of the semi-consistent instance with low heterogeneity of jobs and
high heterogeneity of the resources (u s lohi.0), for which cMA+LTH is the
second best algorithm, just after the Struggle GA.

Additionally, when comparing cMA+LMCTS against the three other versions
of GAs shown in Table 10.3 (Braun et al. GA, Carretero&Xhafa’s GA [10] and
Xhafa’s Struggle GA [26]), cMA+LMCTS obtains better schedules than the
compared GAs for half of the considered instances, and for the rest of the in-
stances, the solutions found by cMA+LMCTS have a similar quality than the
best of the other three GAs.

Computational results for flowtime parameter are given in Table 10.4 wherein
we compare the average flowtime value obtained after 10 independent runs by the
ad hoc heuristic LJFR-SJFR, the Xhafa’s Struggle GA [26], Xhafa et al. TS [23]
and the two cMAs proposed in this work. As it can be seen, the improvement
made by the two cMAs on the initially constructed solution (obtained by the
LJFR-SJFR heuristic) is very important. Additionally, it is noticeable in this ta-
ble the improvement obtained by cMA+LMCTS over the compared algorithms,
since it outperforms the compared algorithms for all considered instances. The
exception are the inconsistent instances, for which the TS algorithm is the best
one. The other proposed cMA, cMA+LTH, which obtained the best results for
the makespan value is worse than both cMA+LMCTS and the Struggle GA for
the flowtime objective.

10.5 Computational Results on Dynamic Instances

The study made in Section 10.4 using static instances for the problem of resource
allocation in grids allowed us to better know the behavior of the cMAs, showing
their main differences in the resolution of the problem and the results we could
expect from them for several different cases. However, even if we can define static
instances with really complex features, we still need to analyze the behavior of
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the algorithms in a more realistic dynamic grid system environment. In this case,
the algorithm typically has to schedule the tasks in very short time intervals, and
in a dynamic scenario that is continuously changing with time (resources that
join and leave the Grid system). Thus, we study in this section the behavior of
our algorithms in a more realistic set of dynamic instances. These instances are
obtained using a simulator of a grid environment proposed in [24] that allows
us to simulate different grid environments with distinct parameterizations. This
simulator is briefly described in Section 10.5.1.

10.5.1 Dynamic Grid Simulator

The dynamic grid simulator was built from the Hypersim [20] framework, which
is at the same time based in the simulation of systems of discrete events. The
dynamic grid simulator allows us to emulate a set of dynamic resources that
appear and disappear along time simulating resources that are registered and
unregistered in grids. These simulated resources have different computing capac-
ities (by means of number of instructions per time unit), and there is no limit on
the number of tasks that can be assigned to a given resource. Moreover, every
resource could have its own local scheduling policy.

New tasks arrive to the system following different distributions. The modelled
tasks have intensive computing requirements, and they differ each other only in
the work load (number of instructions). Tasks are considered to be sequential
and have no dependencies on the other ones, so they are not restricted by the
order in which they are executed, and no communication is needed among them.
Hence, tasks are run in one single resource, and cannot be interrupted unless
there is some error during the run. The scheduling process of these tasks is
centralized, allowing to compare the scheduling algorithms easier than in the case
of a decentralized system, since in this case the result of the scheduling is highly
dependent on the the structure defined by the schedulers. The design of this
simulator allows to easily adapt different scheduling policies, and it offers already
implemented some scheduling policies. Anyway, the simulator is compatible both
with static and dynamic schedulers.

The scheduler in our simulated grid is dynamically adapted to the evolution
of the grid through the re-scheduling of the tasks either with a given frequency
or when a change in the grid resources is made. As it could be expected from a
scheduler of a real grid. In our simulator (at least in the version we are using in
this work), no possible dependencies are considered between tasks and resources,
so tasks can be run in any resource, and the computation time depends on both
the length of the task and the resource capacity.

Finally, this simulator provides a configurable environment that allows the
user to define different grid scenarios simply by changing some parameters. The
simulator provides a large number of statistical measures that allows the user to
evaluate and compare different schedulers, as well as the influence of the different
parameter values.
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10.5.2 Dynamic Benchmark Description

In this section, we present the parametrization used for the simulator described
in Section 10.5.1 in order to define the benchmark for testing our schedulers.
This parametrization have been carefully set in order to have different kinds of
real grids. This way, we have defined grids of different (random) sizes, that we
have enclosed in four different sets called small, medium, large, and very large,
having the resources composing these grids random computing capacities. The
details on the parametrization of the used simulator are given in Table 10.5, and
the meaning of every parameter in the table is explained next:

• Init. hosts : Number of resources initially in the environment.
• Max. hosts : Maximum number of resources in the grid system.
• Min. hosts : Minimum number of resources in the grid system.
• MIPS : Normal distribution modelling computing capacity of resources.
• Add host : Normal distribution modelling the frequency of new resources

being added to the system.
• Delete host : Normal distribution modelling the frequency of resources being

dropped from the system.
• Total tasks : Number of tasks to be scheduled.
• Init. tasks : Initial number of tasks in the system to be scheduled.
• Workload : Normal distribution modelling the workload of tasks.
• Interarrival : Frequency (given by an exponential distribution) of new tasks

arriving to the system (it is ensured that each time the simulator is activated,
there will be at least one new task per resource).
• Activation: Establishes the activation policy according to an exponential

distribution.
• Reschedule: When the scheduler is activated, this parameter indicates

whether the already assigned tasks, which have not yet started their exe-
cution, will be rescheduled.

Table 10.5. Settings for the dynamic grid simulator

Small Medium Large Very Large
Init. hosts 32 64 128 256
Max. hosts 37 70 135 264
Min. hosts 27 58 121 248
MIPS N(1000, 175)∗

Add host N(625000, 93750) N(562500, 84375) N(500000, 75000) N(437500, 65625)
Delete host N(625000, 93750)
Total tasks 512 1024 2048 4096
Init. tasks 384 768 1536 3072
Workload N(2.5 ∗ 108, 4.375 ∗ 107)
Interarrival E(7812.5)† E(3906.25) E(1953.125) E(976.5625)
Activation Resource and time interval(250000)
Reschedule True
Host select All
Task select All
Number of runs 15
∗N(μ, σ) is a uniform distribution with average value μ and standard deviation σ.
†E(μ) is an exponential distribution an average value μ.
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• Host selection: Selection policy of resources (all means that all resources of
the system are selected for scheduling purposes).
• Task selection: Selection policy of tasks (all means that all tasks in the

system must be scheduled).
• Number runs : Number of simulations done with the same parameters. Re-

ported results are then averaged over this number.

As it can be seen in Table 10.5, we have defined four different grid sizes for
our studies. Small grids are composed of a maximum of 37 hosts and a minimum
of 27. The initial value is set to 32 and then it dynamically changes in that
interval. When the simulation starts, 384 tasks must be scheduled, and new
tasks arrive along time until a total of 512 ones. Medium grids are composed
by a number of hosts in the interval [58, 70], starting with 64, and the total
number of tasks is 1024 (being 768 at the beginning of the simulation). The
large grids are considered to have between 121 and 135 hosts (128 initially) and
a number of 2048 tasks (starting from 1536). Finally, the largest grids studied in
this section are composed by an average of 256 hosts (varying this value in the
interval [248, 264]), and the number of tasks to schedule grows from 3072 (initial
fixed value) up to 4096. In all the configurations, the computing capacity of
resources, their frequency of appearing and disappearing, the length of tasks and
their arrival frequency are randomly set parameters (with values in the specified
intervals). In the rescheduling process, all non executed tasks are considered even
if they were previously scheduled.

10.5.3 Evaluation and Discussion

We proceed in this section to evaluate our schedulers in the dynamic benchmark
previously defined. In order to make more realistic simulations, we have reduced
the run time for the algorithm from 90 to 25 seconds, and we run the algorithm
in a a Pentium IV 3.5GHz with 1GB RAM under windows XP operating system
without any other process in background. The parametrization of the algorithm
is shown in Table 10.6. As it can be seen, there are some small differences between
this configuration and the one used in Section 10.4. These changes were made
in order to promote the exploration capabilities of the algorithm for this set of
more complex instances, and improve its answer to the instance changes. Thus,
we have increased the population size to 6 × 6 (instead of 5 × 5) for solving all
the instances except the small ones, the neighborhood is changed to L5 instead
of C9, and we also improved the generation of the initial population. In the
case of Section 10.4, this was made by generating one first individual using the
LJFR-SJFR method, and the other individuals of the population were obtained
after applying strong mutations to this initial individual. In this case, two initial
individuals are generated instead of one: one with LJFR-SJFR, and the other
one using the minimum completion time method (MCT). Then, the rest of the
population is generated by mutating one of these two initial individuals (selected
with equal probability).
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Table 10.6. Parameterization of cMA+LMCTS for the dynamic benchmark

Termination condition 25 seconds run or 2 × nb tasks generations
Population size 5×5 (small grids)

6×6 (medium, large, and very large grids)
Probability of recombination pc = 1.0
Probability of mutation pm = 0.5
Population initialization MCT and LJFR-SJFR
Neighborhood pattern L5
Recombination order FLS (Fixed Line Sweep)
Mutation order NRS (New Random Sweep)
Selection method 3-Tournament
Recombination operator One-Point recombination
Mutation operator Rebalance
Local search method LMCTS
Number of iterations of the local search 5
Replacement policy Replace if better

The MCT method assigns a job to the machine yielding the earliest completion
time (the ready times of the machines are used). When a job arrives in the sys-
tem, all available resources are examined to determine the resource that yields the
smallest completion time for the job (note that a job could be assigned to a ma-
chine that does not have the smallest execution time for that job). This method
is also known as Fast Greedy, originally proposed for SmartNet system [14].

The parametrization for cMA+LTH is the same one proposed for
cMA+LMCTS in Table 10.6 with only one exception: the population is set to
3 × 3 as an attempt to reduce the computational overload introduced by the
expensive LTH method.

In our tests, the algorithms were run for 30 independent runs. The results are
given in tables 10.7 and 10.8 for the makespan and the flowtime, respectively.
Specifically, we present the average in the 30 runs of the average value (for
the makespan and the flowtime, respectively) during every run (this value is
continuously changing during the run due to the grid dynamism), the standard
deviation (with a 95% confidence interval –CI–), and the deviation between the
current solution and the best one for the same instance size. A 95% CI means
that we can be 95% sure that the range of makespan (flowtime) values are within
the shown interval, if the experiment were to run again. We are comparing in
these tables the results obtained by our two cMAs and the same algorithms but
with a panmictic (non structured) population, which are the best results we
found in the literature for the studied problems [25].

In Table 10.7 we can see that the best overall algorithm for the four kinds of
instances is cMA+LTH, which is the best algorithm in three out of the four cases
(best values for every instance size are bolded). Only in the case of the largest
instances cMA+LTH is outperformed by another algorithm (namely MA+LTH),
but it is the second best algorithm in this case. Regarding the local search method
used, we obtain from the results that the algorithms using TS as a local search
method (MA+LTH and cMA+LTH) clearly outperform the other two ones for
the four different instance sizes, since these two algorithms are the best ones for
the four instances.
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Table 10.7. Makespan values for the dynamic instances

Heuristic Makespan % CI (0.95) Best Dev.

Small

MA+LMCTS 4161118.81 1.47% 0.34%
MA+LTH 4157307.74 1.31% 0.25%
cMA+LMCTS 4175334.61 1.45% 0.68%
cMA+LTH 4147071.06 1.33% 0.00%

Medium

MA+LMCTS 4096566.76 0.94% 0.32%
MA+LTH 4083956.30 0.70% 0.01%
cMA+LMCTS 4093488.97 0.71% 0.25%
cMA+LTH 4083400.11 0.62% 0.00%

Large

MA+LMCTS 4074842.81 0.69% 0.29%
MA+LTH 4067825.95 0.77% 0.12%
cMA+LMCTS 4087570.52 0.57% 0.60%
cMA+LTH 4063033.82 0.49% 0.00%

Very Large

MA+LMCTS 4140542.54 0.80% 0.82%
MA+LTH 4106945.59 0.74% 0.00%
cMA+LMCTS 4139573.56 0.35% 0.79%
cMA+LTH 4116276.64 0.72% 0.23%

Table 10.8. Flowtime values for the dynamic instances

Heuristic Flowtime % CI (0.95) Best Dev.

Small

MA+LMCTS 1045280118.16 0.93% 0.15%
MA+LTH 1045797293.10 0.93% 0.20%
cMA+LMCTS 1044166223.64 0.92% 0.00%
cMA+LTH 1046029751.67 0.93% 0.22%

Medium

MA+LMCTS 2077936674.17 0.61% 0.07%
MA+LTH 2080903152.40 0.62% 0.22%
cMA+LMCTS 2076432235.04 0.60% 0.00%
cMA+LTH 2080434282.38 0.61% 0.19%

Large

MA+LMCTS 4146872566.09 0.54% 0.02%
MA+LTH 4153455636.89 0.53% 0.18%
cMA+LMCTS 4146149079.39 0.55% 0.00%
cMA+LTH 4150847781.82 0.53% 0.11%

Very Large

MA+LMCTS 8328971557.96 0.35% 0.00%
MA+LTH 8341662800.11 0.35% 0.15%
cMA+LMCTS 8338100602.75 0.34% 0.11%
cMA+LTH 8337173763.88 0.35% 0.10%

The results obtained for the flowtime are given in Table 10.8. As it happened
in the previous case, the best cMA (cMA+LMCTS in this case) outperforms the
best MA (MA+LMCTS) algorithm for all the tested instance sizes, with the only
exception of the very large one. We notice that in this case, the results are also
somehow opposite to the ones obtained for the makespan, since the algorithms
implementing the LMCTS local search method outperform those using LTH for
all the instances. However, these results make sense, since both makespan and
flowtime are conflictive objective values. This means that, for high quality solu-
tions, it is not possible to improve one of the two objectives without decreasing
the quality of the other. This is related to the concept of Pareto optimal front in
multi-objective optimization (see [12,13]). In this paper we are tackling a multi-
objective problem by weighting the two objectives into a single fitness function.
Thus, in this work we are giving more importance to the makespan objective by
weighting this value by 0.75 in the fitness function, while the weight of flowtime
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was set to 0.25. So we can consider that cMA+LTH is the algorithm obtaining
the best overall results among the tested ones.

10.6 Conclusions and Future Work

In this work we have presented two implementations of Cellular Memetic Algo-
rithms (cMAs) for the problem of job scheduling in Computational Grids when
both makespan and flowtime are simultaneously minimized. cMAs are a family
of population-based metaheuristics that have turned out to be an interesting
approach due to their structured population, which allows to better control the
tradeoff between the exploitation and exploration of the search space. We have
implemented and experimentally studied several methods and operators of cMA
for the job scheduling in Grid systems, which is a challenging problem in today’s
large-scale distributed applications.

The proposed cMAs were tested and compared versus other algorithms in
the literature for benchmarks using both static and dynamic instances. Our
experimental study showed that cMAs are a good choice for scheduling jobs in
Computational Grids given that they are able to deliver high quality planning
in a very short time. This last feature makes cMAs useful to design efficient
dynamic schedulers for real Grid systems, which can be obtained by running
the cMA-based scheduler in batch mode for a very short time to schedule jobs
arriving in the systems since the last activation of the cMA scheduler. The use
of the proposed cMA could highly improve the behavior of real clusters in which
very simple methods (e.g., queuing systems or ad hoc schedulers using specific
knowledge of the grid infrastructure) are used.

In our future work we would like to better understand some issues raised by
the experimental study such as the good performance of the cMAs for consistent
and semi-consistent Grid Computing environments and the not so good perfor-
mance for inconsistent computing instances. Also, we plan to extend the exper-
imental study by considering other operators and methods as well as studying
the performance of cMA-based scheduler(s) in longer periods of time and con-
sidering larger grids. Additionally, we are studying different policies for applying
the local search method in order to make this important step of the algorithm
less computationally expensive. Other interesting line for future research is to
tackle the problem with a multi-objective algorithm in order to find a set of
non-dominated solutions to the problem.
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Summary. Solving exactly Combinatorial Optimization Problems (COPs) using a
Branch-and-Bound algorithm (B&B) requires a huge amount of computational re-
sources. The efficiency of such algorithm can be improved by its hybridization with
meta-heuristics such as Genetic Algorithms (GA) which proved their effectiveness,
since they generate acceptable solutions in a reasonable time. Moreover, distributing
at large scale the computation, using for instance Peer-to-Peer (P2P) Computing, pro-
vides an efficient way to reach high computing performance. In this chapter, we propose
ParallelBB and ParallelGA, which are P2P-based parallelization of the B&B and GA
algorithms for the computational Grid. The two algorithms have been implemented
using the ProActive distributed object Grid middleware. The algorithms have been
applied to a mono-criterion permutation flow-shop scheduling problem and promis-
ingly experimented on the Grid5000 computational Grid.

Keywords: P2P Computing, Branch and Bound, Genetic Algorithms, Grid Middle-
ware, Flow-Shop Scheduling.

11.1 Introduction

In practice, many problems can be modelled as combinatorial optimization prob-
lems. These problems are often large and classed NP-hard [20] such as scheduling
and quadratic assignment problems. To solve these problems, various methods
were proposed in the literature. Meta-heuristics proved their effectiveness, since
they generate acceptable solutions, in a reasonable time. Searching an exact so-
lution for this kind of problem remains unpractical when the problem size grows,

F. Xhafa, A. Abraham (Eds.): Meta. for Sched. in Distri. Comp. Envi., SCI 146, pp. 301–321, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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because the execution time increases in an exponential way. To mitigate this con-
straint, hybridization between exact and heuristic methods and their paralleliza-
tion are two effective ways in terms of improving the computing performances,
in particular the use of large scale parallelism based on Grid Computing [19] or
Peer-to-Peer Computing [34, 36].

Grid and P2P Computing are emerging technologies allowing to share various
resources at a large scale. Grid Computing uses an infrastructure for globally
sharing compute-intensive resources such as supercomputers or computational
clusters. P2P Computing, using for instance XtremWeb [18] or ProActive [1], is
based on the exploitation of non used CPU cycles or completely idles. Nowadays,
these two technologies provide effective tools to achieve high performance in
solving large-scale problems. Particularly, solving exactly complex combinatorial
optimization problems is a good challenge for GRID/P2P Computing.

The Branch-and-Bound algorithm (B&B) is the most known method for ex-
act resolution of combinatorial optimization problems (COP ). B&B explores the
search space by implicitly enumerating subtrees. The whole exploration of this
space is impossible considering the exponential increase in the number of solu-
tions when the size of the problem increases. The use of good lower and upper
bounds reduces the number of subtrees to enumerate. Meta-heuristics provide
sub-optimal solutions in a reasonable time (they allow us to reach an acceptable
solution in a short time). Genetic Algorithms (GAs) belongs to Evolutionary
Algorithms (EAs) which make use of a randomly generated population of solu-
tions. The initial population is enhanced through a natural evolution process.
At each generation of the process, the whole population or a part of the pop-
ulation is replaced by newly generated individuals. Several parallel versions of
B&B [11, 13, 35, 39, 40, 41] and GA [3, 22, 30] are studied in the literature. The
B&B algorithm is suitable to be parallelized given that the subtrees can be ex-
plored independently. The only shared information in the algorithm is the value
of the best known solution (upper bound). Likewise, the parallelism is necessary
to not only reduce the resolution time of GAs, but also to improve the quality
of the provided solutions. The hybridization of these two categories permits to
improve the performances of the total execution time.

Recently, some approaches [5, 6, 8, 12, 33] aiming at exploiting P2P/GRID
computing and at deploying scientific applications requiring a great computing
power, have been developed. [5, 6] are based on the Master/Worker paradigm [23,
38]. The main drawback of this approach is bottlenecks created on the master
process because the inter-worker communications transit throw the master. Our
work presents two parallel B&B and GA Algorithms and their hybridization
based on master/worker paradigm with direct communications between workers.
Therefore, bottlenecks are eliminated. We develop the peer-to-peer version using
ProActive middleware which enables direct communications between the various
peers (workers) of the network without flowing throw an intermediary (master).
We applied the two algorithms and their combination version to mono-criterion
permutation flow-shop problem PFSP. PFSP consists to find a schedule of a set
of jobs on a set of machines that minimizes the completion time (makespan).
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Jobs are scheduled in the same order on all machines and each machine can not
be simultaneously assigned to two jobs.

The remainder of this chapter is structured as follows : Section 11.2 high-
lights the major points for the parallelization of a Branch-and-Bound algorithm
and a brief description of parallel genetic algorithms. The concept of P2P Com-
puting, ProActive middleware and the various tools that it offers to develop a
distributed application on a peer-to-peer system are presented in Section 11.3.
In Section 11.4, we present our parallelization of the Branch and Bound algo-
rithm ParallelBB and genetic algorithm ParallelGA intended to be deployed on a
large scale computing. In Section 11.5, its peer-to-peer implementation on top of
ProActive middlware (namely PHyGABaB). Preliminary large scale deployment
and performance evaluation on a P2P computing network formed and managed
by ProActive showed in Section 11.6. We conclude this chapter in Section 11.7.

11.2 Parallel Combinatorial Optimization

Combinatorial optimization problems are often NP-hard, complex and CPU
time-consuming. Exact methods and meta-heuristics are two major tradition-
ally used approaches [7]. Exact techniques may be useful for solving small prob-
lem instances, but in realistic cases they are inefficient as they are extremely
time-consuming. Conversely, meta-heuristics provide near-optimal solutions and
allow to meet the resolution delays often imposed in the industrial field. The
parallelization of these two categories is an efficient way to solve larger instances
of problems in a reasonable time. In the following, we present parallelization of
theses two categories as described in the literature.

11.2.1 Parallel Branch-and-Bound Algorithms

Branch-and-Bound algorithms are the most known techniques for an exact res-
olution of COPs. They make an implicit enumeration of the whole search space,
because of the impossibility of a complete enumeration of all solutions of the
search space due to the exponential growing of the potential solutions. B&B
algorithms are characterized by four operations: branching, bounding, selection
and elimination. In the first operation, the solution space of a given problem
is partitioned into a number of smaller subsets on which the same optimization
problem is defined. The bounding rule is used to compute the lower bound of the
optimal solution of the considered problem. When a new solution (upper bound)
is identified, it is compared to the actual lower bound in order to decide whether
it is necessary to decompose the subproblem or not. The elimination rule uses
these bounds to determine when further decomposition of a subproblem is un-
necessary, so it identifies nodes which do not lead to the optimal solution and
eliminates them. The subproblems are explored according to the selection rule.
We can find the following exploration methods: depth first search, breath first
search, best bound,... etc. A serial implementation of the algorithm consists of a
sequential execution of these four operations.
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The subtrees generated when executing a B&B algorithm can be explored
independently, this makes the parallelization of these algorithms easier. The
only global information in the algorithm is the value of the upper bound. Its
parallelization may be attached to the architecture of the calculator machine,
synchronization, granularity of generated tasks, communication between differ-
ent processes and the number of computing processors. In the literature, several
works on parallelization of B&B had been conducted [11, 13, 35, 39, 40, 41].
Geondron and Crainic [11] classified the parallelization strategies into three
classes according to the degree of parallelization: parallelism of type 1 introduces
parallelism when performing the operations (generally the bounding operation)
on generated subproblems (e.g. executing the bounding operation in parallel for
each subproblem). This type of parallelism depends on the problem to be solved.
In parallelism of type 2 the search tree is built in parallel (e.g. processes work on
several subproblems simultaneously). The parallelism of type 3 also implies the
building of several trees in parallel. The information generated when building
one tree can be used for the construction of another. Thus the tree is explored
concurrently.

The processes which participate in the computation of the parallel algorithm
select their tasks from a work pool. A work pool is a memory where the pro-
cesses select and store their work units (generated and not yet explored sub-
problems). Two types of work pool can be distinguished: single work pool and
multiple work pool. Generally the first type is implemented on shared memory
systems [13] and the second type uses several allocation memories. The first type
is more adequate for the applications based on the master/worker [5] paradigm.
Indeed, master process distributes part of computing (tasks) on a set of workers
processes. When workers finishes their execution, the main process collects the
obtained results. This paradigm is very used in scientific applications dedicated
to be deployed on massively parallel systems (cluster, Grid computing). How-
ever, this paradigm presents a major drawback, it creates bottlenecks on the
master process [4, 5].

11.2.2 Parallel Genetic Algorithms

Evolutionary Algorithms (EAs) [7] are stochastic search techniques and
population-based algorithms. Genetic Algorithms (GAs), proposed by Hol-
land [25] are the most known algorithms in this field [17]. They are powerful
search techniques that are used successfully to solve problems in different dis-
ciplines. They are based on principles of natural selection and recombination.
They attempt to find the optimal solution to the problem at hand by manipu-
lating a population of candidate solutions. The population is evaluated and the
best solutions are selected to reproduce and mate to form the next generation.
Over a number of generations, good traits dominate the population, resulting in
the improvement of the quality of the solutions.

Starting with a randomly generated population, a new generation is pro-
duced with three genetic operators: selection, reproduction and mutation. With
the Selection operator we decide which individuals to survive. In the reproduc-
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tion operator, two individuals are selected to produce a child which inherits its
two parents. The mutation operator alters the genetic code of an individual to
promote diversity (see [17] for more details on GAs).

In the literature, several works have been dedicated to parallel GAs (see [14,
21, 24, 32]) and classified them into two categories: parallelization of computa-
tion (fine grained) and parallelization of population (coarse-grained). In the first
model, the operations commonly applied to each of the individuals are performed
in parallel. The coarse-grained type is the most popular and used category. In
this type, an initial population is divided into sub-populations which will evolve
separately (in parallel) and exchange individuals following a migration protocol.
They are usually implemented on distributed memory computers (MIMD) and
based on the island model. The most recent example is the work of Mezmaz et
al [33]. The authors proposed a P2P hybrid Genetic-Mimetic Algorithm based
on the island model aiming at exploiting P2P/GRID-Computing.

11.3 P2P Computing and the ProActive Middleware

Distributed systems and applications are called Peer-to-Peer (P2P) if they em-
ploy distributed resources to perform a function in a decentralized manner. Here,
resources includes (computer power, data storage and network bandwidth), the
function concerns (distributed computing, data sharing, communication and col-
laboration) and decentralization (algorithms, data or both of them). That is
the definition given in [34]. In distributed computing area, the idea is to ex-
ploit sparse computing resources (idle CPU cycles) and high performance can
be obtained by using a large number of standard machines. XtremWeb [18],
SETI@Home [8] and ProActive [1] are some examples of Peer-to-Peer middle-
wares dedicated to distributed computing. In this chapter we are interested in
ProActive. It is a Java library which proposes an API, a graphical interface
and parallel, distributed and concurrent programming tools [1]. A distributed
application built with ProActive is composed of active objects AO [15]. An ac-
tive object is a remote object having its own thread and receives calls on its
public methods. Each AO has its own activity and the capability to decide in
which order it will serve the method calls. The AOs are created on a support
called Virtual Nodes V N . Association between a JVM and a VN is made by
an XML deployment descriptor. ProActive is a SPMD (Single Program Multiple
Data) middleware where a great number of interconnected nodes execute the
same application operating on several distributed data. As the majority of P2P
middlewares, designed to a distributed computing, the ProActive motivation is
to use idle CPU cycles. A P2P network formed by ProActive, is a set of dynamic
JVMs or V N which operates as a network of computing nodes. The concept of
resource in ProActive is reduced to JVMs. Each JVM which wants to take part
in calculation, launches a P2P Service which is a “daemon” executing on each
node [16].

With ProActive, communications are done by remote method calls between
AOs. It includes three types of communications: (1) Synchronous calls: the
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method call is blocking, the execution is suspended until the arrival of the called
method result; (2) Asynchronous calls: calls are not blocking and the execution
of the program can continue without waiting for the result. An appointment
ensures that the request arrives well at the called before continuing the activity.
A future object is created waiting for any result. A future object represents the
result of one of method call of this object which did not arrive yet; (3) Single
direction calls: calls are not blocking (the appointment is always present), no
result is awaited and no future is created.

The groups of communication[9] are another power tool provided in ProActive
for distributed programming. A group of communication is the local representant
of a set of objects distributed on interconnected machines. When a method is
called upon a group, the execution environment sends an invocation request of
the method on the group members, awaits one or more answers of the members
according to the defined policy, and returns back the result to the caller. For
more details on ProActive middleware see [9]).

11.4 Parallel B&B and GA for P2P Environment

11.4.1 ParallelBB

The Parallel B&B algorithm “ParallelBB” we developed is a high level paral-
lelization algorithm, and belongs to type 2 of the Gendron and Crainic classifi-
cation. ParallelBB is developed with the (Master/Worker) paradigm with direct
communication worker/worker and worker/master, to avoid the bottlenecks cre-
ated on the master process. The master divides the initial problem into a set
of subproblems (tasks). Indeed, it builds reduced, independent and fine grained
subproblems which can be treated in parallel by mono-processors. A single work
pool is available on the master process which distributes the tasks among the
workers. After this blocks waiting for the results of each one of them. In the
following, we present principal operations of parallelBB.

Branching

The branching operation is performed serially by the master process. The mas-
ter prepares an initial tree (Fig. 11.1) with a depth equal to K. Let n be
the number tasks explored by the workers, N the initial size of the problem:
n ≤
∏

0≤i≤k (N − i).
T1, T2 . . . Tn, in the figure represent subtrees, each one contains a partial so-

lution having a size equal to the current level in the tree. K is a parameter of
ParallelBB which depends on two important factors: initially, it depends on the
size of the considered problem, for example, the number of jobs in the case of
a permutation Flow Shop Problem. The depth of the tree increases with the
increasing of the number of jobs. Therefore, K must be sufficiently great to gen-
erate a large number of subtrees which will be treated in parallel by the workers.
Thus, we allow to generate subproblems of a reasonable granularity to be per-
formed by each worker. K also depends on (the size of the computing network).
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Fig. 11.1. General scheme of ParallelBB

In our case, K depends on the number of workers available in the network. If
there is a reduced number of peers in the network, it is more interesting to have
a reduced number of parallel tasks. Otherwise, we will loose more time in the
communication between the workers and the distribution of the tasks. Among
the roles of the master, the attribution of tasks (subtrees) to the workers. If
the number of workers is greater than the number of tasks, the master consid-
ers only the workers which it needs. On the contrary, the master will make a
redistribution of tasks to each new available1 worker.

Selection and Elimination

The elimination operation is used only to eliminate subtrees having a lower
bound greater than or equal to the upper bound. The policy of the tree explo-
ration used by the master and the workers is different. The master explores the
initial tree in width to build subtrees which will be explored in parallel. The
master explores nodes by priority to the most promising nodes i.e. nodes having
a lower bound less than or equal to the upper bound found until now, by all
other workers. These subtrees are qtored in a priority-based queue. The workers
explore their subtrees in depth and use Best First Search policy. They use a
stack with opposite priority stacking of the subtrees nodes according to least
promising ,i.e. at the top of the stack we find the most promising nodes. Thus,
the workers start initially with promising nodes.
1 A worker is said available if it accomplished its task or it finished the calculation

which was assigned to it.
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Communication and knowledge sharing

The global knowledge (all processes knowledge) related to the upper bound
is increased and updated each time a given worker finds a new upper bound.
This operation is performed by broadcasting the upper bound to all workers.
The collaborative work between the workers, using the communication of the
upper bound, allows us to gain much in computation time. Several branches
can be eliminated, more quickly than in a traditional B&B (sequential B&B)
before their exploration, quite simply by consulting the solution found so far.
Unlike traditional B&B, where this same upper bound is known only when the
exploration process reaches into the current node. By using this algorithm, a
significant number of branches can be eliminated. These branches can’t be cut
in a sequential B&B because the upper bound making it possible can be found
only in the future. This solution is situated in a search space which will be
explored only later.

W3W1 W2

1 2 3

3.1 3.2 1.1 1.2

1 2 3

Branche cuted

Upper bound

Intermediary node

Sending of the upper bound to workers

Sending of data + tasks + list of workers + upper bound

Sending of the upper bound to the manager

Master

S*

Fig. 11.2. Communications between processes of ParallelBB

In Fig. 11.2, the upper bound (solution S∗) was found by the worker W3.
This solution is in a future search space2 compared to the search spaces of W1
and W2. When W3 sends the upper bound S* to W1 and W2, it allows then to
eliminate the branches: (2 and 3.1) in the subtree of W1 and (1.1, 2 and 3) in
the subtree of W2.

The master increases also the workers knowledge concerning all other workers
executing in the system (dynamic management). The various types of commu-
nication can be summarized as follows (see Fig. 11.2) :
2 In a serial execution, S∗ will not be found before exploring all subtrees belonging to

the search space of W1 and W2.
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• The Master to a Worker: (1) Sending of the task to perform (data of the
problem and the subtree to explore). (2) Sending of the pool of executing
workers. This knowledge allows each worker to know its environment con-
cerning other workers in progress for a collaborative work. (3) Initialization
of the global upper bound. This knowledge allows each worker to eliminate
branches from the beginning in its search space.
• A Worker to the Master: (1) Sending of the final solution obtained by the

worker (if the worker finishes the exploration of the subtree). (2) Sending of
the upper bound which is better than the global current knowledge of the
algorithm. this allows the master to improve the knowledge of the future
workers with this upper bound.
• A Worker to a Worker: Each worker sends the upper bound to all the

workers in its communication window (workers in progress) so that these
workers will be able to reduce the search space by eliminating a great num-
ber of branches. The communication window of a worker is reduced to its
neighbors i.e. a worker communicates only with the workers in progress (its
neighbors).

11.4.2 ParallelGA

In this section, we present briefly the parallel genetic algorithm we developed
ParallelGA. As ParallelBB, ParallelGA is a master/worker-based algorithm with
direct communications between workers. The master process divides the initial
population into subpopulations with a reduced size. The exploration of these
subpopulations will be considered as parallel tasks and can be handled by a single
processor. All sub-populations will evolve in parallel by the available workers,
each worker executes its instance of the algorithm. The master redistributes not
handled subpopulation each time a worker terminates its part of calculation.
The size of initial generated population must be sufficiently great to increase the
search space and then increase chances to reach acceptable solution. The master
fixes the size of sub-populations according to the number of available workers
and the power of processors.

Like in ParallelBB, communications are very important in the case of a Par-
allelGA. The workers communicate their best individuals to their neighbors (see
Fig. 11.3). This migration of individuals allows us to prevent convergence and to
prevent workers to turn in locals minimum. After a fixed number of generations
(or after a fixed time interval), the migration of elite individuals occurs.

The different types of communications of ParallelGA can be summarized as
follows:

• Master to Workers: The master communicates the task to perform (data of
the problem, subpopulation and different parameters of the GA) as well as
the pool of executing workers.
• A worker to the master: the only information that a worker sends to the

master is the final result when it terminates its part of computation.
• a worker to a worker: The communication between workers consists in the

exchange of individuals (see Fig. 11.3).
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Fig. 11.4. Behavior of the different workers

11.4.3 Hybridization

A quick execution of an exact algorithm like ParallelBB needs to start compu-
tation with a near-optimal upper bound that we can obtain by ParallelGA. As
shown in (Fig. 11.4), we launch first ParallelGA to obtain an acceptable ini-
tial value of the upper bound which is passed to ParallelBB. We use two types
of workers: workers participating in the exploration of the B&B search space
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BBWorkers and those participating in the exploration of the GA population
GAWorkers. ParallelBB starts computation before the termination of Paral-
lelGA and run in parallel. BBWorkers receive the value of the upper bounds
from GAWorkers each time new ones have been found. At the end of explo-
ration of all ParallelGA’s subpopulations, the concerned GAWorkers migrate
and join the exploration of ParallelBB search tree process, thus they take a
BBWorkers behavior.

11.5 Peer-to-Peer Implementation on Top of ProActive

The implementation of ParallelBB and ParallelGA on ProActive gave rise to
our Active Application3 PHyGABaB. This application is based on two entities
(active objects AOs): P2PWorker and P2PMaster. ProActive provides active
nodes ANs (JVMs), recovered on the whole of the network, which are ready
to receive calculation. These ANs are P2PWorkers receiving tasks (subtrees or
subpopulation to explore). In the case of a static grid managed by ProActive, the
P2P services P2PService are already launched, i.e., each host shares its JVM and
at least one P2PWorker which can receive AOs. An AN can receive one or more
AOs. When the P2PMaster is created on the local JVM, it consults an XML
deployment descriptor where P2PMaster will find ANs. At the end of this stage,
P2PMaster will have a list of P2PWorkers ready to receive calculation. When
such nodes are ready, they can directly receive computational work coming from
the P2PMaster, new active objects will be launched otherwise. In this case, the
XML descriptor must be modified so that it can deal with the dynamic nature of
a P2P network and that receive new peers which arrive into the initial network
(see Section. 11.5.3 for the handling of new arrivals).

11.5.1 Distribution of the Computation among Workers

After initializing the workers, P2PMaster generates a set of independent tasks
(subtrees and/or subpopulations). These tasks are represented by passive objects
(see Fig. 11.5). Before the P2PMaster sends a task to a P2PWorker, it increases
the knowledge of each P2PWorker concerning its environment. This knowledge
concerns the set of workers executing other tasks, the best solution found so far
(when the worker participates in the branch and bound tree exploration) or only
the initial subpopulation (when the worker participates in the exploration of the
GA population).

Each time a task is assigned to a P2PWorker, a future object is created
and added to the future list (futureList)of P2PMaster. P2PMaster waits all
the future objects coming from the P2PWorkers appearing in its list. The fu-
ture P2PWorker represents the result of the calculation of its task that the
P2PMaster assigned to it. This is accomplished by listening its response (the
3 An Active Application is an application based on active objects. Any application

developed using the ProActive middleware must be Active so that it can be deployed
on the Computing Network.
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computation result) in the future. The listening is of type wait for any event
made by the method waitForAny(futureList) and is accomplished by waiting for
any event coming from P2PWorkers appearing in the list futureList. The event
is started with each termination of a task treatment. After that the P2PMaster
recovers the result produced by the future P2PWorker, it creates and reallocates
a new passive object to it.
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The chronology of events presented in (Fig. 11.5) is not really true because
all operations are in asynchronous mode i.e. an event of type redistribution can
arrive before other events of type distribution when one of P2PWorkers returns
back result before P2PMaster finishes distributing of all tasks. We can see well
on (Fig. 11.6) the sequence diagram of the chronology of all events of the tasks
distribution.

11.5.2 Communications

Communication between different components (P2PMaster and P2PWorkers)
is very important for its good functioning. We have seen previously that the
workers communicate frequently to ensure the freshness of the upper bound
and the migration of individuals. The use of classic communication between
P2PWorkers, i.e., by sending one message for each P2PWorker is not efficient
in this type of application where the communication cost is very high. If we use
the classical communication we will need to broadcast the same message to all
P2PWorkers in our computing pool. This procedure requires the traversal of the
whole P2PWorkers list (thousands or millions), in other words, each P2PWorker
must have one copy of all P2PWorkers taking part in the computation. This so-
lution is not interesting because of huge amount of time required by the traversal
of the entire list and the memory space necessary to store requiring when saving
the set of P2PWorkers while this space is to be minimized.

With ProActive, we opted for the communication groups with single di-
rection, non blocking and asynchronous methods invocation. We created BB-
WorkerGroup and GAWorkerGroup which are the two local representants of
a set of P2PWorker recipients of a message. BBWorkerGroup represents all
P2PWorkers participating in ParallelBB computation and GAWorkerGroup rep-
resents P2Pworkers participating in the exploration of subpopulations in the
ParallelGA. When a P2PWorker wants to send a message to its colleagues, it
passes by these two groups, which implement the same communication method
which is even implemented on all the P2PWorkers. We developed two commu-
nication methods: shareBestValue and shareSubPopulationallowing the workers
to share respectively the best value of the current solution (upper bound) and
their selected individuals (elite). A P2PWorker calls these two communication
methods in order to share their upper bound or subpopulation. Thus BBWork-
erGroup and GAWorkerGroup call this same method on the set of P2PWorkers
they represent.

11.5.3 New Arrivals (New Peers)

The dynamic availability of peers is one of the P2P networks characteristics
where the resources (here JVMs) join and leave frequently the system. Each JVM
is at the same time client and server for other JVMs. The ProActive middleware
manages the new coming peers in the system by a listener implemented with
the method (nodeCreated). P2PMaster implements this interface which listens
for eventually peers connections in the network. A P2P daemon is launched on
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each machine participating in the computation. When a new node is connected,
an AN is created there and one P2PWorker is established to receive the compu-
tation units. P2PMaster decides the affiliation of this new peer, indeed, it will
behave as a BBWorker or as GAWorker. P2PMaster adds this new P2PWorker
to the P2PWorkers set list and to the corresponding group of communication
(BBWorkerGroup or GAWorkerGroup). After that, if this new P2PWorker be-
longs to BBWorkerGroup it could be informed of the global upper bound. Other
P2PWorkers will be able to have an idea on the progress and the solutions ob-
tained by this new P2PWorker. Whatever the affiliation of this new peer, the
P2PMaster sends to it its task and will behave as other P2PWorkers. A new
peer, arriving at the computational network, adheres to the group of communi-
cation. The peers forming the old group of communication update their group
by adding this new peer. This operation is managed by P2PMaster which sends
to all the group of communication members the new configuration of the group,
i.e., the adding of this new peer. This operation allows new BBWorkerGroup
members to avoid the exploration of subtrees unnecessarily, this allows reduce
execution time. To obtain the real global upper bound, the new peer selects
randomly a peer and then sends its initial upper bound. If the upper bound of
this selected peer is inferior to the received one, it proceeds to its correction by
broadcasting the real global upper bound.

11.5.4 Fault Tolerance

The peers failure is taken into account by both ProActive (middleware-level)
and our application (application-level). With ProActive we create tow types of
servers: Resource server and Fault tolerance servers.

The resource server returns a free node that can host the recovered AO, this
server can store free nodes by two different ways:

• At deployment time: the user can specify in the deployment descriptor a
resource virtual node. Each node mapped on this virtual node will automat-
ically register itself as free node at the specified resource server.
• At execution time: the resource server can use an underlying P2P network

(see [1]) to reclaim free nodes when a hosting node is needed.

The fault tolerance servers are used for checkpointing operations, the local-
ization of AOs, and the failure detection.

In our application, when a peer disconnects, the P2PMaster sends its part of
calculation to one or more other available peer(s) and recover(s) only the first
returned solution of the same task and ignores other results representing the
same task. This process is performed at the end of the computation of all tasks.

11.6 Large Scale Deployment and Performance
Evaluation

In the following, we present the different experiments and obtained results of the
exact algorithm ParallelBB hybridized with the heuristic ParallelGA applied to
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the permutation flow-shop problem (PFSP) which is a reference problem in the
given its importance in many industrial areas.

11.6.1 PFSP Formulation

A Permutation Flow-Shop Problem (PFSP) is a scheduling in which all tasks
of all jobs are scheduled on all machines in the same order. The execution of
a job Ji on the machine Mk is called operation Oi,k and its execution time
will be noted pi,k, ti,k represents its starting date and ci,k its release time. We
designate also by ri,k =

∑
l<k pi,l the early instant in which the job Ji can start

its operation on Mk and by qi,k =
∑

l>k pi,l the latency duration (minimal time
selling between the end of Ji on Mk and the end of the total scheduling).

11.6.2 Modeling and Lower Bound Calculation

We applied our algorithm to the PFSP and we considered the total completion
time Makespan (CMax) cost function. In ParallelGA, an individual (permuta-
tion) is considered as a vector of jobs. The root of the tree generated by Par-
allelBB represents a configuration where no task is assigned to any machine. A
node with depth n will have a configuration with n assigned tasks.

The effectiveness of B&B algorithms resides in the use of a good estimation
of the optimal solution. M. R. Garey, D. S. Johnson and R. Sethi (Garey and
al., 1976) proved that the PFSP problem becomes NP-hard beyond 3 machines.
The calculation of the lower bound for a PFS problem is based on two results.
The first one is found by Johnson [27] (rule of Johnson). A transitive rule � is
defined as follows:

Ji � Jj ⇔ min(pi,1; pj,2) ≤ min(pi,2; pj,1) (11.1)

If Ji � Jj , then there exists an optimal scheduling for a FSP (P) in which
the job Ji precedes the job Jj [27]. Thus, the PFS problem with two machines
F2||Cmax can be solved in O(nlogn) [31]. The optimal solution is obtained by
sorting the jobs having the execution times on the first machine shorter than the
second in the ascending order. Then, sort jobs having their execution time on
the second machine shorter than on the first one in the descending order. This
result was extended by Jackson [28] and Mitten [29] for the resolution of a two
machines PFS problem with lags F2|lj, permut|Cmax where each job has a lag lj
which represents the minimal duration between tj,2 and cj,1. They demonstrated
that the optimal solution of this problem is obtained using the Johnson to the
values pi,1 + li for the jobs on the 1st machine and li + pi,2 on the 2nd one.

Ji � Jj ⇔ min(pi,1 + li; lj + pj,2) ≤ min(li + pi,2; pj,1 + lj) (11.2)

The most known lower bound for the PFS problem with m machines is the
bound proposed by Lageweg et al. [26]. They used the optimal solutions values



316 A. Bendjoudi et al.

for all 2 machines subproblems with lags. Given two machines Mk and Ml (with
c k < l), it is indeed possible to extract such problem posing:

pj,1 = pj,k; lj =
∑

k<μ<l

pj,μ; pj,2 = pj,l (11.3)

In practice, we consider all couples of machines Mk et Ml (with k < l) and
we extract for each couple a PFS with two machines lags substituting the values
pi,1 by pi,1+ li and pi,2 by li+pi,2. We notate P ∗

Ja(j, Mk, Ml) the Jackson-Mitten
optimal solution of the obtained subproblem considering the set of jobs j and
machines Mk and Ml. B.J. Lageweg et al obtained thus the lower bound (with
O(m2nlogn) complexity) which we used in our work :

LB(j) = max
1≤k<l≤m

{P ∗
Ja(j, Mk, Ml) + min

(i,j)∈j2,i�=j
(ri,k + qj,l)} (11.4)

11.6.3 Experiments

The studied problem instances are those of E.Taillard [37]. We treated the bench-
marks: ta 20 5 2, ta 20 5 3, ta 20 10 1, ta 20 10 2 and ta 100 5 1

4. Parameters of Par-
allelGA are fixed as follows: 500 individuals in the population, the size of each
subpopulation is fixed to 20, migrations occur every 10 generations with 10
migrants.

Table 11.1. Experimentation hardware platform

Site CPU characteristic Number Number
x number of CPU / node of nodes CPUs

Lille AMD Opteron 248, 2.2 GHz x 2 70 140
Lyon AMD Opteron 246, 2.0 GHz x 2 55 110
Nancy AMD Opteron 246, 2.0 GHz x 2 35 70
Orsay AMD Opteron 246, 2.0 GHz x 2 290 580
Rennes Intel Xeon 5148 LV, 2.33 GHz x 2 60 120

AMD Opteron 246, 2.0 GHz x 2 90 180
AMD Opteron 248, 2.2 GHz x 2 50 100

Nice AMD Opteron 246, 2.0 GHz x 2 55 110
AMD Opteron 275, 2.2 GHz x 2 50 100

Total 775 1510

We made large scale deployment of the application (more than 1500 proces-
sors) gathered on six geographically distributed sites located at (Lille, Rennes,
Orsay, Nice, Lyon and Nancy) belonging to the French grid GRID’5000 [2]. The
experimentation hardware platform characteristics are presented in Table 11.1.
As we said previously, our objective is the development of hybrid algorithm
4 ta i j k: a Taillard benchmark with i: number of jobs, j: number of machines and k:

the instance number.
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Table 11.2. Some obtained execution times

Number of Deployment ta 20 5 2 ta 20 5 3 ta 20 10 1 ta 20 10 2 ta 100 5 1

Processors Time

06 (1/5) 15 (3) 4 (492) 401 (1815) 1287 (277) 234 -
20 (5/15) 46 (10) 8 (409) 391 (170) 129 (111) 98 -
50 (15/35) 112 (16) 11 (277) 263 (100) 97 (59) 51 -
100(20/80) 234 17 193 81 50 -
200(40/160) 504 - 151 77 - -
300(60/240) 713 - 152 - - 7h

[5572]
600(100/400) 1949 - - - - 6h 57min

[5571]
1500(300/1200) 4186 - - - - 6h 57min

[5571]

to solve exactly complex instances of benchmarks with large scale deployment.
Here, we made this preliminary deployment just to show that the application is
scalable and can be used in this sense.

We made other deployments of our application on 6, 20, 100, 200 and 300 pro-
cessors on GRID’5000. In this experiments a portion of workers are assigned to
ParallelGA computation and the rest to ParallelBB. As shown in Section 11.4.3,
when GAWorkers terminate their calculation parts they join BBWorkers, so
after they terminate, ParallelBB exploits the whole pool of workers. The ap-
plication was launched in P2P mode where all processes run with the lowest
priority to reach one of P2P Computing characteristic which is the exploitation
of idle CPU cycles. Table 11.2 shows the execution times obtained by our hybrid
application compared to an older version of P2P non hybrid parallel branch and
bound algorithm [10]. The old times are presented in the table in parentesis.
In the first column we have the number of used processors (i/j): i number of
GAWorkers and j number of BBWorkers.

The first point we notice is that the hybridization improves efficiency. Com-
paring with the non hybrid method, practically, all benchmarks are solved more
efficiently when using hybridization. For example, the exact resolution of the
benchmark ta 20 10 01 on 20 machines took 129 seconds using the hybrid algo-
rithm whereas it was solved in 170 using non hybrid version. This same bench-
mark was solved in 97 seconds whereas it took 100 sec. The only exception is
when solving ta 20 05 02 it was solved three times more quickly on 6 machines
than on 20 and 5 times more efficient more than on 50. This can be explained if
we take a look on the situation of the solution regarding the space of solutions. It
was found in the 3rd node of the solutions tree, this means that the six machines
was sufficient to find the solution in short time, and the 50 machines take an
additional time to manage tasks and free all workers deployed.

In the second column we have deployment times (deployment time includes,
detection and handling of nodes and distribution of tasks). For small instances of
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benchmarks, we don’t need a large scale deployment, ta 20 5 2 was exactly solved
on 50 machines in 11 seconds whereas the deployment time is 112 seconds. This
is not the case for large instances where the deployment time is insignificant
compared to time of resolution. Though, instance ta100 5 1 wasn’t exactly solved,
but we remark easily that this time is negligible. The calculation of these two
instances wasn’t terminated, values in the table represent the time of calculation
and reached upper bound between square brackets.

11.7 Conclusions

Using exact methods for the resolution of COPs, such as B&B which is the
most used for an exact resolution of these problems, is very important. However,
their use on applications of industrial size is possible only by the use of a great
computational power. Hybridization and large scale parallelism based on the
use of Grid Computing or P2P Computing proves today a potential tool which
offers such power. Several factors have to be taken into account for a better
parallelization of these methods, for their implementations on a Peer-to-Peer
systems such as ProActive and for a better exploitation of the computing power.
(1) A study and a good choice of a suitable model of parallelism; (2) A good
management of the knowledge generated by these algorithms; (3) Exploitation
of all the tools that P2P middlewares offers for controlling of the computational
network.

In this chapter, we developed a parallel branch-and-bound algorithm hy-
bridized with a parallel genetic algorithm for resolution of COPs on a Peer-
to-Peer system. We applied it to the Permutation Flow-Shop problem which is
a reference problem in this area. We chose a high level parallelism of branch-
and-bound and a coarse grained parallel genetic algorithm. In this direction, we
developed ParallelBB, ParallelGA and a hybrid version based on master/worker
paradigm which is a most appropriate technique for the development of scientific
applications dedicated to an intensive computing on large scale systems. The per-
formances of the algorithm were improved with the knowledge sharing between
the workers. This was realized by the use of the master/worker paradigm with
direct communications between workers.

We implemented the peer-to-peer version of our algorithms on top of ProAc-
tive and we took benefits from the maximum of its functionalities. We took
advantage of the communication groups and the asynchronous methods invoca-
tion in single direction for the knowledge sharing between workers and master.
We used the listeners and daemons in order to take into account the new arrivals,
their detection and the management of their connections. Finally, we used the fu-
ture active objects for collecting of computation results. The experiments made
on a P2P network managed by ProActive showed the interest of collaborative
work between nodes of the computation network as well as the importance of hy-
bridization. We have shown the ability of our application to support scalability
and dynamic availability of peers in the network.
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As a perspective, we project to extend our work to other type of COPs
(Quadratic Assignment Problems QAP and Quadratic three dimensional As-
signment Problems Q3AP). In addition, we plan to improve the performances of
ParallelBB with: (1) The load balancing of the tasks generated by the algorithm
so that they become more equitable; (2) The production of several forms of gran-
ularity of tasks and their distribution to the corresponding station (Calculator,
PC, laptop...).
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Universitat Politècnica de Catalunya
C/Jordi Girona 1-3, 08034 Barcelona, Spain
fatos@lsi.upc.edu

Summary. Peer-to-peer (P2P) topology has significant influence on the performance,
search efficiency and functionality, and scalability of the application. In this Chapter,
we introduce the problem of neighbor selection in peer-to-peer networks using two
population based meta-heuristics: Particle Swarm Optimization (PSO) algorithms and
Genetic Algorithms (GAs). Both a single objective and a multi-objective problem are
formulated, and then the P2P neighbor selection problem is defined. We present the
neighbor selection strategy based on PSO and GA algorithm. Each particle encodes the
upper half of the peer-connection matrix through the undirected graph, which reduces
the search space dimension. We also discuss the characteristics of ergodicity during
particle swarm searching process. We also illustrate the algorithm performance and
trace its feasibility and effectiveness with the help of some examples.

Keywords: P2P computing, Neighbor selection, Multi-objective optimization,
Population-based meta-heuristics, Genetic Algorithms, Particle Swarm Optimization.

12.1 Introduction

Peer-to-peer computing has attracted great interest and attention of the comput-
ing industry and gained popularity among computer users and their networked
virtual communities [1]. It is no longer just used for sharing music files over the
Internet. Many P2P systems have already been built for some new purposes and
are being used. An increasing number of P2P systems are used in corporate net-
works or for public welfare (e.g. providing processing power to fight cancer) [2].
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P2P comprises peers and the connections between these peers. These connec-
tions may be directed, may have different weights and are comparable to a graph
with nodes and vertices connecting these nodes. Defining how these nodes are
connected affects many properties of an architecture that is based on a P2P
topology, which significantly influences the performance, search efficiency and
functionality, and scalability of a system. A common difficulty in the current
P2P systems is caused by the dynamic membership of peer hosts. This results
in a constant reorganization of the topology [3, 4, 5, 6, 7].

Kurmanowytsch et al. [8] developed the P2P middleware systems to provide
an abstraction between the P2P topology and the applications that are built
on top of it. These middleware systems offer higher-level services such as dis-
tributed P2P searches and support for direct communication among peers. The
systems often provide a pre-defined topology that is suitable for a certain task
(e.g., for exchanging files). Koulouris et al. [9] presented a framework and an
implementation technique for a flexible management of peer-to-peer overlays.
The framework provides means for self-organization to yield an enhanced flex-
ibility in instantiating control architectures in dynamic environments, which is
regarded as being essential for P2P services to access, routing, topology forming,
and application layer resource management. In these P2P applications, a central
tracker decides about which peer becomes a neighbor to which other peers.

Genetic Algorithms (GAs) are adaptive heuristic search algorithm premised
on the evolutionary ideas of natural selection. GAs have been widely studied,
experimented and applied in many fields in engineering worlds. Finding optimal
parameters for many real world problems prove difficult for traditional methods
but is suitable for GAs [10]. PSO (PSO) algorithm is inspired by social behavior
patterns of organisms that live and interact within large groups. In particular,
PSO incorporates swarming behaviors observed in flocks of birds, schools of fish,
or swarms of bees, and even human social behavior, from which the Swarm
Intelligence(SI) paradigm has emerged [11, 12]. It could be implemented and
applied easily to solve various function optimization problems, or the problems
that can be transformed to function optimization problems. As an algorithm,
the main strength of PSO is its fast convergence, which compares favorably with
many global optimization algorithms [13, 14]. In this chapter, we introduce the
P2P neighbor-selection problem based GA and PSO for P2P networks.

This chapter is organized as follows. We formulate the problem in Section 12.2.
The considered approaches based on GAs and PSO algorithms are presented in
Section 12.3. In Section 12.4, experiment results and discussions are provided in
detail, followed by some conclusions in Section 12.5.

12.2 Neighbor-Selection Problem in P2P Networks

Based on existing research [15, 16, 17, 18, 19, 20], we formulate the neighbor-
selection problem for P2P networks. We introduce first the model of P2P net-
works, and then discuss metrics for measuring neighbor selection.
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12.2.1 Modelling P2P Networks

P2P networks can be modelled by an undirected graph G = (V, E) where
the vertex set V represents units such as hosts and routers, and the edge set
E represents physical links connecting pairs of communicating units. Further,
f : V → {1, · · · , n} is a labelling of its nodes, where n = |V |. For instance,
G could model the whole or part of the Internet. Given an undirected graph
G = (V, E) modelling an interconnection network, and a subset X ⊆ V (G) of
communicating units (peers), we can construct a corresponding weighted graph
D = (V, E), where V (D) = X , and the weight of each uv ∈ E(D) is equal to
the length of a shortest path between peer u and peer v in G. Usually we start
with a physical network G (perhaps representing the Internet), and then choose
a set of communicating peers X . The resulting distance graph D is the basis
for constructing a P2P graph H = (V, E), which is done as follows. The vertex
set V (H) will be the same as V (D), and edge set E(H) ⊆ D(G). The key issue
here is how to select E(H). If E = [eij ]n×n is such that eij = 1 if (i, j) ∈ E,
and 0 otherwise, i.e., E is the incidence matrix of G, then the neighbor-selection
problem is to find a permutation of rows and columns which brings all non-zero
elements of E into the optimal possible interconnection around the diagonal.

12.2.2 Metrics

In P2P networks, specially for file sharing, an interested file is divided into many
fragments. The size of each fragment ranges from several hundred kilobytes to
several megabytes. When a new peer joins the network, it begins to download
fragments from other peers. As long as it obtains one fragment of the file, the
new peer can start to serve other peers by uploading fragments. Since peers
are downloading and uploading at the same time, when the network becomes
large, although the demands increase, the service provided by the network also
increases [21]. Given N peers, a graph G = (V, E) can be used to denote a
network, where the set of vertices V = {v1, · · · , vN} represents the N peers and
the set of edges E = {eij ∈ {0, 1}, i, j = 1, · · · , N} represents their connectivity
: eij = 1 if peers i and j are connected, and eij = 0 otherwise. For an undirected
graph, it is required that eij = eji for all i 
= j, and eij = 0 when i = j. Let C be
the entire collection of content fragments, and {ci ⊆ C, i = 1, · · · , N} denotes
the collection of the content fragments each peer i shares. The disjointness of
contents from peer i to peer j is denoted by ci \ cj , which can be calculated as:

ci \ cj = ci − (ci ∩ cj). (12.1)

This disjointness can be interpreted as the collection of content fragments that
peer i has but peer j does not. In other words, it denotes the fragments that peer
i can upload to peer j. Note that the disjointness operation is not commutative,
i.e., ci \ cj 
= cj \ ci. Let |ci \ cj | denote the cardinality of ci \ cj, which is the
number of content fragments peer i can contribute to peer j. In order to maximize
the disjointness of content, we maximize the number of content fragments each
peer can contribute to its neighbors by determining the connections eij ’s. Let
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us define εij ’s to be sets such that εij = C if eij = 1, and εij = ∅ (null set),
otherwise. Therefore we have the following optimization problem:

f(x) = max
E

N∑

j=1

∣
∣
∣

N⋃

i=1

(ci \ cj) ∩ εij

∣
∣
∣ (12.2)

It is desirable to select peers with the most mutually disjoint collection of con-
tent fragments as neighbors. However, downloading the file fragments between
each peer pair would consume a lot of bandwidth and connection cost, etc. Let
τij denote the cost coefficient between peers i and j. The performance of the
whole system can be expressed as follows. The neighbor selection strategy is
expected not only to assure maximum content availability but also to minimize
the downloading cost to improve the overall throughput of the system. Therefore
we have the following multi-objective optimization problem:

f1(x) = max
E

N∑

j=1

∣
∣
∣

N⋃

i=1

(ci \ cj) ∩ εij

∣
∣
∣ (12.3)

f2(x) = min
E

N∑

j=1

N∑

i=1

τij |(ci \ cj)||εij | (12.4)

In the network, every node is a potential neighbor of each other node since
the network’s topology is a logical one. So the full connection is an ideal solution
for the peer’s connectivity. For the networks, however, we have to consider some
constraints [3, 20]:

• based on the underlying network characteristics, i.e., delay or capacity of
actual links;
• based on location of data and services;
• based on the nodes’s capabilities of managing peers, e.g., the number of direct

neighbors a node can maintain; some peers are tied down since they could
possess relatively more content fragments. Note that this resource constraint
can be independent of the underlying network.

In the environment, the maximum number of each peer needs to be considered,
i.e., each peer i will be connected to a maximum of di neighbors, where di < N .
Therefore there are two constraints for each peer:

N∑

j=1

eij ≤ di, for all i

N∑

i=1

eij ≤ dj , for all j

(12.5)

Definition 1. A neighbor-selection problem in P2P networks problem can be
defined as

∏
= (N, C, M, F, s), in which N is the number of peers, C is the entire
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collection of content fragments, M is the maximum number of the peers, which
each peer can connect steadily in the session, F is a single objective to optimize
the number of swap fragments, or multi-objective to optimize the number of swap
fragments, and to minimize the downloading cost; s denotes the environment
constraints. The key components are operations, machines and data-hosts. A
P2P state is determined by N , C and M , i.e. S = (N, C, M). For the sake of
simplify, the neighbor-selection problem can be also represented in triple

∏
=

(S, F, s).

12.3 P2P Neighbor-Selection Strategy

GA and PSO algorithms share many similarities [22]. In GA, a population of
candidate solutions (for the optimization task to be solved) is initialized. New so-
lutions are created by applying reproduction operators (mutation and crossover).
The fitness (how good the solutions are) of the resulting solutions are evalu-
ated and suitable selection strategy is then applied to determine which solutions
will be maintained to the next generation. PSO algorithm is inspired by social
behavior patterns of organisms that live and interact within large groups. It
incorporates swarming behaviors observed in flocks of birds, schools of fish, or
swarms of bees, and even human social behavior. In this section, we discuss P2P
neighbor selection strategy based on PSO and GA algorithms.

12.3.1 Particle Swarm Algorithm for Single Objective Neighbor
Selection

To apply the particle swarm algorithm successfully for the NS problem, one of
the key issues is the mapping of the problem solution into the particle space,
which directly affects its feasibility and performance. Usually, the particle’s po-
sition is encoded to map each dimension to one directed connection between
peers, i.e. the dimension is N ∗N . But the neighbor topology in P2P networks
is an undirected graph, i.e. eij = eji for all i 
= j. We set up a search space of D
dimension as N ∗ (N − 1)/2. Accordingly, each particle’s position is represented
as a binary bit string of length D. Each dimension of the particle’s position
maps one undirected connection. The domain for each dimension is limited to
0 or 1.

The particle swarm model consists of a swarm of particles, which are initialized
with a population of random candidate solutions. They move iteratively through
the D-dimension problem space to search the new solutions, where the fitness f
can be measured by calculating the number of swap fragments in the potential
solution. Each particle has a position represented by a position-vector pi (i is
the index of the particle), and a velocity represented by a velocity-vector vi.
Each particle remembers its own best position so far in a vector p#

i , and its
j-th dimensional value is p#

ij . The best position-vector among the swarm so far
is then stored in a vector p∗, and its j-th dimensional value is p∗j . When the
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particle moves in a state space restricted to zero and one on each dimension, the
change of probability with time steps is defined as follows:

P (pij(t) = 1) = f(pij(t− 1), vij(t− 1), p#
ij(t− 1), p∗j (t− 1)), (12.6)

where the probability function is

sig(vij(t)) =
1

1 + e−vij(t)
. (12.7)

At each time step, each particle updates its velocity and moves to a new
position according to Eqs. (12.8) and (12.9):

vij(t) = wvij(t− 1) + c1r1(p
#
ij(t− 1)− pij(t− 1))

+ c2r2(p∗j (t− 1)− pij(t− 1))
(12.8)

pij(t) =

{
1 if ρ < sig(vij(t));
0 otherwise.

(12.9)

where c1 is a positive constant, called coefficient of the self-recognition com-
ponent, c2 is a positive constant, called coefficient of the social component; r1
and r2 are random numbers in the interval [0,1]. The variable w is called as the
inertia factor, whose value is typically setup to vary linearly from 1 to near 0
during the iterated processing and ρ is a random number in the closed interval
[0, 1]. From Eq. (12.8), a particle decides where to move next, considering its
current state, its own experience, which is the memory of its best past position,
and the experience of its most successful particle in the swarm. The particle has
a priority levels according to the order of peers. The sequence of the peers will
be not changed during the iteration. Each particle’s position indicates the po-
tential connection state. The pseudo-code for the particle swarm search method
is illustrated in Algorithm 12.1.

In multi-dimensional search space, the characteristics of ergodicity is of vital
importance to an algorithm. We discuss them for the particle swarm optimiza-
tion. Clerc and Kennedy have stripped the particle swarm model down to a most
simple form [23, 24]. If the self-recognition component c1 and the coefficient of
the social-recognition component c2 in the particle swarm model are combined
into a single term c, i.e. c = c1 + c2, the best position pi can be redefined as
follows:

pi ←
(c1pi + c2pg)

(c1 + c2)
(12.10)

Then, the update of the particle’s velocity is defined by:

vi(t) = vi(t− 1) + c(pi − xi(t− 1)) (12.11)
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Algorithm 12.1. Neighbor Selection Algorithm Based on Particle Swarm
01.Initialize the size of the particle swarm n, and other parameters.
02.Initialize the positions and the velocities for all the particles randomly.
03.While (the stopping criterion is not met) do
04. t = t + 1;
05. For s = 1 to n
06. For i = 1 to N
07. For j = 1 to N
08. If j == i, eij = 0;
09. If j < i, a = j; b = i;
10. If j > i, a = i; b = j;
11. eij = p[a∗N+b−(a+1)∗(a+2)/2];
12. if eij = 1, calculate ci \ cj ;
13. Calculate f = f +

∣
∣
∣
⋃N

i=1(ci \ cj) ∩ εij

∣
∣
∣;

14. p∗ = argminn
i=1(f(p∗(t − 1)), f(p1(t)),

15. f(p2(t)), · · · , f(pi(t)), · · · , f(pn(t)));
16. For s = 1 to n
17. p#

i (t) = argminn
i=1(f(p#

i (t − 1)), f(pi(t));
18. For d = 1 to D
19. Update the d-th dimension value of pi and vi

20. according to Eqs. (12.8) and (12.9);
21. End While

The system can be simplified even further by using yi(t − 1) instead of pi −
xi(t− 1). Thus, the reduced system is then:

{
v(t) = v(t− 1) + cy(t− 1)
y(t) = −v(t− 1) + (1− c)y(t− 1)

This recurrence relation can be written as a matrix-vector product, so that

[
v(t)
y(t)

]

=
[

1 c
−1 1− c

]

·
[
v(t− 1)
y(t− 1)

]

Let

Pt =
[
vt

yt

]

and

A =
[

1 c
−1 1− c

]

we have an iterated function system for the particle swarm model:

Pt = A ·Pt−1 (12.12)
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Fig. 12.1. Norm of A

Thus, the system is completely defined by A. Its norm ‖A‖2 (also written ‖A‖)
is determined by c. The relationship of A and its dependence on c is illustrated
in Fig. 12.1.

Note that it is possible to find different trajectories of the particle for var-
ious values of c. Fig. 12.2(a) illustrates the system for a torus when c=2.9;
Fig. 12.2(b), a hexagon with spindle sides when c=2.99; Fig. 12.2(c), a trian-
gle with spindle sides when c=2.999; Fig. 12.2(d) and a simple triangle when
c=2.9999. As depicted in Fig. 12.2, the iteration time step used is 100 for all
the cases. Another system sensitivity instance is illustrated in Fig. 12.3. It is to
be noted that Figs. 12.2 and 12.3 illustrate only some 2-dimensional representa-
tions of the iterated process. A comparison between 2D and 3D is illustrated in
Fig. 12.4.

12.3.2 Genetic Algorithm for Multi-objective Neighbor Selection

Multi-objective GAs are very popular multi-objective techniques, which nor-
mally exhibit good overall performance. Many multi-objective optimization
techniques using evolutionary algorithms have been proposed in recent years
[22, 25, 26]. Given a P2P state S, the multi-objective neighbor selection is not
only to maximize Eq. (12.3) but also to minimize Eq. (12.4) with the constraint
in Eq. (12.5).

Similarly, we adopt the upper-half-triangle encoding representation in our
genetic algorithm for the NS problem. We also set up a search space of D di-
mension as N ∗(N−1)/2. Accordingly, each individual is represented as a binary
bit string of length D. The pseudo-code for our P2P neighbor selection method
is illustrated in Algorithm 12.2.



12 P2P Neighbor Selection Using Single 331

−15 −10 −5 0 5 10 15
−10

−5

0

5

10

v

y

−10 −5 0 5 10
−5

0

5

v

y

−10 −5 0 5 10 15
−10

−5

0

5

10

v

y

−20 −10 0 10 20
−10

−5

0

5

10

15

v

y

(a)

(d)

(b)

(c)
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Algorithm 12.2. Neighbor Selection Algorithm Based on Genetic Algorithm
01. Initialize the population, and other parameters.
02. While (the stopping criterion is not met) do
03. Evaluate();
04. for i = 1 to N
05. for j = 1 to N
06. if j == i, eij = 0;
07. else if j < i, a = j; b = i;
08. else if j > i, a = i; b = j;
09. eij = p[a∗N+b−(a+1)∗(a+2)/2];
10. If eij = 1, calculate ci \ cj ;
11. Calculate f2 = f2 + τij |(ci \ cj)|;
12. Next j

13. calculate f1 = f1 +
∣
∣
∣
⋃N

i=1(ci \ cj) ∩ εij

∣
∣
∣;

14. Rank();
15. If nondomCtr> MaxArchiveSize, maintenance-archive();
16. Generate-new-pop();
17. Crossover();
18. Mutation();
19. t + +;
20. If rank == 1 output the fitness;
21. End While

12.4 Algorithm Performance Evaluation

To illustrate the effectiveness and performance of the considered algorithms, we
illustrate the neighbor-selection process and results through some test problems.
The specific parameter settings of the algorithms are described in Table 12.1.
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Table 12.1. Parameter settings for the algorithms

Algorithm Parameter name Value
Size of the population int(10 + 2sqrt(D))

GA Probability of crossover 0.8
Probability of mutation 0.08
Swarm size int(10 + 2sqrt(D))
Self coefficient c1 2

PSO Social coefficient c2 2
Inertia weight w 0.9
Clamping Coefficient ρ 0.5

12.4.1 Single Objective Neighbor Selection

We first illustrate an execution trace of the algorithm for the NS problem. A file
of size 7 MB is divided into 14 fragments (512 KB each) to distribute, 6 peers
download from the P2P networks, and the connecting maximum number of each
peer is 3, which is represented as (6, 14, 3) problem. In some session, the state of
distributed file fragments is as follows:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 4 0 6 7 8 0 10 0 12 0 14
0 0 0 4 5 0 7 0 9 0 11 0 13 0
0 2 0 0 0 6 0 0 0 0 11 12 0 14
0 2 3 4 0 6 0 0 0 0 11 0 0 0
0 2 0 0 0 0 7 8 0 10 0 12 0 14
1 2 0 0 5 0 0 0 9 10 11 0 13 14

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Fig. 12.5. Performance for the NS (25, 1400, 12)
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The optimal result search by the proposed algorithm is 31, and the neighbor
selection solution is shown in the matrix below:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 2 3 4 5 6
1 0 0 0 1 1 1
2 0 0 0 0 1 1
3 0 0 0 1 1 1
4 1 0 1 0 0 0
5 1 1 1 0 0 0
6 1 1 1 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

We also tested three other representative instances (problem (25,1400,12),
problem (30,1400,15) and problem (35,1400,17)). In our experiments, the
algorithms used for comparison were GA and PSO.

The PSO/GA algorithms were repeated 4 times with different random seeds.
Each trial had a fixed number of 50 / 80 iterations. Other specific parameter
settings of the algorithms are described in Table 12.1. The average fitness val-
ues of the best solutions throughout the optimization run were recorded. The
average and the standard deviation were calculated from the 4 different trials.
Figs. 12.5, 12.6 and 12.7 illustrate the PSO/GA performance during the search
processes for the NS problem. As evident, PSO obtained better results much
faster than GA, especially for large scale problems.

12.4.2 Multi-objective Neighbor Selection

We demonstrate an execution trace of the algorithm for the first NS problem
in last subsection, i.e., (6, 14, 3) problem. In this problem, the network cost is
considered; the corresponding cost matrix is as follows:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 5 2 4 1 0
5 0 3 0 2 2
2 3 0 0 0 0
4 0 0 0 5 2
1 2 0 5 0 10
0 2 0 2 10 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

The PSO/GA algorithms were repeated 3 times with different random seeds.
Each trial had a fixed number of 200 iterations. The average fitness values of
the best (rank = 1) solutions throughout the optimization run were recorded.
The performance output is illustrated in Fig. 12.13 by the proposed algorithm.
We also tested other five representative instances (problem (6,60,3), problem
(25,300,12), problem (25,1400,12), problem (30,300,15), problem (30,1400,15))
further. Figs. 12.8, 12.9, 12.10, 12.11 and 12.12 illustrate the GA/PSO perfor-
mance during the search processes for the NS problem. As evident, GA usually
obtained better results than PSO.
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12.5 Conclusions

In this chapter, we introduced the problem of neighbor selection in peer-to-peer
networks using a Particle Swarm Optimization and Genetic Algorithms. We first
introduced the model of Peer-to-Peer networks and discussed measuring metrics
for P2P neighbor selection. Both a single and a multi-objective formulations are
given, and then the P2P neighbor selection problem is defined. In the considered
approaches, we presented an upper-half-triangle encoding representation method.
The particle/individual was encoded by the upper half matrix of the peer con-
nection through the undirected graph, which reduces the dimension of the search
space. We evaluated the performance of the algorithms. The results indicate that
PSO usually required shorter time than GA, specially for large scale problems.
PSO could be an ideal approach for solving the single objective NS problem, while
GA usually obtain better results than PSO in the multi-objective NS problems.
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Summary. In this chapter, we propose a novel resource-scheduling strategy capable of
handling multiple resource requirements for jobs that arrive in a Grid Computing Envi-
ronment. In our proposed algorithm, referred to as Multi-Resource Scheduling (MRS)
algorithm, we take into account both the site capabilities and the resource requirements
of jobs. The main objective of the algorithm is to obtain a minimal execution schedule
through efficient management of available Grid resources. We introduce the concept of
a 2-dimensional virtual map and resource potential using a co-ordinate based system.
To further develop this concept, a third dimension was added to include resource avail-
abilities in the Grid environment. Based on the proposed model, rigorous simulation
experiments shows that the strategy provides excellent allocation schedules as well as
superior avoidance of job failures by at least 55%. The aggregated considerations is
shown to render high-performance in the Grid Computing Environment. The strategy
is also capable of scaling to address additional requirements and considerations without
sacrificing performance. Our experimental results clearly show that MRS outperforms
other strategies and we highlight the impact and importance of our strategy.

Keywords: Multiple resource scheduling, Resource requirements, Minimal execution
schedule, 2-dimensional virtual map.

13.1 Introduction

As computing systems has evolved from single monolithic systems to the net-
worked multi-core systems of today, distributed computing has began to make an
impact beyond research and has grown into the commercial space. This growth
has accelerated the usage of distributed computing systems either as dedicated
clusters, or as workstations that share its computing resources with an interac-
tive user. The usage of Grids [3] adds further complexity into these two classes
of systems by considering geographical separation, multi-organizational identity
management as well as resource co-ordination.

Vendors such as IBM, HP and Sun Microsystems have all introduced hard-
ware solutions that aims to effectively lower the cost-per-gigaflop of processing
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while maintaining high performance using locally distributed systems. Addi-
tionally, solution vendors such as Sybase, DataSynpase and United Devices have
also further pushed the envelope of distributed computing beyond research and
academia, moving traditionally local resources such as memory, disk and CPUs
to a wide area distributed computing platform sharing these very same resources
for commercial workloads. Consequently, what had used to be optimal in per-
formance for a local environment has suddenly become a serious problem when
high latency networks, uneven resource distributions, and low node reliability
guarantees, are added into the system.

Allocation strategies for such distributed environments are also affected as
more resources and requirements have to be addressed in a Grid system. Cou-
pled with un-reliable information availability and possibilities of failures, such
environments has also resulted in failure of traditional scheduling algorithms
where changes adversely affects the robustness of scheduling algorithms that are
available for Grids.

In this chapter, we propose a novel scheme that considers various resource
requirements of jobs while taking into consideration the distributed computation
environment where the job resides in. The technique we propose shall then devise
an allocation, which can be used to provide what it believes as the most efficient
job execution sequence to handle the jobs. Below we summarize our contributions
in this chapter.

13.1.1 Our Contributions

We propose a novel methodology referred to as Multiple-Resource-Scheduling
(MRS) strategy that would enable jobs with multiple resource requirements to
be run effectively in a Grid Computing Environment (GCE). A job’s resource de-
pendencies in computational, data requirements and communication overheads
will be considered. A parameter called Resource Potential is also introduced to
ease in situations where in inter-resource communication relations need to be
addressed. An n-dimensional resource aggregation and allocation mechanism is
also proposed. The resource aggregation index, derived from the n-dimensional
resource aggregation method, and the Resource Potential sufficiently allows us
to mathematically describe the relationship of resources that affects general job
executions in a specific dimension into a single index. Each dimension is then
put together to form an n-dimensional virtual map that allows us to identify
the best allocation of resources for the job. The performance of such a schedul-
ing algorithm promises respectable waiting times, response times, as well as
an improved level of utilization across the entire GCE. The number of dimen-
sions considered depends on the number of job related attributes we wish to
schedule for.

We evaluate the performance of our proposed strategy firstly in 2 dimensions,
namely computation and data, while addressing requirements of resources such
as, FLOPS, RAM, Disk space, and data. We study our strategy with respect



13 An Adaptive Co-ordinate Based Scheduling Mechanism 343

to several influencing factors that quantify the performance. We then further
extend MRS into a third dimension to accommodate availability considerations
in the Grid environment. Our study shows that MRS out performs most of the
commonly available schemes in place for a GCE.

The organization of this chapter is as follows. In Section 13.2, we describe
the Grid Computing Environment and in Section 13.3 we introduce our MRS
strategy and algorithm. Section 13.4 evaluates the performance of both MRS in
2 and 3 dimensions. Section 13.5 concludes the chapter.

13.2 Grid Environment Model

In this section, we define the GCE in which the MRS strategy was designed.
We first clearly identify certain key characteristics of resources as well as the
nature of jobs. A GCE comprises many diverse machine types, disks/storage,
and networks. In our resource environment, we consider the following.

1. Resources can be made up of individual desktops, servers, clusters or large
multi-processor systems. They can provide varying amounts of CPU com-
puting power, RAM, Hard disk space and bandwidth. Communication to
individual nodes in the cluster will be done through a Local Resource Man-
ager (LRM). We assume that the LRM will dispatch a job immediately
when instructed by the Grid Meta-Scheduler (GMS). The GMS thus treats
all resources exposed under a single LRM as a single resource. We find this
assumption to be reasonable as GMS usually does not have the ability to
directly contact resources controlled by the LRM.

2. Negligible propagation delay of information is assumed in the GCE. We
also assume that every node in the GCE is able to execute all jobs when
evaluating the performance of the MRS strategy.

3. Each computation resource is connected to each other through networks
which are possibly asymmetrical in bandwidth.

4. All resources have prior agreement to participate on the Grid. From this,
we safely assume an environment whereby all resources shared by sites are
accessible by every other participating node in the Grid if required to do so.

5. In our simulations, we assume that the importance of the resources with
respect to each other is identical.

6. The capacity for computation in a CPU resource is provided in the form
of GFlops. While we are aware that this is not completely representative
of a processor’s computational capabilities, it is at current one of the most
basic measure of performance on a CPU. Therefore, this is used as a gauge
to standardize the performance of different CPU architectures in different
sites. However, the actual units used in the MRS strategy does not require
actual performance measures, rather, it depends on relative measures to the
job requirements. We will show how it is done in later sections.

The creation of the job environment is done through the investigation of the
workload models available in the Parallel Workload Archive Models [14] and
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the Grid workload model available in [16]. The job characteristics are thus de-
fined by the set of parameters available in these models and complemented with
additional resource requirements that are not otherwise available in these two
models. Examples of these resources includes information such as job submission
locations and data size required for successful execution of the task. In our job
execution environment, we assume the following.

1. Resource requirement for a job does not change during execution and are
only of (a) Single CPU types, or (b) massively parallel types written in either
MPI such as MPICH1 or PVM2.

2. The job resource estimates provided are the upper bound of the resource
usage of a given job.

3. Every job submitted can have its data-source located anywhere within the
GCE.

4. A job submitted can be scheduled for execution anywhere within the GCE
as applications are assumed to be available in all sites.

5. Jobs resource requirements are divisible into any size prior to execution.
6. Every job also has a data requirement where-by the main data source and

size is stated.
7. The effective run time of a job is computed from the time the job is submit-

ted, till the end of its result file stage-out procedure. This includes the time
required for the data to be staged in for execution and the time taken for
inter-process communication of parallel applications.

8. Resources are locked for a job execution once the distribution of resources
start and will be reclaimed after use.

A physical illustration of the resource environment that we consider is shown in
Fig. 13.1, and the resource view of how the Grid Meta-Scheduler will access all
resources through the LRM is shown in the Fig. 13.2.

In such an environment, we consider Failure to be the breakdown of network
communication between computing resources, thereby leading to a loss in status
updates in the progress of an executing job. This failure can be due to a variety
of reasons such as hardware or software failures. We do not specifically identify
the cause of the failure, but generalize it for any possible kind. We also assume
that a failed resource will be restarted and all history of past executions will be
cleared.

We take the view of the resource by an external agent in order to classify
if a resource has entered a state of a general failure or has recovered from its
unavailable failed state. Thus, under these assumptions, we are able to break
down the participation of a resource in a GCE into the following stages:-

1. Resource becomes available to the GCE
2. Resource continues to be available pending that none of the components

within itself has failed
1 MPICH: http://www-unix.mcs.anl.gov/mpi/mpich/
2 Parallel Virtual Machines: http://www.csm.ornl.gov/pvm/pvm home.html
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Fig. 13.1. Illustration of a physical network layout of a GCE

Fig. 13.2. Resource view of physical environment with access considerations
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Fig. 13.3. Resource Life Cycle Model for resources in the GCE

3. Resource encounters a failure in one of its components and goes offline for
maintenance and fix

4. Resource goes through a series of checks, replacements or restarts to see if
it is capable to re-join the GCE

5. Resource comes on-line once it is capable and becomes available to the GCE
(return to first stage)

From the above, it was observed that in Stages (2) and (4), the resource un-
dergoes a period of uncertainty. This uncertainty stems from the fact that the
resource probably might not fail or recover for a certain period of time. Based on
these stages the model presented in [6] was constructed. The Resource Life Cycle
(RLC) Model shown in Fig. 13.3 identifies the stages where by Grid resources
under-go cycles of failures and recovery, and also accounts for the probabilities
of each resource being able to recover or fail in the next epoch of time. Thus
using this model, we are able to describe a general form of resource failure that
would cause a loss of job control or connectivity to the said resource. This in
turn affects the capacity of the GCE.

13.3 Scheduling Strategy

From the Grid Environment Model, we note that the system environment of the
Grid consists of heterogeneous nodes. This results in an environment whereby a
wide range of resources are available. These resources may or may not be well
connected to each other depending on network connectivity and thus require
proper allocation and grouping before jobs can be executed efficiently.

MRS addresses the various job requirements and resource capabilities by di-
viding decision factors into separate dimensions. By using some performance
metrics, it then decides which resources the jobs would be best dispatched to.
It combines several inter-dependent factors within each selected dimension and
simplifies it into a single index which is then used to decide how a job is to
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be sent or distributed to the resources. MRS also treats each submitted job as
an independent entity and does not address work-flow requirements of any ap-
plication. We feel that this is done without any loss of generality as work-flow
requirements should be addressed at an orchestration layer independent of the
scheduling middle-ware. With MRS always allocating every job to sites that best
provides its resources, it ensures that the job execution environment will remain
optimal for both serial as well as parallel jobs.

The jobs request and site representations of CPU resources is done in terms
of GFLOPs as an indication of performance. Future changes in unit represen-
tations will not affect the strategy as the aggregation algorithm will result in
dimensionless indexes as long as the request and site resource representation
units are the same. This applies to all other resources shared within MRS.

In this chapter, we first consider 2 dimensions (2D) within MRS and then
extend it to a third dimension (3D). The two basic dimensions (1) Computation,
and (2) Data are used in our design. These two dimensions are chosen due to
the general requirement to achieve faster computation through proper resource
allocation such as GFLOPs, RAM and disk, and better data resource allocation
to achieve higher I/O throughput. It is to be noted that these two components
are highly related to each other in the scheduling process. Each of them on its
own, would be unable to provide optimality in resource allocation. Aggregation
of the various available resources are then combined into two major indices based
on these two basic dimensions. We refer to these indices as the Computational
and Data Index respectively.

The third dimension of capacity is subsequently added to MRS as another
component that affects the optimality of the allocation strategy. While in an
ideal GCE, this dimension can be ignored, the inclusion of this dimension would
allow better representation of how an allocation strategy can adapt dynami-
cally to changing GCEs. This makes the allocation strategy much more versatile
compared to traditional algorithms.

The Computational and Data Index allows us to create a 2D plot which
describes the virtual topology, which we call a Virtual Map, of the GCE. The
distance to the origin will describe the matching proximity of the resource to the
job. Similarly, the extension of the third dimension to include the availability of
resources extends the Virtual Map into a Virtual Space. The most suited resource
providers will continue to be the sites whereby it is located nearest to the origin.
The sections below will demonstrate how we construct the two basic dimensions
and the process of aggregation that leads to the final aggregated Indexes used in
the Virtual Map. A description of the simplicity of extending this to a Virtual
Space is then described.

13.3.1 Computation Dimension

Resources in the computation dimension consist of entities that would impact
the efficient computation of a job. Each resource is in turn represented by a
capability value and a requirement value. In our simulations, we make use of
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the following allocatable resources as basis for scheduling in the computation
dimension:

• GFLOP (C)
• RAM (M)
• Disk space (F )

However, we note that this is insufficient to represent a collection of sites and
how they can possibly inter-operate with each other. A job submitted to a poorly
connected site will be penalized when job fragmentation occurs or when the data
required for processing is located in another location.

In order to minimize the detrimental effects in such cases, we introduce a pa-
rameter referred to as the Resource Potential. This is to assist in the evaluation
of the Computation Index. We denote m as the total number of sites in a GCE.
The potential, denoted as Pi , of a resource Ri quantifies the level of network
connectivity between itself and its neighboring sites. For simplicity, we assume
that the network latencies as well as the communication overhead of a resource
is inversely proportional to its bandwidth. We refer to the Resource Potential,
Pi of a resource Ri, as a form of “Virtual Distance”, where 1 ≤ i ≤ m. This is
computed as Pi =

∑
Bij where, B is the upload bandwidth, expressed in bits

per sec, from Ri to Rj for i 
= j and Bij = 0 if i = j. This effectively eliminates
all network complexities and “flattens” the bandwidth view of all the resources
to the maximum achievable bandwidth between resources. This also inherently
includes all sub-net routing overheads and communication overheads when a
bandwidth monitoring system such as NWS [19] is employed. We illustrate this
“flattening” process in Fig. 13.4. The values C, M , F and Pi dynamically change
with resource availability over time t, and is constantly monitored for changes
in our simulation. Thus, in a GCE where we characterize the resource environ-
ment as a set S = {R1, ..., Rm}, we can represent the allocatable computational
resources within a site i as a set Sc = {Ri, t} where Sc ⊆ S. Ri is further repre-
sented by 4-tuple of fi(< C, M, F, Pi >, t) denoting the four resources considered
in our allocation strategy.

In order to ascertain an aggregated Computation Index of a site to a job,
resources are also requested based on the same GFLOPs, RAM and Harddisk
space required. Similar to a node’s Resource Potential described earlier, jobs
are also additionally characterized by a potential value. However, this potential
value is not obtained from the location where the job is submitted from, rather,
it is obtained from the location of the source file required for the job to execute
efficiently. In our simulations, we assume that each job only requires data from
one data resource. This data resource can be either local to the job submission
site or remote. As MRS is expected to operate in a GCE, we also simulate
scenarios wherein users can submit jobs from different locations3.

We characterize the job environment by J = {Ai, ..., Aj}, and the com-
putational requirement of each job Aj in the set of J jobs is represented by
gj(< C, M, F, Psrc >, t).

3 In our simulations, we have assumed that applications are pre-staged at the sites.
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Fig. 13.4. Flattened network view of resources for computation of Potential

13.3.2 Computational Index through Aggregation

Evaluation of various resource requirements of sites and jobs allows us to aggre-
gate and encode inter-resource relationships in order to arrive at a single index
which can be used to obtain the allocation score. This is done by obtaining a ratio
of provision (Rij), for site i and job j, between what is requested and what is pos-
sibly provided. For computational resources, it is given by, Rij{C} = 1− fi{C}

gj{C} .
Only the positive values of Rij{C} are considered, such that and Rij{C} = 0
if the above evaluates to be less than zero. fi{C} and gj{C} are the GFLOP
resource provided at site i and GFLOP resource required by job j. We only
consider positive values in the Virtual Map, and therefore truncate the values
at zero.

We apply the same ratio of provision to all resource and requirements which
also includes RAM (M) and Harddisk (F ) requirements. Additionally we also
include the ratio of provision between the potential value of the site (Pi) and
the source file potential (Psrc). This allows us to evaluate if a site connectivity
is equal or better to where the source data file is located. This ensures that the
possible target job submission site will not be penalized more than required if
job fragmentation is to occur, when compared to executing the job in place at
the data source location.

These ratios are then aggregated into a dimensionless computation index (xij)
for site i on job j using the following equation. Constants KC , KM , KF and KP

represents weights that provide modification to the importance of the respective
provisioning ratios in terms of importance to each other. An increasing value
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of K > 0 signifies an increasing importance of a specific resource requirement
relative to the other resources. This steers the strategy away from the default
allocation to one that is weighted towards the more important resource.

After the sites providing resources are indexed to obtain xij , the site i with
the lowest computation index, x∗

ij is deemed to provide the best resources suited
for a job j. In our simulations, we set the K constants such that K = 1. This
provides equal importance to all components making up the computational in-
dex. Detailed derivation and formulations can be found in [5]. Essentially, such
a strategy does not restrict itself to specific units of measure for C, M or F .
Potentially, any arbitrary unit is suitable for this approach, as long as the entire
GCE is in agreement.

xij =
√

(KCRij {C})2 + (KMRij {M})2 + (KF Rij {F})2 + (KP Rij {P})2 (13.1)

13.3.3 Data Dimension and Indexing through Resource
Inter-relation

In the data dimension, we wish to determine the best resource that would execute
a job considering its I/O requirements. The expected time for I/O is determined
based on the estimated data communications required and the bandwidth be-
tween the source file location and the target job allocation site. The ratio between
the I/O communication time to the estimated local job run-time is then taken.
This ratio allows us to evaluate the level of advantage a job has in dispatching
that job to a remote site. This is because a site capable of executing a job locally
would incur a minimal (non-zero) I/O time as compared to any other remote
location. Thus, allocation of a job to the intended target resource should be one
whereby this ratio is as low as possible.

The I/O time is time dependent resource which is based on the instantaneous
bandwidth availability at a resource. We annotate bandwidth B between two
sites i and j as Bij = min{Bdownload

ij , Bupload
ji } which changes over time t as data

capabilities of a resource Sd{Ri, t}. Where each item in the set is represented
by di{< B >, t}. The data requirement of a job j is thus represented by ej{<
F, Aruntime >, t} where Aruntime is the estimated run-time of the job.

We make use of this ratio to create the Data Index. This evaluation is an
example of aggregation based on resource inter-relation. I/O time is affected
by the amount of data for a job and the actual bandwidth resource available.
In the worst case scenario, the amount of data required for the job would also
be the amount of hard-disk resource required at the site to store the data to
be processed. This, therefore inter-relates the data resources to the bandwidth
resources available. The ratio is written as follows.

yij =
ej {F}
di {Bij}

.
1

Aruntime
(13.2)
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13.3.4 Dimension Merging

From the individual Computation and Data Indices described above, we observe
that the best allocated resources are represented by those with low index val-
ues. Each of the individual indices are also encoded with resource requirements
considerations in its evaluation through aggregation. These points when plotted
on a 2-dimensional axis creates what we termed as the Virtual Map. As we have
observed, sites that position themselves closest to the origin are those that de-
viate from the resource requirements by the least amount. An illustration of the
virtual map is shown in Fig. 13.5. The euclidean distance from the origin there-
fore denotes the best possible resources that matches the resource requirements
of a job for an instance in time.

In Fig. 13.5, the computation and data index is computed by Eq. 13.1 and
(13.2 for each job in the queue. As job requirements differs for each job, the Vir-
tual Map is essentially different for each job submitted. This has to be computed
each time a job is to be submitted or re-submitted to the GCE.

Fig. 13.5. A Virtual Map is created for each job to determine allocation
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13.3.5 Availability Index

We first define the following notations used in this section, and the definitions
associated with them:-

• MTTFj and λF
j : The Mean Time to Failure represents the average amount

of time a resource is available to the GCE before going offline. We also term
the average rate of failure to be λF

j = 1
MTTFj

. Where j denotes the node
index in the GCE.
• τ , τU

j : τ represents a specific time instance after the time period T , while
τU
j is defined as the duration of the of the jth node in the UP state.

• Pj : Denotes the resource reliability is a single value representing the likeli-
hood of a resource staying on-line at any given time. This value is influenced
by information such as the resource availability pattern to the GCE, the
reliability of the various components in the resource and the reliability value
provided by the creators of this resource.
• PrUP

j : The probability of a resource j remaining in its UP, or on-line, state.

Using the Poisson Distribution to model the event of a single change in state,
with the assumption that the resources remain in constant state within τ period
of time, it is possible to estimate the probability of PrUP at time (T + τ). This
is captured by Eq. 13.3.

PrUP {nT+τ} = 1−
n∏

j=1

λF
j (1− Pj)

τU
j +τ−1
∑

t=0

e−(λF
j t)(λF

j t) (13.3)

We make use of Eq. 13.3 to obtain an index of Availability represented by
(1 − PrUP ). This is coupled as a third dimension in addition to the Compute
and Data Index for each resource in consideration. One would notice that a
resource that is more likely to stay up will have a value closer to zero than
one that is likely to fail. The inclusion of this index allows one to pro-actively
estimate which resources will be available during a jobs run-time such that the
likelihood of job failure is reduced. This is different from other proposed failure
handling strategies where-by the failed job is trapped and then restarted.

The merging process is similar to that described in section 13.3.4, where the
shortest Euclidean distance from the origin denotes the best possible resources
that matches the resource requirements of a job for that instance in time.

13.4 Performance Evaluation

13.4.1 Computation and Data Index in 2D MRS

We compare our basic 2-dimensional MRS with the Backfilling strategy (BACK-
FILL) [4, 13] and a job Replication (REP) strategy [8], which is similar to that
used in SETI@Home [7]. The workload model provided by [16] was used as the
workload input. The following metrics where used as the performance measure
of the algorithm.
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1. Average Wait-Time (AWT)
This is defined as the time duration for which a job waits in the queue before
being executed. The wait time of a single job instance is obtained by taking
the difference between the time the job begins execution (ej) and the time
the job is submitted (sj). This is computed for all jobs in the simulation
environment. The average job waiting time is then obtained. If there are a
total of J jobs submitted to a GCE, the AWT of a job is given by,

AWT =

∑J−1
j=0 (ej − sj)

J

This quantity is a measure of responsiveness of the scheduling mechanism.
A low wait time suggests that the algorithm can potentially be used to
schedule increasingly interactive applications due to reduced latency before
a job begins execution.

2. Queue Completion Time (QCT)
This is defined as the amount of time it takes for the scheduling algorithm to
be able to process all the jobs in the queue. This is computed by tracking the
time when the first job enters the scheduler until the time the last job exits
the scheduler. In our experiments, the number of jobs entering the system is
fixed, to make the simulation more trackable. This allows us a quantitative
measure of throughput, where the smaller the time value, the better. The
queue completion time is given by,

QCT = eJ−1 + EJ−1 − s0

where, EJ−1 is the execution time of the last job. This includes the I/O and
communication overheads that occurs during job execution.
This metric, when coupled with the average waiting time of a job, allows
us to deduce the maximum amount of time a typical job will spend in the
system for a given workload.

3. Average Grid Utilization (AGU)
This quantity investigates how well the algorithm is capable of organizing
the workload and the GCE resources so as to optimize the performance.
Thus, the higher the utilization, the better optimized the environment is.
The utilization of the GCE at each execution time step is captured and
represented as U(t) = Mu

M , where M is the total computational resources
available. Mu is the number of computational resources utilized. The average
grid utilization is thus given by the following equation.

AGU =

∑QCT
t=s0

U(t)
QCT

The results of our experiments is summarized in Fig. 13.6. The significance of
these results are discussed below.

It was noted that in terms of AWT, both REP and MRS significantly out-
performs BACKFILL by 40% and 50% respectively. This is due to the fact that
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Fig. 13.6. Normalized comparison of MRS and REP simulation to Backfill Algorithm

the backfill algorithm does not allocate jobs in consideration of the data distri-
bution time. The improved performance of REP compared to BACKFILL on
AWT can be attributed to the fact that as a job gets replicated, the likelihood
of being allocated to a faster resource or bandwidth increases. This is however
non-optimal as it was achieved without making full use of the information avail-
able in the execution environment. This non-optimality is verified by the fact
that MRS is able to achieve an even better AWT by making use of inter-resource
relationships defined within its indices.

From the figure, we can also clearly see that the utilization for BACKFILL
is the lowest in all the experiments. REP and MRS exhibits increasing levels of
utilization which accounts for a shorter AWT. However, it may be noted that
in the replication algorithm, every job is essentially submitted twice in order to
achieve better performance. This replication potentially hinders the execution
of other jobs that might require more CPUs in the GCE. This is clear from the
fact that an increase in utilization using the REP strategy does not translate
to an improvement in QCT. It has, instead, induced a detriment to the GCE
by almost 70% when compared to BACKFILL. This could be attributed to in-
efficient allocation of resources. In contrast, we can see that an improvement in
utilization of 29% between MRS and BACKFILL is also directly reflected by a
18% improvement in QCT.

As discussed earlier, we have ascertained that replication can lead to a degra-
dation of performance when the entire queue is considered. In contrast to
BACKFILL and REP, our simulations have shown that MRS has been able to
achieve a 50% improvement AWT, an 18% improvement over QCT and a 29%
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improvement in AGU. This is due to the fact that MRS makes use of compar-
ative measures on the benefits of allocation to each node. This is inherent to
the algorithm during the process of Virtual Map creation. A lower AWT is very
much due to a good allocation decision of the resources when MRS is presented
with a queue of jobs. This allows for more jobs to be allocated per unit time,
which is clearly reflected in MRS’s improvement in QCT over BACKFILL. This
continues to be achieved when compared to REP, indicating that MRS is able
to allocate resources more effectively when compared to REP. This is clearly
shown when comparing the results in Fig. 13.6. The matching of resources us-
ing the computation and data indexes, also results in a much higher utilization,
dispatching jobs to nodes that are able to satisfy the jobs while intelligently
deciding which jobs to keep local and which jobs to dispatch.

13.4.2 Inclusion of Availability Index in 3D MRS

From the positive results in the implementation of 2D MRS in section 13.4.1,
we extended our GCE to exhibit failures in resources and also included the
Availability Index as the third dimension in MRS. This is to further investigate
if the extension of the MRS methodology will continue to exhibit positive results
even in higher dimensions. It is also to apply the strategy in a more realistic GCE
environment where failures do affect how a job should be scheduled. We used
the following metrics as a measure of performance.

1. Job Processing Rate (JPR):

JPR = NumberOfJobsSuccessfullyCompleted
TotalQueueCompletionTime = JSuccess

TQ

A higher JPR will indicate larger number of successfully completed jobs
or a lower queue completion time. A high JPR will therefore indicate that
an algorithm is capable of high throughput.

2. Job Failure Rate (JFR):

JFR = NumberOfJobsFailedAtRuntime
TotalQueueCompletionTime = JF ail

TQ

A low JFR is desired as it signifies the number of jobs failing during the
course of its queue completion is low. This thus indicates that a strategy
is able to allocate resources will to reduce the number of jobs failing in its
course of execution.

3. Job Rejection Rate (JRR):

JRR = NumbeOfJobsRejected
TotalQueueCompletionTime = JRej

TQ

A low JRR indicates the ability of an algorithm to handle all types of jobs
submitted to the queue based on the workload model used. A high JRR will
therefore mean that the algorithm is unable to execute jobs due to insuf-
ficient capacity. A low JRR is thus desired to indicate that an allocation
strategy is able to handle the workload presented using the workload model.
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Fig. 13.7. Normalized comparison of 3-D MRS and REP simulation to Backfill
Algorithml

The GCE was simulated to include 50% of dedicated resources while the remain-
ing are volatile resources that goes on and offline periodically based on a set of
random generated normally distributed MTTF value. The workload environ-
ment was also modified to address the problem where workload models tends to
generates much lesser jobs with long run-times. It is done such that the longest
job run-time is 1000 times that of the average MTTF in the GCE. This would
induce a much larger number of failures in the volatile resources, providing a
better view into the effectiveness of the algorithm. The normalized result of the
simulation is shown in the Fig. 13.7.

From the results, we can clearly see an approximately 30% increase in the
JPR of 3-D MRS when compared to BACKFILL and an even larger increase
when compared to REP. This is likely due to the more effective job to resource
matching strategy employed in MRS, allowing more jobs to complete within each
period of high resource availability. The approximately 64% and 61% improve-
ments in JFR and JRR also clearly demonstrates the effectiveness of being able
to include availability information as part of the allocation strategy. It is clear
from the simulations that the job failures resulting in a REP strategy is approx-
imately half that of the replication factor (which was 2 in the simulation). It can
be reasoned then that for every 2 jobs replicated, there is a 50% chance that one
of them will fail due to the lack of knowledge in which half of the resources is
likely to fail. One would also notice that the JRR of REP is similar to that of
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BACKFILL further pointing to limited improvement in resource utilization in
the GCE.

In general, it is observed that MRS is able to render a performance that is
much suited for scheduling resources over a GCE, and is able to be extended
to include availability factors of the GCE into the strategy while continuing to
provide superior performance to traditional algorithms.

13.5 Conclusions

In this chapter, we have proposed a novel distributed resource scheduling al-
gorithm capable of handling several resources to be catered among jobs that
arrive at a Grid system. Our proposed algorithm, referred to as Multi-Resource
Scheduling (MRS) algorithm, takes into account the different resource require-
ments of different tasks and shown to obtain a minimal execution schedule
through efficient management of available Grid resources. We have proposed
a model in which the job and resource relations are captured and are used to
create an aggregated index. This allows us to introduce the concept of virtual
map that can be used by the scheduler to efficiently determine a best fit of re-
sources for jobs prior to execution. We also introduced the concept of Resource
Potential to identify inter-relations between resources such as bandwidth and
data. This allows us to identify sites that has least execution overheads with
respect to a job. A third dimension was also introduced to extend the idea of a
virtual map into a virtual space. This new dimension proposes the use of avail-
ability of each resource such as to provide a more accurate resource allocation
strategy.

In order to quantify the performance, we have used various measures to as-
certain the performance of our strategy in both the 2D and 3D aspects. We
considered practical workload models that are used in real-life systems to quan-
tify the performance of MRS. Performance of MRS has been compared with
conventional backfill and replication algorithms that are commonly used in a
GCE. Our experiments have also conclusively elicited several key performance
features of MRS with respect to the backfill and replication algorithms, yield-
ing performances improvements up to 50% on some performance measures. The
strategy presented continues to exhibit performance gains even when extended
to a GCE that exhibits failures. Presenting more than 60% improvements in job
failure rates while improving throughput by up to 30%.

The strategy discussed in this chapter introduces a mechanism where indi-
vidual resources can be compounded into dimensions. Within these dimensions,
the inter-relations of resources are addressed. By placing multiple dimensions
together, it creates a virtual map, which can be extended into a virtual space
when more than 2 dimensions are used. The ability for this strategy to be able to
extend itself through additional dimensions, provides a mechanism where other
forms of specialized optimization heuristics can be used. These individual dimen-
sions, which are optimal in itself, could then be aggregated in a strategy similar
to MRS where each can be weighted and inter-related for further optimization
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over multiple resources. The idea of a virtual map or space also potentially pro-
vides a starting point where more complex optimizations can be applied based
on virtual “spatial” considerations in a GCE.

Some possible immediate extensions to the strategy we have proposed in this
chapter could look at providing a computationally less intensive mechanism to
compute the predicted availabilities in the GCE such as to provide a gauge of
capacity in the GCE. It could also be possible that other parameters such as,
Quality-of-Service, economic considerations as well as real-time applications can
be included into the model by simply extending the number of dimensions of
consideration.

Related Work
There have been other strategies introduced to handle resource optimization for
jobs submitted over Grids. However, while some investigated strategies to obtain
optimizations in the computational time domain, others looked at optimizations
in data or I/O domain. Very few works address failure on Grids. We classify the
current available work on Grid failures into pro-active and post-active mecha-
nisms. By pro-active mechanisms, we mean algorithms or heuristics where the
failure consideration for the Grid is made before the scheduling of a job, and dis-
patched with hopes that the job does not fail. Post-active mechanisms identifies
algorithms that handles the job failures after it has occurred.

In [17], job optimization is handled by redundantly allocating jobs to mul-
tiple sites instead of sending it only to the least loaded site. The rationale in
this scheme was that the fastest queue will allow a job to execute before its
replicas and this provides low wait times and improves turn-around time. Job
allocation failures due site availabilities would also be better handled due to this
redundancy. However, this strategy leads to problems where queue lengths of dif-
ferent sites are unnecessarily loaded handle the same job. The frequent changes
in queue length can also potentially hamper on-site scheduling algorithms to
work effectively as schedules are typically built by looking ahead in the queue.
In addition, the method proposed does not investigate the problems that can
arise when the data required for the job is not available at the execution site
and needs to be transported for a successful execution.

In [20], Zhang has highlighted that the execution profiles of many applications
are only known in real-time, which makes it difficult for an “acceptance test” to
be carried out. The study also broke down the various scheduling models into
Centralized, Decentralized and Hierarchical models where jobs are submitted to a
meta-scheduler but are dispatched to low-level schedulers for dispatch. Effective
virtualization of resources was also proposed in order to abstract the resource
environment and hide the physical boundaries defined. A buddy set as in [15]
was also proposed, and its effectiveness also highlighted in [1], where it was
shown that an establishment of relationships in resources can lead to better
performance.

In the work presented in [10], the ability to schedule a job in accordance to
multiple (K) resources is explored. This approach shows clearly the benefits
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where scheduling with multiple resources is concerned. Effective resources-
awareness in the scheduling algorithm provided performance gains of up to 50%.
Similar resource awareness and multi-objective based optimizations where stud-
ied in [18]. In both cases, the limitations of conventional methods was also iden-
tified as there was have no mechanism for utilizing additional information known
about the system and its environment. However, in [10], there was no data re-
sources identified, while in [18], we believe that the over simplicity of resource
aggregation was in-adequate in capturing resource relationships.

Of works that look into failures in the GCE, many works are primarily post-
active in nature and deal with failures through Grid monitoring as mentioned
in [12]. These methods mainly do so by either checkpoint-resume or terminate-
restart [9,11]. Two pro-active failure mechanisms are introduced in [8,17] and [2].
While [8,17] operates by replicating jobs on Grid resources, [2] only looks at vol-
unteer Grids. The former can possibly lead to an over allocation of resources,
which will be reflected as an opportunity cost on other jobs in the execution
queue. While the latter only addresses independent task executing on the re-
sources.

The formulation of 2D MRS in [5] has allowed us to build on a effective mech-
anism, providing an alternative solution to the problem of resource allocation.
This also highlights how the strategy can be extended to consider more complex
environmental requirements, which is presented in this chapter.
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Uçar, Bora 121

Veeravalli, Bharadwaj 341

Welch, Lonnie 61

Xhafa, Fatos 1, 247, 273, 323

Yu, Jia 173

Zinky, John 39


	Title Page
	Preface
	Contents
	List of Contributors
	Meta-heuristics for Grid Scheduling Problems
	Introduction
	The {\it many} Grids
	Computational Grids
	Scavenging Grids
	eScience Grids
	Data Grids
	Enterprise Grids

	Scheduling Problems in Computational Grids
	Basic Concepts and Terminology
	Types of Scheduling in Grids
	Computation Models for Formalizing Grid Scheduling
	Grid System Performance and Scheduling Optimization Criteria
	Multi-objective Optimization Approaches

	Heuristics and Meta-heuristics Methods for Scheduling in Grids
	Local Search Based Heuristic Approaches
	Population-Based Heuristic Approaches
	Hybrid Heuristics Approaches
	Other Approaches

	Further Issues
	Conclusions
	References

	Optimizing Routing and Backlogs for Job Flows in a Distributed Computing Environment
	Introduction
	Overview of the Problem
	Previous Work
	Overview of Our Approach

	Problem Definition
	Jobs, Tasks and Flows
	Resources and Clusters
	Routing/Backlog Policies and Routing Constraints
	Epochs and Time Dependence
	Evaluation Function

	Scheduling Algorithm
	Level 1: Single-Flow, Single-Epoch Optimization
	Level 2: Multi-flow, Single-Epoch Optimization
	Level 3: Multi-epoch Optimization

	Experiments
	Sample Scenario and Perturbations
	Scaling Properties

	Conclusions and Future Work
	References

	Robust Allocation and Scheduling Heuristics for Dynamic, Distributed Real-Time Systems
	Introduction
	System Model
	Robust Task Allocation for Dynamic Distributed Real-Time Systems
	Robust Allocation for the One-Dimensional Problem
	A Multi-dimensional Robustness Metric
	Robust Allocation for the Multi-dimensional Problem

	Experiments
	Experiment 1
	Experiment 2
	Experiment 3

	Literature Review
	Conclusions
	References

	Supercomputer Scheduling with Combined Evolutionary Techniques
	Introduction
	Related Work on Scheduling Problems
	Flow-Shop Scheduling Problem
	Job-Shop Scheduling Problem
	Multiprocessor Scheduling Problem
	Other Packing and Knapsack Problems

	Supercomputer Scheduling Problem
	Related Work on Cluster and Supercomputer Scheduling
	Non-combinatorial Policies
	Scheduling Tools

	Multiple Offspring Sampling and the Supercomputer Scheduling Problem
	Evolutionary Algorithms
	Functional Formalisation of an Evolutionary Algorithm
	Multiple Offspring Sampling Formalism

	Experiments
	Evolutionary Techniques for Supercomputer Scheduling
	First Experimental Scenario
	Results and Discussion of First Experiment
	Second Experimental Scenario
	Results and Discussion of Second Experiment

	Conclusions
	References

	Adapting Iterative-Improvement Heuristics for Scheduling File-Sharing Tasks on Heterogeneous Platforms
	Introduction
	Framework
	Application Model
	Computing Model
	Objective Function

	Scheduling File-Sharing Tasks with Single Repository
	Greedy Constructive Scheduling Heuristics
	Iterative-Improvement-Based Scheduling Heuristics
	An Extension: Clustered Platform

	Scheduling with Multiple Repositories
	Iterative-Improvement-Based Scheduling Heuristics

	Conclusions
	References

	Advanced Job Scheduler Based on Markov Availability Model and Resource Selection in Desktop Grid Computing Environment
	Introduction
	Hidden Markov Model
	Markov Job Scheduler Based on Availability
	Scheduling Algorithms on the MJSA
	OPTIMIST
	PESSIMIST
	REALIST

	Selection of Credible Resource with Elastic Window
	Performance Evaluation
	Mathematical Analysis of Execution Completion Probability
	Problem Solving with SCREW
	Experimental Evaluation of Makespan

	Conclusions
	References

	Workflow Scheduling Algorithms for Grid Computing
	Introduction
	Workflow Scheduling Algorithms for Grid Computing
	Best-Effort Based Workflow Scheduling
	Heuristics
	Meta-heuristics
	Comparison of Best-Effort Scheduling Algorithms
	Dynamic Scheduling Techniques

	QoS-Constraint Based Workflow Scheduling
	Deadline Constrained Scheduling
	Budget Constrained Scheduling
	Meta-heuristic Based Constrained Workflow Scheduling
	Comparison of QoS Constrained Scheduling Algorithms

	Simulation Results
	Workflow Applications
	Experiment Setting
	Backtracing(BT) vs. Deadline/Time Distribution (TD)
	TD vs. Genetic Algorithms

	Conclusions
	References

	Decentralized Grid Scheduling Using Genetic Algorithms
	Introduction
	General Presentation of the DIOGENES Features
	Architecture
	System Anatomy
	Functional Aspects

	Genetic Algorithm
	Chromosome Encoding
	Population Initialization
	Genetic Operators
	Fitness Function
	Algorithm Description

	Experimental Results
	Algorithm Convergence
	Decentralization
	Estimated Times Versus Real Execution Times
	Comparison of Various Scheduling Methods

	Conclusions
	References

	Nature Inspired Meta-heuristics for Grid Scheduling: Single and Multi-objective Optimization Approaches
	Introduction
	Scheduling Problem Formulation
	Nature Inspired Meta-heuristics
	Evolutionary Algorithms
	Evolutionary Multi-objective Optimization
	Simulated Annealing
	Ant Colony Optimization
	Particle Swarm Optimization
	A Fuzzy Scheme Based on Particle Swarm Optimization

	Experimental Illustrations
	Scheduling Using Fuzzy Particle Swarm Optimization Algorithm
	Job Scheduling Using ACO
	Scheduling Using Evolutionary Multi-objective Optimization Approach

	Conclusions
	References

	Efficient Batch Job Scheduling in Grids Using Cellular Memetic Algorithms
	Introduction
	The Batch Job Scheduling on Grids
	Optimization Criteria

	A cMA for Resource Allocation in Grid Systems
	Cellular Memetic Algorithms
	Application of the cMA to job Scheduling

	Computational Results on Static Instances
	Benchmark Description
	Evaluation and Discussion

	Computational Results on Dynamic Instances
	Dynamic Grid Simulator
	Dynamic Benchmark Description
	Evaluation and Discussion

	Conclusions and Future Work
	References

	P2P B&B and GA for the Flow-Shop Scheduling Problem
	Introduction
	Parallel Combinatorial Optimization
	Parallel Branch-and-Bound Algorithms
	Parallel Genetic Algorithms

	P2P Computing and the ProActive Middleware
	Parallel B&B and GA for P2P Environment
	ParallelBB
	ParallelGA
	Hybridization

	Peer-to-Peer Implementation on Top of ProActive
	Distribution of the Computation among Workers
	Communications
	New Arrivals (New Peers)
	Fault Tolerance

	Large Scale Deployment and Performance Evaluation
	PFSP Formulation
	Modeling and Lower Bound Calculation
	Experiments

	Conclusions
	References

	Peer-to-Peer Neighbor Selection Using Single and Multi-objective Population-Based Meta-heuristics
	Introduction
	Neighbor-Selection Problem in P2P Networks
	Modelling P2P Networks
	Metrics

	P2P Neighbor-Selection Strategy
	Particle Swarm Algorithm for Single Objective Neighbor Selection
	Genetic Algorithm for Multi-objective Neighbor Selection

	Algorithm Performance Evaluation
	Single Objective Neighbor Selection
	Multi-objective Neighbor Selection

	Conclusions
	References

	An Adaptive Co-ordinate Based Scheduling Mechanism for Grid Resource Management with Resource Availabilities
	Introduction
	Our Contributions

	Grid Environment Model
	Scheduling Strategy
	Computation Dimension
	Computational Index through Aggregation
	Data Dimension and Indexing through Resource Inter-relation
	Dimension Merging
	Availability Index

	Performance Evaluation
	Computation and Data Index in 2D MRS
	Inclusion of Availability Index in 3D MRS

	Conclusions
	References

	Index
	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




