
5 Motion Planning for Curvature-Constrained
Mobile Robots with Applications to Needle

Steering

Advances in medical imaging modalities such as MRI, ultrasound, and x-ray
fluoroscopy are now providing physicians with real-time, patient-specific infor-
mation as they perform medical procedures such as extracting tissue samples
for biopsies, injecting drugs for anesthesia, or implanting radioactive seeds for
brachytherapy cancer treatment. These diagnostic and therapeutic medical pro-
cedures require insertion of a needle to a specific location in soft tissue. We are
developing motion planning algorithms for medical needle insertion procedures
that can utilize the information obtained by real-time imaging to accurately
reach desired locations.

We consider a new class of medical needles, first introduced in chapter 4,
that can be steered to targets in soft tissue that are inaccessible to traditional
stiff needles. Steerable needles have two key properties: they are composed of a
flexible material and have a bevel-tip. These properties enable steerable needles
to follow curved paths through soft tissue. Steerable needles can be controlled
by 2 degrees of freedom actuated at the needle base: insertion distance and
bevel direction. Webster et al. experimentally demonstrated that, under ideal
conditions, a flexible bevel-tip needle cuts a path of constant curvature in the
direction of the bevel, and the needle shaft bends to follow the path cut by
the bevel tip [208]. In a plane, a needle subject to this nonholonomic constraint
based on bevel direction is equivalent to a Dubins car that can only steer its
wheels far left or far right but cannot go straight.

The steerable needle motion planning problem is to determine a sequence of
actions (insertions and direction changes) so the needle tip reaches the specified
target while avoiding obstacles and staying inside the workspace. Given a seg-
mented medical image of the target, obstacles, and starting location, the feasible
workspace for motion planning is defined by the soft tissues through which the
needle can be steered. Obstacles represent tissues that cannot be cut by the
needle, such as bone, or sensitive tissues that should not be damaged, such as
nerves or arteries.

In this chapter, we consider motion planning for steerable needles in the con-
text of an image-guided procedure: real-time imaging and computer vision al-
gorithms are used to track the position and orientation of the needle tip in the
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(a) Minimize path length
ps = 36.7%

(b) Maximize probability of success
ps = 73.7%

Fig. 5.1. Our motion planner computes actions (insertions and direction changes, in-
dicated by dots) to steer the needle from an insertion entry region (vertical line on left
between the solid squares) to the target (open circle) inside soft tissue, without touch-
ing critical areas indicated by polygonal obstacles in the imaging plane. The motion of
the needle is not known with certainty; the needle tip may be deflected during insertion
due to tissue inhomogeneities or other unpredictable soft tissue interactions. We ex-
plicitly consider this uncertainty to generate motion plans to maximize the probability
of success, ps, the probability that the needle will reach the target without colliding
with an obstacle or exiting the workspace boundary. Relative to a planner that mini-
mizes path length, our planner considering uncertainty may generate longer paths with
greater clearance from obstacles to maximize ps.

tissue. Recently developed methods can provide this information for a variety
of imaging modalities [55, 67]. In this chapter, we consider motion plans in an
imaging plane since the speed/resolution trade-off of 3-D imaging modalities
is generally poor for 3-D real-time interventional applications. With imaging
modalities continuing to improve, we will explore the natural extension of our
planning approach to 3-D in future work.

5.0.1 Uncertainty and Motion Planning

Whereas many traditional motion planners assume a robot’s motions are per-
fectly deterministic and predictable, a needle’s motion through soft tissue can-
not be predicted with certainty due to patient differences and the difficulty in
predicting needle/tissue interaction. These sources of uncertainty may result in
deflections of the needle’s orientation, which is a type of slip in the motion of
a Dubins car. Real-time imaging in the operating room can measure the nee-
dle’s current position and orientation, but this measurement by itself provides
no information about the effect of future deflections during insertion. Since the
motion response of the needle is not deterministic, success of the procedure can
rarely be guaranteed.
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We develop a new motion planning approach for steering flexible needles
through soft tissue that explicitly considers uncertainty in needle motion. To
define optimality for a needle steering plan, we introduce a new objective for im-
age-guided motion planning: maximizing the probability of success. In the case of
needle steering, the needle insertion procedure continues until the needle reaches
the target (success) or until failure occurs, where failure is defined as hitting an
obstacle, exiting the feasible workspace, or reaching a state in which it is impos-
sible to prevent the former two outcomes. Our method formulates the planning
problem as a Markov Decision Process (MDP) based on an efficient discretiza-
tion of the state space, models motion uncertainty using probability distribu-
tions, and computes optimal actions (within error due to discretization) for a
set of feasible states using infinite horizon Dynamic Programming (DP).

Our motion planner is designed to run inside a feedback loop. After the feasible
workspace, start region, and target are defined from a pre-procedure image, the
motion planner is executed to compute the optimal action for each state. After
the image-guided procedure begins, an image is acquired, the needle’s current
state (tip position and orientation) is extracted from the image, the motion
planner (quickly) returns the optimal action to perform for that state, the action
is executed and the needle may deflect due to motion uncertainty, and the cycle
repeats.

In figure 5.1, we apply our motion planner in simulation to prostate brachyther-
apy, a medical procedure to treat prostate cancer in which physicians implant ra-
dioactive seeds at precise locations inside the prostate under ultrasound image
guidance. In this ultrasound image of the prostate (segmented by a dotted line),
obstacles correspond to bones, the rectum, the bladder, the urethra, and previ-
ously implanted seeds. Brachytherapy is currently performed in medical practice
using rigid needles; here we consider steerable needles capable of obstacle avoid-
ance. We compare the output of our new method, which explicitly considers mo-
tion uncertainty, to the output of a shortest-path planner that assumes the needles
follow ideal deterministic motion. Our new method improves the expected proba-
bility of success by over 30% compared to shortest path planning, illustrating the
importance of explicitly considering uncertainty in needle motion.

5.0.2 Background on Nonholonomic Motion Planning and MDP’s

Nonholonomic motion planning has a long history in robotics and related fields
[51, 136, 137, 139]. Past work has addressed deterministic curvature-constrained
path planning where a mobile robot’s path is, like a car, constrained by a minimum
turning radius. Dubins showed that the optimal curvature-constrained trajectory
in open space from a start pose to a target pose can be described using a discrete
set of canonical trajectories composed of straight line segments and arcs of the
minimum radius of curvature [74]. Jacobs and Canny considered polygonal obsta-
cles and constructed a configuration space for a set of canonical trajectories [111],
and Agarwal et al. developed a fast algorithm to compute a shortest path inside
a convex polygon [4]. For Reeds-Shepp carswith reverse, Laumond et al. developed
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a nonholonomic planner using recursive subdivision of collision-free paths gener-
ated by a lower-level geometric planner [138], and Bicchi et al. proposed a tech-
nique that provides the shortest path for circular unicycles [36]. Sellen developed
a discrete state-space approach; his discrete representation of orientation using a
unit circle inspired our discretization approach [188].

Our planning problem considers steerable needles, a new type of needle cur-
rently being developed jointly by researchers at The Johns Hopkins University
and The University of California, Berkeley [211]. Unlike traditional Dubins cars
that are subject to a minimum turning radius, steerable needles are subject to a
constant turning radius. Webster et al. showed experimentally that, under ideal
conditions, steerable bevel-tip needles follow paths of constant curvature in the
direction of the bevel tip [208], and that the radius of curvature of the needle
path is not significantly affected by insertion velocity [209].

Park et al. formulated the planning problem for steerable bevel-tip needles
in stiff tissue as a nonholonomic kinematics problem based on a 3-D extension
of a unicycle model and used a diffusion-based motion planning algorithm to
numerically compute a path [171]. The approach is based on recent advances
by Zhou and Chirikjian in nonholonomic motion planning including stochastic
model-based motion planning to compensate for noise bias [224] and probabilistic
models of dead-reckoning error in nonholonomic robots [223]. Park’s method
searches for a feasible path in full 3-D space using continuous control, but it
does not consider obstacle avoidance or the uncertainty of the response of the
needle to insertion or direction changes, both of which are emphasized in our
method.

In preliminary work on motion planning for bevel-tip steerable needles, we
proposed an MDP formulation for 2-D needle steering [15] to find a stochas-
tic shortest path from a start position to a target, subject to user-specified
“cost” parameters for direction changes, insertion distance, and obstacle colli-
sions. However, the formulation was not targeted at image-guided procedures,
did not include insertion point optimization, and optimized an objective function
that has no physical meaning. In this chapter, we develop a 2-D motion plan-
ning approach for image-guided needle steering that explicitly considers motion
uncertainty to maximize the probability of success based on parameters that
can be extracted from medical imaging without requiring user-specified “cost”
parameters that may be difficult to determine.

MDP’s and dynamic programming are ideally suited for medical planning
problems because of the variance in characteristics between patients and the
necessity for clinicians to make decisions at discrete time intervals based on
limited known information. In the context of medical procedure planning, MDP’s
have been developed to assist in decisions such as timing for liver transplants
[6], discharge times for severe sepsis cases [125], and start dates for HIV drug
cocktail treatment [190]. MDP’s and dynamic programming have also been used
in a variety of robotics applications, including planning paths for mobile robots
[63, 82, 139, 141].
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Past work has investigated needle insertion planning in situations where soft
tissue deformations are significant and can be modeled. Several groups have esti-
mated tissue material properties and needle/tissue interaction parameters using
tissue phantoms [61, 70] and animal experiments [100, 101, 117, 124, 168, 194].
Our past work addressed planning optimal insertion location and insertion dis-
tance for rigid symmetric-tip needles to compensate for 2-D tissue deformations
predicted using a finite element model [17, 18, 19]. We previously also developed
a different 2-D planner for bevel-tip steerable needles to explicitly compensate
for the effects of tissue deformation by combining finite element simulation with
numeric optimization [10]. This previous approach assumed that bevel direction
can only be set once prior to insertion and employed local optimization that can
fail to find a globally optimal solution in the presence of obstacles.

Past work has also considered insertion planning for needles and related devices
capable of following curved paths through tissues using different mechanisms. One
such approachuses slightly flexible symmetric-tip needles that are guided by trans-
lating and orienting the needle base to explicitly deform surrounding tissue, caus-
ing the needle to follow a curved path [71, 92]. DiMaio and Salcudean developed a
planning approach that guides this type of needle aroundpoint obstacleswith oval-
shaped potential fields [71]. Glozman and Shoham also addressed symmetric-tip
needles and approximated the tissue using springs [92]. Another steering approach
utilizes a standard biopsy cannula (hollow tube needle) and adds steering capabil-
ity with an embedded pre-bent stylet that is controlled by a hand-held, motorized
device [169]. A recently developed “active cannula” device is composed of concen-
tric, pre-curved tubes and is capable of following curved paths in a “snake-like”
manner in soft tissue or open space [210].

Integrating motion planning for needle insertion with intra-operative medical
imaging requires real-time localization of the needle in the images. Methods are
available for this purpose for a variety of imaging modalities [55, 67]. X-ray flu-
oroscopy, a relatively low-cost imaging modality capable of obtaining images at
regular discrete time intervals, is ideally suited for our application because it gen-
erates 2-D projection images from which the needle can be cleanly segmented [55].

Medical needle insertion procedures may also benefit from the more precise
control of needle position and velocity made possible through robotic surgical as-
sistants [103, 199]. Dedicated robotic hardware for needle insertion is being de-
veloped for a variety of medical applications, including stereotactic neurosurgery
[151], CT-guided procedures [153], MR compatible surgical assistance [50, 68],
thermotherapy cancer treatment [97], and prostate biopsy and therapeutic
interventions [84, 186].

5.0.3 Overview of Motion Planning Method

In section 5.2, we first introduce a motion planner for Dubins cars with bi-
nary left/right steering subject to a constant turning radius rather than the
typical minimum turning radius. This model applies to an idealized steerable
needle whose motion is deterministic: the needle exactly follows arcs of con-
stant curvature in response to insertion actions. Our planning method utilizes an
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efficient discretization of the state space for which error due to discretization can
be tightly bounded. Since any feasible plan will succeed with 100% probability
under the deterministic motion assumption, we apply the traditional motion
planning objective of computing a shortest path plan from the current state to
the target.

In section 5.3, we extend the deterministic motion planner to consider uncer-
tainty in motion and introduce a new planning objective: maximize the proba-
bility of success. Unlike the objective function value of previous methods that
consider motion uncertainty, the value of this new objective function has physi-
cal meaning: it is the probability that the needle tip will successfully reach the
target during the insertion procedure. In addition to this intuitive meaning of the
objective, our problem formulation has a secondary benefit: all data required for
planning can be measured directly from imaging data without requiring tweaking
of user-specified parameters. Rather than assigning costs to insertion distance,
needle rotation, etc., which are difficult to estimate or quantify, our method
only requires the probability distributions of the needle response to each feasible
action, which can be estimated from previously obtained images.

Our method formulates the planning problem as a Markov Decision Process
(MDP) and computes actions to maximize the probability of success using infi-
nite horizon Dynamic Programming (DP). Solving the MDP using DP has key
benefits particularly relevant for medical planning problems where feedback is
provided at regular time intervals using medical imaging or other sensor modal-
ities. Like a well-constructed navigation field, the DP solver provides an optimal
action for any state in the workspace. We use the DP look-up table to automati-
cally optimize the needle insertion point. Integrated with intra-operative medical
imaging, this DP look-up table can also be used to optimally steer the needle in
the operating room without requiring costly intra-operative re-planning. Hence,
the planning solution can serve as a means of control when integrated with
real-time medical imaging.

Throughout the description of the motion planning method, we focus on the
needle steering application. However, the method is generally applicable to any
car-like robot with binary left/right steering that follows paths composed of arcs
of constant curvature, whose position can be estimated by sensors at regular
intervals, and whose path may deflect due to motion uncertainty.

5.1 Problem Definition

Steerable bevel-tip needles are controlled by 2 degrees of freedom: insertion dis-
tance and rotation angle about the needle axis. The actuation is performed at
the needle base outside the patient [208]. Insertion pushes the needle deeper into
the tissue, while rotation turns the needle about its shaft, re-orienting the bevel
at the needle tip. For a sufficiently flexible needle, Webster et al. experimen-
tally demonstrated that rotating the needle base will change the bevel direction
without changing the needle shaft’s position in the tissue [208]. In the plane,
the needle shaft can be rotated 180◦ about the insertion axis at the base so the
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Fig. 5.2. The state of a steerable needle during insertion is characterized by tip position
p, tip orientation angle θ, and bevel direction b (a). Rotating the needle about its base
changes the bevel direction but does not affect needle position (b). The needle will cut
soft tissue along an arc (dashed vector) based on bevel direction.

bevel points in either the bevel-left or bevel-right direction. When inserted, the
asymmetric force applied by the bevel causes the needle to bend and follow a
curved path through the tissue [208]. Under ideal conditions, the curve will have
a constant radius of curvature r, which is a property of the needle and tissue.
We assume the needle moves only in the imaging plane; a recently developed
low-level controller using image feedback can effectively maintain this constraint
[116]. We also assume the tissue is stiff relative to the needle and that the needle
is thin, sharp, and low-friction so the tissue does not significantly deform. While
the needle can be partially retracted and re-inserted, the needle’s motion would
be biased to follow the path in the tissue cut by the needle prior to retraction.
Hence, in this chapter we only consider needle insertion, not retraction.

We define the workspace as a 2-D rectangle of depth zmax and height ymax.
Obstacles in the workspace are defined by (possibly nonconvex) polygons. The
obstacles can be expanded using a Minkowski sum with a circle to specify a
minimum clearance [139]. The target region is defined by a circle with center
point t and radius rt.

As shown in figure 5.2, the state w of the needle during insertion is fully
characterized by the needle tip’s position p = (py, pz), orientation angle θ, and
bevel direction b, where b is either bevel-left (b=0) or bevel-right (b=1).

We assume the needle steering procedure is performed with image guidance;
a medical image is acquired at regular time intervals and the state of the nee-
dle (tip position and orientation) is extracted from the images. Between image
acquisitions, we assume the needle moves at constant velocity and is inserted a
distance δ. In our model, direction changes can only occur at discrete decision
points separated by the insertion distance δ. One of two actions u can be selected
at any decision point: insert the needle a distance δ (u = 0), or change direction
and insert a distance δ (u = 1).

During insertion, the needle tip orientation may be deflected by inhomogeneous
tissue, small anatomical structures not visible in medical images, or local tissue
displacements. Additional deflection may occur during direction changes due to
stiffness along the needle shaft. Such deflections are due to an unknown aspect of
the tissue structure or needle/tissue interaction, not errors in measurement
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of the needle’s orientation, and can be considered a type of noise parameter
in the plane. We model uncertainty in needle motion due to such deflections us-
ing probability distributions. The orientation angle θ may be deflected by some
angle β, which we model as normally distributed with mean 0 and standard
deviations σi for insertion (u = 0) and σr for direction changes followed by in-
sertion (u = 1). Since σi and σr are properties of the needle and tissue, we plan
in future work to automatically estimate these parameters by retrospectively
analyzing images of needle insertion.

The goal of our motion planner is to compute an optimal action u for every
feasible state w in the workspace to maximize the probability ps that the needle
will successfully reach the target.

5.2 Motion Planning for Deterministic Needle Steering

We first introduce a motion planner for an idealized steerable needle whose
motion is deterministic: the needle perfectly follows arcs of constant curvature
in response to insertion actions.

To computationally solve the motion planning problem, we transform the
problem from a continuous state space to a discrete state space by approximating
needle state w = {p, θ, b} using a discrete representation. To make this approach
tractable, we must round p and θ without generating an unwieldy number of
states while simultaneously bounding error due to discretization.

5.2.1 State Space Discretization

Our discretization of the planar workspace is based on a grid of points with
a spacing Δ horizontally and vertically. We approximate a point p = (py, pz)
by rounding to the nearest point q = (qy, qz) on the grid. For a rectangular
workspace bounded by depth zmax and height ymax, this results in

Ns =
⌊

zmax + Δ

Δ

⌋⌊
ymax + Δ

Δ

⌋

position states aligned at the origin.
Rather than directly approximating θ by rounding, which would incur a cu-

mulative error with every transition, we take advantage of the discrete insertion
distances δ. We define an action circle of radius r, the radius of curvature of
the needle. Each point c on the action circle represents an orientation θ of the
needle, where θ is the angle of the tangent of the circle at c with respect to
the z-axis. The needle will trace an arc of length δ along the action circle in a
counter-clockwise direction for b = 0 and in the clockwise direction for b = 1.
Direction changes correspond to rotating the point c by 180◦ about the action
circle origin and tracing subsequent insertions in the opposite direction, as shown
in figure 5.3(a). Since the needle traces arcs of length δ, we divide the action
circle into Nc arcs of length δ = 2πr/Nc. The endpoints of the arcs generate a
set of Nc action circle points, each representing a discrete orientation state, as
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(a) Needle tracing an action circle

(a) Action circle (c) Rounded action circle

Fig. 5.3. A needle in the bevel-left direction with orientation θ is tracing the solid action
circle with radius r (a). A direction change would result in tracing the dotted circle. The
action circle is divided into Nc = 40 discrete arcs of length δ (b). The action circle points
are rounded to the nearest point on the Δ-density grid, and transitions for insertion of
distance δ are defined by the vectors between rounded action circle points (c).

shown in figure 5.3(b). We require that Nc be a multiple of 4 to facilitate the
orientation state change after a direction change.

At each of the Ns discrete position states on the Δ grid, the needle may be
in any of the Nc orientation states and the bevel direction can be either b = 0
or b = 1. Hence, the total number of discrete states is N = 2NsNc.

Using this discretization, a needle state w = {p, θ, b} can be approximated as
a discrete state s = {q, Θ, b}, where q = (qy, qz) is the discrete point closest to
p on the Δ-density grid and Θ is the integer index of the discrete action circle
point with tangent angle closest to θ.

5.2.2 Deterministic State Transitions

For each state and action, we create a state transition that defines the motion of
the needle when it is inserted a distance δ. We first consider the motion of the
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needle from a particular spatial state q. To define transitions for each orientation
state at q, we overlay the action circle on a regular grid of spacing Δ and round
the positions of the action circle points to the nearest grid point, as shown in
figure 5.3(c). The displacement vectors between rounded action circle points
encode the transitions of the needle tip. Given a particular orientation state Θ
and bevel direction b = 0, we define the state transition using a translation
component (the displacement vector between the positions of Θ and Θ − 1 on
the rounded action circle, which will point exactly to a new spatial state) and a
new orientation state (Θ − 1). If b = 1, we increment rather than decrement Θ.
We create these state transitions for each orientation state and bevel direction
for each position state q in the workspace. This discretization of states and state
transitions results in 0 discretization error in orientation when new actions are
selected at δ intervals.

Certain states and transitions must be handled as special cases. States inside
the target region and states inside obstacles are absorbing states. If the transition
arc from a feasible state exits the workspace or intersects an edge of a polygonal
obstacle, a transition to an obstacle state is used.

5.2.3 Discretization Error

Deterministic paths designated using this discrete representation of state will
incur error due to discretization, but the error is bounded. At any decision point,
the position error due to rounding to the Δ workspace grid is E0 = Δ

√
2/2.

When the bevel direction is changed, a position error is also incurred because
the distance between the center of the original action circle and the center of the
action circle after the direction change will be in the range 2r±Δ

√
2. Hence, for

a needle path with h direction changes, the final orientation is precise but the
error in position is bounded above by Eh = hΔ

√
2 + Δ

√
2/2.

5.2.4 Computing Deterministic Shortest Paths

For the planner that considers deterministic motion, we compute an action for
each state such that the path length to the target is minimized. As in standard
motion planning approaches [51, 136, 139], we formulate the motion planning
problem as a graph problem. We represent each state as a node in a graph and
state transitions as directed edges between the corresponding nodes. We merge
all states in the target into a single “source” state. We then apply Dijkstra’s
shortest path algorithm [34] to compute the shortest path from each state to the
target. The action u to perform at a state is implicitly computed based on the
directed edge from that state that was selected for the shortest path.

5.3 Motion Planning for Needle Steering under
Uncertainty

We extend the deterministic motion planner from section 5.2 to consider uncer-
tainty in motion and to compute actions to explicitly maximize the probability
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of success ps for each state. The planner retains the discrete approximation of
the state space introduced in section 5.2.1, but replaces the single deterministic
state transition per action defined in section 5.2.2 with a set of state transitions,
each weighted by its probability of occurrence. We then generalize the shortest
path algorithm defined in section 5.2.4 with a dynamic programming approach
that enables the planner to utilize the probability-weighted state transitions to
explicitly maximize the probability of success.

5.3.1 Modeling Motion Uncertainty

Due to motion uncertainty, actual needle paths will not always exactly trace the
action circle introduced in section 5.2.1. The deflection angle β defined in section
5.1 must be approximated as discrete. We define discrete transitions from a state
xi, each separated by an angle of deflection of α = 360◦/Nc. In this chapter, we
model β using a normal distribution with mean 0 and standard deviation σi

or σr, and compute the probability for each discrete transition by integrating
the corresponding area under the normal curve, as shown in figure 5.4. We set
the number of discrete transitions Npi such that the areas on the left and right
tails of the normal distribution sum to less than 1%. The left and right tail
probabilities are added to the left-most and right-most transitions, respectively.
Using this discretization, we define a transition probability matrix P (u), where
Pij(u) defines the probability of transitioning from state xi to state xj given
that action u is performed.

p

-2 -

2

-2 - 2

P( )

Fig. 5.4. When the needle is inserted, the insertion angle θ may be deflected by
some angle β. We model the probability distribution of β using a normal distribution
with mean 0 and standard deviation σi for insertion or σr for direction change. For a
discrete sample of deflections (β = {−2α,−α, 0, α, 2α}), we obtain the probability of
each deflection by integrating the corresponding area under the normal curve.

5.3.2 Maximizing the Probability of Success Using Dynamic
Programming

The goal of our motion planning approach is to compute an optimal action u
for every state w (in continuous space) such that the probability of reaching the
target is maximized. We define ps(w) to be the probability of success given that
the needle is currently in state w. If the position of state w is inside the target,
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ps(w) = 1. If the position of state w is inside an obstacle, ps(w) = 0. Given
an action u for some other state w, the probability of success will depend on
the response of the needle to the action (the next state) and the probability of
success at that next state. The expected probability of success is

ps(w) = E[ps(v)|w, u], (5.1)

where the expectation is over v, a random variable for the next state. The goal
of motion planning is to compute an optimal action u for every state w:

ps(w) = max
u

{E[ps(v)|w, u]} . (5.2)

For N discrete states, the motion planning problem is to determine the optimal
action ui for each state xi, i = 1, . . . , N . We re-write Eq. 5.2 using the discrete
approximation and expand the expected value to a summation:

ps(xi) = max
ui

⎧⎨
⎩

N∑
j=1

Pij(ui)ps(xj)

⎫⎬
⎭ , (5.3)

where Pij(ui) is the probability of entering state xj after executing action ui at
current state xi.

We observe that the needle steering motion planning problem is a type of
MDP. In particular, Eq. 5.3 has the form of the Bellman equation for a stochastic
maximum-reward problem [34]:

J∗(xi) = max
ui

N∑
j=1

Pij(ui) (g(xi, ui, xj) + J∗(xj)). (5.4)

where g(xi, ui, xj) is a “reward” for transitioning from state xi to xj after per-
forming action ui. In our case, we set J∗(xi) = ps(xi), and we set g(xi, ui, xj) = 0
for all xi, ui, and xj . Stochastic maximum-reward problems of this form can be
optimally solved using infinite horizon dynamic programming (DP).

Infinite horizon dynamic programming is a type of dynamic programming in
which there is no finite time horizon [34]. For stationary problems, this implies
that the optimal action at each state is purely a function of the state without
explicit dependence on time. In the case of needle steering, once a state transition
is made, the next action is computed based on the current position, orientation,
and bevel direction without explicit dependence on past actions.

To solve the infinite horizon DP problem defined by the Bellman Eq. 5.4, we
use the value iteration algorithm [34], which iteratively updates ps(xi) for each
state i by evaluating Eq. 5.3. This generates a DP look-up table containing the
optimal action ui and the probability of success ps(xi) for i = 1, . . . , N .

Termination of the algorithm is guaranteed in N iterations if the transition
probability graph corresponding to some optimal stationary policy is acyclic [34].
Violation of this requirement will be rare in motion planning since a violation
implies that an optimal action sequence results in a path that, with probability
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(a) Shortest path
(Deterministic)

(b) Maximize ps

σi = 10◦, σr = 10◦

ps = 76.95%

(c) Maximize ps

σi = 20◦, σr = 20◦

ps = 29.01%

Fig. 5.5. As in figure 5.1, optimal plans maximizing the probability of success ps

illustrate the importance of considering uncertainty in needle motion. The shortest
path plan passes through a narrow gap between obstacles (a). Since maximizing ps

explicitly considers uncertainty, the optimal expected path has greater clearance from
obstacles, decreasing the probability that large deflections will cause failure to reach
the target. Here we consider medium (b) and large (c) variance in tip deflections for a
needle with smaller radius of curvature than in figure 5.1.

greater than 0, loops and passes through the same point at the same orientation
more than once.

To improve performance, we take advantage of the sparsity of the matrices
Pij(u) for u = 0 and u = 1. Each iteration of the value iteration algorithm
requires matrix-vector multiplication using the transition probability matrix.
Although Pij(u) has N2 entries, each row of Pij(u) has only k nonzero entries,
where k << N since the needle will only transition to a state j in the spatial
vicinity of state i. Hence, Pij(u) has at most kN nonzero entries. By only ac-
cessing nonzero entries of Pij(u) during computation, each iteration of the value
iteration algorithm requires only O(kN) rather than O(N2) time and memory.
Thus, the total algorithm’s complexity is O(kN2). To further improve perfor-
mance, we terminate value iteration when the maximum change ε over all states
is less than 10−3, which in our test cases occurred in far fewer than N iterations,
as described in section 5.4.

5.4 Computational Results

We implemented the motion planner in C++ and tested it on a 2.21GHz Athlon
64 PC. In figure 5.1, we set the needle radius of curvature r = 5.0, defined the
workspace by zmax = ymax = 10, and used discretization parameters Nc = 40,
Δ = 0.1, and δ = 0.785. The resulting DP problem contained N = 800,000
states. In all further examples, we set r = 2.5, zmax = ymax = 10, Nc = 40,
Δ = 0.1, and δ = 0.393, resulting in N = 800,000 states.
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(a) σi = 5◦, σr = 5◦,
ps = 98.98%

(b) σi = 5◦, σr = 10◦,
ps = 92.87%

(c) σi = 5◦, σr = 20◦,
ps = 73.00%

Fig. 5.6. Optimal plans demonstrate the importance of considering uncertainty in
needle motion, where σi and σr are the standard deviations of needle tip deflections that
can occur during insertion and direction changes, respectively. For higher σr relative
to σi, the optimal plan includes fewer direction changes. Needle motion uncertainty
at locations of direction changes may be substantially higher than uncertainty during
insertion due to transverse stiffness of the needle.

Optimal plans and probability of success ps depend on the level of uncer-
tainty in needle motion. As shown in Figs. 5.1 and 5.5, explicitly considering the
variance of needle motion significantly affects the optimal plan relative to the
shortest path plan generated under the assumption of deterministic motion. We
also vary the variance during direction changes independently from the variance
during insertions without direction changes. Optimal plans and probability of
success ps are highly sensitive to the level of uncertainty in needle motion due
to direction changes. As shown in figure 5.6, the number of direction changes
decreases as the variance during direction changes increases.

By examining the DP look-up table, we can optimize the initial insertion
location, orientation, and bevel direction, as shown in Figs. 5.1, 5.5, and 5.6. In
these examples, the set of feasible start states was defined as a subset of all states
on the left edge of the workspace. By linearly scanning the computed probability
of success for the start states in the DP look-up table, the method identifies the
bevel direction b, insertion point (height y on the left edge of the workspace),
and starting orientation angle θ (which varies from −90◦ to 90◦) that maximizes
probability of success, as shown in figure 5.7.

Since the planner approximates the state of the needle with a discrete state,
the planner is subject to discretization errors as discussed in section 5.2.3. After
each action, the state of the needle is obtained from medical imaging, reducing
the discretization error in position of the current state to Δ

√
2/2. However, when

the planner considers future actions, discretization error for future bevel direc-
tion changes is cumulative. We illustrate the effect of cumulative discretization
error during planning in figure 5.8, where the planner internally assumes the
expected needle path will follow the dotted line rather than the actual expected
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(a) Optimization surface for figure
5.5(c)

(b) Optimization surface for figure
5.6(c)

Fig. 5.7. The optimal needle insertion location y, angle θ, and bevel direction b are
found by scanning the DP look-up table for the feasible start state with maximal ps.
Here we plot optimization surfaces for b = 0. The low regions correspond to states
from which the needle has high probability of colliding with an obstacle or exiting the
workspace, and the high regions correspond to better start states.

(a) Deterministic shortest
path,

4 direction changes

(b) σi = 5◦, σr = 20◦,
8 direction changes

(c) σi = 5◦, σr = 10◦,
15 direction changes

Fig. 5.8. The small squares depict the discrete states used internally by the motion
planning algorithm when predicting the expected path from the start state, while the
solid line shows the actual expected needle path based on constant-curvature motion.
The cumulative error due to discretization, which is bounded as described in section
5.2.3, is generally smaller when fewer direction changes (indicated by solid circles) are
performed.

path indicated by the solid line. The effect of cumulative errors due to discretiza-
tion, which is bounded as described in section 5.2.3, is generally smaller when
fewer direction changes are planned.

As defined in section 5.3.2, the computational complexity of the motion plan-
ner is O(kN2). Fewer than 300 iterations were required for each example, with
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(a) (b) (c)

Fig. 5.9. Three simulated image-guided needle insertion procedures from a fixed start-
ing point with needle motion uncertainty standard deviations of σi = 5◦ during inser-
tion and σr = 20◦ during direction changes. After each insertion distance δ, we assume
the needle tip is localized in the image and identified using a dot. Based on the DP
look-up table, the needle is either inserted (small dots) or a direction change is made
(larger dots). The effect of uncertainty can be seen as deflections in the path, i.e.,
locations where the tangent of the path abruptly changes. Since σr > σi, deflections
are more likely to occur at points of direction change. In all cases, ps = 72.35% at
the initial state. In (c), multiple deflections and the nonholonomic constraint on needle
motion prevent the needle from reaching the target.

fewer iterations required for smaller σi and σr. In all examples, the number of
transitions per state k ≤ 25. Computation time to construct the MDP depends
on the collision detector used, as collision detection must be performed for all
N states and up to kN state transitions. Computation time to solve the MDP
for the examples ranged from 67 sec to 110 sec on a 2.21GHz AMD Athlon 64
PC, with higher computation times required for problems with greater variance,
due to the increased number of transitions from each state. As computation
only needs to be performed at the pre-procedure stage, we believe minutes of
computation time is reasonable for the intended applications. Intra-operative
computation time is effectively instantaneous since only a memory access to the
DP look-up table is required to retrieve the optimal action after the needle has
been localized in imaging.

Integrating intra-operative medical imaging with the pre-computed DP look-
up table could permit optimal steering of the needle in the operating room
without requiring costly intra-operative re-planning. We demonstrate the po-
tential of this approach using simulation of needle deflections based on normal
distributions with mean 0 and standard deviations σi = 5◦ and σr = 20◦ in
figure 5.9. After each insertion distance δ, we assume the needle tip is localized
in the image. Based on the DP look-up table, the needle is either inserted or
the bevel direction is changed. The effect of uncertainty can be seen as deflec-
tions in the path, i.e., locations where the tangent of the path abruptly changes.
Since σr > σi, deflections are more likely to occur at points of direction change.



Conclusion and Open Problems 73

In practice, clinicians could monitor ps, insertion length, and self-intersection
while performing needle insertion.

5.5 Conclusion and Open Problems

We developed a new motion planning approach for steering flexible needles
through soft tissue that explicitly considers uncertainty: the planner computes
optimal actions to maximize the probability that the needle will reach the de-
sired target. Motion planning for steerable needles, which can be controlled by
2 degrees of freedom at the needle base (bevel direction and insertion distance),
is a variant of nonholonomic planning for a Dubins car with no reversals, binary
left/right steering, and uncertainty in motion direction.

Given a medical image with segmented obstacles, target, and start region, our
method formulates the planning problem as a Markov Decision Process (MDP)
based on an efficient discretization of the state space, models motion uncertainty
using probability distributions, and computes actions to maximize the probabil-
ity of success using infinite horizon DP. Using our implementation of the method,
we generated motion plans for steerable needles to reach targets inaccessible to
stiff needles and illustrated the importance of considering uncertainty in needle
motion, as shown in Figs. 5.1, 5.5, and 5.6.

Our approach has key features particularly beneficial for medical planning
problems. First, the planning formulation only requires parameters that can be
directly extracted from images (the variance of needle orientation after insertion
with or without direction change). Second, we can determine the optimal needle
insertion start pose by examining the pre-computed DP look-up table containing
the optimal probability of success for each needle state, as demonstrated in
figure 5.7. Third, intra-operative medical imaging can be combined with the
pre-computed DP look-up table to permit optimal steering of the needle in the
operating room without requiring time-consuming intra-operative re-planning,
as shown in figure 5.9.

Extending this motion planner to 3-D would expand the applicability of the
method. Although the mathematical formulation can be naturally extended,
substantial effort will be required to geometrically specify 3-D state transitions
and to efficiently handle the larger state space when solving the MDP. Exten-
sions to 3-D should consider faster alternatives to the general value iteration
algorithm, including hierarchical and adaptive resolution methods [27, 52, 158],
methods that prioritize states [30, 63, 82, 95, 157], and other approaches that
take advantage of the structure of our problem formulation [32, 40, 41].

Another open problem is to develop automated methods to estimate necessary
parameters from medical images. These parameters include needle curvature and
variance properties as well as the effects of including of multiple tissue types in
the workspace with different needle/tissue interaction properties.

Our motion planner has implications beyond the needle steering application.
We can directly extend the method to motion planning problems with a bounded
number of discrete turning radii where current position and orientation can be
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measured but future motion response to actions is uncertain. For example, mo-
bile robots subject to motion uncertainty with similar properties can receive
periodic “imaging” updates from GPS or satellite images. Optimization of “in-
sertion location” could apply to automated guided vehicles in a factory setting,
where one machine is fixed but a second machine can be placed to maximize
the probability that the vehicle will not collide with other objects on the factory
floor. By identifying a relationship between needle steering and infinite horizon
DP, we developed a motion planner capable of rigorously computing plans that
are optimal in the presence of uncertainty.
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