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Foreword

Since the dawn of the new millennium, robotics has undergone a major transfor-
mation in scope and dimensions. This expansion has been brought about by the
maturity of the field and the advances in its related technologies. From a predom-
inantly industrial focus, robotics has been rapidly expanding into the challenges
of the human world. The new generation of robots is expected to safely and
dependably cohabit with humans in homes, workplaces, and communities, pro-
viding support in services, entertainment, education, healthcare, manufacturing,
and assistance.

Beyond its impact on physical robots, the body of knowledge robotics has
produced is revealing a much wider range of applications reaching across diverse
research areas and scientific disciplines, such as: biomechanics, haptics, neuro-
sciences, virtual prototyping, animation, surgery, and sensor networks among
others. In return, the challenges of the new emerging areas are proving an abun-
dant source of stimulation and insights for the field of robotics. It is indeed at
the intersection of disciplines that the most striking advances happen.

The goal of the series of Springer Tracts in Advanced Robotics (STAR) is to
bring, in a timely fashion, the latest advances and developments in robotics on
the basis of their significance and quality. It is our hope that the wider dissemina-
tion of research developments will stimulate more exchanges and collaborations
among the research community and contribute to further advancement of this
rapidly growing field.

The monograph written by Ron Alterovitz and Ken Goldberg combines ideas
from robotics, physically-based modeling, and operations research to develop new
motion planning and optimization algorithms for image-guided medical proce-
dures. A challenge clinicians commonly face is compensating for errors caused
by soft tissue deformations that occur when imaging devices or surgical tools
physically contact soft tissue. A number of methods are presented which can be
applied to a variety of medical procedures, from biopsies to anaesthesia injections
to radiation cancer treatment. They can also be extended to address problems
outside the context of medical robotics, including nonholonomic motion planning
for mobile robots in field or manufacturing environments.



X Foreword

As the first focused STAR volume in the growing research area of medical
robotics, this title constitutes a fine addition to the series!

Naples, Italy, Bruno Siciliano
April 2008 STAR Editor



Acknowledgments

Medical robotics brings together researchers and practitioners from a variety of
backgrounds. It is with great pleasure that we acknowledge our collaborators on
the research presented in this book.

We would especially like to thank Russ Taylor at Johns Hopkins University
for introducing us to the challenges of needle insertion and tissue deformations,
Allison Okamura for her key contributions to medical needle steering, and Jean
Pouliot and I-Chow(Joe) Hsu from the UCSF Department of Radiation Oncology
for introducing us to important problems in radiation treatment in medicine.

We would like to thank the entire needle steering team including Allison Oka-
mura, Noah Cowan, Greg Chirikjian, Vinutha Kallem, Kyle Reed, and Sarthak
Misra at Johns Hopkins University, Robert Webster at Vanderbilt University,
and Gabor Fichtinger at Queens University.

We would like to thank our collaborators at UC Berkeley who have helped
us with physically-based simulation and meshing, including James O’Brien,
Jonathan Shewchuk, and Nuttapong Chentanez, as well as our collaborators in
operations research and optimization, including and Alper Atamtürk, Andrew
Lim, and Laurent El Ghaoui.

We would like to thank our additional collaborators at UCSF in Radia-
tion Oncology, Radiology, and Bioengineering, including John Kurhanewicz,
Sue Noworolski, Chris J. Diederich, Etienne Lessard, Yongbok Kim, Richard
Taschereau, Adam Cunha, and Frank Tendick.

We would like to thank our colleagues at LAAS-CNRS in Toulouse, France, re-
garding motion planning and SMR, including Nic Siméon, Juan Cortés, Georges
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Emerging advances in medical imaging are enabling clinicians to non-invasively
examine anatomy and metabolic processes deep below the skin surface. From
computed tomography capable of displaying the patient’s 3-D anatomy with
sub-millimeter resolution, to magnetic resonance spectroscopy imaging that can
identify the location of metabolic compounds in tissue, the quantity and detail
of patient-specific imaging data available to clinicians is rapidly increasing.

In parallel to these advances in medical imaging, new robotic tools are be-
ing introduced into clinical practice. These “robotic surgical assistants” have
the potential to provide greater precision and accuracy compared to manually
controlled surgical devices. A pioneer in this area has been the commercially
successful da Vinci Surgical System, a robotic surgical assistant for laparoscopic
surgery developed by Intuitive Surgical that has been installed in over 700 loca-
tions worldwide. In addition to the da Vinci system, numerous robotic systems
are being developed commercially and in academia for specialized medical pro-
cedures from biopsies to retinal surgery to radiation dose delivery.

Fully integrating the wealth of digital information obtained from imaging with
advances in robotic hardware has the potential to significantly improve patient
care. To fully realize this potential, new computational tools are needed to help
physicians transform the information obtained from medical images into actions
for robotic surgical assistants to perform.

In this book, we focus on new motion planning algorithms for image-guided
medical procedures. These motion planning algorithms must address key chal-
lenges that arise in medical applications, including deformations, uncertainty,
and optimality. The motion planning algorithms utilize anatomical and clinical
information extracted from medical images as well as physically-based models of
surgical devices and soft tissues. The objective of motion planning in this con-
text is to compute actions that will guide a surgical device around anatomical
obstacles to reach a clinical target or achieve a clinical goal.

R. Alterovitz and K. Goldberg: Motion Planning in Medicine, STAR 50, pp. 1–10, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



2 Introduction

Motion planning for image-guided medical procedures introduces three key al-
gorithmic challenges:

1. Deformations: When surgical devices such as needles contact soft tissue, the
soft tissue may deform. Clinicians must compensate for these deformations
to successfully guide a surgical device to a clinical target.

2. Uncertainty: The motion response of surgical devices to commanded actions
cannot always be predicted with certainty. Errors can arise due to patient
variability as well as limitations inherent in the surgical device (for example,
a “rigid” needle flexing due to contact with tissue). Clinicians must consider
uncertainty to successfully guide surgical devices to clinical targets with a
high probability of success.

3. Optimality: When multiple motion plans are feasible, how do we compute the
best option? Almost all motion planning problems for medical procedures
involve optimization to achieve the clinical goal as best as possible while
minimizing tissue damage and other negative side effects.

To address these challenges, the computational tools introduced in this book
combine biomedical imaging, physically-based simulation, and new geometric
and optimization-based planning algorithms. This approach takes advantage of
advances in robotics algorithms, finite element modeling, and operations re-
search. Increases in computer processing speed are enabling the integration of
results from these disparate fields in a novel fashion, allowing the creation and im-
plementation of fast and effective motion planning algorithms for image-guided
medical procedures.

We illustrate our proposed information flow for computer-assisted image-
guided medical procedures in figure 1.1. Between the traditional image acquisi-
tion and treatment phases, a computational phase incorporates new algorithms
to plan and optimize the procedure. Developing these computational tools is the
focus of this book.

On the left of figure 1.1 is the acquisition of patient-specific information.
Medical imaging serves as a key source of patient-specific information since im-
ages encode both anatomical structures as well as clinical targets. For example,
molecular-scale imaging techniques such as Magnetic Resonance Spectroscopy
Imaging (MRSI) enable physicians to non-invasively and precisely identify the
location of anomalies such as cancerous lesions. Computed Tomography (CT)
can display the patient’s 3-D anatomy with a resolution as fine as 0.5 mm. Ultra-
sound imaging can display moving tissues in real-time. And X-ray fluoroscopy
can image and localize surgical devices such as needles inside human tissue. In
addition to images, additional patient-specific input must be specified by the
physician. This includes clinical criteria, such as dose requirements for tissues
during radiation cancer treatment.
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Fig. 1.1. Information flow for computer-assisted image-guided medical procedures. In
this book, we focus on the middle phase, computational tools for motion planning.

On the right of figure 1.1 is the patient treatment. Patient treatment can
be performed by the physician directly by manually controlling surgical devices
or with the help of robotic surgical assistants. In both cases, the surgical tools
are subject to their own set of kinematic constraints, which must be considered
during procedure planning and optimization.

In the middle of figure 1.1 is motion planning, the process of using the patient-
specific information on the left to determine actions to be performed by the
surgical devices on the right. As discussed above, the key challenges for motion
planning in these contexts are deformations, uncertainty, and optimality.

To properly consider the effects of tissue deformations, the motion planning al-
gorithm can utilize a physically-based simulation of the interaction of the surgical
device with soft tissue. In this book, we introduce computational models and sim-
ulations of soft tissue deformation using finite element methods (FEM). Although
FEM is generally used for off-line simulation of stiff solid materials, we harness the
power of modern computers and new algorithmic techniques to perform real-time
FEM simulation of soft tissues (as introduced in chapter 2). We demonstrate how
these simulations can be used as components of higher-level planning algorithms,
such as motion planning algorithms to compensate for errors caused by tissue de-
formations during needle insertion (chapters 3 and 4) as well as image registration
algorithms to map targets across images (appendix A).

To properly consider the effects of uncertainty, we introduce motion planning
algorithms that compute actions to maximize the probability that the surgical
device will avoid obstacles and successfully reach the clinical target. These algo-
rithms explicitly consider uncertainty in the motion response of a surgical tool
due to patient variability and the complexity of tool/tissue interaction (chapters
5 and 6). In these cases, the information flow in figure 1.1 becomes a closed
loop; medical images are obtained during patient treatment and the actions



4 Introduction

determined by the motion plan are automatically updated and passed to the
physician and/or robotic surgical assistant.

Throughout this book, we focus on optimization-based motion planning. When
multiple plans are feasible, criteria such as minimizing side effects or tissue damage
can be used to determine the optimal plan. In cases such as radiation treatment
where it is impossible to precisely satisfy all the physician specified dose prescrip-
tions, optimization can be used to compute a plan that satisfies the dose prescrip-
tions as best as possible.

In this monograph, we use one application as an illustrative example: prostate
brachytherapy, a medical procedure for treating prostate cancer in which physi-
cians use needles to place radioactive seeds in close proximity to cancerous cells.
However, the approach outlined in figure 1.1 applies to a broad spectrum of med-
ical procedures where disease is localized, from biopsies to anesthesia injections
to chemical and thermal cancer treatments.

We focus on three motion planning problems that arise during image-guided
medical procedures: motion planning for rigid needles, motion planning for steer-
able needles, and motion planning for radiation sources for cancer treatment.
Each of these problems introduces new computational challenges and is sub-
ject to unique planning and optimization constraints imposed by the physician’s
treatment requirements, the patient’s anatomy, and the physical limitations of
medical equipment and devices. We present motion planning algorithms for each
of these general problems and then customize the solution to the specific appli-
cation of prostate brachytherapy.

1.2.1 Motion Planning for Rigid Needles

With the increasing use of minimally invasive image-guided medical interven-
tions, needle insertion is becoming ubiquitous in modern medical procedures,
from biopsies to anesthesia injections to cancer treatments such as cryotherapy
and brachytherapy. Accurately guiding a needle to a specific target inside soft
tissue is crucial for the success of these procedures. However, significant errors
are common in current practice. A key source of these errors is the deformation
of soft tissue caused by the needle during insertion.

We introduce a motion planning algorithm to compensate for errors caused
by soft tissue deformation during needle insertion. The planner combines a soft-
ware simulation of tissue deformations that occur during needle insertion with
an optimization algorithm to determine the needle entry location and insertion
depth that minimizes errors. We apply the planner to an example from prostate
brachytherapy, where the success of the procedure depends on the accurate place-
ment of radioactive seeds within the prostate gland [62, 178] and ignoring these
deformations can result in misplaced seeds [178, 181].
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Fig. 1.2. A prototype steerable needle is inserted into an artificial tissue gel. The lines
in the overlaid grid are separated by 1cm. Steerable needles are capable of following
curved paths around obstacles to reach targets inaccessible to traditional straight, rigid
needles.

1.2.2 Motion Planning for Steerable Needles

Steerable needles are a new class of highly flexible bevel-tip medical needles that
can be steered around obstacles to targets in soft tissue previously inaccessible to
rigid needles [211]. We demonstrate the motion of a steerable needle in figure 1.2.
To fully harness the potential of these new needles, motion planning algorithms
must consider these needles’ nonholonomic constraints and the uncertainty in
their motion through soft tissue. Needle steering can be viewed as a type of
nonholonomic motion planning for a car-like mobile robot.

We introduce a motion planning algorithm for steerable needles that finds
obstacle-free paths to the target while compensating for errors caused by soft
tissue deformation. As in the rigid needle case, we develop an optimization-
based motion planner that uses a software simulation of tissue deformations.
For steerable needles, we generalize the objective function of the optimization
algorithm to minimize costs due to insertion length and obstacle collision, as
well as placement errors caused by tissue deformations.

We also consider motion uncertainty for steerable needles due to patient vari-
ability and the complexity of needle/tissue interaction. To address uncertainty, we
introduce methods that compute actions to maximize the probability that the
steerable needle will avoid obstacles and successfully reach the target. We first in-
troduce a method specialized to devices that follow constant curvature paths. We
thengeneralize thismethodand introduce theStochasticMotionRoadmap(SMR),
anewmotionplanning framework that explicitly considersmotionuncertaintydur-
ing planning by combining motion sampling with Markov Decision Processes and
Dynamic Programming. We apply the SMR framework to needle steering and show
that accounting for needle motion uncertainty during planning can significantly in-
crease the probability of reaching targets without colliding with obstacles.
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1.2.3 Motion Planning for Radiation Sources for Cancer Treatment

Using medical images of patient anatomy and estimates of tumor location, physi-
cians prescribe radiation dose requirements for cancerous tumors and surround-
ing tissues. The dose can be delivered by moving a radiation source through
needles implanted in or near the cancerous tissues. Since dose increases linearly
with time, controlling the speed at which the source moves through a partic-
ular region of tissue determines the dose delivered to that tissue. The motion
planning challenge is to determine how to move the source through needles to
achieve the physician-specified dose requirements as best as possible.

We introduce an optimized-basedmotion planning method for radiation sources
to optimize dose delivered to the patient. Our method, based on linear program-
ming (LP), is fast and exact and computes radioactive source locations and dwell
times to maximize the satisfaction of physician specified dose requirements. The
method uses the objective and clinical criteria framework of Inverse Planning by
Simulated Annealing (IPSA), an approach developed at the University of Cali-
fornia, San Francisco (UCSF) that has been used in the treatment of over a thou-
sand patients. Unlike previous methods used for dose optimization, the LP method
guarantees a mathematically optimal solution.

Prostate cancer kills over 30,000 Americans each year [163]. It is the second
leading cause of cancer death for men in the United States (after lung cancer).
One in six American men will be diagnosed with prostate cancer during their
lifetime, and someone will die from it approximately every 18 minutes [113].

The prostate is a gland roughly the size of a walnut. It is shaped like a pyramid,
with average transverse × anteroposterior × craniocaudal dimensions of 4 cm
× 3 cm × 3 cm [48, 121]. The prostate is located inferior to the bladder and
anterior to the rectum and surrounds the urethra, as shown in figure 1.3.

Prostate cancer is often treated with brachytherapy, a minimally invasive
medical procedure in which physicians place radioactive seeds in close prox-
imity to cancerous tumors. Unlike other radiation treatments such as external
beams, the radioactive source in brachytherapy is placed a short distance from
the tumors (“brachy” means short in Greek). Because of this, brachytherapy can
effectively be used to deliver a high dose to the cancerous tumor and a low dose
to surrounding healthy tissue.

In brachytherapy, the radiation sources are radioactive seeds, approximately
4 mm long and 0.8 mm in diameter. The seeds are guided to their destination using
hollow medical needles. Using medical images, the physician prescribes radiation
doses for the prostate and surrounding tissues. The radioactive dose delivered by
the seeds should “conform” to the physician specified prescriptions over the pa-
tient anatomy. Past studies indicate that improving radiation dose conformality
improves patient health and reduces complication rates [110, 127, 203].

Two variants of prostate brachytherapy are commonly used in clinical prac-
tice: Low Dose Rate (LDR) and High Dose Rate (HDR). Because the response
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Fig. 1.3. The prostate is shown in the sagittal plane for a man laying on his back (the
cranial direction is to the left). The urethra passes through the prostate and connects
to the bladder adjacent to the prostate. This image was obtained from the National
Library of Medicine’s Visible Human project [201].

of cancer cells to radiation depends on dose rate, which variant of the procedure
is used for a particular patient depends on many factors, including the location
and stage of the prostate cancer and other medical considerations [160].

In low dose rate (LDR) brachytherapy, typically reffered to as permanent
seed brachytherapy or permanent prostate implant (PPI) brachytherapy, physi-
cians use needles to permanently implant low dose rate radioactive seeds inside
the prostate, which will irradiate the prostate and surrounding tissue over sev-
eral months. Prior to implantation, a CT or MR image is obtained of the patient
anatomy and a dosimetric plan is prepared that specifies seed locations inside the
prostate that best satisfy physician specified dose requirements, such as a min-
imum peripheral dose coverage, a uniform dose distribution inside the prostate
gland, protection of the urethra, and a dose boost to the tumor. Approximately
100 seeds and biodegradable spacers are loaded into 20 to 25 needles. The physi-
cian inserts each needle transperineally into the patient, who is lying on his back
as shown in figure 1.4. Seeds and spacers are pushed out of the needle when
the depth of the needle specified by the dosimetric plan is reached. Achieving
the desired seed placement is left to the physician, who must take into account
factors such as needle bending and tissue deformations during the implant pro-
cess [62, 178, 181].
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Fig. 1.4. During permanent seed brachytherapy, needles carrying radioactive seeds are
inserted transperineally into the patient (a), who is lying on his back [178]. The quality
of intra-operative transrectal ultrasound images is very poor (b), making it difficult to
monitor deformations of soft tissues such as the prostate.

In High Dose Rate (HDR) brachytherapy, physicians insert catheters into the
prostate through the perineum under ultrasound guidance in the operating room.
Approximately 18 catheters are required to offer sufficient dwell time positions
to cover the entire prostate. A CT or MR image is then obtained of the patient
anatomy and the physician prescribes dose requirements for each point in the
prostate and surrounding tissues. A plan is then created which specifies seed
dwell positions and dwell times that best satisfy the physician prescribed dose
requirements. To execute the plan, the catheters are attached to a robot (such as
a Nucletron MicroSelectron High-Dose-Rate Remote Afterloader) for treatment
delivery. The robot moves a single radioactive source inside each catheter to each
dwell position for the pre-computed dwell times [146]. This procedure may be
repeated before the catheters are removed.

The primary contributions presented in this monograph are new algorithms that
computationally plan and optimize image-guided medical procedures based on
medical images and physician-specified clinical criteria. With the exception of
motion planning for steerable needles, which have not yet been approved by
the U.S. Food and Drug Administration (FDA) for human trials, all algorithms
developed in this book have been tested with data from human patients based
on clinical medical images. In pursuit of this research, we:

• Identified and implemented appropriate models and algorithms to interac-
tively simulate soft tissue deformations due to forces applied during surgical
and interventional medical procedures. The simulation software integrates
methods from real-time physically-based simulation in computer graphics
and classical finite element methods.
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• Developed a 2-D simulation of medical needle insertion. The simulation esti-
mates tissue deformations using a finite element method and real-time mesh
maintenance.

• Designed and implemented a 2-D deformable image registration method that
explicitly considers tissue deformations when mapping targets between im-
ages. Results using prostate medical images indicate a statistically significant
improvement in registration accuracy compared to previous methods.

• Designed and implemented a motion planning algorithm for traditional rigid
needle insertion procedures to correct for errors caused by predicted soft
tissue deformations. The method combines a finite element model of needle
insertion in soft tissue with numeric optimization.

• Designed and implemented a motion planning algorithm for steerable needles
to reach a target while avoiding obstacles and correcting for errors caused
by predicted soft tissue deformations. The method combines a finite element
model of needle steering in soft tissue with numeric optimization.

• Designed and implemented a motion planning algorithm that explicitly con-
siders uncertainty in motion for nonholonomic mobile robots subject to a
constant turning radius, and applied the planner to steerable needles. The
algorithm combines geometric planning with Markov Decision Processes and
Dynamic Programming. Results indicate that traditional shortest paths do
not maximize the probability of successfully reaching the target when the
needle’s response to controls is not known with certainty.

• Developed the Stochastic Motion Roadmap (SMR), a general sampling-based
motion planning framework that explicitly considers motion uncertainty to
maximize the probability of success. We apply the framework to steerable
needles, enabling a more complex representation of motion uncertainty.

• Formulated the HDR brachytherapy dose optimization problem as a linear
program, enabling the fast computation of mathematically optimal solutions.
The linear program uses the objective and clinical criteria framework devel-
oped at the University of California, San Francisco (UCSF) and maximizes
satisfaction of physician specified dose prescriptions.

• Used the optimal HDR brachytherapy solutions obtained by our linear pro-
gram as a baseline to statistically validate the optimization performance of
current clinical software (based on the probabilistic optimization method of
simulated annealing) that has been used in the treatment of over a thousand
cancer patients internationally.

In chapters 2 through 7, we introduce new motion planning algorithms for
computer-assisted image-guided medical procedures, as illustrated in the middle
phase in figure 1.1. In chapter 2, we present biomechanical models of soft tissue
and develop a physically-based simulation of soft tissue deformation based on
a finite element method. This simulation tool will serve as a building-block for
the planning and optimization algorithms presented in subsequent chapters. In
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addition, we illustrate in appendix A how to use this simulation as a component
in an image registration algorithm to automatically map targets identified in
one image to their corresponding locations in another image in which the soft
tissues have deformed.

In chapter 3, we develop a motion planning algorithm that combines a simu-
lation of soft tissue with numerical optimization. We apply the method to tra-
ditional needle insertion procedures to correct for tissue deformation caused by
forces exerted by the needle. We extend this planner and simulation in chapter 4
to consider the curved paths and obstacle avoidance made possible by steerable
needles.

In chapter 5, we consider motion planning for steerable needles in the presence
of uncertainty by using a constant-curvature model of needle steering. In chapter
6, we generalize this method and introduce the Stochastic Motion Roadmap
(SMR), a new sampling-based framework that explicitly integrates a motion
uncertainty model into the planning algorithm to maximize the probability of
success. We apply the SMR framework to needle steering and illustrate the
advantages of SMR compared to solving for traditional shortest paths that ignore
motion uncertainty.

In chapter 7, we develop a motion planning algorithm for radiation sources
that optimizes radioactive source locations and dwell times for high-dose-rate
brachytherapy prostate cancer treatment. The method uses linear programming
to optimally satisfy physician-specified dose requirements.

Finally, in chapter 8, we conclude and suggest future research directions where
the combination of imaging data and physically-based simulation with planning
and optimization algorithms have further potential to improve patient care.



Physicians are increasingly performing surgical procedures using minimally in-
vasive instruments that operate inside the body through narrow openings. This
reduces disturbance to healthy tissue, minimizes risk of infection, and speeds
recovery. However, these procedures are often challenging for physicians to vi-
sualize and perform due to reduced visual and tactile feedback compared with
traditional open surgical procedures. Fast and accurate computer simulations
of these procedures can facilitate physician training and assist in pre-operative
planning and optimization.

Surgery simulation creates a virtual environment in which a physician can in-
teract with organs and tissues that are simulated on a computer. Simulations are
being developed for a wide array of medical procedures, including laparoscopic
surgery [189], bronchoscopy [42], and endoscopic surgery [24]. Surgery simulation
aims to complement the traditional apprenticeship model of physician training;
physicians can train in a controlled environment that exposes them to both
common and rare cases and can practice new techniques without risks to patient
safety. Studies indicate that surgical skills learned using computational simu-
lators directly improve operating room performance by significantly decreasing
procedure time and reducing the number of medical errors [88, 184, 189]. In
one videotaped study on gallbladder dissection, physicians trained using surgery
simulation performed the task 29% faster and with six times fewer errors than
traditional training [189].

In addition to training, surgery simulation can also be applied to medical pro-
cedure planning. With patient-specific imaging data and a sufficiently realistic
simulation of a procedure, a planner can search the space of possible tissue/tool
interaction sequences to identify a plan that is best suited to accomplish the clin-
ical objectives. The ultimate goal is to provide a pre-operative plan, integrated
with medical imaging, to the physician or robotic hardware that will perform
that procedure [182, 183, 199].

Just as flight simulators give pilots an opportunity to learn and practice flying
in a variety of visibility and weather conditions, surgery simulators aim to allow
physicians to perform a procedure “virtually” on a computer to practice on dif-
ficult patient cases without risking patient safety. But whereas flight simulation

R. Alterovitz and K. Goldberg: Motion Planning in Medicine, STAR 50, pp. 11–25, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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requires models of airflow and rigid objects such as the plane, landforms, and
buildings, the key challenge in surgery simulation is simulating deformable tis-
sue interactively. Accurately simulating and displaying tissue deformations and
tool-tissue interactions in real-time poses a computationally challenging problem
and is the topic of much current research.

In this chapter, we combine methods from classical finite element methods
with recent approaches from computer graphics to create a real-time interac-
tive simulation of soft tissues. The simulation achieves sufficient accuracy to
warrant further investigation for clinical applications. We use the simulation of
deformable soft tissues as a building block in chapter 3 to simulate and plan
needle insertion procedures and in chapter 4 to simulate and plan needle steer-
ing. In both of these cases, accurately guiding a needle to a specific target inside
the human body is crucial for the success of the procedure. However, significant
errors are common in current practice due to soft tissue deformations.

In this chapter, we first provide background on simulation of deformable ob-
jects before presenting our simulation of soft tissues. In section 2.1, we provide
an introduction to continuum mechanics, a mathematical framework that has
successfully been used to characterize living tissues and their deformations un-
der applied forces. We then discuss research on soft tissue simulation in section
2.2. Next, we present a finite element method for interactively simulating 2-
D tissue deformations, including real-time visualization using texture-mapping.
This simulation will serve as a building block for the simulators, planners, and
registration tools in chapters 3 and 4 and appendix A.

Continuum mechanics aims to describe the effect of external forces or distur-
bances on the global behavior of solids, liquids, and gases. The theory behind
continuum mechanics was originally developed in the early nineteenth century
by Claude-Louis Navier, Siméon Denis Poisson, and George Green [213]. It has
since been successfully applied in a broad variety of domains, from airplane and
bridge design to animating feature films. Since living tissue is composed of dis-
crete cells, which in turn are composed of molecules and atoms, living tissue,
like other materials, is not purely continuous. However, a large class of living
tissues has been successfully characterized using the methods of continuum me-
chanics [44, 46, 86, 126].

In continuum mechanics, we assume that field quantities such as the densi-
ties of mass, velocity, and energy are continuous over time and space inside the
material [87]. We will consider a deformable body, a continuous material within
a closed surface. We can use continuum mechanics to study how such a de-
formable body behaves when it is subjected to external influences such as forces
or temperature changes.

In this section, will describe the fundamentals of continuum mechanics. We
start by formally defining a deformable body. We then introduce the basic con-
cepts of continuum mechanics using a simple 1-D example, and then generalize
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to 3-D and 2-D deformable bodies. We will use the framework of continuum me-
chanics to compare and analyze methods for simulating soft tissue deformations
in section 2.2.

2.1.1 Deformable Bodies

We consider a deformable body B, a continuous material within a closed surface,
which is a subset of the space �n where n ∈ {1, 2, 3}. The deformable body
is composed of a set of material points p ∈ B. The initial geometry of the
deformable body is its reference state.

External forces applied to a deformable body B may cause material points
p ∈ B to move, resulting in a deformed body B′. B′ specifies the geometry of
the deformed state of the deformable body.

p

B

B'

p'

u(p)

Fig. 2.1. A deformable body B in its reference state is deformed to B′ by displacement
field u

The displacement of a material point is its position change from B to B′. We
define the transformation of a body B to a deformed state B′ by a displacement
field, which specifies the displacement for each material point in B, as shown
in figure 2.1. Each point p ∈ B is transformed to a new point p′ ∈ B′ such
that p′ = p + u(p), where u(p) specifies the displacement field for each p ∈ B.
In continuum mechanics, we assume the mapping u that transforms B to B′ is
single valued, continuous, and has a unique inverse [87].

In dynamic simulations of deformable bodies, the displacement field u(p) is a
function of time. At all times, the displacement field is defined with respect to the
original reference state. We define coordinates for points in the reference state
in the material coordinate frame. The coordinates of displaced points during the
simulation are defined in the world coordinate frame.

2.1.2 The 1-D Case

We introduce fundamental concepts from continuum mechanics with a simple
1-D example, a bar constrained along the x-axis. As illustrated in figure 2.2(a),
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Fig. 2.2. A 1-D bar of length L in the reference state (top). Due to force f , the bar
extends to length L + ∆ in the deformed state (bottom).

the bar is fixed (i.e., attached to a wall) on the left at x = 0. At rest, the bar
has length L. When a force f is applied to the bar along its axis, the bar will
deform. If f points along the positive x-axis, the bar extends by a distance ∆,
as shown in figure 2.2(b).

Stress is a measurement of force intensity: the total force acting on a surface
divided by the area of that surface. Unlike force, which is a global quantity
acting on the entire deformable body, stress is defined pointwise. In the 1-D bar
example, stress σ at point x is defined by

σ(x) =
f

A
,

where A is the (infinitesimal) cross-sectional area of the bar. Stress has units
force per unit area. In the SI measurement system, stress has units of pascals
(Pa), where the pascal is a derived unit equivalent to one newton per square
meter.

Stress may result in a deformation of the deformable body. Deformation is
measured as relative displacement, or

u(x + ∆x) − u(x).

Strain is a measurement of relative deformation at a point. For a point x on
a 1-D bar, strain ε is the ratio between the change in length of a segment (of
infinitesimal length about x) and the original length of the segment:

ε(x) =
u(x + ∆x) − u(x)

∆x
.
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In the limit as ∆x → 0,

ε(x) =
du

dx
.

Strain has units of length per unit length, which is effectively unitless.
The relationship between stress and strain depends on the underlying material

of the deformable body. We mathematically represent this relationship using a
constitutive relation. In general, the constitutive relation is determined through
physical experiments [86]. When the relation between stress and strain is linear,
the material is linearly elastic and

σ = Eε,

where E is the Young’s modulus, a property of the material [87]. This relation
is often referred to as Hooke’s Law.

Given the geometry of the 1-D deformable body, the constitutive relation of
the material, and the external applied forces, we can compute the resulting dis-
placement field for the deformable body. We accomplish this by defining the
stress resulting from the applied forces, computing the strain by plugging the
stress into the constitutive relation, and integrating over the volume of the de-
formable body. For the 1-D bar example where the bar is composed of a linearly
elastic material, the elongation ∆ of the bar is computed by integrating strain
over the length of the bar:

∆ =
∫ L

0

du

dx
dx =

∫ L

0

ε(x)dx =
∫ L

0

σ(x)
E

dx =
∫ L

0

f

AE
dx = f

L

AE
. (2.1)

The quantity

k =
f

∆
=

AE

L

is the stiffness of the bar. In 1-D, stiffness is a function of the Young’s modulus
and the geometry of the bar. For a linearly elastic material,

f = k∆.

Stiffness represents the amount of force required to achieve a unit displacement.

2.1.3 The 3-D Case

In 3-D, the relationships between stress, strain, and the constitutive relation
are equivalent to the 1-D case. However, stress and strain are represented by
tensors with 6 degrees of freedom rather than by scalars. Detailed derivations
of the formulas for these tensors are available in standard continuum mechanics
texts [87]. Here we focus on the fundamentals that will be applicable to soft
tissue simulation in section 2.2.
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To define stress at a point in 3-D, we consider an infinitesimal cube centered
about the point. We illustrate the 9 components of stress at a point in 3-D in
figure 2.3. Stress σ is defined by a 3 × 3 tensor

σ =

⎡
⎢⎣σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎤
⎥⎦ ,

where indices 1, 2, and 3 correspond to the x, y, and z axes, respectively. The
elements along the diagonal are the normal stress components, while the off-
diagonal elements are the shear stress components. The stress tensor is symmet-
ric, resulting in 6 unique components [87].

33

32

31

23

22

21

13

12

11

z

x

y

B

Fig. 2.3. The components of the stress tensor σ in 3-D for an infinitesimal cube from
a deformable body B

Strain in 3-D is also defined by a 3 × 3 symmetric matrix with 6 unique
components [87]:

ε =

⎡
⎢⎣ ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

⎤
⎥⎦ .

Given the point-wise displacement field u for the deformable body, strain in 3-
D can be computed similarly to 1-D by measuring the change in length of an
infinitesimal segment. For a point p with displacement u = u(p), strain is a
quadratic function:

ε11 =
∂u1

∂p1
+

1
2

[(
∂u1

∂p1

)2

+
(

∂u2

∂p1

)2

+
(

∂u3

∂p1

)2
]

(2.2)

and

ε12 =
∂u1

∂p2
+

∂u2

∂p1
+
[
∂u1

∂p1

∂u1

∂p2
+

∂u2

∂p1

∂u2

∂p2
+

∂u3

∂p1

∂u3

∂p2

]
(2.3)
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and similarly for the other strain components. Although quadratic strain is nec-
essary to accurately model large rotations [226], higher order strain terms are
often dropped to define the simpler “geometrically linear” strain:

ε11 =
∂u1

∂p1
(2.4)

ε12 =
∂u1

∂p2
+

∂u2

∂p1
(2.5)

which is applicable to smaller deformations without large rotations.
Once an appropriate representation of strain is selected, we can relate stress to

strain using a constitutive relation that is appropriate for the material composing
the deformable body. For a linearly elastic material,

σij =
3∑

k=1

3∑
l=1

Cijklεkl

where C is a tensor of 81 elastic coefficients. For isotropic materials, tensor C
can be derived from only two independent values: the Young’s modulus E and
Poisson’s ratio ν. The constitutive relation in 3-D for isotropic linearly elastic
materials is:

σij =
3∑

k=1

(
Eν

(1 − 2ν)(1 + ν)

)
εkkδij + 2

(
E

2(1 + ν)

)
εij

where δij is the Kronecker delta function:

δij =

{
1 : i = j

0 : i �= j
.

As in the 1-D case, the Young’s modulus is a measure of the stiffness of a material.
Poisson’s ratio is a measure of compressibility; when an object is stretched,
Poisson’s ratio quantifies the object’s tendency to become thinner. In nonlinear
methods such as Kelvin-Voigt, the tensor C can be functions of strain ε and
strain rate ε̇ [87, 227].

Given the relationship between stress and strain, in 1-Dwe were able in equation
2.1 to obtain an analytic closed-form expression for the displacement of a point on
the bar due to an external force by integrating over the volume of the bar. In higher
dimensions, obtaining an analytic expression relating displacement to external
forces is not possible, except for a small number of geometrically simple problems.
To compute displacements for geometrically complicated deformable bodies, nu-
merous methods have been developed to numerically compute approximate solu-
tions, including mass-spring methods [49], boundary element methods [112], finite
difference methods [49], and finite element methods [227]. In section 2.2, we focus
on methods applicable to soft tissue deformations.
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2.1.4 The 2-D Case

For certain problems, the stress and strain tensors defined for 3-D analysis can
be simplified for 2-D analysis. One common approximation is plane strain, in
which we assume ε33 = ε23 = ε31 = 0. This assumption is valid when the object
does not substantially displace or deform in the z-direction, which commonly
occurs when the z-direction dimension of the body is large or restrained from
motion. In 2-D surgery simulation, plane strain is appropriate if the tissue does
not deform normal to the selected imaging plane.

Simulation of surgical and interventional medical procedures such as needle in-
sertion requires estimating biomechanical deformations of soft tissue when forces
are applied. Because of the complicated geometry of tissue and the wide array of
possible forces that can be applied by surgical instruments, closed form solutions
for soft tissue displacement fields cannot be computed in general.

Historically, several methods have been developed for discretizing tissue into
smaller elements for which the equations of continuum mechanics can be directly
applied, and then numerically combining solutions from the discrete chunks into
a global solution to obtain a tissue displacement field. The history of offline
animation and real-time simulation of deformable objects is summarized in [91].
Here we discuss the mass-spring method and finite element methods, both of
which are capable of simulating deformable bodies with complicated geometries
and composed of heterogeneous materials.

2.2.1 Mass-Spring Method

Mass-spring methods have been common for simulating a diverse array of human
tissues including muscles [207] and blood vessels [45]. In this method, the tissue
is defined using a discrete set of virtual point masses, or nodes, that represent the
tissue volume. Because each node represents a small volume of tissue around it,
this approach is sometimes referred to as the lumped element model (LEM) [49].
Adjacent nodes are connected by massless linear response springs to form a 2-D
or 3-D linkage of springs, as shown in figure 2.4. The dynamics of a node j in
the mass-spring model is governed by Fj = µjaj , where aj is the acceleration
of node j, µj is the mass of node j, and Fj is the force applied to node j,
which includes external forces and internal forces based on spring compression
or extension. Viscous forces can also be added. Standard explicit or implicit time
integration methods can be used to compute velocity and position of each node
j from acceleration for each time step of the simulation [28]. Mass-spring models
are relatively easy to implement. However, the arrangement of 1-D springs to
define a 2-D or 3-D object has a significant impact on the deformation behavior
of the object making it difficult to restrict volume changes or to model isotropic
(or pre-defined anisotropic) material properties. Furthermore, there is no direct
connection between spring stiffness coefficients and the Young’s modulus and
Poisson’s ratio of continuum mechanics.
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Fig. 2.4. A regular mass-spring mesh for a 2-D object. The horizontal and vertical
springs resist compression or tension while the diagonal springs are required to resist
pure shear strains.

2.2.2 Finite Element Method

The development of the finite element method (FEM) can be traced back to the
early 1940’s, including key contributions by Alexander Hrennikof and Richard
Courant. Finite element methods have been used extensively in the mechanical
engineering community to model stiff materials. Unlike the mass-spring method,
the finite element method is directly based on the equations of continuum me-
chanics. The feasibility and potential of using a finite element approach for com-
puter animation was demonstrated by Terzopoulos et al. [200], and Stéphane
Cotin et al. made early contributions to finite element modeling for surgery
simulation [57].

Details on the finite element method are available in standard texts [227]. The
first step of the finite element method is to subdivide the deformable body into
a finite set of elements. These elements correspond to a geometric discretization
of the object. Field quantities, like displacement, velocity, or acceleration, can
be interpolated within each element using shape functions specific to the ele-
ment shape. Finally, the equations of continuum mechanics can be applied to
numerically solve for the interactions between the elements.

Geometric Discretization

In FEM, a deformable object is decomposed into a mesh of simple elements,
generally triangles or quadrilaterals in 2-D or tetrahedra or hexahedra in 3-D.
An extreme point of any element is called a node.

The reference mesh G defines the geometry of the deformable object in its
reference state, where G is composed using n nodes and m elements. Each node’s
coordinate is stored in the node coordinate vector x. In 2-D, x is of dimension d =
2n and each node has 2 displacement degrees of freedom (DOF). A deformation
is defined by a displacement vector u, which specifies the displacement of each
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x x
x' u

(a) Finite element mesh G (b) Deformed finite element mesh G′

Fig. 2.5. A 2-D finite element reference mesh G composed of triangular elements is
shown in (a). The deformed mesh G′ is shown in (b). The node at position x in mesh
G is displaced by vector u to position x′ in deformed mesh G′.

node in mesh G. The deformed mesh G′ is constructed in the world frame using
the displaced node coordinates x′ = x + u, as shown in figure 2.5.

In continuum mechanics, boundary conditions specify constraints on the de-
formation of a deformable body. Boundary conditions can be applied at any
nodes in the finite element mesh. These include displacement constraints (such
as marking a node as fixed, like a node inside a bone) and external forces (due
to tool/tissue interactions, like needle insertion). We define external forces in an
external forces vector f , with dimension 2n in 2-D, where each entry corresponds
to a displacement degree of freedom in x.

Interpolation

In continuum mechanics, field quantities such as displacement, velocity, acceler-
ation, and mass density are continuous over the deformable body. Given values
for these quantities at n discrete nodes in a finite element mesh, we use shape
functions (also known as basis functions) to interpolate the value of these quanti-
ties at any point in the deformable body. Since adjacent elements share common
nodes, the field quantities will be continuous over the entire deformable body
defined by the mesh. In section 3.3.4, we use linear shape functions within each
element, which can be derived using barycentric coordinates [167].

Solving System of Equations

Using a geometric discretization and shape functions, the finite element method
provides a framework for calculating the internal stress distribution of elements
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in the mesh [227]. More specifically, given a vector of external forces acting on
nodes of the deformable body, we can compute a vector of node displacements
such that the internal forces generated by element stresses balance the external
forces.

A simulation computes displacement ui as a function of time step i as external
forces fi change over time. In this discussion, we initially assume the deformable
body does not undergo large deformations or rotations and assume a linear
relationship between stress and strain (Cauchy strain).

Linear Quasi-static Formulation

The static formulation minimizes the total strain energy over the deformable
body to compute its static equilibrium state [227]. Using the finite element
method, deformation ui at time step i is computed using the formula

Kui = fi

where ui is the nodal displacement vector, fi is the force displacement vector,
and K is the stiffness matrix based on the material properties of the elements in
the mesh defining the deformable object. A quasi-static simulation assumes the
deformable object reaches its equilibrium state at each time step.

Real-time visual performance for surgery simulation of the human liver using
linear quasi-static FEM was achieved by Stéphane Cotin et al., although the
required preprocessing step took 8 hours on a standard PC [58]. This method,
for smaller meshes, was also used by DiMaio et al. for modeling force distributions
during needle insertion in tissue phantoms [69, 70].

Dynamic Formulation and the Newmark Method

Rather than calculating only static deformations, we can simulate the dynamic
behavior of soft tissues by solving for the acceleration, velocity, and displacement
of each node for every time step to produce a history-dependent simulation. For
a 2-D mesh composed of 3-node triangular elements, the dynamic FEM problem
is defined by a system of d = 2n linear equations:

Mai + Cvi + Kui = fi (2.6)

where M is the mass matrix, C is the damping matrix, K is the stiffness ma-
trix, fi is the external force vector, ai is the nodal acceleration vector, vi is
the nodal velocity vector, and ui is the nodal displacement vector at time step
i [227]. The matrices M, C, and K are defined using the material properties of
the elements in the mesh defining the deformable object, which include stiffness,
compressibility, Rayleigh damping coefficients, and mass density [227]. Since
they are constructed by superimposing the element mass, damping, and stiffness
matrices, the number of non-zero entries in each of these matrices is O(d). When



22 Physically-Based Simulation of Soft Tissue Deformations

a node in the reference mesh is moved or constrained, these matrices must be
updated, a process that takes constant time for each DOF.

To solve for ui from its time derivatives vi and ai in the system 2.6, we inte-
grate over time for each time step i. One efficient option is to use the Newmark
method [214], which translates the differential system into a linear system of
equations with parameters β and γ which are used to solve for displacement
ui+1 and velocity vi+1. Let h be the time step duration. Displacement and ve-
locity for the next time step are approximated as:

ui+1 = ui + hvi + (1 − β)
h2

2
ai + β

h2

2
ai+1

vi+1 = vi + (1 − γ)hai + hai+1

We consider two solvers: a slower, more accurate solver for planning and a
faster solver for interactive simulation. When real-time interactive performance
is desired, the value of h is adaptive; it is set using the system clock to the
amount of time that has passed since the last iteration was completed.

When more accuracy is required, we set the Newmark method parameters
β = 0.5 and γ = 0.5 to obtain the implicit system:(

M +
h

2
C +

h2

4
K
)

ai+1 = fi+1 −
(

h

2
C +

h2

4
K
)

ai − (C + hK)vi − Kui

vi+1 = vi +
h

2
(ai + ai+1)

ui+1 = ui + hvi+1 +
h2

4
(ai + ai+1)

Acceleration is obtained by solving the linear system using an iterative numerical
method such as Gauss-Seidel or Conjugate Gradient that takes advantage of the
sparsity of the matrices. Since K, M, and C contain only O(d) non-zero entries,
the iterative method will take O(d2) time in the worst case, although typically
the number of iterations is much less than d.

For interactive simulation, we avoid solving a linear system by setting the
Newmark method parameters to β = 0 and γ = 0.5 to obtain an explicit system.

ui+1 = ui + hvi +
h2

2
ai(

M +
h

2
C
)

ai+1 = fi+1 − Kui+1 − C
(
vi +

h

2
ai

)

vi+1 = vi +
h

2
(ai + ai+1)

Mass lumping, which approximates the continuous material as a particle system,
decouples the system of equations into a set of algebraic equations [173, 225]. For
soft materials, mass lumping results in a small loss of accuracy in the dynamics
of the object [225]. With mass lumping, each time step requires only O(d) time
to compute and does not require any extensive pre-computation.
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In most cases, explicit integration is considered inferior to implicit integra-
tion because it is unstable for large time steps [28]. However, this instability
is most prevalent for stiff materials since the maximum time step length is in-
versely proportional to the natural frequency of the dynamic system 2.6. Since
the natural frequency is small for soft tissues, explicit integration can often be
used effectively for these simulations [225].

Nonlinear FEM

The above finite element formulations use Cauchy strain, a linear approxima-
tion that loses accuracy for greater deformations. Green’s strain, or quadratic
strain, correctly handles larger strains and global rotations [155, 167, 173, 226].
Zhuang and Canny and Picinbono et al., in addition to relaxing the quasi-static
assumption, also simulate large deformations using quadratic strain, which gen-
erates a nonlinear system of equations [173, 226]. To achieve real-time visual
performance for reasonably sized meshes, Zhuang uses two key approximations:
mass lumping (as described above) and a graded mesh.

To accurately model large deformations, it may also be necessary to take into
account the nonlinear elasticity of some materials [25, 216]. Azar et al. develop
an offline FEM model of the female breast to track the position of a tumor for a
biopsy procedure [25]. Because of the large deformations caused by compression,
a piece-wise linear function was used to approximate the nonlinear elasticity
of the tissues. Wu et al. use mass lumping and adaptive mesh refinement to
achieve real-time performance [216]. A key mathematical limitation of using
Green’s strain is that it cannot properly handle large compressions; simulated
internal forces incorrectly decline when an element is compressed to less than
30% of its material volume [167].

2.2.3 Visualizing 2-D Simulations

The visual feedback of a simulation should mimic the experience of a physician
performing the simulated medical procedure [19]. For 2-D simulations of image-
guided procedures, this can be performed efficiently using standard computer
graphics hardware.

We use a static 2-D image of the tissue as input. As the user of the simulation
deforms the tissue, we deform the input image to match the deformations com-
puted in the mesh. We implement this visualization using texture-mapping [99],
where the deformed image is constructed by using mesh G to obtain texture map
coordinates for G′. Because 2-D texture-mapping is implemented in hardware on
all modern graphics cards, using this method does not substantially penalize the
speed of the simulation. In addition to displaying the deformed soft tissue, the
simulation also allows the user to selectively overlay clinically relevant informa-
tion, such as organ outlines, medical instruments, and the target location in the
deformable tissue. A sample image of a deforming prostate is shown in figure 2.6.
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(a)

(b)

(c)

Fig. 2.6. The simulation visualization, which is based on an ultrasound image, is in-
tended to mimic the image that would be seen by a physician during an image-guided
procedure. Three frames illustrate the simulated deformations of the prostate (polygo-
nal outline) caused by poking the surrounding tissue from the right. The visualization
of each frame is obtained by deforming the single static ultrasound image that was
provided as input.

The methods described in this chapter lay the foundation for the simulations
that will be used in chapters 3 and 4 as well as the image registration method
in appendix A. This foundation will be used to develop simulations of medical
needle insertion and needle steering in deformable soft tissue, which will be used
as components of motion planning systems..
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As with most modeling problems, there is an inherent trade-off between sim-
ulation realism and computational complexity. However, new simulation algo-
rithms are constantly being developed that push the trade-off curve outward
and both improve realism and reduce computation time. Ideally, as the capa-
bilities of physically-based simulations improve, these improvement should be
directly incorporated into the simulation-based motion planners presented in
future chapters.



Minimally invasive medical procedures such as brachytherapy, biopsies, and
treatment injections often require inserting a rigid needle to a specific target
location inside the body to implant a radioactive seed, extract a tissue sample,
or inject a drug. In all cases, the needle tip should be inserted as close as pos-
sible to a predetermined target inside soft tissue. Unfortunately, inserting and
retracting a needle causes the surrounding soft tissue to displace and deform:
ignoring these deformations can result in substantial placement error, as illus-
trated in figure 3.1. Although real-time imaging such as ultrasound is available
during the procedure, it does not provide crisp tissue boundaries and cannot
be used to precisely monitor the tissue deformations. Physicians must therefore
learn to compensate for the effects of tissue deformations in order to insert the
needle to the correct location within the tissue.

We develop a sensorless planning system based on a biomechanical simulation
of needle insertion to reduce placement error. Here, “sensorless” refers to a mini-
malist approach to robotics in which no real-time sensor input is required as the
procedure is performed [77]; i.e., no real-time tracking of tissues or the needle is
required during the procedure. Our pre-operative planning system combines the
simulation described in chapter 2 with an optimization algorithm to compute a
needle offset that compensates for tissue deformations to reach a given target
location. The planner iteratively tests different insertion locations and depths
to compute the optimal needle offset: a sensorless motion plan as illustrated in
figure 3.1 right column greatly reduces placement error in simulation.

We apply the system to permanent seed prostate brachytherapy, a minimally
invasive medical procedure in which a physician uses needles to permanently im-
plant radioactive seeds inside the prostate that irradiate surrounding tissue over
several months. The success of this procedure depends on the accurate place-
ment of radioactive seeds within the prostate gland [62, 178]. For permanent
seed brachytherapy, we define seed placement error as the Euclidean distance
between the desired location specified by the dosimetric plan (the target) and the
actual implanted seed location after needle retraction. An experienced physician
implanting seeds (without stabilizing needles) in 20 patients achieved average

R. Alterovitz and K. Goldberg: Motion Planning in Medicine, STAR 50, pp. 27–44, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Without planning: With sensorless plan:

(a)

(b)

(c)

(d)

Fig. 3.1. Four vertical frames illustrate brachytherapy needle insertion based on de-
forming an ultrasound image of the human prostate using simulation. The left column
shows results without planning, producing substantial placement error. The right col-
umn shows results with the sensorless plan, with minimal placement error. The target
implant location is indicated in all frames with a cross fixed in the world frame. Frame
(a) outlines the undeformed prostate. In Frame (b), the needle is inserted and the
radioactive seed (small square) is released at the needle tip. In Frame (c), the needle
is retracted. Frame (d) indicates the resulting placement error, the distance between
the target and resulting actual seed location. Without planning, placement error is
substantial: 26% of the prostate diameter, resulting in damage to healthy tissue and
failure to kill cancerous cells. With sensorless planning, shown in the bottom image of
Frame (d), placement error is negligible in this simulation.
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placement errors of 0.47 cm in depth and 0.22 cm in height for an average
placement error of 0.63 cm, a substantial error of 21% of average prostate di-
ameter (3 cm) [196]. Real-time ultrasound imaging is used during the procedure
to help guide each needle along a straight path and to verify the depth of the
needle tip in the world frame. However, the imaging cannot effectively be used
to compensate for deformations because it does not include crisp markers with
known positions inside the soft tissues, as shown in figure 1.4. Tissue deforma-
tions during needle insertion and retraction contribute to placement error during
brachytherapy [178, 196], as illustrated in figure 3.1. In this chapter, we describe
our sensorless planning approach to reduce placement error without relying on
real-time imaging.

In section 3.3, we introduce a simulation of needle insertion in deformable tis-
sue that can be used interactively for physician training or offline for procedure
planning. In section 3.4, we use the simulation as a component of the planning
system that computes needle insertion offsets to compensate for the effect of tis-
sue deformations. In section 3.5, we apply the simulator and planner to minimize
the placement error of radioactive seed implants for prostate brachytherapy.

To define the anatomy and clinical target, the simulation requires a pre-
procedure medical image. Many imaging methodologies, such as ultrasound,
display a 2-D planar cross-section of the human body. MR images, which may
contain multiple planar slices composing a 3-D volume, have an inter-slice dis-
tance significantly greater than the diameter of a medical needle. Hence, in this
chapter we restrict needle motion to a 2-D cross-section of the patient anatomy.

In robotics, sensorless planning algorithms, pioneered by Mason and Erdmann in
the 1980’s [77], have been developed to position and orient mechanical parts using
parallel jaws [43, 94], vibrating surfaces [37], single joint robots over conveyor
belts [5], and squeeze and roll primitives for micro-scale parts [156]. For needle
placement planning using rigid needles, our goal is to model and compensate for
mechanical response before actions are performed.

Medical needle insertion procedures may benefit from the more precise control
of needle position and velocity made possible through robotic surgical assistants.
Surveys of recent advances in medical robotics have been written by Taylor and
Stoianovici [199] and Cleary et al. [56]. Dedicated hardware for needle insertion
is being developed for stereotactic neurosurgery [151], MR compatible surgical
assistance [50, 68], and prostate biopsy and therapeutic interventions [83, 84,
172, 186].

When real-time sensor data such as MR or X-ray imaging is available dur-
ing needle insertion procedures and the target and relevant obstacles are all
discernible in the images, robotic control algorithms can be used to steer the
needle to the desired target. Shi et al. developed an image-guided robotic sys-
tem containing a needle as an end-effector that uses real-time X-ray imaging to
track a target and send its position to a control system [192]. The needle’s tip
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position is computed using forward kinematics and the control system repeat-
edly updates the insertion path of the needle tip to a straight line path to the
target.

When real-time sensor data is unavailable or unreliable, sensorless planning
based on pre-operatively predicting the effects of tissue deformations can be
applied. Azar et al. use a piece-wise nonlinear finite element model to track the
position of a tumor during breast compression before a breast cancer biopsy [25].
Recent work has addressed planning local trajectories in deformable tissue for
flexible needles with symmetric tips by translating and rotating the base [72, 92]
and steerable bevel-tip needles that can be controlled by rotating the bevel [10,
208]. In this chapter, we explicitly use simulation of insertion of rigid needles into
deformable tissues to plan needle procedures without real-time sensor input [18].

As illustrated in figure 3.2, we consider a 2-D slice of tissue in the yz plane. At
time t = 0, the tissue is at rest (undeformed). The target is denoted by a point
g = (yg, zg) in the world frame at time t = 0.

A needle motion plan is defined by a control vector X. We define X = (yr, zr)
where yr is the “insertion height” and zr is the “insertion depth.” A needle
insertion procedure consists of inserting the needle at height yr to a depth zr,
implanting a radioactive seed at this release point, retracting the needle, and
waiting for steady-state. For simplicity, we assume that the needle moves parallel
to the z-axis and that the coordinate system of the needle and the coordinate
system of the tissue are identical. The location of the seed in the world frame
after retraction is denoted by p = (yp, zp).

Due to the effects of tissue deformation, X �= p. We measure seed placement
error using the Euclidean distance between the final seed location p and the
target location g:

ε = ‖p − g‖ .

The physically-based simulation is essentially a function whose input is a
motion plan X and whose output is the final seed placement p. Hence, we specify
the simulation as a function S(X) that returns the final seed placement:

p = S(X).

For a given target point g inside soft tissue, the motion planning problem is
to compute a plan X that minimizes placement error. To compute an optimal
motion plan X∗, we use the simulation as a function in the optimization:

X∗ = argmin
X

(ε) = argmin
X

(‖S(X) − g‖). (3.1)

During planning, we restrict the range of the parameters of the motion plan
X to clinically feasible values based on anatomical constraints. We restrict the
yr to the region of skin where the needle can be feasibly and safely inserted,
yr ∈ (ymin,ymax). We define zmax as the maximum medically feasible needle
insertion depth.
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Fig. 3.2. Slice of deformable tissue in the yz plane. The needle is inserted from right
to left parallel to the z-axis, causing the tissue to deform.

In this section, we introduce a simulation of the insertion and retraction of a thin,
rigid, symmetric tip needle in a 2-D slice of deformable soft tissue. We use a finite
element method (FEM) to compute the deformations of soft tissues when forces
are applied by the needle. Rather than calculating only static deformations, we
simulate the dynamic behavior of soft tissues by solving for the acceleration,
velocity, and displacement of each node for every time step to produce a history-
dependent simulation.

As in related work [58, 70], we approximate soft tissues as linearly elastic,
isotropic materials (Cauchy strain). Tissue may be inhomogeneous but must be
fully connected with no gaps between different tissue types. We do not model
slip between tissue types or physiological changes that result from needle in-
sertion, such as edema (tissue swelling). As computation speed improves and
biomechanics experiments provide more nonlinear tissue properties, this simula-
tion can serve as foundation that can be extended to incorporate more complex
tissue models.

The simulation uses a model of needle insertion based on a set of scalar pa-
rameters including needle friction, sharpness, velocity, and insertion location.
These parameters can be selected, within limits, by the physician to improve
placement accuracy. This model allows us to produce an interactive simula-
tion and analyze the sensitivity of current medical methods to these parame-
ters [16, 17, 19].

Abolhassani et al. provide a survey of models and simulations of needle insertion
[3]. Simulating needle insertion requires a model of the forces exerted by the nee-
dle on soft tissue. Okamura, Simone, and O’Leary measured needle insertion forces
during robot-assisted percutaneous therapy and separated the forces into distinct
components: tissue stiffness forces, a cutting force at the needle tip, and frictional
forces along the needle shaft [168, 194]. Kataoka et al. separately measured cutting
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and frictional forces during needle insertion into a canine prostate [117]. We in-
clude these force components in our model of needle insertion.

DiMaio and Salcudean extracted needle insertion force profiles from camera
images of needle insertion in an artificial tissue phantom [69, 70]. They used a
quasi-static finite element method to replicate tissue phantom experiments in
simulation, and extract a force distribution, which they modeled with a parame-
terized surface. Directly integrating these force profiles into a quasi-static finite
element simulation of needle insertion results in a simulation with extremely fast
update rates (500Hz), which is sufficient for both visual and haptic feedback.
However, the method for extracting force profiles cannot be directly performed
in-vivo for living tissues.

Alterovitz et al. used simulation to show that needle insertion velocity has an
effect on placement error [17], and Heverly et al. developed detailed models and
physical experiments measuring this effect [100]. Recent work has also provided
physical measurements and models of the bending of needles during insertion
[2], which may significantly affect procedure outcome for thinner needles.

Setting accurate parameters for tissue material properties is also important
for realistic simulation of needle insertion. Krouskop et al. estimated the elas-
tic modulus for prostate and breast tissue using ultrasonic elastography [126].
Recent work has estimated nonlinear tissue property parameters [46, 115].

To simulate needle insertion, needle cutting and frictional forces are applied at
nodes of the finite element mesh. DiMaio and Salcudean relied on node snapping,
which moves the closest mesh node to the needle path in the world frame [69, 70].
Nienhuys et al. proposed mesh refinement to mitigate the discretization error
caused by node snapping [164]. These methods incur an error in the location of
applied needle forces that is dependent on the tissue mesh density. The method
we present here uses mesh modification to move nodes in the reference mesh to
the needle tip and along the needle shaft. The benefits of this approach include
that no extra elements need to be created and the path cut by the needle is
directly encoded within the reference mesh.

We represent the anatomy geometry (i.e. the tissues relevant to the simulation)
using a finite element mesh. The input required for our geometric model includes
a bitmap image of a 2-D slice of tissue and a segmentation of the tissue types in
the image using polygons. Based on the polygonal segmentation, we automat-
ically generate a finite element reference mesh G composed of n nodes and m
triangular elements in a regular right triangle mesh or using the constrained De-
launay triangulation program Triangle [191]. Each node’s coordinate is stored in
the node coordinate vector x. In 2-D, each node has 2 degrees of freedom (DOF)
so x is of dimension d = 2n.

To compute tissue deformations, the model must also include tissue material
properties, boundary conditions for the finite element mesh, and needle proper-
ties. For each segmented tissue type, the model requires as input the tissue material
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properties (i.e. the Young’s modulus and Poisson ratio for linearly elastic materi-
als). Each element in the mesh may be assigned unique material properties, which
allows for the simulation of multiple tissue types in one mesh. Mesh nodes defining
elements inside bones are constrained to be fixed. A boundary condition of either
free or fixed must be specified for each node on the perimeter of the finite element
mesh. Needle properties that must be specified include the cutting force (force re-
quired to cut a unit length of tissue) and the static and kinetic coefficients of fric-
tion between the tissue and needle. We discuss a particular anatomy model, for the
prostate, in section 3.5.

The simulation computes mesh deformations that estimate the tissue’s response
to the needle over time. The deformation is defined by a displacement vector u,
which specifies the displacement of each node in mesh G. The deformed mesh G′

is constructed in the world frame using the displaced node coordinates x + u.
The simulation computes the displacement ui as a function of time step i. Using
a fixed time step duration h, we obtain simulated deformations for times t=hi,
i ≥ 0.

3.3.4 Simulating Needle Procedures

Without loss of generality, we set the coordinate axes of the world frame so that
the needle is inserted along the z-axis. In 2-D, the y-axis corresponds to needle
insertion height. Once the needle is in contact with tissue, we assume the needle’s
y-coordinate is fixed and it only moves parallel to the z-axis. Needle insertion
corresponds to increasing depth z, as shown in figure 3.2.

Rather than modeling the needle as a distinct meshed object, we instead
model the needle implicitly by applying needle insertion forces to the surrounding
soft tissue. We then use a finite element method (FEM) with Newmark time
integration, as described in section 2.2, to compute the displacement vector u
for soft tissues due to the forces applied by the needle.

The needle exerts force on the tissue at the needle tip, where the needle is
displacing and cutting the tissue, and along the shaft due to friction [194]. We
model these forces and apply them as the force vector fi, which we update at
every time step of the simulation. This implicit method for representing the
needle facilitates real-time interactive performance since no expensive collision
detection between the needle and soft tissue is required.

We apply the needle insertion forces as boundary conditions on elements in
the mesh. Since the needle may be inserted at any location, it is necessary to
modify the reference mesh in real-time to ensure that element boundaries are
present where the tip and friction forces must be applied. To apply the tip force,
a node is maintained at the needle tip location during insertion. To apply the
friction forces, a list of nodes along the needle shaft is maintained and these
shaft nodes are constrained to only move along the z-axis.
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Fig. 3.3. The needle is in the interior of the mesh with needle tip node c = i at point p

Cutting at the needle tip

By default, inserting the needle causes the tip to push tissue but not cut it. This
corresponds to a displacement of the needle tip node c in the world frame, but
no change in the reference mesh. At every time step, we measure the force fc

applied by the tissue onto the needle tip. We define fb as the magnitude of the
force required to cut a length b of tissue where fb depends on the sharpness of
the needle. For each time step in which fc ≥ fb, we modify the reference mesh
to move the needle tip node a distance b.

We illustrate this mesh modification in figure 3.3. Let point p be the location
of the needle tip node c in the reference mesh. The needle tip at node c = i
is moving horizontally to the left in the world frame as shown by the vector r′

in figure 3.3(b). This vector is linearly transformed [227] to the reference mesh
in figure 3.3(a) and is denoted by r. We move the needle tip node a distance
b along r in the reference mesh to a new point p + br. After each time step in
which the needle cuts tissue, p moves closer to q where q is the projection of
the vector p + br onto the opposite segment (j, k). To maintain a planar mesh
with non-overlapping elements, we periodically select a new tip node. When the
Euclidean distance from node l (the first node on the needle shaft behind the tip
node) to node i is more than twice the distance from node i to point q, node i
is added to the needle shaft: the z-component of node i is freed and returned to
its original value and the node is constrained to lie on the needle axis by fixing
its y-component degree of freedom. The closer of node j or k is moved to p + br
and is defined as the new tip node c. Key frames from a simulation using this
type of mesh modification are shown in figure 3.4.

To maintain simulation stability, it is necessary to maintain a topologically
valid planar mesh in which all elements have strictly positive area. Using the
mesh modification above on a sparse mesh, the tip node may move such that
triangle (i, l, h) has negative area, as shown in figure 3.5. For this to occur, the
y-component of r must change sign twice over the span of just two element edges.
We can avoid this situation by using a finer mesh that prevents the necessary
conditions for negative area triangles from occurring, or by using the method
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Reference mesh: Deformed mesh:

(a)

(b)

(c)

Fig. 3.4. The needle tip is inserted to the left in (a) through (c). The tip node is
moved onto the shaft in (c) and the next tip node is selected.

(a) (b) (c)

Fig. 3.5. A portion of a reference mesh with a needle path (the dotted line) is shown
in (a) with tip node i and shaft nodes l and h. As the tip node i moves downward in
(b) and (c), triangle (i, l, h) becomes degenerate. This situation can be corrected using
local re-meshing [166] or avoided by using a finer mesh.

proposed by Nienhuys and van der Stappen [166] to efficiently modify the mesh
using local edge flips to maintain a valid Delaunay triangulation. We used a
sufficiently fine mesh such that local re-meshing was never required and the
simulation was sufficiently fast for interactive performance.



36 Motion Planning in Deformable Soft Tissue

Friction along the needle shaft

Our stick-slip approach to modeling static and kinetic friction between the needle
shaft and the tissue is based on the friction model of Baraff and Witkin [28].
When the tangential velocity of a node along the needle shaft and the velocity
of the needle are equal to within a small epsilon threshold, then static friction
is applied: the node is attached to the needle and moves at the same velocity
along the z-axis. When the tangential force required to attach the node to the
needle exceeds a slip force threshold, then the node is freed to slide along the
needle shaft and a dissipative force is applied.

Seed implantation

At any time during needle insertion, a seed can be implanted at the location of
the needle tip s = p. We assume that the seed does not cut tissue, so, after it
is implanted, the seed moves in the world frame with the deforming tissue that
surrounds it but its coordinate in the reference mesh remains fixed. To maintain
the seed at a fixed position in the reference mesh as the mesh is modified, we
store in memory the mesh element e containing s. When any node j of element e
is moved in the reference mesh during the simulation, we update e by examining
each triangle containing node j and checking if point s is in that triangle using the
zero-winding rule [99]. By storing the surrounding element of s in the reference
mesh, we can efficiently compute the location s′ of the seed in the world frame
using the shape functions of e for the deformed mesh [227].

Needle retraction

During needle retraction, a tip node is not maintained since no cutting force
is required. When the needle retracts past a node on the shaft, that node is
removed from the shaft node list. Friction is applied on all the shaft nodes as
during insertion.

The visual feedback of the simulation is intended to mimic the experience of a
physician performing a needle insertion procedure with ultrasound image guid-
ance [19]. We use a static 2-D image of the prostate as input. As the user of the
simulation inserts the needle, we deform the input image to match the deforma-
tions computed in the mesh. We implemented this visualization using texture-
mapping [99], where the deformed image is constructed by using mesh G to
obtain texture map coordinates for G′. Because 2-D texture-mapping is imple-
mented in hardware on all modern graphics cards, using this method does not
substantially penalize the speed of the simulation. In addition to displaying the
deformed soft tissue, the simulation also allows the user to selectively overlay
clinically relevant information, such as organ outlines, the needle, and the target
location in the deformable tissue. A screen capture from the simulation for the
prostate brachytherapy application is shown in figure 3.6.
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Fig. 3.6. The simulation user interface, which is based on an ultrasound image, is
intended to mimic the experience of a physician performing brachytherapy. The physi-
cian interactively guides the needle using a mouse and implants seeds (small squares).
Tissue deformations and seed locations are predicted and displayed. The implantation
error is the distance between the seed and its target (cross) after needle retraction.

Given a target point g, the goal of needle insertion planning is to find an optimal
motion plan X∗ that minimizes placement error ε = ‖p − g‖, where the final seed
implant location p is a function of the plan X. Because the relationship between
p and X cannot be defined as a closed-form equation, the optimal X∗ cannot be
computed analytically. Our algorithm efficiently uses the simulation as a function
in an optimization algorithm to compute the optimal motion plan X∗.

The planning algorithm’s inputs and outputs are defined by:

Input :

• Needle insertion simulator S (as defined in section 3.3)
• g: Target coordinate in the tissue
• (ymin, ymax): Range of feasible insertion heights
• zmax: Maximum feasible insertion depth
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• v: Needle speed during insertion and retraction
• h: Simulation time step

Output :

• X∗: Optimal motion plan that minimizes placement error

A näıve planner that ignores tissue deformations would set X = g. If tissue
deformations occur, the näıve plan will not reach the specified target, as shown
in simulation in figure 3.1 left column.

To estimate the optimal plan X∗, the planner computes an offset from g for
both the insertion depth and height. The offset for needle insertion depth is nec-
essary because tissue in front of the needle tip is compressed during insertion;
the needle must be inserted deeper than zg to compensate for this compression.
The offset for insertion height is necessary since organs or glands (such as the
prostate) may rotate during needle insertion. For example, if the needle is inserted
near the bottom of the prostate, the gland will rotate clockwise because it is com-
posed of a stiffer tissue than the surrounding soft tissue, as shown in figure 3.7.
Hence, the needle must be inserted higher to compensate for its deflected path
through the prostate.

(a) Needle approaches prostate (b) Prostate rotated by needle

Fig. 3.7. When the needle pushes against the lower half of the prostate from the
right, the prostate rotates clockwise because it is stiffer than the surrounding tissue.
This rotation can lead to significant changes in the optimal needle insertion height.

We formulate the motion planning problem as an optimization problem, as given
in equation 3.1, where X has 2 degrees of freedom, yr and zr. To computationally
accelerate the optimization, we consider two one-dimensional problems. First, we
implement an algorithm that, given an insertion height yr, computes the optimal
insertion depth zr:

z∗r (yr) = argmin
zr

(‖(S((yr, zr)) − g‖). (3.2)
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Then, we implement an algorithm that optimizes yr and uses the first algorithm
to implicitly compute z∗r for each candidate yr:

y∗
r = arg min

yr

(‖(S((yr, z
∗
r (yr))) − g‖). (3.3)

Equation 3.2 can be solved efficiently by noting that it is not necessary to
fully simulate needle retraction for each candidate plan X. Let k be the node
at the needle tip at the time of seed implantation. Since we model tissues as
elastic, the displacement ukj from system 2.6 will be 0 for all iterations j after
the needle has been retracted and steady state is reached. Hence, the location
in the world frame of the release point X = (yr, zr) after needle retraction will
be xk + ukj = xk. Since we assumed that seeds do not cut tissue, the final seed
location is p = xk and the placement error is ε = ‖xk − g‖, where xk is the
reference mesh coordinate of the node k at the needle tip when it reaches the
release point X = (yr, zr) in simulation. An implication of this is that we can
compute the optimal z∗r in equation 3.2 by running a single simulation of needle
insertion from zr ≤ 0 until zr = zmax. At each time step we compute ε in O(1)
computation time and record z∗r for the lowest ε. This method is guaranteed to
find the optimal z∗r (within the resolution of the time steps) regardless of the
convexity properties of equation 3.2.

Solving equation 3.2 using this approach requires computing zmax/(vh) sim-
ulation time steps, each requiring O(d) time (or slower if a more accurate FEM
model or solver is used) as described in section 3.3. Since the needle tip will move
a distance vh each time step, the resolution of z∗r is vh. A small time step h is
desirable to improve the resolution of z∗r , but the number of time steps required
to compute the optimal insertion depth z∗r grows as h decreases.

Solving equation 3.3 is difficult because derivative values are not available
and the function is not guaranteed to be convex. In general, an approximate
minimum can be found using a grid search over yr ∈ (ymin, ymax). However,
equation 3.3 will be unimodal (strictly quasiconvex) near the minimum in cases
for which it is not possible to insert the needle at different heights and still reach
the same point in the reference mesh of the tissue. Although this property is
not guaranteed, it holds for most feasible targets in our simulation that are not
adjacent to a tissue type boundary. In such cases, we use a line search method,
golden section search [31], to find the optimal y∗

r . Golden section search, a variant
of the Fibonacci search that requires fewer function evaluations, does not require
derivative information (which is not available in the simulation) and convergence
is guaranteed.

We apply the simulation and planning framework to brachytherapy for treating
prostate cancer. Figure 3.1 provides a simulated case study showing that defor-
mations can produce significant errors in final seed placements during prostate
brachytherapy. Placement error should be minimized to achieve the desired ra-
dioactive dose distribution.
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During permanent seed prostate brachytherapy, roughly 20 stiff needles are
each loaded with multiple seeds separated by spacers. As the needle is retracted,
the “train” of seeds and spacers are released in the prostate. In this chapter, we
only address placement of the first seed in the train and ignore the remaining
seeds in each needle. Each needle is fully retracted before the next is inserted.
Hence, we assume each needle insertion and seed implantation procedure is in-
dependent. Unlike needles, we assume seeds do not cut tissue. Hence, a seed will
move only when the surrounding tissue deforms, which satisfies our assumption
that an implant moves with the surrounding deforming tissue. Also, a metal
block containing approximately 50 holes at fixed coordinates is used by the
physician to guide each needle during brachytherapy needle insertion. We relax
the discrete insertion coordinate restriction and allow the insertion height yr to
vary continuously, which allows for better minimization of placement error but
will require new hardware in medical practice.

Our anatomy model of the prostate is based on data obtained in the operating
room at the UCSF Comprehensive Cancer Center from a patient undergoing
brachytherapy treatment for prostate cancer. An ultrasound video was recorded
using an ultrasound probe in the sagittal plane, as shown in figure 1.4. The first
frame of the ultrasound video was segmented by a physician from the UCSF
Comprehensive Cancer Center. The segmentation was used to manually generate
a mesh composed of n = 676 nodes and m = 1250 triangular elements for a 3.5cm
diameter prostate and surrounding fatty tissue. The ultrasound image also served
as the texture map image for the simulator. The boundary of the mesh is defined
by a square for which the right face (where the needle is inserted) is free, the
bottom face corresponding the trans-rectal ultrasound probe is rigid, and the
other two faces are also marked rigid.

The Young’s modulus E and Poisson ratio ν are set based on the results
of Krouskop et al. to E = 60kPa and ν = 0.49 for the prostate and E =
30kPa and ν = 0.49 for the surrounding fatty tissue [126]. Needle properties are
treated as variables that can be set in the user interface of the simulation. To set
default values, we compared the output of the simulation with the ultrasound
video and set unknown simulation parameters so that the simulation output
closely matched the ultrasound video. UCSF clinicians comparing the two image
sequences judged them as highly similar.

The simulator was implemented in C++ using OpenGL for visualization and
tested on a 750MHz Pentium III PC with 256MB RAM. For a model with
1250 triangular elements, the simulator responds at the rate of 24 frames per
second, sufficient for visual feedback (but not fast enough for haptic control).
When executed in planning mode, we assume the needle is inserted at a constant
velocity of 0.5cm/sec and use a fixed simulation time step of h=1/30 seconds.

The visual feedback of the simulation is intended to mimic the experience of
a physician performing brachytherapy. When executed in interactive simulation
mode, a physician can guide the needle and implant seeds using a mouse, as
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shown in figure 3.6. We believe this output can be useful for physician train-
ing [19]. The interactive simulation runs on standard PC’s running Windows
2000 or XP.

To test planner performance, we selected 12 sample points inside the prostate,
shown by the crosses in the figure 3.8. We applied golden section search in
the range yr ∈ (yg − 0.2cm, yg + 0.2cm) with tolerance 0.01cm for each target.
Without planning, the average error was 0.59cm (17% of prostate diameter)
with a standard deviation of 0.10cm. Using our planner, the average error was
reduced in simulation to 0.002cm (0.06% of prostate diameter) with a standard
deviation of 0.004cm. The average time to compute the optimal plan X∗ per
target was 98 seconds.

We examine in detail the planner results for the example in figure 3.1. The
target is located at g = (1.50cm, 3.00cm). Using the “default” plan X = g
with the zero offsets, the seed is implanted at p = S(g) = (1.41cm, 2.21cm), a
placement error of ε = 0.79cm (23% of the prostate diameter).

In figure 3.9, we plot the placement error ε(X = (y + g, zr)) for insertion at
the target height yr = yg = 1.5cm. The placement error for the “default” plan
can be seen at zr = zg = 3.0cm. The error in the depth coordinate is caused
primarily because the tissue in front of the needle tip is being compressed before
it is cut. Inserting the needle deeper than the target depth decreases the error.
If insertion height is held constant at yr = yg, placement error can be reduced
by 82% to only ε = 0.14cm (4% of prostate diameter) by inserting to a depth of
z∗r = 3.84cm.
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(a) Placements without planning (b) Placements using planner

Fig. 3.8. Twelve sample points were selected as targets marked “+” inside the prostate.
Actual seed placements using simulation are marked “•”. Lack of planning results in
major placement errors averaging 20% of the prostate diameter (a), which will lead
to a poor radioactive dose distribution. Seed placement error was negligible using the
planner (b).
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Fig. 3.9. Needles should generally be inserted deeper than the target depth to com-
pensate for tissue deformations and minimize placement error. The bold portion of the
line denotes feasible seed placements inside the prostate.
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Fig. 3.10. The motion planner computes the optimal insertion height yr and corre-
sponding optimal depth z∗

r to minimize placement error ε. Placement error is minimized
for (yr, zr) = (1.59cm, 3.80cm).

In figure 3.10, we plot the optimal surface ε(X = (yr, z
∗
r (yr)). The golden

section search described in section 3.4.3 efficiently finds the minimum of this
surface to determine X∗ with ε∗ = 0.003cm (0.09% of prostate diameter) by
inserting at height y∗

r = 1.59cm to a depth z∗r = 3.80cm.

To facilitate physician training and pre-operative planning for medical needle
insertion procedures, we introduced in this chapter a needle insertion motion
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planning system based on an interactive simulation of the insertion of rigid
needles into soft tissue.

The first component of this system is a physically-based, dynamic simulation
of needle insertion in soft tissues. In this chapter, we introduce a simulation that
uses a 2-D finite element model of soft tissue and a reduced set of scalar para-
meters such as needle friction, sharpness, and velocity. The simulation modifies
the mesh to maintain element boundaries along the needle shaft and models the
effects of cutting at the needle tip and frictional forces along the needle shaft.
The simulation achieves 24 frames per second for 1250 triangular elements on a
750Mhz PC. The speed of the simulation is determined primarily by the scal-
ability of the finite element method system solver. The computation time per
time step will not rise during the simulation because no new nodes are added,
and it may in fact decrease as the y-axis DOF of some nodes are lost when they
are constrained along the needle shaft.

Using texture-mapping, the simulation provides visualization comparable to
ultrasound images that the physician would see during the procedure. A screen
capture of the software is shown in figure 3.6. To facilitate physician training, the
simulation can be run interactively using different patient anatomies and tissue
properties. We hope that needle insertion simulation can be used for physician
training as an alternative to the limited and expensive mechanical models cur-
rently in use.

We applied our simulation from Chapter 2 as a component of a sensorless
planning system for needle insertion procedures. Our sensorless planning method
computes needle offsets to minimize needle placement error by compensating for
predicted tissue deformations. The approach combines numerical optimization
with soft tissue simulation. The effectiveness of the planner in-vivo will be de-
pendent on the accuracy of the simulation of tissue deformations that occur
during needle insertion for a specific patient.

Recent work has begun exploring 3-D simulation of needle insertion which
enables more accurate representation of anatomy and the simulation of needle
insertion outside a single imaging plane. Nienhuys et al. used 3-D mesh refine-
ment [165] and Goksel et al. used mesh modification [93] in order to apply needle
insertion forces at mesh nodes. However, current 3-D simulations do not per-
form at interactive or real-time rates, do not offer guarantees on mesh stability
throughout the simulation, and do not provide visualization capabilities useful
for physician training. The simulation method we presented here considers tis-
sue deformations in 2-D, providing graphical visualization via texture-mapping
and offering guarantees on simulation speed and stability that are necessary for
physician training and efficient automated planning. Incorporating these features
into 3-D simulation is an area of active research.

Past work on patient-specific image-guided needle procedures uses local con-
trol to compensate for errors induced by tissue deformation but does not pre-
operatively consider these effects [192]. Conversely, our sensorless planner searches
for a globally optimal insertion plan but does not consider anomalies that may
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occur during execution. In the long run, we believe in combining these methods
to create a pre-operative plan that is optimal under uncertainty and then use in-
formation from real-time imaging, when available, to correct deviations from the
pre-operative plan.



In this chapter we introduce motion planning for steerable needles, a new class
of needles that can follow curved paths around obstacles to reach clinical targets
in soft tissue. Steerable needles are capable of reaching targets inaccessible by
rigid needles.

We introduce a simulation and planner for steerable bevel-tip needle insertion
that compensates for errors that occur due to tissue deformations. As in chapter
3, we begin with a simulation and planner in a 2-D imaging plane. Our interactive
simulation approximates soft tissues as linearly elastic materials and uses a 2-
D finite element model to compute tissue deformations due to tip and friction
forces applied by the steerable needle. Polygonal obstacles represent tissues that
cannot be cut by the needle, such as bone, or sensitive tissues that should not
be damaged, such as nerves or arteries. The simulation enforces nonholonomic
constraints on needle motion.

Our planner considers 4 degrees of freedom: initial location, initial orienta-
tion, binary bevel rotation, and insertion distance. The planner computes locally
optimal values for these variables to compensate for tissue deformations and
reach the target in simulation while avoiding polygonal obstacles and minimiz-
ing insertion distance so less tissue is damaged by the needle. Even in situations
where real-time imaging such as ultrasound or interventional MRI is available,
pre-planning is valuable to set the needle initial location and orientation and
compute a desired trajectory that minimizes tissue damage.

Steerable needles follow curved paths when inserted into soft tissues. O’Leary et
al. showed that needles with bevel tips bend more than symmetric-tip needles
[170]. Webster et al. developed thin highly flexible bevel-tip needles using Nitinol
and experimentally tested them in stiff tissue phantoms [208]. The needles fol-
lowed constant-curvature paths in a plane when bevel rotation was fixed during
needle insertion. Webster et al. [208] then developed a nonholonomic model for
the steering flexible bevel-tip needles in rigid tissues. The nonholonomic model,
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springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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(a) Prostate, target, and obstacles (b) Bevel-left default trajectory

(c) Bevel-left plan (d) Bevel-right plan

Fig. 4.1. In this example based on an MR image of the prostate [121], a biopsy
needle attached to a rigid rectal probe (black half-circle) is inserted into the prostate in
simulation. Obstacles (polygons) and the target (cross) are overlaid on the image. The
target is not accessible from the rigid probe by a straight line path without intersecting
obstacles. However, bevel-tip needles bend as they are inserted into soft tissue (b). Our
planner computes a locally optimal bevel-left needle insertion plan that reaches the
target, avoids obstacles, and minimizes insertion distance (c). Using different initial
conditions, our planner generates a plan for a bevel-right needle (d). Due to tissue
deformation, the needle paths do not have constant curvature.

a generalization of a 3 degree-of-freedom bicycle model, was experimentally val-
idated using a stiff tissue phantom.

Recent work has used a nonholonomic model of needle steering as a basis
for motion planning in rigid tissues. Park et al. modeled 3-D needle steering
using a unicycle model and used a diffusion-based method for planning without
obstacles [171]. This work was based on advances by Zhou and Chirikjian in
nonholonomic path planning, including stochastic model-based motion planning
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to compensate for noise bias [224] and probabilistic models of dead-reckoning
error in nonholonomic robots [223]. A more recent method for needle steering
uses a screw-based model and optimization to compute locally optimal paths
that avoid spherical obstacles in 3-D in seconds of computation time [75].

Past work has addressed steering symmetric-tip needles in 2-D deformable
tissue that have 3 degrees of freedom: translating the needle base perpendicular
to the insertion direction, rotating the the needle base along an axis perpen-
dicular to the plane of the tissue, and translation along the needle insertion
axis [72, 92]. DiMaio and Salcudean compute and invert a Jacobian matrix to
translate and orient the base to avoid point obstacles with oval-shaped poten-
tial fields. Glozman and Shoham approximate the tissue using springs and also
use an inverse kinematics approach to translate and orient the base every time
step. In our work, we address bevel-tip steerable needles that have 2 degrees of
freedom during insertion: rotation about the insertion axis and translation along
the insertion axis.

A bevel-tip needle, unlike a symmetric-tip needle, will exert asymmetric forces
on the surrounding soft tissue when it is inserted. This causes the needle to cut
tissue at an angle, as shown in figure 4.2. If the needle is sufficiently flexible,
the asymmetric forces and angled cutting will cause the needle to bend in the
direction of the bevel.

(a) Symmetric tip (b) Bevel tip

Fig. 4.2. A symmetric-tip needle (a) exerts forces (solid vectors) on the tissue equally
in all directions, so it cuts tissue (dashed vector) in the direction that the tip is moving.
A bevel-tip needle (b) exerts forces asymmetrically and cuts tissue at an angle.

In 2-D, we only consider 2 bevel rotations: bevel-right (0◦) and bevel-left
(180◦), as shown in figure 4.1. Rotating the bevel to different orientations will
cause the needle tip to move out of the imaging plane. In future work, we plan
to extend our 2-D model to 3-D and consider any bevel orientation in the range
[0◦, 360◦).

Our simulation models forces exerted by the needle on the soft tissue, including
the cutting force at the needle tip and friction forces along the needle shaft. We
assume needle bending forces are negligible compared to the elastic forces applied
by the soft tissue to the needle.
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4.2.1 Soft Tissue Model

We specify the anatomy geometry (i.e. the prostate and surrounding tissues) us-
ing a finite element mesh. The geometric input is a 2-D slice of tissue with tissue
types segmented by polygons. We automatically generate a finite element mesh G
composed of n nodes and m triangular elements in a regular right triangle mesh
or using the constrained Delaunay triangulation software program Triangle [191],
which generates meshes that conform to the segmented tissue type polygons.

The model must also include tissue material properties and boundary condi-
tions for the finite element mesh. In our current implementation, we approxi-
mate soft tissues as linearly elastic, homogeneous, isotropic materials. For each
segmented tissue type, the model requires tissue material properties (Young’s
modulus, Poisson’s ratio, and density). We set values for these parameters as
described in past work [18]. Mesh nodes inside bones are constrained to be fixed.
A boundary condition of either free or fixed must be specified for each node on
the mesh perimeter.

The complete tissue model M specifies the finite element mesh G, material
properties, and boundary conditions. We assume the tissue in M is initially at
equilibrium and ignore external forces not applied by the needle. We do not
model physiological changes such as edema (tissue swelling), periodic tissue mo-
tion due to breathing or heart beat, or slip between tissue type boundaries.

4.2.2 Computing Soft Tissue Deformations

The material mesh G defines the geometry of the undeformed tissues, with each
node i having coordinate xi in the material frame. Forces resulting from needle
insertion cause the tissue to deform. The deformation is defined by a displacement
ui for each node i in mesh G. The deformed mesh G′ is constructed in the world
frame using the displaced node coordinate xi +ui for each node i. A point y in the
material frame can be transformed to the world frame coordinate y′ and vice versa
using linear interpolation between the nodes of the enclosing finite element [17].

At each time step of the simulation we compute the acceleration of each node
i, which includes acceleration due to elastic forces computed using a linear finite
element method and the external force fi exerted by the needle. We use explicit
Euler time integration to integrate velocity and displacement for each free node
for each time step. Time steps have duration h = 0.01 seconds.

4.2.3 Needle Insertion Model

Without loss of generality, we set the coordinate axes of the world frame so
that the default needle insertion axis is along the positive z-axis. The y-axis
corresponds to the initial location degree of freedom. The needle tip is initially
located at a base coordinate p0 = (y0, z0). The initial orientation of the needle is
specified using θ, as shown in figure 4.3. For simulation stability, we constrain θ
between −45◦ and 45◦. The needle tip rotation is either bevel-right (0◦) or bevel-
left (180◦). We assume the needle tip rotation is held constant during insertion
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Fig. 4.3. Slice of soft tissue in the yz plane. The bevel-tip needle is initially at the base
coordinate p0 with orientation θ. It is inserted a distance d, causing the surrounding
soft tissue to deform.

due to planner efficiency and lack of experimental data for simulation, although
we hope to relax this assumption in future work.

We assume the flexible needle is supported so that it does not bend outside the
tissue. Once the needle has entered the tissue, it will bend in the direction of the
bevel-tip. The distance the needle has been inserted from the base coordinate is
d. We parameterize the needle by s where s = 0 corresponds the needle base and
s = d corresponds to the needle tip. Let ps denote the material frame coordinate
of the point along the needle a distance s from the base.

Simulation of needle insertion requires a needle model N that specifies needle
properties, including insertion velocity v, the cutting force required at the needle
tip to cut tissue, and the static and dynamic coefficients of friction between the
tissue and needle.

We model the needle by line segment elements that correspond to edges of
triangle elements in the deformed tissue mesh. Since the needle path is not
known a priori, the material mesh must be modified in real-time. The simulation
maintains a node at the needle tip location and a list of nodes along the needle
shaft. At each simulation time step, the needle exerts force on the tissue at the
needle tip, where the needle is displacing and cutting the tissue, and along the
needle shaft due to friction.

Highly flexible bevel-tip needles tested in tissue phantoms by Webster et al.
[208] were experimentally shown to follow a constant-curvature path when the
bevel rotation was fixed during needle insertion. Setting simulation parameters
to the limiting case of highly stiff tissue, zero tissue cutting force, and zero
friction allows us to replicate this constant curvature path. In other cases, the
needle path through deformed tissue may not be of constant curvature.

4.2.4 Simulating Cutting at the Needle Tip

During each simulation time step, the needle tip moves a distance vh in the
world frame, where v is the needle insertion velocity and h is the time step



50 Motion Planning in Deformable Soft Tissue with Obstacles

duration. The simulation must maintain element edges along the needle path,
which requires mesh modification as the needle cuts through the tissue.

The simulation constrains a node to be located at the needle tip. The current
needle tip node is labeled ntip and the needle is pointed in direction q. The
needle will cut tissue a small distance dcut along the vector r in the world frame,
where r is deflected from q by an angle θd, as shown in figure 4.4. If the force at
the needle tip along r is greater than a threshold fcut based on needle and tissue
properties, then the needle will cut through the tissue. Cutting is represented
in the material mesh by moving the needle tip node ntip by the distance dcut

transformed to the material frame. If no tissue deformation occurs, this method
guarantees the needle will cut a path of constant curvature whose radius of
curvature is a function of the deflection angle θd. When tissue deformation does
occur at the needle tip, the path will be of constant curvature locally but will
deviate from constant curvature globally depending on the magnitude of the
deformations.

As the needle tip cuts through the mesh, it will be necessary to change the
needle tip node. If the needle tip node is too close to the opposite triangle edge
e, the tip node is moved back along the shaft and a new tip node, the closest
node along edge e, is selected as the new tip node and moved to the new tip
location in the material frame.

ntip

r

q

e

d

Fig. 4.4. The tissue mesh is modified so edge boundaries are formed along the path of
needle insertion. A subset of the tissue mesh, centered at needle tip node ntip, is shown.
The straight line path of the needle is shown by vector q. Because of the bevel-tip, the
needle cuts tissue in direction r, which is deflected from q by θd degrees.

4.2.5 Simulating Friction Along the Needle Shaft

We implemented a stick-slip friction model between the needle and the soft
tissue. Nodes along the needle shaft carry friction state information; they are
either attached to the needle (in the static friction state) or allowed to slide
along the needle shaft (in the dynamic friction state).
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When a node enters the static friction state, its distance from the needle tip
along the shaft is computed. For each time step where the node remains in the
static friction state, its position is modified by moving it tangent to the needle
so that its distance from the tip along the needle shaft is held constant. A node
moves from the static to the dynamic friction state when the force required to
displace the node along the needle shaft exceeds a slip force parameter fsmax .

When a node is in the dynamic friction state, a dissipative force is applied
along the needle tangent. A node moves from the dynamic to the static friction
state when the relative velocity of the needle to the tissue at the node is close
to zero.

4.2.6 Simulation Results

Our simulator was implemented in C++ using OpenGL for visualization. It
achieved an average of approximately 100 frames per second on a 1.6GHz Pen-
tium M computer for a mesh composed of 1250 triangular elements. Computa-
tion time per frame increases linearly with the number of nodes along the needle
shaft.

We demonstrate our simulation results in 2 cases: rigid tissue and deformable
tissue. In both cases we simulate the insertion of a bevel-tip needle into a square
of tissue fixed on 3 sides. In the first case, we consider tissue that is stiff relative
to the needle and a sharp frictionless bevel-tip needle that cuts the tissue with
zero cutting force. As shown in Fig 4.5(a), the simulated needle follows a path
of constant curvature, which is the behavior experimentally verified by Webster
et al. [208]. In the second case shown in figure 4.5(b), we insert the needle into a
deformable soft tissue mesh with positive cutting force and friction coefficients.

(a) Rigid Tissue (b) Deformable Tissue

Fig. 4.5. We simulate insertion of a bevel-tip needle into a square tissue fixed on 3
sides. When the tissue is stiff relative to the needle, a sharp frictionless needle cuts a
path of constant curvature (a). A needle with positive cutting and friction forces will
bend in deformable tissue (b).
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Although the tip locally follows a path of constant curvature as explained in
Section 4.2.4, the global path is not of constant curvature. Past experiments
have demonstrated the effect of tissue deformations due to rigid needle insertion
[17, 70]. We plan to develop experiments to test the bending behavior of flexible
bevel-tip needles in deformable tissues to more accurately set parameters for our
model in future work.

A needle steering plan is defined by X = (y0, θ, b, d) where y0 ∈ R is the inser-
tion location, θ ∈ [−90◦, 90◦] is the insertion angle, b ∈ {0◦, 180◦} is the bevel
rotation, and d ∈ R

+ is the distance the needle will be inserted. Obstacles are
defined as non-overlapping polygons in a set O. The target is defined as a point
t in the material frame of the soft tissue mesh. A plan X is feasible if the needle
tip is within εt > 0 of the target and the needle path in deformable tissue does
not intersect any obstacle. The goal of needle insertion planning is to generate
a feasible plan X that minimizes d.

4.3.1 Problem Formulation

The simulation of needle insertion described in Section 4.2 takes parameters X
for the initial conditions and needle insertion distance, M for the soft tissue
model, and N for the needle model and outputs the coordinates ps for s ∈ [0, d],
which the needle will follow in the material frame.

ps = NeedleSim(X, M, N), s ∈ [0, d]

The variables of plan X are constrained by application specific limits ymin,
ymax, θmin, θmax, and dmax.

ymin ≤ y0 ≤ ymax

θmin ≤ θ ≤ θmax

0 ≤ d ≤ dmax

These constraints enforce the limits of the simulation, such as the angle require-
ments in Section 4.2.3. In the biopsy example in figure 4.1, dmax is the maximum
length of the needle and ymax − ymin defines the width of the rectal probe.

The needle tip coordinate pd in a feasible solution must be within Euclidean
distance εt of the target t.

‖pd − t‖ ≤ εt

In the presence of a nonempty set of polygonal obstacles O, we require that
the needle path in a feasible solution does not intersect an obstacle. Let cs be
the distance from ps to the closest point on the closest obstacle o ∈ O and let
the sign of cs be negative if ps is inside obstacle o and positive otherwise. We
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require cs ≥ εo for some given tolerance εo ≥ 0 for all points s along the needle
shaft. We formulate this constraint as∫ d

0

max{−cs + εo, 0}ds ≤ 0.

We can quickly compute this integral numerically using points sampled along
the needle path.

We summarize the problem formulation for variable X = (y0, θ, b, d) given
target coordinate t, polygonal obstacles O, tolerances εt and εo, tissue model
parameters M , needle model parameters N , and variable limits ymin, ymax,
θmin, θmax, and dmax.

min f(X) = d

Subject to:
‖pd − t‖ ≤ εt∫ d

0
max{−cs + εo, 0}ds ≤ 0

ymin ≤ y0 ≤ ymax

θmin ≤ θ ≤ θmax

0 ≤ d ≤ dmax

The values of ps for s ∈ [0, d] are computed by executing the simulator
NeedleSim(X, M, N). The obstacle distances cs for s ∈ [0, d] are computed using
ps and the set of obstacles O.

4.3.2 Optimization Method

To reduce the complexity of the optimization, we reduce the number of variables
in X from 4 to 2. Given a plan X , we can find the optimal insertion distance d by
executing the simulation to insertion distance dmax and identifying the point ps

along the needle path that minimizes the distance to the target t. Hence, d does
not need to be explicitly treated as a variable since its value is implied by the
other variables in X . Furthermore, variable b in X is binary since it represents
the bevel-right or bevel-left needle rotation state. We optimize X separately for
the bevel-right and bevel-left states.

We solve for a locally optimal solution X∗ using a penalty method. Penalty
methods, originally developed in the 1950’s and 1960’s, solve a constrained
nonlinear optimization problem by converting it to a series of unconstrained
nonlinear optimization problems [31]. Given the constrained optimization prob-
lem min f(x) subject to g(x) ≤ 0, we can write the unconstrained problem
min(f(x) + µ max{0, g(x)}2) for some large µ > 0. Penalty methods generate a
series of unconstrained optimization problems as µ → ∞. Each unconstrained
optimization problem can be solved using Gradient Descent or variants of New-
ton’s Method. For convex nonlinear problems, the method will generate points
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that converge arbitrarily close to the global optimal solution [31]. For nonconvex
problems, the method can only converge to a local optimal solution.

For steerable needle insertion planning, we convert the target and obstacle
constraints to penalty functions to define a new nonlinear nonconvex optimiza-
tion problem.

min f̂(X) = d + µ (max{‖pd − t‖ − εt, 0})2 +

µ
(∫ d

0 max{−cs + εo, 0}ds
)2

Subject to:
ymin ≤ y0 ≤ ymax

θmin ≤ θ ≤ θmax

0 ≤ d ≤ dmax

Evaluating the objective function f̂(X) requires executing the simulator
NeedleSim(X, M, N) to compute the needle path ps for s ∈ [0, d] and the ob-
stacles distances cs. The remaining constraints are the limit constraints that are
required for simulation stability and can never be violated.

We use Gradient Descent to find a local optimal solution to the unconstrained
minimization problem min f̂(X). The limit constraints are easily enforced at
each iteration. We solve a sequence of 4 unconstrained problems, each with 10
Gradient Descent iterations. After each unconstrained problem has been solved,
we multiply the penalty factor µ by 10. In future work, we plan to determine
problem-specific termination criteria for the unconstrained optimization prob-
lems and for the penalty method.

The objective function f̂(X) cannot be directly differentiated since the sim-
ulator cannot be written as a closed form equation. For the Gradient Descent
method, we numerically approximate the derivatives of the objective function
with respect to the insertion location y0 and orientation θ. We compute df̂/dy0

by translating the needle path by ∆y0 and recomputing f̂ . Similarly, we compute
df̂/dθ by rotating the needle path by ∆θ about the insertion base coordinate
p0 and recomputing f̂ . These approximations do not explicitly account for the
different deformations that occur when y0 or θ are modified but were sufficiently
accurate for small ∆y0 and ∆θ in our results described below.

4.3.3 Planner Results

We implemented the planner in C++ and used the simulation described in
Section 4.2. Results for medical biopsy examples are shown in figure 4.1(c),
figure 4.1(d), and figure 4.6(b). For each example, the tissue model mesh was
composed of 1196 triangular elements and the planner required approximately
5 minutes of computation time on a Pentium M 1.6GHz computer. We set
εt = εo = 0.1cm and the penalty method solution satisfied the constraints within
a tolerance of 0.02.
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(a) Initial Conditions (b) Bevel-right Plan

Fig. 4.6. In this example based on an MR image of the sagittal plane of the prostate
[121], a biopsy needle is inserted into the prostate (a). The planner computes an initial
position, orientation, and insertion distance so the needle reaches the target (cross)
while avoiding obstacles (polygons) and compensating for tissue deformations in sim-
ulation (b).

We described a needle insertion planning algorithm for steerable bevel-tip nee-
dles that combines numerical optimization with soft tissue simulation. The sim-
ulation, based on a linear finite element method described in chapter 2, is a
generalization of the simulation of rigid needles introduced in chapter 3. The
simulation models the effects of steerable needle tip and frictional forces on
soft tissues defined by a 2-D mesh. Our planning algorithm computes a locally
optimal initial location, orientation, and insertion distance for the needle to
compensate for predicted tissue deformations and reach a target while avoiding
polygonal obstacles.

The effectiveness of the planner is dependent on the accuracy of the simula-
tion of steerable needle insertion and soft tissue deformations. Future work that
would improve on these results includes comparing the output of our simulation
to new physical experiments, determining the sensitivity of results to model pa-
rameters, allowing bevel rotation during insertion, and extending the simulation
and planner to 3-D.



Advances in medical imaging modalities such as MRI, ultrasound, and x-ray
fluoroscopy are now providing physicians with real-time, patient-specific infor-
mation as they perform medical procedures such as extracting tissue samples
for biopsies, injecting drugs for anesthesia, or implanting radioactive seeds for
brachytherapy cancer treatment. These diagnostic and therapeutic medical pro-
cedures require insertion of a needle to a specific location in soft tissue. We are
developing motion planning algorithms for medical needle insertion procedures
that can utilize the information obtained by real-time imaging to accurately
reach desired locations.

We consider a new class of medical needles, first introduced in chapter 4,
that can be steered to targets in soft tissue that are inaccessible to traditional
stiff needles. Steerable needles have two key properties: they are composed of a
flexible material and have a bevel-tip. These properties enable steerable needles
to follow curved paths through soft tissue. Steerable needles can be controlled
by 2 degrees of freedom actuated at the needle base: insertion distance and
bevel direction. Webster et al. experimentally demonstrated that, under ideal
conditions, a flexible bevel-tip needle cuts a path of constant curvature in the
direction of the bevel, and the needle shaft bends to follow the path cut by
the bevel tip [208]. In a plane, a needle subject to this nonholonomic constraint
based on bevel direction is equivalent to a Dubins car that can only steer its
wheels far left or far right but cannot go straight.

The steerable needle motion planning problem is to determine a sequence of
actions (insertions and direction changes) so the needle tip reaches the specified
target while avoiding obstacles and staying inside the workspace. Given a seg-
mented medical image of the target, obstacles, and starting location, the feasible
workspace for motion planning is defined by the soft tissues through which the
needle can be steered. Obstacles represent tissues that cannot be cut by the
needle, such as bone, or sensitive tissues that should not be damaged, such as
nerves or arteries.

In this chapter, we consider motion planning for steerable needles in the con-
text of an image-guided procedure: real-time imaging and computer vision al-
gorithms are used to track the position and orientation of the needle tip in the
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(a) Minimize path length
ps = 36.7%

(b) Maximize probability of success
ps = 73.7%

Fig. 5.1. Our motion planner computes actions (insertions and direction changes, in-
dicated by dots) to steer the needle from an insertion entry region (vertical line on left
between the solid squares) to the target (open circle) inside soft tissue, without touch-
ing critical areas indicated by polygonal obstacles in the imaging plane. The motion of
the needle is not known with certainty; the needle tip may be deflected during insertion
due to tissue inhomogeneities or other unpredictable soft tissue interactions. We ex-
plicitly consider this uncertainty to generate motion plans to maximize the probability
of success, ps, the probability that the needle will reach the target without colliding
with an obstacle or exiting the workspace boundary. Relative to a planner that mini-
mizes path length, our planner considering uncertainty may generate longer paths with
greater clearance from obstacles to maximize ps.

tissue. Recently developed methods can provide this information for a variety
of imaging modalities [55, 67]. In this chapter, we consider motion plans in an
imaging plane since the speed/resolution trade-off of 3-D imaging modalities
is generally poor for 3-D real-time interventional applications. With imaging
modalities continuing to improve, we will explore the natural extension of our
planning approach to 3-D in future work.

Whereas many traditional motion planners assume a robot’s motions are per-
fectly deterministic and predictable, a needle’s motion through soft tissue can-
not be predicted with certainty due to patient differences and the difficulty in
predicting needle/tissue interaction. These sources of uncertainty may result in
deflections of the needle’s orientation, which is a type of slip in the motion of
a Dubins car. Real-time imaging in the operating room can measure the nee-
dle’s current position and orientation, but this measurement by itself provides
no information about the effect of future deflections during insertion. Since the
motion response of the needle is not deterministic, success of the procedure can
rarely be guaranteed.
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We develop a new motion planning approach for steering flexible needles
through soft tissue that explicitly considers uncertainty in needle motion. To
define optimality for a needle steering plan, we introduce a new objective for im-
age-guided motion planning: maximizing the probability of success. In the case of
needle steering, the needle insertion procedure continues until the needle reaches
the target (success) or until failure occurs, where failure is defined as hitting an
obstacle, exiting the feasible workspace, or reaching a state in which it is impos-
sible to prevent the former two outcomes. Our method formulates the planning
problem as a Markov Decision Process (MDP) based on an efficient discretiza-
tion of the state space, models motion uncertainty using probability distribu-
tions, and computes optimal actions (within error due to discretization) for a
set of feasible states using infinite horizon Dynamic Programming (DP).

Our motion planner is designed to run inside a feedback loop. After the feasible
workspace, start region, and target are defined from a pre-procedure image, the
motion planner is executed to compute the optimal action for each state. After
the image-guided procedure begins, an image is acquired, the needle’s current
state (tip position and orientation) is extracted from the image, the motion
planner (quickly) returns the optimal action to perform for that state, the action
is executed and the needle may deflect due to motion uncertainty, and the cycle
repeats.

In figure 5.1, we apply our motion planner in simulation to prostate brachyther-
apy, a medical procedure to treat prostate cancer in which physicians implant ra-
dioactive seeds at precise locations inside the prostate under ultrasound image
guidance. In this ultrasound image of the prostate (segmented by a dotted line),
obstacles correspond to bones, the rectum, the bladder, the urethra, and previ-
ously implanted seeds. Brachytherapy is currently performed in medical practice
using rigid needles; here we consider steerable needles capable of obstacle avoid-
ance. We compare the output of our new method, which explicitly considers mo-
tion uncertainty, to the output of a shortest-path planner that assumes the needles
follow ideal deterministic motion. Our new method improves the expected proba-
bility of success by over 30% compared to shortest path planning, illustrating the
importance of explicitly considering uncertainty in needle motion.

Nonholonomic motion planning has a long history in robotics and related fields
[51, 136, 137, 139]. Past work has addressed deterministic curvature-constrained
path planning where a mobile robot’s path is, like a car, constrained by a minimum
turning radius. Dubins showed that the optimal curvature-constrained trajectory
in open space from a start pose to a target pose can be described using a discrete
set of canonical trajectories composed of straight line segments and arcs of the
minimum radius of curvature [74]. Jacobs and Canny considered polygonal obsta-
cles and constructed a configuration space for a set of canonical trajectories [111],
and Agarwal et al. developed a fast algorithm to compute a shortest path inside
a convex polygon [4]. For Reeds-Shepp carswith reverse, Laumond et al. developed
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a nonholonomic planner using recursive subdivision of collision-free paths gener-
ated by a lower-level geometric planner [138], and Bicchi et al. proposed a tech-
nique that provides the shortest path for circular unicycles [36]. Sellen developed
a discrete state-space approach; his discrete representation of orientation using a
unit circle inspired our discretization approach [188].

Our planning problem considers steerable needles, a new type of needle cur-
rently being developed jointly by researchers at The Johns Hopkins University
and The University of California, Berkeley [211]. Unlike traditional Dubins cars
that are subject to a minimum turning radius, steerable needles are subject to a
constant turning radius. Webster et al. showed experimentally that, under ideal
conditions, steerable bevel-tip needles follow paths of constant curvature in the
direction of the bevel tip [208], and that the radius of curvature of the needle
path is not significantly affected by insertion velocity [209].

Park et al. formulated the planning problem for steerable bevel-tip needles
in stiff tissue as a nonholonomic kinematics problem based on a 3-D extension
of a unicycle model and used a diffusion-based motion planning algorithm to
numerically compute a path [171]. The approach is based on recent advances
by Zhou and Chirikjian in nonholonomic motion planning including stochastic
model-based motion planning to compensate for noise bias [224] and probabilistic
models of dead-reckoning error in nonholonomic robots [223]. Park’s method
searches for a feasible path in full 3-D space using continuous control, but it
does not consider obstacle avoidance or the uncertainty of the response of the
needle to insertion or direction changes, both of which are emphasized in our
method.

In preliminary work on motion planning for bevel-tip steerable needles, we
proposed an MDP formulation for 2-D needle steering [15] to find a stochas-
tic shortest path from a start position to a target, subject to user-specified
“cost” parameters for direction changes, insertion distance, and obstacle colli-
sions. However, the formulation was not targeted at image-guided procedures,
did not include insertion point optimization, and optimized an objective function
that has no physical meaning. In this chapter, we develop a 2-D motion plan-
ning approach for image-guided needle steering that explicitly considers motion
uncertainty to maximize the probability of success based on parameters that
can be extracted from medical imaging without requiring user-specified “cost”
parameters that may be difficult to determine.

MDP’s and dynamic programming are ideally suited for medical planning
problems because of the variance in characteristics between patients and the
necessity for clinicians to make decisions at discrete time intervals based on
limited known information. In the context of medical procedure planning, MDP’s
have been developed to assist in decisions such as timing for liver transplants
[6], discharge times for severe sepsis cases [125], and start dates for HIV drug
cocktail treatment [190]. MDP’s and dynamic programming have also been used
in a variety of robotics applications, including planning paths for mobile robots
[63, 82, 139, 141].
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Past work has investigated needle insertion planning in situations where soft
tissue deformations are significant and can be modeled. Several groups have esti-
mated tissue material properties and needle/tissue interaction parameters using
tissue phantoms [61, 70] and animal experiments [100, 101, 117, 124, 168, 194].
Our past work addressed planning optimal insertion location and insertion dis-
tance for rigid symmetric-tip needles to compensate for 2-D tissue deformations
predicted using a finite element model [17, 18, 19]. We previously also developed
a different 2-D planner for bevel-tip steerable needles to explicitly compensate
for the effects of tissue deformation by combining finite element simulation with
numeric optimization [10]. This previous approach assumed that bevel direction
can only be set once prior to insertion and employed local optimization that can
fail to find a globally optimal solution in the presence of obstacles.

Past work has also considered insertion planning for needles and related devices
capable of following curved paths through tissues using different mechanisms. One
such approachuses slightly flexible symmetric-tip needles that are guided by trans-
lating and orienting the needle base to explicitly deform surrounding tissue, caus-
ing the needle to follow a curved path [71, 92]. DiMaio and Salcudean developed a
planning approach that guides this type of needle aroundpoint obstacleswith oval-
shaped potential fields [71]. Glozman and Shoham also addressed symmetric-tip
needles and approximated the tissue using springs [92]. Another steering approach
utilizes a standard biopsy cannula (hollow tube needle) and adds steering capabil-
ity with an embedded pre-bent stylet that is controlled by a hand-held, motorized
device [169]. A recently developed “active cannula” device is composed of concen-
tric, pre-curved tubes and is capable of following curved paths in a “snake-like”
manner in soft tissue or open space [210].

Integrating motion planning for needle insertion with intra-operative medical
imaging requires real-time localization of the needle in the images. Methods are
available for this purpose for a variety of imaging modalities [55, 67]. X-ray flu-
oroscopy, a relatively low-cost imaging modality capable of obtaining images at
regular discrete time intervals, is ideally suited for our application because it gen-
erates 2-D projection images from which the needle can be cleanly segmented [55].

Medical needle insertion procedures may also benefit from the more precise
control of needle position and velocity made possible through robotic surgical as-
sistants [103, 199]. Dedicated robotic hardware for needle insertion is being de-
veloped for a variety of medical applications, including stereotactic neurosurgery
[151], CT-guided procedures [153], MR compatible surgical assistance [50, 68],
thermotherapy cancer treatment [97], and prostate biopsy and therapeutic
interventions [84, 186].

In section 5.2, we first introduce a motion planner for Dubins cars with bi-
nary left/right steering subject to a constant turning radius rather than the
typical minimum turning radius. This model applies to an idealized steerable
needle whose motion is deterministic: the needle exactly follows arcs of con-
stant curvature in response to insertion actions. Our planning method utilizes an
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efficient discretization of the state space for which error due to discretization can
be tightly bounded. Since any feasible plan will succeed with 100% probability
under the deterministic motion assumption, we apply the traditional motion
planning objective of computing a shortest path plan from the current state to
the target.

In section 5.3, we extend the deterministic motion planner to consider uncer-
tainty in motion and introduce a new planning objective: maximize the proba-
bility of success. Unlike the objective function value of previous methods that
consider motion uncertainty, the value of this new objective function has physi-
cal meaning: it is the probability that the needle tip will successfully reach the
target during the insertion procedure. In addition to this intuitive meaning of the
objective, our problem formulation has a secondary benefit: all data required for
planning can be measured directly from imaging data without requiring tweaking
of user-specified parameters. Rather than assigning costs to insertion distance,
needle rotation, etc., which are difficult to estimate or quantify, our method
only requires the probability distributions of the needle response to each feasible
action, which can be estimated from previously obtained images.

Our method formulates the planning problem as a Markov Decision Process
(MDP) and computes actions to maximize the probability of success using infi-
nite horizon Dynamic Programming (DP). Solving the MDP using DP has key
benefits particularly relevant for medical planning problems where feedback is
provided at regular time intervals using medical imaging or other sensor modal-
ities. Like a well-constructed navigation field, the DP solver provides an optimal
action for any state in the workspace. We use the DP look-up table to automati-
cally optimize the needle insertion point. Integrated with intra-operative medical
imaging, this DP look-up table can also be used to optimally steer the needle in
the operating room without requiring costly intra-operative re-planning. Hence,
the planning solution can serve as a means of control when integrated with
real-time medical imaging.

Throughout the description of the motion planning method, we focus on the
needle steering application. However, the method is generally applicable to any
car-like robot with binary left/right steering that follows paths composed of arcs
of constant curvature, whose position can be estimated by sensors at regular
intervals, and whose path may deflect due to motion uncertainty.

Steerable bevel-tip needles are controlled by 2 degrees of freedom: insertion dis-
tance and rotation angle about the needle axis. The actuation is performed at
the needle base outside the patient [208]. Insertion pushes the needle deeper into
the tissue, while rotation turns the needle about its shaft, re-orienting the bevel
at the needle tip. For a sufficiently flexible needle, Webster et al. experimen-
tally demonstrated that rotating the needle base will change the bevel direction
without changing the needle shaft’s position in the tissue [208]. In the plane,
the needle shaft can be rotated 180◦ about the insertion axis at the base so the
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Fig. 5.2. The state of a steerable needle during insertion is characterized by tip position
p, tip orientation angle θ, and bevel direction b (a). Rotating the needle about its base
changes the bevel direction but does not affect needle position (b). The needle will cut
soft tissue along an arc (dashed vector) based on bevel direction.

bevel points in either the bevel-left or bevel-right direction. When inserted, the
asymmetric force applied by the bevel causes the needle to bend and follow a
curved path through the tissue [208]. Under ideal conditions, the curve will have
a constant radius of curvature r, which is a property of the needle and tissue.
We assume the needle moves only in the imaging plane; a recently developed
low-level controller using image feedback can effectively maintain this constraint
[116]. We also assume the tissue is stiff relative to the needle and that the needle
is thin, sharp, and low-friction so the tissue does not significantly deform. While
the needle can be partially retracted and re-inserted, the needle’s motion would
be biased to follow the path in the tissue cut by the needle prior to retraction.
Hence, in this chapter we only consider needle insertion, not retraction.

We define the workspace as a 2-D rectangle of depth zmax and height ymax.
Obstacles in the workspace are defined by (possibly nonconvex) polygons. The
obstacles can be expanded using a Minkowski sum with a circle to specify a
minimum clearance [139]. The target region is defined by a circle with center
point t and radius rt.

As shown in figure 5.2, the state w of the needle during insertion is fully
characterized by the needle tip’s position p = (py, pz), orientation angle θ, and
bevel direction b, where b is either bevel-left (b=0) or bevel-right (b=1).

We assume the needle steering procedure is performed with image guidance;
a medical image is acquired at regular time intervals and the state of the nee-
dle (tip position and orientation) is extracted from the images. Between image
acquisitions, we assume the needle moves at constant velocity and is inserted a
distance δ. In our model, direction changes can only occur at discrete decision
points separated by the insertion distance δ. One of two actions u can be selected
at any decision point: insert the needle a distance δ (u = 0), or change direction
and insert a distance δ (u = 1).

During insertion, the needle tip orientation may be deflected by inhomogeneous
tissue, small anatomical structures not visible in medical images, or local tissue
displacements. Additional deflection may occur during direction changes due to
stiffness along the needle shaft. Such deflections are due to an unknown aspect of
the tissue structure or needle/tissue interaction, not errors in measurement
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of the needle’s orientation, and can be considered a type of noise parameter
in the plane. We model uncertainty in needle motion due to such deflections us-
ing probability distributions. The orientation angle θ may be deflected by some
angle β, which we model as normally distributed with mean 0 and standard
deviations σi for insertion (u = 0) and σr for direction changes followed by in-
sertion (u = 1). Since σi and σr are properties of the needle and tissue, we plan
in future work to automatically estimate these parameters by retrospectively
analyzing images of needle insertion.

The goal of our motion planner is to compute an optimal action u for every
feasible state w in the workspace to maximize the probability ps that the needle
will successfully reach the target.

We first introduce a motion planner for an idealized steerable needle whose
motion is deterministic: the needle perfectly follows arcs of constant curvature
in response to insertion actions.

To computationally solve the motion planning problem, we transform the
problem from a continuous state space to a discrete state space by approximating
needle state w = {p, θ, b} using a discrete representation. To make this approach
tractable, we must round p and θ without generating an unwieldy number of
states while simultaneously bounding error due to discretization.

Our discretization of the planar workspace is based on a grid of points with
a spacing ∆ horizontally and vertically. We approximate a point p = (py, pz)
by rounding to the nearest point q = (qy, qz) on the grid. For a rectangular
workspace bounded by depth zmax and height ymax, this results in

Ns =
⌊

zmax + ∆

∆

⌋⌊
ymax + ∆

∆

⌋

position states aligned at the origin.
Rather than directly approximating θ by rounding, which would incur a cu-

mulative error with every transition, we take advantage of the discrete insertion
distances δ. We define an action circle of radius r, the radius of curvature of
the needle. Each point c on the action circle represents an orientation θ of the
needle, where θ is the angle of the tangent of the circle at c with respect to
the z-axis. The needle will trace an arc of length δ along the action circle in a
counter-clockwise direction for b = 0 and in the clockwise direction for b = 1.
Direction changes correspond to rotating the point c by 180◦ about the action
circle origin and tracing subsequent insertions in the opposite direction, as shown
in figure 5.3(a). Since the needle traces arcs of length δ, we divide the action
circle into Nc arcs of length δ = 2πr/Nc. The endpoints of the arcs generate a
set of Nc action circle points, each representing a discrete orientation state, as
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r

r

(a) Needle tracing an action circle

(a) Action circle (c) Rounded action circle

Fig. 5.3. A needle in the bevel-left direction with orientation θ is tracing the solid action
circle with radius r (a). A direction change would result in tracing the dotted circle. The
action circle is divided into Nc = 40 discrete arcs of length δ (b). The action circle points
are rounded to the nearest point on the ∆-density grid, and transitions for insertion of
distance δ are defined by the vectors between rounded action circle points (c).

shown in figure 5.3(b). We require that Nc be a multiple of 4 to facilitate the
orientation state change after a direction change.

At each of the Ns discrete position states on the ∆ grid, the needle may be
in any of the Nc orientation states and the bevel direction can be either b = 0
or b = 1. Hence, the total number of discrete states is N = 2NsNc.

Using this discretization, a needle state w = {p, θ, b} can be approximated as
a discrete state s = {q, Θ, b}, where q = (qy, qz) is the discrete point closest to
p on the ∆-density grid and Θ is the integer index of the discrete action circle
point with tangent angle closest to θ.

For each state and action, we create a state transition that defines the motion of
the needle when it is inserted a distance δ. We first consider the motion of the
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needle from a particular spatial state q. To define transitions for each orientation
state at q, we overlay the action circle on a regular grid of spacing ∆ and round
the positions of the action circle points to the nearest grid point, as shown in
figure 5.3(c). The displacement vectors between rounded action circle points
encode the transitions of the needle tip. Given a particular orientation state Θ
and bevel direction b = 0, we define the state transition using a translation
component (the displacement vector between the positions of Θ and Θ − 1 on
the rounded action circle, which will point exactly to a new spatial state) and a
new orientation state (Θ − 1). If b = 1, we increment rather than decrement Θ.
We create these state transitions for each orientation state and bevel direction
for each position state q in the workspace. This discretization of states and state
transitions results in 0 discretization error in orientation when new actions are
selected at δ intervals.

Certain states and transitions must be handled as special cases. States inside
the target region and states inside obstacles are absorbing states. If the transition
arc from a feasible state exits the workspace or intersects an edge of a polygonal
obstacle, a transition to an obstacle state is used.

Deterministic paths designated using this discrete representation of state will
incur error due to discretization, but the error is bounded. At any decision point,
the position error due to rounding to the ∆ workspace grid is E0 = ∆

√
2/2.

When the bevel direction is changed, a position error is also incurred because
the distance between the center of the original action circle and the center of the
action circle after the direction change will be in the range 2r±∆

√
2. Hence, for

a needle path with h direction changes, the final orientation is precise but the
error in position is bounded above by Eh = h∆

√
2 + ∆

√
2/2.

For the planner that considers deterministic motion, we compute an action for
each state such that the path length to the target is minimized. As in standard
motion planning approaches [51, 136, 139], we formulate the motion planning
problem as a graph problem. We represent each state as a node in a graph and
state transitions as directed edges between the corresponding nodes. We merge
all states in the target into a single “source” state. We then apply Dijkstra’s
shortest path algorithm [34] to compute the shortest path from each state to the
target. The action u to perform at a state is implicitly computed based on the
directed edge from that state that was selected for the shortest path.

We extend the deterministic motion planner from section 5.2 to consider uncer-
tainty in motion and to compute actions to explicitly maximize the probability
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of success ps for each state. The planner retains the discrete approximation of
the state space introduced in section 5.2.1, but replaces the single deterministic
state transition per action defined in section 5.2.2 with a set of state transitions,
each weighted by its probability of occurrence. We then generalize the shortest
path algorithm defined in section 5.2.4 with a dynamic programming approach
that enables the planner to utilize the probability-weighted state transitions to
explicitly maximize the probability of success.

Due to motion uncertainty, actual needle paths will not always exactly trace the
action circle introduced in section 5.2.1. The deflection angle β defined in section
5.1 must be approximated as discrete. We define discrete transitions from a state
xi, each separated by an angle of deflection of α = 360◦/Nc. In this chapter, we
model β using a normal distribution with mean 0 and standard deviation σi

or σr, and compute the probability for each discrete transition by integrating
the corresponding area under the normal curve, as shown in figure 5.4. We set
the number of discrete transitions Npi such that the areas on the left and right
tails of the normal distribution sum to less than 1%. The left and right tail
probabilities are added to the left-most and right-most transitions, respectively.
Using this discretization, we define a transition probability matrix P (u), where
Pij(u) defines the probability of transitioning from state xi to state xj given
that action u is performed.

p

-2 -

2

-2 - 2

P( )

Fig. 5.4. When the needle is inserted, the insertion angle θ may be deflected by
some angle β. We model the probability distribution of β using a normal distribution
with mean 0 and standard deviation σi for insertion or σr for direction change. For a
discrete sample of deflections (β = {−2α,−α, 0, α, 2α}), we obtain the probability of
each deflection by integrating the corresponding area under the normal curve.

Programming

The goal of our motion planning approach is to compute an optimal action u
for every state w (in continuous space) such that the probability of reaching the
target is maximized. We define ps(w) to be the probability of success given that
the needle is currently in state w. If the position of state w is inside the target,
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ps(w) = 1. If the position of state w is inside an obstacle, ps(w) = 0. Given
an action u for some other state w, the probability of success will depend on
the response of the needle to the action (the next state) and the probability of
success at that next state. The expected probability of success is

ps(w) = E[ps(v)|w, u], (5.1)

where the expectation is over v, a random variable for the next state. The goal
of motion planning is to compute an optimal action u for every state w:

ps(w) = max
u

{E[ps(v)|w, u]} . (5.2)

For N discrete states, the motion planning problem is to determine the optimal
action ui for each state xi, i = 1, . . . , N . We re-write Eq. 5.2 using the discrete
approximation and expand the expected value to a summation:

ps(xi) = max
ui

⎧⎨
⎩

N∑
j=1

Pij(ui)ps(xj)

⎫⎬
⎭ , (5.3)

where Pij(ui) is the probability of entering state xj after executing action ui at
current state xi.

We observe that the needle steering motion planning problem is a type of
MDP. In particular, Eq. 5.3 has the form of the Bellman equation for a stochastic
maximum-reward problem [34]:

J∗(xi) = max
ui

N∑
j=1

Pij(ui) (g(xi, ui, xj) + J∗(xj)). (5.4)

where g(xi, ui, xj) is a “reward” for transitioning from state xi to xj after per-
forming action ui. In our case, we set J∗(xi) = ps(xi), and we set g(xi, ui, xj) = 0
for all xi, ui, and xj . Stochastic maximum-reward problems of this form can be
optimally solved using infinite horizon dynamic programming (DP).

Infinite horizon dynamic programming is a type of dynamic programming in
which there is no finite time horizon [34]. For stationary problems, this implies
that the optimal action at each state is purely a function of the state without
explicit dependence on time. In the case of needle steering, once a state transition
is made, the next action is computed based on the current position, orientation,
and bevel direction without explicit dependence on past actions.

To solve the infinite horizon DP problem defined by the Bellman Eq. 5.4, we
use the value iteration algorithm [34], which iteratively updates ps(xi) for each
state i by evaluating Eq. 5.3. This generates a DP look-up table containing the
optimal action ui and the probability of success ps(xi) for i = 1, . . . , N .

Termination of the algorithm is guaranteed in N iterations if the transition
probability graph corresponding to some optimal stationary policy is acyclic [34].
Violation of this requirement will be rare in motion planning since a violation
implies that an optimal action sequence results in a path that, with probability
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(a) Shortest path
(Deterministic)

(b) Maximize ps

σi = 10◦, σr = 10◦

ps = 76.95%

(c) Maximize ps

σi = 20◦, σr = 20◦

ps = 29.01%

Fig. 5.5. As in figure 5.1, optimal plans maximizing the probability of success ps

illustrate the importance of considering uncertainty in needle motion. The shortest
path plan passes through a narrow gap between obstacles (a). Since maximizing ps

explicitly considers uncertainty, the optimal expected path has greater clearance from
obstacles, decreasing the probability that large deflections will cause failure to reach
the target. Here we consider medium (b) and large (c) variance in tip deflections for a
needle with smaller radius of curvature than in figure 5.1.

greater than 0, loops and passes through the same point at the same orientation
more than once.

To improve performance, we take advantage of the sparsity of the matrices
Pij(u) for u = 0 and u = 1. Each iteration of the value iteration algorithm
requires matrix-vector multiplication using the transition probability matrix.
Although Pij(u) has N2 entries, each row of Pij(u) has only k nonzero entries,
where k << N since the needle will only transition to a state j in the spatial
vicinity of state i. Hence, Pij(u) has at most kN nonzero entries. By only ac-
cessing nonzero entries of Pij(u) during computation, each iteration of the value
iteration algorithm requires only O(kN) rather than O(N2) time and memory.
Thus, the total algorithm’s complexity is O(kN2). To further improve perfor-
mance, we terminate value iteration when the maximum change ε over all states
is less than 10−3, which in our test cases occurred in far fewer than N iterations,
as described in section 5.4.

We implemented the motion planner in C++ and tested it on a 2.21GHz Athlon
64 PC. In figure 5.1, we set the needle radius of curvature r = 5.0, defined the
workspace by zmax = ymax = 10, and used discretization parameters Nc = 40,
∆ = 0.1, and δ = 0.785. The resulting DP problem contained N = 800,000
states. In all further examples, we set r = 2.5, zmax = ymax = 10, Nc = 40,
∆ = 0.1, and δ = 0.393, resulting in N = 800,000 states.
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(a) σi = 5◦, σr = 5◦,
ps = 98.98%

(b) σi = 5◦, σr = 10◦,
ps = 92.87%

(c) σi = 5◦, σr = 20◦,
ps = 73.00%

Fig. 5.6. Optimal plans demonstrate the importance of considering uncertainty in
needle motion, where σi and σr are the standard deviations of needle tip deflections that
can occur during insertion and direction changes, respectively. For higher σr relative
to σi, the optimal plan includes fewer direction changes. Needle motion uncertainty
at locations of direction changes may be substantially higher than uncertainty during
insertion due to transverse stiffness of the needle.

Optimal plans and probability of success ps depend on the level of uncer-
tainty in needle motion. As shown in Figs. 5.1 and 5.5, explicitly considering the
variance of needle motion significantly affects the optimal plan relative to the
shortest path plan generated under the assumption of deterministic motion. We
also vary the variance during direction changes independently from the variance
during insertions without direction changes. Optimal plans and probability of
success ps are highly sensitive to the level of uncertainty in needle motion due
to direction changes. As shown in figure 5.6, the number of direction changes
decreases as the variance during direction changes increases.

By examining the DP look-up table, we can optimize the initial insertion
location, orientation, and bevel direction, as shown in Figs. 5.1, 5.5, and 5.6. In
these examples, the set of feasible start states was defined as a subset of all states
on the left edge of the workspace. By linearly scanning the computed probability
of success for the start states in the DP look-up table, the method identifies the
bevel direction b, insertion point (height y on the left edge of the workspace),
and starting orientation angle θ (which varies from −90◦ to 90◦) that maximizes
probability of success, as shown in figure 5.7.

Since the planner approximates the state of the needle with a discrete state,
the planner is subject to discretization errors as discussed in section 5.2.3. After
each action, the state of the needle is obtained from medical imaging, reducing
the discretization error in position of the current state to ∆

√
2/2. However, when

the planner considers future actions, discretization error for future bevel direc-
tion changes is cumulative. We illustrate the effect of cumulative discretization
error during planning in figure 5.8, where the planner internally assumes the
expected needle path will follow the dotted line rather than the actual expected
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(a) Optimization surface for figure
5.5(c)

(b) Optimization surface for figure
5.6(c)

Fig. 5.7. The optimal needle insertion location y, angle θ, and bevel direction b are
found by scanning the DP look-up table for the feasible start state with maximal ps.
Here we plot optimization surfaces for b = 0. The low regions correspond to states
from which the needle has high probability of colliding with an obstacle or exiting the
workspace, and the high regions correspond to better start states.

(a) Deterministic shortest
path,

4 direction changes

(b) σi = 5◦, σr = 20◦,
8 direction changes

(c) σi = 5◦, σr = 10◦,
15 direction changes

Fig. 5.8. The small squares depict the discrete states used internally by the motion
planning algorithm when predicting the expected path from the start state, while the
solid line shows the actual expected needle path based on constant-curvature motion.
The cumulative error due to discretization, which is bounded as described in section
5.2.3, is generally smaller when fewer direction changes (indicated by solid circles) are
performed.

path indicated by the solid line. The effect of cumulative errors due to discretiza-
tion, which is bounded as described in section 5.2.3, is generally smaller when
fewer direction changes are planned.

As defined in section 5.3.2, the computational complexity of the motion plan-
ner is O(kN2). Fewer than 300 iterations were required for each example, with
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(a) (b) (c)

Fig. 5.9. Three simulated image-guided needle insertion procedures from a fixed start-
ing point with needle motion uncertainty standard deviations of σi = 5◦ during inser-
tion and σr = 20◦ during direction changes. After each insertion distance δ, we assume
the needle tip is localized in the image and identified using a dot. Based on the DP
look-up table, the needle is either inserted (small dots) or a direction change is made
(larger dots). The effect of uncertainty can be seen as deflections in the path, i.e.,
locations where the tangent of the path abruptly changes. Since σr > σi, deflections
are more likely to occur at points of direction change. In all cases, ps = 72.35% at
the initial state. In (c), multiple deflections and the nonholonomic constraint on needle
motion prevent the needle from reaching the target.

fewer iterations required for smaller σi and σr. In all examples, the number of
transitions per state k ≤ 25. Computation time to construct the MDP depends
on the collision detector used, as collision detection must be performed for all
N states and up to kN state transitions. Computation time to solve the MDP
for the examples ranged from 67 sec to 110 sec on a 2.21GHz AMD Athlon 64
PC, with higher computation times required for problems with greater variance,
due to the increased number of transitions from each state. As computation
only needs to be performed at the pre-procedure stage, we believe minutes of
computation time is reasonable for the intended applications. Intra-operative
computation time is effectively instantaneous since only a memory access to the
DP look-up table is required to retrieve the optimal action after the needle has
been localized in imaging.

Integrating intra-operative medical imaging with the pre-computed DP look-
up table could permit optimal steering of the needle in the operating room
without requiring costly intra-operative re-planning. We demonstrate the po-
tential of this approach using simulation of needle deflections based on normal
distributions with mean 0 and standard deviations σi = 5◦ and σr = 20◦ in
figure 5.9. After each insertion distance δ, we assume the needle tip is localized
in the image. Based on the DP look-up table, the needle is either inserted or
the bevel direction is changed. The effect of uncertainty can be seen as deflec-
tions in the path, i.e., locations where the tangent of the path abruptly changes.
Since σr > σi, deflections are more likely to occur at points of direction change.
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In practice, clinicians could monitor ps, insertion length, and self-intersection
while performing needle insertion.

We developed a new motion planning approach for steering flexible needles
through soft tissue that explicitly considers uncertainty: the planner computes
optimal actions to maximize the probability that the needle will reach the de-
sired target. Motion planning for steerable needles, which can be controlled by
2 degrees of freedom at the needle base (bevel direction and insertion distance),
is a variant of nonholonomic planning for a Dubins car with no reversals, binary
left/right steering, and uncertainty in motion direction.

Given a medical image with segmented obstacles, target, and start region, our
method formulates the planning problem as a Markov Decision Process (MDP)
based on an efficient discretization of the state space, models motion uncertainty
using probability distributions, and computes actions to maximize the probabil-
ity of success using infinite horizon DP. Using our implementation of the method,
we generated motion plans for steerable needles to reach targets inaccessible to
stiff needles and illustrated the importance of considering uncertainty in needle
motion, as shown in Figs. 5.1, 5.5, and 5.6.

Our approach has key features particularly beneficial for medical planning
problems. First, the planning formulation only requires parameters that can be
directly extracted from images (the variance of needle orientation after insertion
with or without direction change). Second, we can determine the optimal needle
insertion start pose by examining the pre-computed DP look-up table containing
the optimal probability of success for each needle state, as demonstrated in
figure 5.7. Third, intra-operative medical imaging can be combined with the
pre-computed DP look-up table to permit optimal steering of the needle in the
operating room without requiring time-consuming intra-operative re-planning,
as shown in figure 5.9.

Extending this motion planner to 3-D would expand the applicability of the
method. Although the mathematical formulation can be naturally extended,
substantial effort will be required to geometrically specify 3-D state transitions
and to efficiently handle the larger state space when solving the MDP. Exten-
sions to 3-D should consider faster alternatives to the general value iteration
algorithm, including hierarchical and adaptive resolution methods [27, 52, 158],
methods that prioritize states [30, 63, 82, 95, 157], and other approaches that
take advantage of the structure of our problem formulation [32, 40, 41].

Another open problem is to develop automated methods to estimate necessary
parameters from medical images. These parameters include needle curvature and
variance properties as well as the effects of including of multiple tissue types in
the workspace with different needle/tissue interaction properties.

Our motion planner has implications beyond the needle steering application.
We can directly extend the method to motion planning problems with a bounded
number of discrete turning radii where current position and orientation can be
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measured but future motion response to actions is uncertain. For example, mo-
bile robots subject to motion uncertainty with similar properties can receive
periodic “imaging” updates from GPS or satellite images. Optimization of “in-
sertion location” could apply to automated guided vehicles in a factory setting,
where one machine is fixed but a second machine can be placed to maximize
the probability that the vehicle will not collide with other objects on the factory
floor. By identifying a relationship between needle steering and infinite horizon
DP, we developed a motion planner capable of rigorously computing plans that
are optimal in the presence of uncertainty.



In many applications of motion planning, the motion of the robot in response
to commanded actions cannot be precisely predicted. Whether maneuvering a
vehicle over unfamiliar terrain, steering a flexible needle through human tissue
to deliver medical treatment, guiding a micro-scale swimming robot through
turbulent water, or displaying a folding pathway of a protein polypeptide chain,
the underlying motions cannot be predicted with certainty. But in many of these
cases, a probabilistic distribution of feasible outcomes in response to commanded
actions can be experimentally measured. This stochastic information is funda-
mentally different from a deterministic motion model. Though planning shortest
feasible paths to the goal may be appropriate for problems with deterministic
motion, shortest paths may be highly sensitive to uncertainties: the robot may
deviate from its expected trajectory when moving through narrow passageways
in the configuration space, resulting in collisions.

In this chapter, we develop a new motion planning framework that explicitly
considers uncertainty in robot motion at the planning stage. Because future
configurations cannot be predicted with certainty, we define a plan by actions
that are a function of the robot’s current configuration. A plan execution is
successful if the robot does not collide with any obstacles and reaches the goal.
The idea is to compute plans that maximize the probability of success.

The approach we develop here is a generalization of the motion planning
algorithm developed in chapter 5 to consider a wider range of robot motions and
uncertainty models. Our framework builds on the highly successful approach
used in Probabilistic Roadmaps (PRM’s): a learning phase followed by a query
phase [118]. During the learning phase, a random (or quasi-random) sample
of discrete states is selected in the configuration space, and a roadmap is built
that represents their collision-free connectivity. During the query phase, the user
specifies initial and goal states, and the roadmap is used to find a feasible path
that connects the initial state to the goal, possibly optimizing some criteria
such as minimum length. PRM’s have successfully solved many path planning
problems for applications such as robotic manipulators and mobile robots [51,
139]. The term “probabilistic” in PRM comes from the random sampling of
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(a) Minimizing path length

ps = 27%

(b) Maximize probability of success
using SMR
ps = 57%

Fig. 6.1. The expected results of two plans to steer a Dubins-car mobile robot with
left-right bang-bang steering and normally distributed motion uncertainty from an
initial configuration (solid square) to a goal (open circle). Dots indicate steering di-
rection changes. The Stochastic Motion Roadmap (SMR) introduces sampling of the
configuration space and motion uncertainty model to generate plans that maximize the
probability ps that the robot will successfully reach the goal without colliding with an
obstacle. Evaluation of ps using multiple randomized simulations demonstrates that
following a minimum length path under motion uncertainty (a) is substantially less
likely to succeed than executing actions from an SMR plan (b).

states. An underlying assumption is that the collision-free connectivity of states
is specified using boolean values rather than distributions.

In this chapter, we relax this assumption and combine a roadmap represen-
tation of the configuration space with a stochastic model of robot motion. The
input to our method is a geometric description of the workspace and a motion
model for the robot capable of generating samples of the next configuration
that the robot may attain given the current configuration and an action. We
require that the motion model satisfy the Markovian property: the distribution
of the next state depends only on the action and current state, which encodes
all necessary past history. As in PRM’s, the method first samples the configu-
ration space, where the sampling can be random [118], pseudo-random [140], or
utility-guided [47]. We then sample the robot’s motion model to build a Stochas-
tic Motion Roadmap (SMR), a set of weighted directed graphs with vertices as
sampled states and edges encoding feasible state transitions and their associated
probability of occurrence for each action.

The focus of our method is not to find a feasible motion plan, but rather to find
an optimal plan that maximizes the probability that the robot will successfully
reach a goal. Given a query specifying initial and goal configurations, we use
the SMR to formulate a Markov Decision Process (MDP) where the “decision”
corresponds to the action to be selected at each state in the roadmap. We solve



The Stochastic Motion Roadmap 77

+r

Fig. 6.2. The solid line path illustrates a motion plan from the start square to the
goal (cross) for a nonholonomic mobile robot constrained to follow paths composed of
continuously connected arcs of constant-magnitude curvature with radius of curvature
r. If a deflection occurs at the location of the arrow, then the robot is unable to reach
the goal due to the nonholonomic constraint, even if this deflection is immediately
detected, since the robot cannot follow a path with smaller radius of curvature than
the dotted line.

the MDP in polynomial time using Infinite Horizon Dynamic Programming. Be-
cause the roadmap is a discrete representation of the continuous configuration
space and transition probabilities, the computed optimal actions are approxima-
tions of the optimal actions in continuous space that converge as the roadmap
increases in size. Although the plan, defined by the computed actions, is fixed,
the path followed by the robot may differ each time the plan is executed because
different state transitions may occur due to motion uncertainty. As shown in
figure 6.1, plans that explicitly consider uncertainty to maximize the probability
of success can differ substantially from traditional shortest path plans.

In SMR, “stochastic” refers to the motion of the robot, not to the sampling of
states. PRM’s were previously extended to explore stochastic motion in molecu-
lar conformation spaces [21, 22], but without a planning component to optimize
actions. Our SMR formulation is applicable to a variety of decision-based ro-
botics problems. It is particularly suited for nonholonomic robots, for which a
deflection in the path due to motion uncertainty can result in failure to reach
the goal, even if the deflection does not result in an immediate collision. The
expansion of obstacles using their Minkowski sum [139] with a circle correspond-
ing to an uncertainty tolerance is often sufficient for holonomic robots for which
deflections can be immediately corrected, but this does not address collisions re-
sulting from a nonholonomic constraint as in figure 6.2. By explicitly considering
motion uncertainty in the planning phase, we hope to minimize such failures.

Although we use the terms robot and workspace, SMR’s are applicable to any
motion planning problem that can be modeled using a continuous configuration
space and discrete action set with uncertain transitions between configurations.
In this chapter, we demonstrate a SMR planner using a variant of a Dubins car
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with bang-bang control, a nonholonomic mobile robot that can steer its wheels
far left or far right while moving forward but cannot go straight. This model
can generate motion plans for steerable needles, a new class of flexible bevel-tip
medical needles introduced in chapter 4 that clinicians can steer through soft
tissue around obstacles to reach targets inaccessible to traditional stiff needles
[15, 208]. As in many medical applications, considering uncertainty is crucial to
the success of medical needle insertion procedures: the needle tip may deflect
from the expected path due to tissue inhomogeneities that cannot be detected
prior to the procedure. Due to uncertainty in predicted needle/tissue interac-
tions, needle steering is ill-suited to shortest-path plans that may guide the
needle through narrow passageways between critical tissue such as blood vessels
or nerves. By explicitly considering motion uncertainty using an SMR, we obtain
solutions that result in possibly longer paths but that improve the probability
of success.

Motion planning can consider uncertainty in sensing (the current state of the ro-
bot and workspace is not known with certainty) and predictability (the future state
of the robot and workspace cannot be deterministically predicted even when the
current state and future actions are known) [139]. Extensive work has explored un-
certainty associated with robot sensing, including Simultaneous Localization and
Mapping (SLAM) and Partially Observable Markov Decision Processes
(POMDP’s) to represent uncertainty in the current state [51, 202]. In this chap-
ter, we assume the current state is known (or can be precisely determined from
sensors), and we focus on the latter type of uncertainty, predictability.

Predictability can be affected by uncertainty in the workspace and by uncer-
tainty in the robot’s motion. Previous and ongoing work addresses many aspects
of uncertainty in the workspace, including uncertainty in the goal location, such
as in pursuit-evasion games [139, 142], and in dynamic environments with mov-
ing obstacles [147, 204, 206]. A recently developed method for grasp planning
uses POMDP’s to consider uncertainty in the configuration of the robot and
the state of the objects in the world [105]. In this chapter we focus explicitly
on the case of uncertainty in the robot’s motion rather than in goal or obstacle
locations.

Apaydin et al. previously explored the connection between probabilistic
roadmaps and stochastic motions using Stochastic Roadmap Simulation (SRS),
a method designed specifically for molecular conformation spaces [21, 22]. SRS,
which formalizes random walks in a roadmap as a Markov Chain, has been suc-
cessfully applied to predict average behavior of molecular motion pathways of
proteins and requires orders of magnitude less computation time than tradi-
tional Monte-Carlo molecular simulations. However, SRS cannot be applied to
more general robotics problems, including needle steering, because the proba-
bilities associated with state transitions are specific to molecular scale motions
and the method does not include a planning component to optimize actions.
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Considering uncertainty in the robot’s response to actions during planning re-
sults in a stochastic optimal control problem where feedback is generally required
for success. Motion planners using grid-based numerical methods and geomet-
ric analysis have been applied to robots with motion uncertainty (sometimes
combined with sensing uncertainty) using cost-based objectives and worst-case
analysis [39, 141, 143]. MDP’s, a general approach that requires explicitly defin-
ing transition probabilities between states, have also been applied to motion
planning by subdividing the workspace using regular grids and defining transi-
tion probabilities for motions between the grid cells [63, 81, 139]. This was the
motion planning approach taken in chapter 5. These methods differ from SMR’s
since they use grids or problem-specific discretization.

Many existing planners for deterministic motion specialize in finding feasible
paths through narrow passageways in complex configuration spaces using special-
ized sampling [20, 38] or learning approaches [158]. Since a narrow passageway
is unlikely to be robust to motion uncertainty, finding these passageways is not
the ultimate goal of our method. Our method builds a roadmap that samples the
configuration space with the intent of capturing the uncertain motion transition
probabilities necessary to compute optimal actions.

We apply SMR’s to needle steering, a type of nonholonomic control-based
motion planning problem. Nonholonomic motion planning has a long history
in robotics and related fields [51, 139]. Past work has addressed deterministic
curvature-constrained path planning with obstacles where a mobile robot’s path
is, like a car, constrained by a minimum turning radius [36, 111, 138, 152, 188].
For steerable needles, Park et al. applied a numeric diffusion-based method but
did not consider obstacles or motion uncertainty [171]. Alterovitz et al. proposed
an MDP formulation to find a stochastic shortest path for a steerable needle to
a goal configuration, subject to user-specified “cost” parameters for direction
changes, insertion distance, and collisions [15]. Because these costs are difficult
to quantify, Alterovitz et al. introduced the objective function of maximizing
probability of success [7]. These methods use a regular grid of states and an ad-
hoc, identical discretization of the motion uncertainty distribution at all states.
The methods do not consider the advantages of sampling states nor the use of
sampling to estimate motion models.

SMR planning is a general framework that combines a roadmap representation
of configuration space with the theory of MDP’s to explicitly consider motion
uncertainty at the planning stage to maximize the probability of success. SMR’s
use sampling to both learn the configuration space (represented as states) and
to learn the stochastic motion model (represented as state transition proba-
bilities). Sampling reduces the need for problem-specific geometric analysis or
discretization for planning. As demonstrated by the success of PRM’s, sampling
states is useful for modeling complex configuration spaces that cannot be easily
represented geometrically and extends well to higher dimensions. Random or
quasi-random sampling reduces problems associated with regular grids of states,
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including the high computational complexity in higher dimensions and the sen-
sitivity of solutions and runtimes to the selection of axes [139]. Sampling the
stochastic motion model enables the use of a wide variety of motion uncertainty
representations, including directly sampling experimentally measured data or
using parameterized distributions such as a Gaussian distribution. This greatly
improves previous Markov motion planning approaches that impose an ad-hoc,
identical discretization of the transition probability distributions at all states (as
was done in chapter 5).

Although SMR is a general framework, it provides improvements for steer-
able needle planning compared to previously developed approaches specifically
designed for this application. Previous planners do not consider uncertainty in
needle motion [171], or apply simplified models that only consider deflections at
decision points and assume that all other motion model parameters are constant
(as was done in chapter 5). Because we use sampling to approximate the motion
model rather than a problem-specific geometric approximation, we eliminate the
discretization error at the initial configuration and can easily include a more
complex uncertainty model that considers arbitrary stochastic models for both
insertion distance and radius of curvature. SMR’s increase flexibility and de-
crease computation time; for problems with equal workspace size and expected
values of motion model parameters, a query that requires over a minute to solve
using a grid-based MDP due to the large number of states needed to bound
discretization error (as in chapter 5) requires just 6 seconds using an SMR.

To build an SMR, the user must first provide input parameters and function
implementations to describe the configuration space and robot motion model.
A configuration of the robot and workspace is defined by a vector x ∈ C = �d,
where d is the number of degrees of freedom in the configuration space C. At any
configuration x, the robot can perform an action from a discrete action set U of
size w. The bounds of the configuration space are defined by Bmin

i and Bmax
i for

i = 1, . . . , d, which specify the minimum and maximum values, respectively, for
each configuration degree of freedom i. The functions isCollisionFree(x) and
isCollisionFreePath(x, y) implicitly define obstacles within the workspace;
the former returns false if configuration x collides with an obstacle and true
otherwise, and the latter returns false if the path (computed by a local planner
[118]) from configuration x to y collides with an obstacle and true otherwise. (We
consider exiting the workspace as equivalent to colliding with an obstacle.) The
function distance(x, y) specifies the distance between two configurations x and
y, which can equal the Euclidean distance in d-dimensional space or some other
user-specified distance metric. The function generateSampleTransition(x, u)
implicitly defines the motion model and its probabilistic nature; this function
returns a sample from a known probability distribution for the next configuration
given that the robot is currently in configuration x and will perform action u.
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Procedure 1. buildSMR
Require:

n: number of nodes to place in the roadmap
U : set of discrete robot actions
m: number of sample points to generate for each transition

Ensure:
SMR containing states V and transition probabilities (weighted edges) Eu for each
action u ∈ U

V ← ∅
for all u ∈ U do

Eu ← ∅
end for
while |V | < n do

q ← random state sampled from the configuration space
if isCollisionFree(q) then

V ← V ∪ {q}
end if

end while
for all s ∈ V do

for all u ∈ U do
for all (t, p) ∈ getTransitions(V, s, u, m) do

Eu ← Eu ∪ {(s, t, p)}
end for

end for
end for
return weighted directed graphs Gu = (V, Eu) ∀ u ∈ U

6.1.2 Building the Roadmap

We build the stochastic motion roadmap using the algorithm buildSMR defined
in Procedure 1. The roadmap is defined by a set of vertices V and sets of edges
Eu for each action u ∈ U . The algorithm first samples n collision-free states
in the configuration space and stores them in V . In our implementation, we
use a uniform random sampling of the configuration space inside the bounds
defined by (Bmin

i , Bmax
i ) for i = 1, . . . , d, although other random distributions

or quasi- random sampling methods could be used [51, 140]. For each state s ∈ V
and an action u ∈ U , buildSMR calls the function getTransitions, defined in
Procedure 2, to obtain a set of possible next states in V and probabilities of
entering those states when action u is performed. We use this set to add to Eu

weighted directed edges (s, t, p), which specify the probability p that the robot
will transition from state s ∈ V to state t ∈ V when currently in state s and
executing action u.

The function getTransitions, defined in Procedure 2, estimates state transi-
tion probabilities. Given the current state s and an action u, it calls the problem-
specific function generateSampleTransition(x, u) to generate a sample
configuration q and then selects the state t ∈ V closest to q using the problem-
specific distance function. We repeat this motion sampling m times and then
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Procedure 2. getTransitions
Require:

V : configuration space samples
s: current robot state, s ∈ V
u: action that the robot will execute, u ∈ U
m: number of sample points to generate for this transition

Ensure:
List of tuples (t, p) where p is the probability of transitioning from state s ∈ V to
state t ∈ V after executing u.

R ← ∅
for i = 1 to m do

q = generateSampleTransition(s, u)
if isCollisionFreePath(s, q) then

t ← arg mint∈V distance(q, t)
else

t ← obstacle state
end if
if (t, p) ∈ R for some p then

Remove (t, p) from R
R ← R ∪ {(t, p + 1/m)}

else
R ← R ∪ {(t, 1/m)}

end if
end for
return R

estimate the probability of transitioning from state s to t as the proportion of times
that this transition occurred out of the m samples. If there is a collision in the tran-
sition from state s to t, then the transition is replaced with a transition from s to a
dedicated “obstacle state,” which is required to estimate the probability that the
robot collides with an obstacle.

This algorithm has the useful property that the transition probability from
state s to state t in the roadmap equals the fraction of transition samples that
fall inside state t’s Voronoi cell. This property is implied by the use of nearest
neighbor checking in getTransitions. As m → ∞, the probability p of tran-
sitioning from s to t will approach, with probability 1, the integral of the true
transition distribution over the Voronoi cell of t. As the number of states n → ∞,
the expected volume Vt of the Voronoi cell for state t equals V/n → 0, where V
is the volume of the configuration space. Hence, the error in the approximation
of the probability p due to the use of a discrete roadmap will decrease as n and
m increase.

We define a query by an initial configuration s∗ and a set of goal configurations T ∗.
Using the SMR and the query input, we build an n×n transition probability

matrix P (u) for each u ∈ U . For each tuple (s, t, p) ∈ Eu, we set Pst(u) = p so
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Pst(u) equals the probability of transitioning from state s to state t given that
action u is performed. We store each matrix P (u) as a sparse matrix that only
includes pointers to a list of non-zero elements in each row and assume all other
entries are 0.

We define ps(i) to be the probability of success given that the robot is currently
in state i. If the position of state i is inside the goal, ps(i) = 1. If the position
of state i is inside an obstacle, ps(i) = 0. Given an action ui for some other
state i, the probability of success will depend on the response of the robot to
the action and the probability of success from the next state. The goal of our
motion planner is to compute an optimal action ui to maximize the expected
probability of success at every state i:

ps(i) = max
ui

{E[ps(j)|i, ui]} , (6.1)

where the expectation is over j, a random variable for the next state. Since the
roadmap is a discrete approximation of the continuous configuration space, we
expand the expected value in Eq. 6.1 to a summation:

ps(i) = max
ui

⎧⎨
⎩
∑
j∈V

Pij(ui)ps(j)

⎫⎬
⎭ . (6.2)

We observe that Eq. 6.2 is an MDP and has the form of the Bellman equation
for a stochastic shortest path problem [34]:

J∗(i) = max
ui

∑
j∈V

Pij(ui) (g(i, ui, j) + J∗(j)). (6.3)

where g(i, ui, j) is a “reward” for transitioning from state i to j after action ui.
In our case, g(i, ui, j) = 0 for all i, ui, and j, and J∗(i) = ps(i).

Stochastic shortest path problems of the form in Eq. 6.3 can be optimally
solved using infinite horizon dynamic programming. For stationary Markovian
problems, the configuration space does not change over time, which implies that
the optimal action at each state is purely a function of the state without explicit
dependence on time. Infinite horizon dynamic programming is a type of dynamic
programming (DP) in which there is no finite time horizon [34]. Specifically, we
use the value iteration algorithm [34], which iteratively updates ps(i) for each
state i by evaluating Eq. 6.3. This generates a DP look-up table containing the
optimal action ui and the probability of success ps(i) for each i ∈ V .

The algorithm is guaranteed to terminate in n (the number of states) iterations
if the transition probability graph corresponding to some optimal stationary pol-
icy is acyclic [34]. Violation of this requirement can occur in rare cases in which
a cycle is feasible and deviating from the cycle will result in imminent failure.
To remove this possibility, we introduce a small penalty γ for each transition by
setting g(i, ui, j) = −γ in Eq. 6.3. Increasing γ has the effect of giving preference
to shorter paths at the expense of a less precise estimate of the probability of
success, where the magnitude of the error is (weakly) bounded by γn.
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Building an SMR requires O(n) time to create the states V , not including colli-
sion detection. Generating the edges in Eu requires O(wn) calls to
generateTransitions, where w = |U |. For computational efficiency, it is not
necessary to consolidate multiple tuples with the same next state t; the addition
p+1/m can be computed automatically during value iteration. Hence, each call
requires O(mdn) time using brute-force nearest neighbor checking. For certain
low-dimensional configuration spaces, this can be reduced to O (m exp (d) log (n))
using kd-trees [219]. Hence, the total time complexity of building an SMR is
O
(
wmdn2

)
or O (wm exp (d)n log (n)). This does not include the cost of n state

collision checks and nm checks of collision free paths, which are problem-specific
and may increase the computational complexity depending on the workspace
definition.

Solving a query requires building the transition probability matrices and ex-
ecuting value iteration. Although the matrices Pij(u) each have n2 entries, we
do not store the zero entries as described above. Since the robot will generally
only transition to a state j in the spatial vicinity of state i, each row of Pij(u)
has only k nonzero entries, where k << n. Building the sparse matrices requires
O(wkn) time. By only accessing the nonzero entries of Pij(u) during the value it-
eration algorithm, each iteration for solving a query requires only O(wkn) rather
than O(wn2) time. Thus, the value iteration algorithm’s total time complexity
is O(wkn2) since the number of iterations is bounded by n. To further improve
performance, we terminate value iteration when the maximum change ε over all
states is less than some user-specified threshold ε∗. In our test cases, we used
ε∗ = 10−7, which resulted in far fewer than n iterations.

We assume the workspace is extracted from a medical image, where obstacles
represent tissues that cannot be cut by the needle, such as bone, or sensitive
tissues that should not be damaged, such as nerves or arteries. As in chapter 5,
we consider motion plans in an imaging plane since the speed/resolution trade-off
of 3-D imaging modalities is generally poor for 3-D interventional applications.
We assume the needle follows paths of radius of curvature r and moves a distance
δ between image acquisitions that are used to determine the current needle
position and orientation. We do not consider motion by the needle out of the
imaging plane or needle retraction, which modifies the tissue and can influence
future insertions. When restricted to motion in a plane, the bevel direction can
be set to point left (b = 0) or right (b = 1) [208]. Due to the nonholonomic
constraint imposed by the bevel, the motion of the needle tip can be modeled as
a bang-bang steering car, a variant of a Dubins car that can only turn its wheels
far left or far right while moving forward [7, 208].

Clinicians performing medical needle insertion procedures must consider un-
certainty in the needle’s motion through tissue due to patient differences and the
difficulty in predicting needle/tissue interaction. Bevel direction changes further
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Fig. 6.3. The state of a bang-bang steering car is defined by point p, orientation θ,
and turning direction b (a). The car moves forward along an arc of constant curvature
and can turn either left (a) or right (b).

increase uncertainty due to stiffness along the needle shaft. Medical imaging in
the operating room can be used to measure the needle’s current position and
orientation to provide feedback to the planner [55, 67], but this measurement
by itself provides no information about the effect of future deflections during
insertion due to motion uncertainty.

Stochastic motion roadmaps offer features particularly beneficial for medical
needle steering. First, SMR’s explicitly consider uncertainty in the motion of
the needle. Second, intra-operative medical imaging can be combined with the
fast SMR queries to permit control of the needle in the operating room without
requiring time-consuming intra-operative re-planning.

We formulate the SMR for a bang-bang steering car, which can be applied to
needle steering. The state of such a car is fully characterized by its position
p = (x, y), orientation angle θ, and turning direction b, where b is either left
(b = 0) or right (b = 1). Hence, the dimension of the state space is d = 4, and
a state i is defined by si = (xi, yi, θi, bi), as illustrated in figure 6.3. We encode
bi in the state since it is a type of history parameter that is required by the
motion uncertainty model. Since an SMR assumes that each component of the
state vector is a real number, we define the binary bi as the floor of the fourth
component in si, which we bound in the range [0, 2).

Between sensor measurements of state, we assume the car moves a distance
δ. The set U consists of two actions: move forward turning left (u = 0), or move
forward turning right (u = 1). As the car moves forward, it traces an arc of
length δ with radius of curvature r and direction based on u. We consider r
and δ as random variables drawn from a given distribution. In this chapter, we
consider δ ∼ N(δ0, σδa) and r ∼ N(r0, σra), where N is a normal distribution
with given mean and standard deviation parameters and a ∈ {0, 1} indicates
direction change. We implement generateSampleTransition to draw random
samples from these distributions. Although the uncertainty parameters can be
difficult to measure precisely, even rough estimates may be more realistic than
using deterministic transitions when uncertainty is high.

We define the workspace as a rectangle of width xmax and height ymax

and define obstacles as polygons in the plane. To detect obstacle collisions,
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(a) Minimizing path length
ps = 35%

(b) Maximizing ps using SMR
ps = 83%

Fig. 6.4. Explicitly considering motion uncertainty using an SMR planner improves
the probability of success

we use the zero-winding rule [99]. We define the distance between two states
s1 and s2 to be the weighted Euclidean distance between the poses plus an
indicator variable to ensure the turning directions match: distance(s1, s2) =√

(x1 − x2)2 + (y1 − y2)2 + α(θ1 − θ2)2 + M , where M → ∞ if b1 �= b2, and
M = 0 otherwise. For fast nearest-neighbor computation, we use the CGAL im-
plementation of kd-trees [195]. Since the distance function is non-Euclidean, we
use the formulation developed by Atramentov and LaValle to build the kd-tree
[23]. We define the goal T ∗ as all configuration states within a ball of radius tr

centered at a point t∗.

We implemented the SMR planner in C++ and tested the method on workspaces
of size xmax = ymax = 10 with polygonal obstacles as shown in shown in figure
6.1 and figure 6.4. We set the robot parameters r0 = 2.5 and δ0 = 0.5 with
motion uncertainty parameters σδ0 = 0.1, σδ1 = 0.2, σr0 = 0.5, and σr1 = 1.0.
We set parameters γ = 0.00001 and α = 2.0. We tested the motion planner on a
2.2 GHz AMD Opteron PC. Building the SMR required approximately 1 minute
for n = 50,000 states, executing a query required 6 seconds, and additional
queries for the same goal required less than 1 second of computation time for
both example problems.

We evaluate the plans generated by SMR with multiple randomized simu-
lations. Given the current state of the robot, we query the SMR to obtain an
optimal action u. We then execute this action and compute the expected next
state. We repeat until the robot reaches the goal or hits an obstacle, and we
illustrate the resulting expected path. Since the motion response of the robot
to actions is not deterministic, success of the procedure can rarely be guaran-
teed. To estimate ps, we run the simulation 100 times, sampling the next state
from the transition probability distribution rather than selecting the expected
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Fig. 6.5. Effect of the number of states n and number of motion samples m on the
probability of success ps

value, and we compute the number of goal acquisitions divided by the number
of obstacle collisions.

In figure 6.4(b), we illustrate the expected path using an SMR with m = 100
motion samples and n = 500,000 states. As in figure 6.1(b), the robot avoids
passing through a narrow passageway near the goal and instead takes a longer
route. The selection of the longer path is not due to insufficient states in the
SMR; there exist paths in the SMR that pass through the narrow gaps between
the obstacles. The plan resulting in a longer path is selected purely because it
maximizes ps.

The probability of success ps improves as the sampling density of the con-
figuration space and the motion uncertainty distribution increase, as shown in
figure 6.5. As n and m increase, ps(s) is more accurately approximated over the
configuration space, resulting in better action decisions. However, ps effectively
converges for n ≥ 100,000 and m ≥ 20, suggesting the inherent difficulty of the
motion planning problem. Furthermore, the expected path does not substan-
tially vary from the path shown in figure 6.4(b) for n ≥ 50,000 and m ≥ 5. The
number of states required by the SMR planner is far smaller than the 800,000
states required for a similar problem using a grid-based approach with bounded
error [7].

In figure 6.4(a), we computed the optimal shortest path assuming determin-
istic motion of the robot using a fine regular discrete grid with 816,080 states
for which the error due to discretization is small and bounded [7]. We estimate
ps using the same simulation methodology as for an SMR plan, except that we
compute the shortest path for each query. The expected shortest path passes
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(a) High uncertainty
ps = 78%

(b) Low uncertainty
ps = 87%

Fig. 6.6. The level of uncertainty affects SMR planning results. In cases of low un-
certainty (with 75% reduction in distribution standard deviations), the expected path
resembles a deterministic shortest path due to the small influence of uncertainty on ps

and the effect of the penalty term γ. In both these examples, the same n = 200,000
states were used in the roadmap.

(a) Successful procedure (b) Unsuccessful procedure

Fig. 6.7. Two simulated procedures of needle steering, one successful (a) and one
unsuccessful due to effects of uncertain motion (b), using an SMR with n = 50,000
states

through a narrow passage between obstacles and the resulting probability of
success is substantially lower compared to the SMR plan. The result was similar
for the example in figure 6.1; explicitly considering motion uncertainty improved
the probability of success.

To further illustrate the importance of explicitly considering uncertainty dur-
ing motion planning, we vary the standard deviation parameters σδ0 , σδ1 , σr0 ,
and σr1 . In figure 6.6, we compute a plan for a robot with each standard devia-
tion parameter set to a quarter of its default value. For this low uncertainty case,
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the uncertainty is not sufficient to justify avoiding the narrow passageway; the
penalty γ causes the plan to resemble the deterministic shortest plan in figure
6.4(a). Also, ps is substantially higher because of the lower uncertainty.

In figure 6.7, we execute the planner in the context of an image-guided pro-
cedure. We assume the needle tip position and orientation is extracted from a
medical image and then execute a query, simulate the needle motion by drawing
a sample from the motion uncertainty distribution, and repeat. The effect of
uncertainty can be seen as deflections in the path. In practice, clinicians could
monitor ps(s) for the current state s as the procedure progresses.

In manymotion planning applications, the response of the robot to commanded ac-
tions cannot be precisely predicted. We introduce the Stochastic Motion Roadmap
(SMR), a new motion planning framework that explicitly considers uncertainty in
robotmotion to maximize the probability that a robotwill avoid obstacle collisions
and successfully reach a goal. SMR planners combine the roadmap representation
of configuration space used in PRM with the theory ofMDP’s to explicitly consider
motion uncertainty at the planning stage.

To demonstrate SMR’s, we considered a nonholonomic mobile robot with
bang-bang control, a type of Dubins-car robot model that can be applied to
steering medical needles through soft tissue. Needle steering, like many other
medical procedures, is subject to substantial motion uncertainty and is therefore
ill-suited to shortest-path plans that may guide medical tools through narrow
passageways between critical tissues. Using randomized simulation, we demon-
strated that SMR’s generate motion plans with significantly higher probabilities
of success compared to traditional shortest-path approaches.

Because SMR is a framework, extensions to the underlying methods can be
applied to wide variety of problems. Several extensions that would expand the ap-
plicability of SMR include considering actions in a continuous range rather than
solely from a discrete set, investigating more sophisticated sampling methods for
generating configuration samples and for estimating transition probabilities, and
integrating the effects of sensing uncertainty. We hope that SMR can be applied
to new biomedical and industrial problems where uncertainty in motion should
be considered to maximize the probability of success.



High-dose-rate (HDR) brachytherapy is a type of radiation treatment for can-
cer. In this procedure, a physician guides radioactive sources through catheters
that have been inserted inside or near the cancerous tumors. The goal is to
provide a high radioactive dose to treat the tumor while not significantly dam-
aging surrounding healthy tissues. HDR brachytherapy has been successfully
used for treating many types of cancer, including prostate cancer [176], cervical
cancer [145], and breast cancer [107].

When treating cancer using radiation, physicians desire dose distributions that
conform to patient anatomy and satisfy dose prescriptions for the tumor target
and nearby critical organs [106]. Using medical images of patient anatomy and
estimates of tumor location, physicians prescribe radiation dose requirements for
cancerous tumors and surrounding tissues. A sample slice of a CT scan used for
this purpose for a prostate cancer patient case is shown in figure 7.1. The goal
is then to move the radioactive source inside the catheters to generate a dose
distribution that satisfies the clinical criteria as best as possible. This goal can
be formulated as an optimization-based motion planning problem: how should
we move the radioactive seed through the catheters such that the dose delivered
to the patient minimizes the deviation from the prescribed dose?

We draw on linear programming to develop a fast and exact method to opti-
mize radioactive source locations and dwell times for HDR brachytherapy can-
cer treatment. The method uses the objective and clinical criteria framework
of Inverse Planning by Simulated Annealing (IPSA), an approach developed
by Lessard and Pouliot in 2000 that has been used in the treatment of over a
thousand patients [144, 145, 146]. By formulating the HDR brachytherapy dose
optimization problem as a linear program, we enable the fast computation of
mathematically optimal solutions.

In this chapter, we present our linear programming formulation and apply the
method to a sample of 20 prostate cancer patient cases [13, 14]. We then quan-
titatively compare the mathematically optimal dwell times solutions for HDR
brachytherapy treatment obtained using the LP method to the solutions cur-
rently being obtained clinically using simulated annealing (SA), a probabilistic
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Fig. 7.1. Transverse slice of a CT scan with white contours of the prostate (1), urethra
(2), and rectum (3). The catheters are marked with black dots.

method that is not guaranteed to return an optimal solution in finite compu-
tation time. We show that the LP method resulted in significantly improved
objective function values compared to SA, but the dose distributions produced
by the dwell times solutions were clinically equivalent as measured by standard
dosimetric indices with a 2% threshold.

The specifics of the the HDR brachytherapy procedure depend on the cancer
site. For the case of the HDR brachytherapy for prostate cancer, the physician
commonly implants 14 to 18 catheters in the prostate through the perineum
under ultrasound guidance. The physician obtains an image (usually CT scan
or MRI) of the catheters and the surrounding tissue, which is used to specify
dose prescriptions for the patient anatomy. The catheters are then attached to
an HDR Remote Afterloader for treatment delivery. The afterloader, a type of
robot, moves a single radioactive source, typically 4.5 mm long and 0.9 mm in
diameter containing 192Ir, inside each catheter.

In clinical practice, the seed is generally not moved at a continuous speed
through the catheters but rather is temporarily stopped at predetermined dwell
positions. Between stops, the seed moves at high speed. The use of predeter-
mined dwell locations converts the problem from a motion planning problem
in continuous space to a discrete optimization problem. By adjusting the length
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of time (dwell time) that the source remains at any location within a catheter
(dwell position), it is possible to generate a wide variety of dose distributions.

To address the dose optimization problem, Lessard and Pouliot developed In-
verse Planning by Simulated Annealing (IPSA) [144, 145, 146]. IPSA has been
used in the treatment planning of over a thousand patients at UCSF since 2000
and has been independently evaluated by several American and European insti-
tutions [54, 64, 132, 150, 154, 197].

A complete description of IPSA and its clinical applications was recently pub-
lished [177]. Only the elements required for the present work are described here.
Using hand-segmented boundaries of the dominant intraprostatic lesions and
nearby organs [176], the software generates a discrete sample of dose calcula-
tion points inside and on the boundary of the tissue types. For dose calculation
points of each tissue type, IPSA permits the physician to prescribe unique dose
ranges as well as penalty costs that grow linearly when actual dose violates
the prescribed dose ranges. Setting dwell times to minimize dose penalty costs
rather than using rigid dose constraints guarantees that the method will find an
achievable solution. IPSA defines an objective function equal to a weighted sum
of penalty costs at dose calculation points given the dwell times. In the IPSA
framework, the mathematically optimal solution is the solution of dwell times
that globally minimizes the objective function. IPSA’s single objective function
assumes that the clinician has specified desirable dose penalty costs and gen-
erates a single dwell times solution, in contrast to multi-objective optimization
formulations that consider the weights as variables and generate a Pareto front
of solutions [134, 135].

The current version of IPSA software uses simulated annealing (SA) to com-
pute dwell times to minimize the objective function. The computation time for
a typical case is about 10 seconds on PC with a 3.6 GHz Intel Xeon processor
(Nucletron’s Masterplan Station). The computation time includes the automatic
selection of the active dwell positions, the generation of the dose calculation
points, the generation of a look-up dose-rate table, and 100,000 simulated an-
nealing iterations. SA applies a random search with the ability to escape local
minima and offers a statistical guarantee to converge asymptotically to the global
minimum [1, 89, 205]. The longer the SA algorithm searches for a solution, the
higher the probability that the optimal solution is found. Although this method
has worked well in clinical practice using 100,000 iterations, there previously was
no general quantitative information available regarding the closeness to mathe-
matical optimality of the solutions obtained using simulated annealing, a prob-
abilistic method that cannot guarantee the achievement of a global minimum
within a finite computation time.

Our primary contribution is to take the well-established dose optimization prob-
lem defined by IPSA and show that it can be exactly formulated as a linear
programming (LP) problem. Because the global minimum for an LP problem
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can be computed exactly and deterministically using pre-existing algorithms,
this formulation provides strong performance guarantees for cost minimization:
one can rapidly find the minimum cost solution for any patient case and clinical
criteria parameters. LP does not require setting parameters specific to the op-
timization method, such as stopping criteria or pseudo-temperatures for SA or
mutation probabilities for GA [134, 135, 221]. This allows clinicians to customize
dose prescriptions and penalty costs based on medical considerations without
concern about their effect on the convergence of the optimization method. Un-
like other deterministic algorithms such as local search [146], the LP method will
never be trapped at sub-optimal solutions of IPSA’s objective function. Since the
LP solution is guaranteed to globally minimize the objective function, it provides
a precise baseline for evaluating solutions currently being obtained clinically by
probabilistic methods such as SA.

Our second contribution is to quantitatively compare the dwell times solutions
for HDR treatment currently being obtained clinically using simulated annealing
(SA) to the mathematically optimal solutions obtained using LP. With a sample
of 20 prostate cancer patient cases, we show that the LP method resulted in
significantly improved objective function values compared to SA, but the dose
distributions produced by the dwell times solutions were clinically equivalent as
measured by standard dosimetric indices.

A linear programming problem is defined by an objective function and con-
straints that are linear functions of the variables. An LP problem can be solved
using the Simplex algorithm, a global deterministic optimization method that
considers the geometric polyhedron defined by the linear constraints and sys-
tematically moves along edges of the polyhedron to new feasible solutions (rep-
resented as vertices of the polyhedron) with successively better values of the
objective function until the optimum is reached [161]. In 1990, Renner et al. was
the first group to propose a linear programming formulation for HDR brachyther-
apy dose optimization. Their method minimizes the time the source is irradiating
tissue subject to a minimum dose constraint for a set of points in the target vol-
ume [179]. Kneschaurek et al. extended this method to permit the specification of
dose ranges using rigid constraints for both minimum and maximum dose[123].
Jozsef et al. also used rigid constraints on dose range and minimized the maxi-
mum deviation from a prescribed dose constant at dose calculation points [114].
However, a solution of dwell times that results in a dose distribution that satis-
fies the rigid constraints may not be physically realizable. By defining the dwell
times as variables and defining rigid linear constraints on dose, these previous
approaches formulated the LP problem in a manner that does not guarantee the
output of a solution since no feasible solution may exist. Finding a clinically re-
alizable solution in such cases necessitates arbitrarily removing some rigid dose
constraints, which requires substantial human intervention.

Our new linear programming (LP) formulation combines the advantages of
IPSA’s cost functions and extensive clinical validation with the benefits of de-
terministic global optimization for cost minimization. We show that the new LP
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method computes in finite time the mathematically optimal solution for dwell
times to generate the best achievable dose distribution given the clinical objec-
tives and the pre-optimization data generated by IPSA (active dwell positions,
dose calculation points, and dose rate look-up table). We applied both SA and
the new LP method to 20 prostate cancer patient cases and evaluated improve-
ment of results using objective function values and standard dosimetric indices.

The input to the method are 3-D images of the tissues surrounding the tumor.
We assume anatomical structures corresponding to b tissue types are segmented,
including the clinical target volume (CTV) and critical organs (CO). We also
assume the catheters are segmented. From the segmented anatomical structures,
we use IPSA to select the active dwell positions and generated a set of m dose
calculation points for which the optimization methods will calculate dose. The
dose calculation points are distributed based on the anatomy and the implant
in order to represent an accurate measurement of the clinical objectives [144].
For each contoured volume, IPSA uses two categories of dose calculation points:
“surface” and “volume.” This results in q = 2b dose calculation point types:
“surface” and “volume” for the b segmented tissue types. For each tissue type,
adjusting the dose to “surface” dose calculation points controls the dose coverage
and conformality while adjusting the dose to “volume” dose calculation points
controls the dose homogeneity [106].

Dwell positions are defined as points along catheters at which a source can be
placed for a non-zero interval of time. The n active dwell positions were selected
by IPSA. We define the dwell time of a source at dwell position j by tj . A dwell
time of 0 corresponds to skipping past a dwell position. The dwell times tj are
the variables that will be set to produce a dose distribution that satisfies the
clinical criteria as best as possible.

We calculate the dose-rate contribution dij of a dwell position j to a dose
calculation point i as specified in the AAPM TG-43 dosimetry protocol [162,
180]. The dose-rate contribution is the energy imparted by the radioactive source
into an absorbing material (the tissue) per unit time and has units cGy/sec,
where 1 gray (Gy) equals 1 joule per kilogram. The dose-rate contribution is a
function of rij , the distance between the dwell position j and the dose calculation
point i. It also depends on the radioactive material used in the source, which in
this case was 192Ir. Since small differences in the dose calculation may affect the
outcome of the optimization, we use the look-up dose-rate table calculated by
IPSA as an input for the LP method.

The dose contribution of a dwell position j to a dose calculation point i
is computed by multiplying the dose-rate contribution dij by the dwell time tj .
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The dose Di at a dose calculation point i, which has units of cGy, is calculated
by summing the dose contribution from each dwell position.

Di =
n∑

j=1

dijtj .

The dose Di has units of cGy, which describes the energy imparted by radiation
into a unit mass of tissue.

After contouring, the physician prescribes dose ranges for each anatomical struc-
ture. The dose ranges used in this study, listed in Table 7.1, are typical values
clinically used at the UCSF Comprehensive Cancer Center for treating prostate
cancer [106]. This includes the minimum dose Dmin

s and maximum dose Dmax
s

for each dose calculation point type s. For a dose calculation point i of type s,
the desired dose Dsi should satisfy Dmin

s ≤ Dsi ≤ Dmax
s .

Table 7.1. Clinical criteria parameters for dose penalty cost functions for a typical
prostate cancer case

s Dose calculation point type Dmin
s (cGy) Mmin

s Dmax
s (cGy) Mmax

s

1 Prostate (surface) 950 100 1425 100
2 Prostate (volume) 950 100 1425 30
3 Urethra (surface) 950 100 1140 30
4 Urethra (volume) 950 100 1140 30
5 Rectum (surface) 0 0 475 20
6 Rectum (volume) 0 0 475 20
7 Bladder (surface) 0 0 475 20
8 Bladder (volume) 0 0 475 20

In practice, it may not be physically possible to provide a radioactive dose in
the physician specified range for every dose calculation point in the 3-D volume.
Hence, the physician also specifies a “penalty” for any point for which the clinical
criteria is not satisfied. If the actual dose is below or above the prescribed range,
the penalty increases linearly at rates Mmin

s and Mmax
s , respectively. Adjust-

ment of Mmin
s and Mmax

s sets the relative importance of dose range satisfaction
between anatomical structures. The penalty weights Mmin

s and Mmax
s listed in

Table 7.1 are typical values used at the UCSF Comprehensive Cancer Center for
prostate cancer cases [106]. The penalty wsi at a dose calculation point i of type
s can be described in mathematical form using a cost function.

wsi =

⎧⎪⎨
⎪⎩

−Mmin
s (Dsi − Dmin

s ) if Dsi ≤ Dmin
s

Mmax
s (Dsi − Dmax

s ) if Dsi ≥ Dmax
s

0 if Dmin
s < Dsi < Dmax

s

(7.1)

Figure 7.2 plots the cost functions (penalty as a function of dose) for the prostate
cancer clinical criteria in Table 7.1.
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Fig. 7.2. The clinical criteria, plotted here for a typical prostate cancer case, are
specified using cost functions which define penalty as a function of dose for each dose
calculation point type

The objective is to satisfy the clinical criteria as best as possible by computing
dwell times that minimize the net dose penalty costs. Equation (7.1) from section
7.2.3 defines the cost function for an individual dose calculation point i of type
s based on the clinical criteria for that point. For each type s, we define the
penalty cost Es as the average penalty cost per point:

Es =
ms∑
i=1

wsi

ms
(7.2)
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where ms is the number of dose calculation points of type s. The objective
function E is effectively a weighted sum of the average cost for each tissue type
s, where the relative weights are determined by the costs Mmin

s and Mmax
s . The

global objective function is to minimize the sum of the penalty costs for the q
dose calculation point types:

E =
q∑

s=1

Es =
q∑

s=1

ms∑
i=1

wsi

ms
. (7.3)

This objective function is identical to the objective function used by IPSA [146].
The objective function E is not linear because it is composed of nonlinear

functions wsi. However, each function wsi is piece-wise linear. We can formulate
this problem as a linear program by creating artificial variables csi to represent
cost and defining the following constraints:

csi ≥ −Mmin
s (Dsi − Dmin

s )
csi ≥ Mmax

s (Dsi − Dmax
s )

csi ≥ 0.

(7.4)

Because wsi is a piece-wise linear and convex function, the constraints above
guarantee that csi ≥ wsi for all i, s. Furthermore, we redefine the global objective
function to

E =
q∑

s=1

ms∑
i=1

csi

ms
. (7.5)

For minimized E where the costs csi satisfy the inequalities (7.4), we are guar-
anteed csi = wsi for all s, i. We show this by proving the contrapositive (csi �= wsi

implies E not minimized), which is logically equivalent [198]. If csi �= wsi,
then csi > wsi for some s, i and there will exist a cost c′si such that csi >
c′si ≥ wsi. Since c′si will not violate any constraint in inequalities (7.4), it is fea-
sible. We define E′ exactly as E except using c′si instead of csi. Hence, E′ < E
and no cost variables used to compute E′ violate a constraint, which implies E
is not minimized. Hence, for minimized E, we are guaranteed csi = wsi.

Table 7.2. HDR dose optimization LP formulation constants, variables, and functions

Constants:
ms Number of dose calculation points of type s.
N Number of dwell positions.
dsij Dose-rate contribution from dwell position j to dose calculation point i

of type s.

Variables:
tj Source dwell time for dwell position j.
csi Penalty cost at dose calculation point i of type s.

Objective:
E Global cost function.
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We summarize constants, variables, and the objective function for the LP for-
mulation in Table 7.2. In equation (7.6), we explicitly define the linear program
in canonical form [161] by plugging into the constraints the dose distribution
Dsi at point i of type s due to dwell times tj .

Minimize E =
q∑

s=1

ms∑
i=1

ci

ms

Subject to:

csi +
n∑

j=1

Mmin
s dsijtj ≥ Mmin

s Dmin
s s = 1, . . . , q; i = 1, . . . , ms

csi −
n∑

j=1

Mmax
s dsijtj ≥ −Mmax

s Dmax
s s = 1, . . . , q; i = 1, . . . , ms

csi ≥ 0 s = 1, . . . , q; i = 1, . . . , ms

tj ≥ 0 j = 1, . . . , n

(7.6)
A (non-optimal) feasible solution for the LP formulation can be trivially found
by setting tj = 0 for all j and setting

csi = max{ −Mmin
s

⎛
⎝
⎛
⎝ n∑

j=1

dsijtj

⎞
⎠− Dmin

s

⎞
⎠ ,

0,

Mmax
s

⎛
⎝
⎛
⎝ n∑

j=1

dsijtj

⎞
⎠− Dmax

s

⎞
⎠}

for all i and s.
Because of the properties of the artificial variables csi shown above for mini-

mized E, the optimal solution obtained for the linear program in equation (7.6)
will be the same as the optimal solution to the nonlinear formulation based on
the objective function in equation (7.3) with the cost functions in equation (7.1).
We effectively transformed the nonlinear IPSA optimization problem in equation
(7.3) (for which deterministic optimization algorithms such as local search could
be trapped in sub-optimal solutions [146]) to a higher dimensional space with
artificial variables in which an equivalent linear formulation (7.6) can be min-
imized deterministically to find the global optimal solution using the Simplex
algorithm.

We implemented software using C++ to read patient specific parameters from
IPSA and output the linear program (7.6) in the file format of AMPL (A Math-
ematical Programming Language) [85]. We solved the linear program specified
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in each AMPL file using ILOG CPLEX 9.0, an advanced implementation of
the Simplex algorithm [161] designed for large industrial optimization prob-
lems [109]. Computation was performed on a 3.0 GHz Pentium IV computer
running the Linux operating system.

We applied the LP method retrospectively to 20 prostate cancer patient cases.
The prostate volumes ranged from 23 cc to 103 cc. For these patients, the physi-
cian implanted 14 to 18 catheters in the prostate with transrectal ultrasound
(TRUS) guidance while the patient was under epidural anesthesia. Then Flexi-
guide catheters (Best Industries, Inc., Flexi-needles, 283-25 (FL153-15NG)),
which are 1.98 mm diameter hollow plastic needles through which the radioactive
source moves, were inserted transperineally by following the tip of the catheter
from the apex of the prostate to the base of the prostate using ultrasound and
a stepper. A Foley catheter was inserted to help visualize the urethra.

After catheter implantation, a treatment planning pelvic CT scan was ob-
tained for each patient. Three-millimeter-thick CT slices were collected using
a spiral CT. The clinical target volume (CTV) and critical organs (CO) in-
cluding bladder, rectum, and urethra were contoured using the Nucletron Plato
Version 14.2.6 (Nucletron B.V., Veenendaal, The Netherlands). The CTV in-
cluded only the prostate and no margin was added. When segmenting the blad-
der and rectum, the outermost mucosa surface was contoured. The urethra was
defined by the outer surface of the Foley catheter. Only the urethral volume
within the CTV was contoured. The CO’s were contoured on all CT slices con-
taining the CTV and at least two additional slices above and below. Implanted
catheters were also segmented. A slice of a 3-D CT scan with contoured anatomi-
cal structures (prostate, urethra, rectum, and bladder) and catheters is shown in
figure 7.1.

For the 20 cases, the number of dose calculation points m ranged from 1781 to
3510. Since the selection of the active dwell positions and dose calculation points
affects the outcome of optimization [133], we use those generated by IPSA as
input for the LP method. For the prostate cases, the images contained q = 8
dose calculation point types: “surface” and “volume” for the four contoured
tissue types (prostate, urethra, bladder, and rectum). The clinical criteria used
in this study are shown in 7.1.

All patients were treated at UCSF Comprehensive Cancer Center using dosi-
metric plans generated by the current version of IPSA. We used imaging and
dosimetry records from those treatments to compare SA with LP.

We recorded the dwell times and the objective function value E for the solutions
obtained using SA and LP. We evaluated the resulting dose distributions using
standard dosimetric indices, including prostate V100 and V150 (the percentage
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of the prostate receiving over 100% and over 150% of the prescribed dose, re-
spectively). As dose inside the prostate should fall between 100% (Dmin) and
150% (Dmax) of prescribed dose, ideally V100 should be 100% and V150 should
be 0%. Similarly, we also evaluated V100 and V150 for the urethra. Dosimetric
indices for normal structures (non-cancerous tissues) include the rectum (V50
and V100) and the bladder (V50 and V100). Because normal structures should
be spared radioactive dose, these indices ideally should be close to 0%. We also
computed dosimetric indices in absolute dose, including the prostate D90 (the
maximal dose that covers 90% of prostate volume), urethra D10 (the maximal
dose that covers 10% of urethra volume), and rectum and bladder D2cc (the
maximal dose that covers 2 cc of the organ volume).

7.3.3 Results

ILOG CPLEX solved for the optimal solution to the linear programming for-
mulation in an average time of 9.00 seconds per case with a standard deviation
of 3.77 seconds for the 20 prostate cancer patient cases. The times ranged from
3.68 seconds to 14.63 seconds. The Simplex algorithm in ILOG CPLEX required
an average of 1653 iterations with a standard deviation of 341 iterations.

The average objective function value for the 20 prostate cancer patient cases
was 3.27 for the LP method compared to 3.33 for SA. The percent difference in
objective function value between the solution found using SA and the optimal
solution found using LP for each individual patient case is shown in figure 7.3.
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Fig. 7.3. The percent difference in objective function value between the optimal solu-
tion (found using the LP method) and the solution found by SA for 20 prostate cancer
patient cases. The difference is statistically significant (P = 1.54 × 10−7).
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Table 7.3. Improvement of LP solutions over SA solutions for 20 prostate cancer
patient cases calculated as the absolute difference in dosimetric index percent values.
Negative values indicate deterioration in the dosimetric index. The significance P of
the differences was computed using paired t-tests.

Dosimetric Maximum Minimum Mean 99% Significance
Index Improvement Improvement Improvement CI P

Prostate V100 0.95 -0.49 0.13 (-0.10, 0.37) 0.1644
Prostate V150 1.65 -1.63 0.51 (-0.02, 1.04) 0.0217
Urethra V100 1.52 -1.50 0.12 (-0.33, 0.57) 0.4858
Urethra V150 0.11 -0.05 0.00 (-0.01, 0.02) 0.7621
Rectum V50 0.50 -0.81 -0.17 (-0.36, 0.02) 0.0344
Rectum V100 0.03 0.00 0.01 (-0.00, 0.01) 0.0289
Bladder V50 0.75 -0.48 0.03 (-0.17, 0.23) 0.7042
Bladder V100 0.13 -0.02 0.02 (-0.00, 0.04) 0.0225
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Fig. 7.4. Mean dosimetric index results for the SA and LP methods for 20 prostate
cancer patient cases. Error bars indicate maximum and minimum values for the 20
patient cases.

Improvement varies from a minimum of 0.84% to a maximum of 4.59%. We
performed paired t-tests to determine the statistical significance (P < 0.01) of
the results and found that the improvement in objective function value using
the LP method compared to SA was statistically significant (P = 1.54 × 10−7).

Figure 7.4 displays the standard dosimetric indices for both the SA and LP
solutions. The bars indicate the mean indices as percents and the error bars
indicate the maximum and minimum indices obtained for the 20 prostate cancer
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Fig. 7.5. Dose-volume-histogram (DVH) plots for the prostate (a), urethra (b), rectum
(c), and bladder (d) for the patient case with greatest difference in dosimetric indices
between the LP and SA solutions. For dose less than Dmin for each tissue type, the
desired volume is 100%. For dose greater than Dmax, the desired volume 0%.

patient cases. Based on these dosimetric indices, the difference between the dose
distributions generated by SA and LP was small. None of the dosimetric indices
indicated a statistically significant (P < 0.01) difference between the dose dis-
tributions generated by SA and LP. The largest improvement for the prostate
D90, the rectum D2cc, and the bladder D2cc were lower than 1%. The largest
improvement for the urethra D10 was 2%. The urethra V150 was zero for both
LP and SA method for this case. Additional dosimetric indices are shown in
Table 7.3 where positive values indicate improvement and negative values indi-
cate deterioration. The deterioration of one dosimetric index is sometimes traded
for the improvement of other dosimetric indices and the improvement of the
global solution. The maximum improvement of LP over SA was a reduction of
1.65% for the prostate V150 index. However, for the same patient, LP resulted in
a reduction of 0.38% of the prostate V100. Similarly, the maximum deterioration
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(a) SA Solution (b) LP Solution

Fig. 7.6. Isodose curves for the SA (a) and LP (b) solutions for the patient case with
greatest difference in dosimetric indices. The prostate (1), urethra (2), and rectum (3)
are contoured in black. Catheters are shown as black dots. Isodose curves for 50%, 100%
(Dmin), 120%, and 150% (Dmax) of prostate minimum prescribed dose are plotted in
white.

of LP over SA was an increase of 1.63% for the prostate V150 index inducing
an improvement of 0.84% of the prostate V100. Even with these two extreme
cases, the LP and SA methods provide two different solutions that are difficult
to distinguish clinically. Figure 7.5 plots the dose-volume-histogram (DVH) for
each tissue type for the patient case with the greatest magnitude improvement
in a dosimetric index between the SA and LP solutions. Figure 7.6 displays a
CT scan of the same patient with overlaid isodose contours for both solutions.

The dosimetric index results are not significantly different from those of the
current version of IPSA, which was previously shown to be superior to the
commonly used method of geometric optimization followed by manual adjust-
ment [106, 132]. The small variances observed for the prostate and urethra in
figure 7.4 show the consistency of the treatment plan quality for both the SA
and LP methods. The larger variances for the prostate V150, the rectum, and
the bladder are due to differences between patients in anatomy, prostate volume,
and distances between the prostate and organs at risk.

The LP and SA methods are both based on IPSA’s objective function for
the HDR brachytherapy dwell time optimization problem. The only difference is
the optimization algorithm used, simulated annealing versus an equivalent linear
programming formulation that can be solved using the Simplex algorithm. As
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simulated annealing is a probabilistic method, it is only guaranteed to converge
to an optimal solution after an infinite amount of computation time. Standard
termination criteria, such as stopping the algorithm after a fixed number of
iterations, can result in sub-optimal solutions. During the development phase
of the current version of IPSA, a large number of cases were run using a very
large number of iterations (>1 million) and no significant improvements in the
dosimetric indices were found compared to the values found after 100,000 itera-
tions. However, the closeness to mathematical optimality of the solutions of the
current version of IPSA could not be guaranteed for every new clinical case.

Because the LP formulation of IPSA’s objective function can be solved deter-
ministically to find the solution that globally minimizes costs, the LP method
solution provides a precise baseline for evaluating solutions obtained by proba-
bilistic methods such as SA. The LP method computed a solution with a better
objective function value compared to SA for every patient case. The improvement
in objective function values of LP compared to SA was statistically significant.
However, the effect size of the objective function improvement was not sufficient
to result in statistically significant differences in standard dosimetric indices for
our sample of 20 prostates with volume ranging from 23 cc to 103 cc. We observe
that the DVH plots for the patient case with the largest difference in dosimetric
indices are similar for both methods (figure 7.5) while differences are observable
on the isodose curves (figure 7.6). The hot spots (prostate V150) have different
shapes and the prostate V120 curve is at a different location. This indicates that
the local dose distribution (isodose) is different while global dose delivered to the
organs (DVH) and critical dose delivered to the organs (dosimetric indices) are
equivalent. This quantitatively indicates that the dose distributions generated
by SA are clinically equivalent to the best achievable dose distributions based on
the current IPSA objective function with dose constraints and penalty weights
selected for prostate cancer cases.

HDR brachytherapy requires that clinicians solve a motion planning problem:
how should a radioactive source move through pre-implanted catheters to deliver
the best achievable dose to the patient? This problem can be formulated as an
optimization-based motion planning problem: set dwell times for the radioac-
tive source at dwell positions along the catheters such that the resulting dose
distribution minimizes the deviation from physician-specified dose prescriptions.
The primary contribution of this chapter is to take the well-established dwell
times optimization problem defined by Inverse Planning by Simulated Anneal-
ing (IPSA) developed at UCSF and exactly formulate it as a linear programming
(LP) problem. Because LP problems can be solved exactly and deterministically,
this formulation provides strong performance guarantees: one can rapidly find
the dwell times solution that globally minimizes IPSA’s objective function for
any patient case and clinical criteria parameters. For a sample of 20 prostate
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cancer patient cases, the new LP method optimized dwell times in less than 15
seconds per case on a standard PC.

We quantitatively compared the dwell times solutions currently being ob-
tained clinically using simulated annealing (SA), a probabilistic method, to
the mathematically optimal solutions obtained using the LP method. The LP
method resulted in significantly improved objective function values compared to
SA, but none of the dosimetric indices indicated a statistically significant dif-
ference. The results indicate that solutions generated by the current version of
IPSA are clinically equivalent to the mathematically optimal solutions.

IPSA’s objective function with dose constraints and penalty weights covers
all organs and all clinical objectives so they can be optimized simultaneously.
The physician can adjust the objectives for each optimization. However, if a
particular set of objectives generates the desired results, then the same set of
objectives can be used for optimization of clinically similar cases (i.e. prostate)
without further adjustments. This set of objectives, commonly called a class
solution, can be used as a starting point for every patient, significantly reducing
the time needed to plan individual patient treatments.

Although we focused on the application of our linear programming formula-
tion to prostate cancer patient cases, the mathematical formulation can also be
applied to other cancer types for which HDR brachytherapy is used by incorpo-
rating different clinical parameters. The method can also be extended to support
any piece-wise linear convex cost functions, not solely the 3-piece cost functions
presented above. Recent developments in magnetic resonance spectroscopy imag-
ing and image registration introduce a new clinical criterion, a dose boost to the
tumor volume within the prostate [8, 11, 122]. Although we do not explicitly
consider that dose calculation point type, the mathematical formulation we de-
fined can be extended to incorporate it by adding a tumor volume tissue type.
A potential advantage of the LP method for each of these extensions is that it
will use the well-established framework of IPSA and deterministically compute
mathematically optimal dwell time solutions for all patient cases.

Although we used linear programming purely as an optimization method in
this chapter, linear programming brings with it a vast literature of tools and
extensions. This includes well-established tools like sensitivity analysis [161], as
well as newer extensions like robust optimization that considers uncertainty in
input parameters [33]. In future work, we plan to explore these tools and exten-
sions to provide clinicians with patient-specific information about the trade-offs
between feasible treatment plans.



This monograph introduces a set of algorithms that computationally plan and
optimize image-guided medical procedures based on imaging data and physi-
cian-specified clinical criteria. These computational methods bridge the gap be-
tween medical imaging, where emerging advancements are enabling clinicians to
non-invasively examine anatomy and metabolic processes in detail, and medical
robotics, which is rapidly gaining acceptance in clinical practice.

The monograph focuses on three motion planning problems that arise in im-
age-guided medical procedures: motion planning for rigid needles, motion plan-
ning for steerable needles , and motion planning for radiation sources for cancer
treatment. Each of these motion planning problems introduces new computa-
tional challenges and is subject to unique planning and optimization constraints
imposed by the physician’s treatment requirements, the patient’s anatomy, and
the physical limitations of medical equipment and devices. We present plan-
ning and optimization algorithms for each of these general problems, and then
customize the solutions to the specific application of prostate brachytherapy.

Motion planning for image-guided medical procedures presents three major al-
gorithmic challenges: deformations, uncertainty, and optimality.

When surgical devices such as needles contact soft tissue, the soft tissue may
deform. Clinicians must compensate for these deformations to successfully guide
a surgical device to a clinical target. To facilitate this, we propose optimization-
based motion planning. The “cost” of a candidate plan is a function of the
resulting placement error, obstacle collisions, and path length. This function can
be evaluated by executing a physically-based simulation for a candidate plan.
We can compute the optimal plan by using the physically-based simulation as a
function in an optimization algorithm that minimizes cost.

R. Alterovitz and K. Goldberg: Motion Planning in Medicine, STAR 50, pp. 107–113, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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An essential component of this approach is a simulation of tissue deformations
that occur when surgical devices such as needles contact soft tissue. We identi-
fied and implemented appropriate models and algorithms to interactively esti-
mate soft tissue deformations due to forces applied during surgical and interven-
tional medical procedures. The software tools integrate methods from real-time
physically-based simulation in computer graphics and classical finite element
methods.

The motion response of surgical devices to commanded actions cannot be pre-
dicted with absolute certainty. Errors arise due to patient variability as well as
limitations inherent to the surgical device (for example, a “rigid” needle flexing
due to contact with tissue). Clinicians can take this uncertainty into account to
guide surgical devices to a clinical target with a high probability of success.

This monograph presents the Stochastic Motion Roadmap (SMR), a new gen-
eral motion planning framework that explicitly considers motion uncertainty
during planning by combining motion sampling with Markov Decision Processes
and Dynamic Programming. We applied the SMR framework to needle steering
and showed that accounting for needle motion uncertainty during planning can
significantly increase the probability of reaching targets without colliding with
obstacles.

Throughout this book, we focused on optimization-based motion planning. For
needle insertion and needle steering, we minimized costs due to obstacle colli-
sions, path length, and placement error. For needle steering with motion uncer-
tainty, we maximized the probability of success. For radiation source motion
planning, we minimized the deviation from physician-specified dose require-
ments. Optimization is a powerful framework for formulating and computing
motion plans that maximize the probability of successfully achieving clinical
goals while minimizing tissue damage and other negative side effects.

Advances in imaging and robotic surgical devices continue to introduce chal-
lenges and offer new opportunities for future research. In this section we outline
some of these, including approaches for extending these results from 2-D planes
to 3-D tissue volumes and new optimization-based planning approaches that can
explicitly consider uncertainty in tool/tissue interaction.

In chapters 2, 3, and 4, we focused on motion planning problems for image-
guided medical procedures that consider tissue deformations on a 2-D imaging
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plane. Due to constraints of many imaging modalities such as ultrasound imag-
ing, often only 2-D anatomical and tissue deformation information is available.
However, the improving performance and increasing availability of full 3-D imag-
ing modalities such as CT scans and MRI is introducing the ability to acquire
3-D patient-specific information pre- and intra-operatively. The 2-D simulations
described in this book can serve as a foundation on which to develop accurate
and efficient 3-D FEM simulations of tissue deformations.

The first challenge in simulating 3-D deformations is to define meshes of
appropriate complexity to represent heterogeneous tissue volumes. For many
image-guided procedures, the input for meshing will be a 3-D image volume
and segmentation information. The segmentation information generally includes
anatomical structures and regions of interest specified using polygonal outlines
on multiple slices of the 3-D volume. From these outlines, it is possible to gener-
ate surface meshes for each tissue type using methods such as Marching Cubes
[149]. Open source software tools such as NETGEN and TetGen [187, 193] can
then be used to automatically generate a 3-D tetrahedral mesh from the tissue
type surface meshes. Mesh decimation and smoothing may be required to reduce
the number of elements; the goal is to generate a mesh that is sufficiently sparse
to support fast FEM simulation while having sufficient density in key regions to
realistically model the tissue. We illustrate 3-D surface meshes for the prostate
and several surrounding tissues in figure 8.1.

The next challenge is representing forces exerted by the needle on the soft tis-
sue. In 2-D, we modified the mesh as the needle was being inserted, maintaining
mesh nodes along the needle shaft so that we could apply cutting and frictional
forces as FEM boundary conditions. In 3-D, there are three approaches that
should be considered: mesh modification, mesh refinement, and meshless meth-
ods. Although mesh modification worked well in our 2-D simulation in chapter
2, it is unclear whether modification of the 3-D mesh can be performed with-
out resulting in degenerate elements (elements that invert and have “negative”
area). With mesh refinement, new nodes are created in the vicinity of the needle
path, which has been successfully applied to needle insertion in with regular
meshes [165], but will require significant improvements in algorithmic computa-
tional complexity to be appropriate for real-time interactive simulation. Another
potentially promising approach to explore is meshless methods, a relatively new
approach based on clouds of linked nodes [148].

There is an inherent trade-off between the accuracy and speed of physically-
based simulation algorithms for medical procedures involving soft tissue defor-
mations. Methods like mass-spring systems introduced in chapter 2 achieve high
speed (as measured by the frame rate of the simulation) while finite element
methods used in chapters 3 and 4 achieve higher accuracy but are slower. This
trade-off becomes more pronounced when transitioning from 2-D simulations to
3-D simulations due to the added computational complexity of computing defor-
mations for 3-D models. As illustrated in figure 8.2, the appropriate method to
select depends on the application; while simulation for physician training is sub-
ject to strict real-time performance requirements, accuracy is more critical for
patient-specific procedure planning. The development of new physically-based
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Prostate

Hip bone

Rectum

Fig. 8.1. We illustrate 3-D meshes generated from segmented slices from an MRI scan.
The mesh on the top encodes the tissue geometry with high accuracy while the sparser
mesh on the bottom is more suitable for real-time physically-based simulation.

simulation algorithms can push the trade-off frontier outwards, enabling faster,
more accurate simulations of medical procedures.

For many types of soft tissue, the relationship between stress and strain is
highly nonlinear [86]. Fast and accurate simulation of 3-D deformable soft tis-
sues with nonlinear behavior has not yet been integrated into a practical surgery
simulator. An interesting avenue for research is to explore computationally effi-
cient methods to simulate realistic tissue mechanics and dynamics due to forces
applied by surgical instruments or devices. In chapter 2, we focused on linearly
elastic models of soft tissue. Future work should incorporate nonlinear tissue
behavior, including both nonlinear geometry and nonlinear soft tissue mater-
ial properties, to accurately simulate large deformations. To more realistically



Future Directions 111

Speed
(FPS)

Accuracy
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Fig. 8.2. There is an inherent trade-off between the accuracy and speed (as measured
in frames-per-second) of physically-based simulation algorithms for medical procedures
involving soft tissue deformations. While simulation for physician training is subject to
strict real-time performance requirements, accuracy is more critical for patient-specific
procedure planning. New algorithms can push the trade-off frontier outwards, enabling
faster, more accurate simulations.

model tissue dynamics, another important aspect is to explicitly model slip be-
tween tissue types. Rather than considering the mesh of heterogeneous tissue to
be connected, the simulation should allow each independently meshed tissue type
to deform and move independently and affect neighboring tissues through col-
lision and frictional forces. For computational efficiency, constructing oct-trees
and related data structures may accelerate collision detection of deformable ob-
jects [99].

Finally, it is crucial to validate these new simulation and planning algorithms
using data from physical experiments. Testbeds using artificial tissue phantoms
can provide detailed information about deformations, including the precise dis-
placements of points inside deforming tissues [119] and the forces that occur
during needle insertion [70]. The needle steering testbed being developed at
Johns Hopkins University, shown in figure 8.3, provides an ideal platform for
obtaining precise deformation and force measurements for steerable needles in
deforming tissue [208, 209]. Ultimately, simulations will also need to be validated
using medical images from animal studies or patient cases.

New treatment technologies also introduce new computational planning chal-
lenges. In this book, we discussed motion planning for steerable needles, a new
treatment approach which was submitted in 2006 for a United States Patent [211].
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Artificial tissue gel

Needle insertion robot

Fig. 8.3. The needle steering testbed at Johns Hopkins University [208, 209] includes
a robotic device that can insert and steer a needle in a semi-transparent artificial tissue
gel. Optical cameras mounted above the testbed (not shown) can precisely track the
motion of the needle and deformations of the artificial tissue gel, enabling physical
validation of computational simulations and motion planning algorithms for steerable
needles.

New extensions to needle steering are already being proposed that change the dy-
namic behavior of the needle, including a flattened and expanded bevel tip [76]. In
future work, we will explore motion planning for steerable needles in 3-D volumes,
where needles nominally follow helical trajectories.

Recently there has been a renaissance in research on thermal therapy for
cancer treatment, where directional beams of heat are used to kill cancer cells.
This type of therapy raises dose planning problems mathematically similar to
HDR brachytherapy dose optimization but can offer a new capability: directional
beams [66]. This treatment approach also introduces new challenges for planning
since the plan must be updated in real-time during treatment to override the
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natural tendency of living tissues to compensate for temperature changes via
blood flow.

Another open area for research is combining motion planning with uncer-
tainty and deformations. Because patient-specific tissue parameters generally
cannot be known exactly, we would like to develop probabilistic models to com-
pute and display uncertainty in tissue deformations. Developing new classes of
motion planners that explicitly consider motion uncertainty and deformations
and their combined effect on the planning objective will improve the effectiveness
of operating inside the highly variable environment of living tissue.

Although this monograph focuses on the specific application of prostate brachy-
therapy, we believe these motion planning algorithms can be applied to many
other medical procedures, including anesthesia injections, biopsies, and cryother-
apy. Needle steering could be performed in a variety of soft tissue types, such as
inside the liver or brain. Future work is needed to expand the applicability of
the methods presented in this monograph; this will require physician feedback
and adaptation for the nuances of each procedure and tissue type.

In medicine, improvements in imaging, combined with new devices to reach what
is revealed, can lead to improved treatment and patient health. Innovations in
medical imaging are constantly introducing new and improved imaging modali-
ties. Mega-voltageCone-beam Computed Tomography (MVCBCT) is a new imag-
ing modality that uses the same linac as Intensity Modulated Radiation Therapy
(IMRT), allowing physicians to image and treat the patient using the same device
without moving and re-aligning the patient [159, 175]. Optical coherence tomog-
raphy (OCT) is an optical in vivo imaging method with micron-scale resolution
that can be used to visualize the tiny intra-retinal and intra-corneal anatomy [73].
Molecular imaging techniques are enabling radiologists to visualize in vivo intra-
cellular biochemical pathways, introducing the potential to identify pathways in-
volved in disease before traditional symptoms appear [212]. Each new imaging
modality introduces a wealth of new digital information, which introduces new
computational challenges. In parallel, new robotic medical devices are being intro-
duced, from needle insertion robots [83, 169, 172, 209] to active cannulas capable of
following curved paths in soft tissue as well as open cavities [210] to magnetically
controlled micro-robots operating in the eye [78]. By bridging the gap between
medical imaging and robotic surgical devices with motion planning algorithms,
our aim is to assist physicians and thus improve patient care.
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Recent advances in medical imaging are enabling physicians to non-invasively
pinpoint the location of cancerous cells inside the body. But after obtaining di-
agnostic images in which the cancer is localized, the patient is generally treated
in a different facility, days, weeks, or months later. During this time, the pa-
tient may experience substantial changes, such as tumor size changes or weight
changes that affect the location of the cancer cells relative to markers on the pa-
tient’s skin. Furthermore, due to the clinical constraints of the diagnostic imaging
modality and treatment procedure, the patient’s position may be different be-
tween the diagnostic and and treatment phases. For radiation cancer treatment,
these patient changes due to time, movement, and imaging modality constraints
can lead to misalignment of the radiation dose, reducing the conformality of dose
to the tumor and resulting in suboptimal treatment [11, 29, 96].

In this appendix, we develop an image registration approach that explicitly
considers tissue deformations and variations in model parameters between pa-
tients to improve target localization across images acquired at different times.
The method, which is based on a biomechanical model of soft tissue deformation,
combines a nonlinear optimization algorithm with results from physically-based
soft tissue simulation described in chapter 2.

We apply the new method to register diagnostic MRSI prostate images with
radiation treatment planning images. To obtain a sufficient signal-to-noise ratio
for MRSI, a probe must be placed near the prostate, which results in substan-
tial deformations of the surrounding soft tissues, as shown in figure A.1. This
probe must be removed during treatment. Results for 10 prostate cancer patient
cases indicate that our method provides a statistically significant improvement
in target registration accuracy compared to past methods [11].

Registration is the process of finding a spatial transform that maps points from
one image to the corresponding points in another image of the same subject [220].
The input data to the image registration process is two images: the first image
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(a) Probe-in image
(for MRSI)

(b) Probe-out image
(for prostate radiation treatment)

Fig. A.1. MRSI data for the prostate is obtained with a balloon endorectal probe, as
shown in an axial MR image at the mid-gland of the prostate (a). Radiation treatment is
performed with the probe removed (b). The balloon endorectal probe causes substantial
deformation of the prostate.

is defined as the fixed image (or reference image) F and the second image is
defined as the moving image (or deforming image) M . The goal of registration
is to determine a spatial transform T that will align the moving image with the
fixed image.

Most image registration methods, including the method developed in this ap-
pendix, use a software framework consisting of a transform, a metric, and an
optimizer [220]. The transform T , parameterized by a set of transform para-
meters p, defines a mapping of points from the fixed image onto the moving
image. This transform can be used to generate a transformed moving image M ′

by applying the the transform x′ = T (x|p) for each pixel coordinate x ∈ F and
setting the pixel intensity at pixel coordinate x of M ′ to the pixel intensity at x′

of M . The metric S(p|F, M, T ) measures the similarity of the the transformed
moving image M ′ with the fixed image F . An optimizer searches over the space
of all feasible transform parameters p to maximize the quantitative registration
quality criterion defined by the metric S so M ′ matches F as best as possible.

In rigid registration, we assume that the spatial transform T that maps points
from the fixed image to the moving image is a rigid body transform: it includes
only translation and rotation, as shown in figure A.2. Given a point x in F , the
corresponding point in M is given by x′ = T (x|p). In 2-D, the parameter vector
p for a rigid transform T (p) has a dimension of 3 (x-axis translation, y-axis
translation, and rotation by θ degrees in the xy-plane). When registering rigid
3-D volumes, p has a dimension of 6 (3 translation degrees of freedom and 3
rotation degrees of freedom) [220].
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Fig. A.2. Fixed image F and a moving image M are enclosed in dashed lines. The
object of interest in F is translated and rotated in M . The transformation T defines a
rigid transformation that maps points x from F to x′ in M .

However, soft tissues may deform between image acquisitions due to causes such
as patient position changes, physiological changes such as bladder volume changes,
and imaging requirements such as probes. In these cases, the assumption of a rigid
transform is no longer valid. In non-rigid or deformable registration, we do not
assume that the transform T is limited to translation and rotation. Instead, T can
represent an arbitrary mapping from F to M , as shown in figure A.3.
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Fig. A.3. Fixed image F and a moving image M are enclosed in dashed lines. The
object of interest in F is translated, rotated, and deformed in M . The transformation
T defines a deformable transformation that maps points x from F to x′ in M .

In the most general case, a deformable transform T would define a mapping
individually for every pixel in F to its corresponding location in M . For 3-D
images with x, y, z pixel dimensions of dx, dy, dz , respectively, this would result
in a parameter set p of dimension 3dxdydz. Since medical images today are
typically of the dimensions 256 × 256 × 256, optimizing a parameter vector of
dimension 3 ·2563 = 50, 331, 648 variables with a possibly nonlinear, non-convex
objective metric S is computationally intractable.

To limit the dimension of p and make the deformable registration prob-
lem computationally tractable, numerous methods have been developed that
explicitly compute transformations for a subset of pixels in the image, and then
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intelligently interpolate the transformation for the remaining pixels in the image.
Methods based on this principle include B-splines [220], energy models [215],
viscous models [53], and elastic models [26]. Each of these methods implicitly
makes assumptions about the types of deformations that occur in the subject of
the image being registered.

In this appendix, we develop a deformable registration algorithm specifically
designed for medical images that explicitly considers soft tissue deformations
and variations in model parameters between patients. Rather than relying on
a mathematical abstraction such as B-splines that has no physical basis, our
approach is based on building a biomechanical model of the tissue in the image.
By explicitly modeling the underlying anatomical structures, our approach is
physically based.

The core of our image registration method is a biomechanical model based on
a finite element method. In 1982, Bajcsy and Broit performed pioneering work
in the application of elastic finite element models to deformable image regis-
tration [26]. Initial methods used a regular finite element grid and computed a
set of external forces that deform the grid to minimize a function defined by
an elastic energy and a similarity energy. This work was later extended to in-
clude a rigid registration pre-processing step and multi-resolution hierarchical
registration [220]. Advances in geometric algorithms and computation speed are
now enabling the generation of finite element meshes that conform to tissue type
boundaries and simulations that explicitly model sources of large soft tissue de-
formations in just seconds or minutes of computation time. Recent work has
modeled large deformations such as the compression of breast tissue for biop-
sies [25], as well as our work on prostate deformations due to forces exerted by
needles during insertion into soft tissue [18].

However, biomechanical models require knowledge of tissue material prop-
erties such as stiffness and compressibility. In past work on deformable image
registration that we are aware of, tissue material properties are either fixed as
constants for all patients [35, 60, 218] or implicitly held constant across an en-
tire image [215]. After building a biomechanical model, we include uncertain
parameters such as tissue material properties in p as variables. This allows our
optimizer to estimate these uncertain parameters and maximize deformable im-
age registration quality. When applied to prostate MRS/MR images, our new
method results in a significant improvement over previous methods, as discussed
in section A.3.5.

Our image registration method defines a transform T that maps points between a
fixed image and a moving image. Given a fixed image F and a moving image M ,
the goal is to compute parameters p∗ such that T (F |p∗) = M . In our method,
T is invertible. The inverse mapping T−1 transforms every point in the moving
image M to its coordinate in the fixed image F .
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At the core of our method to compute T is a finite element method that esti-
mates the deformation of soft tissues in the fixed image due to known external
forces or constraints. Treating the uncertain tissue stiffness properties and exter-
nal forces as unknown variables, we estimate their values using nonlinear local
optimization to maximize image registration quality.

A.2.1 Method Input

The input for our image registration method includes a fixed image F and moving
image M . To build a biomechanical model, the method also requires polygonal
segmentation boundaries of distinct tissue types in the images. This information
is typically already available in radiation oncology applications since segmenta-
tion is required for dose planning. Although segmentation is usually performed
by hand for reliability in clinical practice, methods are being developed to auto-
matically segment tissue types [220]. Each segmented region in the images must
be labeled with a corresponding tissue type, such as bone or muscle. We let m
be the number of distinct tissue types in the fixed image F .

Our method also optionally accepts as input known constraints on tissue
deformation between the images. These constraints are specified as a set H
of homologous point pairs. For each pair (x,x′) ∈ H , x is a point in the fixed
image and x′ is the coordinate of the homologous point in the moving image.
For images in which no bones are present, we require |H | ≥ 1 to ensure that the
linear system of equations defined by the finite element method in section A.2.2
is solvable.

Our method also optionally accepts as input a set L of points or polygonal
tissue type boundaries that may be subject to external forces of unknown mag-
nitudes. For example, points on the segmented boundary of the bladder should
be listed since the bladder may expand or contract between image acquisitions.

As discussed in chapter 2, we approximate soft tissues as nearly incompressible
(Poisson’s ratio of 0.49), linearly elastic, and isotropic. Although tissue stiffness
properties and external forces will be modified during the optimization method,
initial default values must be set in the transform parameter vector p. Based on
tissue stiffness measurements obtained using ultrasound elastography [126], we
temporarily assign a Young’s modulus of 30 kPa to all soft tissues and assume
bones are rigid. We assume initial external forces all have zero magnitude.

We automatically generate a finite element mesh that conforms to the seg-
mented tissue boundaries for the fixed image F . For 2-D, we generate triangular
elements using the constrained Delaunay triangulation software program Trian-
gle [191]. For 3-D, we use the tetrahedral mesh generation software TetGen [193].
elements in the mesh are assigned default stiffness properties. Mesh nodes defin-
ing elements inside bones are constrained to be fixed. We let l be the number of
nodes along boundaries included in set L.
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We use the finite element method (FEM) to estimate tissue deformations. The
homologous points (x,x′) ∈ H specify displacement constraints for the finite el-
ement method, where the node at point x is displaced by x′−x and constrained
as fixed. The deformations of the surrounding soft tissues are then computed
using FEM. As described in chapter 2, the FEM problem for a given N -D fixed
image mesh with n nodes is defined by a system Ku = f containing Nn linear
equations where K is the global stiffness matrix, f is the external force vector,
and u is the nodal displacement vector. For each fixed node, we remove its N
corresponding degrees of freedom from the system. We solve the linear system of
equations numerically using the Gauss-Seidel method to compute nodal displace-
ments u for non-fixed nodes. By using linear interpolation within each element
of the mesh, the nodal displacement vector u defines a complete invertible map-
ping function T between the fixed image and the moving image. The mapping
T is applied to every pixel in the fixed image F to obtain the deformed fixed
image T (F |p).

We use a quality metric S to quantify how closely the deformed fixed image
T (F |p) matches the moving image M . Any image similarity metric S can be
used, including image intensity metrics such as mutual information, homologous
point distance measures, and segmented region overlap metrics [220]. However,
the computation time and convergence properties of the optimization algorithm
defined in section A.2.4 depend on the quality metric.

Our image registration method treats tissue stiffness properties and external
forces at user-specified nodes as uncertain parameters. The stiffness for soft
tissue is constrained between Ymin and Ymax, where we select Ymin = 1 kPa and
Ymax = 600 kPa as limits based on tissue elastography results [126]. External
force magnitudes are unbounded. We define the optimization objective function
for maximization as:

Q = S − αE

where S is the selected quality metric, α is a scaling parameter, and E is the
percent of strain energy due to external forces. To compute E, the optimization
algorithm computes tissue deformations twice, first without external forces and
then with external forces added. For each case, it computes the total strain by
summing the strain of each element in the mesh, which is quickly computed
by multiplication of element stiffness matrices and vectors of node displace-
ments [227]. We subtract αE in the objective function to prioritize optimization
of parameters of the physically-based model (tissue stiffness) relative to exter-
nal forces. Appropriately setting α, which is problem specific, produces visually
smoother image mappings by preventing unrealistic large magnitude external
forces.
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We apply the Steepest Descent method with Armijo’s Rule for line search [31]
to maximize the nonlinear objective function Q. The variables, which include m
tissue stiffness properties and l external force degrees of freedom, are defined in a
vector p of dimension m+ l. The quality metric Q is a function Q(p). We numeri-
cally compute derivatives for the gradient ∇Q(p) using finite differences with suf-
ficiently high differences to avoid numerical difficulties. At iteration i of the Steep-
est Descent optimization method, Armijo’s Rule selects the next candidate point
pi+1 = pi + 2tλ∇Q(pi) for predefined step size λ by sequentially incrementing
integer t starting at t = 0 to solve for the maximum t that improves Q(pi+1). Then
the gradient ∇Q(pi+1) is computed and the Steepest Descent algorithm repeats
until iteration j where ‖∇Q(pj)‖ < ε for ε = 0.001. Because the objective func-
tion Q is not guaranteed to be convex, this method may not find a global optimal
solution [31]. We label the local optimal solution found as p∗.

In 2-D, rendering the deformed fixed image can be performed quickly using
texture-mapping, as described in chapter 2. We take advantage of the fact that
the interpolation function inside triangular elements for linearly elastic finite ele-
ment methods is linear, as described in chapter 2. Rather than explicitly applying
the mapping T to every pixel in the fixed image F , we instead only compute
the transformation T (xi|p) for nodes xi in the mesh, and use hardware accel-
erated texture-mapping to linearly interpolate pixel transformations for pixels
inside the mesh elements. We are currently developing computationally efficient
visualization methods for 3-D deformable image registration results.

We apply our deformable registration method to prostate cancer treatment. In
1996, Kurhanewicz et al. showed that magnetic resonance spectroscopic imaging
(MRSI), a type of functional imaging that measures concentration of metabolic
compounds, can be used to noninvasively diagnose and locate cancerous tumors
in the prostate [129, 130, 131, 185]. By measuring choline, polyamine, and citrate
levels which change with the evolution and progression of cancer, MRSI can be
used to identify the location and extent of dominant intraprostatic lesions (DIL’s)
in the prostate [128]. Combining magnetic resonance imaging (MRI) with MRSI
allows identification of a tumor with specificity of up to 91% [185].

Knowledge of cancer location can assist physicians during radiation treatment
planning. Numerous studies indicate that improving the conformality of radia-
tion dose to the cancer location significantly improves cancer treatment and
reduces negative treatment side effects [110, 127, 203]. Physicians can escalate
the radiation dose to the cancer location using treatment methods such as HDR
brachytherapy [176], permanent seed brachytherapy [222], and external beam
radiation treatment [174, 217].
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(a) Probe-in image,
Balloon probe case

(b) Probe-out image,
Balloon probe case

(c) Probe-in image,
Rigid probe case

(d) Probe-out image,
Rigid probe case

Fig. A.4. MRSI data for the prostate is obtained with a balloon endorectal probe
inserted and inflated (a) or a rigid endorectal probe (c) as shown in the axial MR
images at the mid-gland of the prostate. Radiation treatment is performed with the
probe removed (b), (d).

To obtain improved signal-to-noise ratio (SNR) and better spatial resolution
MRI and MRSI, an endorectal probe integrated with a pelvic phased array (PPA)
coil is commonly used. The endorectal probe is critical for the acquisition of high
spatial resolution (≈0.3 cc) MRSI data of the prostate due to the approximate
10-fold increase in SNR relative to external phased array coils [98, 104, 108, 129,
130, 185]. However, the probe may cause considerable nonlinear translation and
distortion of the prostate [122], as shown in figure A.4. The probe is generally re-
moved during imaging for radiation treatment planning and therapy. To effectively
utilize the MRSI data, clinicians must register the probe-in image to a probe-out
image.

To register probe-in images obtained during a combined MRI/MRSI staging
examination to probe-out images, we apply our deformable registration method
described in section A.2. We use a 2-D finite element model and estimate the
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(a)
Input:

MRSI grid on probe-in image

(b)
Output:

Warped MRSI grid on probe-out image

Fig. A.5. Spectroscopy data is obtained for voxels inside the MRSI grid overlaid on
an the axial probe-in MR image (a). Our image registration method warps the MRSI
grid to the probe-out image for use during treatment planning (b).

deformation of the prostate and surrounding tissues in the plane of the image
due to the insertion of an endorectal probe. A 2-D model is sufficient for our
application since the out-of-plane deformations are smaller than the thickness of
imaging slices [59, 122]. However, patient-specific model parameters required as
input for the biomechanical model are not known with certainty, including tis-
sue stiffness properties for the prostate and surrounding soft tissues. Additional
uncertain parameters include forces due to patient position changes, bladder vol-
ume changes, and other factors that differ between the probe-out and probe-in
images but are not explicitly included in our linear elasticity soft tissue deforma-
tion model. As described in section A.2, we use a local nonlinear optimization
algorithm to estimate uncertain patient-specific tissue stiffness properties and
external forces to maximize image registration quality. Compensating for com-
puted tissue deformations results in a nonlinear warping of the MRSI grid, as
shown in figure A.5.

Past work on image registration of the prostate includes rigid transforma-
tions [80, 122], spline transformations [79, 120], energy models [215], and finite
element models [35, 60, 218] for registering dose calculation CT images [218],
treatment and interventional MR images [35, 79, 80], probe-in/probe-out MR
images [60], and MR images with endorectal balloons at different levels of infla-
tion [215]. Fei et al. ignore tissue deformations that occur between pre-operative
and interventional MR images and maximize the mutual information (MI) or
correlation coefficient (CC) of the image intensity histograms using rigid body
translation and rotation of the prostate [80]. Kim et al. rigidly align probe-in and
probe-out images by first rotating the images into the same plane, then doing
a rigid 2-D translation in plane [122]. For a sample probe-in/probe-out case in
which prostate deformation is minimal, this method achieves less than 2 mm
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registration error. Fei et al. and Kessler et al. use spline methods, which non-
linearly warp an image using a non-physically based model with a large number
of degrees of freedom [79, 215]. They use multiresolution approaches to increase
avoidance of local maxima of the CC and MI metrics. Wu et al. develop a hy-
brid method for registering MR images with endorectal balloons at different
levels of inflation by maximizing an objective function containing a weighted
sum of MI and regularization energy from a non-finite element physically based
model [215]. A key advantage of these methods based on MI and CC quality met-
rics is that tissue segmentation is not required, but these methods have large
numbers of degrees of freedom, are prone to local maxima, require long com-
putation times (18-22 minutes for Wu et al.), and have potentially larger error
due to soft boundaries of deformable tissues [80, 215]. MI and CC metrics can-
not be applied in isolation to our problem of registering a probe-in image to a
probe-out image because, without segmentation, the probe-out image contains
no information on the probe insertion location. Physically based biomechanical
models, such as the finite element method, have potential to address some of
these limitations. Finite element methods require image segmentation to define
tissue type boundaries (to specify tissue-specific material properties) and mesh
generation. Yan et al. performed pioneering work in deformable image regis-
tration based on the finite element method to calculate fractionated dose in a
deforming organ [218]. They segmented a single tissue type, the rectal wall, and
applied the method to inter-treatment motion using fiducials to set boundary
conditions. Bharatha et al. and Crouch et al. apply linear elasticity finite element
modeling to the prostate using a tetrahedral mesh with distinct central gland
and peripheral zone regions [35] and a hexahedral mesh using a medially-based
solid representation with uniform tissue properties inside the prostate [60]. Image
registration based on biomechanical models, including finite element and energy
methods, require tissue material properties as input. In past work we are aware
of, material properties are either fixed as constants for all patients [35, 60, 218]
or implicitly held constant across an entire image [215]. Our image registration
method uses nonlinear optimization to set patient-specific values for uncertain
parameters in the biomechanical model including separate tissue stiffness values
for each segmented tissue type [8, 9, 11, 12]. We also explicitly warp MRSI grids
to compensate for tissue deformations.

We applied our image registration method retrospectively to 10 patient cases.
The patients were recruited from January to June, 2003, at the Magnetic Reso-
nance Science Center (MRSC), University of California, San Francisco. A balloon
probe (USA Instruments, Aurora, OH) with 100 cc of air injected was used for
5 patients while a rigid probe (MedRad, Pittsburgh, PA) was used for the re-
maining 5 patients. Once inflated, the balloon probe had a circular cross-section
with a 48 mm diameter. The rigid probe was a half ellipse, in cross-section, with
the anterior surface flat. Its right - left extent was 29 mm and its anterior -
posterior extent was 16.5 mm. Combined MRI/MRSI was obtained using the
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balloon or rigid probe in combination with an external phased array of coils on
a 1.5 Tesla GE system (Signa, GE Medical Systems, Milwaukee, WI). For rigid
probe cases, the USA torso phased array was used, while the GE pelvic phased
array was used for the balloon probe cases. These two probes were selected be-
cause the MedRad coil is the only MR probe currently available commercially
and the USA Instruments probe is commercially manufactured and will soon be
a commercially available alternative probe.

The probe-in images used in this study were acquired during a “PROSE”
(PROstate Spectroscopy and imaging Examination) MRI/MRSI examination
(GE Medical Systems, Milwaukee, WI). The details of the MR imaging method
used have been discussed in previous work [90, 122, 130, 176]. Spectroscopy data
was obtained for 7×7×7 mm voxels (≈0.3 cc). Thin-section high spatial resolu-
tion axial T2 weighted fast spin-echo images of the prostate and seminal vesicles
were obtained with a slice thickness of 3 mm, an inter-slice gap of 0 mm, and
a field of view (FOV) of 14 cm. At the end of the “PROSE” MRI/MRSI exam-
ination, the endorectal probe was removed with the patient remaining on the
imaging table. Additional sagittal and axial fast spin echo T2 weighted images
were acquired without the endorectal probe using the phased array coil alone for
signal reception. As with the probe-in case, patients were scanned in the supine
position. All image acquisition parameters for the probe-out images were the
same as for the probe-in images except for increasing the field-of-view (FOV)
from 14 cm to 20 cm to partially compensate for the reduction in SNR obtained
without the use of an endorectal probe.

We apply the deformable registration method described in section A.2 to the
prostate images described in section A.3.1 We define the fixed image F as the
probe-out image and define the moving image M as the probe-in image. The
transform T attempts to mimic the deformation of the prostate and surrounding
tissue due to endorectal probe insertion. Given a probe-out image F and a probe-
in image M , the goal is to compute parameters p such that T (F |p) = M . The
inverse mapping T−1, which can be used during treatment planning, transforms
every point in the MRSI grid of the probe-in image M to its coordinate in the
probe-out image F .

From the probe-in and probe-out MR image volumes, we selected a single
probe-in image slice M at the mid-gland of the prostate for each patient. We
then manually selected a corresponding probe-out image slice F that is at the
same level as the probe-in image for the patient. As a pre-processing step, we
rigidly register the images by aligning points on non-deforming tissues, such as
points in bones, using a homologous point method to translate the images [102].

We manually segmented the selected images using a standard image segmen-
tation method by drawing polygonal outlines on a computer screen to define
the boundaries of tissue types. For cases in which the tissue type (such as the
rectum) was close to circular, we specified a circle and radius that the software
automatically converted to a polygonal approximation. The image registration
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Fig. A.6. Conformal Delaunay triangular mesh (black triangles) for a probe-out image
with central gland and peripheral zone of the prostate, probe entry location (rectum),
and bones segmented (in white)

method requires segmentation of the probe and prostate in the probe-in image
and the probe entry location (rectum) and prostate in the probe-out image. For
improved accuracy in the biomechanical simulation, we also segmented bones
and separately segmented the central gland (CG) and peripheral zone (PZ) of
the prostate in the probe-out image. Additional segmentation of the probe-in im-
age will not improve results since the biomechanical model is applied to deform
the probe-out image.

For this application, the known constraints on deformation are the displace-
ments caused by the endorectal probe. As shown in figure A.7, our model ex-
pands the rectum lining in the probe-out image to match the probe outline in
the probe-in image. We project points along the probe outline in F along the
ray based at the rectum center and constrain them to the intersection with the
probe outline in M . This defines the set of homologous points H . We define set
L as the prostate gland boundary.

We automatically generate a finite element mesh composed of n = 500 nodes
and between 800 and 1,000 triangular elements using Triangle [191]. Image seg-
mentation and the mesh generated for the probe-out image of a sample case are
shown in figure A.6.

Based on tissue stiffness measurements obtained using ultrasound elastogra-
phy in previous work [126], we assign a Young’s modulus of 60 kPa to the central
gland of the prostate and 30 kPa to all surrounding tissues for all patient images
during initialization of the method.
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(a)
Probe-out image A

(b)
Probe-in image B

(c)
Deformed probe-out image

F (A)

Fig. A.7. Probe-out image A with segmented prostate gland (outlined in white, mid-
dle) and rectum (outlined in white, bottom) (a) and the corresponding probe-in image
B with prostate and probe segmented (b). The method computes image F (A) (c) which
displaces mesh nodes along the rectum in the probe-out image to the probe outline
in the probe-in image and estimates the resulting soft tissue deformations. The image
registration quality (DSC value) between (b) and (c) is 97.8%.

The number of distinctly segmented soft tissue types in F was m = 3. After
meshing, the number of nodes in set L is typically between 20 and 40. This
results in a parameter vector p of size between 43 and 83.

We define the metric S using the Dice Similarity Coefficient (DSC), a metric
that measures overlap of polygonal regions. For this application, we measure the
overlap between the prostate area in the probe-in image M and the prostate area
in the deformed probe-out image T (F |p) using the Dice Similarity Coefficient
(DSC). Superimposing an outlined area from two images, the DSC is defined as:

D =
2a

2a + b + c

where a is the number of picture elements (pixels) shared by both areas, b is the
number of pixels unique to the first area, and c is the number of pixels unique
to the second area [35, 65]. The DSC is a scalar between 0 and 1 with higher
values representing better quality registration.

The 3-D MRSI data is collected from a volume and individual spectra are gener-
ally reconstructed for 7× 7× 7 mm voxels within a grid overlaid on this volume.
To help register spectroscopic data to the probe-out image, we transform each
intersection point in the regular MRSI grid from the probe-in image plane to
the probe-out image using the inverse of mapping T . The warped MRSI grid is
the output of the algorithm: it registers the probe-in MRSI data to a probe-out
image for use during treatment planning.
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A.3.4 Method Evaluation and Parameter Selection

We evaluate the image registration method using two metrics: DSC and point
error. We compute the DSC using the prostate outline in the probe-in image M
and the prostate outline in the deformed probe-out image T (F |p∗). We compare
our deformable image registration method to a rigid registration method where
the center of mass of the prostate total gland is translated in the probe-out
image by the distance between its center of mass in the probe-out and probe-in
images [35].

As a second measure of image registration quality, we evaluate displacement
errors of homologous points in the interior of the prostate on the probe-in images
M and the deformed probe-out images T (F |p∗). As in past work by Bharatha
et al. [35], we select points on the probe-in images at the posterior border of
the central gland near the midline of the prostate. We then select homologous
points corresponding to the same tissue location on the probe-out images using
patient-specific local image pixel intensity variations as references. Our image
registration method maps the point on the probe-out image F to the deformed
probe-out image T (F |p∗) so we can directly measure the point error: the distance
between the homologous point in M and T (F |p∗). We compare this error to the
distance between the homologous points in the given probe-in image M and
probe-out image F to quantify the registration improvement resulting from the
method.

Two parameters of the method that influence image registration quality and
must be set are n, the number of nodes in the mesh, and α, the scaling parameter
in the objective function Q that weighs direct maximization of the DSC relative
to the percent of strain energy E due to external forces. For a subset of the
patient data (3 balloon probe cases and 3 rigid probe cases), we evaluated image
registration quality for n = 100, 500, and 1, 000 and for α = 0.0, 0.005, and 0.01.

A.3.5 Results

The mean DSC of our method was 97.5% with a standard deviation of 0.7% for
the 5 balloon probe cases. For the 5 rigid probe cases, the mean DSC was 98.1%
with a standard deviation of 0.4%. As shown for a patient case in figure A.7,
the deformed probe-out image closely matches the probe-in image. In Table A.1,
we compare our image registration method to rigid registration based on center-
of-mass translation for the prostate total gland. We performed paired t-tests to
determine the statistical significance (P < 0.05) of the results and found that
the improvement in DSC using our method was statistically significant for both
the balloon probe (P = 0.035) and the rigid probe (P = 0.013) cases.

The results of our method for the point error metric are shown in Table A.2.
Our method reduces displacement error between the homologous points in the
probe-in and probe-out images by a mean of 74.8% to a mean error of 1.95 mm
for the balloon probe cases. For the rigid probe cases, the reduction was by a
mean of 70.0% to a mean error of 0.97 mm. We performed paired t-tests and
found that the reduction in error was statistically significant for both the balloon
probe (P = 0.0045) and the rigid probe (P = 0.0099) cases.
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Table A.1. DSC mean and standard deviation (in parentheses) for image registration
quality

Rigid Translation Our Method

5 balloon probe cases 86.6% (10.4%) 97.5% (0.7%)
5 rigid probe cases 86.6% (10.4%) 97.5% (0.7%)

Table A.2. Point displacement error means and standard deviations (in parenthe-
ses) for sample homologous points on the boundary of the prostate central gland and
peripheral zone near the midline

Mean point error
for probe-in /

probe-out images
(mm)

Mean point error
after our method

(mm)

Mean reduction in
error
(%)

5 balloon probe cases 9.22 (3.22) 1.95 (0.22) 74.8% (15.1%)
5 rigid probe cases 3.93 (1.59) 0.97 (0.51) 70.0% (27.2%)
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Fig. A.8. Sensitivity of mean image registration quality (DSC and point errors) to
the optimization parameter α, with error bars for standard deviations

For these results, we set parameter α in the formula for objective function Q
in section A.2.4 to 0.005. Decreasing α allows for greater external forces while
increasing α penalizes external forces in favor of tissue stiffness during optimiza-
tion of uncertain parameters. The trade-off effect of α on DSC and point error
is shown in figure A.8(a) and (b). Increasing α to 0.01 or decreasing α to 0.0
results in lower mean DSC and higher mean point errors.
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Fig. A.9. Sensitivity of mean DSC image registration quality (a) and computation time
(b) to the number of nodes n in the mesh, with error bars for standard deviations

We also performed sensitivity analysis on n, the number of nodes in the finite
element mesh. Increasing n improves average image registration quality measured
by DSC, as shown in figure A.9(a). However, this improvement comes at a large
computation cost, as shown in figure A.9(b), with 1,000 node meshes requiring over
6 minutes of computation time on average. Results in this study use meshes with
n = 500 nodes, which requires less than 1 minute of computation time per image
slice while maintaining good image registration quality; DSC results with n = 500
are not significantly different from DSC results with n = 1, 000 (P = 0.324).

We show the output of our image registration method for a sample balloon
probe patient in figure A.10 and for a rigid probe patient in figure A.11. The
resulting warping of the MRSI grid is clearly nonlinear in both cases. The per-
centage of strain energy due to external forces E averaged 8.6% for balloon probe
cases and 10.0% for rigid probe cases. The low value for E demonstrates that, for
both types of probes, most of the strain energy in the finite element simulation
was due directly to the displacement of tissues caused by the probe rather than
other uncertain external forces. Mean computation time for the image registra-
tion algorithm was comparable for both balloon and rigid probe patients on a
1.6 GHz Pentium-M laptop PC: 39.8 seconds with a standard deviation of 20.8
seconds for balloon probe cases and 34.2 seconds with a standard deviation of
11.8 seconds for rigid probe cases.

Compensating for tissue deformations using biomechanical simulation with non-
linear parameter estimation results in better image registration than center-of-
mass translation for all of the 10 cases tested. The DSC increased by an average
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(a)
Input:

Given probe-in image B
with MRSI grid

(b)
Intermediate step:

Deformed probe-out image
F (A) with MRSI grid

(c)
Output:

Given probe-out image A
with warped MRSI grid

Fig. A.10. Sample balloon probe case. A comparison of input and output images shows
the nonlinear warping of the MRSI grid. The probe-in image (a) closely matches the
computed deformed probe-out image (b) outside the endorectal probe. The MRSI grid
is warped to the undeformed probe-out image (c) for use during treatment planning.

(a)
Input:

Given probe-in image B
with MRSI grid

(b)
Intermediate step:

Deformed probe-out image
F (A) with MRSI grid

(c)
Output:

Given probe-out image A
with warped MRSI grid

Fig. A.11. Sample rigid probe case

7.5% across all patients when using our method. These improvements come at
a cost of computation time: our method required on average 37 seconds for
each patient image slice in addition to manual image segmentation time for the
probe-in and probe-out images.

Since our method only explicitly considers deformation in a 2-D (x, y) plane,
it will not address out-of-plane deformations along the z-axis in a 3-D volume.
However, past work has shown that z-axis deformations are small relative to
the resolution of the volume images. Kim et al. found that the difference in the
superior/inferior length of the prostate between probe-in and probe-out images
was always less than the z-axis thickness of an axial MR image (3 mm) for 25
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patient cases (15 rigid probe and 10 balloon probe) [122]. Crouch et al. measured
seed displacements for 25 implanted seeds between balloon probe-in and probe-
out images and found that the z-axis displacement averaged 2.67 mm, less than
the 3 mm MR image slice thickness [59].

Our image registration method is sensitive to the segmentation of the image
and the optimization algorithm may incorrectly add external forces or modify
tissue stiffness properties if the segmentation is incorrect. Bhathara et al. quan-
tified the error introduced by human segmentation: a human subject segmenting
five 1.5 T MRI scans five times in random order achieved a mean DSC for seg-
mentation reproducibility of 95% with a 95% confidence interval of (92%, 97%)
while a second subject achieved a mean of 96% with confidence interval (95%,
97%) [35].

Using our method for image registration resulted in a greater improvement in
mean DSC for balloon probe images (10.9%) than for rigid probe images (4.0%)
when compared to registration by center-of-mass translation. Although balloon
probes result in better quality images, these probes produce much larger defor-
mations [122]. Kim et al. manually measured the anterior-posterior (AP) and
right-left (RL) dimensions of the prostate in probe-in and probe-out images and
found that the balloon probes on average compressed the prostate 3.5-fold more
in the AP direction and stretched the prostate 2.5-fold more the RL direction
than the rigid probe [122].

When compared to other image registration methods based on tissue defor-
mation models, our method performs well. Our results visually appear to have
smaller error than results from 2-D slices of 3-D volumes obtained by Wu et
al., although a precise comparison is not possible because the accuracy of their
method was not numerically quantified [215]. Wu et al. consider images taken
with a balloon probe at different levels of inflation. This is different from com-
paring a probe-in image with a probe-out image in which the probe is removed
entirely. Crouch et al. tested their finite element based method using an artificial
tissue phantom with 25 radioactive seeds implanted inside [59, 60]. The phan-
tom was deformed by a balloon probe resulting in average seed displacements of
9.377 mm, similar to the 9.22 mm average displacement of our test points in the
interior of the prostate. To achieve 2.0 mm average point errors for the seeds,
Crouch et al. required a mesh of 14,068 nodes and 14 hours of computation
time for full 3-D deformations. Our method, which was tested on MR images
of patient cases rather than tissue phantoms, achieved a less than 2 mm error
for a representative point but required under 1 minute of computation time per
image slice. Our DSC of 97.5% is higher than the 94% obtained by Bharatha et
al. with a 3-D biomechanical finite element model for the registration of balloon
endorectal probe-in images to rectal obturator (smaller) probe images [35]. How-
ever, subjects in that study were scanned in two different positions, supine and
lithotomy, at two different field strengths, 1.5 T and 0.5 T, and with two differ-
ent rectal probes, an MR expandable endorectal probe and a rectal obturator,
which may have compromised image registration quality.
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Physically-based simulation with nonlinear estimation of uncertain tissue para-
meters can improve the quality of deformable image registration. This approach
is particularly useful for registration problems in which the tissue deformations
are large and due to a known physical source.

For the application of registering (probe-in) MRSI data with (probe-out) ra-
diation treatment planning images, improvements are greater for balloon probes
compared to rigid probes due to the larger tissue deformations that occur with
balloon probes. The algorithm achieved a mean DSC quality of 97.5% for five
balloon probe patients and 98.1% for five rigid probe patients. The improve-
ment over center-of-mass rigid registration is statistically significant (P < 0.05).
Our method reduced displacement error between homologous test points in the
probe-in and probe-out images by a mean 74.8% to a mean error of 1.95 mm
for balloon probe cases and by a mean 70.0% to a mean error of 0.97 mm for
rigid probe cases. The method required on average 37 seconds of computation
time on a 1.6 GHz Pentium-M laptop PC to estimate and compensate for tissue
deformations and produce a nonlinear mapping between probe-in and probe-out
images.

The implementation described in this appendix independently registers 2-D
slices of tissue from a 3-D MRI volume. Extending these results to an analogous
3-D physically-based simulation and image registration method would enable
the method to explicitly account for deformations and displacements that occur
between imaging planes in 3-D volumes. This extension would require generat-
ing patient-specific 3-D conformal tetrahedral meshes with a controlled number
of elements. Validating the 3-D image registration approach would require us-
ing a new imaging protocol with slices sufficiently thin to capture out-of-plane
deformations. We discuss these challenges in chapter 8.
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