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Foreword

By the dawn of the new millennium, robotics has undergone a major transfor-
mation in scope and dimensions. This expansion has been brought about by
the maturity of the field and the advances in its related technologies. From a
largely dominant industrial focus, robotics has been rapidly expanding into the
challenges of the human world. The new generation of robots is expected to
safely and dependably co-habitat with humans in homes, workplaces, and com-
munities, providing support in services, entertainment, education, healthcare,
manufacturing, and assistance.

Beyond its impact on physical robots, the body of knowledge robotics has
produced is revealing a much wider range of applications reaching across diverse
research areas and scientific disciplines, such as: biomechanics, haptics, neu-
rosciences, virtual simulation, animation, surgery, and sensor networks among
others. In return, the challenges of the new emerging areas are proving an abun-
dant source of stimulation and insights for the field of robotics. It is indeed at
the intersection of disciplines that the most striking advances happen.

The goal of the series of Springer Tracts in Advanced Robotics (STAR) is to
bring, in a timely fashion, the latest advances and developments in robotics on
the basis of their significance and quality. It is our hope that the wider dissemina-
tion of research developments will stimulate more exchanges and collaborations
among the research community and contribute to further advancement of this
rapidly growing field.

The monograph written by Christian Ott is devoted to the classical research
topic of impedance control which has recently found new interest after the
progress in the mechanical design of lightweight robotic systems with improved
actuation and sensing principles. The contents expand the author’s doctoral dis-
sertation and are focused on two key issues, namely joint flexibility and kinematic
redundancy. A number of effective controllers are developed in theory, based on
consolidated approaches such as singular perturbation and passivity, and are
tested in extensive experiments on the DLR humanoid manipulator ’Justin’, one
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of the most advanced robotic systems available up to date from a technology and
mechatronics standpoint. No doubt, a very fine addition to the STAR series!

Naples, Italy, Bruno Siciliano
April 2008 STAR Editor



Preface

This monograph is based on my PhD thesis, which was written at the Institute
of Robotics and Mechatronics at the German Aerospace Center (DLR e.V.), and
which was defended at Saarland University in November 2005. Its main topic is
the Cartesian impedance control problem. While the basic concept of impedance
control is well known since several years, its implementation in a wide range of
applications nowadays comes into focus of robotics research again due to recent
progress in the mechanical design of robotic systems with new and improved
actuation principles. Moreover, the availability of more and more complex ro-
bot mechanisms allows us also to refine the control theory by considering more
detailed and thus more precise models. In the present work, in particular the
effect of joint elasticity on the design of impedance controllers is analyzed in de-
tail. The consideration of joint elasticity is particularly relevant for lightweight
robots in service robotics scenarios as well as for industrial robots when high
accuracy is required also for very fast movements. Another topic treated in this
work is the extension to redundant systems in which the robot has more degrees
of freedom than necessary to fulfill a given task. This is especially important for
more complex robotic systems like robots with multiple arms and hands.

The book also contains an applications chapter with several experiments in
which the control methods have been applied. This includes also some more
recent experiments with DLR’s upper-body manipulator ”Justin”, which goes
beyond what was originally included in the PhD thesis.

During the the work on the thesis a lot of people gave me support and advice
in many different ways. First of all I want to thank Prof. Gerd Hirzinger, Head
of the Institute of Robotics and Mechatronics, for he gave me the possibility to
conduct research in the exciting field of robot control.

I am very grateful to Prof. Andreas Kugi, my Ph.D. supervisor from the Chair
of System Theory and Automatic Control at Saarland University, for support and
invaluable advice. Whenever I visited his lab he spared much time for discussing
my work.

I would also like to express my gratitude to the colleagues at DLR. In particu-
lar I want to thank Dr. Alin Albu-Schäffer for the enjoyable cooperation and the
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stimulating conversations over the years. Moreover, I would also like to thank
Dr. Alin Albu-Schäffer, Dr. Udo Frese, and Dr. Tobias Ortmaier for proofreading
the thesis on which this book is based on.

During my Ph.D. research I had the opportunity to spend a period of three
month at the University of Twente, The Netherlands, where I visited the groups
of Prof. Stefano Stramigioli and Prof. Arjan van der Schaft. This visit signifi-
cantly influenced my understandings of passivity based control and its use for
redundant and flexible robots.

Finally, I would like to thank Prof. Bruno Siciliano and Dr. Thomas Ditzinger
for their patience in waiting for the final modifications of the book.

Tokyo, April 2008 Christian Ott
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1 Introduction

Robotic systems are a well studied field of application for control theory. Robot
arms designed for industrial applications traditionally are treated as mechani-
cal multi-body systems, where several rigid bodies are connected by actuated
joints. In the past few years the robotics community evolved growing interest in
robots which are designed for the use in service robotics scenarios, in which the
robots will have to work close to humans. For this kind of applications the ro-
botic systems are desired to be built up very light. Consequently, these systems
usually have considerable elasticity. Therefore, the need for control strategies
arises which take account not only of the rigid body dynamics but also of the
joint flexibility.

Section 1.1 gives a short overview of typical service robotics applications and
their peculiarities. In Section 1.2 the DLR lightweight robots are described, on
which the controllers reported in this book were implemented and tested.

The state of the art of compliant motion control schemes and of control meth-
ods for flexible joint robots are reviewed in Section 1.3 and Section 1.5, respec-
tively. Section 1.6 finally gives an overview of this book and summarizes the
contributions.

1.1 Service Robotics Applications

While for most industrial applications the environment of the robots can be con-
sidered as known in advance, the situation is quite different in fields as service
robotics and medical robotics. In these applications the robots share their envi-
ronment with humans. Consequently, direct interaction will be desired not only
with a known environment but also with a human user.

While mobile robots are used out of laboratoryenvironments in real-world appli-
cations for quite some time (e.g. house floor cleaning robots, pool cleaning robots,
etc ...), the situation is different for systems which must possess also manipulation
capabilities. Typical tasks for such a general service robot are for instance: wip-
ing tasks, different pick and place operations, or the opening of doors and drawers.
From a conceptual point of view different approaches ranging from combinations of

C. Ott: Cartesian Imped. Cntrl. of Redund. & Flexible-Joint Robots, STAR 49, pp. 1–11, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



2 Introduction

mobile robots with anthropomorphic arms and hands to more advanced humanoid
robots have been proposed for such applications. They all have in common that
they contain one or two robotic arms and hands, which must be built very light in
order to be compatible with the locomotion part of the system.

The need for lightweight arms (and hands) arises not only from such practical
requirements, but also from safety requirements. In a typical service robotics
scenario, the robot will have to work close to humans or even physically interact
with them. One approach to decrease possible injuries in case of an undesired
impact is the use of a compliant covering for the robot structure. In [ZKRS02]
it is shown that this solution is in many cases impractical. Another approach,
which was followed in the construction of the DLR lightweight robots, is to
reduce the effective inertia of the arm.

After all, the design and control of modern lightweight arms clearly is a crucial
point for the development of robotic systems suitable for the emerging field of
service robotics. The lightweight construction of such systems naturally leads to
elasticities which must be considered within the controller design.

Besides service robotics applications the need for controllers which are de-
signed for robot models with non-negligible joint elasticities also arises from
industrial robots when high performance is required for very fast movements.

1.2 The DLR Lightweight Robots

The seven-joint DLR lightweight robots are optimized especially for the use in
service robotics applications. In contrast to typical industrial robots, all elec-
tronics is included in the arm structure. This is also important in order to allow
for the combination of these arms with mobile systems for locomotion. The
Lightweight-Robot-II (Figure 1.1 (left)) was first presented in 2001. Its main
design objective was the achievement of a load to weight ratio comparable to
that of the human arm. All critical components of the robot therefore have been
optimized for low weight. Light Harmonic Drive�1 gears with high transmission
ratios and brushless DC motors were used in the construction. The Harmonic
Drive� gears in the joints are the main source of elasticity. While these gears
are in principle backdrivable, the external forces needed for moving a joint are
very high due to the high gear ratio. In order to cope with this situation, strain
gauge based joint torque sensors have been included in the joints. These sensors
allow to measure also very low forces at the link side, which hardly could be
measured at the motor side due to stiction. The stiffness of the torque sensors
is about a factor 10 higher than the stiffness of the gears, so the overall stiffness
of the joints is dominated by the gears. From a control point of view, the use
of joint torque sensors, together with the measurement of the motor positions2,
allows for the implementation of a full state feedback, when a flexible joint robot
model is considered (see Chapter 2).
1 Harmonic Drive� is a trademark of the Harmonic Drive AG.
2 For the DLR lightweight robots the measurement of the motor side position is based

on the measurement of the magnetic field of the rotor of the brushless DC motor.
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Fig. 1.1. DLR Lightweight Robots: Version II (left) and III (right)
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Fig. 1.2. Harmonic Drive� gear concept

As a result of the above mentioned considerations the Lightweight-Robot-II
has a weight of approximately 18 kg and can carry loads up to 7 kg. Further
developments of the components and the quest for a modular structure led to
the design of the Lightweight-Robot-III (Figure 1.1 (right)), which has an overall
weight of 14 kg and a load-to-weight ratio of about 1:1.

Since the Harmonic Drive� gears are, as mentioned above, the main source of
flexibility in the DLR lightweight robots, the operation principle of this gear type
will be explained shortly3. The gears basically consist of three parts, the Wave
Generator, the Flexspline, and the Circular Spline (Figure 1.2). The flexspline
and the circular spline are the parts having teeth. The flexspline in particular has
two teeth less than the circular spline and is deformable. The wave generator,
which is the driving element, has elliptic shape. Assume that the circular spline

3 See http://www.harmonicdrive.de for more details on the Harmonic Drive� gear
concept.
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is fixed. By turning the wave generator the flexspline is deformed, and the main
axis of the elliptic shape of the wave generator determines the area in which the
teeth of the flexspline and the teeth of the circular spline are in contact. Consider,
for instance, the case that the wave generator turns about one revolution. Since
the flexspline has two teeth less than the circular spline, the flexspline will then
turn about the angle of two teeth with respect to the circular spline during
each revolution of the wave generator. With this a very high transmission ratio
between the wave generator and the flexspline is realized.

In this work only the elasticity of the harmonic drive gears will be considered.
More complete models can be found, e.g., in [TS96, KG97].

1.3 Compliant Motion Control

The realization of compliant behavior is a classical problem in robotics. This
is relevant whenever the robot comes into contact with its environment and
especially if the environment is only partly known.

Three different approaches are discussed in the following. The difference be-
tween these approaches and the classical position or force control concepts is
that in addition to the setpoint control task also a desired disturbance response
with respect to external forces has to be ensured. In the impedance control lit-
erature the desired setpoint xd usually is called a virtual desired setpoint (or
equilibrium point), since it should only be reached in case of free motion, i.e.
when no external forces act on the robot.

1.3.1 Impedance Control

One possible approach to achieve compliant behavior is given by impedance
control (Figure 1.3). The general concept of impedance control was introduced
by Hogan in the seminal work [Hog85a, Hog85b, Hog85c] and can nowadays be
considered as a classical control approach in robotics. One of the core statements
of the impedance control methodology is that the controller should modulate the
mechanical impedance4 of the manipulator. This is justified by the observation
that for manipulation tasks the environment of the robot is properly described by
a mechanical admittance5. In a stronger definition of impedance control, for which
sometimes also the term force based impedance control is used, it is furthermore
required that not only the controlled manipulator, but also the controller itself
should have impedance causality. Throughout this work the term impedance
control refers to this stronger definition.

From a practical point of view the desired dynamic behavior of the robot, i.e.
the disturbance response (regarding the external forces as a disturbance), usually

4 A mechanical impedance is a mapping from (generalized) velocities to (generalized)
forces.

5 A mechanical admittance is, in contrast to a mechanical impedance, a mapping from
(generalized) forces to (generalized) velocities.
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is defined in terms of Cartesian coordinates, describing the pose of the end-
effector6. The Operational Space Formulation [Kha87] provides a methodology
for the controller design with respect to the Cartesian coordinates. In typical
implementations, the controller has the Cartesian position x and velocity ẋ of
the end-effector as inputs and gives the motor torques τm as outputs.

τ m x, ẋ

xd

Impedance

Control

Robot

Dynamics

Fig. 1.3. Concept of impedance control

One relevant problem in the design of Cartesian impedance controllers is the
choice of an appropriate representation of the end-effector orientation. Detailed
comparisons of different orientation representations in the context of Cartesian
impedance control were given by Caccavale et al. in [CNSV99] and by Natale in
[Nat03]. The problem of constructing a spatial stiffness, suitable for the use in an
impedance controller, was addressed by Fasse in [FB97, FH95, Fas97]. Further
extensions of these works were presented by Stramigioli in [SD01, Str01].

1.3.2 Admittance Control

Another possible approach, which is typically followed in industrial robotics, is
the concept of admittance control (Figure 1.4), sometimes also called position
based impedance control. Here the robot is controlled by a position controller7.
The desired compliant behavior is realized by an outer control loop. Based on
measurements of the generalized environmental forces F ext a desired setpoint x0

for the position control loop is generated. The admittance controller therefore
has the causality of a mechanical admittance, i.e. of a mapping F ext → ẋ0. The
concept of admittance control is very well suited for industrial robots. These
robots generally are equipped with position or velocity controllers off the shelf,
while no joint torque or motor current interfaces are provided for the user. Fur-
thermore, in usual industrial scenarios the environmental forces and torques can
be measured by a six-degrees-of-freedom force-torque-sensor mounted at the tip
of the robot. It is well known that the feedback of non-collocated forces, mea-
sured at the tip of the robot, leads to (challenging) stability problems [CH89].
This is especially relevant if a stiff force-torque-sensor, like the widely used JR38,
is applied. Alternatively, also a compliant force-torque-sensor can be used.
6 Hence the term Cartesian impedance control.
7 Or alternatively by a velocity controller.
8 See http://www.jr3.com/ for detailed informations of the sensors provided by JR3

Inc.
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τ m

x, ẋ
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Fig. 1.4. Concept of admittance control

Furthermore, hybrid position/force control, which was introduced by Mason
in [Mas81] and refined by Raibert and Craig in [RC81], is also closely related to
the admittance control concept. The problem of coordinate invariance in hybrid
position/force control schemes was discussed in [LD88] and [Duf90].

1.3.3 Conservative Congruence Transformation

In addition to the two above mentioned methods the projection of Cartesian
impedance characteristics like the stiffness matrix or the damping matrix to the
relevant quantities in joint coordinates represents a third possibility to realize
a compliant motion controller [CK02]. The transformation law for the stiffness
matrix is also called Conservative Congruence Transformation. This is of interest
especially if the robot is equipped with a joint level impedance controller.

An interesting related concept, which currently is lively discussed in the ro-
botics community, is to use an antagonistic arrangement of two actuators in each
joint in order to realize a variable joint stiffness [LKCC91, BTBP03, BRT01].
This concept allows to implement a joint level stiffness matrix without off-
diagonal elements. The possibility to achieve a desired Cartesian stiffness, how-
ever, is limited [ASFS+04].

1.4 Control of Redundant Robots

When the number m of task coordinates is smaller than the number n of con-
figuration coordinates, the question arises, how to control the remaining n − m
redundant degrees-of-freedom. In this context a joint motion which keeps the
end-effector fixed is called a nullspace motion. The control of such redundant
robots is a topic widely discussed in the robotics literature. The following short
literature overview refers only to those works which are related closely to the
topics of this book.

A good overview of different redundancy resolution techniques is given by
[Sic90]. A projection based method to optimize a given cost function via nullspace
motions was presented in [HHS89]. An inverse kinematics method which uses an
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extended Jacobian was introduced in [Bai85]. The computation of nullspace base
matrices and their utilization for the inverse kinematics of redundant robots was
analyzed in [HV91] and in [CW93].

In the Operational Space Formulation [Kha87] a nullspace projection tech-
nique is used in order to treat redundant robots.

The impedance control problem for redundant manipulators was considered
in [NSV99] in combination with a quaternion based spatial stiffness. The Joint
Space Decomposition Method was formulated in [PCY99, PCY00] and applied
to the impedance control problem in [OCY97, OCY98, OCYS98].

1.5 Control of Robots with Flexible Joints

Robotic systems with flexible joints have been treated in the robotics literature
for more than twenty years. In contrast to robot models with elastic links the
joint elasticity usually is modeled in form of a lumped linear spring which is
located between the motor and the following link [Spo87a].

Tomei [Tom91] showed that such a system can be stabilized by a simple
PD controller for the motor angle together with a compensation of the grav-
ity torque at the desired equilibrium point. In [KS98, SK97a] similar controllers
were presented based on passivity arguments. Furthermore, in [GFG99] a sta-
bility analysis for a hybrid position/force controller for a flexible joint robot
without gravitational effects was given.

In practice it turned out that only quite unsatisfactory results can be achieved
by restricting to purely motor position (and velocity) based feedback controllers
(without additional non-collocated feedback) for the case of a flexible joint robot.
In some works a controller structure based on a feedback of the joint torques
as well as the link side positions was considered and it was shown that this can
indeed lead to better results (see e.g. [Spo89]). From a theoretical point of view
this approach usually is justified (for a sufficiently high joint stiffness) by an
approximate analysis based on the singular perturbation theory [Spo89, Spo95,
GHS89, Ge96].

In [ASH01a, AS01] a controller with a complete static state feedback (po-
sition and torque as well as their first derivatives) was introduced, for which
(analogously to [Tom91]) asymptotic stability was shown based on the passivity
properties of the controller. Contrary to the classical PD-controller, the motor
inertia and the joint stiffness are included in the same passive block as the state
feedback controller such that an effective damping of the joint oscillations could
be achieved.

An extension of the simple PD controller by a suitable feedforward term was
proposed in [DL00] in order to treat the tracking case. In [DLSZ05, ZSL+03,
ZLS04, ZSL+05] the gravity compensation problem for a PD-like regulation con-
troller was addressed.

The output feedback control problem was treated in [OKL95, NT95]. In
[DLL98] an algorithm for dynamic feedback linearization of the complete flexible
joint robot model was presented.
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Another approach, consisting of a partial feedback linearization for the torque
dynamics and an additional outer control loop, was presented in [LG95, LG96].

Also the tracking control problem was considered in many works, see [BOL95]
for an excellent comparison. A passivity based approach was given in [LB92] for
the adaptive case. A backstepping approach was used in [OL97] and an adaptive
tracking controller was presented in [NT92].

Furthermore, variable structure controllers were analyzed in [SRS88] and
[HG93].

1.6 Overview

While most of the works on control of flexible joint robots deal with the po-
sition control problem, only little works have been published for the case of
the impedance control problem. As outlined in the last section the solutions for
the position control problem range from simple solutions based on the singular
perturbation approach to more complex ones based on modern approaches like
feedback linearization or backstepping. Notice that all these results readily could
be used for the design of an admittance controller. For the stability analysis of
the robot in contact with its environment the situation is then similar to the case
of a rigid body robot. The admittance approach, however, basically relies on the
measurement of the external forces. In practice these forces usually are measured
by a force-torque-sensor mounted at the end-effector. External forces, which in-
stead act on the robot structure rather than on the end-effector, usually cannot
be measured. Based on the admittance concept, therefore, a compliant behavior
can only be achieved with respect to the forces acting on the end-effector. But in
many applications, like for instance in service robotics where human users come
in contact with the robot, this might not be acceptable. Moreover, in case of a
redundant robot, like the DLR lightweight robots, additionally to the Cartesian
impedance also nullspace stiffness is of interest.

This monograph concentrates on the impedance control method. Here the
measurement of the external forces is not a priori necessary. Therefore, also the
implementation of a nullspace stiffness will be possible.

As a desired behavior of the robot a mass-spring-damper like system will be
considered. Furthermore, since inertia shaping requires the feedback of external
forces even in the rigid body case (see Chapter 3), the particular case of a desired
impedance behavior is analyzed in detail, where a shaping of the inertia matrix
is not required. This also leads to problems concerning the damping design and
the control of the nullspace motion in the redundant case. The organization of
this book is summarized in the following. The rigid body case is treated in the
Chapters 3 and 4. Different approaches for designing a Cartesian impedance
controller for the flexible joint robot model are then analyzed in Chapter 5 to 7.

Chapter 2 treats the modeling of flexible joint robots. Herein the modeling
approach from [MLS94] is applied to the particular case of a robot with flexible
joints.
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Rigid Body Robot Consideration
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Fig. 1.5. Relation between the chapters (TSEM ... Task Space Augmentation Method,
JSDM ... Joint Space Decomposition Method)

Chapter 3 deals with the impedance control problem for a rigid body robot
without considering the joint flexibility. The situation of a desired impedance
behavior, in which the inertia shaping is not desired, is analyzed in more detail.
For this case a solution of the damping design problem is given. Additionally,
some practically relevant issues, namely the singularity avoidance and the choice
of Cartesian coordinates, are discussed. The results of this chapter also form the
basis for the construction of Cartesian impedance controllers in the flexible joint
case in Chapter 5 - Chapter 7.

Chapter 4 treats the problems of designing a nullspace stiffness for a redun-
dant robot. In addition to the Cartesian impedance controller from Chapter 3 a
nullspace impedance control law is designed. Similar to the previous chapter the
case of an impedance controller without inertia shaping is analyzed. First the
use of appropriate projection matrices for the design of a nullspace stiffness and
damping is analyzed. Then the realization of a nullspace impedance controller
based on the Task Space Augmentation Method as well as on the Joint Space
Decomposition Method is treated in more detail. Within the latter approach a
controller is proposed, for which a proof of the asymptotic stability is given based
on the stability theory with semi-definite Lyapunov functions.
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In Chapter 5 the singular perturbation theory is applied to the flexible joint
robot model from Chapter 2. Instead of the common composite controller design
method used in [Spo89, Spo95, GHS89, Ge96], a modified control law is proposed,
which allows to enhance the performance of the boundary layer system without
computing the steady state torque explicitly. Based on this singular perturbation
controller a Cartesian impedance controller is designed. While the controller
can be easily implemented, the stability analysis is restricted to the singular
perturbation approximation.

In the first part of Chapter 6 the cascaded control theory is used for designing
a Cartesian impedance controller. The controller is based on an inner feedback
loop which decouples the torque dynamics from the link dynamics and there-
fore transforms the system into a triangular form. Global uniform asymptotic
stability is shown for the case of free motion. Also a useful passivity property
of the closed loop system is shown for the regulation case. The design idea for
this controller is related to the work of Lin and Goldenberg [LG95, LG96], but
it should be mentioned that the stability analysis of [LG95, LG96] cannot be
extended to the considered impedance control problem9. Instead, an approach
based on the theory of cascaded systems is used for the stability analysis.

Additionally, in the second part of this chapter a backstepping approach is
applied to design a Cartesian impedance controller. The resulting controller,
however, is slightly more complex than the decoupling based controller.

Chapter 7 presents an approach based on passivity theory. The design idea
for this controller relies on a physical interpretation of the torque feedback. An
online gravity compensation term is proposed, which, in contrast to all related
previous solutions in the literature, does not lead to any constraints on the
controller gains, such that it is also suitable for redundant robots. It is shown
that the closed loop system can be seen as a feedback interconnection of passive
subsystems. Therefore, this controller has very advantageous robustness proper-
ties. Moreover, its complexity is comparable to the simple singular perturbation
controller.

It should also be mentioned that the resulting controller can be seen as a general-
ization of the state feedback controller presented in [ASH01a,AS01].The controller
from [ASH01a, AS01] was designed for the position control problem with a con-
stant gravity compensation term. The physical interpretation of torque feedback
together with the online gravity compensation term basically allows to formulate
the controller in Cartesian coordinates and to implement also very low controller
gains as desired for impedance controllers with stiffness values down to zero.

Furthermore, it is shown how the joint stiffness can be taken into account for
the design of the impedance. It is also shown how the controller must be extended
when non-negligible joint damping10 is present. Finally, also an extension to the
tracking case is discussed.

9 This is mainly due to the fact that the considered impedance behavior is time-
varying.

10 In contrast to motor side friction the term joint damping refers here to a damping
in parallel to the joint stiffness (see Chapter 2).
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Chapter 8 presents the simulation studies and the experimental validation
of the proposed controllers with the DLR lightweight robots.

In Chapter 9 some typical applications are presented for which the Cartesian
impedance controllers were used.

Chapter 10 finally gives a short summary and conclusions. It also contains
a short comparison of the different presented control approaches.



2 Modeling of Flexible Joint Robots

In this chapter the dynamical model of a robot with flexible joints will be derived.
The presentation is restricted to open chain manipulators in which the links form
a serial kinematic chain without loops. Furthermore, the links of the robot are
assumed to be connected either by revolute or prismatic joints1.

When deriving a dynamical model of elastic robots basically two different
sources of elasticity can be distinguished. The distributed elasticity caused by
the robot links and a concentrated elasticity in the joints which is usually caused
by the gears of the robot. For the former an infinite dimensional model, called
elastic link robot model, can be derived based on the usual assumptions of the
Euler-Bernoulli beam [dWSB96]. The latter, instead, leads to a finite dimensional
model, called flexible joint robot model.

In case of the DLR lightweight robots the main sources of flexibility are the
Harmonic Drive� gears. For these robots the stiffness of the links is significantly
higher than the stiffness of the gears. Therefore, a flexible joint robot model will
be considered in the following.

First, Section 2.1 treats the robot kinematics. In Section 2.1.1 the founda-
tions of the description of rigid body motions are shortly reviewed. Based on
that, Section 2.1 describes the kinematic modeling of serial kinematic chains.
These kinematic relations are of interest not only for the derivation of the dy-
namical model in Section 2.2 but also for the design of Cartesian controllers
in the following chapters. The complete and the reduced dynamical model of a
flexible joint robot are derived in Section 2.2 and their control properties are
discussed.

2.1 Robot Kinematics in a Nutshell

The following treatment of robot kinematics is based on [MLS94] and [Sel96].
Instead of giving detailed explanations of the basic kinematic relationships in
robotics, the following two sections are merely intended to clarify the notation.
1 Other types, like helical, cylindrical, spherical, or planar joints are not considered.

C. Ott: Cartesian Imped. Cntrl. of Redund. & Flexible-Joint Robots, STAR 49, pp. 13–27, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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2.1.1 Rigid Body Motion

The motion of a single rigid body can be represented by the relative motion of a
body fixed coordinate frame2 B with respect to an inertial frame S (see Figure
2.1). In robotic applications the inertial frame S usually is called base frame or
world frame. The translational motion of the rigid body can be described by the
vector psb ∈ R

3 from the origin of S to the origin of B. The notation psb means
that the vector is represented in the coordinates of S, while bpsb denotes the
same vector represented in the frame B.

x
y

z

x

y

z

S

B
psb

Fig. 2.1. Coordinate frames of a single rigid body

The rotation of frame B with respect to the world frame S can be described
by an orthogonal matrix Rsb = [ex, ey, ez ], where ei is a unit vector, which is
collinear to the ith coordinate direction of frame B, represented in frame S. Since
all considered coordinate frames are right-handed by convention, the rotation
matrices have determinant +1. The set of all such rotation matrices is denoted
by SO(3), the special orthogonal group3 (i.e. the rotation group of R

3). Notice
that the inverse of Rsb can be computed by Rbs = R−1

sb = RT
sb.

The spatial configuration of the rigid body is a combination of translation
and rotation and can be described by the special Euclidean group SE(3). The
group SE(3) is the semi-direct4 product of SO(3) and R

3:

SE(3) = SO(3) � R
3 . (2.1)

2 Notice that, by adopting the usual convention, all coordinate frames herein are
considered as right-handed.

3 SO(3) ∈ R
3×3 is a group under the operation of matrix multiplication.

4 In the semi-direct product G � H of a group G and a commutative group H the
multiplication operation is given by (g1, h1)(g2, h2) = (g1g2, h1 + g1(h2)), where
g(h) is a linear action of g ∈ G on h ∈ H and (g, h) is an element of G � H. In
contrast to that, the direct (or Cartesian) product G × H has the multiplication
operation (g1, h1)(g2, h2) = (g1g2, h1h2).
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An element hsb ∈ SE(3) (i.e. the configuration of a rigid body) and its inverse
hbs = h−1

sb can be represented by the homogeneous matrices5

hsb =

⎡
⎣Rsb psb

0 1

⎤
⎦ , hbs =

⎡
⎣RT

sb −RT
sbpsb

0 1

⎤
⎦ . (2.2)

While hsb ∈ SE(3) represents the configuration of a rigid body, its velocity can
be described by the Lie6 algebra se(3) which is the infinitesimal generator of
the Lie group SE(3). One common representation of a rigid body velocity is the
body twist V b ∈ se(3). The components of the body twist

V b =

⎛
⎝bvsb

bωsb

⎞
⎠

have the following physical meaning: The vector bvsb ∈ R
3 is the velocity of the

origin of frame B with respect to S, represented in B. The vector bωsb ∈ R
3 is

the angular velocity of B with respect to S, represented in B.
Let hsb(t) ∈ SE(3) be a one-parameter curve (parameterized by time) repre-

senting the trajectory of a rigid body. The relationship between the body twist
V b and the motion hsb is given by Ṽ

b
= h−1

sb ḣsb, where the application of the
operator (̃·) to the twist is defined as

Ṽ
b

:=

⎡
⎣bω̃sb bvsb

0 0

⎤
⎦ ,

bω̃sb :=

⎡
⎢⎢⎢⎣

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎥⎥⎥⎦ , bωsb =

⎛
⎜⎜⎜⎝

ω1

ω2

ω3

⎞
⎟⎟⎟⎠ .

Another common representation of a rigid body velocity is the spatial twist V s

which is related to the body twist V b via V s = Adhsb
V b. Herein Adhsb

is the
adjoint transformation7 associated to hsb. This transformation and its inverse
Adhbs

= Ad−1
hsb

are given by

Adhsb
:=

⎡
⎣Rsb p̃sbRsb

0 Rsb

⎤
⎦ , Adhbs

=

⎡
⎣RT

sb −RT
sbp̃sb

0 RT
sb

⎤
⎦ .

5 With this representation the group operation of SE(3) is given by matrix
multiplication.

6 Notice that SE(3) and SO(3) both are Lie groups.
7 See [MLS94] for a detailed description.
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2.1.2 Forward Kinematics

In this section the forward kinematics map of an open chain manipulator with n
joints is considered. For each joint a joint variable qi ∈ R is introduced. In case
of a revolute joint this variable represents the angle between two adjacent links.
Notice that, alternatively, this angle can also be thought as an element of the
set S1, the unit circle, instead of an element of R. In this case the angles qi and
qi + 2π would not be distinguished. A prismatic joint is simply described by the
linear displacement between the two adjacent links.

The configuration space Q is the Cartesian product of the joint spaces, i.e
Q := R

n. The individual joint variables qi are summarized in the vector

q = (q1, · · · , qn)T ∈ Q .

In order to simplify the distinction between prismatic and rotational joints the
set P shall be defined such that it contains all the indices i which refer to the
joint variables qi of prismatic joints.

The task will be formulated with respect to the tool frame which is a frame
attached to the robot end-effector. The forward kinematics map hst : Q → SE(3)
gives the configuration of the tool frame for a given joint configuration. The
computation of the forward kinematics is relevant for the implementation of
Cartesian controllers as well as for the derivation of the dynamical model in the
next section.

Notice first that the motion of an individual joint i (with all other joint vari-
ables fixed at qj = 0, j �= i) can be represented by the joint twist ξi which has
the form

ξi =

⎛
⎝vi

ωi

⎞
⎠ .

In case of a revolute joint the first part of ξi is given by vi = −ωi × li, where ωi

is a unit vector aligned to the joint axis and li is an arbitrary point on the joint
axis [MLS94], both represented in S. For a prismatic joint one has ||vi|| = 1 and
ωi = 0, where the vector vi points in the direction of translation.

Given the individual joint twists as well as the reference position hst(0) of
the tool frame for q = 0, the forward kinematics map hst(q) can be computed
via the well known product of exponentials formula

hst(q) = eξ̃1q1eξ̃2q2 · · · eξ̃nqnhst(0) , (2.3)

where the exponential terms eξ̃iqi ∈ SE(3) of a twist ξi are defined as

eξ̃iqi =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎣eω̃iqi

(
I − eω̃iqi

)
(ωi × vi) + ωiω

T
i viqi

0 1

⎤
⎦ for ||ωi|| = 1⎡

⎣I viqi

0 1

⎤
⎦ for ωi = 0 .
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Furthermore, the exponential terms eω̃iqi ∈ SO(3) of the unit vectors ωi are
given by Rodrigues’ formula

eω̃iqi = I + ω̃i sin(qi) + ω̃2
i (1 − cos(qi)) .

Equation (2.3) gives the configuration of the tool frame. The actual velocity of
the tool frame is given by the body twist V b. As described in [MLS94] the body
twist V b can also be computed based on the joint twists. It is given by

V b = Jb(q)q̇ , (2.4)

Jb(q) =
[
ξ†

1(q) · · · ξ†
n(q)

]
, (2.5)

ξ†
i (q) = Ad−1

eξ̃iqi ···eξ̃nqn hst(0)
ξi ,

where the matrix Jb(q) is usually called body Jacobian or geometrical Jacobian8.

2.2 Dynamical Model of a Flexible Joint Robot

Two different models are used in the literature for the modeling of flexible joint
robots, known as the complete and the reduced model9. The reduced model
was proposed by Spong in [Spo87b]. It differs from the complete model in the
assumption that the kinetic energy of the rotors is determined only by their
own rotation. All the modeling assumptions which lead to the complete and the
reduced model are given in the following together with a detailed derivation of
the models based on the Lagrangian equations of motion [Arn89, MLS94] and
on the formulation of the kinematics as presented in the previous section.

2.2.1 Modeling Assumptions for the Complete Model

For the derivation of the complete dynamical model the following three assump-
tions are made:

Assumption 2.1. The rotors of the motors are rotational symmetric rigid bod-
ies, and the rotation axis and the symmetry axis of each joint coincide.

The rotor angle of the ith motor which describes the rotation around the sym-
metry axis will be denoted by θmotor,i.

Assumption 2.2. The electrical part of the dynamics (i.e. the inner current
control loop of the motors) is sufficiently fast such that it can be neglected.

The motors are thus modeled as ideal torque sources and the torque of the motor
i acting on the ith rotor inertia is given by τmotor,i.

8 Notice that the term Jacobian is a bit misleading here because J b(q) is in general
not the differential of any mapping.

9 The terminology complete and reduced model is taken from [DLT96].
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In order to obtain a description which is independent of the transmission ratios
Ni of the gears, the motor torque variables τm,i and the motor angle variables
θi are introduced. These variables are related to the physical values τmotor,i and
θmotor,i by the scaling values Ni and 1/Ni, i.e.

τm,i = Niτmotor,i i = 1, · · · , n , (2.6)

θi =
1
Ni

θmotor,i i = 1, · · · , n . (2.7)

Similarly to q ∈ Q, the motor angles θi and the motor torques τm,i are summa-
rized in the vectors θ := (θ1, · · · , θn)T ∈ R

n and τm := (τm,1, · · · , τm,n)T ∈ R
n.

Assumption 2.3. For each joint the elasticity of the gear is modeled as a linear
spring located between the rotor and the subsequent link.

Assumption 2.3 is illustrated in Figure 2.2 for the second joint of the DLR-
Lightweight-Robot-III. The joint angle which determines the location of the
next link is given by qi. The spring between the rotor and the link is described
by the linear relationship τi = Ki(θi − qi), where ki is the stiffness coefficient of
the spring and τi is the joint torque. The stiffness potential of the spring in the
ith joint is then given by Vk,i(qi, θi) := 1/2Ki(θi − qi)2.

τi

θi

qi

Motor of link i.

Fig. 2.2. Model of a flexible joint robot

2.2.2 Derivation of the Complete Model

For a robot with n flexible joints one has to consider the dynamics of 2n rigid
bodies:

• The n links10, building up the serial kinematic chain and
• the n rotors of the motors.
10 It is assumed that the distal link contains also the tool and the load of the robot.
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The following derivation is based on the Lagrangian equations of motion [Arn89,
MLS94]. Therefore, the kinetic energy11 T (q, q̇, θ̇) and the potential energy
Vpot(q, θ) of the system have to be computed.

Kinetic Energy of Rigid Bodies

Consider first the kinetic energy of an arbitrary rigid body. Let mb be the mass
and Ib the inertia tensor expressed in the body fixed frame B which is located
in the center of gravity of the considered body. Then the kinetic energy Tb of
this rigid body can be written as the sum of a translational and a rotational
component. It is given by

Tb =
1
2
mb (bvsb)

T (bvsb) +
1
2
(bωsb)T Ib (bωsb) (2.8)

=
1
2
(V b)T MbV

b , (2.9)

with the generalized inertia matrix

Mb =

⎡
⎣mbI 0

0 Ib

⎤
⎦ , (2.10)

where I is a 3 × 3 unit matrix. The vectors bvsb and bωsb are the translational
and angular velocity vectors of the frame B with respect to frame S represented
in frame B and, consequently, V b is the body twist of frame B.

Computing the kinetic energy thus can be reduced to computing the body
twists of the rotors and the links. Therefore, the following coordinate frames are
assigned: For each of the n links a frame Li is assigned, fixed to the link i, such
that its origin coincides with the center of gravity of the link. For the n rotors
the frame Ri is chosen in such a way that it is attached not to the rotor itself
but to the previous link and the z-coordinate axis of Ri is identical to the ith

joint axis (see Figure 2.3). From these coordinate frames, the forward kinematics
mappings and the body twists of the links and the rotors can be computed via
equations (2.3) and (2.4).

The Kinetic Energy of the Links

It can easily be observed that the body twists of the links V b
l,i do not depend

on the motor angles and can be written as

V b
l,i = Jb

l,i(q)q̇ i = 1, · · · , n , (2.11)

11 During the derivation it will become clear that the kinetic energy is independent of
the motor angles θ.
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τi

θi

qi

Li

Ri

Fig. 2.3. Assigned coordinate frames in the flexible joint robot model

where Jb
l,i(q) is the body Jacobian12 of the frame Li. Therefore, the kinetic

energy of the links is given by

Tl(q, q̇) =
1
2

n∑
i=1

(V b
l,i)

T Ml,iV
b
l,i ,

where Ml,i is the generalized inertia matrix of the link i. By introducing the
inertia matrix of the links M l(q) via

M l(q) =
n∑

i=1

Jb
l,i(q)T Ml,iJ

b
l,i(q) ,

the kinetic energy Tl(q, q̇) can simply be written as

Tl(q, q̇) =
1
2
q̇T M l(q)q̇ .

The Kinetic Energy of the Rotors

The body twists of the rotors have the form

V b
r,i =

⎛
⎝rvsr

rωsr

⎞
⎠ = Jb

r,i(q)q̇ +

⎛
⎝ 0

0
0
0
0
1

⎞
⎠ θ̇i i = 1, · · · , n , (2.12)

12 Notice that the last n − i columns of J b
l,i(q) have only zero elements because the

motion of the link i does only depend on the joints 1 to i. Equation (2.5) is therefore
actually used to compute the i nonzero columns of J b

l,i(q).
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where Jb
r,i(q) is the body Jacobian13 of the frame Ri. Therefore, the kinetic

energy of the rotors Tr(q, q̇, θ̇) can be computed as

Tr(q, q̇, θ̇) =
1
2

n∑
i=1

(V b
r,i)

T Mr,iV
b
r,i ,

where Mr,i is the generalized inertia matrix of the rotor i. Due to the symmetry
Assumption 2.1 the inertia tensors of the rotors have the following diagonal form
when represented in the coordinate frames Ri:

Ir,i =

⎡
⎢⎢⎢⎣
Ai 0 0

0 Ai 0

0 0 Bi

⎤
⎥⎥⎥⎦ i = 1, · · · , n . (2.13)

Thus, the kinetic energy of the rotors has the form

Tr(θ̇, q, q̇) =
1
2

⎛
⎝q̇

θ̇

⎞
⎠T ⎡

⎣Mr(q) S(q)

S(q)T B

⎤
⎦
⎛
⎝q̇

θ̇

⎞
⎠ , (2.14)

where the matrices Mr(q), S(q), and B are given by

Mr(q) :=
n∑

i=1

Jb
r,i(q)T Mr,iJ

b
r,i(q) , (2.15)

S(q) :=
[
s1(q) · · · sn(q)

]
, (2.16)

si(q) := Jb
r,i(q)T

⎛
⎝ 0

0
0
0
0

Bi

⎞
⎠ , (2.17)

B := diag(Bi) ∈ R
n×n . (2.18)

It can be shown that S(q) is a strictly upper triangular matrix (see, e.g., [DLT96]).
Finally, the complete kinetic energy of the 2n rigid bodies is given by

T (q, q̇, θ̇) = Tl(q, q̇) + Tr(q, q̇, θ̇)

=
1
2

⎛
⎝q̇

θ̇

⎞
⎠T ⎡

⎣M r(q) + M l(q) S(q)

S(q)T B

⎤
⎦
⎛
⎝q̇

θ̇

⎞
⎠ .

Potential Energy

The potential energy consists of two parts:

• the stiffness potential Vk of the springs, and
• the gravity potential Vg.
13 Notice that the last n − i + 1 columns of Jb

r,i(q) have only zero elements because
the motion of the rotor i does only depend on the joints 1 to i − 1.
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The combined stiffness potential of all joints is given by

Vk(q, θ) =
n∑

i=1

Vk,i(qi, θi) (2.19)

=
1
2
(θ − q)T K(θ − q) , (2.20)

where K is a diagonal matrix containing the joint stiffness values as diagonal
elements:

K := diag(Ki) ∈ R
n×n . (2.21)

Due to Assumption 2.1 the gravitational potential is independent of θ. Let ml,i

and mr,i denote the masses of the links and the rotors, respectively. The vector
eg ∈ R

3 is a unit vector pointing in the direction of gravity and g ∈ R is the
gravitational acceleration. Then the gravitational potential Vg(q) is given by

Vg(q) = −geT
g

(
n∑

i=1

ml,ipsl,i(q) + mr,ipsr,i(q)

)
, (2.22)

where psl,i(q) ∈ R
3 and psr,i(q) ∈ R

3 are the vectors pointing from the origin of
S to the origins of Li and Ri, respectively, and can be computed using (2.3). The
complete potential energy Vpot(q, θ) of the flexible joint robot model is given by
the sum of the stiffness potential and the gravity potential as

Vpot(q, θ) = Vg(q) + Vk(q, θ) (2.23)

= Vg(q) +
1
2
(θ − q)T K(θ − q) . (2.24)

Lagrangian Equations

In order to simplify the notation the configuration vector

q̂ =

⎛
⎝q

θ

⎞
⎠ ∈ R

2n (2.25)

is introduced. Then the Lagrangian L(q̂, ˙̂q) of the flexible joint robot model is
given by the difference between kinetic and potential energy:

L(q̂, ˙̂q) = T (q, q̇, θ̇) − Vpot(q, θ) . (2.26)

The equations of motion of the complete model are computed via

d
dt

(
∂L(q̂, ˙̂q)

∂ ˙̂q

)
− ∂L(q̂, ˙̂q)

∂q̂
= Q , (2.27)
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where Q ∈ R
2n are the generalized forces corresponding to q̂. The motor torques

τm clearly correspond to the generalized forces acting on the rotors. For the
design of impedance controllers also additional external torques τ ext ∈ R

n are
considered which act on the links of the robot. The generalized forces are thus
given by

Q =

⎛
⎝τ ext

τm

⎞
⎠ .

By evaluating (2.27) one gets the equations of motion of the form

H(q)

⎛
⎝q̈

θ̈

⎞
⎠+ Γ (q, q̇)

⎛
⎝q̇

θ̇

⎞
⎠+

⎛
⎝g(q) − K(θ − q)

K(θ − q)

⎞
⎠ =

⎛
⎝τ ext

τm

⎞
⎠ , (2.28)

where H(q) = (Hij(q)) is the complete inertia matrix

H(q) =

⎡
⎣M l(q) + Mr(q) S(q)

S(q)T B

⎤
⎦ ,

and the gravity torques g(q) are given by the gravity potential

g(q) =
(

∂Vg(q)
∂q

)T

. (2.29)

The term Γ (q, q̇) ˙̂q consists of the centrifugal and the Coriolis forces. The matrix
Γ (q, q̇) = (Γij(q, q̇)), which is sometimes called Coriolis/centrifugal matrix, is
not unique in general. But it can be chosen such that its elements are related to
the Christoffel symbols14 Γijk [MLS94, SS96] via

Γij(q, q̇) =
2n∑

k=1

Γijk(q) ˙̂qk , (2.30)

Γijk(q) =
1
2

(
∂Hij(q)

∂q̂k
+

∂Hik(q)
∂q̂j

− ∂Hkj(q)
∂q̂i

)
. (2.31)

Moreover, it should be mentioned that the lower right n × n block of Γ (q, q̇) is
structurally zero.

Equation (2.28) represents the so-called complete model of a flexible joint
robot. One can see that the equations for the joint angles q and the equations
for the motor angles θ are coupled by the stiffness term K(θ − q) as well as
by the outer-diagonal part S(q) of the inertia matrix H(q). This outer-diagonal
part is often neglected in the literature and leads to the reduced model considered
next.
14 Of the first kind.
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2.2.3 The Reduced Model

In addition to the previous modeling assumptions, which led to the complete
model, the following assumption is made.

Assumption 2.4. The rotational part of the kinetic energy of the rotors is de-
termined only by the rotors’ relative movement with respect to the previous link.

This assumption is justified for the DLR lightweight robots by the fact that
the gear ratios Ni are quite high. For the DLR-Lightweight-Robot-II they have
values in the range 100-160. Therefore, the rotors will turn much faster than
the links of the robot and hence the kinetic energy of the rotors will not be
affected considerably by the motion of the links. Notice also that this modeling
assumption is automatically fulfilled in a robot construction in which the motors
are all located in the base of the robot15. This is the case for cable actuated
robots, such as for instance the Dexter arm [ZSL+03].

From Assumption 2.4 it follows that the angular velocity of the rotors from
(2.12) is given by

rωsr,i ≈

⎛
⎜⎜⎜⎝

0

0

1

⎞
⎟⎟⎟⎠ θ̇i i = 1, · · · , n , (2.32)

while the translational velocity rvsr,i is the same as in (2.12). By computing the
new kinetic energy of the rotors, one can see that the coupling part S(q) in the
inertia matrix vanishes16, i.e. S(q) = 0. Thus, the kinetic energy of the rotors
(2.14) simplifies to

Tr(q, q̇, θ̇) =
1
2

⎛
⎝q̇

θ̇

⎞
⎠T ⎡

⎣M̄r(q) 0

0 B

⎤
⎦
⎛
⎝q̇

θ̇

⎞
⎠ ,

with the link side inertia matrix of the rotors M̄r(q) given by

M̄r(q) =
n∑

i=1

mr,iJ̄
b
r,i(q)T J̄

b
r,i(q) , (2.33)

J̄
b
r,i(q) =

[
I3×3 03×3

]
Jb

r,i(q) . (2.34)

The reduced model can then be derived by following the same steps as in case of
the complete model. This leads to the equations of motion:

M(q)q̈ + C(q, q̇)q̇ + g(q) = K(θ − q) + τ ext

Bθ̈ + K(θ − q) = τm

(2.35)

15 In this case the translational part of the kinetic energy of the rotors would vanish, too.
16 It should be noted that there exist some simple kinematic arrangements of joint/motor

axes that lead to S(q) = 0, even without the simplifying Assumption 2.4.
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Herein the link side inertia matrix M(q) is given by M(q) = M l(q) + M̄r(q)
and C(q, q̇) is the Coriolis/centrifugal matrix with respect to17 M(q).

The reduced model (2.35) will be considered in the following chapters for the
controller design. In contrast to the complete model, the only coupling between
the dynamics for q and the dynamics for θ in the reduced model is the joint
stiffness. This special structure can be exploited for the controller design.

2.2.4 Properties of the Dynamical Model

In this section some interesting properties of the dynamical model are given.
Unless otherwise mentioned all the properties hold for both the complete and
the reduced model.

Clearly both of the models are underactuated. There are 2n configuration
variables and only n control inputs, the motor torques. Furthermore, both models
are differentially flat [FLMR95] and the reduced model can even be linearized
by static state feedback [Spo87b, DLT96]. The complete model can be linearized
by dynamic state feedback [DLL98].

From a control point of view, also the following two well known properties are
important.

Property 2.5. The inertia matrix18 M (q) ∈ R
n×n is symmetric and positive

definite:

M(q) = M (q)T , yT M(q)y > 0 ∀q, y �= 0 ∈ R
n .

Property 2.6. The matrix19 Ṁ(q) − 2C(q, q̇) ∈ R
n×n is skew symmetric, if

C(q, q̇) is chosen via the Christoffel symbols as in equation (2.30):

yT (Ṁ(q) − 2C(q, q̇))y = 0 ∀y, q, q̇ ∈ R
n .

The proofs for these two properties are standard in the context of rigid body
robots (see, e.g., [SS96]) and will therefore be omitted here. It should only be
mentioned that Property 2.6 is strongly related to the passivity property of the
system and depends on the special choice of C(q, q̇) via the Christoffel symbols.

In case that the robot contains not only revolute but also prismatic joints, it
is useful to consider a subset Qp ⊆ Q in which all20 the prismatic joints i ∈ P
keep bounded by some lower and upper bounds qi,min and qi,max, respectively.
This subset shall be denoted by

Qp := {q ∈ Q| qi,min ≤ qi ≤ qi,max ∀i ∈ P} . (2.36)

17 The matrix C(q, q̇) thus corresponds to the upper left part of Γ (q, q̇) when H(q)
is replaced by M (q) in equation (2.31).

18 Respectively H(q) ∈ R
2n×2n for the complete model.

19 Respectively Ḣ(q) − 2Γ (q, q̇) ∈ R
2n×2n for the complete model.

20 Notice that one could of course exclude those prismatic joints from the boundedness
assumption which generate only horizontal displacements.
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Then the following property, which will be useful in the analysis of the desired
impedance behavior in Section 3.2 and for the controller design in Chapter 6,
holds for all q ∈ Qp.

Property 2.7. Within Qp the eigenvalues λi(M(q)) of the inertia matrix keep
bounded, i.e.

0 < λm,M ≤ λi(M (q)) ≤ λM,M < ∞ ∀i = 1, · · · , n, ∀q ∈ Qp ,

where

λm,M := inf
q∈Qp

λmin(M (q)) (2.37)

and

λM,M := sup
q∈Qp

λmax(M (q)) (2.38)

are the strict positive minimum and maximum eigenvalues of M(q) in Qp.

Notice that (for a robot with both rotational and prismatic joints) the particular
values of the eigenvalues of the inertia matrix depend on the choice of the physical
units for rotational and prismatic joints. However, for the analysis in this book
the particular values of the bounds λm,M and λM,M are not important. Only
the existence of such bounds will be important. This is, of course, ensured for
any choice of physical units.

Finally, a property of the gravity model is given, which will be of interest for
the passivity based controller in Chapter 7.

Property 2.8. The gravity torques g(q) are given by the potential function
Vg(q) in the form g(q) = (∂Vg(q)/∂q)T , and for every matrix norm || · || there
exists an α > 0 such that

||∂g(q)/∂q|| < α ∀q ∈ Qp

holds.

The existence of an upper bound for the Hessian of the gravity potential follows
from the fact that Vg(q), as defined in (2.22), consists of terms which are trigono-
metric functions (for rotational joints) and affine functions (for prismatic joints)
of the joint variables qi [dWSB96]. Notice that the existence of such a bound is
ensured for an arbitrary matrix norm. The particular value of α, however, will
be affected by the choice of this norm. This will be discussed in more detail in
Chapter 7.

2.2.5 Some Remarks Concerning Friction

For the derivation of the models in Section 2.2.2 and Section 2.2.3 no friction
is considered. Modeling and compensation of motor side friction for the DLR
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lightweight robots was treated in detail in [AS01]. It is interesting to note that
viscous friction, on both link and motor sides, does not destroy the feedback
linearization properties, neither of the reduced nor of the complete model.

The control algorithms derived in this book deal exclusively with the above
frictionless models. In practice they clearly should be used in combination with a
friction compensation as for instance the one proposed in [AS01]. Notice that this
friction compensation was also used for the experiments presented in Chapter 8
and Chapter 9.

A further generalization of the robot model is the introduction of joint damp-
ing, i.e. damping in parallel to the joint spring. In the Lagrangian L(q̂, ˙̂q) the
joint damping can formally be included by the use of a Rayleigh dissipation
function 1/2(θ̇− q̇)T D(θ̇ − q̇), where D is a diagonal and positive semi-definite
damping matrix. The system equations for the reduced model with joint damping
are given by

M(q)q̈ + C(q, q̇)q̇ + g(q) = K(θ − q) + D(θ̇ − q̇) + τ ext (2.39)
Bθ̈ + K(θ − q) + D(θ̇ − q̇) = τm . (2.40)

This slightly more general model will only be considered in Chapter 7 in which
a passivity based controller is presented. The joint damping though is usually21

very low such that it can be neglected for the controller design.

2.3 Summary

In this chapter the kinematic and dynamical modeling of flexible joint robots was
discussed. At first prerequisites from robot kinematics were reported which are
common in the robotics community. Based on these kinematic relationships two
dynamical models for a flexible joint robot were derived, namely the complete
and the reduced model. All the assumptions which lead to these models were
described in detail. The modeling approach from [MLS94] was applied to derive
the mathematical model of a robot with flexible joints. Finally, some properties
of the dynamical models which are of great interest for the controller design were
shortly discussed.

21 An identification of the damping parameters of the DLR lightweight robots can be
found in [AS01].



3 Cartesian Impedance Control:
The Rigid Body Case

In this chapter the classical theory of impedance control for rigid body robots is
described. The presentation in Section 3.1 is based on the seminal work of Hogan
about the concept of impedance control [Hog85a, Hog85b, Hog85c] and on the
Operational Space Formulation by Khatib [Kha87]. In Section 3.2 the case of a
desired impedance is analyzed, in which the inertial behavior must not be shaped
explicitly. This brings about the problem of designing the damping matrix in an
appropriate way. Furthermore, some additional aspects concerning singularity
avoidance, the choice of coordinates, and the stiffness design are discussed.

This chapter refers to the rigid body part of the robot model without con-
sidering joint elasticities. The presented topics serve as a prerequisite for the
design of Cartesian impedance controllers for the flexible joint robot model from
Section 2.2.3 and can readily be combined with the controllers from Chapter 5,
6, and 7.

3.1 Complete Decoupling

Throughout this chapter the flexibility of the joints is neglected. While in the
previous chapter the joint torques τ ∈ R

n were related to the motor side posi-
tions θ and the link angles q via τ = K(θ − q), they are now considered as the
control inputs. The joint angles are summarized in the vector q ∈ Qp. By using
the notation of Chapter 2 the considered dynamical model of the robot is given
by1

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + τ ext , (3.1)

where M (q) is the inertia matrix, C(q, q̇) is the Coriolis/centrifugal matrix,
g(q) is the vector of gravity torques, and τ ext is the vector of external torques.

1 Notice that the joint torques τ , not the motor torques τ m, are considered here as
the control inputs for the rigid body model. Therefore, the respective inertia matrix
is M (q) instead of M (q) + B.

C. Ott: Cartesian Imped. Cntrl. of Redund. & Flexible-Joint Robots, STAR 49, pp. 29–44, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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3.1.1 Task Formulation

The goal of impedance control is to realize a particular desired dynamical re-
lationship between the robot motion and the external torques. In case of the
Cartesian impedance control problem, this relationship is specified in terms of
coordinates which describe the motion of the end-effector. In general, the actual
configuration of the end-effector can be represented in special coordinates by a
homogeneous matrix (see Section 2.1), i.e. as an element of SE(3), which can be
computed based on the product of exponentials formula (2.3). For the purpose
of controller design, instead, a minimal representation in terms of m end-effector
coordinates x ∈ R

m is often preferred. In case that all degrees-of-freedom of the
end-effector motion are considered in the task, one has m = 6. In the following
it is assumed that the relationship between these Cartesian coordinates x and
the configuration coordinates q ∈ Q is given by a known function f : Q → R

m,
i.e. x = f(q). In Section 3.5 some more details about possible choices for the
Cartesian coordinates x are given.

Throughout this chapter only the non-redundant case is considered, for which
the number of joint angles n and the number of Cartesian coordinates m are the
same m = n. Possible extensions to the redundant case will be treated in the
next chapter.

For the formulation of the desired dynamic behavior in terms of the Carte-
sian coordinates x, also the first and the second time derivatives, ẋ and ẍ, are
considered. With the Jacobian2 J(q) = ∂f(q)

∂q these derivatives can be written
as

ẋ = J(q)q̇ , (3.2)
ẍ = J(q)q̈ + J̇(q)q̇ . (3.3)

Considering (2.3), one can see that the Cartesian coordinates x = f (q) depend
on the joint variables qi by trigonometric (for revolute joints) and affine (for
prismatic joints) terms. Therefore, one can conclude that the maximum possible
singular value σM,J of the Jacobian keeps bounded3 within Qp, i.e.

σM,J := sup
q∈Qp

σmax(J(q)) < ∞ . (3.4)

Besides the restriction to the non-redundant case, which was already mentioned
before, it will, furthermore, be assumed that the Jacobian J(q) is non-singular4.
In general J(q) will, of course, not be non-singular in the whole configuration
space Qp. Then the analysis of this chapter is restricted to an area Q̄p in which
the invertibility is ensured. This is established herein by requiring that the min-
imum possible singular value of the Jacobian

σm,J := inf
q∈Q̄p

σmin(J(q)) (3.5)

2 In the robotics literature this matrix is sometimes called analytical Jacobian, in
contrast to the geometrical Jacobian, or the body Jacobian, respectively.

3 Note that Qp, as defined in (2.36), describes a subset of the configuration space Q
in which the prismatic joint variables keep bounded.

4 An appropriate singularity treatment will be briefly described in Section 3.4.
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must be bigger than some value σ0 > 0. Moreover, it is assumed that the mapping
f(q) is one-to-one in Q̄p. The corresponding area in Cartesian coordinates, i.e.
the image of Q̄p through f , is denoted by Q̄p

c

Q̄p := {q ∈ Qp | σmin(J(q)) > σ0 and f(q) is one-to-one} , (3.6)
Q̄p

c := f(Q̄p) = {x ∈ R
n | ∃q ∈ Q̄p , f(q) = x} . (3.7)

In the set Q̄p
c the Cartesian coordinates x can be used as generalized coordinates

of the system (3.1). In general it is, of course, not possible to find Cartesian
coordinates, for which Q̄p

c corresponds to the complete state space R
n. Still, for

the analysis of a Cartesian controller it is often interesting to investigate if a
(local) stability statement holds also globally under the assumption Q̄p

c = R
n.

If this is true, the stability region is only restricted by the particular choice of
coordinates.

The external torques τ ext shall be related to the vector of generalized external
forces F ext via τ ext = J(q)T F ext. Therefore, F ext is the dual variable to ẋ and
hence the power which is exchanged between the robot and its environment is
given by τT

extq̇ = F T
extẋ.

In order to specify the desired impedance behavior the position error x̃ =
x−xd between x and a (possibly time-varying) virtual equilibrium position5 xd

is introduced. Then the control objective is to achieve a dynamical relationship
of the form

Λd
¨̃x + Dd

˙̃x + Kdx̃ = F ext (3.8)

between x̃ and F ext, where Kd, Dd, and Λd are the symmetric and positive
definite matrices of the desired stiffness, damping, and inertia, respectively. In
principle one could of course also consider a more general impedance behavior.
But in most robotic applications the restriction of the impedance controller to
a desired behavior in form of such a mass-spring-damper-system is sufficient.

3.1.2 Robot Model in Task Coordinates

The robot model (3.1) is written in joint coordinates q, while the desired behavior
(3.8) is defined in task coordinates x. For the controller design it is easier to
rewrite the model (3.1) also in task coordinates as it is done in the operational
space formulation [Kha87]. Substituting q̈ = J(q)−1(ẍ− J̇(q)q̇) from (3.3) and
τ ext = J(q)T F ext into equation (3.1) leads to

M (q)J(q)−1
(
ẍ − J̇(q)q̇

)
+ C(q, q̇)q̇ + g(q) = τ + J(q)T F ext .

With q̇ = J(q)−1ẋ from (3.2) substituted in the second and the third term and
by pre-multiplying the resulting equation by J(q)−T , one gets

J(q)−T M(q)J(q)−1ẍ + J(q)−T C(q, q̇)J(q)−1ẋ−
J(q)−T M(q)J(q)−1J̇(q)J(q)−1ẋ + J(q)−T g(q) = J(q)−T τ + F ext .

5 As already mentioned in the introduction the set-point in impedance control usually
is called a virtual equilibrium point, because it actually should only be reached in
case that no external forces act on the robot.
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This equation can now be written in the form

Λ(x)ẍ + μ(x, ẋ)ẋ + J(q)−T g(q) = J(q)−T τ + F ext , (3.9)

where the matrices Λ(x) and μ(x, ẋ) are given by

Λ(x) = J(q)−T M(q)J(q)−1 , (3.10)

μ(x, ẋ) = J(q)−T
(
C(q, q̇) − M(q)J(q)−1J̇(q)

)
J(q)−1 , (3.11)

with q = f−1(x) and q̇ = J(f−1(x))ẋ. From a control point of view the use
of both the joint variables q and the Cartesian coordinates x simultaneously in
(3.10) and (3.11) is a little bit misleading, because the considered state variables
are only x and ẋ throughout this chapter. A direct representation of some com-
ponents in terms of q on the other hand is sometimes much clearer and simpler6.
Whenever the two representations are mixed, q and q̇ can be thought of being
replaced by q = f−1(x) and q̇ = J(f−1(x))ẋ, respectively.

In analogy to the external torques also the gravity torques g(q) and the joint
torques τ can be rewritten in form of the equivalent task space gravity forces
F g(x) = J(q)−T g(q) and the new input vector F τ , which is related to τ via
τ = J(q)T F τ . Therefore, the system equations finally have the form

Λ(x)ẍ + μ(x, ẋ)ẋ + F g(x) = F τ + F ext . (3.12)

The matrices Λ(x) and μ(x, ẋ) are the inertia matrix and the Coriolis/centrifugal
matrix with respect to the coordinates x.

Before the classical impedance control law for the model (3.12) is formulated,
two important lemmata of the model (3.12) are presented, which follow directly
from Property 2.5 and Property 2.6 (see [dWSB96]).

Lemma 3.1. The matrix Λ(x), as defined in (3.10), is symmetric and positive
definite for all positions x ∈ Q̄p

c .

Proof. Due to the restriction of x to Q̄p
c , the matrix Λ(x) is well defined. The

symmetry and the positive definiteness of Λ(x) follow directly from its definition
in (3.10) together with Property 2.5.

Lemma 3.2. The matrix Λ̇(x)− 2μ(x, ẋ), with Λ(x) and μ(x, ẋ) as defined in
(3.10) and (3.11), is skew symmetric for all x ∈ Q̄p

c and all ẋ ∈ R
m.

Proof. Due to the restriction of x to Q̄p
c both matrices Λ(x) and μ(x, ẋ) are well

defined. By Lemma A.22, one has to show that the equality Λ̇(x) = μ(x, ẋ) +
μ(x, ẋ)T holds. In the remaining part of the proof the arguments of the matrices
will be dropped in order to simplify the notation. From (3.10) and (3.11) and

6 Since the joint angles q and not the Cartesian coordinates x are the measured quan-
tities a representation in terms of q is also required for the actual implementation.



Complete Decoupling 33

the symmetry of M (Property 2.5) it follows that the matrices Λ̇ and μ + μT

are given by

Λ̇ =
d
dt

(J−T MJ−1)

=
d
dt

J−T MJ−1 + J−T ṀJ−1 + J−T M
d
dt

J−1 ,

μ + μT = J−T (C + CT )J−1 − J−T MJ−1J̇J−1

−J−T J̇
T
J−T MJ−1 .

Considering the equality Ṁ = C+CT , which follows from Property 2.6 together
with Lemma A.22, the term Λ̇ − μ − μT results in

Λ̇ − μ − μT =
d
dt

J−T MJ−1 + J−T M
d
dt

J−1

+ J−T MJ−1J̇J−1 + J−T J̇
T
J−T MJ−1

= (
d
dt

J−T + J−T J̇
T
J−T )MJ−1 + J−T M(

d
dt

J−1 + J−1J̇J−1) .

From the equality

0 =
d
dt

(I)J−1 =
d
dt

(J−1J)J−1

=
d
dt

J−1 + J−1J̇J−1

one can conclude Λ̇ − μ − μT = 0 which completes the proof.

Notice that these properties are not surprising at all, since (3.12) is nothing
else than the model (3.1) written in another set of coordinates. The matrix
μ(x, ẋ) in (3.12), however, could also have been chosen differently from (3.11).
The special form in (3.11) has the advantage that it ensures the validity of
Lemma 3.2. Equation (3.11) corresponds to the transformation of the Christoffel
symbols [Fra97, Boo03] from (2.30) into Cartesian coordinates, which means
that the same form of μ(x, ẋ) as in (3.11) is obtained, if it is computed via the
Christoffel symbols of Λ(x). Equation (3.10) clearly is the classical coordinate
transformation for a covariant tensor of rank 2 [Fra97, Boo03].

The restriction to Q̄p
c ensures also that, similar to Property 2.7, the eigenvalues

of the Cartesian inertia matrix keep bounded from above and below by some
non-zero bounds.

Property 3.3. Within Q̄p
c the eigenvalues λi(Λ(x)) of the Cartesian inertia

matrix keep bounded, i.e.

0 <
λm,M

σ2
M,J

≤ λi(Λ(x)) ≤ λM,M

σ2
m,J

< ∞ i = 1, · · · , n, ∀x ∈ Q̄p
c ,

with λm,M and λM,M as the minimum and maximum possible eigenvalues of
the inertia matrix as defined in (2.37) and (2.38), and σm,J and σM,J as the
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minimum and maximum possible singular value of the Jacobian as defined in
(3.4) and (3.5).

Proof. This property follows directly from the definition of Λ(x) in (3.10) to-
gether with Property 2.7 and the definition of Q̄p

c .

This property will be of interest for the analysis of the desired impedance be-
havior in Section 3.2 as well as for the controller design in Chapter 6.

3.1.3 Classical Impedance Controller

The classical impedance control law [Hog85a, Hog85b] can be directly computed
from equation (3.12) [Kha87]. The control input F τ which leads to the desired
closed loop system (3.8) is given by

F τ = F g(x) + Λ(x)ẍd + μ(x, ẋ)ẋ − Λ(x)Λ−1
d

(
Kdx̃ + Dd

˙̃x
)

+(
Λ(x)Λ−1

d − I
)
F ext .

This Cartesian impedance controller is then actually implemented via the joint
torques τ as follows

τ = J(q)T F τ (3.13)
= g(q) + J(q)T (Λ(x)ẍd + μ(x, ẋ)ẋ) −

J(q)T Λ(x)Λ−1
d

(
Kdx̃ + Dd

˙̃x
)

+

J(q)T
(
Λ(x)Λ−1

d − I
)
F ext . (3.14)

One can see that the shaping of the desired impedance in this case also contains
a feedback of the external forces F ext. These forces are usually measured by
means of a force-torque-sensor mounted at the end-effector. But in general there
might also be external forces which do not act on the tool but directly on the
robot structure and thus cannot be measured. Since these forces are not included
in the measurement of F ext, it is clear that the closed loop impedance behavior
with respect to these forces will be quite different. Notice that, from a practical
point of view, this is typically much more relevant in service robotics than in
industrial applications. Clearly, when the robot is interacting with humans this
interaction is not necessarily restricted to the tool of the robot.

The need for feedback of the external forces follows from the requirement
that not only the stiffness and damping behavior of the robot should be shaped
but also the inertial behavior. However, in many applications this is not neces-
sary. Therefore, a simplified control objective is considered in the next section,
in which an explicit shaping of the apparent inertia is not considered and the
emphasis is laid on the shaping of the stiffness and the damping.

3.2 Avoidance of Inertia Shaping

The feedback of external forces F ext can be avoided when the desired inertia Λd

is identical to the robot inertia Λ(x)

Λd = Λ(x) . (3.15)
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Since the desired inertia depends on the position x, also the relevant centrifugal
and Coriolis terms should be considered in the specification of the desired closed
loop behavior. This is necessary in order to fulfill Lemma 3.2 and thus to ensure
the passivity of the system for the regulation case (see also Proposition 3.5
below). The desired dynamic relationship between x̃ and F ext is given as

Λ(x)¨̃x + (μ(x, ẋ) + Dd) ˙̃x + Kdx̃ = F ext , (3.16)

where Kd and Dd are again the symmetric and positive definite matrices of
desired stiffness and desired damping, respectively. In the regulation case (i.e.
for ẋd = 0) this control objective is often called compliance control problem.

Before presenting the controller which leads to the closed loop system (3.16),
a short comparison to the original desired dynamics (3.8) shall be given in or-
der to justify the choice of (3.16). Consider first the case of free motion, i.e.
F ext = 0. The asymptotic stability of the original desired dynamics (3.8) is en-
sured for this case simply by the fact that the desired stiffness, damping, and
inertia matrices are positive definite. The original desired dynamics is even linear
and time-invariant. The stability properties of the new dynamics (3.16) are not
that obvious. Clearly, the system (3.16) is nonlinear due to the use of a posi-
tion dependent inertia matrix. Furthermore, it is time-varying7, since the virtual
equilibrium position xd(t) may be a two-times continuously differentiable func-
tion of the time t. Some relevant definitions and lemmata regarding the stability
analysis of time-varying systems can be found in Appendix A.1.

Without going into the details, it should be mentioned that the stability of
(3.16) for the case of free motion can be shown by considering the (time-varying)
Lyapunov function

V (x̃, ˙̃x, t) =
1
2

˙̃xT Λ(x) ˙̃x +
1
2
x̃T Kdx̃ . (3.17)

The change of this Lyapunov function along the solutions of (3.16) is negative
semi-definite, which implies stability but not asymptotic stability. However, for
free motion, the dynamics in (3.16) is equivalent to the closed loop system of
the well known PD+ controller [PP88] written in task coordinates. Asymptotic
stability of the PD+ controller in configuration space was shown in [PP88]. Fur-
thermore, a strict Lyapunov function for this system was presented in [SK97b].
In both works the boundedness of the inertia matrix M (q), as formulated in
Property 2.7, was required. The equivalent statement for the Cartesian inertia
matrix Λ(x) is ensured in Property 3.3 due to the restriction to Q̄p

c . According
to the proof in [SK97b] (for the same controller in configuration space) the sta-
bility statement formulated in the following proposition holds even globally, if
Q̄p

c corresponds to the complete state space R
n.

Proposition 3.4. Let the desired trajectory xd(t) be continuously differentiable
twice. Assume further that the Cartesian coordinates are valid globally, i.e. Q̄p

c =
R

n. Then for F ext = 0 the system (3.16) with symmetric and positive definite
matrices Kd and Dd is uniformly globally asymptotically stable.
7 Notice the occurrence of both x and x̃ = x − xd(t) in (3.16).



36 Cartesian Impedance Control: The Rigid Body Case

Another important feature of the original desired dynamics (3.8) is that in the
regulation case (i.e. ẋd = 0) it represents a passive mapping from external
generalized forces F ext to the velocity ẋ. This property is especially important
if the interaction of the robot with passive8 environments is considered. By
considering (3.17) as a storage function it can be shown for the regulation case
that the system (3.16) also represents a passive mapping from the external force
F ext to the velocity ẋ.

Proposition 3.5. For ẋd(t) = 0, the system (3.16) with symmetric and positive
definite matrices Kd and Dd is time-invariant and represents a passive mapping
from the external force F ext to the velocity ẋ.

By following the same argumentation as for the classical impedance controller
from the last section, one gets the control law

F τ = F g(x) + Λ(x)ẍd + μ(x, ẋ)ẋd − Kdx̃ − Dd
˙̃x ,

to achieve the dynamics (3.16). For the implementation of this controller a for-
mulation at the joint level

τ = J(q)T F τ

= g(q) + J(q)T
(
Λ(x)ẍd + μ(x, ẋ)ẋd − Kdx̃ − Dd

˙̃x
)

(3.18)

is more convenient.
The desired stiffness usually is given by the application. The new desired

impedance behavior (3.16) then brings up the problem of how to choose the
damping matrix. This problem is treated in the next section.

3.3 Design of the Damping Matrix

In case of the original desired dynamics (3.8) the desired inertia matrix Λd is
constant and can be designed in principle such that its eigenvectors coincide with
the eigenvectors of Kd. The design of the damping matrix can then be reduced to
the design of the damping coefficients for n decoupled linear and time-invariant
second order systems, each describing the dynamics of the system along one of
the eigenvectors.

For the new desired dynamics (3.16) the situation is different. The desired
stiffness matrix must be constant and is usually defined by the application being
considered. The design of the desired damping matrix, instead, is not so clear.
Notice that a constant and diagonal matrix Dd, in general, is not a good choice,
since the inertia matrix is non-diagonal and time-varying. Instead, one should
also take into account the particular structure and the change of Λ(x) during
movement.

For the design of the damping matrix it should be mentioned that all the
stability and passivity properties from above will also hold, when the constant
8 Here the velocity ẋ is considered as the input and the negative external force −F ext

as the output of the environment.
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matrix Dd in (3.16) is replaced by an arbitrary, but positive definite, position
dependent9 matrix Dd(x).

In [ASOFH03] two different methods, how to choose the matrix Dd(x) for a
given symmetric and positive definite stiffness matrix Kd, were proposed and
evaluated for the DLR lightweight robots. In the following only the method
based on the generalized eigenvalue decomposition of symmetric matrices will be
presented in more detail. For this, the following lemma is formulated10 [Har97].

Lemma 3.6. Given a symmetric and positive definite matrix A ∈ R
n×n and a

symmetric matrix B ∈ R
n×n. Then one can find a non-singular matrix Q ∈

R
n×n and a diagonal matrix B0 ∈ R

n×n, such that QT Q = A and B =
QT B0Q.

The elements of this diagonal matrix B0 are called the generalized eigenvalues
of B with respect to A. If the matrix B is positive definite, the generalized
eigenvalues will be positive. In order to design the matrix Dd(x) in (3.16) a
quasi-static analysis is performed, which means that in each position x0 the
system is approximated by the following linear time-invariant system

Λ(x0)¨̃x + Dd(x0) ˙̃x + Kdx̃ = F ext , (3.19)

wherein the Coriolis/centrifugal matrix is neglected and the matrices Λ(x0) and
Dd(x0) are considered as constant. By applying Lemma 3.6 (with Λ(x0) and
Kd corresponding to A and B respectively) the matrices Kd and Λ(x0) can
be diagonalized simultaneously by a non-singular matrix Q(x0), such that the
system (3.19) can be written in the form

Q(x0)T Q(x0)¨̃x + Dd(x0) ˙̃x + Q(x0)T B0(x0)Q(x0)x̃ = F ext , (3.20)

with a positive definite diagonal matrix B0(x0).
Let λΛ

K,i be the ith diagonal element of B0. This is the ith generalized eigen-
value of Kd with respect to Λ(x0). Then the matrix Dd(x0) can be chosen as

Dd(x0) = 2Q(x0)T diag(ξi

√
λΛ

K,i)Q(x0), where ξi is a damping factor11 to be
chosen in the range [0, 1].

Clearly, by this choice the system can be written in the state variable z =
Q(x0)x̃ in the following form

z̈ + 2 diag(ξi

√
λΛ

K,i)ż + diag(λΛ
K,i)z = Q(x0)−T F ext . (3.21)

It should be mentioned again that the above approximations are only used for
the design of the damping matrix and do not affect the stability properties of
the system, because it is ensured that the damping matrix is always positive
definite.
9 It can even be chosen time-varying.

10 The author would like to thank Udo Frese for pointing out this feature of positive
definite matrices.

11 Corresponding to the ith generalized eigenvector.
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3.4 Singularity Treatment

In the previous sections it was assumed that J(q) is non-singular in the consid-
ered workspace. Generally, two different types of singularities are to be distin-
guished: representation singularities and kinematic singularities. The first ones
are the result of the particular choice of local coordinates x which describe the
configuration hst(q) ∈ SE(3) of the tool-frame. It is well known that every
minimal representation of SO(3), and hence also of SE(3), will have such sin-
gularities. They can in practice be handled by using different representations
for different regions of the workspace. Switching between these different repre-
sentations, however, is a critical issue. The only way to avoid such singularities
completely is to use a non-minimal parametrization instead. A method how
to construct a singularity-free Cartesian stiffness based on such a non-minimal
parametrization will be reviewed in Section 3.5.2.

The second type of singularities, the kinematic singularities, however, cannot
be avoided. They are inherently connected to the kinematic structure of the
manipulator, representing the inability to produce an arbitrary movement of
the end-effector at certain joint configurations. From a mathematical point of
view the kinematic singularities are the singularities of the body Jacobian. It is
clear that near a singular configuration the desired impedance behavior (3.16)
in general cannot be achieved exactly but will be distorted. By using a control
law like (3.18) the robot simply might get stuck when moving through a singular
configuration because the second term in (3.18) might vanish.

One method for the control of manipulators at kinematic singularities was
proposed in [CK95]. In this work a factorization of the determinant of the body
Jacobian is required, in which each term corresponds to one of the different singu-
lar configurations of the robot. When approaching such a singular configuration
the controller splits up into two parts. One part in the controller is used to con-
trol the distance of the joint configuration from the next singular configuration
via the relevant term in the factorization. The other part basically controls the
movement orthogonally12 to the singular direction by the classical operational
space formulation [Kha87]. While this is a quite effective approach, especially
(but not only) for the use in a position controller, in case of an impedance
controller one sometimes13 prefers simply to avoid the singular configurations.

In this section a possible solution for avoiding the singularities is introduced.
This will implicitly restrict the manipulators workspace, but this restriction will
be done in a generic way without the need to know all the singular configurations
in advance.

In order to implement the singularity avoidance, the Cartesian impedance
controller from (3.18) is combined with a second impedance controller which
forces the manipulator to move away from singular configurations. The com-
bination of the two controllers can be done by considering the superposition
12 Notice that the term orthogonality, as it was used in [CK95], actually requires the

choice of a particular metric.
13 It clearly depends on the application whether the avoidance of singularities is ad-

missible or not.
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Fig. 3.1. Superposition of the Cartesian impedance controller and the singularity
avoidance

principle for impedances [Hog85a, BS98]. According to this multiple impedance
components coupled to an admittance may be assembled simply by adding their
output torques even if the behavior of the impedances is nonlinear.

For the construction of a singularity avoidance potential, the kinematic ma-
nipulability measure [Yos90]

mkin(q) =
√

det(J(q)J(q)T ) (3.22)

is used. The singularity avoidance potential is chosen as

Vm(q) =

⎧⎨
⎩ks(mkin(q) − m0)2 mkin(q) ≤ m0

0 mkin(q) > m0

, (3.23)

where ks ∈ R is a positive scalar factor controlling the gain of the singularity
avoidance. The upper bound m0 > 0 ∈ R for mkin(q) determines the area around
a singular configuration, in which the singularity avoidance will be active. These
two parameters are the design parameters.

Let τ c denote the output torque of the Cartesian impedance controller from
the last section, then the complete control law with singularity avoidance is given
by

τ = τ c − ∂Vm(q)
∂q

. (3.24)

Notice that instead of mkin(q) one could also use the dynamic manipulability
measure mdyn(q) =

√
det(J(q)M (q)−1M (q)−T J(q)T ) [Yos90]. With regard

to the implementation the use of the kinematic measure has the advantage of
consuming less computation power.

Some additional remarks concerning the effects of the singularity avoidance
on the stability properties of the closed loop system are in order. Notice that the
singularity avoidance will only be active when the manipulator configuration is
near to a singularity. Far14 from the singularities, only the Cartesian impedance
14 Measured by the condition mkin(q) > m0.
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controller is active. If one assumes that the virtual equilibrium position is far
away from the singularities and that the desired stiffness is not too low, it is clear
that the singularity avoidance will not affect the (local) stability of the system.
On the other hand it should be mentioned that it indeed could happen that,
near to a singularity, the torques due to the Cartesian stiffness potential and the
singularity avoidance potential counterbalance each other. Thereby, the complete
potential function may have a local minimum other than the desired equilibrium
position. Then the robot clearly could get stuck while moving through this local
minimum, which, however, will be close to the singular configuration.

3.5 Remarks on the Stiffness Implementation

In the previous sections, it was assumed that the end-effector pose can be de-
scribed by some end-effector coordinates x = f (q) and that the Cartesian error
x̃ reads accordingly as x̃ = x−xd. In contrast to the damping matrix discussed
in Section 3.3, the desired stiffness matrix Kd is required to be a constant ma-
trix. Otherwise the stability statement from Proposition 3.4 would not be valid
any more.

In this section it will be explained how the particular choice of the used
Cartesian coordinates f (q) in the control law (3.18) affects the resulting stiff-
ness behavior. For this it is assumed that the Cartesian coordinates x ∈ R

6 can
be split up into two components xt ∈ R

3 and xr ∈ R
3 describing the end-effector

position and orientation, respectively. Analogously, the translational error is de-
noted by x̃t ∈ R

3 and the rotational error by x̃r ∈ R
3. In accordance with the

translational and rotational error, the stiffness matrix Kd is partitioned into a
translational stiffness Kt, a rotational stiffness Kr, and a coupling stiffness Kc,
i.e.

Kd =

⎡
⎣Kt Kc

KT
c Kr

⎤
⎦ .

As described in Section 2.1 the pose of the end-effector, i.e. the pose of the tool
frame T , is given by the forward kinematics map hst(q) : Q → SE(3), which
can be computed by the product of exponentials formula (2.3). According to the
notation of Chapter 2 the rotational part of hst(q) is denoted by Rst(q) ∈ SO(3)
and the translational part by pst(q) ∈ R

3. Given a (time-varying) virtual pose
hsd(t) ∈ SE(3), corresponding to a (time-varying) desired frame D, the deviation
of hst(q) from hsd(t) can be described by

hdt(q, t) = h−1
sd (t)hst(q) =

⎡
⎣Rdt(q, t) dpdt(q, t)

0 1

⎤
⎦ . (3.25)

The following discussion is split up into two parts. Section 3.5.1 clarifies some
aspects concerning the implementation of the translational stiffness Kt, and
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Section 3.5.2 describes different orientation representations according to the ro-
tational stiffness Kr. The coupling stiffness Kc can be designed similarly. Since
it is not used in the applications of Chapter 9 it is not considered here in detail,
i.e. Kc = 0.

3.5.1 Translational Stiffness

The vector dpdt(q, t) in (3.25) corresponds to a vector from the origin of the
desired frame D to the origin of the tool frame T , represented in frame D. From
this one can get an appropriate set of translational end-effector coordinates by
rotating this vector into the base frame S

pdt(q, t) = Rsd(t)dpdt(q, t) = pst(q) − psd(t) . (3.26)

Then, one can choose xt = pst(q) as translational coordinates and psd(t) as
their corresponding virtual equilibrium position. By this choice the translational
part of the stiffness matrix corresponds to a stiffness, which is represented in the
base frame S, and consequently the eigenvectors of Kt, corresponding to the
principal axes of the stiffness matrix, are constant vectors expressed in the base
frame.

For some applications it is instead desired to use a stiffness implementation in
which the principal axes of the stiffness matrix are defined (as constant vectors)
in the desired frame D or the tool frame T . Then, one must refer to a different
set of coordinates. If for instance the vector dpdt(q, t) is used as the translational
part x̃t of the Cartesian error x̃, this corresponds to a stiffness representation in
D. For a stiffness representation in T one can accordingly use translational co-
ordinates of the form tpdt(q, t) = Rtd(q, t)dpdt(q, t). Notice that (except for the
choice xt = pst(q)) one cannot write x̃t as the difference between a configuration
dependent coordinate xt(q) and a time-varying (but configuration-independent)
virtual equilibrium position xd(t) any more. However, the impedance controllers
of the last sections can of course be easily adapted to this case. This will be
treated in more detail in Section 3.5.3.

3.5.2 Rotational Stiffness

While the procedure for the translational part of the stiffness was quite straight-
forward, the situation is more complex for the orientation representation. It
is well known that no global minimal representation of SO(3) exists. Differ-
ent choices of orientation coordinates for the use in Cartesian controllers were
analyzed in detail in [Nat03]. In this section two different approaches for the im-
plementation of a rotational stiffness are shortly discussed, namely Euler angles
and unit quaternions.

Consider a set of Euler angles φst(q) = φ(Rst(q)) ∈ R
3 computed directly

from the rotation matrix Rst(q). One can build the classical Euler angle based
orientation error φ∗

dt(q, t) = φst(q)−φsd(t). But this approach to formulate the
orientation error has a major drawback: Singularities are encountered whenever
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either the robot orientation φst(q) or the desired equilibrium orientation φsd(t)
is singular. This can happen for arbitrary small orientation errors. A much better
approach is to compute the Euler angles from the difference frame htd(q, t) via
tφtd(q, t) = φ(Rtd(q, t)). This representation, sometimes called modified Euler
angle representation, is much more robust against singularities. If, for instance,
the well known roll-pitch-yaw representation is used, then the representation
does not contain any singularities up to an orientation error of π/2.

The main disadvantage of an Euler angle based stiffness is the occurrence of
representation singularities. These can only be avoided if one refers to a non-
minimal representation of the end-effector orientation. Herein, only the use of the
so-called unit quaternions15 will be shortly discussed. A detailed exposition of
unit quaternions is beyond the scope of this section, only some relevant properties
are reported. More details on the use of unit quaternions can be found e.g. in
[CNSV99, Nat03] and the references cited therein.

A unit quaternion (η, ε) consists of a scalar part η ∈ R and a vector part
ε ∈ R

3, which fulfill the condition η2 + εT ε = 1. The relation between a rotation
matrix and unit quaternions is given as follows. Suppose that a rotation matrix
is specified by a rotation of an angle α about an axis r (with ||r||2 = 1), then
the corresponding unit quaternion is given by η = cos(α/2), ε = r sin(α/2).
With the restriction of α to the interval [−π, π] the set of unit quaternions is a
one-to-one covering of SO(3). In contrast to Euler angles, unit quaternions give
a singularity-free representation of SO(3).

Let εdt(q, t) be the vector part of the unit quaternion according to the rota-
tion matrix Rdt(q, t). For the implementation of a rotational stiffness, one can
then refer to the following orientation error x̃r(q, t) := 2εdt(q, t). Notice that this
quantity (and thus also the resulting stiffness term) is periodic with respect to α.

Herein, only the most commonly used types of stiffness implementations were
discussed. Their relation to the controllers from this book will be clarified in the
next section. For another interesting class of stiffness implementations the reader
is referred to [FH95, FB97, Fas97, ZF00, SD01, Str01], in which the so-called
spatial stiffness is discussed.

3.5.3 Consequences for the Closed Loop Dynamics

The previous two sections led to a Cartesian error x̃(q, t) which cannot be written
as the difference between an actual and a desired quantity. In the following it is
shown how the model from Section 3.1.2 must be adapted in order to cope with
this situation.

The first and second derivatives of the error vector x̃(q, t) are given by

˙̃x =
∂x̃(q, t)

∂q
q̇ +

∂x̃(q, t)
∂t

,

¨̃x =
∂x̃(q, t)

∂q
q̈ +

d
dt

(
∂x̃(q, t)

∂q

)
q̇ +

d
dt

∂x̃(q, t)
∂t

.

15 For unit quaternions also the term Euler parameters is sometimes used.
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These equations replace (3.2) and (3.3). The equations of motion for the error
vector x̃ can now be derived by following the same steps as in Section 3.1.2. For
the ease of presentation the following substitutions are made

∂x̃(q, t)
∂q

= Jx(q, t) ,

∂x̃(q, t)
∂t

= −vt(q, t) .

Therefore, one gets the following equations of motion

Λ(q, t)(¨̃x + v̇t(q, t)) + μ(q, q̇, t)( ˙̃x + vt(q, t)) + Jx(q, t)−T g(q) −
Jx(q, t)−T (τ + τ ext) = 0 ,

where Λ(q, t) and μ(q, q̇, t) are the relevant Cartesian inertia matrix and Cori-
olis/centrifugal matrix

Λ(q, t) = Jx(q, t)−T M(q)Jx(q, t)−1 ,

μ(q, q̇, t) = Jx(q, t)−T
(
C(q, q̇) − M(q)Jx(q, t)−1J̇x(q, t)

)
Jx(q, t)−1 ,

analogous to (3.10) and (3.11). Comparing this equation with (3.12), one can
see that the same controllers as in the previous sections can be used, when the
following substitutions are made

J(q) → Jx(q, t) ,

ẋd → −vt(q, t) ,

ẍd → −v̇t(q, t) .

Notice that, although these quantities become time-varying now, these substi-
tutions do not alter the stability statements presented in this book.

Explicit formulas of Jx(q, t) and vt(q, t) for the different sets of local coordi-
nates can be given in terms of the body Jacobian Jb(q). Notice therefore that
Jb(q), as defined in Section 2.1, is used to compute the translational velocity
tvst = Rtsṗst and the angular velocity tωst = Rtsωst, expressed in the tool
frame ⎛

⎝tvst

tωst

⎞
⎠ = Jb(q)q̇ . (3.27)

3.6 Summary

In this chapter the Cartesian impedance control problem for a (conventional)
robot model without joint flexibility was discussed. First the general solution
according to a desired impedance in form of a generalized mass-spring-damper
system was treated. Then the situation for an impedance controller without in-
ertia shaping was analyzed in detail. In particular this brought up the problem
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of designing the Cartesian damping matrix appropriately. For this problem a
solution based on the simultaneous diagonalization of positive definite matrices
was proposed. Moreover, the singularity avoidance problem was discussed, and a
solution based on the superposition of impedances [Hog85c] was proposed. Then
some additional details on the choice of Cartesian coordinates were discussed
which lead to stiffness representations with respect to different frames. These
issues, though practically relevant, are only rarely addressed in the robotics lit-
erature. Finally, an alternative orientation stiffness implementation which avoids
the analytical singularities inherent to any minimal representation of SO(3) was
briefly discussed for further reference.



4 Nullspace Stiffness

In the previous chapter the non-redundant case was treated in which the number
m of task coordinates is equal to the number n of configuration coordinates (m =
n). The DLR lightweight robots, instead, have n = 7 joints, while the end-effector
motion is described only by m = 6 degrees-of-freedom. The remaining n − m
degrees-of-freedom can be used for so-called nullspace motions that keep the
end-effector fixed. Therefore, the question arises how to control these redundant
degrees-of-freedom.

Throughout this chapter the same notation is used as in Chapter 3. Thus it
is assumed that the end-effector task can be described by m local coordinates
x ∈ R

m, while the robot configuration is described by the n coordinates q ∈ Q.
The forward kinematics map f : Q → R

m from configuration space to task space
and the relevant (analytical) Jacobian J(q) = ∂f(q)

∂q ∈ R
m×n are known

x = f(q) , (4.1)
ẋ = J(q)q̇ . (4.2)

In the redundant case one has m < n and hence the end-effector coordinates
only partly specify the robot configuration.

In this chapter only the non-singular case is treated. Thus it is assumed
that the Jacobian J(q), which is now a rectangular matrix, has full rank, i.e.
rank(J(q)) = m, in the considered workspace. An appropriate way how to deal
with kinematic singularities is described in Section 3.4.

Again a rigid body model of the manipulator dynamics is assumed throughout
this chapter. Hence, the considered robot dynamics is given by

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + τ ext , (4.3)

with the same notation as used in Chapter 3.
One approach to treat a redundant robot is to augment the task coordinates

x by r = n − m auxiliary variables, the nullspace coordinates. This augmen-
tation can be done either for the generalized positions (via nullspace position
coordinates n ∈ R

r), as it is done in the Task Space Augmentation Method

C. Ott: Cartesian Imped. Cntrl. of Redund. & Flexible-Joint Robots, STAR 49, pp. 45–63, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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[Bai85, Sic90], or for the generalized velocities (via nullspace velocity coordi-
nates vn ∈ R

r), as in the Joint Space Decomposition Method [Par99, OCY98].
The problem of finding appropriate coordinates and the decoupling of the task
dynamics from the nullspace dynamics will be discussed for both methods.

The additional nullspace coordinates will be constructed using a nullspace
base matrix Z(q) ∈ R

r×n which is composed of r row vectors that are linearly
independent and span the (right) nullspace of the Jacobian J(q). Section 4.1
treats the problem how to compute such a matrix. Thereafter, first a simple
approach to control the nullspace motion is described in Section 4.2 based on the
superposition principle for impedances. This approach is easy to implement, since
it does not rely on an explicit construction of nullspace coordinates. However,
it does not enable a complete stability analysis. Then the two above mentioned
methods for the generation of nullspace coordinates are described in Section 4.3
and 4.4 and their use for the impedance control problem is analyzed.

4.1 Computation of the Nullspace Base Matrix

In this section it is shown, how to construct a nullspace base matrix Z(q) ∈ R
r×n

for the Jacobian J(q) ∈ R
m×n. The presentation focuses on an approach which

gives the nullspace base matrix in a symbolic form.

4.1.1 The General Case

As already mentioned in the introduction of this chapter it is assumed that the
matrix J(q) has full row rank in the considered workspace, i.e. singularities are
avoided. By reordering the columns of J(q), one can always write J(q) in the
partitioned form

J(q) =
[
Jm(q) Jr(q)

]
, (4.4)

such that the left part, i.e. the quadratic matrix Jm(q) ∈ R
m×m, is (at least

locally) invertible. Let further the desired nullspace base matrix be partitioned
correspondingly as Z(q) =

[
Zm(q) Zr(q)

]
, where the matrices Zm(q) ∈ R

r×m

and Zr(q) ∈ R
r×r are to be determined, such that J(q)Z(q)T = 0 holds and

such that Z(q) has full row rank.
With the chosen partitioning the condition J(q)Z(q)T = 0 can be written as

Jm(q)Zm(q)T + Jr(q)Zr(q)T = 0 . (4.5)

One possible solution of this equation is given by the particular choice

Zm(q)T = −Jm(q)−1Jr(q) , (4.6)
Zr(q)T = I , (4.7)
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which by construction gives a full rank nullspace base matrix1. The matrix Z(q)
is then given by

Z(q) =
[
−Jr(q)T Jm(q)−T I

]
. (4.8)

This form of Z(q) was originally proposed by Huang and Varma in [HV91] and
has afterwards been used by many authors. But the matrix Z(q) obviously is
not unique and could have been chosen differently. One notable modification
was presented for instance by Chen and Walker in [CW93] in which a scaling
of Z(q) by the factor det(Jm(q)) was proposed, i.e. Z̄(q) = det(Jm(q))Z(q).
Notice that the inverse of Jm(q) can be written as

Jm(q)−1 = adj(Jm(q))/det(Jm(q)) ,

where adj(Jm(q)) is the adjoint matrix to Jm(q) (see, e.g., [HJ90]). Thus, the
new nullspace base matrix, as proposed by Chen and Walker, is given by

Z̄(q) =
[
−Jr(q)T adj(Jm(q))T det(Jm(q))I

]
. (4.9)

One very interesting2 property of this nullspace base matrix is the equality
mkin(q) = det(J(q)J(q)T ) = det(Z̄(q)Z̄(q)T ). The proof of this and other
useful properties can be found in [CW93].

4.1.2 The Case of a One-Dimensional Nullspace

The search for an invertible submatrix Jm(q) which was required in the last
section can be avoided when the degree of redundancy r = n−m is one. This is for
instance the case for the DLR lightweight robots. Then the matrix Z̄(q) ∈ R

r×n

reduces to the row vector z(q) =
[
z1(q) · · · zn(q)

]
. Consider the matrix

Jz(q) =

⎛
⎝J(q)

z(q)

⎞
⎠ . (4.10)

In the following the vector z(q) will be constructed such that the matrix Jz(q)
is invertible. Notice that then the inverse of Jz(q) can be written in the form
Jz(q)−1 = adj(Jz(q))/det(Jz(q)). Due to Jz(q)adj(Jz(q)) = det(Jz(q))I, the
last column cn(q) of adj(Jz(q)) clearly fulfills the condition J(q)cn(q) = 0.

Notice that the adjoint is the transposed matrix of co-factors3 and therefore
the elements of the column vector cn(q) are given by the (n, i)th co-factors of
1 Notice that the rank of any matrix is equivalent to the dimension of its largest

non-singular submatrix [HJ90].
2 Notice that this property suggests an efficient method to compute the kinematic

manipulability measure mkin(q) =
p

det(J(q)J(q)T ) from [Yos90] which was also
used in (3.22).

3 The co-factors of a matrix are the signed minors, see, e.g., [HJ90].
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Jz(q). Since these (n, i)th co-factors are computed from the submatrix J(q)
alone and do not depend on z(q), one can choose z(q) = cn(q)T . The elements
zi(q) of z(q) can thus be computed by

zi(q) = (−1)n+idet(J i(q)) , (4.11)

where J i(q) ∈ R
m×m is the matrix J(q) with the ith column omitted.

4.2 Projection Based Approaches

The superposition principle for impedances provides a suitable framework for the
combination of different impedance behaviors. As described in detail by Hogan
[Hog85a, Hog85b, Hog85c], this superposition can be done very easily by adding
up the outputs, i.e. joint torques, of the different impedances (see also Section
3.4). The Cartesian impedance controller from Section 3.2 gives the following
joint torque as an output, cf. (3.18),

τ c = g(q) + J(q)T F imp , (4.12)
F imp = Λ(x)ẍd + μ(x, ẋ)ẋd − Kdx̃ − Dd

˙̃x . (4.13)

Hence, the combination with a nullspace impedance, which results in a joint
torque output vector τn, can simply be done by

τ = τ c + τn , (4.14)

as it is sketched in Figure 4.1. In this section it will be shown, how such a
nullspace impedance with output τn can be designed in an intuitive way. First,
note that for a chosen virtual equilibrium position qd,0, one can define a simple
joint space impedance in the form

τ 0 = −Dnq̇ − Kn(q − qd,0) , (4.15)

xd

Impedance

Dynamics
Robot q, q̇

Cartesian

Nullspace
Impedance τ n

τ

τ c

Fig. 4.1. Superposition of the outputs of the Cartesian impedance controller and the
nullspace impedance controller
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where the symmetric and positive definite matrices Kn ∈ R
n×n and Dn ∈ R

n×n

represent a desired stiffness and damping behavior with respect to the configu-
ration coordinates. Notice that, in view of the combination with the Cartesian
impedance, qd,0 should be chosen properly, such that it is consistent with the
virtual Cartesian equilibrium position xd. This means it should satisfy the con-
dition f(qd,0) = xd. If this is not established, it clearly is not possible to reach
statically (and for the case of free motion) both the desired Cartesian position
and the desired nullspace configuration simultaneously. Instead, only a (local)
minimization of the constrained cost function (q − qd,0)T Kn(q − qd,0)|f(q)=xd

can be achieved while fulfilling the (usually more important) Cartesian equilib-
rium condition x = xd.

The impedance in (4.15) cannot be used directly because it would distort the
desired Cartesian impedance behavior. In order to kinematically decouple the
joint space impedance from the Cartesian impedance behavior, one may project
the torque τ 0 via a matrix P (q), i.e.

τn = P (q)τ 0 , (4.16)

onto the complement of the range of J(q)T . In the following, three different
kinds of projection matrices P i(q) will be examined in more detail. Consider
therefore first the following proposition about the construction of projection
matrices [BM92] (see also the Definitions A.18 and A.19).

Proposition 4.1. Consider an m-dimensional subspace A of R
n described as

the range of an n×m matrix A ∈ R
n×m with full rank, i.e. A := {y ∈ R

n|∃x ∈
R

m, y = Ax}. Let G ∈ R
n×n be a symmetric and positive definite matrix defin-

ing a metric for the co-domain space R
n. Then the matrix4

P = A
(
AT GA

)−1

AT G ∈ R
n×n (4.17)

is a projection matrix (i.e. it fulfills the idempotency property PP = P ), and
it projects an element of R

n orthogonally (with respect to G) onto A (see Figure
4.2). It thus fulfills the condition P A = A. Furthermore, a projection matrix
which projects an element of R

n onto the orthogonal complement A⊥ of A is
given by

P c = I − P ∈ R
n×n. (4.18)

Notice that the conditions P cA = 0 and P cP c = P c both hold.

The equations (4.17) and (4.18) offer different ways to construct the projection
matrix for the nullspace impedance. In the next two subsections a projection
matrix P (q) onto the nullspace of J(q)T is designed based on the nullspace base
matrix Z(q) by using (4.17). This projection is then compared to the dynamically
consistent nullspace projection from the operational space formulation which is
based on (4.18).
4 The factor (AT GA)−1 basically acts as a normalization herein.
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R
m

R
n

A

P

P c

A

A⊥

Fig. 4.2. Projections onto the range space and onto its complement

Static Nullspace Projection

The desired projection P (q) should be designed such that any torque vector
τn of the form τn = P (q)τ 0 is orthogonal (with respect to some, so far arbi-
trary, metric G(q)) to the Cartesian torque τ c = J(q)T F imp. This means that
τT

c G(q)τn = 0 should hold and clearly results in the requirement

J(q)G(q)P (q) = 0 . (4.19)

The matrix G(q) is assumed to be chosen symmetric and positive definite in
order to qualify as a metric. The matrix Z(q) consists of r vectors zi(q) which

span the (right) nullspace of the Jacobian, i.e Z(q) =
[
z1(q) · · · zr(q)

]T

. Then
a suitable choice for P (q), which ensures the condition (4.19), is a projection
onto the range of G(q)−1Z(q)T (see Figure 4.3). By (4.17) from Proposition 4.1
(with G(q)−1Z(q)T corresponding to A and G(q) as the considered metric) one
can compute such a projection matrix as

P 1(q) = G(q)−1Z(q)T
(
Z(q)G(q)−1Z(q)T

)−1
Z(q) . (4.20)

Notice that the projection P 1(q) is solely based on the kinematics of the ma-
nipulator, the dynamics has not been taken into account so far and the metric
G(q) could therefore be chosen arbitrarily. If for instance the Euclidean metric
is chosen and the vectors zi(q) in Z(q) form an orthonormal basis, then the
projection has the simple form Z(q)T Z(q).

R
r

R
m

R
n

G(q)−1Z(q)T

J(q)T

P 1(q)

P 4(q)

range(G(q)−1Z(q)T )

range(J(q)T )⊥

Fig. 4.3. Nullspace projections

Dynamically Consistent Projection

The fact that the metric G(q) of the last section can be chosen arbitrarily is the
result of considering only the kinematics, but not the dynamics. In order to take
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also the dynamics of the manipulator into account one may consider the relation
between the Cartesian acceleration ẍ and the joint torques τ . Therefore, one
pre-multiplies the manipulator dynamics (4.3) by J(q)M(q)−1 and gets, with
ẍ = J(q)q̈ + J̇(q)q̇, the equation

ẍ − J̇(q)q̇ + J(q)M(q)−1(C(q, q̇)q̇ + g(q)) = J(q)M (q)−1(τ + τ ext) .

From this one can easily see that a torque τ 0 which is projected by P 1(q) in
general may produce also an acceleration ẍ of the end-effector. But this is not
desired, because the Cartesian impedance controller and the nullspace impedance
controller should not interact. A projection of the torques τ 0 which does not
admit a direct feed-through from τ 0 to ẍ is called dynamically consistent5. This
clearly is achieved, whenever

J(q)M (q)−1P (q) = 0 (4.21)

holds. From (4.21) one can see that by pre-multiplying P 1(q) by M (q) the
resulting matrix gets dynamically consistent

P 2(q) = M(q)P 1(q) . (4.22)

But this choice has the disadvantage that P 2(q) contains also a scaling and
therefore is not a projection matrix any more, because it does not fulfill the
idempotency property P (q)P (q) = P (q).

A more elegant solution is to choose the inverse inertia matrix M(q)−1 as
the metric G(q) for the joint torques. This metric is called the natural metric
by many authors (see, e.g., [BK00]) and results in the projection

P 3(q) = M(q)Z(q)T
(
Z(q)M(q)Z(q)T

)−1
Z(q) . (4.23)

The Projection in the Operational Space Formulation

Another formulation of a dynamically consistent nullspace projection matrix can
be found by considering (4.18) from Proposition 4.1. According to this a projec-
tion onto the orthogonal complement of J(q)T (see Figure 4.3), with M(q)−1

as the relevant metric for the joint torques, is given by

P 4(q) = I − J(q)T
(
J(q)M(q)−1J(q)T

)−1
J(q)M (q)−1 . (4.24)

This form of the projection matrix was introduced in the operational space for-
malism [Kha87]. Here the computation of the nullspace base matrix Z(q) is

5 It should be noted that the dynamic consistency of the nullspace projection does
not correspond to a full decoupling between the Cartesian motion and the nullspace
motion. There may still be couplings in form of centrifugal or Coriolis terms. This
will become more clear in Section 4.4.
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avoided. On the other hand it contains the inverse6 of the inertia matrix and
therefore is from a computational point of view more difficult to be implemented
in realtime. The matrix Z(q)M (q)Z(q)T , which must be inverted in (4.23), in
contrary is only an r × r matrix7. The resulting matrices, however, are equiva-
lent, i.e. P 3(q) = P 4(q). This can be seen by verifying the property (P 3(q) −
P 4(q))

[
J(q)T M(q)Z(q)T

]
= 0, in which the matrix

[
J(q)T M (q)Z(q)T

]
is

invertible8.

Discussion of the Stability Properties

At the first glance, it seems that the superposition principle for impedances
could be applied to the implementation of a nullspace impedance without any
problems. The impedance is parameterized by joint space stiffness and damping
matrices as well as by the desired nullspace equilibrium qd,0 and hence allows a
quite intuitive design.

If one considers the stability analysis, this design method seems to be not
critical as long as all superimposed impedance components are passive mappings
from q̇ to the output torque. Then also their superposition (which is nothing
else than a parallel interconnection) gives a passive impedance, and a stability
analysis can be performed for the whole system as usual by examining the sum
of the individual storage functions. The problem with this argumentation is
that the mapping q̇ → τn, which represents the nullspace impedance, is not
necessarily passive (due to the projection via P (q))9. This conceptual problem
is the main reason for considering other nullspace treatments in the next sections
which are more difficult to be implemented.

4.3 Task Space Augmentation Method

The Task Space Augmentation Method aims at directly extending the task coor-
dinates x = f(q). If a suitable set of coordinates n = n(q) can be found such
that the Jacobian Je(q) corresponding to the new coordinates

y =

⎛
⎝x

n

⎞
⎠ , (4.25)

ẏ = Je(q)q̇ =

⎛
⎝J(q)

∂n(q)
∂q

⎞
⎠ q̇ (4.26)

6 Notice also that this inversion may be numerically ill-posed. While the invertibility
is ensured by the fact that the inertia matrix is positive definite, its eigenvalues
usually can have different orders of magnitude and M (q) may contain very small
eigenvalues in certain joint configurations.

7 Notice that this matrix reduces in case of a one-dimensional nullspace to a scalar.
8 The invertibility of this matrix can be shown similar to Lemma A.24.
9 Instead, the mapping q̇ → τ 0 is passive.
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is invertible, then the impedance control problem can be reduced to the non-
redundant case. The choice of a proper set of additional coordinates n(q), how-
ever, is problematic, since Je(q) will in general have more singular configurations
than J(q).

In the Extended Jacobian Method proposed by Baillieul [Bai85], for instance,
the nullspace coordinates

n(q) = Z(q)
∂Vn(q)

∂q

T

(4.27)

were introduced, wherein the target function Vn(q) is a desired function to be
optimized locally via nullspace movements. The potential function Vn(q) should
thereby be chosen such that it has a constrained local optimum

q∗ = argq min
f(q)=x

Vn(q) .

Optimizing the target function Vn(q) then means to track a desired nullspace
motion of the form nd(t) = 0, which obviously simplifies to a regulation problem.

The main disadvantage of this method is that it does in general not lead to a
dynamically consistent nullspace projection, since J(q)M (q)−1(∂n(q)/∂q)T �=
0. Hence, the nullspace dynamics is fully coupled with the original task dynam-
ics which is usually not desired. Furthermore, this method also introduces new
singularities whenever (∂n(q)/∂q)Z(q)T = 0 [Bai85].

In the following, one possible way is described, how a decoupling of the Carte-
sian impedance from the nullspace impedance can be forced even when a dynam-
ically inconsistent differential ∂n(q)/∂q is used. The dynamical equations (4.3)
in task space coordinates can be computed via equation (3.10) and (3.11) by
replacing the Jacobian J(q) with Je(q). Let further the joint torques τ be ex-
pressed in terms of a Cartesian component F x ∈ R

m and a nullspace component
F n ∈ R

r, which are related to τ via

τ = Je(q)T

⎛
⎝F x

F n

⎞
⎠ . (4.28)

The external torques τ ext are decomposed in the same way in terms of F ext,x

and F ext,n. The dynamical equations, resulting from (3.10)-(3.11), can then be
written as

Λe(q)

⎛
⎝ẍ

n̈

⎞
⎠+ μe(q, q̇)

⎛
⎝ẋ

ṅ

⎞
⎠+ Je(q)−T g(q) =

⎛
⎝F x + F ext,x

F n + F ext,n

⎞
⎠ (4.29)

where the inertia matrix Λe(q) and the Coriolis/centrifugal matrix μe(q, q̇) can
be partitioned accordingly as

Λe(q) =

⎡
⎣ Λe,x(q) Λe,c(q)

Λe,c(q)T Λe,n(q)

⎤
⎦ , (4.30)
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μe(q, q̇) =

⎡
⎣μe,xx(q, q̇) μe,xn(q, q̇)

μe,nx(q, q̇) μe,nn(q, q̇)

⎤
⎦ . (4.31)

By using the controller from Section 3.2 one would get a closed loop dynamics
with a fully occupied inertia matrix. Instead, it is desired that the dynamics for
x is decoupled from the dynamics for n. This can at least approximately be
achieved by a pre-compensation10 of the form⎛

⎝F x

F n

⎞
⎠ = Je(q)−T g(q) + μ̄(q, q̇)

⎛
⎝ẋ

ṅ

⎞
⎠−

⎛
⎝F ext,x

F ext,n

⎞
⎠

+Λe(q)

⎡
⎣Λe,x(q) 0

0 Λe,n(q)

⎤
⎦−1 ⎛⎝F̄ x + F ext,x

F̄ n + F ext,n

⎞
⎠ , (4.32)

where μ̄(q, q̇) is given by

μ̄(q, q̇) = μe(q, q̇) − Λe(q)

⎡
⎣Λe,x(q) 0

0 Λe,n(q)

⎤
⎦−1 ⎡⎣μe,xx(q, q̇) 0

0 μe,nn(q, q̇)

⎤
⎦ ,

and F̄ x and F̄ n are intermediate control inputs. Therefore, one obtains the
following system equations

Λe,x(q)ẍ + μe,xx(q, q̇)ẋ = F̄ x + F ext,x , (4.33)

Λe,n(q)n̈ + μe,nn(q, q̇)ṅ = F̄ n + F ext,n . (4.34)

Notice that these equations are still coupled due to the dependence of the inertia
matrix and the Coriolis/centrifugal matrix on the joint positions and velocities.
One can now design a nullspace controller for the coordinates n via the input F̄ n

and a Cartesian impedance controller via the input F̄ x in the same way as it was
done in Section 3.2. With the positive definite stiffness and damping matrices Kd,
Dd, Kn, and Dn for the Cartesian impedance and the nullspace impedance re-
spectively, the complete control law is then given by (4.28), (4.32), and⎛

⎝F̄ x

F̄ n

⎞
⎠ =

⎛
⎝Λe,x(q)ẍd + μe,xx(q, q̇)ẋd − Kdx̃ − Dd

˙̃x

−Knn − Dnṅ

⎞
⎠ . (4.35)

For the stability properties of the resulting closed loop system one can directly
refer to Proposition 3.4 and Proposition 3.5, since the closed loop system has
the same form as the desired dynamics from Section 3.2. Notice also that this
controller contains a feedback of the external torques τ ext in (4.32), since (4.32)
reshapes the effective inertia matrix. From a practical point of view, however,
10 Notice the relation of this controller to the controller from Section 3.1.3.
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usually only external forces and torques which act on the end-effector can be
measured by a force-torque-sensor mounted at the tip of the robot. But for the
implementation of the control law (4.32) also the nullspace forces F ext,n are
needed. This problem, which has already been discussed in Section 3.2 in more
detail, and the singularities11 of Je(q), are the main limitations of this approach.
In contrast to this in the Joint Space Decomposition Method a block-diagonal
(hence decoupled) inertia matrix can be achieved by the use of a dynamically
consistent nullspace projection matrix without feedback of the external forces.

4.4 Joint Space Decomposition Method

The Joint Space Decomposition Method does not augment the task coordinates x,
but the task velocities ẋ. This is done by introducing additional nullspace veloci-
ties vn = N (q)q̇ via an appropriate matrix N(q). Together with ẋ one has⎛

⎝ ẋ

vn

⎞
⎠ = JN (q)q̇ =

⎛
⎝J(q)

N (q)

⎞
⎠ q̇ . (4.36)

The nullspace matrix N (q) has to be chosen such that the extended Jacobian
JN (q) is invertible.

In principle, one can also integrate the nullspace velocity vn(t) in order
to get new nullspace coordinates n(t) =

∫ t

0
vn(q(τ))dτ . The construction of

nullspace coordinates then allows one to use all techniques developed for the
non-redundant case also in the redundant case, analogously to the Task Space
Augmentation Method. This, however, has two important implications: Firstly,
the quantity n(t) does not have any useful geometric meaning. Therefore, it
is not possible to formulate a meaningful desired trajectory nd(t). Instead, the
desired trajectory has to be formulated as a desired velocity12 vn,d(t) [HHS89].
Secondly, due to the integration of the nullspace velocity, the resulting controllers
do not describe a static state feedback, but rather a dynamic state feedback.

It is important to notice at this point that in general the nullspace base matrix
Z(q) cannot be represented as the differential of a function n(q) because this
would necessarily require zk(q) to fulfill the integrability conditions ∂zk,i(q)

∂qj
=

∂zk,j(q)
∂qi

. Of course, this is generally not satisfied.
In order to get a dynamically consistent nullspace matrix, one can choose13

N (q) =
(
Z(q)M (q)Z(q)T

)−1
Z(q)M(q) , (4.37)

11 Notice again that there will be additional singularities from the particular choice of
n(q) besides the singularities of J(q).

12 Some authors, for instance, use a desired nullspace velocity of the form vn,d =

−Z(q) ∂Vn(q)
∂q

T
with a given target function Vn(q) [HHS89].

13 In Park’s inertially weighted kinematically decoupled joint space decomposition (KD-
JSD) [PCY99] the choice N (q) = Z(q)M (q) was made instead. The additional
factor (Z(q)M (q)Z(q)T )−1 acts as a normalization. Notice also the similarity to
P 3(q) in (4.23).
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where Z(q) is a nullspace base matrix of J(q). Notice that for the computation
of N(q) the matrix Z(q)M(q)Z(q)T must be inverted which is only an r × r
matrix. The invertibility of this extended Jacobian JN (q) is shown in Section
A.5. Therein it is also shown that the inverse of JN (q) is given by

JN (q)−1 =
[
JM+(q) Z(q)T

]
, (4.38)

where the weighted pseudo-inverse JM+(q) is defined as

JM+(q) = M(q)−1J(q)T (J(q)M (q)−1J(q)T )−1 . (4.39)

The joint velocity q̇ can thus be computed from the Cartesian velocity ẋ and
the nullspace velocity vn via

q̇ = JM+(q)ẋ + Z(q)T vn . (4.40)

The dynamical equations (4.3) can be written in the extended velocity coor-
dinates via (3.10) and (3.11). The joint torques τ are expressed in terms of a
Cartesian force F x and a nullspace force F n which are related to τ via

τ =
[
J(q)T N(q)T

]⎛⎝F x

F n

⎞
⎠ . (4.41)

The generalized forces F x and F n are used as new inputs. In the same way
the external torques τ ext are decomposed in terms of generalized external forces
F ext,x and F ext,n. The dynamical equations then have the form

ΛN (q)

⎛
⎝ ẍ

v̇n

⎞
⎠+ μN (q, q̇)

⎛
⎝ ẋ

vn

⎞
⎠+ JN (q)−T g(q) =

⎛
⎝F x + F ext,x

F n + F ext,n

⎞
⎠ .(4.42)

Since N(q) is dynamically consistent14, the inertia matrix ΛN (q) is block-
diagonal

ΛN (q) = JN (q)−T M(q)JN (q)−1 (4.43)

=

⎡
⎣(J(q)M (q)−1J(q)T )−1 0

0 Z(q)M(q)Z(q)T

⎤
⎦ (4.44)

=

⎡
⎣Λx(q) 0

0 Λn(q)

⎤
⎦ , (4.45)

14 I.e. it fulfills the condition J(q)M (q)−1N (q)T = 0.
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and μN (q, q̇) has the form15

μN =

⎡
⎣ μx μxn

μnx μn

⎤
⎦ (4.46)

=

⎡
⎣Λx

(
JM−1C − J̇

)
JM+ Λx

(
JM−1C − J̇

)
ZT

−
(
ŻM + ZCT

)
JM+ ΛnZ

(
CZT + MŻ

T
)
⎤
⎦ . (4.47)

Notice that the equality μxn(q, q̇) = −μnx(q, q̇)T holds16, which corresponds to
Lemma 3.2 since ΛN (q) is block-diagonal.

4.4.1 Controller Design

In contrast to other redundancy resolution methods in the literature, the fol-
lowing control algorithm focuses on a Cartesian impedance controller without
shaping of the inertia matrix (for the same reasons as discussed in Section 3.2).
Furthermore, the goal of the nullspace impedance controller is to achieve a dy-
namical relation between the nullspace motion and the external (generalized)
forces which can be specified in terms of stiffness and damping coefficients.

The following analysis will be based on the dynamical equations (4.42) with
the state variables17 q, ẋ, and vn.

In the dynamical equations (4.42) the couplings between Cartesian coordi-
nates and nullspace coordinates via off-diagonal terms in the inertia matrix have
already been eliminated by the use of a dynamically consistent nullspace matrix
N(q). Additionally, there are still coupling terms in the Coriolis/centrifugal ma-
trix μN (q, ẋ, vn) present. These terms can, together with the gravity torques,
be eliminated without force feedback by a feedback law of the form⎛

⎝F x

F n

⎞
⎠ = JN (q)−T g(q) +

⎛
⎝F̄ x

F̄ n

⎞
⎠

+

⎡
⎣ 0 μxn(q, ẋ, vn)

μnx(q, ẋ, vn) 0

⎤
⎦
⎛
⎝ ẋ

vn

⎞
⎠ , (4.48)

with the new input variables F̄ x and F̄ n. Notice that, from a passivity point of
view, the cancelation of the undesired centrifugal and Coriolis terms in (4.48) can
be expected to be not very critical even for uncertainties in the model parameters
because of the skew-symmetry property μxn(q, ẋ, vn) = −μnx(q, ẋ, vn)T . The
closed loop system so far is given by

15 In order to simplify the notation, the arguments q and q̇ are omitted herein.
16 The direct derivation of this property from (4.47), however, is quite cumbersome.
17 The terms μij(q, q̇) will therefore be written as μij(q, ẋ, vn) in the following.



58 Nullspace Stiffness

Λx(q)ẍ + μx(q, ẋ, vn)ẋ = F̄ x + F ext,x , (4.49)
Λn(q)v̇n + μn(q, ẋ, vn)vn = F̄ n + F ext,n , (4.50)

q̇ = J+M (q)ẋ + Z(q)T vn . (4.51)

In the following only the regulation case will be treated in which the virtual
Cartesian equilibrium position xd is fixed. For the Cartesian part of the system
dynamics a controller analogously to Section 3.2 with symmetric and positive
definite stiffness and damping matrices Kd and Dd is used.

F̄ x = −Kd(f(q) − xd) − Ddẋ (4.52)

Furthermore, the input F̄ n is used for controlling the nullspace motion. Two
different feedback laws for F̄ n are discussed in the following. The first one cor-
responds to a nullspace controller common18 in the literature and will therefore
be reviewed only briefly. The idea for this nullspace controller is to implement a
velocity controller for the desired velocity vn,d = −Z(q)(∂Vn(q)

∂q )T , where Vn(q)
is a given cost function to be optimized locally via nullspace movements. The
considered controller is given by

F̄ n = Λn(q)v̇n,d + μn(q, ẋ, vn)vn,d − Dn(vn − vn,d) , (4.53)

where Dn ∈ R
r×r is a positive definite controller gain matrix. The complete

closed loop system (with en = vn − vn,d) is given by (4.51) and

Λx(q)ẍ + (μx(q, ẋ, vn) + Dd)ẋ + Kd(f(q) − xd) = F ext,x , (4.54)
Λn(q)ėn + (μn(q, ẋ, vn) + Dn)en = F ext,n . (4.55)

For this system one can show that in case of free motion (i.e. F ext,x = 0 and
F ext,n = 0) the variables ẋ, f(q) − xd, and en converge to zero. Basically, this
was shown in the works [HHS89, OCY98, NSV99] for similar cases. Furthermore,
one can also show that, when the Cartesian error is zero (i.e. f (q) = xd), the
joint angles q will locally converge to a constraint minimum of Vn(q) [HHS89].

One problem of the controller in (4.53) is that it does not allow to specify
the nullspace behavior explicitly in terms of stiffness and damping coefficients,
but in terms of optimizing a cost function. Therefore, this approach is not really
appropriate to implement a nullspace impedance. Furthermore, only convergence
(and not stability) can be shown for en unless a complete mass decoupling as
in [OCY98] is used19. Therefore, a different choice for F̄ n will be discussed in
the following, which is particularly designed for the problem of implementing a
nullspace impedance without feedback of the external forces. Consider therefore
the feedback law20

F̄ n = −Dnvn + un(q) , (4.56)
18 In the literature this control law usually is used in combination with a complete

decoupling of the inertia matrix.
19 Note that this requires force feedback in case of an impedance controller.
20 Notice that by replacing u(q) with u = Λn(q)v̇n,d + (μn(q, ẋ, vn) + Dn)vn,d one

would obtain the same feedback law as in (4.53).
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where Dn is a positive definite matrix corresponding to the desired nullspace
damping. The term un(q) will be designed later according to a particular nullspace
stiffness term which allows to prove, at least locally, the asymptotic stability of the
closed loop system for the case of free motion. The closed loop system for the con-
troller (4.56) is given by

Λx(q)ẍ + (μx(q, ẋ, vn) + Dd)ẋ + Kd(f(q) − xd) = F ext,x , (4.57)
Λn(q)v̇n + (μn(q, ẋ, vn) + Dn)vn − un(q) = F ext,n , (4.58)

together with

q̇ = J+M (q)ẋ + Z(q)T vn . (4.59)

In the next section the term un(q) will be designed such that a (local) stability
proof for the closed loop system can be given.

4.4.2 Stability Analysis

The stability analysis of (4.57)-(4.59) will be based on the following two theorems
concerning the stability analysis with semi-definite Lyapunov functions. The
notation of conditional stability being used is defined in Appendix A.2.

Theorem 4.2 Consider a system of the form ż = f (z), z ∈ R
n, with equi-

librium point z∗. Let V (z) be a C1 positive semi-definite function which has a
negative semi-definite time derivative along the solutions of the system, i.e.

V̇ (z) =
∂V (z)

∂z
f(z) ≤ 0 . (4.60)

Let A be the the largest positively invariant set contained in {z ∈ R
n|V (z) = 0}.

If z∗ is asymptotically stable conditionally to A, then it is a stable equilibrium
of ż = f(z).

Proof. This theorem is due to Iggidr et al. [IKO96]. A proof can also be found
in [SJK97].

In [vdS00] a further extension of this theorem for passive systems is given. The
particular case of strict output passivity21, which will be of interest for the
stability analysis of (4.57)-(4.59), is stated in the following theorem. The proof
of this theorem can be found in [vdS00].

Theorem 4.3 Let the system

ż = g1(z) + g2(z)u (4.61)
y = h(z) (4.62)

with state z ∈ R
n, input u ∈ R

m, and output y ∈ R
m be strict output passive

for the output y = h(z). Let further be A the largest positively invariant set
contained in {z ∈ R

n|h(z) = 0}. If the equilibrium z∗ is asymptotically stable
conditionally to A, then it is asymptotically stable for u = 0.
21 The definition of strict output passivity is given in Appendix A.3.



60 Nullspace Stiffness

Theorem 4.3 is used in the following stability analysis of (4.57)-(4.59). The
nullspace impedance term u(q) will be designed such that for a given joint config-
uration qd, which must satisfy the condition f(qd) = xd, the point (q, ẋ, vn) =
(qd, ẋd, v̇n,d), with ẋd = 0 and v̇n,d = 0, is an asymptotically stable equilibrium
point of (4.57)-(4.59) when no external forces F ext,x and F ext,n act on the sys-
tem. In the following derivation, the external force F ext,x will correspond to the
input u from Theorem 4.3.

Consider the following positive semi-definite Lyapunov function

S(q, ẋ, vn) =
1
2
ẋT Λx(q)ẋ +

1
2
(f(q) − xd)T Kd(f(q) − xd) . (4.63)

The time derivative of S(q, ẋ, vn) along the solutions of (4.57)-(4.59) is given by

Ṡ(q, ẋ, vn) = −ẋT Ddẋ − ẋT F ext,x . (4.64)

From this one can follow that the condition Ṡ(q, ẋ, vn) ≤ 0 from Theorem 4.2
is fulfilled for the case F ext,x = 0. Furthermore, by considering S(q, ẋ, vn) as a
storage function, one can follow that the system is strict output passive with22

β = λmin(Dd) for the output ẋ with the corresponding input F ext,x. Follow-
ing Theorem 4.3 one must then show that the system is asymptotically stable
conditionally to the largest positively invariant set in {(q, ẋ, vn) ∈ R

2n|ẋ = 0}.
Consider further the case of free motion, i.e. F ext,x = 0 and F ext,n = 0. The
largest positively invariant set for which ẋ = 0 holds can be derived from (4.57)
and is given by

A = {(q, ẋ, vn)|f (q) = xd, ẋ = 0} . (4.65)

Notice also that, since A is a positively invariant set, all trajectories which start
in A will remain in A. Consider then the Lyapunov function candidate

VA(q, vn) =
1
2
vT

n Λn(q)vn +
1
2
(q − qd)

T Kn(q − qd) (4.66)

with a symmetric and positive definite joint stiffness matrix Kn. In the set A
the function VA(q, vn) clearly is a positive definite function23 around (qd,0,0).
The time derivative of VA(q, vn) in A along the solutions of (4.57)-(4.59) is given
by24

V̇A(q, vn) = −vT
nDnvn + vT

nun(q) + (q − qd)
T Knq̇

= −vT
nDnvn + vT

nun(q) + (q − qd)
T KnZ(q)T vn (4.67)

= −vT
nDnvn + vT

n (un(q) + Z(q)Kn(q − qd))

With the choice

un(q) = −Z(q)Kn(q − qd) (4.68)
22 See Appendix A.3 for the definition of strict output passivity.
23 Notice that it is not a positive definite function in the complete state space R

2n,
since it is independent of ẋ.

24 Remember that qd must satisfy the condition f (qd) = xd.
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stability conditionally to A follows from V̇A(q, vn) = −vT
nDnvn ≤ 0. In order

to show also asymptotic stability conditionally to A one can refer to LaSalle’s
invariance principle. It can be shown that all trajectories in A will converge to
the largest positively invariant set contained in

{(q, ẋ, vn)|f (q) = xd, ẋ = 0, vn = 0} . (4.69)

Therefore, the joint variables q will converge to a set where the conditions
f(q) = xd and un(q) = −Z(q)Kn(q − qd) = 0 are fulfilled. This holds not
only for q = qd, but for all positions q which satisfy Z(q)Kn(q − qd) = 0.
The former corresponds to the desired equilibrium point while the latter corre-
sponds to a point in which the nullspace base vectors in Z(q) are orthogonal25

to Kn(q − qd). Notice that the point q = qd corresponds to the global min-
imum of the cost function Vq(q) = (q − qd)T Kn(q − qd), while the points
which satisfy Z(q)Kn(q − qd) = 0 correspond to the constraint local minima
argq minf(q)=xd

Vq(q). With Theorem 4.3 one can thus conclude that locally
the solution curves of the system (4.57)-(4.59) asymptotically approach the set
of constraint local minima of Vq(q). The results of the above analysis can be
summarized as follows.

Proposition 4.4. Consider the system (4.57)-(4.59) with u(q) = −Z(q)Kn(q−
qd). Thematrices Kd, Dd ∈ R

m×m andKn, Dn ∈ R
r×r are all assumed to be sym-

metric and positive definite. Suppose that the Jacobian matrix J(q) is non-singular
in the considered workspace and the joint configuration qd satisfies f (qd) = xd.
Then the system is strict output passive for the input F ext,x and the output ẋ. Fur-
thermore, locally the solution curves asymptotically approach the set of constraint
local minima of Vq(q) = (q − qd)T Kn(q − qd). In particular, the point qd which
is an isolated constraint minimum of Vq(q) is asymptotically stable.

Discussion of the Derived Controller

By summing up all the previous parts, one can see that the complete controller
equations are given by

τ = g(q) + J(q)T F̂ x + N (q)T F̂ n (4.70)

F̂ x = μxn(q, ẋ, vn)vn − Ddẋ − Kd(f(q) − xd) (4.71)

F̂ n = μnx(q, ẋ, vn)ẋ − Dnvn − Z(q)Kn(q − qd) . (4.72)

It is worth remarking that the last term N (q)T Z(q)Kn(q−qd), which actually
represents the implementation of the nullspace stiffness, corresponds exactly to
the relevant term of (4.16) when the projection matrix from (4.23) is used.

The objective of this section was to derive a controller which implements a
nullspace impedance (in terms of stiffness and damping) decoupled from the
Cartesian dynamics while avoiding the feedback of external forces. It should be
mentioned that if either this decoupling is not required or the use of feedback of
25 With respect to the Euclidean metric.
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the external forces is possible26, then one can instead use the controller which
was discussed in Section 4.3. The most critical point in the stability analysis of
this section is that it allows only a local stability statement and it is not clear
how to get an estimate for the range of attraction. Notice therefore also that the
function SA(q, ẋ, vn) = S(q, ẋ, vn) + VA(q, vn) cannot be used as a Lyapunov
function for the closed loop system. The time derivative of SA(q, ẋ, vn) along
the solutions of (4.57)-(4.59) is given by

ṠA = −
⎛
⎝ ẋ

vn

⎞
⎠T ⎡

⎣Dd 0

0 Dn

⎤
⎦
⎛
⎝ ẋ

vn

⎞
⎠+ (q − qd)

T KnJM+(q)ẋ .

The additional term (q − qd)T KnJM+(q)ẋ, which prevents the derivative ṠA

from being negative semi-definite, vanishes when the system is constrained to
the set A and therefore did not disturb the above stability analysis based on
Theorem 4.3. Furthermore, the analysis was restricted to the regulation case
with a constant virtual equilibrium point xd. Notice also that these restrictions
are not given for the controller from Section 4.3.

Nevertheless, the analysis of this section allows to give a stability proof for
a nullspace impedance controller, which is, apart from the cancellation of some
coupling terms in (4.48), identical to the simple dynamically consistent projec-
tion based controller. Moreover, also strict output passivity was shown.

4.5 Summary

In this chapter the impedance control problem for a redundant robot was dis-
cussed. Based on the discussion of the last chapter a desired Cartesian impedance
without inertia shaping is considered as the main task.

As a preliminary step the construction of a nullspace base matrix was dis-
cussed. Based on the nullspace base matrix different nullspace projection matri-
ces were investigated with respect to the implementation of nullspace stiffness
and damping. The notation of dynamical consistency of such a projection ma-
trix was discussed and incorporated in the proposed projection matrices by the
choice of an appropriate metric. The resulting dynamically consistent projection
matrix is equivalent to the projection matrix from the operational space formu-
lation, but has the advantage that for its implementation only the inversion of
an r × r matrix and no inversion of the inertia matrix is needed. The disad-
vantage of using such a projection matrix for the implementation of a nullspace
stiffness and damping lies in the fact that it does not enable a consistent stability
analysis.

As an alternative approach for the implementation of a nullspace stiffness and
damping, the Task Space Augmentation Method was discussed. This method al-
lows to extend the Cartesian impedance control techniques from the last chapter
to the redundant case by choosing additional nullspace coordinates. Although
26 These requirements depend of course on the considered application.
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theoretically well funded, the main problem in applying this method is the choice
of appropriate coordinates. Moreover, the resulting Cartesian dynamics and the
nullspace dynamics usually are by no means decoupled from each other. A de-
coupling of these dynamics is only possible in case that all external forces, i.e.
Cartesian forces and nullspace forces, can be measured.

Finally, the Joint Space Decomposition Method was discussed as a third ap-
proach. Based on this method a nullspace stiffness controller was proposed for
which a local stability proof was presented. The proposed controller is quite
similar to the use of the dynamically consistent nullspace projection, but herein
an additional term is included which decouples the Cartesian dynamics and
the nullspace dynamics by eliminating the cross diagonal parts in the Corio-
lis/centrifugal matrix. The use of this term, and the resulting decoupling, allowed
to apply some results from the stability theory with semi-definite Lyapunov func-
tions and thus facilitated the stability proof.



5 The Singular Perturbation Approach

In the previous chapters the impedance control problem was analyzed for a rigid
body robot model, in which the joint elasticity was neglected. In contrast to this,
the flexible joint robot model from Section 2.2.3 will be considered now.

This chapter deals with the singular perturbation approach. This is an ap-
proximate method designed for systems which possess a so-called two-time-scale-
property. This means that the system can be virtually split up into two coupled
subsystems which describe a faster and a slower part. The singular perturba-
tion theory then allows to make stability conclusions out of the properties of
the separated subsystems, similarly to the procedure of the analysis of cascaded
control systems in the linear case. It also provides the theoretical justification
for neglecting un-modeled “high frequency” dynamics.

In the case of a robot with flexible joints, the faster part of the model is formed
by an inner torque control loop, while the slower part is formed by the rigid
body robot dynamics. The singular perturbation method allows to extend all
the control methods for rigid body robots, which were discussed in the previous
chapters, to the flexible joint case.

In Section 5.1 the general singular perturbation theory will be shortly re-
viewed. Its application to the flexible joint model is then described in Section
5.2. Based on that, the commonly used composite controller design and a mod-
ified controller formulation from [OASH02], which fits better the flexible joint
robot model, are described in Section 5.3 and 5.4.

5.1 Singular Perturbation Theory

Herein only the basic idea of the singular perturbation theory shall be given.
A more comprehensive treatment of this theory can be found in [Kha02] and
[KKO86].

The singular perturbation theory was designed in order to analyze models,
which depend on a small scalar parameter ε ∈ R, and can be written in the form

ż1 = f (z1, z2, ε, t) , (5.1)
εż2 = g(z1, z2, ε, t) , (5.2)

C. Ott: Cartesian Imped. Cntrl. of Redund. & Flexible-Joint Robots, STAR 49, pp. 65–75, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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where z1 ∈ R
n1 and z2 ∈ R

n2 are the state variables of the system. For a small
value of ε, the system has the above mentioned two-time-scale-property and the
two equations describe the slower part (5.1) and the faster part (5.2) of the
system.

If ε is set to zero (i.e. assuming the fast part of the model to be in steady
state), (5.2) gets an algebraic equation and therefore the order of the system
changes. In the following it is assumed that one can solve this resulting algebraic
equation uniquely1 for the state variables z2. The solution of the system for
ε = 0 will be denoted by z̄1 and z̄2. The relationship between z̄1 and z̄2 is given
by the function z̄2 = h(z̄1, t) which is the solution of the equation

0 = g(z̄1, z̄2,0, t) ⇒ z̄2 = h(z̄1, t) (5.3)

for z̄2. By setting the variable ε to zero and combining (5.1) with (5.3) one
therefore gets the so-called quasi-steady state model2

˙̄z1 = f(z̄1, h(z̄1, t), 0, t) . (5.4)

The model (5.4) basically describes the system behavior at a slow time scale.
For the further analysis a change of coordinates for the fast part of the system

is introduced. The new coordinates y ∈ R
n2 represent the deviation of z2 from

its steady-state value h(z1, t), i.e.

y = z2 − h(z1, t) . (5.5)

The complete model can then be rewritten in the new state variables z1 and y
as follows

ż1 = f(z1, y + h(z1, t), ε, t) , (5.6)

εẏ = g(z1, y + h(z1, t), ε, t) − ε
∂h(z1, t)

∂t

−ε
∂h(z1, t)

∂z1
f (z1, y + h(z1, t), ε, t) . (5.7)

Obviously, the quasi-steady state model can be obtained from (5.6) by setting y
to zero. In order to get also a model for the system behavior at a fast time scale,
a change of the time base is performed by introducing the new time variable
ν = (t − t0)/ε, where t0 is an (arbitrary) initial point in time. The parameter ε
then describes the scaling between the time bases t and ν. With

dt = εdν , (5.8)

equation (5.7) can be written in the new time base as

dy

dν
= g(z1, y + h(z1, t), ε, t) − ε

∂h(z1, t)
∂t

−ε
∂h(z1, t)

∂z1
f(z1, y + h(z1, t), ε, t) . (5.9)

1 The system is then said to be in standard singular perturbation form.
2 Also denoted as slow model or reduced model in the literature.
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The variables t and z1 are slowly varying, since in the ν time scale they are
given by t = t0 + εν and z1 = z1(t0 + εν). Setting ε = 0 freezes these variables
at t = t0 and z1 = z1(t0), and reduces (5.9) to

dy

dν
= g(z1(t0), y + h(z1(t0), t0), 0, t0) . (5.10)

In order to analyze the situation when the slowly varying variables (t, z1) move
away from their initial values (t0, z1(t0)), it is assumed that the solution z̄1(t)
of (5.4) is defined for t ∈ [0, t1] and z̄1(t) ∈ D1 ⊂ R

n1 for some domain D1.
Equation (5.10) is then written in the form

dy

dν
= g(z1, y + h(z1, t), 0, t) , (5.11)

which is the so-called boundary layer model. Note that t and z1 are treated
as fixed parameters in (5.11). In the following an important theorem due to
Tychonov is reported3. This theorem is based on equation (5.4) and (5.11) and
will be useful for the justification of the controller design. The theorem requires
the boundary layer model (5.11) to be exponentially stable uniformly in the
frozen parameters, as stated in the following definition.

Definition 5.1. The equilibrium point y = 0 of the boundary layer system
(5.11) is exponentially stable, uniformly in (t, z1) ∈ [0, t1] × D1, if there ex-
ist positive constants k, γ, and ρ0 such that the solutions of (5.11) satisfy

||y(ν)|| ≤ k||y(0)|| exp(−γν) ∀||y(0)|| < ρ0, ∀(t, z1) ∈ [0, t1] × D1, ∀ν ≥ 0 .

Theorem 5.2. (Tychonov’s Theorem [Kha02])
Given the system (5.1) and (5.2) with initial state z1(t0, ε) = z1,0(ε) and

z2(t0, ε) = z2,0(ε). Let z2 = h(z1, t) be an isolated root of 0 = g(z1, z2, 0, t).
Assume that for all

(t, z1, z2 − h(z1, t), ε) ∈ [0, t1[×D1 × Dy × [0, ε0]

in some domains D1 ⊂ R
n1 and Dy ⊂ R

n2 , in which D1 is convex and Dy

contains the origin, the following conditions hold:

• The functions f , g, their first partial derivatives with respect to (z1, z2, ε),
and the first partial derivative of g with respect to t are continuous. The
function h(z1, t) and the Jacobian ∂g(z1, z2, 0, t)/∂z2 have continuous first
partial derivatives with respect to their arguments. The initial data z1,0(ε)
and z2,0(ε) are smooth functions of ε.

• The reduced problem (5.4) has a unique solution z̄1(t) ∈ S for t ∈ [t0, t1],
where S is a compact subset of D1.

• The origin of the boundary layer model (5.11) is exponentially stable, uni-
formly in (t, z1). Let Ry ⊂ Dy be the region of attraction of (5.10) and Ωy

be a compact subset of Ry.
3 Notice that there are different versions of Tychonov’s theorem in the literature. The

one presented here is taken from [Kha02].



68 The Singular Perturbation Approach

Then, there exists a positive constant ε∗ such that for all initial conditions of
the form z2,0(0) − h(z1,0(0), t0) ∈ Ωy and 0 < ε < ε∗, the singular perturbation
problem (5.1)-(5.2) has a unique solution z1(t, ε), z2(t, ε) on [t0, t1], and

z1(t, ε) − z̄1(t) = O(ε)

z2(t, ε) − h(z̄1(t), t) − ŷ(t/ε) = O(ε)

hold uniformly for t ∈ [t0, t1], where ŷ(ν) is the solution of the boundary-layer
model (5.11). Moreover, given any tb > t0, there is ε∗∗ ≤ ε∗ such that

z2(t, ε) − h(z̄1(t), t) = O(ε)

holds uniformly for t ∈ [tb, t1] whenever ε < ε∗∗.

For a proof of the above theorem, see4 [Kha02].
Notice that Tychonov’s theorem does only give a statement on a finite time

interval. There are extensions of this theorem to the infinite time interval, but
they require exponential stability of the quasi-steady state model5. In case of
the impedance control problem from Section 3.2 one cannot show exponential
stability of the desired dynamics even in the rigid body case. Therefore, the
argumentation for the controller design in the next section will be based on
Tychonov’s theorem only. Notice that, although this theorem is very important
from a conceptual point of view, since it allows to give a theoretical foundation
of many physically argued modeling reduction techniques, its value for stability
conclusions, however, is limited.

In the next section it will be shown, how the singular perturbation theory can
be applied to the model of a flexible joint robot.

5.2 Singular Perturbation Model of a Flexible Joint
Robot

The singular perturbation theory, as outlined in the last section, shall now be
applied to the flexible joint robot model from Section 2.2.3. Using the notation
of Section 2.2.3 the reduced model of a flexible joint robot without damping is
given by

M (q)q̈ + C(q, q̇)q̇ + g(q) = K(θ − q) + τ ext , (5.12)
Bθ̈ + K(θ − q) = τm . (5.13)

4 This proof implicitly gives also a guideline of how to find ε∗, if proper Lyapunov
functions of the quasi-steady state model and the boundary layer system can be
found.

5 Notice also that there also exist results within the singular perturbation theory,
which do not require exponential stability of the quasi-steady state model but, in-
stead, require some special interconnection conditions of Lyapunov functions for
the steady state system and the boundary layer system, see, e.g., [Kha02] for more
details on this. For an application to the flexible joint robot model these results,
however, have not yet been utilized so far and will therefore be not reported here.
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In order to bring this system in standard singular perturbation form, one can
perform the following change of coordinates. As coordinates z1 and z2 the joint
angles q and the joint torques τ = K(θ − q) as well as their first derivatives
with respect to time are chosen

z1 =

⎛
⎝q

q̇

⎞
⎠ , z2 =

⎛
⎝τ

τ̇

⎞
⎠ . (5.14)

Therefore, one may substitute K(θ − q) = τ and θ̈ = K−1τ̈ + q̈ in equation
(5.12) and (5.13) in order to obtain

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + τ ext , (5.15)
BK−1τ̈ + τ = τm − Bq̈ . (5.16)

The second derivative of the link angles q in (5.16) can be eliminated by using
(5.15), because the inertia matrix M(q) is positive definite and therefore always
invertible. In order to bring the system in singular perturbation form, the pa-
rameter ε must be introduced. The stiffness values Ki of the joints usually are
very high. This is incorporated into the model by formally replacing the matrix
K by K = Kε

ε2 with a positive definite diagonal matrix Kε. A small value of ε
represents a high joint stiffness value.

Notice also that the general singular perturbation approach was described for
a free system in the last section, in which no control inputs were present. In the
case of the flexible joint robot model the motor torques τm, which are the control
inputs, are considered to be a (so far unknown) function of the state variables
z1 and z2. Furthermore, the external torques τ ext are treated as disturbance
inputs.

With the above mentioned considerations one can rewrite the model in (stan-
dard) singular perturbation form as

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + τ ext , (5.17)
ε2τ̈ + Kε(B−1 + M(q)−1)τ = KεB

−1τm + (5.18)
KεM(q)−1 (C(q, q̇)q̇ + g(q) − τ ext) .

By rewriting this equation as a set of first order differential equations, one can
easily see that, due to the introduction of the parameter ε, the model indeed is
now written in the same form as equation (5.1) and (5.2).

By following the procedure of the last section the quasi-steady state of the
torque τ̄ = h(q̄, ˙̄q, t) is computed by setting ε to zero (as it was done in (5.3)):

h(q̄, ˙̄q, t) = (I + BM(q̄)−1)−1
(
τ̄m + BM(q̄)−1 (C(q̄, ˙̄q) ˙̄q + g(q̄) − τ̄ ext)

)
= (I + BM(q̄)−1)−1τ̄m +

(I + M(q̄)B−1)−1 (C(q̄, ˙̄q) ˙̄q + g(q̄) − τ̄ ext) . (5.19)

The variables τ̄m and τ̄ ext correspond to the input variables τm and τ ext, when
the parameter ε is set to zero.
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5.2.1 The Quasi-steady State Model

The quasi-steady state model follows from substituting τ̄ in equation (5.17).
The resulting equation can be simplified by pre-multiplying it by the factor
(I + BM (q̄)−1). Therefore, one obtains the system equation

(M(q̄) + B) ¨̄q + C(q̄, ˙̄q) ˙̄q + g(q̄) = τ̄m + τ̄ ext . (5.20)

Notice that this model has the form of the rigid body model with the inertia
matrix M(q̄) + B.

5.2.2 The Boundary Layer System

For the derivation of the boundary layer model one introduces the new coordi-
nates y ∈ R

n (see equation (5.5)) via

y = τ − h(q, q̇, t) (5.21)

which correspond to the deviation of the actual torque from its quasi-steady state
value. As it was done in the general case one substitutes these new coordinates
into equation (5.18), introduces the fast time scale ν = (t − t0)/ε, and sets the
parameter ε to zero. This leads to

d2y

dν2
+ Kε(B−1 + M (q)−1)(y + h(q, q̇, t)) = KεB

−1τm +

KεM (q)−1(C(q, q̇)q̇ + g(q) − τ ext) .

Herein the state variables and the disturbance inputs τ ext from the slow part
of the system are treated as constant with respect to the time variable ν. Using
the identity

(B−1 + M(q)−1)h(q, q̇, t) = B−1τ̄m + M(q)−1(C(q, q̇)q̇ + g(q) − τ̄ ext) ,

which follows directly from the definition of h(q, q̇, t) in (5.19), one finally gets

d2y

dν2
+ Kε(B−1 + M(q)−1)y = KεB

−1 (τm − τ̄m) . (5.22)

Notice that, since the variable q is considered as constant in this equation,
the boundary layer system of the flexible joint robot model is linear and time
invariant.

5.3 Controller Design

In the following the design idea of the composite feedback design method is de-
scribed. This design methodology has been used by many authors considering the
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controller design for flexible joint robots based on the singular perturbation ap-
proach. Finally, an alternative controller structure is proposed, which has some
advantages compared to the common composite design.

The idea of the composite controller design method (Figure 5.1) is to split
up the control input τm into a slow and a fast part τm,slow and τm,fast, i.e.
τm = τm,slow + τm,fast. These two control inputs should be designed such that
the slow part affects the quasi-steady state model only, and the fast part affects
the boundary layer system only. Then the two control inputs can be used in
order to control the two subsystems separately. Formally, this can be done by
choosing τm,slow = τm|ε→0 = τ̄ and τm,fast = τm − τ̄ .

This separation of the control input into two parts has two important im-
plications for the design. On the one hand the control input τm,slow must be
chosen such that the system is in standard form, i.e. the quasi-steady state τ̄
must have a unique solution. This can be achieved here for instance if τm,slow is
a function of the state (q, q̇) of the quasi-steady state model only and does not
contain a feedback of the joint torque τ . On the other hand the control input
τm,fast should be designed such that it fulfills the condition τm,fast|ε→0 = 0,
i.e. it should not affect the quasi-steady state model.

While the boundary layer system, which describes the torque dynamics in the
new variables y, is linear and time invariant, the quasi-steady state model has the
form of an equivalent rigid body model. Therefore, classical controller methods
from the rigid body robotics literature may be applied to design τm,slow.

According to Tychonov’s theorem, the goal for the controller design is to get
an exponentially stable boundary layer system on the one hand. On the other
hand, convergence of the tracking error is desired for the quasi-steady state
system. Notice that Tychonov’s theorem ensures only that the tracking error
will not deviate more than of order O(ε) from its quasi-steady state on a finite
time interval. Also this conclusion is only valid for a sufficiently small value of ε,
which means that the boundary layer system has to be considerably faster than
the quasi-steady state system.

In most of the previous works concerning the singular perturbation approach
for flexible joint robots, the fast part of the motor torque was chosen as a term of
the form τm,fast = −εDτ ẏ with Dτ as a positive definite damping matrix. Addi-
tionally, the slow part τm,slow was designed according to a control law τ rigid(q, q̇)
for the rigid robot model (5.20). Notice that the term −εDτ ẏ may be modified to
−εDτ τ̇ because the time t and the state variables of the quasi-steady state sys-
tem, q and q̇, are treated as fixed parameters in the boundary layer system. In
both cases it is ensured that the condition τm,fast|ε→0 = 0 holds. A composite
feedback controller for the flexible joint robot model is then given by

τm = τ rigid(q, q̇) − εDτ τ̇ . (5.23)

The problem with this approach is that the control law (5.23) does not really
improve the dynamics of the boundary layer system but only adds damping to
it. An alternative would be to use also the torque error Kτy = Kτ (τ−h(q, q̇, t))
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Fig. 5.1. Composite control

in the feedback, with a positive definite controller gain matrix Kτ , in order
to enhance the performance of the boundary layer dynamics. However, for the
implementation of such a feedback one has to compute the steady state h(q, q̇, t)
explicitly. This is in many cases not desired because it requires to measure the
external forces τ ext and to invert6 the inertia matrix M(q).

5.4 Modified Controller Design

In the following, a modification of the controller is proposed according to [OASH02]
such that an explicit computation of h(q, q̇, t) can be avoided7.

Let the control input be decomposed as

τm = τ ss(q, q̇) − Kττ − εDτ τ̇ , (5.24)

where Kτ and Dτ are positive definite controller gain matrices and τ ss(q, q̇)
is an intermediate control input for the quasi-steady state system which will be
defined later. Formally, in (5.24) the term Kττ was used instead of the term
Kτy. This term clearly affects both, the fast part of the control input τm,fast

and the slow part τm,slow. In the following the closed loop quasi-steady state
system and the boundary layer system are given for this control law and it is
shown, how the term τ ss(q, q̇) should be chosen for the Cartesian impedance
control problem from Section 3.2.

6 At this point it should again be mentioned that this inversion may be numerically
ill-posed. While the invertibility is ensured by the fact that the inertia matrix is
positive definite, its eigenvalues usually can have different orders of magnitude and
M (q) may contain very small eigenvalues in certain joint configurations.

7 The following modification of the control law was used in [OASH02]. Therein a control
problem was analyzed, in which the explicit computation of h(q, q̇, t) was not possible
because the dynamical parameters of the rigid body part were assumed to be unknown.
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5.4.1 The Modified Quasi-steady State System

The slow part of the control input τm,slow follows by setting ε to zero8 in the
expression (5.24) for τm. This leads to

τm,slow = τ ss(q̄, ˙̄q) − Kτh(q̄, ˙̄q, t)
= τ ss(q̄, ˙̄q) − Kτ τ̄ . (5.25)

In (5.25) one can see that τm,slow now also contains the quasi-steady state torque
τ̄ and the expression for τ̄ from9 (5.19) becomes an implicit equation. However,
one can solve this equation easily for the steady state torque τ̄ and obtains

τ̄ = (I + Kτ + BM(q̄)−1)−1(
τ̄ ss(q̄, ˙̄q) + BM(q̄)−1 (C(q̄, ˙̄q) ˙̄q + g(q̄) − τ̄ ext)

)
Using this relation together with (5.20), one finally gets the following steady
state system

(M(q̄) + (I + Kτ )−1B)¨̄q + C(q̄, ˙̄q) ˙̄q + g(q̄) = (I + Kτ )−1τ ss(q̄, ˙̄q) .(5.26)

The function τ ss(q̄, ˙̄q) can now be chosen as τ ss(q̄, ˙̄q) = (I +Kτ )τ d with τ d as
a new control input which can be designed according to a control law for rigid
robots, like for instance the controller from Section 3.2. With this substitution
the complete control law (5.24) can be written in the form (see also Figure 5.2)

τm = τ d − Kτ (τ − τ d) − εDτ τ̇ , (5.27)

and the closed loop system is given by

(M(q̄) + (I + Kτ )−1B)¨̄q + C(q̄, ˙̄q) ˙̄q + g(q̄) = τ d . (5.28)

In contrast to (5.20) the inertia matrix of the new quasi-steady state system de-
pends now also on the controller gain matrix Kτ , and thus, by Kτ the apparent
motor inertia is scaled. This physical interpretation of torque feedback will be
utilized later in Chapter 7 for the design of a passivity based controller. Notice
that τ d does not correspond to the steady state value τ̄ of the boundary layer
system as one would expect from (5.27).

5.4.2 The Modified Boundary Layer System

The new boundary layer system follows directly from (5.22) and (5.24). By
considering that the fast part of the control input has the form

τm,fast = −Kτ (τ − τ̄ ) − εDτ τ̇ = −Kτy − εDτ τ̇ , (5.29)

8 This also means y → 0.
9 Notice that τ m,slow = τ̄ m.
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one gets the following boundary layer system

d2y

dν2
+ KεB

−1Dτ
dy

dν
+ KεB

−1(I + BM (q)−1 + Kτ )y = 0 . (5.30)

Now the positive definite matrices Kτ and Dτ may be used for shaping the
dynamics of the linear and time-invariant boundary layer system in order to
obtain exponential stability according to Tychonov’s theorem.

5.4.3 Design of the Cartesian Impedance Controller

The impedance control problem from Section 3.2 shall now be treated for the
flexible joint case, based on the singular perturbation approach.

From the analysis of this chapter it follows that the controller of the rigid
body case (3.18) can now be applied to the quasi-steady state system via the
intermediate control input τ d together with the inner loop controller from (5.27).
In the design it is now important to compute all the components from (3.18), like
the Cartesian inertia matrix Λ(x) and the corresponding Coriolis/centrifugal
matrix μ(x, ẋ), based on the modified quasi-steady state system in equation
(5.28). All the stability considerations of Chapter 3 can then be readily applied
to the quasi-steady state system. In the non-redundant and non-singular case
the complete controller finally is given by

τ m = τ d − Kτ (τ − τ d) − εDτ τ̇ (5.31)
τ d = g(q) + J(q)T

(
Λ(x)ẍd + μ(x, ẋ)ẋd − Kdx̃ − Dd

˙̃x
)

, (5.32)

where the Cartesian error x̃, the desired position xd, and the Jacobian J(q) are
the same as in Chapter 3. The matrices Kd and Dd are again the symmetric
and positive definite matrices of the desired stiffness and damping.

Notice also that all the controllers from Chapter 3 and Chapter 4, which were
designed for the rigid body case, can be applied also to the singular perturbation
model of the flexible joint robot via the control input τ d. While the singular
perturbation approach is quite flexible from a practical point of view, its main
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limitation clearly lies in the fact that all the argumentation is based only on
Tychonov’s theorem which does not give a rigorous stability statement.

Also it seems that none of the more comprehensive theorems in the singular
perturbation theory can be applied to the considered impedance control problem.
The reason is that they require exponential stability not only of the boundary
layer system but also of the quasi-steady state system. For the considered desired
dynamical impedance behavior of Section 3.2 exponential stability (in case of free
motion), however, cannot be shown.

5.5 Summary

In this chapter the singular perturbation approach and its application to the
reduced flexible joint robot model was discussed. This method allows to split up
the model into two separate subsystems for the fast and the slow part of the
dynamics. The fast part of the flexible joint robot model consists of the torque
dynamics, while the slow part has the structure of a rigid body robot model.
After discussing the commonly used composite controller, a modified control
law is proposed which allows to improve the torque dynamics but avoids the
computation of the quasi-steady state h(q, q̇, t) of the joint torques. The slow
part of the system dynamics with the proposed controller also has the structure
of a (modified) rigid body system. The controller can thus be seen as a cascade of
an inner loop torque controller and an outer loop impedance controller designed
for a rigid body robot model. The main disadvantage of the singular perturbation
approach is the weak theoretical justification in terms of stability, which is due
to the limitations of Tychonov’s theorem. Therefore, some more sophisticated
approaches are discussed in the next chapter which will bring along stronger
stability statements but will also lead to more complex controller structures.



6 Controller Design Based on the
Cascaded Structure

In the previous chapter a quite general approach to the control of flexible joint
robots was treated, which was not at all restricted to the special problem of
Cartesian impedance control. The main disadvantage of the singular perturba-
tion approach is that only very weak stability statements can be made. The
reason for this is that in the singular perturbation analysis some coupling terms
between the slow and the fast dynamics are neglected. In this chapter it will
be investigated, in which way the controller must be modified in order to allow
stronger stability statements.

Two different approaches will be analyzed. The first one, which is discussed
in Section 6.1, is based on the control theory for cascaded systems. While the
flexible joint robot model from Section 2.2.3 is not in cascaded form, it can be
brought into this form by an inner feedback loop. The second method is based
on the backstepping approach and will be discussed in Section 6.2.

6.1 Decoupling Based Approach

First, an overview of some relevant results concerning the control of cascaded
systems will be given in Section 6.1.1. Then the application to the flexible joint
robot model will be presented in Section 6.1.2.

6.1.1 Control Theory for Cascaded Systems

Consider an autonomous triangular system (see Figure 6.1) of the form

ż1 = f1(z1, z2) , (6.1)
ż2 = f2(z2) , (6.2)

where z1 ∈ R
n1 and z2 ∈ R

n2 are the state variables. It is assumed that the
functions f1(z1, z2) and f2(z2) are locally Lipschitz and that all solutions exist
for t ≥ 0. Furthermore, it is assumed that the origin is an equilibrium point of

C. Ott: Cartesian Imped. Cntrl. of Redund. & Flexible-Joint Robots, STAR 49, pp. 77–92, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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z2 z1

ż2 = f 2(z2) ż1 = f 1(z1, z2)

Fig. 6.1. Cascaded system structure

(6.1)-(6.2), i.e. f1(0,0) = 0 and f2(0) = 0. In the following the situation is
analyzed when the uncoupled systems (6.2) and

ż1 = f1(z1,0) (6.3)

are globally asymptotically stable. Then the question arises under which condi-
tions also the coupled system (6.1)-(6.2) will be asymptotically stable. Locally
this is always true (see the references in [SS90]). In order to ensure that this
holds also globally it was proven in [SS90] that it is sufficient to show that all
solutions of the coupled system remain bounded. This is formulated in a more
general form1 in the following theorem, taken from [SS90].

Theorem 6.1 If the system system (6.3) is globally asymptotically stable, and
if (6.2) is asymptotically stable with region of attraction A ⊆ R

n2 , and if every
solution curve of (6.1)-(6.2) with initial point in R

n1 × A is bounded for t >
0, then the system (6.1)-(6.2) is asymptotically stable with region of attraction
R

n1 ×A.

The proof of this theorem can be found in [SS90]. Notice that Theorem 6.1 also
handles the case of global asymptotic stability, if the region of attraction of (6.2)
is the whole state space R

n2 .
Theorem 6.1 considers the autonomous case. The impedance control problem

in Section 3.2, on the other hand, leads to a time-varying control problem even
in the case of a rigid body robot. Therefore, also the time-varying case shall
be considered. The relevant definitions and lemmata for the stability analysis of
time-varying systems can be found in Appendix A.1.

An extension of Theorem 6.1 to a special class of time-varying systems was
presented in [Lor01]. This contribution from [Lor01] is presented here in form of
the following theorem.

Theorem 6.2 Consider the system

ż1 = f1(t, z1) + h(t, z)z2 (6.4)
ż2 = f2(t, z2) (6.5)

with state z = (z1, z2) ∈ R
n1 × R

n2 . The functions f1(t, z1), f2(t, z2) and
h(t, z) are continuous in their arguments, locally Lipschitz in z, uniformly in

1 Considering also the semi-global case in which the region of attraction is not the
whole state space.
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t, and f1(t, z1) is continuously differentiable in both arguments. This system is
uniformly globally asymptotically stable if and only if the following holds:

• There exists a nondecreasing function H(·) such that

||h(z, t)|| ≤ H(||z||) . (6.6)

• The systems

ż1 = f1(t, z1)
ż2 = f2(t, z2)

are uniformly globally asymptotically stable.
• The solutions of (6.4)-(6.5) are uniformly globally bounded.

Theorem 6.2 gives necessary and sufficient conditions from which one can con-
clude uniform global asymptotic stability of the triangular system (6.4)-(6.5).
Notice that, if the uncoupled systems can even be shown to be exponentially
stable, then there exist also other results in the literature which can be applied
to such a triangular system (see [Vid93]). The impedance control problem from
Section 3.2 though led to a closed loop system for which only (uniform global)
asymptotic stability, instead of exponential stability, can be shown (see Proposi-
tion 3.4). In the following it will be shown how Theorem 6.2 can be used for the
design of a Cartesian impedance controller for the flexible joint robot model.

6.1.2 Decoupling of the Torque Dynamics

The reduced model of a flexible joint robot (without damping), as derived in
Section 2.2.3, is given by

M (q)q̈ + C(q, q̇)q̇ + g(q) = K(θ − q) + τ ext , (6.7)
Bθ̈ + K(θ − q) = τm . (6.8)

In order to relate this system to the triangular form from (6.1)-(6.2), respectively
(6.4)-(6.5), one can perform the following change of coordinates. As coordinates
z1 and z2 the joint angles q and the joint torques τ = K(θ−q) as well as their
first derivatives with respect to time are chosen

z1 =

⎛
⎝q

q̇

⎞
⎠ , z2 =

⎛
⎝τ

τ̇

⎞
⎠ . (6.9)

Notice that these are the same state variables as used for the singular pertur-
bation approach in the last chapter. One may substitute K(θ − q) = τ and
θ̈ = K−1τ̈ + q̈ in equation (6.8) in order to obtain

BK−1τ̈ + τ = τm − Bq̈ . (6.10)
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The link accelerations can be eliminated from (6.10) by using (6.7) because the
inertia matrix M (q) is positive definite and therefore always invertible (Property
2.5). Therefore, one gets the new system equations

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + τ ext , (6.11)
BK−1τ̈ + τ = τm − BM(q)−1 (τ + τ ext − C(q, q̇)q̇ − g(q)) . (6.12)

So far, the model has been reformulated analogously to the last chapter. Clearly,
the model (6.11)-(6.12) does not have a triangular structure like (6.4)-(6.5). But
it can be brought into this form by the following feedback compensation

τ m = u + BM(q)−1 (τ + τ ext − C(q, q̇)q̇ − g(q)) , (6.13)

where u ∈ R
n is an intermediate control input. The system, with decoupled

torque dynamics, can then be written as

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + τ ext , (6.14)
BK−1τ̈ + τ = u . (6.15)

In order to shift the state of the torque dynamics equation (6.15) to zero, a
desired torque variable τ d and a torque error variable eτ are introduced as

eτ = τ − τ d . (6.16)

The desired torque τ d will be used later for the design of a Cartesian impedance
controller. With this new state variable the system equations are written as
follows:

M(q)q̈ + C(q, q̇)q̇ + g(q) = eτ + τ d + τ ext , (6.17)
BK−1(ëτ + τ̈ d) + eτ + τ d = u . (6.18)

The intermediate input u shall be designed such that the torque error dynamics
gets globally asymptotically stable. With the feedback law

u = τ d + BK−1 (τ̈ d − Dτ ėτ − Kτeτ ) , (6.19)

where Kτ and Dτ are positive definite controller gain matrices, the torque error
dynamics is given by the linear time-invariant system

ëτ + Dτ ėτ +
(
Kτ + KB−1

)
eτ = 0 , (6.20)

which clearly is exponentially stable for positive definite controller gain matrices
Dτ and Kτ .

6.1.3 Impedance Controller Design

The closed loop system is given by equations (6.17) and (6.20) which are in
triangular form, provided that the torque τ d is a function of the state variables
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q and q̇ only. At the beginning of this chapter, the situation was analyzed in
which the uncoupled system (6.3) was asymptotically stable. In the case of the
flexible joint robot model, the system (6.3) corresponds to (6.17) with eτ = 0.
The variable τ d will now be used to make this system asymptotically stable.

In the following the desired impedance of Section 3.2 is considered for the non-
redundant and non-singular case by restricting the considered workspace to Q̄p

c .
The same notation as in Chapter 3 is used throughout this chapter. For the ease
of reference the desired dynamic behavior for the Cartesian coordinates x = f(q)
and a virtual equilibrium position xd are recapitulated here. In the considered
non-redundant and non-singular case the analytical Jacobian J(q) = ∂f(q)/∂q
is assumed to be invertible. The desired impedance relation between the gener-
alized Cartesian force F ext, which is related to τ ext via τ ext = J(q)T F ext, and
the Cartesian position error x̃ = x − xd is given by (cf. (3.16))

Λ(x)¨̃x + (μ(x, ẋ) + Dd) ˙̃x + Kdx̃ = F ext . (6.21)

The matrices Kd and Dd are again the symmetric and positive definite matrices
of the desired stiffness and damping. The Cartesian inertia matrix Λ(x) and
the Coriolis/centrifugal matrix μ(x, ẋ) are defined in (3.10) and (3.11). The
desired trajectory xd(t) is assumed to be four times continuously differentiable.
By performing the same steps as in Section 3.1.2, it can be verified that the
system equations (6.17) and (6.20) can be written in Cartesian coordinates as

Λ(x)ẍ + μ(x, ẋ)ẋ + J(q)−T g(q) = F ext + J(q)−T (eτ + τ d) , (6.22)
ëτ + Dτ ėτ +

(
Kτ + KB−1

)
eτ = 0 . (6.23)

The controller from (3.18), which was designed for the rigid body model, can
now be used for the desired torque τ d. Therefore, the complete controller for the
flexible joint robot model follows from equation (6.13), (6.19), and (3.18), and
is given by

τm = τ d + BK−1 (τ̈ d − Dτ (τ̇ − τ̇ d) − Kτ (τ − τ d))
+BM (q)−1 (τ + τ ext − C(q, q̇)q̇ − g(q)) ,

τ d = g(q) + J(q)T
(
Λ(x)ẍd + μ(x, ẋ)ẋd − Kdx̃ − Dd

˙̃x
)

.

Substituting τ d into the system equations (6.22)-(6.23) leads to the correspond-
ing closed loop dynamics

Λ(x)¨̃x + (μ(x, ẋ) + Dd) ˙̃x + Kdx̃ = F ext + J(q)−T eτ , (6.24)
ëτ + Dτ ėτ + (Kτ + KB−1)eτ = 0 . (6.25)

Notice that, when the coupling term J(q)−T eτ is neglected in (6.24), then it
corresponds exactly to the desired dynamics (6.21), which, according to Proposi-
tion 3.4, is uniformly globally asymptotically stable. Notice also that the closed
loop system (6.24)-(6.25) is time-varying, which is not surprising because this is
also the case for the desired dynamics2.
2 This is due to the occurrence of xd(t) in the equations of motion.
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6.1.4 Stability Analysis

For the desired dynamics from (6.21) two important properties concerning sta-
bility and passivity were given in Proposition 3.4 and Proposition 3.5. In the
following it will be shown that these statements hold also for the closed loop
dynamics (6.24)-(6.25) of the flexible joint model.

Proposition 6.3. Let the desired trajectory xd(t) be four times continuously
differentiable. Assume further that the Cartesian coordinates are globally valid,
i.e. Q̄p

c = R
n. Then, for the case of free motion (F ext = 0) the system (6.24)-

(6.25) with symmetric and positive definite matrices Kd, Dd, Kτ , and Dτ is
uniformly globally asymptotically stable.

Proof. In order to rewrite the system (6.24)-(6.25) for F ext = 0 in the state
variables z = (x̃, ˙̃x, eτ , ėτ ) only, it is convenient to make the following substitu-
tions: J(x̃, t) := J(f−1(x̃ + xd(t))) = J(q), Λ(x̃, t) := Λ(x̃ + xd(t)) = Λ(x),
and μ(x̃, ˙̃x, t) := μ(x̃ + xd(t), ˙̃x + ẋd(t)) = μ(x, ẋ). Also for the linear part of
the system the substitutions w = (wT

1 , wT
2 )T = (eT

τ , ėT
τ )T and

A =

⎡
⎣ 0 I

−Dτ −(Kτ + KB−1)

⎤
⎦

are made. This leads to the system

Λ(x̃, t)¨̃x + (μ(x̃, ˙̃x, t) + Dd) ˙̃x + Kdx̃ = J(x̃, t)−T w1 , (6.26)
ẇ = Aw . (6.27)

Notice that this system has a cascaded structure because the linear system
ẇ = Aw does not depend on the state variables x̃ and ˙̃x. For a nonlinear
time-invariant system in such a cascaded form to be asymptotically stable it
is necessary to show that all solutions of the coupled system remain bounded
and the uncoupled subsystems are asymptotically stable (Theorem 6.1). In the
time-varying case the conditions of Theorem 6.2 must be fulfilled.

For the system (6.26)-(6.27) the first condition of Theorem 6.2, the existence
of a nondecreasing function H(·) for which (6.6) holds, is fulfilled due to the
assumption that the Jacobian J(x̃, t) is non-singular. Thus, there exists a δ ∈ R,
0 < δ < ∞, such that

||J(x̃, t)−T || ≤ sup
t∈[0,∞)

√
λmax(J(x̃, t)−1J(x̃, t)−T ) < δ ,

with λmax(H(t)) as the maximum eigenvalue of a matrix H(t) at the time t.
Uniform global asymptotic stability of the two uncoupled subsystems is given

by Proposition 3.4 and the fact that the linear system ẇ = Aw is even globally
exponentially stable for positive definite matrices Dτ and Kτ .

Hence it is sufficient to show that all solutions of the coupled system are
uniformly globally bounded.
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Consider therefore the following continuously differentiable, positive definite,
decrescent and radially unbounded function (see Definition A.2)3

Vc(x̃, ˙̃x, w, t) =
1
2

˙̃xT Λ(x̃, t) ˙̃x +
1
2
x̃T Kdx̃ +

1
2
wT P w (6.28)

with a positive definite matrix P ∈ R
2n×2n. At this point it is worth mentioning

that Vc(x̃, ˙̃x, w, t) is bounded from above and below by some time-invariant,
radially unbounded and positive definite functions4 W1(x̃, ˙̃x, w) and W2(x̃, ˙̃x, w)

W1(x̃, ˙̃x, w) ≤ Vc(x̃, ˙̃x, w, t) ≤ W2(x̃, ˙̃x, w)
W1(x̃, ˙̃x, w) = 1

2λ1|| ˙̃x||22 + 1
2 x̃T Kdx̃ + 1

2wT P w

W2(x̃, ˙̃x, w) = 1
2λ2|| ˙̃x||22 + 1

2 x̃T Kdx̃ + 1
2wT P w

where

0 < λ1 < inf
t∈[0,∞)

λmin(Λ(x̃, t)) <

sup
t∈[0,∞)

λmax(Λ(x̃, t)) < λ2 < ∞

with λmin(A(t)) and λmax(A(t)) as the minimum and maximum eigenvalue of
A(t) at the time t. This is ensured by Property 3.3.

From the well known skew symmetry property in Lemma 3.2 it follows that
the time derivative of Vc(x̃, ˙̃x, w, t) along the solutions of (6.24)-(6.25) is given
by

V̇c(x̃, ˙̃x, w, t) = − ˙̃xT Dd
˙̃x − 1

2
wT Qw + ˙̃xT J(x̃, t)−T w1 ,

where the matrix Q ∈ R
2n×2n is related to P by the Lyapunov equation

Q = −(PA + AT P ). For the following argumentation it is important to no-
tice that, due to Lemma A.21, one may also choose an arbitrary positive defi-
nite matrix for Q and calculate a unique positive definite matrix P for which
Q = −(PA + AT P ) holds. This is possible because A is Hurwitz for positive
definite matrices Dτ and Kτ (see Lemma A.21).

Obviously, V̇c(x̃, ˙̃x, w, t) can be written in matrix form

V̇c(x̃, ˙̃x, w, t) = −

⎛
⎜⎜⎜⎝

˙̃x

w1

w2

⎞
⎟⎟⎟⎠

T

N(x̃, t)

⎛
⎜⎜⎜⎝

˙̃x

w1

w2

⎞
⎟⎟⎟⎠

3 Notice that the eigenvalues of the matrix Λ(x̃, t) are bounded from above and below
by some positive constants for all t ∈ R and all x̃ ∈ R

n (Property 3.3).
4 These properties make the function Vc(x̃, ˙̃x, w, t) positive definite, decrescent and

radially unbounded.
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with

N (x̃, t) =

⎡
⎢⎢⎢⎣

Dd

[
− 1

2J(x̃, t)−T 0
]

⎡
⎣− 1

2J−1(x̃, t)

0

⎤
⎦ Q

⎤
⎥⎥⎥⎦ .

From Lemma A.20 it follows that a necessary and sufficient condition for N (x̃, t)
to be positive definite5 is

Q − 1
4
J−1(x̃, t)D−1

d J−T (x̃, t) > 0 ,

which can be fulfilled for every positive definite matrix Dd because by assump-
tion J(x̃, t) does not get singular and the matrix Q is some positive definite
matrix which may be chosen arbitrarily. Hence, one can conclude that

V̇c(x̃, ˙̃x, w, t) ≤ 0 .

By using the above mentioned properties of Vc(x̃, ˙̃x, w, t), Lemma A.8 can then
be applied to show that the solutions of (6.24)-(6.25) are uniformly globally
bounded. Therefore, it can be concluded that Proposition 6.3 follows from The-
orem 6.2.

Notice that the need to refer to Theorem 6.2 in this stability proof results from
the facts that, on the one hand, the considered system is time-varying and, on
the other hand, the time derivative of the chosen function Vc(x̃, ˙̃x, w, t) is not
negative definite but only negative semi-definite. This fact, together with the
remark that Q can be arbitrarily chosen, are the most important differences to
the proofs in [LG96] and [LG95].

Proposition 6.4. For ẋd(t) = 0, the system (6.24)-(6.25) with the positive defi-
nite matrices Kd, Dd, Kτ , and Dτ gets time-invariant and represents a passive
map from the external force F ext to the velocity error ˙̃x.

Proof. The function Vc(x̃, ˙̃x, w, t) can be chosen as an appropriate storage func-
tion to show passivity. In the case of F ext �= 0, its time derivative along the
solution curve of (6.24)-(6.25) is given by

V̇c(x̃, ˙̃x, w, t) = −

⎛
⎜⎜⎜⎝

˙̃x

w1

w2

⎞
⎟⎟⎟⎠

T

N (x̃, t)

⎛
⎜⎜⎜⎝

˙̃x

w1

w2

⎞
⎟⎟⎟⎠+ ˙̃xT F ext ≤ ˙̃xT F ext . (6.29)

The matrix N(x̃, t) has already been shown to be positive definite. Clearly, the
inequality (6.29) proves the passivity property of Proposition 6.4.
5 Notice also that, in addition to Lemma A.20, it is also possible to show that all

eigenvalues of N (x̃, t) are bounded from above and below by some positive constants,
because Q can be chosen arbitrarily and the matrix J(x̃, t) is non-singular.
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6.1.5 Controller Discussion

The complete controller equations are given by

τ m = τ d + BK−1
(
τ̈ d − Dτ (τ̇ − τ̇ d) − Kτ (τ − τ d)

)
(6.30)

+BM (q)−1 (τ + τ ext − C(q, q̇)q̇ − g(q)) ,

τ d = g(q) + J(q)T
(
Λ(x)ẍd + μ(x, ẋ)ẋd − Kdx̃ − Dd

˙̃x
)

.

Notice that the controller structure is quite similar to the controller of the last
chapter. The main advantage of this controller compared to the singular per-
turbation based controller is that it allows a proof of the asymptotic stability
without referring to an approximate analysis. In addition to the singular pertur-
bation based controller, this controller contains also the (underlined) feedforward
terms τ̇ d and τ̈ d for the inner torque control loop as well as the twice under-
lined term Bq̈ which basically establishes a partial feedback linearization. Since
q̈ usually cannot be measured directly in practice it is expressed via q, q̇, τ , and
the external torques τ ext in the above controller equation. Therefore, it is nec-
essary to measure the external torques even for the simplified desired dynamics
in (6.21). This clearly is a disadvantage compared to the simpler singular per-
turbation based controller. Furthermore, the terms τ̇ d and τ̈ d contain the link
acceleration q̈ and the jerk q(3), since τ d is a function of q and q̇ (or equivalently
x and ẋ). The computation of these signals can be done for a robot with only a
few joints (e.g. one to three joints) but is very problematic for a robot with six
or seven joints. In principle, one can compute these signals based on the model
equations via

q̈ = M(q)−1 (τ + τ ext − C(q, q̇)q̇ − g(q)) ,

q(3) = M(q)−1

(
τ̇ − Ṁ(q)q̈ +

d
dt

(τ ext − C(q, q̇)q̇ − g(q))
)

.

This requires additionally the computation of τ̇ ext (e.g. via filtering) and Ċ(q, q̇).
Another critical point is the use of the inverse inertia matrix in this computation.
While the inertia matrix is always positive definite (and therefore invertible)
its eigenvalues have different orders of magnitude and also can vary by several
orders of magnitude depending on the joint configuration [Fea04]. The inversion
can therefore become numerically ill-posed.

Another possible approach for the computation of q̈ and q(3) is the use of
acceleration sensors6 and/or appropriate filtering techniques. The use of joint
acceleration sensors seems to be a promising approach for the implementation of
the discussed controller. However, it turned out that an appropriate integration
of joint acceleration sensors into the mechanics of a robot is difficult [Gei03].

In order to summarize this discussion, one can say that from an implemen-
tation point of view, this controller is indeed quite difficult. For a robot with a
6 Either by a six-dof acceleration sensor at the tip in case of a six-dof robot, or even

better by joint acceleration sensors.
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few degrees-of-freedom, however, the implementation seems to be achievable but
requires an appropriate filtering either of the external torques or of the signals
from an acceleration sensor. On the other hand the discussed controller answers
the question by which terms the singular perturbation based controller must be
extended in order to allow a rigorous stability analysis.

6.2 Backstepping Based Approach

At first the basic design idea of (integrator) backstepping is described in
Section 6.2.1. The application to the flexible joint robot model is then given in
Section 6.2.2.

6.2.1 Backstepping Design Procedure

Integrator backstepping is a stepwise design procedure for the construction of
Lyapunov functions which can be applied to a large class of systems. In the
following the basic idea is described for a particular class of systems, in which
one backstepping step is sufficient. But the procedure can readily be applied
recursively to more complicated systems.

Consider a system of the form (Figure 6.2)

ż1 = f1(z1) + F 2(z1)z2 , (6.31)
ż2 = u , (6.32)

with the state variables z1 ∈ R
n1 , z2 ∈ R

n2 , and the input u ∈ R
n2 . The

functions f1(z1) : R
n1 → R

n1 and F 2(z1) : R
n1 → R

n1×n2 are assumed to
be known. Notice that the system equations for the state variables z1 are not
directly influenced by the control input u, but only indirectly via z2. In order to
design a controller which stabilizes this system, first the variable z2 is considered
as a virtual control input for (6.31). It is assumed now that a differentiable control
law z2 = k(z1) is known, which stabilizes (6.31). Then there exists a positive
definite Lyapunov function V1(z1) for the system

ż1 = f1(z1) + F 2(z1)k(z1) (6.33)

which has a negative semi-definite derivative

V̇1(z1) =
∂V1(z1)

∂z1
(f1(z1) + F 2(z1)k(z1)) ≤ 0 . (6.34)

u z2 z1R
(6.31)

Fig. 6.2. System structure for integrator backstepping
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Then the error variable e2 = z2 − k(z1) is introduced such that the system
(6.31)-(6.32) can be written in the state (z1, e2) as

ż1 = f1(z1) + F 2(z1) (e2 + k(z1)) , (6.35)

ė2 = u − ∂k(z1)
∂z1

(f1(z1) + F 2(z1) (e2 + k(z1))) . (6.36)

For this system the function V2(z1, e2) = V1(z1) + 1
2eT

2 e2 is considered as a
Lyapunov function candidate. The derivative of V2(z1, z2) along the solutions
of (6.35)-(6.36) is given by

V̇2(z1, e2) =
∂V1(z1)

∂z1
(f1(z1) + F 2(z1)k(z1)) +

∂V1(z1)
∂z1

F 2(z1)e2 +

eT
2 u − eT

2

∂k(z1)
∂z1

(f1(z1) + F 2(z1) (e2 + k(z1))) .

Due to (6.34) the first term in V̇2(z1, e2) is negative semi-definite in z1. In order
to make V̇2(z1, e2) negative semi-definite in (z1, e2), the following control law
can be used

u = −Kee2 +
∂k(z1)

∂z1
(f1(z1) + F 2(z1) (e2 + k(z1))) −

(
∂V1(z1)

∂z1
F 2(z1)

)T

= −Ke(z2 − k(z1)) +
∂k(z1)

∂z1
(f1(z1) + F 2(z1)z2) −(

∂V1(z1)
∂z1

F 2(z1)
)T

, (6.37)

with an arbitrary positive definite matrix Ke.
This procedure, which corresponds to one backstepping step, is formalized in

the following lemma.

Lemma 6.5. Consider the system (6.31)-(6.32). Let k(z1) be a differentiable
state feedback law for z2, which stabilizes (6.31) (asymptotically), and V1(z1)
be a (strict) Lyapunov function for (6.33). Then the feedback law (6.37), with a
positive definite matrix Ke, stabilizes the system (6.31)-(6.32) (asymptotically)
and the function V2(z1, z2) = V1(z1) + 1

2 (z2 − k(z1))T (z2 − k(z1)) can be used
as a (strict) Lyapunov function.

Notice that many extensions to this procedure are possible in order to treat a
broader class of systems (see, e.g., [SJK97]). Lemma 6.5 can, for instance, readily
be generalized to the time-varying case7.

7 The definitions of stability properties for time-varying systems are given in Appendix
A.1.
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6.2.2 Application to the Flexible Joint Model

The procedure of the last section shall now be applied to the system from Section
2.2.3:

M (q)q̈ + C(q, q̇)q̇ + g(q) = K(θ − q) + τ ext , (6.38)
Bθ̈ + K(θ − q) = τm . (6.39)

The structure of these system equations does not correspond identically to the
particular class of systems discussed in Section 6.2.1. The following derivation
in this section will therefore not directly rely on Lemma 6.5. The basic design
procedure will be quite similar to the derivation which led to Lemma 6.5.

The backstepping procedure has been applied to the position control of flexible
joint robots in [OL97] and in [NT92]. In this work the interest lies in the design
of an impedance controller instead. Similar to the state transformation of the
last section, the model can be written in the Cartesian coordinates x = f(q)
and ẋ = J(q)q̇ and the torque variables τ = K(θ − q) and τ̇ as

Λ(x)ẍ + μ(x, ẋ)ẋ + J(q)−T g(q) = J(q)−T (τ + τ ext) , (6.40)
BK−1τ̈ + τ = τm − Bq̈ , (6.41)

where the link acceleration q̈ could also be written in the form q̈ = M (q)−1(τ +
τ ext −C(q, q̇)q̇ − g(q)), as it was done in the last section. In this section again
the non-redundant and non-singular case is treated. For the rigid body case with
τ ext = 0 the control law in (3.18) stabilizes the system (6.40) asymptotically. A
(non-strict) Lyapunov function was given in Section 3.2 as

V1(x̃, ˙̃x, t) =
1
2

˙̃xT Λ(x) ˙̃x +
1
2
x̃T Kdx̃ . (6.42)

By considering the torque τ as a virtual input vector, one can see that a feedback
law of the form

τ = τ d = g(q) + J(q)T (Λ(x)ẍd + μ(x, ẋ)ẋd − Kdx̃ − Dd
˙̃x)

would lead to

V̇1(x̃, ˙̃x, t) = − ˙̃xT Dd
˙̃x + ˙̃xT J(q)−T τ ext .

This shows the stability in the case of free motion, i.e. for τ ext = 0. Since τ
cannot be directly used as an input variable in the flexible joint case, one will in
general have τ �= τ d and with et = τ − τ d the time derivative of V1(x̃, ˙̃x, t) is
given by

V̇1(x̃, ˙̃x, et, t) = − ˙̃xT Dd
˙̃x + ˙̃xT J(q)−T τ ext + ˙̃xT J(q)−T et

instead. The backstepping procedure (Step 1) suggests to introduce an additional
term in the Lyapunov function in order to cancel the cross-term. With Ct as a
symmetric and positive definite matrix and

V2(x̃, ˙̃x, et, t) =
1
2

˙̃xT Λ(x) ˙̃x +
1
2
x̃T Kdx̃ +

1
2
eT

t Ctet
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as a new Lyapunov function candidate, the time derivative of V2(x̃, ˙̃x, et, t) is
given by

V̇2(x̃, ˙̃x, et, ėt, t) = − ˙̃xT Dd
˙̃x + ˙̃xT J(q)−T τ ext + ˙̃xT J(q)−T et + eT

t Ctėt .

Next, the error term ėt is considered as a virtual input. By the choice

ėt = v∗
t = −C−1

t J(q)−1 ˙̃x − C−1
t Ktet ,

with Kt as a positive definite controller gain matrix, one would ideally eliminate
the cross-term in V̇2(x̃, ˙̃x, et, ėt, t) and obtain

V̇2(x̃, ˙̃x, et, t) = − ˙̃xT Dd
˙̃x + ˙̃xT J(q)−T τ ext − eT

t Ktet .

But since in general ėt �= v∗
t , one actually gets, by introducing the error variable

es = ėt − v∗
t , the following change of the Lyapunov function along the solution

curves

V̇2(x̃, ˙̃x, et, es, t) = − ˙̃xT Dd
˙̃x + ˙̃xT J(q)−T τ ext − eT

t Ktet + eT
t Ctes .

In order to eliminate also the remaining cross-term, one has to perform an ad-
ditional backstepping step (Step 2), by first introducing a new term in the Lya-
punov function with a symmetric and positive definite matrix Cs

V3(x̃, ˙̃x, et, es, t) =
1
2

˙̃xT Λ(x) ˙̃x +
1
2
x̃T Kdx̃ +

1
2
eT

t Ctet +
1
2
eT

s Cses ,

such that the time derivative reads as

V̇3(x̃, ˙̃x, et, es, ės, t) = − ˙̃xT Dd
˙̃x + ˙̃xT J(q)−T τ ext − eT

t Ktet + eT
t Ctes +

eT
s Csės .

With ės = τ̈ − τ̈ d− v̇∗
t and by substituting the torque dynamics equation (6.41),

one obtains

V̇3(x̃, ˙̃x, et, es, t) = − ˙̃xT Dd
˙̃x + ˙̃xT J(q)−T τ ext − eT

t Ktet + eT
t Ctes +

eT
s Cs(KB−1(τm − Bq̈ − τ ) − τ̈ d − v̇∗

t ) .

Controller Design: By completing the backstepping step the controller can
now be chosen as

τm = Bq̈ + τ + BK−1(τ̈ d + v̇∗
t − C−1

s Ctet − C−1
s Kses) (6.43)

with a positive definite matrix Ks. This leads to

V̇3(x̃, ˙̃x, et, es, t) = − ˙̃xT Dd
˙̃x + ˙̃xT J(q)−T τ ext − eT

t Ktet − eT
s Kses ,

and hence V̇3(x̃, ˙̃x, et, es, t) is negative semi-definite for the case of free motion.
Thus, one may conclude that the equilibrium is stable in the sense of Lyapunov.
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The controller in (6.43) can be brought into a more handy form by substituting
the expressions es = ėt − v∗

t and v∗
t = −C−1

t J(q)−1 ˙̃x − C−1
t Ktet to obtain

τm = Bq̈ + τ + BK−1(τ̈ d − C−1
t

d
dt

(J(q)−1 ˙̃x) − C−1
t Ktėt − C−1

s Ctet)

−BK−1C−1
s Ks(ėt + C−1

t J(q)−1 ˙̃x + C−1
t Ktet) .

By rearranging the terms, and with the substitutions K̄t = C−1
t Kt and K̄s =

C−1
s Ks, the controller can finally be written as

τm = Bq̈ + τ + BK−1
(
τ̈ d − (K̄sK̄t + C−1

s Ct)et − (K̄s + K̄t)ėt

)
−BK−1(C−1

t

d
dt

(J(q)−1 ˙̃x) + K̄sC
−1
t J(q)−1 ˙̃x) , (6.44)

with τ d given by

τ d = g(q) + J(q)T (Λ(x)ẍd + μ(x, ẋ)ẋd − Kdx̃ − Dd
˙̃x) .

The result can be summarized in the following proposition.

Proposition 6.6. Let the desired trajectory xd(t) be four times continuously
differentiable. Assume further that the Cartesian coordinates are globally valid,
i.e. Q̄p

c = R
n. Then, for the case of free motion (F ext = 0) the controller (6.44)

with symmetric and positive definite matrices Kd, Dd, Ct, Cs, Kt, and Ks

stabilizes the system (6.40)-(6.41) globally.

Proof. (Sketch) The proof can be easily done by showing that the function
V3(ex, ėx, et, es, t) is a (time-varying) Lyapunov function with a negative semi-
definite derivative along the solution curves of the closed loop system. This can be
done by following the steps of the above backstepping based controller derivation.

In addition to this stability statement, a passivity property similar to Proposition
3.5, follows easily.

Proposition 6.7. Consider a closed loop system according to the control law
(6.44) with symmetric and positive definite matrices Kd, Dd, Ct, Cs, Kt, and
Ks applied to the system (6.40)-(6.41). For ẋd(t) = 0, this closed loop system
gets time-invariant and represents a passive map from the external force F ext to
the velocity error ˙̃x.

Proof. This can be proven by considering V3(ex, ėx, et, es), which for ẋd(t) = 0
gets time-invariant, as a storage function for the closed loop system.

6.2.3 Controller Discussion

Notice the similarity of the controller (6.44) to the controller from the last sec-
tion (6.30). With the correspondence Kτ = K̄sK̄t+C−1

s Ct−KB−1 and Dτ =
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K̄s + K̄t and by substituting q̈ = M (q)−1(τ + τ ext − C(q, q̇)q̇ − g(q)) the
controller (6.44) can be written as

τm = τ d + BK−1 (τ̈ d − Kτet − Dτ ėt)
BM(q)−1 (τ + τ ext − C(q, q̇)q̇ − g(q))

−BK−1(C−1
t

d
dt

(J(q)−1 ˙̃x) + K̄sC
−1
t J(q)−1 ˙̃x) .

The first part of this controller thus has the same form as in (6.30). But it
should be noticed that in general the controller gains Kτ and Dτ must be chosen
differently. For the decoupling based controller these matrices must be positive
definite only, but in the backstepping based controller they must be chosen such
that the matrices Kt, Ks, Ct, and Cs are all symmetric and positive definite.

From a computational point of view the two controllers from this chapter are
comparable. The main difficulty arises from the fact that for the implementation
the link accelerations q̈ and the jerks q(3) have to be determined (see also Section
6.1.5).

The parameter choice for the backstepping based controller is more difficult.
Clearly, the design of the matrices Kt, Ks, Ct, and Cs, which must be chosen
additionally to the given impedance parameters Kd and Dd, is not very intuitive.
It can be simplified, when two of the parameters are fixed. In the simulations of
this controller (see also Chapter 8) it turned out that the choice Cs = Ct = I
leads to good results. Thereby, the design is reduced to the choice of positive
definite matrices Kt and Ks.

Notice that the above analysis allows to give a proof of stability, but nothing
has been said about asymptotic stability. In principle, the same procedure can
be applied to a strict Lyapunov function for the rigid body part of the system.
Santibanez and Kelly proposed such a strict Lyapunov function for the rigid body
part in [SK97b]. This would enable to treat the case of asymptotic stability but
would further increase the complexity of the controller.

6.3 Summary

In this chapter two Cartesian impedance controllers were proposed which take
advantage of the special structure of the reduced flexible joint robot model.

In the first approach an exact decoupling of the torque dynamics from the link
side dynamics is established. In combination with an impedance control law for
the link side dynamics, this allows to give a stability proof based on the control
theory for time-varying cascaded systems. In contrast to the singular perturba-
tion approach from the last chapter no further simplifications or approximations
of the reduced flexible joint robot model are required.

In the second part of this chapter a constructive approach, namely the back-
stepping approach, was applied. In this approach the Lyapunov function for a
rigid body impedance controller was used as a basis to construct a Lyapunov
function for the flexible joint robot model. This is only possible by additional
feedback of the joint torques.
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The approaches of this chapter are based on the particular structure of the
system dynamics. Undesired coupling terms between the torque dynamics and
the link side dynamics are eliminated by appropriate feedback. A rather different
approach, based on the passivity properties of the robot model, will be discussed
in the next chapter.



7 A Passivity Based Approach

In this chapter a passivity based approach for the impedance control of a flexible
joint robot is described. The basic idea behind the controller formulation is a
physical interpretation of the torque feedback. This allows to analyze the stability
based on the passivity properties of the system.

The energy shaping methodology for flexible joint robots was first introduced
in [Tom91], where it was proven that a motor position based PD-controller
leads to a stable closed loop system similar to the rigid body case. The gen-
eralization to the Cartesian case was treated by Goldsmith et al. in [GFG99],
where the stability analysis for a Cartesian hybrid position/force controller for
a flexible joint robot model without gravitational effects was presented. The
gravity compensation problem for PD-like regulation controllers was addressed
in [DLSZ05, ZSL+03, ZLS04, ZSL+05].

However, it has been shown that in practice only quite unsatisfactory results
can be achieved with a restriction to purely motor position (and velocity) based
feedback controllers (without additional non-collocated feedback) for the case of
a flexible joint robot. In some works a controller structure based on a feedback
of the joint torques as well as the link side positions was considered and it was
shown that this can indeed lead to better results (see, e.g., [Spo89]). This was
also verified experimentally with the DLR lightweight robots [ASOFH03]. From
a theoretical point of view the use of an inner torque feedback loop usually is
justified (for a sufficiently high joint stiffness) by an approximate analysis based
on the singular perturbation theory (see Chapter 5).

In this chapter a physical interpretation of the torque feedback is given in-
stead. Therefore, a stability proof based on passivity properties of the system
can be given. It is important to note that the described controller itself is not
passive due to the feedback of the joint torque, but it will be shown that the
controlled motor dynamics in combination with the torque feedback are pas-
sive [OASK+05, OASK+04a]. Together with the passive (link side) rigid body
dynamics the closed loop system can, therefore, be represented as a feedback
interconnection of two passive systems.

C. Ott: Cartesian Imped. Cntrl. of Redund. & Flexible-Joint Robots, STAR 49, pp. 93–121, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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In prior work at the DLR, a controller with a complete static state feedback
(position and torque as well as their first derivatives) was introduced in [ASH00],
for which asymptotic stability was shown based on the passivity properties of the
controller. Analogously to [Tom91], a gravity compensation term based on the
desired configuration was used in [ASH00]. For an impedance controller this is
not appropriate, since for low desired stiffness a large deviation from the desired
configuration may occur. In Section 7.3 a gravity compensation term will be
designed which is based on the measurement of the motor position. This is far
better for the impedance control problem.

A similar passivity based controller structure, which can be implemented with-
out measurement of the joint velocities, is given by the IPC 1 from [Str01]. It
should be mentioned that the original idea of the presented work from this chap-
ter was the result of considerations about how such a passivity based controller
designed for rigid body robots (like a simple PD controller or the more involved
IPC) could be best implemented for a robot with flexible joints.

The presented controller is also strongly related to the state feedback con-
troller from [ASH00] as described further in Section 7.8.

This chapter is organized as follows: Section 7.1 describes the design idea
which is based on some simple physical observations. The application of the de-
sign idea to the flexible joint robot model is presented in Section 7.2. In Section
7.3 the problem of gravity compensation is treated. A detailed stability analy-
sis of the controller based on the passivity properties is given in Section 7.4.
Furthermore, in Section 7.5 the stiffness design is treated in more detail. Some
straightforward generalizations of the controller are given in Section 7.6. The
tracking case is considered in more detail in Section 7.7. Finally, in Section 7.8,
the relations of the controller to some other design methods are shortly discussed.

7.1 Design Idea

In this section the basic idea of the controller design is described. It is motivated
by some simple considerations for a one-dimensional model.

Consider at first the model of a single flexible joint as it is sketched in Figure
7.1 for the second joint of the DLR-Lightweight-Robot-III. The motor torque τm

acts here on the rotor inertia B of the motor2. The elasticity of the transmission
between the rotor and the following link of the robot3 is modeled in form of a
linear spring with stiffness K.

The goal of the impedance controller is to achieve a desired dynamical be-
havior with respect to an external force Fext acting on the link side. In the
following it is assumed that this dynamical behavior is given by a differen-
tial equation of second order representing a mass-spring-damper system with
mass M , desired stiffness Kθ, and desired damping Dθ. For a robot with rigid
1 Intrinsically Passive Controller.
2 The motors are modeled as ideal torque sources without considering the dynamics

of the electrical drives.
3 In Figure 7.1 represented in a simplified form with a constant mass M .
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K
B M

τm

Fig. 7.1. Sketch of the model for a flexible joint robot

(i.e. non-elastic) joints this behavior could be realized by a simple PD-controller.
If one uses a motor position based PD-controller in case of a robot with elastic
joints as shown in Figure 7.2 for the one-dimensional case, then the resulting
dynamics will clearly be influenced also by the joint elasticity and the motor
inertia. Intuitively speaking, the deviation from the desired behavior will be less
significant when the rotor mass B gets smaller and the joint stiffness K gets
larger.

At this point it should be mentioned that the joint stiffness values of a typical
flexible joint robot are indeed quite large4 but not negligible. By a negative feed-
back of the joint torque τ the apparent inertia (of the rotor) can now be scaled
down, which means that the closed loop system reacts to external forces as if the
rotor inertia were smaller. The desired dynamical behavior will be approximated
the better, the smaller the apparent rotor inertia is. This approach, as suggested
in Figure 7.2 intuitively, will be put in concrete terms in the following section
for the model of a flexible joint robot. Furthermore, in Section 7.5 a method for
compensating the influence of the spring K will also be presented.

τ

θ

q

Kθ

Dθ

K

B M

Fig. 7.2. Motor position based PD-control of a single joint

4 For the lower joints of the DLR lightweight robots these values lie in the range
10.000 − 15.000 Nm/rad.
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7.2 Application to the Flexible Joint Model

In Section 2.2.3 the reduced model of a flexible joint manipulator was derived.
For the ease of reference the model equations are recapitulated here

M (q)q̈ + C(q, q̇)q̇ + g(q) = K(θ − q) + τ ext , (7.1)
Bθ̈ + K(θ − q) = τm , (7.2)

where the same notation is used as in Chapter 2. As already mentioned in the
last section, the apparent motor inertia can be reduced from B to Bθ by feeding
back the joint torque τ = K(θ − q). This is realized by the feedback law

τm = BB−1
θ u + (I − BB−1

θ )τ , (7.3)

wherein u is a new input variable. The resulting system dynamics is given by

M (q)q̈ + C(q, q̇)q̇ + g(q) = K(θ − q) + τ ext , (7.4)
Bθθ̈ + K(θ − q) = u . (7.5)

Clearly, (7.4) and (7.5) have the same form as the original equations but with
scaled motor inertia. The input variable u is further split up into one term
uimp, which actually implements the stiffness and damping, and another term
ug, which acts as a gravity compensation

u = uimp + ug . (7.6)

In the remaining part of this section the term uimp is designed. The construction
of an appropriate gravity compensation term ug will be treated in Section 7.3.2.
In case that the desired impedance behavior is defined with respect to joint
coordinates in form of positive definite stiffness and damping matrices Kθ and
Dθ, respectively, and by a (constant) virtual equilibrium configuration θd, a
motor position based PD-controller

uimp = −Kθ(θ − θd) − Dθθ̇ (7.7)

can be used. Therefore, one gets the following closed loop equations

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + τ ext , (7.8)
Bθθ̈ + Dθθ̇ + Kθ(θ − θd) + τ = ug . (7.9)

7.2.1 Generalization to Cartesian Coordinates

Usually, the desired impedance behavior is defined with respect to Cartesian
coordinates x ∈ R

m, which describe the position and orientation of the robot
end-effector, rather than in joint coordinates. In the following it is assumed
that the forward kinematics mapping from the joint space coordinates q to the
Cartesian coordinates x = f (q) as well as the Jacobian matrix J(q) = ∂f(q)

∂q
are known.
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The controller (7.7) can then be easily generalized to Cartesian coordinates,
by using the motor angles θ instead of the link side angles q in the forward
kinematics, i.e. xθ = f(θ). The desired stiffness and damping matrices are given
by the positive definite matrices Kd and Dd. Then the feedback law

uimp = −J(θ)T (Kdx̃θ + Ddẋθ) , (7.10)
x̃θ = f(θ) − xθ,d , (7.11)

ẋθ = J(θ)θ̇ (7.12)

generalizes (7.7) to Cartesian coordinates. Herein, xθ,d is the virtual motor side
position in Cartesian coordinates. Notice that in the design of xθ,d the static (i.e.
in equilibrium state for τ ext = 0) difference of the motor and link side angles due
to gravity should be considered. This means that for a given link side position
qd which corresponds to the desired Cartesian position xd = f(qd), xθ,d should
be chosen as xθ,d = f(qd + K−1g(qd)).

The controller in (7.10) leads then, together with (7.3), to the closed loop
system

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + τ ext , (7.13)
Bθθ̈ + J(θ)T (Kdx̃θ + Ddẋθ) + τ = ug . (7.14)

7.3 Gravity Compensation

In the control law (7.10) the effects of the gravity torque g(q) were not consid-
ered. It has been shown in [Tom91] that for a motor position based PD-controller
a feedforward term of the gravity torques in the desired steady state can be used.
This indeed leads in the case of a position controller usually to a good perfor-
mance because the deviations from the desired position can be kept small. For an
impedance controller, however, this is not true. Here a pure feedforward action
for the gravity compensation does not give satisfactory results because large de-
viations from the steady state positions may occur in the case of a small desired
stiffness Kd.

The problem of constructing an online gravity compensation for a flexible joint
robot based on the motor position was first treated in [ZSL+03]. The solution in
[ZSL+03], however, still leads to lower bounds on Kd, limiting the generality of
the impedance controller. In contrast to this the solution presented herein does
not require such additional constraints [OASK+04b, ASOH04b, OASKH08]. In
the following some further details on the gravity term g(q) are analyzed in
Section 7.3.1. The actual gravity compensation will then be formulated in Section
7.3.2 and a derivation of the corresponding potential function is given in Section
7.3.3.

7.3.1 On the Boundedness of the Gravity Hessian

According to its derivation in Chapter 2 the gravity term g(q) corresponds to the
differential of the gravity potential Vg(q), i.e. g(q) = (∂Vg(q)/∂q)T . Property 2.8
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ensures the boundedness of the Hessian of the gravity potential for an arbitrary
norm. In case that the manipulator under consideration has both rotational and
prismatic joints, the bound α from Property 2.8 is, from a physical point of
view, not well defined, since it clearly depends on the chosen physical units for
the translational and rotational coordinates. In order to overcome this problem
particular matrix and vector norms are defined in the following by scaling with
the joint stiffness matrix5.

Let therefore R ∈ R
n×n be the square root of the joint stiffness matrix K,

i.e.

K = RT R . (7.15)

Since K is a diagonal matrix (see Chapter 2), the matrix R is given by R =
diag(

√
Ki). Then a vector norm || · ||K : R

n → R
+ for a vector v ∈ R

n can be
defined via the Euclidean vector norm || · ||2 as

||v||K :=

(
n∑

i=1

Kiv
2
i

)1/2

= ||Rv||2 =
(
vT Kv

)1/2
. (7.16)

The matrix R, respectively K, is used herein as a normalization of the chosen
physical units. Corresponding to this vector norm, a matrix norm ||·||K : R

n×n →
R

+ for a matrix A ∈ R
n×n is defined in the following via the spectral norm6

||·||i2. Since the interest of this section lies on the Hessian of the gravity potential,
it is reasonable7 to consider the quadratic form vT Av for a matrix A. Notice
that the inequality

|vT Av| ≤ ||Av||2||v||2 ≤ ||A||i2||v||22 (7.17)

implies

|vT Av| = |vT RT R−T AR−1Rv| ≤ ||R−T AR−1||i2||v||2K , (7.18)

with the K-norm for the vector v as defined in (7.16). This motivates the choice8

||A||K := ||R−T AR−1||i2 .

for the definition of the matrix norm || · ||K . Notice that, when this norm is
applied to the joint stiffness matrix K, one obtains ||K||K = 1.
5 Notice that the following design of the gravity compensation does not involve the

complete dynamics of the manipulator. Therefore, the stiffness matrix is the appro-
priate metric for the considered problem rather than the inertia matrix.

6 The spectral norm is the matrix norm induced by the Euclidean vector norm.
7 The reason for considering quadratic forms at this point will become clear later in

the proof of Proposition 7.1.
8 Notice that the term R−T AR−1 corresponds to the coordinate transformation of a

covariant tensor A of rank two when R is the Jacobian of the coordinate transfor-
mation. A linear transformation (i.e. a mixed tensor), instead, would be transformed
as RAR−1.
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Let H(q) be the Hessian of the gravity potential

H(q) :=
∂2Vg(q)

∂q2
. (7.19)

Let further αg be an upper bound for the K-norm of this Hessian in9 Qp, i.e.

αg := sup
∀q∈Qp

||H(q)||K . (7.20)

The existence of this bound αg < ∞ is ensured by Property 2.8 and it implies
the following statement for the gravity potential.

Property 7.1. Let αg, as defined in (7.20), be an upper bound for the Hessian
of the gravity potential Vg(q) with respect to the K-norm. Then the inequality

|Vg(q1) − Vg(q2) + g(q1)
T (q2 − q1)| ≤

1
2
αg||q2 − q1||2K (7.21)

holds for all q1, q2 ∈ Qp.

Proof. The gravity potential Vg(q) at the point q2 can be written as the integral
of the differential g(q) starting from q1

Vg(q2) = Vg(q1) +
∫ q2

q1

∂Vg(q)
∂q

dq

= Vg(q1) +
∫ q2

q1

g(q)T dq . (7.22)

Analogously, one can write the differential g(q) as

g(q) = g(q1) +
∫ q

q1

H(ξ)dξ , (7.23)

where H(ξ) is the Hessian matrix H(ξ) := (∂g(q)
∂q )q=ξ = (∂2Vg(q)

∂q2 )q=ξ. Combin-
ing (7.22) and (7.23) leads to

Vg(q2) = Vg(q1) +
∫ q2

q1

(
g(q1) +

∫ q

q1

H(ξ)dξ

)T

dq ,

from which one can follow

Vg(q2) − Vg(q1) − g(q1)
T (q2 − q1) =

∫ q2

q1

(∫ q

q1

H(ξ)dξ

)T

dq .

9 Remember that Qp is an area in the configuration space wherein all the prismatic
joint variables keep bounded (see (2.36)).
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By using the transformations z = Rq and zξ = Rξ the integral on the right
hand side can be written as∫ q2

q1

(∫ q

q1

H(ξ)dξ

)T

dq =
∫ z2

z1

(∫ z

z1

H(R−1zξ)R−1dzξ

)T

R−1dz

=
∫ z2

z1

(∫ z

z1

R−T H(R−1zξ)R−1dzξ

)T

dz .

By using Lemma A.23, one can then conclude

|Vg(q2) − Vg(q1) − g(q1)
T (q2 − q1)| ≤

1
2

sup
∀q∈Rn

||R−T H(q)R−1||i2||z2 − z1||22

=
1
2
αg||q2 − q1||2K .

Property 7.1 is a direct consequence of Property 2.8 and will be of interest later
in the stability analysis. Additionally, one further assumption on the gravity
potential will be needed.

Assumption 7.2. The Hessian H(q) = ∂2Vg(q)
∂q2 of the gravity potential Vg(q)

satisfies the condition

αg = sup
∀q∈Qp

||H(q)||K < ||K||K = 1 . (7.24)

Notice that this assumption is not restrictive at all. Intuitively speaking it states
nothing else than the fact that the manipulator should be designed properly. In
particular, this means that the joint stiffness is sufficiently high such that it can
prevent the manipulator from falling down under the load of its own weight. For
a real manipulator the area in which ||H(q)||K < 1 holds will be much larger
than Qp.

It should also be mentioned that the quantity αg is dimensionless since it is
defined via the norm || · ||K .

7.3.2 Construction of the Gravity Compensation Term

In the following a compensation for the static effects of the gravity term g(q)
is constructed. This compensation is solely based on the motor position and
can compensate for the link side gravity torques (in a quasi-stationary fashion).
Consider first the set Ω := {(q, θ) | K(θ − q) = g(q)} of stationary points (for
τ ext = 0) for which the torque due to the joint elasticity counterbalances the link
side gravity torque. The goal of the gravity compensation is now to construct a
compensation term ḡ(θ) such that in Ω the equilibrium condition

ḡ(θ) = g(q) ∀(q, θ) ∈ Ω (7.25)

holds. This means that the gravity compensation term counterbalances the link
side gravity torque in all stationary points.
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Notice that for any point (q0, θ0) ∈ Ω the motor position can be uniquely
expressed as a function of the link side position

θ0 = q0 + K−1g(q0) =: hg(q0) . (7.26)

Furthermore, by the use of the contraction mapping theorem (see the proof of
Proposition 7.3 below for more details on this) it can be shown that the inverse
function to hg(q0) exists. Then

q0 = h−1
g (θ0) =: q̄(θ0) (7.27)

can be used for the construction of a gravity compensation term of the form

ug = ḡ(θ) := g(q̄(θ)) , (7.28)

which clearly fulfills (7.25). Finally, the question about the existence of the func-
tion q̄(θ) is answered by the following proposition.

Proposition 7.3. If (7.24) from Assumption 7.2 holds globally (i.e. for Qp =
R

n), the inverse function h−1
g (θ) = q̄(θ) of hg(q) = q + K−1g(q) : R

n → R
n

exists globally. Moreover, the iteration

q̂n+1 = T g(q̂n) (7.29)

with T g(q) := θ − K−1g(q) converges for every fixed θ and for every starting
point q̂0 to q̄(θ).

Proof. The proposition can be proven by showing first that the mapping T g(q) :
R

n → R
n is a global contraction (see [Vid93]) for the vector norm || · ||K . Since

the vector space R
n together with the norm || · ||K indubitably is a Banach

space10, one must only show that there exists a ρ < 1 such that T g(q) satisfies
the condition

||T g(q2) − T g(q1)||K ≤ ρ||q2 − q1||K ∀q1, q2 ∈ R
n .

The function T g(q) at q2 can be written as the integral

T g(q2) = T g(q1) +
∫ q2

q1

∂T g(q)
∂q

dq

= T g(q1) −
∫ q2

q1

K−1H(q)dq ,

10 A Banach space is a normed vector space which is complete in the sense that every
Cauchy sequence converges to an element of the space (see [Vid93]).
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from which one can conclude (by using the transformation z = Rq and Lemma
A.23)

T g(q2) − T g(q1) = −
∫ q2

q1

K−1H(q)dq

R(T g(q2) − T g(q1)) = −
∫ q2

q1

RK−1H(q)dq

R(T g(q2) − T g(q1)) = −
∫ q2

q1

R−T H(q)dq

R(T g(q2) − T g(q1)) = −
∫ z2

z1

R−T H(R−1z)R−1dz

||R(T g(q2) − T g(q1))||2 ≤ sup
∀q∈Rn

||R−T H(q)R−1||i2||z2 − z1||2
||T g(q2) − T g(q1)||K ≤ sup

∀q∈Rn

||H(q)||K ||q2 − q1||K .

From Assumption 7.2 it follows that T g(q) is a (global) contraction. By the
contraction mapping theorem11 (see, e.g., [Vid93]) one can therefore conclude
that the mapping T g(q) has a unique fixed point q∗ = T g(q∗) and that the
iteration of (7.29) converges to this fixed point

lim
n→∞ q̂n = q∗ .

By comparing T g(q) with hg(q), one can easily see that (for each particular
value of θ) this fixed point q∗ corresponds to q̄(θ).

While in general the inverse function h−1
g (θ) cannot be computed directly in

practice, it is thus possible to approximate it with arbitrary accuracy by itera-
tion. From a practical point of view one or two iteration steps already lead to
quite satisfactory results. Notice also that by a first order approximation with
q̂0 = qd one would obtain the online gravity compensation term of [ZSL+03].

In the following analysis it is therefore assumed that the inverse function
h−1

g (θ) is known exactly, although it can only be approximated in practice.
Another remark about the range in which Property 7.3 holds is important.

The assumption Qp = R
n, which holds for instance when the robot has only

rotational joints, was needed to ensure that T g(q) is a global contraction. If
instead Qp ⊂ R

n, then one must additionally ensure that the points q̂i of the
iteration (7.29) stay in an area in which ||H(q)||K < ||K||K = 1 holds. While
this is not a critical issue from a practical point of view12, it is difficult to be
proven in general.

Since ḡ(θ) is the motor torque needed (statically) to prevent the robot from
falling down under the action of its own weight, one can see that ḡ(θ) must

11 Also called Banach fixed point theorem.
12 Notice that for a real robot the area in which ||H(q)||K < ||K ||K = 1 holds will be

much larger than Qp.
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be given as the differential of a potential function Vḡ(θ), which is related to
the potential energy (gravity plus joint stiffness) of the robot. This potential
function will be of interest for the passivity and stability analysis in Section 7.4.
A detailed derivation of Vḡ(θ) is therefore given in the next section.

7.3.3 Derivation of the Gravity Compensation Potential

In this section the potential function Vḡ(θ) for the gravity compensation term
ḡ(θ) is derived, such that ḡ(θ) = (∂Vḡ(θ)/∂θ)T holds. Remember that for the
construction of ḡ(θ) = g(q̄(θ)) in the previous section the function q̄(θ) =
h−1

g (θ), i.e. the inverse of the function hg(q) = q+K−1g(q), was used. Existence
and uniqueness of h−1

g (θ) were established in Proposition 7.1 by the use of
Assumption 7.2.

In the following the Jacobian matrix ∂q̄(θ)/∂θ will be needed. Consider first
the Jacobian matrix of the function hg(q)

∂hg(q)
∂q

=
(

I + K−1 ∂g(q)
∂q

)
. (7.30)

Due to hg(q̄(θ)) = θ one has

∂hg(q̄(θ))
∂θ

=
∂hg(q̄)

∂q̄

∂q̄(θ)
∂θ

= I ,

and therefore the Jacobian matrix ∂q̄(θ)
∂θ is given by

∂q̄(θ)
∂θ

=
(

I + K−1 ∂g(q̄)
∂q̄

)−1

q̄=q̄(θ)

. (7.31)

The potential function Vḡ(θ) clearly can be written in the form

Vḡ(θ) = Vḡ(hg(q̄(θ))) =: Vḡh(q̄(θ)) .

For the differential ∂Vḡ(θ)/∂θ one obtains

∂Vḡ(θ)
∂θ

=
(

∂Vḡh(q̄)
∂q̄

)
q̄=q̄(θ)

∂q̄(θ)
∂θ

.

By substituting ∂Vḡ(θ)
∂θ = ḡ(θ) = g(q̄(θ))T and ∂q̄(θ)

∂θ from (7.31), one gets

∂Vḡh(q̄)
∂q̄

= g(q̄)T

(
I + K−1 ∂g(q̄)

∂q̄

)
,

= g(q̄)T + g(q̄)T K−1 ∂g(q̄)
∂q̄

.

This differential can then be integrated to Vḡh(q̄) = Vg(q̄)+ 1
2g(q̄)T K−1g(q̄)+c,

with an arbitrary constant c ∈ R
n. Setting c = 0 leads to the gravity compen-

sation potential

Vḡ(θ) = Vḡh(q̄(θ)) = Vg(q̄(θ)) +
1
2
g(q̄(θ))T K−1g(q̄(θ)) . (7.32)
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Notice also that the potential energy of the manipulator Vpot(q, θ) from (2.24)
is identical to the gravity compensation potential for all stationary points, i.e.

Vpot(q, θ) = Vḡ(θ) ∀ (q, θ) ∈ Ω . (7.33)

From this it follows that Vḡ(θ) can also be written as

Vḡ(θ) = Vpot(q̄(θ), θ) = Vg(q̄(θ)) + Vk(q̄(θ), θ) . (7.34)

7.4 Analysis

The complete control law with gravity compensation is given by

τ m = BB−1
θ u + (I − BB−1

θ )τ , (7.35)
u = uimp + ug = −J(θ)T (Kdx̃θ + Ddẋθ) + ḡ(θ) , (7.36)

and leads to the closed loop system equations

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + τ ext , (7.37)
Bθθ̈ + J(θ)T (Kdx̃θ + Ddẋθ) + τ = ḡ(θ) . (7.38)

In this section it will first be shown that in case of a globally bounded potential
function Vg(q) the closed loop system can be written as the feedback intercon-
nection of two passive subsystems. Notice that this implies the passivity of the
complete system [vdS00]. Additionally, a proof of the asymptotic stability is
given in Section 7.4.2 which holds also without the assumption of a bounded
gravity potential13.

7.4.1 Passivity

For the passivity analysis of this section it will be assumed that there exists a
real β > 0, such that

|Vg(q)| < β ∀q ∈ R
n (7.39)

holds. This is for instance satisfied for all robots with solely rotational joints (i.e.
without prismatic joints). Due to Property 2.8 also the gravity torque vector g(q)
will then be globally bounded. Furthermore, (7.39) also implies the boundedness
of Vḡ(θ) and ḡ(θ). Notice that the requirement of a bounded gravity potential is
only needed for the passivity analysis, while the proof of the asymptotic stability
in Section 7.4.2 will also be valid for a general potential.

According to Definition A.17, a sufficient condition for a system (with input
u and output y) to be passive is given by the existence of a continuous storage
function S [vdS00, Kug01] which is bounded from below and for which the

13 Notice that this is relevant only for robots with prismatic joints.
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−τ

−u

−τ ext

q̇

θ̇

(7.37)

Environment

(7.36)

(7.5)

(7.38)

Fig. 7.3. System representation as an interconnection of passive subsystems

derivative with respect to time along the solutions of the system satisfies the
inequality Ṡ ≤ yT u.

In the following it will be shown that the system (7.37)-(7.38), as outlined
in Figure 7.3, consists of two passive subsystems in feedback interconnection. It
is often assumed that also the environment of the robot can be described by a
passive mapping (q̇ → −τ ext). The passivity of (7.37), as a mapping (τ+τ ext) →
q̇, is well known due to purely physical reasons and can be shown with the storage
function

Sq(q, q̇) =
1
2
q̇T M(q)q̇ + Vg(q) (7.40)

for which the derivative along the solutions of (7.37) is given by14

Ṡq(q, q̇) = q̇T (τ + τ ext) . (7.41)

In a similar way the passivity of (7.38), as a mapping q̇ → −τ , can be shown
with the storage function

Sθ(q, θ, θ̇) =
1
2
θ̇

T
Bθθ̇ +

1
2
(θ − q)T K(θ − q)

+
1
2
x̃T

θ Kdx̃θ − Vḡ(θ) . (7.42)

The derivative of Sθ(q, θ, θ̇) along the solutions of (7.38) is then given by

Ṡθ(q, θ, θ̇) = −ẋT
θ Ddẋθ − q̇T τ . (7.43)

14 This is due to Property 2.6.
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The desired passivity property follows directly from (7.41) and (7.43) and from
the fact that the feedback interconnection of passive systems is again passive. It
should also be mentioned that these passivity properties are still valid if the PD-
controller in (7.36) is replaced by any other passive (with respect to θ̇ → −u)
controller. Notice that the structure of the closed loop system in form of a
feedback interconnection of passive subsystems, as depicted in Figure 7.3, brings
along very advantageous robustness properties.

7.4.2 Stability

The following stability analysis is restricted to the non-redundant case (m = n).
In addition, singular configurations have to be avoided. Thus, the further analysis
is restricted to an area in the workspace in which the Jacobian J(θ) is non-
singular and in which the inverse mapping of xθ = f(θ) can be uniquely solved.

In the following it will be shown that the closed loop system is asymptotically
stable for the case of free motion (i.e. τ ext = 0).

Determination of the steady state

The steady state conditions of the system (7.37)-(7.38) are given by

K(θ0 − q0) = g(q0) , (7.44)
K(θ0 − q0) + J(θ0)T Kd(f (θ0) − xθ,d) = ḡ(θ0) . (7.45)

Herein the matrix Kd is positive definite. Due to (7.25) it follows that

J(θ0)T Kd(f (θ0) − xθ,d) = 0 (7.46)

must be satisfied in the steady state. As already mentioned above, the stability
analysis is restricted to an area in which this condition can be solved uniquely
for θ0. The steady state is then given by

θ0 = f−1(xθ,d) , (7.47)
q0 = h−1

g (θ0) , (7.48)
q̇0 = 0 (7.49)
θ̇0 = 0 , (7.50)

and τm,0 = τ 0 = ḡ(θ0) is the steady state input torque.

Lyapunov-Function

Consider the following function V (q, q̇, θ, θ̇) as a Lyapunov function candidate

V (q, q̇, θ, θ̇) = Sq(q, q̇) + Sθ(q, θ, θ̇) . (7.51)

In the steady state the following holds (due to (7.34))15

V (q0,0, θ0,0) = Vg(q0) − Vḡ(θ0) +
1
2
(θ0 − q0)

T K(θ0 − q0) = 0 .

15 Remember that in steady state q0 = q̄(θ0).
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The kinetic part of V (q, q̇, θ, θ̇)

Vkin(q, q̇, θ̇) =
1
2
q̇T M(q)q̇ +

1
2
θ̇

T
Bθθ̇

is positive definite with respect to q̇ and θ̇ because the inertia matrices are
positive definite. In order to show that V (q, q̇, θ, θ̇) is positive definite, it is then
sufficient to show that the potential part

Vpot(q, θ) = V (q, q̇, θ, θ̇) − Vkin(q, q̇, θ̇) (7.52)

is positive definite with respect to q and θ.
Consider at first only the part of the potential energy due to K. In the re-

maining part of this section q̄ is written instead of q̄(θ) in order to simplify the
notation.

Vk(q, θ) =
1
2
(θ − q)T K(θ − q)

=
1
2
(θ − q̄ + q̄ − q)T K(θ − q̄ + q̄ − q)

=
1
2
g(q̄)T K−1g(q̄) +

1
2
(q̄ − q)T K(q̄ − q) + (q̄ − q)T g(q̄)

Herein the relationship K(θ − q̄) = g(q̄) was used which (contrary to (7.25))
holds everywhere (i.e. not only in Ω). The potential energy can then be written
(with (7.34)) as follows

Vpot(q, θ) = Vk(q, θ) +
1
2
x̃T

θ Kdx̃θ + Vg(q) − Vḡ(θ)

= Vk(q, θ) +
1
2
x̃T

θ Kdx̃θ + Vg(q) − Vg(q̄) − 1
2
g(q̄)T K−1g(q̄)

Due to Property 7.1 the following inequality holds

Vpot(q, θ) ≥ 1
2
(q̄ − q)T K(q̄ − q) +

1
2
x̃T

θ Kdx̃θ

−|Vg(q) − Vg(q̄) + (q̄ − q)T g(q̄)|
≥ 1

2
(q̄ − q)T K(q̄ − q) − 1

2
αg||q̄ − q||2K +

1
2
x̃T

θ Kdx̃θ

=
1
2
(1 − αg)||q̄ − q||2K +

1
2
x̃T

θ Kdx̃θ .

The right hand side of the last inequality is nonnegative for all (q, θ), since by
Assumption 7.2 the bound αg satisfies αg < 1. The area in which the term
x̃T

θ Kdx̃θ is positive definite (in θ) finally determines the area in which the Lya-
punov function is positive definite. For the case of a general forward kinematics
mapping only local statements can be made therefore.
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Derivative of the Lyapunov-Function

The derivative of V (q, q̇, θ, θ̇) along the solutions of the system (7.37)-(7.38) (for
τ ext = 0) is given by

V̇ (q, q̇, θ, θ̇) = Ṡq(q, q̇) + Ṡθ(q, θ, θ̇) = −ẋT
θ Ddẋθ . (7.53)

Due to the fact that the matrix Dd is positive definite, it can be concluded that
the equilibrium point (7.47)-(7.50) is stable. Furthermore, asymptotic stability
can be shown by the use of the invariance principle of LaSalle. According to this
the system state will converge to the largest positively invariant set for which
ẋθ = 0 holds. From the system equations it follows that there does not exist any
trajectory for which ẋθ = 0 holds except for the restriction to the equilibrium
point16. Therefore, asymptotic stability can be concluded.

7.4.3 Controller Discussion

The passivity analysis in Section 7.4.1 showed that the closed loop system can be
seen as a feedback interconnection of passive subsystems. In many applications
the environment can also be treated as a passive system with respect to the
input q̇ and the output −τ ext. Therefore, one can conclude very advantageous
robustness properties of the whole system. Stability is for instance guaranteed
for arbitrary17 errors in the dynamical parameters of the mass matrices M(q)
and B.

Concerning the formulation of the gravity compensation term it should be
mentioned that, in contrast to any related previous works, no restrictions are
imposed on the positive definite matrix Kd for stability, meaning that the stiff-
ness can be commanded arbitrarily close to zero.

Notice that by the same argumentation as above one can in principle also
show convergence of the Cartesian error x̃ → 0 in the redundant case m < n
(as long as singular configurations are avoided). However, then of course also a
nullspace damping term is needed to ensure θ̇ → 0 (see, e.g., [Kha87]).

It should also be mentioned that the stability analysis would have led to a
global statement for a joint space impedance controller. The Cartesian impe-
dance controller defines the impedance in local Cartesian coordinates. This is
the reason that only local stability can be proven for the Cartesian controller.
In the case of rotational joints any set of Cartesian coordinates which describe
the position and orientation of the end-effector must necessarily be periodic in
θ. Furthermore, it is well known that, due to topological reasons18, it is not
possible to design a potential function in SE(3) which has only a single global
extremum.

16 Notice again that the analysis is restricted to a workspace in which the Jacobian is
non-singular.

17 Notice that the motor inertia matrix B must be diagonal.
18 And Morse’s theory [Mil63].
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7.5 Exact Stiffness Design

In the previous sections the impedance controller was designed basically as a
serial interconnection of the joint stiffness K and a desired stiffness. In the
following it is shown, how one can take account of the joint stiffness in the
design of Kθ (respectively Kd) in order to achieve a particular value for the
overall external stiffness in the case of a joint level impedance and a Cartesian
impedance.

7.5.1 Design of an Exact Joint Level Stiffness

Consider first the case of a joint level impedance with a stiffness Kθ, cf. (7.7).
The resulting stiffness Kθ,ext, i.e. the static relation between τ ext and q − qd,
is given by

Kθ,ext =
(
K−1

θ + K−1
)−1

.

When the joint stiffness K is much larger than Kθ, the stiffness Kθ,ext will be
close to Kθ. But the relationship between Kθ,ext and Kθ can of course be used
also explicitly for the design of Kθ. To exactly realize a stiffness of Kθ,ext, the
controller stiffness in (7.7) must be set to

Kθ =
(
K−1

θ,ext − K−1
)−1

.

Since Kθ must be positive definite, K is the maximum achievable stiffness for
a controller of the form (7.7).

For the Cartesian impedance controller from (7.10) the same can be done only
locally at qd. It can easily be verified that at qd the local stiffness from (7.10)
with respect to joint coordinates is given by J(qd)T KdJ(qd). For a desired
external stiffness Kd,ext, which must be chosen such that the matrix K−1

d,ext −
J(qd)K

−1J(qd)T is positive definite, the matrix Kd reads as

Kd =
(
K−1

d,ext − J(qd)K
−1J(qd)

T
)−1

.

But this simple design law matches the desired stiffness only locally in contrast
to the joint level case. This can indeed be practically relevant for applications
that require a high stiffness in one Cartesian direction and a low stiffness in
another direction. In order to overcome this problem, in the following a different
controller structure than in (7.36) is formulated.

7.5.2 Design of an Exact Cartesian Stiffness

For the derivation of the gravity compensation term ḡ(θ) only the free (τ ext = 0)
steady state condition has been used. In [ASOH04a] and [OASKH08] it was
shown, how to implement an exact Cartesian link side stiffness together with
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an exact gravity compensation by extending the design ideas of [OASK+04b,
ASOH04b].

Consider the case that a constant generalized external force F ext acts on the
robot. In the steady state at a position q0 the generalized external force F ext

is related to the external torques τ ext via τ ext = J(q0)
T F ext. The equilibrium

condition for this case is

K(θ0 − q0) = g(q0) − J(q0)
T F ext , (7.54)

K(θ0 − q0) = u0 , (7.55)

where u0 is the static value of u. In the following the desired stiffness relation

Kd(x(q0) − xd) = F ext (7.56)

shall be achieved statically. By combining (7.56) with (7.54), one gets the con-
dition

K(θ0 − q0) = g(q0) − J(q0)
T Kd(x(q0) − xd) . (7.57)

This condition can be seen as a relationship between the static motor side po-
sition θ0 and the static link side position q0. In order to stress the similarity of
the following derivation to the derivation of the gravity compensation term in
Section 7.3.2 the function l(q) is defined as

l(q) := g(q) − J(q)T Kd(x(q) − xd) . (7.58)

The following procedure is then completely analogous to the design of the gravity
compensation term in Section 7.3.2. The function l(q) plays now the same role
as the gravity function g(q) in Section 7.3.2. Notice that the equation (7.57) can
also be written as K(θ0 − q0) = l(q0).

By defining the function

hl(q) := q + K−1l(q) , (7.59)

the static motor side position θ0 can be expressed as θ0 = hl(q0). At this point
it is assumed that the inverse function of hl(q) exists and it will be denoted by

q̄l(θ) := h−1
l (θ) . (7.60)

A sufficient condition for the existence of this inverse function, as well as an
iterative computation procedure, will be given later in Proposition 7.5. By means
of q̄l(θ) a control law combining the gravity compensation with a statically exact
stiffness can be designed in the form

u = l(q̄l(θ)) − J(q̄l(θ))T DdJ(q̄l(θ))θ̇ (7.61)

= g(q̄l(θ)) − J(q̄l(θ))T
(
Kd(x(q̄l(θ)) − xd) + DdJ(q̄l(θ))θ̇

)
.

The function l(q), as defined in (7.58), is the differential of the potential function

Vl(q) = Vg(q) − 1
2
(x(q) − xd)T Kd(x(q) − xd) , (7.62)
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i.e. l(q) = (∂Vl(q)/∂q)T . Analogously to Assumption 7.2 the following assump-
tion is needed now.

Assumption 7.4. The Hessian H l(q) = ∂2Vl(q)
∂q2 of the potential function Vl(q)

satisfies the condition

αl := sup
∀q∈Rn

||H l(q)||K < ||K||K = 1 . (7.63)

Notice that this assumption implicitly contains an upper bound on the desired
stiffness Kd. This is not surprising since the controller basically implements a
stiffness, which is in serial interconnection to the joint stiffness K. The combined
stiffness Kd therefore must be smaller than K. Assumption 7.4, however, en-
sures the existence of the inverse function h−1

l (θ) as formulated in the following
proposition which is analogous to Proposition 7.3.

Proposition 7.5. Under the Assumption 7.4 the inverse function h−1
l (θ) :=

q̄l(θ) of hl(q) = q + K−1l(q) : R
n → R

n exists. Moreover, the iteration

q̂l,n+1 = T l(q̂l,n) (7.64)

with T l(q) := θ − K−1l(q) converges for every fixed θ and for every starting
point q̂l,0 to q̄l(θ).

Proof. The proposition can be proven exactly the same way as Proposition 7.3
when g(q) is replaced by l(q).

Furthermore, by following the same derivation as in Section 7.3.3 (with l(q)
instead of g(q)), one can show that the controller term l(q̄l(θ)) can be written
as the differential of the potential function

Vl̄(θ) = Vl(q̄l(θ)) +
1
2
l(q̄l(θ))T K−1l(q̄l(θ)) , (7.65)

i.e. l(q̄l(θ)) = (∂Vl̄(θ)/∂θ)T . For the following stability analysis also a statement
analogously to Property 7.1 is of interest.

Property 7.6. Let αl, as defined in Assumption 7.4, be an upper bound for the
Hessian of the potential function Vl(q). Then the inequality

|Vl(q1) − Vl(q2) + l(q1)
T (q2 − q1)| ≤

1
2
αl||q2 − q1||2K (7.66)

holds for all q1, q2 ∈ R
n.

Proof. This property can be proven exactly the same way as Property 7.1.

The passivity and stability statements from Section 7.4 can also be shown for
the controller from this section in an analogous manner. In the following only
the stability proof is sketched. With (7.61) the closed loop system is given by

M(q)q̈ + C(q, q̇)q̇ + g(q) = K(θ − q) + τ ext (7.67)
Bθθ̈ + K(θ − q) = l(q̄l(θ)) − J(q̄l(θ))T DdJ(q̄l(θ))θ̇ . (7.68)
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Stability for the case of free motion (τ ext = 0) can be shown by considering the
Lyapunov function candidate

Ve(q, q̇, θ, θ̇) =
1
2
q̇T M(q)q̇ +

1
2
θ̇

T
Bθθ̇ + Vg(q) + Vk(q, θ) − Vl̄(θ) . (7.69)

In order to show that this function is positive definite one can substitute

Vg(q) = Vl(q) +
1
2
(x(q) − xd)T Kd(x(q) − xd)

from (7.62) and

Vk(q, θ) =
1
2
(θ − q)T K(θ − q)

=
1
2
(q̄l(θ) − q)T K(q̄l(θ) − q) +

1
2
l(q̄l(θ))T K−1l(q̄l(θ))

+l(q̄l(θ))T (q̄l − q) ,

which follows from the definition of l(q), into the expression for Ve(q, q̇, θ, θ̇).
Together with the expression for Vl̄(θ) from (7.65) and by using Proposition 7.6,
one can show that this Lyapunov function fulfills the inequality

Ve(q, q̇, θ, θ̇) ≥ 1
2
q̇T M(q)q̇ +

1
2
θ̇

T
Bθθ̇

+
1
2
(1 − αl)||q − q̄l(θ)||2K +

1
2
(x(q) − xd)T Kd(x(q) − xd)

from which one can follow that Ve(q, q̇, θ, θ̇) is positive definite. Its time deriv-
ative along the solution curves of (7.67)-(7.68) can be computed as

V̇e(q, q̇, θ, θ̇) = −θ̇
T
J(q̄l(θ))T DdJ(q̄l(θ))θ̇ (7.70)

and therefore is negative semi-definite. This ensures stability. Asymptotic sta-
bility can be shown again by invoking LaSalle’s invariance principle.

7.6 Further Generalizations

In the previous sections the basic setting of the proposed impedance controller
was described in detail. Several extensions of the controller are possible. Some
of them will be discussed in this section. First, in Section 7.6.1 it is shown, how
gear damping can be included in the model, respectively in the controller. After
that a more general controller structure is considered in Section 7.6.2 in which
also a feedback of the torque derivative τ̇ is included. Finally, in Section 7.6.3
and Section 7.6.4 some comments on the use of filtered sensor signals and on the
problems concerning shaping of the inertia matrix are given.
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7.6.1 Including Joint Damping

Since the analysis of the controller was based on a physical interpretation of the
torque feedback it is also possible to include joint damping, i.e. gear damping,
very easily. The considered model with joint damping was given in (2.39)-(2.40).
The equations are repeated here for the ease of reference

M (q)q̈ + C(q, q̇)q̇ + g(q) = K(θ − q) + D(θ̇ − q̇) + τ ext , (7.71)
Bθ̈ + K(θ − q) + D(θ̇ − q̇) = τm , (7.72)

τ = K(θ − q) .

The matrix D ∈ R
n×n is a diagonal and positive definite damping matrix. For

this model the same type of controller as in the last section can be used, when
instead of (7.3) the control law

τm = BB−1
θ u + (I − BB−1

θ )
(
τ + DK−1τ̇

)
(7.73)

is applied. This leads to the closed loop system

M (q)q̈ + C(q, q̇)q̇ + g(q) = K(θ − q) + D(θ̇ − q̇) + τ ext (7.74)
Bθθ̈ + K(θ − q) + D(θ̇ − q̇) = u (7.75)

for which the intermediate control input u can be chosen in the same way as in
the last sections. In particular, the control law from (7.36) is considered in more
detail in the following. Similar passivity and stability properties can be shown
under the same conditions as in Section 7.4. In the following only the passivity
properties will be considered. It is shown that the same storage functions Sq(q, q̇)
and Sθ(q, θ, θ̇) can be used as in (7.40) and (7.42) from Section 7.4.1. For the
derivative of the storage function Sq(q, q̇) along (7.74) one obtains now

Ṡq(q, q̇) = q̇T (τ + DK−1τ̇ + τ ext) ,

from which one can follow that the system (7.74) represents a passive mapping(
τ + DK−1τ̇ + τ ext

) → q̇ if the gravity potential Vg(q) is bounded. Moreover,
the derivative of Sθ(q, θ, θ̇) along (7.75) with the control law (7.36) is given by

Ṡθ(q, θ, θ̇) = −ẋT
θ Ddẋθ − (θ̇ − q̇)T D(θ̇ − q̇) − q̇T (τ + DK−1τ̇ ) .

Therefore, it follows that (7.75) is a passive mapping q̇ → − (
τ + DK−1τ̇

)
.

The closed loop system can thus be seen again as the feedback interconnection
of two passive subsystems, with the only difference that the port variable τ is
replaced by the variable τ + DK−1τ̇ .

Furthermore, asymptotic stability for the case of free motion can be shown
by considering Sq(q, q̇)+Sθ(q, θ, θ̇) as a Lyapunov function. Since the proof can
be done completely similar to Section 7.4.2 it is omitted here.
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7.6.2 Generalization to Full State Feedback

Instead of using the control law (7.73) one can consider also the more general
controller

τ m = BB−1
θ u + (I − BB−1

θ )
(
τ + KsK

−1τ̇
)

, (7.76)

where Ks is a positive definite controller gain matrix, which may be different
from D. Together with (7.36) the closed loop system is then given by

M (q)q̈ + C(q, q̇)q̇ + g(q) = τ + DK−1τ̇ + τ ext ,

Bθθ̈ + τ + (BθB
−1D − BθB

−1Ks + Ks)K−1τ̇ = u ,

u = ḡ(θ) − J(θ)T (Kdx̃θ + Ddẋθ) .

In order to analyze the stability of this system, one can consider again the same
Lyapunov function

V (q, q̇, θ, θ̇) =
1
2
q̇T M(q)q̇ +

1
2
θ̇

T
Bθθ̇ + Vpot(q, θ)

as in Section 7.4.2. By a lengthy calculation one can derive that the time deriv-
ative of V (q, q̇, θ, θ̇) can now be written as

V̇ (q, q̇, θ, θ̇) = −
⎛
⎝θ̇ − q̇

θ̇

⎞
⎠T

Q(θ)

⎛
⎝θ̇ − q̇

θ̇

⎞
⎠

Q(θ) =

⎡
⎣ D 1

2 (BθB
−1 − I)(D − Ks)

1
2 (BθB

−1 − I)(D − Ks) J(θ)T DdJ(θ)

⎤
⎦

From Lemma A.20 one can see that V̇ (q, q̇, θ, θ̇) is negative semi-definite, if the
condition

J(θ)T DdJ(θ) − 1
4
(D − Ks)(BθB

−1 − I)D−1(BθB
−1 − I)(D − Ks) > 0

holds for all θ ∈ R
n, which is an implicit condition on Ks and Dd.

7.6.3 On the Filtering of the Velocities

Another generalization of the controller from this chapter can be done by using
a filter for the implementation of the damping term. For the DLR lightweight
robots, for instance, only the motor positions and the joint torques can be mea-
sured, while the time derivatives of these signals must be computed via numerical
differentiation or filtering19. In [KS98] a large class of linear position filters, in-
cluding e.g. simple nonmodel-based first and second order filters, is proposed.
19 In the literature a filtered version of such a time derivative is often called a dirty

derivative.
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Therein it is shown that the use of these filters for the estimation of θ̇ does
not jeopardize the stability properties of an energy shaping based controller for
flexible joint robots. Due to the physical interpretation of the torque feedback
according to Section 7.1 this result can indeed be applied also to the controllers
presented in this chapter. More details on such velocity observers can be found
in [KS98] and the references cited therein.

7.6.4 Inertia Shaping

One disadvantage of the presented controller is its limitation for inertia shaping.
Torque feedback, on the one hand, can be seen as a shaping of the motor inertia,
as was discussed in more detail in the introduction of this chapter. The possibility
to shape the apparent link side inertia, on the other hand, seems limited. At
least it is possible to approximate a system behavior with a bigger inertia by
referring to a controller structure according to Figure 7.4. By choosing a high
(i.e. Kc >> Kθ) stiffness value for Kc (and with an appropriate damping factor
Dc), the closed loop behavior will be dominated in the low frequency domain by
the behavior of a spring-mass-damper-system with the mass Md + Bθ + M .

τ

θ

q

Kθ

Dθ

K
Kc

Dc

BMd M

Fig. 7.4. Control structure for simulating a virtual mass

7.7 Tracking

The controller from Section 7.2 with the gravity compensation term from Section
7.3.2 was designed especially for regulation, where the desired virtual equilibrium
position xd = f(qd) (respectively xθ,d) is constant. A direct extension of this
controller to the tracking case (with a time-varying virtual equilibrium position),
however, is not clear.

For the gravity torques a compensation term was designed which compensates
the gravity effects in all stationary points. This compensation term ug = ḡ(θ)
is based on quasi-static considerations such that it depends on the motor side
position θ only. This allows to perform a passivity based stability analysis for
the regulation case. Apart from passivity considerations another question that
arises in the context of gravity compensation is, if also the compensation term
ug = g(q) leads to a stable closed loop system. This question is still open.
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In the following a different passivity based approach is discussed. Contrary
to the previous sections of this chapter, the design will now concentrate on
the tracking case. But it is desired that, when reduced to the regulation case, a
controller similar to the controller of Section 7.2 should be obtained. The relation
of the resulting controller to the passivity based tracking controller from [BOL95]
will be discussed later in Section 7.7.3. Moreover, the resulting controller will
also give a hint - not an answer - concerning the above mentioned question about
the usability of the gravity compensation term ug = g(q) for the regulation case.

For ease of presentation, this section will only consider the case of a joint level
impedance. The matrices Kθ and Dθ are the desired symmetric and positive
definite stiffness and damping matrices. An extension of the presented controller
to the Cartesian case can be done in exactly the same way as in Section 7.2. The
virtual equilibrium position qd is assumed to be continuously differentiable up
to the fourth time derivative.

7.7.1 The Gravity Free Case

Consider first a gravity free version of the dynamics from (7.1)-(7.2)

M (q)q̈ + C(q, q̇)q̇ = τ + τ ext , (7.77)
Bθ̈ + τ = τm , (7.78)

where τ is again given by τ = K(θ − q). Analogously to Section 7.2 a torque
feedback of the form

τm = BB−1
θ u + (I − BB−1

θ )τ ,

with u as a new input variable, is applied in order to scale the apparent motor
inertia to Bθ. This leads to

M (q)q̈ + C(q, q̇)q̇ = τ + τ ext , (7.79)
Bθθ̈ + τ = u . (7.80)

The passivity based controller design in Section 7.2 was then based on the fact
that (7.79) represents a passive mapping (τ + τ ext) → q̇ and that (7.80) repre-
sents a passive mapping q̇ → −τ . Passivity of (7.79) can easily be shown with
the storage function S1 = 1/2q̇T M(q)q̇. For the tracking case the velocity error
˙̃q = q̇ − q̇d is more relevant than the velocity q̇. Therefore, it is interesting to
consider

S̄q(q̃, ˙̃q, t) =
1
2

˙̃qT M(q) ˙̃q (7.81)

as a (time-varying) storage function for (7.79). Due to

˙̄Sq(q̃, ˙̃q, t) = ˙̃qT (τ − M(q)q̈d − C(q, q̇)q̇d + τ ext) (7.82)

one can see that the rigid body system (7.79) represents a passive mapping
from the input (τ − M (q)q̈d − C(q, q̇)q̇d + τ ext) to the output ˙̃q. In order to
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transform the motor dynamics (7.80) into a passive mapping for the input ˙̃q and
the output − (τ − M(q)q̈d − C(q, q̇)q̇d), i.e. in order to achieve port matching,
the storage function

S̄θ(q̃, θ̃,
˙̃
θ) =

1
2

˙̃
θT Bθ

˙̃
θ +

1
2
(θ̃ − q̃)T K(θ̃ − q̃) +

1
2
θ̃

T
Kθθ̃ (7.83)

is considered, with the motor position error θ̃ = θ − θs. The desired motor
position θs is determined later. Then the time derivative of the storage function
S̄θ(q̃, θ̃, ˙̃θ) along (7.80) is given by

˙̄Sθ(q̃, θ̃, ˙̃θ) = ˙̃θT Bθ
¨̃θ + (θ̃ − q̃)T K( ˙̃θ − ˙̃q) + θ̃

T
Kθ

˙̃θ

= ˙̃θT
(
u − K(θ − q) − Bθθ̈s

)
+ (θ̃ − q̃)T K( ˙̃θ − ˙̃q) + θ̃

T
Kθ

˙̃θ .

A controller of the form

u = Bθθ̈s + K(θs − qd) − Kθθ̃ − Dθ
˙̃θ (7.84)

then leads to

˙̄Sθ(q̃, θ̃, ˙̃θ) = − ˙̃θT Dθ
˙̃θ − ˙̃θT K(θ̃ − q̃) + ( ˙̃θ − ˙̃q)T K(θ̃ − q̃) (7.85)

= − ˙̃θT Dθ
˙̃θ − ˙̃qT K(θ̃ − q̃) (7.86)

= − ˙̃θT Dθ
˙̃θ − ˙̃qT (τ − K(θs − qd)) . (7.87)

In order to ensure the desired passivity property the desired motor side position
θs is defined now via the relationship

M(q)q̈d + C(q, q̇)q̇d = K(θs − qd) (7.88)

as

θs = qd + K−1 (M(q)q̈d + C(q, q̇)q̇d) (7.89)

and therefore is a function of q and q̇, i.e. θs = θs(q, q̇, t). Thereby, the required
passivity property is obtained. It can easily be verified that the controller leads
to the time-varying closed loop system

M (q)¨̃q + C(q, q̇) ˙̃q = K(θ̃ − q̃) + τ ext , (7.90)

Bθ
¨̃
θ + K(θ̃ − q̃) + Dθ

˙̃
θ + Kθθ̃ = 0 . (7.91)

Notice that, due to the particular choice of θs in (7.89), the term −K(θ̃ − q̃)
corresponds to the port output variable −(τ −M(q)q̈d−C(q, q̇)q̇d) of the motor
dynamics, see also Figure 7.5. Moreover, by considering S̄q(q̃, ˙̃q, t) + S̄θ(q̃, θ̃,

˙̃
θ)

as a time-varying Lyapunov function it can easily be shown that, for free motion
(τ ext = 0), the origin θ̃ = q̃ = ˙̃

θ = ˙̃q = 0 is a stable equilibrium point.
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q̃

−K(θ̃ − q̃)

−τ ext

(7.90)

(7.91)

Environment

Fig. 7.5. Closed loop interconnection structure for the tracking case

7.7.2 Including Gravity

Consider now the link side dynamics with gravity

M (q)q̈ + C(q, q̇)q̇ + g(q) = τ + τ ext (7.92)

instead of (7.79). Then ˙̄Sq(q̃, ˙̃q, t) is given by

˙̄Sq(q̃, ˙̃q, t) = ˙̃qT (τ − M (q)q̈d − C(q, q̇)q̇d − g(q) + τ ext) . (7.93)

One can see that the link side rigid body dynamics (7.92) can be considered as
a passive mapping (τ − M(q)q̈d − C(q, q̇)q̇d − g(q)) → ˙̃q. A gravity compen-
sation term can therefore be included in the controller by choosing θs according
to

M (q)q̈d + C(q, q̇)q̇d + g(q) = K(θs − qd) . (7.94)

instead of (7.88). The complete tracking controller is then given by

τm = BB−1
θ u + (I − BB−1

θ )τ , (7.95)

u = Bθθ̈s + K(θs − qd) − Kθθ̃ − Dθ
˙̃θ , (7.96)

θs = qd + K−1 (M (q)q̈d + C(q, q̇)q̇d + g(q)) , (7.97)

and leads to a closed loop system which has the same form as (7.90)-(7.91).

7.7.3 Controller Discussion

Notice that the gravity free version in Section 7.7.1 is a direct extension of the
regulation controller from Section 7.2, since it reduces to the same feedback law
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for q̇d = 0. The solution with gravity from Section 7.7.2, however, is different.
For q̇d = 0 the controller (7.96)-(7.97) is simplified to

τm = BB−1
θ u + (I − BB−1

θ )τ , (7.98)

u = BθK
−1g̈(q) + g(q) − Kθ(θ − θs) − Dθ(θ̇ − θ̇s) , (7.99)

θs = qd + K−1g(q) . (7.100)

This suggests20 that the use of ug = g(q) instead of the gravity compensation
term from Section 7.3.2 is insufficient to ensure stability in the regulation case.
In (7.99) additionally the second derivative g̈(q) is needed.

A combination of the motor position based online gravity compensation from
Section 7.3.2 with the tracking controller from this section seems difficult because
the design of the gravity compensation term from Section 7.3.2 is based on quasi-
static considerations.

Notice also that the extension to the case of a Cartesian impedance controller
can be done analogously to Section 7.2.

It should also be mentioned that the presented tracking controller is related
to the passivity based tracking controllers in [BOL95] and [LO95]. In [BOL95]
a simplified version of the controller from [LB92] is presented, in which basi-
cally the rigid body tracking control law from Slotine and Li [SL87] is used
instead of the relationship in (7.94). Similar to the presentation herein, the
physical interpretation of the torque feedback from Section 7.1 allows to aug-
ment these controllers by an inner torque feedback loop, which is not included in
[BOL95, LO95, LB92], and thus to enhance the control performance. Moreover,
the controller in [BOL95] also uses a slightly different controller equation than
(7.96) for the motor dynamics by again applying the controller structure from
[SL87].

7.8 Relation to Other Methods

In this section the relation of the presented passivity based impedance controller
to some other controller design methods from the literature are shortly discussed.

7.8.1 Comparison to the Singular Perturbation Controller

The physical interpretation of the torque feedback can also be used in order to
give an interpretation of the effective inertia of the steady state system from the
singular perturbation analysis in Section 5.4.1. The effective inertia in (5.26) is
given by M (q) + (I + Kτ )−1B. The torque feedback gain −Kτ from Section
5.4.1 clearly corresponds to the gain I −BB−1

θ from (7.3), by which the scaling
of the motor inertia from B to Bθ was achieved. The new effective inertia of
the singular perturbation approach can therefore be seen as the sum of the link
side inertia matrix and the scaled motor inertia M(q) + Bθ.

20 This clearly is not a proof but merely a conjecture.
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7.8.2 Comparison to the Controller from Albu-Schäffer

The Cartesian impedance controller presented in this chapter has a structure
quite similar to the controllers from [AS01, ASH01a, ASH00, ASH01b]. In these
works a position controller for a flexible joint robot model was developed which
consists of a feedback of the joint torques and of the motor side joint position
errors. For the gravity torques a compensation term based on the desired link
side position was used, similar to [Tom91]. Contrary to this, in this work an
online gravity compensation term was developed which is more appropriate for
impedance control. Moreover, the physical interpretation of the torque feedback
from Section 7.2 subsequently allows to generalize a joint level impedance con-
troller, which actually is quite similar to [AS01], to the Cartesian case (see also
[ASmOH07]).

7.8.3 Relation to the IDA-PBC and the Method of Controlled
Lagrangians

The IDA-PBC 21 [OvdSME02, OSGEB02] and the Method of Controlled La-
grangians [BLM00, BCLM01] which have been presented recently in the control
literature are two extensions of the energy-shaping methodology. An excellent
comparison of these two methods is given in [BOvdS02]. It is interesting to no-
tice the relation of the controllers presented in this chapter to those methods.
Consider therefore the Cartesian impedance controller from Section 7.2 which
was analyzed in Section 7.4 in detail. Since the stability analysis of Section 7.4
was based on the passivity properties of the system one can easily use the storage
functions of Section 7.4.1 in order to set up the energy functions for the IDA-
PBC or the Method of Controlled Lagrangians. The Lyapunov function from
7.4.2 for instance is exactly the target Lagrangian which leads to the controller
from Section 7.2 in the framework of the controlled Lagrangians. Notice that the
storage functions used in this chapter were implicitly designed such that they
satisfy the matching conditions of the Method of Controlled Lagrangians for
underactuated systems. An additional degree-of-freedom of the controller design
based on the IDA-PBC framework is the use of an additional skew-symmetric
matrix in order to shape the internal interconnection structure of the closed loop
system [OvdSME02, OSGEB02, BOvdS02]. Without going into details here, it
should be mentioned that an interesting application of this is for example the
nullspace decoupling in (4.48).

7.9 Summary

In this chapter a passivity based control approach is treated. Motivated by the
discussion in Chapter 3 for the rigid body case, an impedance behavior with-
out inertia shaping is considered. The basic idea behind the proposed controller is

21 Interconnection and Damping Assignment Passivity Based Control.
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the physical interpretation of the torque feedback as a scaling of the motor iner-
tia. In addition to the inner torque feedback loop an outer impedance controller
implements the desired Cartesian stiffness and damping. Moreover, a compen-
sation term for the gravity torques was designed based on the measurements of
the motor side position only.

It was shown that the closed loop system can be seen as the feedback intercon-
nection of passive subsystems. This brings along very advantageous robustness
properties. A proof of the asymptotic stability was presented, which was based
on the passivity properties of the system.

After discussing the basic controller, several extensions concerning full state
feedback, the stiffness design, and the tracking case were presented.



8 Evaluation

This chapter reports the simulations and experiments for validating and compar-
ing the different control laws from the previous chapters. First the controllers
are compared in a simulation study in Section 8.1. The Cartesian impedance
controllers based on the results of Chapter 5 and 7 are evaluated in more detail
by experiments with the DLR-Lightweight-Robot-II. Contrary to typical indus-
trial robots, this robot is equipped with joint torque sensors and is thus very
well suited for the implementation of the presented controllers.

8.1 Simulation Results

In this section some simulation results are reported, by which the different con-
trollers from this book are compared. For the simulations a flexible joint robot
model according to the first six joints of the DLR-Lightweight-Robot-II was con-
sidered. The kinematic structure of this robot is given in the Appendix A.6. For
the relevant Cartesian coordinates the error variable

x̃ =

(
tptd(q, t)

tφtd(q, t)

)
=:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ex

ey

ez

φx

φy

φz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8.1)

was chosen (see also Section 3.5) with a roll-pitch-yaw representation for the
Euler angles tφtd(q, t). The desired stiffness and damping matrix thus are defined
with respect to the tool frame T .

The desired Cartesian impedance is then given by

Λ(x)¨̃x + (μ(x, ẋ) + Dd) ˙̃x + Kdx̃ = F ext , (8.2)

where the inertia matrix Λ(x) and the Coriolis/centrifugal matrix μ(x, ẋ) are the
relevant matrices from the link side rigid body model of the DLR-Lightweight-
Robot-II.

C. Ott: Cartesian Imped. Cntrl. of Redund. & Flexible-Joint Robots, STAR 49, pp. 123–147, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 8.1. Initial configuration
for the simulations

In order to evaluate the nominal performance
of the controllers it is assumed for the subsequent
simulation studies that all required measurement
signals are available and they are not corrupted
by noise. A step response is evaluated for a step
of 5 cm in x-direction for the virtual equilibrium
position. After the step the virtual equilibrium
pose xd is constant, i.e. ẋd = 0, which leads to
a regulation problem. The starting configuration
is shown in Figure 8.1. For the desired stiffness
and damping matrices diagonal matrices with
the entries from Table 8.1 are used. These values
remain the same for all simulations.

All controllers contain a feedback of the joint torques τ . In order to get a
meaningful comparison of the controllers, the proportional gain K̄τ and the
derivative gain D̄τ of the torque feedback are chosen the same for all controllers.
First, the performance of the controllers is compared with low torque control
gains. Therefore, K̄τ and D̄τ are chosen as a diagonal matrices with the values
from Table 8.2 as diagonal elements. In a second simulation the higher gain

Table 8.1. Stiffness and damping values for the simulations

Coord. ex ey ez φx φy φz

Stiffness 2000 2000 2000 100 100 100

N/m N/m N/m Nm/rad Nm/rad Nm/rad

Damping 313.05 313.05 313.05 70.0 70.0 70.0

Ns/m Ns/m Ns/m Nms/rad Nms/rad Nms/rad

Table 8.2. Stiffness and damping values for the simulation with low torque controller
gains (Case I)

i 1 2 3 4 5 6

K̄τ,i 0.5 0.5 0.5 0.5 0.5 0.5

D̄τ,i 0.041 0.047 0.041 0.033 0.034 0.041

Table 8.3. Stiffness and damping values for the simulation with high torque controller
gains (Case II)

i 1 2 3 4 5 6

K̄τ,i 3 3 3 3 3 3

D̄τ,i 0.067 0.077 0.067 0.054 0.055 0.067
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values from Table 8.3 were used. In both cases the damping values were chosen as
D̄τ,i = 2ξτ

√
K̄τ,iKi/Bi with a common damping factor of ξτ = 1.1. This relative

high value of ξτ was chosen in order to ensure that the resulting gain matrix D̄τ

can be also used for the backstepping controller. This will be explained in more
detail in Section 8.1.3.

8.1.1 Singular Perturbation Based Controller

For the regulation case the singular perturbation based controller (5.32) from
Chapter 5 can be written as

τm = τ d − Kτ (τ − τ d) − εDτ τ̇

τ d = g(q) − J(q)T
(
Kdx̃ + Dd

˙̃x
)

,

with positive definite controller gain matrices Kτ and Dτ and ε as the time
scaling factor from the singular perturbation analysis. In order to simplify the
comparison to the other controllers, the gain matrices are chosen as Kτ = K̄τ

and εDτ = D̄τ with diagonal matrices K̄τ and D̄τ according to the values
from Table 8.2 and Table 8.3. The simulation results for the two cases of the
step response are shown in Figure 8.2. Therein, the closed loop dynamics for the
singular perturbation based controller is compared to the desired closed loop
behavior according to (8.2) (dotted line in Figure 8.2). Notice that the desired
closed loop behavior (8.2) does not use the modified inertia matrix M(q)+ (I +
Kτ )−1B of (5.28) from the singular perturbation analysis.

In Figure 8.2 one can see that all the coordinates deviate from the virtual
equilibrium position in the transient stage due to the couplings in the inertia
matrix but their steady state value is zero. The desired behavior is better ap-
proximated for the higher torque control gains (Case II, solid line). In the case
of a low gain (Case I, dashed line), the difference to the desired step response is
bigger.

8.1.2 Decoupling Based Controller

Next, the decoupling based controller from Chapter 6 is evaluated. For the pur-
pose of readability the controller equation (6.30) is repeated here for the regu-
lation case

τm = τ d + BK−1 (τ̈ d − Dτ (τ̇ − τ̇ d) − Kτ (τ − τ d))
+B M(q)−1 (τ + τ ext − C(q, q̇)q̇ − g(q))︸ ︷︷ ︸ ,

q̈

τ d = g(q) − J(q)T
(
Kdx̃ + Dd

˙̃x
)

.

The matrices Kτ and Dτ are related to K̄τ and D̄τ from Section 8.1 via K̄τ =
BK−1Kτ and D̄τ = BK−1Dτ , respectively. The torque feedback matrices
K̄τ and D̄τ were chosen in the same way as for the singular perturbation based
controller according to Table 8.2 and Table 8.3.
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Fig. 8.2. Simulation results for the singular perturbation based controller for the two
different torque control gain matrices. The dotted lines show the trajectories of the
end-effector coordinates according to the desired dynamic behavior. The dashed lines
show the results for the low torque control gains (Case I) and the solid lines show the
results for the high torque control gains (Case II).

In Figure 8.3 the simulation results with the decoupling based controller are
shown for the two different cases (low and high torque feedback gains). The
dotted lines show the trajectories of the Cartesian coordinates for the desired
dynamics (8.2). One can see that the deviations of the desired step responses
is considerably smaller than for the singular perturbation based controller from
Figure 8.2. Even for the low control gain (Case I) the simulation results corre-
sponds quite well to the desired ones.
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Fig. 8.3. Simulation results with the decoupling based controller for the two different
torque control gain matrices. The dotted lines show the trajectories of the end-effector
coordinates according to the desired dynamic behavior. The dashed lines show the
results for the low torque control gains (Case I) and the solid lines show the results for
the high torque control gains (Case II).

Notice that Figure 8.3 shows the results for a step response in the virtual
equilibrium position. Regarding the closed loop dynamics (6.24)-(6.25) this cor-
responds to a stepwise excitation of the torque error dynamics (6.25). It should
also be mentioned that the closed loop dynamics of the decoupling based con-
troller fits exactly to the desired behavior for a step response in the external
force (instead of a stepwise excitation of the torque error dynamics via the vir-
tual equilibrium position). In this case the torque error would always be zero
and the trajectory would fit exactly to the desired one. This holds of course only
in the nominal case when all measurement signals are available exactly.
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Fig. 8.4. Simulation results with the backstepping based controller for the two different
torque control gain matrices. The dotted lines show the trajectories of the end-effector
coordinates according to the desired dynamic behavior. The dashed lines show the
results for the low torque control gains (Case I) and the solid lines show the results for
the high torque control gains (Case II).

8.1.3 Backstepping Based Controller

The same simulation was then performed also for the backstepping based con-
troller from (6.44) which is also repeated here

τm = Bq̈ + τ + BK−1
(
τ̈ d − (K̄sK̄t + C−1

s Ct)et + (K̄s + K̄t)ėt

)
−BK−1(C−1

t

d
dt

(J(q)−1 ˙̃x) + K̄sC
−1
t J(q)−1 ˙̃x) .
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Fig. 8.5. Deviation of the joint torques from their initial values in the case of low
torque control gains (Case I). The solid and dashed lines show the simulation results
for the decoupling based controller and the backstepping based controller, respectively.

Notice that the controller parameter matrices Cs, Ct, K̄t, and K̄s must all
be positive definite. Herein, the parameters Cs and Ct are chosen as Cs =
I and Ct = I. The controller gain matrices K̄t and K̄s were designed such
that the controller can be compared to the decoupling based and the singular
perturbation based controller. Therefore, the gains can be related to K̄τ and
D̄τ as follows

BK−1
(
K̄tK̄s + C−1

s Ct

)
= K̄τ

BK−1
(
K̄t + K̄s

)
= D̄τ .
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The gain matrices K̄τ and D̄τ are chosen according to Table 8.2 and Table 8.3.
In the design of these gains it has to be ensured that the above equations are
satisfied for real-valued positive definite matrices K̄t and K̄s. Therefore, the
damping factor was chosen quite high as ξτ = 1.1 in Section 8.1.

The results for the backstepping based controller are shown in Figure 8.4.
Compared to the results of the decoupling based controller the Cartesian end-
effector deviations are larger. The difference between the two controllers can also
be seen by comparing the joint torques. Figure 8.5 shows the deviations δτi, i =
1, · · · , 6 of the torques τi from their starting values τi|t=0, i.e. δτi = τi − τi|t=0

for the decoupling based and the backstepping based controller in the case of low
torque control gains (Case I). One can see that the backstepping based controller
results in smaller torque differences than the decoupling based controller.

In the present comparison all the measurement signals are assumed to be
available and are not corrupted by noise. Notice that the main difficulties in the
implementation of the decoupling based and the backstepping based controllers
for a real robot lie in the necessity of the measurement or estimation of the link
side acceleration and the jerk as was explained in more detail in Chapter 6.

8.1.4 Passivity Based Controller

The same simulations were also performed for the passivity based controller from
Chapter 7. The relation between the singular perturbation based controller and
the passivity based controller was already described in Section 7.8.1. Therefore,
the control law (7.76) can be written as

τm = τ d − K̄τ (τ − τ d) − D̄τ τ̇

τ d = g(q̄(θ)) − J(θ)T
(
Kdx̃θ(θ) + Dd

˙̃xθ(θ)
)

,

where the controller gain matrices K̄τ and D̄τ are related to the parameters
Bθ and Ks from (7.76) by K̄τ = BB−1

θ − I and D̄τ = (I − BB−1
θ )KsK

−1,
respectively.

For the implementation of the gravity compensation the function q̄(θ) must
be computed. This was done by the iteration procedure described in Proposition
7.3. The iteration was started with q̂0 = θ and stopped after two iteration steps.
In order to take account of the joint elasticity, the Cartesian controller stiffness
matrix Kd was chosen according to the method described in Section 7.5.1.

Two different configurations of the controller were evaluated which differ in
the choice of D̄τ . In both configurations the gain matrix K̄τ is chosen in the
same way as for the singular perturbation based controller according to Table
8.2 and Table 8.3 which leads to the motor scaling factors of BB−1

θ = 1.5I and
BB−1

θ = 4I, respectively. In the first configuration the feedback gain matrix D̄τ

was set to zero according to Section 7.2 while it was set to the values of Table
8.2 and Table 8.3 in the second configuration.

The controller performance for D̄τ = 0 is shown in Figure 8.6. Figure 8.7
shows the result for D̄τ �= 0. One can see that the controller with non-zero D̄τ

has much better performance regarding the oscillation damping. The stability
analysis in Section 7.5.2 was instead presented for the controller with D̄τ = 0.
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Fig. 8.6. Simulation results with the passivity based controller for the two different
torque control gain matrices with Dτ = 0. The dotted lines show the trajectories of
the end-effector coordinates according to the desired dynamic behavior. The dashed
lines show the results for the low torque control gains (Case I) and the solid lines show
the results for the high torque control gains (Case II).

The performance of the controller with D̄τ �= 0 from Figure 8.7 is quite similar
to the singular perturbation based controller. This is not surprising because the
two controllers have quite a similar structure.

8.1.5 Robustness

Additionally to the simulation of the nominal performance of the controllers also
the robustness of the controllers with respect to parameter uncertainties shall
be considered.
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Fig. 8.7. Simulation results with the passivity based controller for the two different
torque control gain matrices with Dτ �= 0. The dotted lines show the trajectories of
the end-effector coordinates according to the desired dynamic behavior. The dashed
lines show the results for the low torque control gains (Case I) and the solid lines show
the results for the high torque control gains (Case II).

The singular perturbation based controller does not contain model parameters
explicitly. Similarly, also the stability statements of the passivity based controller
are independent of the model parameters. If for instance the values of the motor
inertia B are not known exactly, this only means that the scaled motor inertia
Bθ will be different than desired. But the stability is not affected by this.

The situation is different for the decoupling based controller and the backstep-
ping controller. These controllers require the joint accelerations and the jerks. In
the above simulations it was assumed that these signals can be obtained exactly.
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Fig. 8.8. Simulation results with the decoupling based controller for the robustness
analysis. In all simulations the low torque control gains (Case I) were used. The dotted
lines show the trajectories of the end-effector coordinates according to the desired
dynamic behavior. The solid lines show the results without model uncertainties, i.e.
for fm = 1. The dashed and the dashed-dotted lines show the results for fm = 1.1 and
fm = 1.3, respectively.

But in practice this will not be possible and one must compute these signals
from other measurements using the model parameters via

q̈ = M(q)−1 (τ + τ ext − C(q, q̇)q̇ − g(q)) , (8.3)

q(3) = M(q)−1

(
τ̇ − Ṁ(q)q̈ +

d
dt

(τ ext − C(q, q̇)q̇ − g(q))
)

. (8.4)
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Fig. 8.9. Simulation results with the backstepping controller for the robustness analy-
sis. In all simulations the low torque control gains (Case I) were used. The dotted lines
show the trajectories of the end-effector coordinates according to the desired dynamic
behavior. The solid lines show the results without model uncertainties, i.e. for fm = 1.
The dashed and the dashed-dotted lines show the results for fm = 1.1 and fm = 1.3,
respectively.

Apart from this, the controller also contains the motor inertia. Even if the accel-
erations and the jerks can be exactly obtained, uncertainties in the motor inertia
may affect the stability of the closed loop system.

In the following simulation the robustness of the decoupling based controller
and the backstepping controller with respect to uncertainties of the motor inertia
is analyzed. Similarly to the previous simulations, it is assumed that the joint
accelerations and the jerks can be exactly obtained via (8.3) and (8.4). The
controller uses the torque feedback according to Table 8.2. Figure 8.8 shows the
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Fig. 8.10. Simulation results with the singular perturbation based controller for the
robustness analysis. In all simulations the low torque control gains (Case I) were used.
The dotted lines show the trajectories of the end-effector coordinates according to the
desired dynamic behavior. The solid lines show the results without model uncertainties,
i.e. for fm = 1. The dashed and the dashed-dotted lines show the results for fm = 1.1
and fm = 1.3, respectively.

simulation results for different values of the motor inertia. The controller uses
the nominal values Bnom of the motor inertia, while the model parameters were
set to B = Bnom/fm for fm = 1, fm = 1.1, and fm = 1.3.

The same simulation was also performed for the backstepping controller. The
result is shown in Figure 8.9. One can see that the backstepping controller is more
sensitive to the uncertainty in the motor inertia parameters than the decoupling
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Fig. 8.11. Simulation results with the passivity based controller for the robustness
analysis. In all simulations the low torque control gains (Case I) were used. The dotted
lines show the trajectories of the end-effector coordinates according to the desired
dynamic behavior. The solid lines show the results without model uncertainties, i.e.
for fm = 1. The dashed and the dashed-dotted lines show the results for fm = 1.1 and
fm = 1.3, respectively.

based controller. This results from the fact that the backstepping controller
contains additional feedback terms which depend on B.

In order to evaluate the robustness of the singular perturbation based con-
troller and the passivity based controller, the same experiment with the same
controller gains is also performed with these controllers. The results are shown
in Figure 8.10 and Figure 8.11. One can see that these controllers are robust
with respect to the considered model uncertainty.
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8.2 Experiments with the DLR-Lightweight-Robot-II

In this section some experiments with the seven-joint DLR-Lightweight-Robot-II
concerning the implementation of a Cartesian impedance are shown. Figure 8.12
depicts the realtime controller structure of this robot. The robot is equipped
with a signal processor in each joint. This allows the implementation of individ-
ual joint torque controllers with a high sampling rate (3 kHz). The measurement
data (motor positions and joint torques) are transmitted via an optical bus1 to a
realtime computer system (500 MHz PowerPC using VxWorks as an Operating
System). On this computer the Cartesian impedance controllers were imple-
mented with a sampling rate of 1 kHz. The link side position q was computed
based on the measurements and the joint stiffness via q = θ −K−1τ . The time
derivatives θ̇, q̇, and τ̇ were obtained via filtered numerical differentiation.

For the computation of more complex entities (i.e. the inertia matrix, the body
Jacobian, the gravity term, and the Coriolis/centrifugal matrix) a supplementary
task was used with a sampling time of 6 ms (see Figure 8.12). For the relevant
Cartesian coordinates the error variable

x̃ =

(
tptd(q, t)

tφtd(q, t)

)
=:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ex

ey

ez

φx

φy

φz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8.5)

was chosen (see also Section 3.5) with a roll-pitch-yaw representation for the
Euler angles tφtd(q, t).

Section 8.2.1 presents the experimental results with the singular perturba-
tion based controller. This includes a verification of the achieved stiffness and
damping behavior as well as a verification of the different nullspace projections
from Chapter 4. The results with the passivity based controller are presented
in Section 8.2.2. An experimental comparison of the decoupling based controller
with a singular perturbation based controller similar to the one discussed herein
is given in [OASKH03, OASKH05].

8.2.1 Singular Perturbation Based Controller

For the singular perturbation based controller two experiments are reported. In
the first experiment the Cartesian impedance being obtained by the controller
is evaluated. The second experiment deals with the nullspace stiffness.

According to Chapter 5 the controller can be written in the form

τm = τ d − Kτ (τ − τ d) − εDτ τ̇

τ d = g(q) + J(q)T
(
Λ(x)ẍd + μ(x, ẋ)ẋd − Kdx̃ − Dd

˙̃x
)

1 The DLR lightweight robots use a SERCOS bus (see http://www.sercos.org/).



138 Evaluation
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q, q̇ M (q), C(q, q̇), g(q), J(q)

Fig. 8.12. Realtime control structure of the DLR-Lightweight-Robot-II

Table 8.4. Stiffness values for the impedance evaluation of the singular perturbation
based controller

Coord. ex ey ez φx φy φz

Stiffness 800 5000 5000 300 300 300

N/m N/m N/m Nm/rad Nm/rad Nm/rad

with positive definite controller gain matrices Kτ , Dτ , Kd, and Dd. For the
torque control gain matrices Kτ and Dτ diagonal matrices are chosen such that
the inner torque controllers can be implemented on the local signal processors
at a high sampling rate of 3 kHz (see Figure 8.12). The desired torque τ d is
computed at a lower sampling rate of 1 kHz.

Cartesian Stiffness and Damping Evaluation

In the first experiment the Cartesian stiffness and damping are evaluated for the
regulation case ẋd = 0. As a desired stiffness matrix a diagonal matrix with the
diagonal elements according to Table 8.4 was chosen. For the design of the damp-
ing matrix, the method from Section 3.3 was applied with a damping factor of ξ =
0.7. In the experiment a human user exerts (generalized) forces on the robot end-
effector by pulling and pushing, mainly in the horizontal (x− and y−coordinates)
directions. Figure 8.1 shows the initial configuration. The interaction forces are
measured by a six-degree-of-freedom force-torque-sensor2 mounted on the end-
effector. Notice that this sensor was not used in the implementation of the

2 A JR3 sensor was used.
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Fig. 8.13. Measured forces for the singular perturbation based controller. (solid: force
in x-direction, dashed: force in y-direction, dotted: force in z-direction.)
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Fig. 8.14. End-effector deviation for the singular perturbation based controller.
(solid: deviation in x-direction, dashed: deviation in y-direction, dotted: deviation in
z-direction.)

impedance controller but is used only for the evaluation. Figure 8.13 shows the
measured forces in x−, y−, and z−direction. The corresponding Cartesian end-
effector deviations are shown in Figure 8.14. In order to evaluate the resulting
stiffness and damping, the force and displacement in x− and y− direction are
shown in Figure 8.15 and Figure 8.16, respectively. The corresponding static
characteristic line according to the relevant stiffness value from Table 8.4 is
shown by the dashed line. Notice that the hysteresis-like deviation from the sta-
tic value is caused by the Cartesian damping. The dotted line shows additionally
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Fig. 8.15. Position and force in x-direction for the singular perturbation based con-
troller. The dashed line represents the desired stiffness. The dotted line shows the
simulation results.
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Fig. 8.16. Position and force in y-direction for the singular perturbation based con-
troller. The dashed line represents the desired stiffness. The dotted line shows the
simulation results.

the result of a simple simulation of the desired Cartesian impedance. In this sim-
ulation the measured contact force is used as an input and the Cartesian motion
is the output. This simulation contains some further simplifications3 and a sim-
ple friction model4. Notice that the simulation shows only the desired impedance
and no joint elasticity is included. One can see that the experimental results fit

3 The inertia matrix and the damping matrix were considered constant.
4 The friction model for this robot was taken from [AS01].
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quite well to the simulation of the desired impedance for low (Figure 8.15) and
high (Figure 8.16) Cartesian stiffness.

Nullspace Stiffness

In the next experiment the nullspace projections from Chapter 4 are evaluated.
The DLR-Lightweight-Robot-II has seven joints while for a Cartesian impedance
six degrees-of-freedom are sufficient. Therefore, a one-dimensional nullspace re-
mains. In this experiment a Cartesian impedance is used which is characterized
by the stiffness values in Table 8.5 together with a damping factor of 0.7. In the
experiment no external forces were present.

Table 8.5. Stiffness values for the nullspace experiment

Coord. ex ey ez φx φy φz

Stiffness 1000 1000 1000 300 300 300

N/m N/m N/m Nm/rad Nm/rad Nm/rad

In the following a comparison between the projection matrices P 1(q) from
(4.20), P 2(q) from (4.22), and P 3(q) from (4.23) is given. As a considered metric
for P 1(q) the Euclidean metric is used. Ideally, there should be no Cartesian end-
effector deviation from the virtual equilibrium position xd. This is evaluated by
the following procedure. For the joint space stiffness and the damping from
(4.15) diagonal matrices Kn = knI and Dn = dnI were chosen, and according
to (4.16) the resulting joint torque is pre-multiplied by the different projection
matrices. In order to generate an oscillating nullspace motion a positive value
for the nullspace stiffness kn was used together with a negative value for the
damping factor dn.

kn = 50 Nm/rad (8.6)

dn = −1
2

√
kn Nm/rad/s (8.7)

The virtual equilibrium point for the nullspace motion was chosen as qd,0 = 0.
The choice of a negative damping value results in an unstable nullspace motion.
When a joint reaches its mechanical end stop, the joint bounces off. This way
an oscillating nullspace motion between the mechanical end stops is produced.

For an evaluation of the different nullspace projections the resulting end-
effector motion during this oscillating nullspace motion is used. In this compa-
rison only the translational motion of the end-effector is considered and the
Cartesian error ||x̃||t denotes the Euclidean norm of the translational compo-
nents of x̃ only. In Figure 8.17 this Cartesian error is shown for the different
nullspace projection matrices. Herein the projection matrices were switched on-
line between P 1(q), P 3(q), and P 2(q) during the nullspace oscillation. One can
see that the Cartesian errors are considerably larger in case of the static nullspace
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Fig. 8.17. Translational Cartesian error ||x̃||t for the different nullspace projections
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Fig. 8.18. Projected joint error ||Z(q)T (q − qN )||2 for the different nullspace
projections

projection via P 1(q), while the errors with the dynamically consistent projection
matrices P 2(q) and P 3(q) are of similar magnitude.

In order to visualize also the nullspace motion, which was present during the
generation of Figure 8.17, the projection of the joint position deviation q − qd,0

into the nullspace is given in Figure 8.18. While the amplitudes of the oscillations
in the nullspace for P 1(q) are the smallest (Figure 8.18), they result in high
Cartesian errors (Figure 8.17). Notice that in the considered setting the nullspace
motion was not symmetrical such that the amplitudes of the movement into the
different directions are not identical. One can also see that the period of the
oscillation is slightly different for the different nullspace projections. This results
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from the different weighting of the nullspace stiffness and the damping value by
the projection matrices.

8.2.2 Passivity Based Controller

Finally, the passivity based impedance controller (7.36) from Chapter 7 is evalu-
ated in two experiments. Figure 8.19 shows the DLR-Lightweight-Robot-II in the
starting configuration for both of the two experiments. For the implementation
the controller scheme of Figure 8.12 is used. The control law (7.3) is implemented
with a sampling rate of 333 µs. The intermediate control input u from (7.36) is
computed with a sampling time of 1 ms and is transmitted to the local signal
processors.

Fig. 8.19. DLR-Lightweight-Robot-II in the starting configuration

Stiffness and Damping

In this experiment the accuracy of the Cartesian impedance shall be evaluated
when the robot interacts with a human user. The commanded values for the
diagonal Cartesian stiffness matrix are shown in Table 8.6. For the damping
matrix the design method from Section 3.3 is applied with an overall damping
factor of 0.7. During the experiment a human user applies forces on the end-
effector by pulling and pushing (mainly in horizontal directions). The forces are

Table 8.6. Stiffness values for the experiment with the passivity based controller

Coord. ex ey ez φx φy φz

Stiffness 800 5000 5000 300 300 300

N/m N/m N/m Nm/rad Nm/rad Nm/rad



144 Evaluation

0 1 2 3 4 5 6 7 8

−80

−60

−40

−20

0

20

40

60

x
y
z

time [s]

F
o
rc

e
[N

]

Fig. 8.20. Measured forces in the first experiment for the passivity based impedance
controller. (solid: force in x-direction, dashed: force in y-direction, dotted: force in
z-direction.)
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Fig. 8.21. End-effector deviation in the first experiment for the passivity based im-
pedance controller.(solid: deviation in x-direction, dashed: deviation in y-direction,
dotted: deviation in z-direction.)

measured by a six-degree-of-freedom force-torque-sensor mounted on the end-
effector of the robot. This sensor is used for the evaluation only and is not used
for the controller implementation.

The measured forces are shown in Figure 8.20. Figure 8.21 shows the Carte-
sian position of the end-effector. In Figure 8.22 and Figure 8.23 the force-position
measurements are plotted for the x- and y-direction together with the desired sta-
tic characteristic line. One can see that the mean slope fits well to the desired
value. Notice that the measurement contains also the forces due to the desired
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Fig. 8.22. Position and force in x-direction for the first experiment with the passivity
based impedance controller. The dashed line represents the desired stiffness. The dotted
line shows the simulation results.
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Fig. 8.23. Position and force in y-direction for the first experiment with the passivity
based impedance controller. The dashed line represents the desired stiffness. The dotted
line shows the simulation results.

damping which produces a hysteresis-like characteristics. The damping is evalu-
ated by comparison with a simple simulation model of the desired dynamics. The
dotted lines show the result of the simulation of the desired impedance in which
the measured force is used as an input. This simulation contains also a simple
Coulomb friction model and is further simplified by the use of a constant Carte-
sian inertia matrix. One can see that the simulation fits quite well to the measure-
ment although the simulation results are quite sensitive to offset errors in the force
measurement.
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Table 8.7. Stiffness values for the impact experiment

Coord. ex ey ez φx φy φz

Stiffness 5000 5000 700 300 300 300

N/m N/m N/m Nm/rad Nm/rad Nm/rad
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Fig. 8.24. Position in z-direction in the impact experiment for the passivity based
impedance controller. The dashed line represents the virtual equilibrium position.

Impact Experiment

The second experiment shows the efficiency of the impedance controller during
the impact on a stiff surface. The manipulator is commanded to move in the
vertical z−direction5. After the impact with a wooden surface the force at the
tip increases proportionally to the position error. The used stiffness values for
this experiment are summarized in Table 8.7. The desired stiffness in vertical
direction is chosen smaller such that the impact force is kept small. The desired
damping is chosen according to a damping factor of 0.7. Figure 8.24 and 8.25
show the position and force in z-direction. At the time of impact the vertical
velocity is about 85 mm/s. One can see that the initial peak in the contact force
is reduced quite fast6. This is achieved by the lightweight construction of the arm
and by the reduction of the effective motor inertia by a factor of about three via
the torque feedback. Notice that impact experiments are commonly considered as

5 It should be mentioned that in this experiment again the passivity based controller
from (7.36) is used, but now the virtual equilibrium position is time-varying.

6 It is reduced within 6 ms which is the used sampling interval of the force-torque-
sensor.
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Fig. 8.25. Measured contact force in the vertical z−direction in the impact experiment
for the passivity based impedance controller

challenging problems in robotics, in particular concerning the stability of control
schemes based on the use of force-torque-sensors at the end-effector [Koe01].
With the presented controller no stability problems were observed in this impact
experiment. This is ensured by the passivity properties of the used controller
together with the high sampling time of the torque feedback.



9 Applications

In this short chapter some typical applications are presented for which the Carte-
sian impedance controllers of this monograph have been used. Impedance control
indubitably is one of the core building blocks needed for the successful execution
of advanced manipulation tasks [Hog85a, Hog85b, Hog85c, BS98]. Notice that in
all the presented applications the Cartesian impedance control is only one part of
a larger setup. In practice, therefore, the question how (for a given application)
impedance control of a robot arm can best be combined with other robotics re-
lated subjects1, such as path planning or computer vision, is an important issue,
too. The purpose of this chapter is to give an overview of applications for which
the discussed controllers were designed. In this presentation, consequently, only
a rough description of the applications is given and the emphasis lies on the
application of the Cartesian impedance controllers. Besides that also the gener-
ality of the impedance control concept for the use in manipulation tasks becomes
visible.

The first four experiments in this chapter were performed with the DLR-
Lightweight-Robot-II in different setups. Section 9.1 presents a typical service
robotics task: wiping a table. Then, in Section 9.2, a medical robotics application
is described, in which impedance control of the robot arm is utilized for spine
surgery. Thereafter, the combination of the DLR-Lightweight-Robot-II with a
mobile platform is described in Section 9.3. In Section 9.4, the DLR-Lightweight-
Robot-II is used together with a mobile platform and an artificial four-finger
hand for door opening. Finally, in section 9.5 the extension to more complex
kinematic chains is exemplified by considering the two-arm manipulation with a
humanoid upper-body system.

9.1 Table Wiping as a Service Robotics Task

Cleaning is a typical task in service robotics scenarios. In the following the wiping
of a table is considered. Figure 9.1 shows the DLR-Lightweight-Robot-II with a
simple rigid end-effector for a basic wiping application.
1 Which are not part of this treatise.

C. Ott: Cartesian Imped. Cntrl. of Redund. & Flexible-Joint Robots, STAR 49, pp. 149–164, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 9.1. DLR-Lightweight-Robot-
II in a table wiping application

The whole application is split up into
two steps. In the first step (teaching step) a
human user can teach the robot a desired
wiping movement. Therefore, a Cartesian im-
pedance behavior is used for the robot in
which the orientation stiffness is set high (100
Nm/rad), while the translational stiffness is
set to zero such that the robot end-effector
can be guided along a desired path. The end-
effector path is stored and used in the second
step (replay step) of the application as a vir-
tual equilibrium point for the desired Carte-
sian impedance. In the replay step the desired
stiffness is chosen such that the translational
stiffness in a horizontal plane (along the table surface) is moderately high (2000
N/m). The translational stiffness corresponding to the vertical motion, instead,
is set to zero. In order to ensure that the robot keeps in contact with the surface
of the table a desired force of fd = −10 N in vertical direction is added to the
Cartesian force of the impedance controller.

For the implementation of the Cartesian impedance the controller from Chap-
ter 7 was used. Since the orientational stiffness is set high in the teaching step
and in the replay step, the Euler angle based stiffness from Section 3.5.2 is ap-
propriate. If the robot comes in a singular configuration during the teaching
step, the robot may get stuck at this point in the replay step. Therefore, the
singularities must be avoided. This application indeed was the reason for imple-
menting the singularity avoidance from Section 3.4. Furthermore, the projection
based nullspace stiffness from Chapter 4 was used during the replay step. The
nullspace stiffness was chosen quite low and was basically used in order to pull
the joint configuration away from the joint limits.

In the basic setting of this application the robot simply wipes along the pre-
viously taught path. In more recent developments this application was then
combined with a vision system and a path planning system in order to allow a

Fig. 9.2. Table wiping at the Hannover Fair 2002
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more realistic setting. The vision system was used in order to detect a stain on
the table surface. The taught path from the first step was then modified and
generalized by the path planning system such that the commanded virtual equi-
librium position for the impedance controller covers the detected stain [UASS04].
Furthermore, the DLR-Hand-II was used as an end-effector instead of the rigid
end-effector from Figure 9.1.

The wiping application was presented at several faires2 (Figure 9.2) and lab
presentations with different settings. In these situations the robustness properties
of the passivity based Cartesian impedance controller were very advantageous.

9.2 A Medical Scenario: Pedicle Screw Placement

In this scenario a medical robotics application is described for which the passiv-
ity based Cartesian impedance controller of Chapter 7 is used in combination
with the quaternion based stiffness from Section 3.5.2. The presented application
is topic of a joint project3 between the Institute of Robotics and Mechatronics
(German Aerospace Center, DLR e.V.), the company BrainLAB AG4, the Tech-
nical University of Munich (TUM), and the BGU5 Murnau.

The focus of this short description lies on the use of the Cartesian impedance
controller rather than on the details of the application from a medical point
of view. Notice also that this scenario actually is of interest for a new medical
robot developed at the DLR. The whole application and work-flow was tested
beforehand with the DLR-Lightweight-Robot-II. In this connection it is worth
remarking that it is planned to use the same type of controllers as discussed
herein also for the medical robot, since the mechanical construction is (from
a control point of view) in some apects6 quite similar to the DLR lightweight
robots.

The purpose of the application is to support a surgeon during the placement
of pedicle screws in spine surgery. In some cases, when a vertebra is broken or
damaged, the structure can be stabilized by adjusting metal plates or pins. These
plates are fixed to the spine by two screws which are drilled into the pedicles of
adjacent vertebrae (see Figure 9.3). Figure 9.4 shows a typical placement of four
pedicle screws on a spine model. The positions of the drilling points and the
drilling axes usually are planned pre-operatively, based on CT7 scans. During
the operation the surgeon must inter-operatively find the pre-operatively planned
poses on the spine of the patient. In a conventional surgery without navigation

2 E.g. Hannover Fair 2002, Automatica Fair 2004.
3 The BFS (Bayrische Forschungsstiftung) project Naviped: Entwicklung eines naviga-

tionsgestützten halbautomatischen Robotersystems für die Platzierung von Schrauben
an der menschlichen Wirbelsäule.

4 http://www.brainlab.com
5 BGU ... Berufsgenossenschafliche Unfallklinik.
6 The medical robot will for instance be equipped with Harmonic Drive� gears and

joint torque sensors.
7 CT ... Computer Tomography.
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Fig. 9.3. Sketch of the pedicle screw placement (taken and modified from [MLSD99])

pedicle pedicle
screws screws

Fig. 9.4. Pedicle screw placement on a spine model. This picture was kindly provided
by Ao. Univ.-Prof./USA Dr. med. Rudolf Beisse from the BGU Murnau.

system the surgeon iteratively adjusts the pose of the driller and detects its pose
relative to the spine by taking several X-ray scans. In the presented navigation
based robotics scenario, the robot should now be used to drill the holes for the
screws at the previously planned poses. Markers are attached to a vertebra and
to the robot (see Figure 9.5). Therefore, (after registration) the relative pose
htb of the vertebra to the robot end-effector can be measured by a navigation
system8 which detects these markers. While the robot supports the placement
of the driller at the planned pose on the pedicle, the drilling itself is done man-
ually by the surgeon with a movable driller mounted on the robot end-effector.
The drilling is performed manually because this allows the surgeon to feel the
contact forces during the critical part of the operation. The use of a robot in this
task has three main advantages. On the one hand the surgeon is less exposed
to the X-ray radiation while verifying the planned position of the pedicle during
the operation. On the other hand the robot prevents (at least to some extent)
the driller from slipping off the pedicle. In combination with the navigation

8 This navigation system is provided by the company BrainLAB AG.
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Fig. 9.5. Setup of the Naviped application

system it, furthermore, is possible to redeem displacements of the spine during
the drilling task. Another important advantage of the navigation based robotic
spine surgery is that the the hand-eye-coordination for the placement of the
screw is easier than in a conventional surgery.

Given the difference htb between the vertebra and the tool frame, the pose of
the vertebra can be computed by hsb(t) = hst(q)htb. With regard to the control
the vertebra position is considered as constant.

The work-flow of the operation is split up into several steps (see Figure 9.6).
By the first five steps the robot end-effector (and hence the driller) is brought to
a desired pose at the spine, where the actual drilling action can be performed.
This desired pose is denoted as the drill frame in the following. The drilling
action itself happens in step five. Afterwards the robot can be removed from the
patient within step 6 and 7. In each of the steps a different Cartesian stiffness
matrix is chosen.

• Step 1: In the first step the robot arm has zero Cartesian stiffness, and
therefore can be moved freely by the user. In this mode the robot can be
brought into an appropriate starting pose.

• Step 2: In this mode the desired stiffness matrix is defined such that the
robot end-effector can be moved in a direction leading to the drill axis. The
stiffness matrix has five positive eigenvalues and the remaining sixth eigen-
value is set to zero. Thus, the robot does not move autonomously to the
drill frame, but can be moved towards the desired pose by the surgeon in an
intuitive way. The orientation of the end-effector is adjusted automatically.
When the distance of the end-effector to the drill axis gets smaller than a
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Fig. 9.6. Execution steps for the screw placement application

predefined threshold value of 10 mm, the sixth eigenvalue is set high and the
virtual equilibrium pose is interpolated onto the drill axis.

• Step 3: Next the end-effector stiffness along the drilling axis is set to zero
such that the robot can be guided along this axis. The virtual equilibrium
pose is set onto the drill axis. The system changes into the next mode, when
the distance of the end-effector to the drill point gets smaller than a prede-
fined threshold value of 10 mm.

• Step 4: All Cartesian degrees-of-freedom have a large stiffness now and the
virtual equilibrium point is interpolated to the origin of the drill frame. The
robot then changes automatically into the next mode.

• Step 5: After reaching the drill frame, the actual drilling operation can
be started. During the drilling operation a Cartesian position controller is
used which is implemented similar to the Cartesian impedance controller but
contains additionally an integral action in order to achieve a better position
accuracy. The virtual desired pose of the robot is still adjusted according
to the data from the navigation system such that displacements of the drill
frame can be compensated (quasi-statically). In this mode the surgeon can
perform the drilling action, with a driller mounted (movable along the drill
axis) on the robot end-effector.

• Step 6: After finishing the drilling operation, in this mode the end-effector
can be moved upward along the drilling axis by setting the stiffness along this
axis to zero. The downward motion is prohibited by the use of a virtual wall
which is moved upward together with the end-effector. When the distance of
the end-effector from the drill point exceeds a predefined threshold value (of
150 mm) the next mode is activated.

• Step 7: In this mode the application has ended and the robot behavior is
identical to step 1.

In this scenario one can see, how a complex task is split up into simple sub-
tasks which use a different desired impedance behavior. The above described
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procedure presents the basic steps of the pedicle drilling application. Based on
the presented impedance control concepts, this procedure can be adapted to the
needs of the surgeon if desired.

9.3 Compliant Mobile Manipulation

In this book the Cartesian impedance control problem for robot arms is ana-
lyzed. In many applications it is desired to combine a robot arm with a mobile
platform in order to extend the reachable workspace. In case that the mobile
robot has only holonomic constraints9 a straight-forward extension of the rigid
body impedance control concepts from Chapter 3 to such systems is possible
(see for instance [HK00, KYC+95]). In case that the mobile robot has also non-
holonomic constraints the problem is more difficult.

In some applications, like for instance in the previously described table wiping,
such a combination was also desired for the DLR lightweight robots. In this
section a simple, i.e. rather pragmatic, solution is presented, how the Cartesian
impedance controller can be combined with a non-holonomic mobile platform.

The considered system is shown in Figure 9.7. The mobile platform has four
steerable wheels. Contrary to caster-like wheels the steering axes and the rotation
axes of the wheels intersect. Therefore, the system is non-holonomic [Bla01]. In
the following two different cases are considered. In the first scenario the Cartesian
impedance is defined with respect to a world fixed coordinate system. In the
second case it is, instead, defined with respect to a coordinate system fixed to
the mobile platform.

Case 1: For the control of the combined platform-arm-system a rather pragmatic
approach was followed. Notice that, for the ease of presentation, the following ex-
planation is restricted to the translational motion, but it can be readily extended
also to the end-effector orientation. Let the position of the mobile platform be
denoted by rmob and the end-effector position be given by reef = rmob +pst(q).
The initial position of the arm with respect to the mobile platform is given by
pst(q0). For controlling the mobile platform a velocity controller is used, where
the interaction between the arm and the mobile platform is considered as a
disturbance. The controller of the robot arm, instead, is based on a Cartesian
impedance controller which is designed for the end-effector position reef with
respect to a world-fixed coordinate system. The set-point vmob,des for the veloc-
ity controller of the mobile platform is then commanded by the simple feedback
law vmob,des = kmob(pst(q) − pst(q0)), with a positive control gain kmob such
that the robot arm keeps away from its (platform-fixed) workspace boundaries.
Thereby, it is assumed that in the initial configuration the end-effector is far
from the workspace boundaries. The control gain kmob of this simple feedback

9 A set of holonomic constraints can be represented as a set of algebraic constraints
on the configuration space. A set of constraints for the generalized velocities which
is not equivalent to a set of holonomic constraints is said to be non-holonomic, see,
e.g., [MLS94].
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Fig. 9.7. Mobile manipulator system with the DLR-Lightweight-Robot-II and a non-
holonomic mobile platform. The sketch on the right hand side shows the kinematic
structure of the mobile platform.

law is set small such that the velocities of the platform are kept small and the
motion of the platform can be neglected in the design of the Cartesian impedance
controller.

The described control strategy of the platform-arm system is very simple and
was motivated by the search for a pragmatic extension of the Cartesian impe-
dance controller to a non-holonomic mobile manipulator system. In practice it
turned out that this control strategy works very well in applications such as table
wiping. From a theoretical point of view, the concept, however, is not sufficient,
and indeed the extension of the Cartesian impedance controllers to systems with
non-holonomic constraints can be considered as a challenging problem for future
works.

Fig. 9.8. DLR-Lightweight-Robot-
II mounted on a mobile platform in
an application at the Hannover Fair
2002

Case 2: Figure 9.8 shows the mobile ma-
nipulator system in an application in which
the Cartesian impedance controller is im-
plemented with respect to a platform fixed
coordinate system rather than to a world
fixed coordinate system. The used Cartesian
impedance controller was implemented ac-
cording to the singular perturbation based
approach (Chapter 5), with Cartesian co-
ordinates chosen according to the modi-
fied Euler angle representation (see Section
3.5.2). The orientation stiffness values were
chosen high (100 Nm/rad), while the trans-
lational stiffness values were chosen moder-
ately stiff (500 N/m). The mobile platform
was controlled as described above. This
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results in a joystick-like behavior for the robot arm. By pulling or pushing
the end-effector the mobile manipulator system can be moved around, since
the velocity controller follows the deviations of the end-effector from the virtual
equilibrium point which is now fixed to the mobile platform.

9.4 Opening a Door

In the next application the robot should open and move through a door. There-
fore, the DLR-Lightweight-Robot-II is used in combination with a mobile plat-
form and a dexterous four finger hand (DLR-Hand-II), see also [OBH+05]. The
same system was previously used for several manipulation tasks with bottles and
glasses in combination with a vision system for object recognition [HOB+04].
While those manipulation tasks were accomplished with a position controller for
the arm, in the considered task of opening a door impedance control of the arm
is much better. The use of an impedance controller (with moderate stiffness val-
ues) allows to keep the contact forces low, even if the environment is not exactly
known.

Contrary to the modeling assumptions from Chapter 2 the robot arm is
mounted on a mobile base in this application. It is, however, assumed that
the motion of the mobile base is sufficiently slow and smooth such that the
dynamical effects of the platform motion on the arm can be neglected. More-
over, the end-effector, i.e. the four finger hand, is included in the robot model
in a simplified form as a rigid object. This means that the dynamical effects of
the finger motion on the arm dynamics are also neglected. Therefore, the robot
arm is controlled as a separate system and all dynamical couplings between the
mobile base, the arm, and the artificial hand are neglected. Based on these mod-
eling assumptions the presented Cartesian impedance controllers can be used
without modifications. For the realization of this application the passivity based
controller structure from Chapter 7 was used.

Before the door can be opened, the robot localizes10 its relative position to
the door hinge and the door handle is detected by computer vision. The arm
approaches the handle based on coordinates from computer vision such that
the hand is positioned at the right hand side of the handle as shown in Figure
9.9. Then the whole application is divided into two subtasks. The turning and
opening of the door handle (subtask 1) and the moving through the door until
it is sufficiently wide open (subtask 2). Furthermore, a joint level impedance
controller (with moderate stiffness), with an equilibrium configuration as shown
in Figure 9.9, is used for the four fingers of the artificial hand. The hand remains
in this configuration for the whole application.

During the operation the contact force between the hand and the door handle
shall be observed. Since the robot does not have a force-torque-sensor attached

10 The localization of the mobile platform with respect to the door basically was
achieved here by detecting some (known) markers on the door with a SICK laser
scanner and fitting a model of the marker positions to those measurements.
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Fig. 9.9. Initial configuration for the door opening application

to the end-effector in this setup, the contact force must be estimated from other
measurements. Therefore, a rough quasi-static estimation is done as follows.
In a static equilibrium the external torques τ ext can be computed from the
measurement of the joint torques τ and the computation of the gravity torques
g(q) via τ ext = τ − g(q). If the external torques are assumed to be exerted via
the generalized force F ext, then the relationship J(q)T F ext = τ − g(q) holds.
This equation can be used for a rough, i.e. a quasi-static, estimation of F ext. The
estimation of the generalized contact force allows to implement simple stopping
conditions for establishing the contact. For simplicity the Euclidean norm of the
translational components from F ext is used here for these stopping conditions.

The turning and opening of the door handle is split up into several steps as
depicted in Figure 9.10. For the actual impedance implementation the quater-
nion based stiffness from Section 3.5.2 was applied. With the first two steps the
contact of the hand with the handle is established (step 1 and 2 in Figure 9.10).
Each of these two steps finishes when a predefined threshold value of 10 N for
the estimated contact force is exceeded. Then the actual handle turning motion
follows (step 3), which ends when the contact force exceeds another threshold
value of 30 N signalizing that the handle is turned to its maximum angle. After
that the door is opened by a horizontal movement into the normal direction of
the door surface (step 4) and the handle is turned back to its rest configuration
(step 5 and 6). Now the first part of the door opening application is finished.

In the second part, the door shall be moved until it is fully open such that the
mobile platform can drive through. For the robot arm a Cartesian impedance
controller is used which allows to keep the door at a distance while the mobile
platform drives through the door hinge. The desired Cartesian impedance behav-
ior is defined via a potential function as follows. Let r(q) = (rx(q), ry(q), rz(q))T

denote the position of the end-effector with respect to a platform fixed coordi-
nate system. The desired impedance shall be designed such that the end-effector
holds its initial height and is free to move along a horizontal circularly shaped



Opening a Door 159

1 2

3 4

5 6

Fig. 9.10. Impedance controlled movements for the handle opening

path11 fixed to the mobile platform. By choosing positive stiffness factors kr and
kz this can easily be formulated via the potential function

Vd(q) = kr

(√
rx(q)2 + ry(q)2 − d0

)2

+ kz(rz(q) − rz(q0))
2 ,

d0 =
√

rx(q0)2 + ry(q0)2 ,

which replaces the potential function of the stiffness from Section 3.5. This po-
tential function does not have an isolated minimum but has its minimum value
along a circular path (see Figure 9.11). A translational stiffness can be imple-
mented according to this potential function simply by computing the differential
11 The center of this circular path lies in the initial height at a point above rc.



160 Applications

Fig. 9.11. Potential function for the implementation of the Cartesian impedance in
the door opening application

of Vd(q) with respect to12 q. Besides this translational stiffness, no orientational
stiffness is implemented. The reason for this is that the orientation of the end-
effector will then adjust automatically to the handle orientation when the handle
is grasped by the artificial hand. By using the above potential function for the im-
plementation of the desired impedance behavior together with an appropriately
designed damping term13 the end-effector will be kept at the starting distance
from the platform fixed point rc. When the mobile robot moves through the
door hinge, the arm therefore will automatically move the door aside (see Figure
9.12). Notice that this works without any knowledge of the door width or of the
position of the door rotation axis.

9.5 Two-Arm Manipulation

Finally, as a last application the two-armed manipulation for DLR’s humanoid
manipulator “Justin” [OEF+06] is presented. This system consists of two DLR-
Lightweight-Robots-III mounted on a movable torso, two artificial hands, and a
sensor head mounted on a two degrees-of-freedom pan-tilt-unit (see Fig. 9.13).
Overall, Justin has 43 degrees-of-freedom. Also, all the joints of the arms, the
hands, and the torso are equipped with joint torque sensors in addition to the com-
mon motor position sensors. The following discussion will be restricted to the con-
trol of the arms and the torso. Further extensions which take full advantage of the
articulated hands can be found in [WmOH06, WmOH07].

The considered task is the coordinated grasping and manipulation of a large
object by both arms. As an underlying control approach, the controller from
12 But notice that in the implementation of this impedance behavior within the frame-

work of the passivity based controller from Chapter 7 the motor side position θ is
used instead of the link side position q. See Chapter 7 for more details on this.

13 The design of the damping in this application is not crucial and therefore is omitted
here for the ease of presentation.
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Fig. 9.12. Opening of the door

section 7.2.1 is applied. However, for the two-arm system it is useful to consider
a more general impedance structure than a single spatial spring connected to
the end-effector. Therefore, a somewhat more abstract viewpoint is adopted. In
(7.10) the stiffness term is now replaced by the differential of a more general po-
tential function Vimp(θ) and the damping is realized via an appropriate damping
matrix Dj(θ) in joint space, i.e. instead of (7.10) the control law

uimp = −∂Vimp(θ)
∂θ

− Dj(θ)θ̇ (9.1)

is used. For the design of the potential function Vimp(θ) the potential func-
tion VS(·) according to one spatial spring shall be used as a basic building
block. This potential function VS(hs1, hs2,K) depends on two frames hs1 :=
[Rs1, ps1] ∈ SE(3) and hs2 := [Rs2, ps2] ∈ SE(3) between which the spring
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Fig. 9.13. DLR’s humanoid manipulator “Justin”

is acting, and also on some configuration-independent internal parameters K,
like the stiffness values or the rest length. Appropriate implementations for such
spatial springs can found in the works by Fasse and Zhang[FB97], Caccavale
and Natale[CNSV99], and Stramigioli[SD01]. For the two-arm manipulation with
Justin this potential function was chosen as

VS(hs1, hs2,K) :=
1
2
eT

12Kte12 + 2εT
12Krε12 , (9.2)

where e12 := ps1 − ps2 − p12,0 is the translational deviation of the displacement
ps1 − ps2 from its desired rest length p12,0. The matrices Kt ∈ R

3×3 and Kr ∈
R

3×3 represent the translational and rotational stiffness matrices. Furthermore,
ε12 denotes the unit quaternion representation of Rv1,v2 := RT

1,v1R
T
s1Rs2R2,v2

with R1,v1 ∈ SO(3) and R2,v2 ∈ SO(3) as the “rotational rest length” of the
spring.Consequently,K contains the stiffness matrices Kt, Kr as well as the trans-
lational and rotational rest length p12,0, R1,v1, R2,v2. For the design of the damp-
ing matrix Dj(θ) one can again utilize the method discussed in Section 3.3.

The forward kinematics mappings for the right and the left arm with respect
to the base of the torso can be computed by (2.3) and will be denoted by hsr(·)
and hsl(·).

Based on the above definition of VS(·) an impedance behavior for a two-arm
manipulator could simply be designed by using two spatial springs Kr and Kl

for the right and the left arm, which connect the end-effectors to the virtual
equilibrium frames hr,d and hl,d, respectively. If the springs are implemented
as complete 6D-springs (i.e. with full rank translational and rotational stiffness
matrices), then the complete Cartesian motion of the arms can be influenced
already via only these two springs. For some applications it is useful if some part
of the motion is instead defined via an additional coupling spring Kc between the
arms. Clearly, in such a configuration (as shown in Fig. 9.14) both the rest lengths
as well as the stiffness values of the individual springs and the coupling spring
should be chosen in a compatible way such that the springs do not interfere with
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each other. The complete potential function for implementing such a two-arm
impedance via (9.1) is given by

Vimp(θ) = VS(hsr(θ), hr,d,Kr) + VS(hsl(θ), hl,d,Kl) +
VS(hsr(θ), hsl(θ),Kc) . (9.3)

With an impedance structure as depicted in Fig. 9.14 one can thus implement
different behaviors, ranging from an independent control of the arms via Kr

and Kl to a pure coupling based on Kc. One disadvantage of this structure,
however, is the fact that the springs should not be designed independently, but
in a compatible way as explained above.

Instead of the two individual springs attached to the end-effectors one can de-
fine a virtual object frame hso(hsr(θ), hsl(θ)) depending on the two end-effector
frames as sketched in Fig. 9.15. Such a virtual object was used by Natale in
[Nat03]. The object frame was chosen as hso = [Rso, pso] with pso = 1

2 (psr+psl)

hsr(θ)hsl(θ)

hr,dhl,d

Kc

KrKl

Fig. 9.14. Two-arm impedance behavior by adding a coupling spring to the individual
arm springs

hso(θ)

ho,d

Kc

Ko

Fig. 9.15. Two-arm impedance behavior by combining a coupling spring with an
object level spring



164 Applications

and Rso = RsrR̄rl, where R̄rl denotes a half 14 of the rotation matrix R−1
sr Rsl.

This virtual object is connected via a spatial spring Ko to a virtual equilibrium
pose ho,d. In combination with the coupling stiffness, one can intuitively define
an impedance behavior which is useful for grasping large objects with two arms.
The relevant potential function is given by

Vimp(θ) = VS(hso(hsr(θ), hsl(θ)), ho,d,Ko) +
VS(hsr(θ), hsl(θ),Kc) . (9.4)

As an example task for these impedance behaviors the grasping and manipu-
lation of a cylindrical trash bin has been implemented. In the experiments the
coupling spring Kc realized a translational stiffness acting only in a horizontal
plane. The springs Kl and Kr on the other hand implemented a translational
stiffness according to the vertical movement of the arms, as well as an orientation
stiffness. For the hands simple joint impedance controllers were used. That way
the grasping was performed basically by the arms.

Fig. 9.16. The humanoid manipulator Justin manipulating a cylindrical trash bin

14 This halving of the rotation matrix can easily be done using an angle-axis
representation.



10 Controller Comparison and Conclusions

In Chapter 5 to 7 several control approaches for implementing a Cartesian im-
pedance behavior with a flexible joint robot were discussed in detail. An ex-
perimental evaluation of these controllers was already presented in Chapter 8.
Finally, an overall comparison highlighting the respective advantages and disad-
vantages of the presented control approaches shall be given in this concluding
Chapter. Table 10.1 summarizes the properties of the different controllers. Such
a comparison clearly is in some aspects subjective and therefore the following
few comments on the ratings are necessary.

Table 10.1. Comparison of the presented controllers

Singular Decoupling & Passivity

Perturbation Backstepping Based

Model Sing. Pert. Reduced Reduced (+D)

Theor. Justification - + +

Robustness 0 - +

Tracking & IS1 + + -

Low Complexity + - +

State Variables τ , τ̇ , q, q̇ τ , τ̇ , q, q̇ θ, θ̇, q, q̇

Feedback Variables τ , τ̇ , q, q̇ τ , τ̇ , q, q̇, q̈, q(3) τ , (τ̇ ), θ, θ̇

Model: In the singular perturbation approach the controller design is only based
on an approximative model in which the inner torque control loop is neglected
for the design of the impedance controller. The other methods, instead, refer
to the reduced model of a flexible joint robot. For the passivity based controller
even an extension to a model including joint damping is straightforward.

Theoretical Justification: This rating is a consequence of the considered
model assumptions. Here, the singular perturbation based controller clearly has
its main disadvantage.
1 IS ... Inertia Shaping.

C. Ott: Cartesian Imped. Cntrl. of Redund. & Flexible-Joint Robots, STAR 49, pp. 165–167, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Robustness: The structural properties of the passivity based controller imply
robustness to modeling uncertainties with respect to the link side dynamics.
For the decoupling and the backstepping based controller no robustness analysis
can be done, if the joint acceleration and the jerk cannot be measured but
must be calculated from other measurements. In the regulation case the singular
perturbation based controller has similar robustness properties as the passivity
based controller. But this holds only for the approximative singular perturbation
model of the system.

Tracking and Inertia Shaping: The extension to the tracking case and inertia
shaping can be done in a similar way for the singular perturbation based con-
troller and for the decoupling and backstepping based controllers, but leads to
more difficult controllers. The passivity based controller originally was designed
for the regulation case. An extension for the tracking case was given, but here
the controller needs additionally the measurements of the link accelerations and
the jerks.

Low Complexity: The complexity rating refers to the implementation costs
of the controller. Here, the decoupling and the backstepping based controllers
have their main disadvantage due to the additional feedback of the link acceler-
ations and the jerks. While these signals can in principle be computed based on
the other measurement data and on the model parameters, the computation is
critical from a practical point of view.

State Variables and Feedback Variables: In the analysis of the singular
perturbation based, the decoupling based, and the backstepping controllers the
torque and the link side position are used. These controllers are (implicitly)
designed in form of a cascaded control structure with an inner torque control
loop and an outer impedance control loop. The analysis of the passivity based
controller on the other hand uses the state variables of the motors and the links.
The term feedback variables, instead, refers to the variables which are actually
needed for an implementation of the controllers. Since the link side accelerations
and jerks usually cannot be measured, they must be computed based on the
model and the state variables.

To sum it up, one can say that the decoupling based and the backstepping con-
troller are in practice difficult to be implemented, but they represent a complete
solution to the impedance control problem for the (reduced) flexible joint robot
model including the tracking case and inertia shaping. From a practical point
of view, instead, the singular perturbation approach and the passivity based
controller are to be favored due to their low complexity and their robustness
properties. While the singular perturbation based controller allows a straight-
forward extension to the tracking case and also inertia shaping, its theoretical
justification on the basis of Tychonov’s theorem is weak. The passivity based
controller, on the other hand, clearly has its main advantages in the theoretical
justification and the low complexity.
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With the presented controllers several solutions to the Cartesian impedance
control problem for flexible joint robots are available and a wide range of ap-
plications can be handled with these controllers. Some typical applications were
discussed in Chapter 9.

If the desired impedance is defined differently than considered in this work,
it will often be possible to modify the controllers accordingly by only minor
changes, similar as it was exemplified in Section 9.1. The problem of how to
define the desired impedance for a given task, however, is an interesting problem
for itself.
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[ASH00] Albu-Schäffer, A., Hirzinger, G.: State feedback controller for flexible joint
robots: A globally stable approach implemented on dlr’s light-weight ro-
bots. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 1087–1094 (2000)
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[OASH02] Ott, C., Albu-Schäffer, A., Hirzinger, G.: Comparison of adaptive and
nonadaptive tracking control laws for a flexible joint manipulator. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 2018–2024 (2002)
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A Appendix

A.1 Time-Varying Systems

In this section some definitions and lemmata are reported which are relevant
for the stability analysis of time-varying systems. This appendix is intended
to clarify some terms used in this book without going into the details. More
comprehensive treatments of the stability theory for time-varying systems can
be found in one of the many books on nonlinear control, like for instance [Kha02]
or [Vid93].

In the stability theory of time-varying systems positive definite functions play
an important role. Therefore, the notion of positive definiteness shall be defined.
This is done first for the time invariant case in Definition A.1 and subsequently
for the time-varying case in Definition A.2.

Definition A.1. Given an open set D ⊆ R
n which contains the origin 0 ∈ D.

A continuous function V : D → R is said to be locally positive semi-definite, if
it fulfills the conditions V (0) = 0 and V (x) ≥ 0 ∀x ∈ D. It is said to be locally
positive definite if the stronger condition V (x) > 0 ∀x ∈ D\{0} holds.

It is positive definite, if D = R
n and there exists a constant r > 0 such that

inf
||x||≥r

V (x) > 0

holds. Furthermore, a positive definite function V (x) is said to be radially un-
bounded, if the condition

lim
||x||→∞

V (x) = ∞

holds.
A function V (x) is said to be negative (semi-)definite, if the function −V (x)

is positive (semi-)definite.

The above definition can be extended to the time-varying case as follows. Only
the global definitions shall be given here for brevity.
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Definition A.2. A (time-varying) function V : R×R
n → R is said to be positive

semi-definite, if it fulfills the conditions V (t,0) = 0 ∀t ∈ R and V (t, x) ≥
0 ∀(t, x) ∈ R × R

n.
It is said to be positive definite, if it additionally fulfills the condition

V (t, x) ≥ W1(x) ∀(t, x) ∈ R × R
n

for some positive definite function W1 : R
n → R. Furthermore, it is radially

unbounded, if W1(x) is so.
Finally, V (t, x) is said to be decrescent, if it fulfills the condition

V (t, x) ≤ W2(x) ∀(t, x) ∈ R × R
n

for some positive definite function W2 : R
n → R.

In the time-varying case the solution of an ordinary differential equation depends
on the initial state and also on the initial time t0. Usually, it is then desired that
all convergence and stability properties hold uniformly in the initial time. In
the following the definition of special comparison functions, known as class K
(resp. K∞) functions, is given. These functions will allow transparent definitions
of uniform boundedness and uniform (asymptotic) stability.

Definition A.3. A continuous function α : A → R, defined on an interval
A = [0, a) with a > 0, is said to belong to class K, if it is strictly increasing and
α(0) = 0. It is said to belong to class K∞, if A = [0,∞) and α(a) → ∞ for
a → ∞.

Class K (resp. K∞) functions have the following important properties [Kha02].

Lemma A.4. Let α1 : A → R and α2 : A → R be class K (resp. K∞) functions.
Then the inverse α−1

1 and the concatenation α1 ◦α2 are also class K (resp. K∞)
functions.

The following Lemma, taken from [Kha02], gives an important relation between
positive definite functions and class K functions.

Lemma A.5. Let V : D → R be a continuous and positive definite function,
which is defined on a set D ⊂ R

n that contains the origin, i.e. 0 ∈ D. Let the
ball Br = {x ∈ D| ||x|| < r} ⊂ D be contained in this domain for some r > 0.
Then there exist class K functions α1 and α2, which are defined on the interval
[0, r), such that the inequalities

α1(||x||) ≤ V (x) ≤ α2(||x||) ∀x ∈ Br

hold. In case D = R
n, the functions α1 and α2 will be defined on [0,∞) and

the above mentioned inequalities will hold for all x ∈ R
n. Furthermore, if the

function V (x) is radially unbounded, then α1 and α2 can be found such that they
belong to class K∞.
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A similar statement can also be given for time-varying functions, as shown in
the next lemma, which treats only the global case.

Corollary A.6. Let V : R×R
n → R be a continuous, positive definite, radially

unbounded, and decrescent function. Then there exist class K∞ functions α1 and
α2 such that the inequalities

α1(||x||) ≤ V (t, x) ≤ α2(||x||) ∀(t, x) ∈ R × R
n

hold.

Proof. From the fact that the function V (t, x) is positive definite and radi-
ally unbounded it follows that there exists a positive definite and radially un-
bounded function W1(x) such that V (t, x) ≥ W1(x) ∀(t, x) ∈ R × R

n. Due to
Lemma A.5 there exists a class K∞ function α1, such that V (t, x) ≥ W1(x) ≥
α1(||x||) ∀(t, x) ∈ R × R

n holds. Therefore, the existence of the lower bound
is shown. Due to the decrescence (see Definition A.2) of V (t, x) there exists
also a positive definite function W2(x) which fulfills the condition V (t, x) ≤
W2(x) ∀(t, x) ∈ R × R

n. Again due to Lemma A.5 one can find a class K∞
function α2, such that V (t, x) ≤ W2(x) ≤ α2(||x||) ∀(t, x) ∈ R × R

n which
completes the proof.

Using the notion of class K (resp. K∞) functions, one can define the property of
uniform global boundedness of a trajectory as follows. For this, a system of the
form

ẋ = f(t, x) (A.1)

is considered for which it is assumed that the solution x(t, t0, x0) exists for t ≥ t0
and for any initial time t0 and any initial state x(t0) = x0.

Definition A.7. The solution x(t, t0, x0) of (A.1) with initial state x0 and ini-
tial time t0 is said to be uniformly globally bounded if there exists a class K∞
function α and a number c > 0 such that

||x(t, t0, x0)|| ≤ α(||x0||) + c ∀t ≥ t0 (A.2)

holds.

In order to show that the solution of a dynamical system is uniformly globally
bounded, the following lemma is useful.

Lemma A.8. If there exists a continuously differentiable, positive definite, ra-
dially unbounded, and decrescent function V (t, x), for which the time derivative
of V (t, x) along the solutions of (A.1)

V̇ (t, x) =
∂V (t, x)

∂x
f(t, x) +

∂V (t, x)
∂t

(A.3)

is negative semi-definite, i.e. V̇ (t, x) ≤ 0, then the solutions of (A.1) will be
uniformly globally bounded.
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Proof. Due to Corollary A.6 there exists class K∞ functions α1 and α2, such
that

α1(||x||) ≤ V (t, x) ≤ α2(||x||) ∀(t, x) ∈ R × R
n

holds. Let x(t, t0, x0) be the solution of (A.1) with initial state x0 and initial
time t0 at time t ≥ t0. Then due to V̇ (t, x) ≤ 0, the inequality V (t, x(t, t0, x0)) ≤
V (t0, x0) must hold for t ≥ t0. With α1(||x(t, t0, x0)||) ≤ V (t, x(t, t0, x0)) and
V (t0, x0) ≤ α2(||x0||) it follows that also the inequality

α1(||x(t, t0, x0)||) ≤ α2(||x0||) ∀t ≥ t0

must hold. Due to Lemma A.4 and the fact that class K∞ functions are strictly
increasing (see Definition A.3) one can follow that the inequality

||x(t, t0, x0)|| ≤ α(||x0||) ∀t ≥ t0 (A.4)

holds for the class K∞ function α = α−1
1 ◦ α2. Therefore, the requirement of

Definition A.7 is fulfilled and the uniform global boundedness of x(t, t0, x0)
follows from (A.4).

Lemma A.8 is used in the stability proof of the decoupling based controller from
Section 6.1.

As already mentioned above, in the time-varying case one is also interested
in a stability property, which holds uniformly in the initial time t0. For this it is
assumed in the following that the origin x = 0 is an equilibrium point of (A.1).

Definition A.9. The equilibrium point x = 0 of (A.1) is

• stable if, for each ε > 0, there is δ = δ(ε, t0) > 0 such that

||x(t0)|| < δ ⇒ ||x(t)|| < ε , ∀ t > t0 ≥ 0 . (A.5)

• uniformly stable if, for each ε > 0, there is δ = δ(ε) > 0, independent of t0,
such that (A.5) is satisfied.

• unstable if it is not stable.
• asymptotically stable if it is stable and there is a positive constant c = c(t0)

such that x(t) → 0 as t → ∞, for all ||x(t0)|| < c.
• uniformly asymptotically stable if it is uniformly stable and there is a positive

constant c, independent of t0, such that for all ||x(t0)|| < c, x(t) → 0 as
t → ∞, uniformly in t0; i.e., for each η > 0, there is T = T (η) > 0 such that

||x(t)|| < η, ∀ t > t0 + T (η), ∀ ||x(t0)|| < c .

• uniformly globally asymptotically stable if it is uniformly stable, δ(ε) can be
chosen to satisfy limε→∞ δ(ε) = ∞, and, for each pair of positive numbers η
and c, there is T = T (η, c) > 0 such that

||x(t)|| < η, ∀ t > t0 + T (η, c), ∀ ||x(t0)|| < c .
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Equivalent definitions of uniform stability and uniform asymptotic stability based
on class K functions can be found in [Kha02]. The following two theorems, taken
from [Kha02], show how the Lyapunov stability theory for autonomous systems
can be extended to nonautonomous systems.

Theorem A.10 Let x = 0 be an equilibrium point for (A.1) and D ⊂ R
n be a

domain containing x = 0. Let V : [0,∞)×D → R be a continuously differentiable
function such that

W1(x) ≤ V (t, x) ≤ W2(x)
∂V (t, x)

∂t
+

∂V (t, x)
∂x

f(t, x) ≤ 0

∀ t ≥ 0 and ∀ x ∈ D, where W1(x) and W2(x) are continuously positive definite
functions on D. Then, x = 0 is uniformly stable.

Theorem A.11 Suppose the assumptions of Theorem A.10 are satisfied and
that additionally the condition

∂V (t, x)
∂t

+
∂V (t, x)

∂x
f(t, x) ≤ −W3(x) ∀ t ≥ 0, ∀ x ∈ D (A.6)

holds for a continuous positive definite function W3 : R
n → R. Then, x = 0

is uniformly asymptotically stable. Moreover, if D = R
n and W1(x) is radially

unbounded, then x = 0 is uniformly globally asymptotically stable.

A function V (t, x), which fulfills the conditions of Theorem A.10 is referred to
as a (time-varying) Lyapunov function. If it fulfills also the condition (A.6) of
Theorem A.11 it will be called a strict (time-varying) Lyapunov function.

A.2 Conditional Stability

In Chapter 4 semi-definite Lyapunov functions are used for the stability analysis.
Therefore, the notion of conditional stability is needed, as it is defined in [SJK97].
The following definitions are reported in order to clarify the stability properties
being used.

Consider therefore a time-invariant system of the form

ẋ = f(x) (A.7)

with state x ∈ R
n. Assume that the point xs is a stationary point of (A.7), i.e.

f(xs) = 0. Suppose that the solution x(t) to (A.7) with initial state x(0) = x0

exists for all t > 0. For the conditional stability all requirements of the stability
definitions must hold only for those initial conditions which lie in a particular set
A ⊂ R

n. The notion of conditional stability is therefore weaker than the usual
(Lyapunov) stability.
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Definition A.12. A stationary point xs of (A.7) is said to be stable condition-
ally to A ⊂ R

n, if xs ∈ A and for each ε > 0 there exists δ(ε) > 0 such that for
any initial condition x0 ∈ A the following implication holds:

||x0 − xs|| < δ(ε) ⇒ ||x(t) − xs|| < ε , ∀t ≥ 0 . (A.8)

Definition A.13. A stationary point xs of (A.7) is said to be attractive condi-
tionally to A ⊂ R

n, if xs ∈ A and there exists an η(xs) > 0 such that for any
initial condition x0 ∈ A the following implication holds:

||x0 − xs|| < η(xs) ⇒ lim
t→∞ x(t) = xs . (A.9)

Definition A.14. A stationary point xs of (A.7) is said to be asymptotically
stable conditionally to A ⊂ R

n if it is both stable and attractive conditionally to
A.

Definition A.15. The stationary point xs of (A.7) is said to be globally asymp-
totically stable conditionally to A ⊂ R

n if it is asymptotically stable conditionally
to A and η(xs) = +∞.

A.3 Passivity Definitions

In several parts of this book the passivity properties of some systems are used.
Therefore, the definitions of dissipativity and passivity, as given in [Kug01,
vdS00, KS02a, KS02b, SJK97], are reported here for further reference. Consider
a time-invariant system of the form

ẋ = f(x, u) (A.10)
y = h(x, u) (A.11)

with state x ∈ R
n, input u ∈ R

m, and output y ∈ R
m.

Definition A.16. The system (A.10)-(A.11) is said to be dissipative with supply
rate s(u, y) if there exists a non-negative function S(x), called storage function,
such that the inequality

S(x(t)) − S(x(t0)) ≤
∫ t

t0

s(u(τ), y(τ))dτ

holds for all admissible u, all initial conditions x(t0) and all t > t0.

Definition A.17. The system (A.10)-(A.11) is said to be

• passive if it is dissipative with supply rate s(u, y) = yT u.
• strict input passive if there exists α > 0 such that the system is dissipative

with supply rate s(u, y) = yT u − α||u||2.
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• strict output passive if there exists β > 0 such that the system is dissipative
with supply rate s(u, y) = yT u − β||y||2.

A.4 Some Matrix Lemmata and Definitions

A matrix A ∈ R
n×m can be seen as a linear transformation from R

m to R
n. The

following definition clarifies some relevant spaces.

Definition A.18. Consider a matrix A ∈ R
n×m which represents a linear trans-

formation from R
m to R

n. The domain of this transformation is R
m; its co-

domain is R
n. The kernel (or nullspace) of A is defined as

ker(A) := {v ∈ R
m|Av = 0} ,

and such is a subspace of the domain. Finally, the range of A is defined as

range(A) := {y ∈ R
n|∃v ∈ R

n : y = Av} ,

and such is a subspace of the co-domain.

Definition A.19. Let A be a subset of R
n. Given a positive definite matrix

G ∈ R
n×n as a metric of R

n, the orthogonal complement of A is defined as

A⊥ := {y ∈ R
n| yT Gx = 0 ∀x ∈ A} .

The properties of positive definite matrices are of interest for the stability analy-
sis of linear as well as of nonlinear systems. The following two lemmata, which
are used in this book, are well known and are reported here without proof.

Lemma A.20. Suppose that a symmetric matrix M ∈ R
n×n is partitioned as

M =

[
A C

CT B

]
(A.12)

where A and B are symmetric square matrices. Then the matrix M is positive
definite (M > 0) if and only if A is positive definite and B − CT A−1C is
positive definite.

Proof. See [HJ90].

Lemma A.21. Given an arbitrary positive definite matrix Q, one can find a
unique positive definite solution P of the Lyapunov equation AT P +PA = −Q
if and only if the matrix A is Hurwitz.

Proof. See [Vid93].

Finally, a useful lemma from [vdS00] concerning skew symmetric matrices is
given without proof. Notice that this lemma is of interest for Property 2.6 and
Lemma 3.2.
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Lemma A.22. Given a symmetric matrix A ∈ R
n×n and another square matrix

B ∈ R
n×n of the same dimension. Then the matrix C = A − 2B is skew

symmetric if and only if the equality A = B + BT holds.

Lemma A.23. Given a function A(x) : R
n → R

n×n. Suppose that the integrals

i1(x1, x2) :=
∫ x2

x1

A(x)dx

i2(x1, x2) :=
∫ x2

x1

(∫ x

x1

A(ξ)dξ

)T

dx

are path independent for all x1, x2 ∈ R
n. Then the inequalities

||i1(x1, x2)||2 ≤ sup
∀x∈Rn

||A(x)||i2||x2 − x1||2

|i2(x1, x2)| ≤ 1
2

sup
∀x∈Rn

||A(x)||i2||x2 − x1||22

hold, where || · ||2 and || · ||i2 are the Euclidean norm for vectors and the spectral
norm for matrices, respectively.

Proof. The proof can be done by choosing particular paths of integration. Con-
sider the paths x(s) : [0, 1] → R

n and ξ(t) : [0, 1] → R
n

x(s) := x1 + (x2 − x1)s
ξ(t) := x1 + (x − x1)t

By evaluating the integration for i1, one obtains

i1(x1, x2) =
∫ 1

0

A(x1 + (x2 − x1)s)(x2 − x1)ds

||i1(x1, x2)||2 ≤
∫ 1

0

||A(x1 + (x2 − x1)s)(x2 − x1)||2ds

||i1(x1, x2)||2 ≤ sup
∀x∈Rn

||A(x)||i2||x2 − x1||2 .

Similarly, for i2 one can compute

i2(x1, x2) =
∫ 1

0

(∫ 1

0

A(x1 + (x2 − x1)st)(x2 − x1)s dt

)T

(x2 − x1)ds

|i2(x1, x2)| ≤
∫ 1

0

∫ 1

0

∣∣(x2 − x1)T A(x1 + (x2 − x1)st)(x2 − x1)
∣∣ s dtds

|i2(x1, x2)| ≤
∫ 1

0

∫ 1

0

sup
∀x∈Rn

||A(x)||i2||x2 − x1||22s dtds

|i2(x1, x2)| ≤ 1
2

sup
∀x∈Rn

||A(x)||i2||x2 − x1||22 .
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A.5 Inversion of the Extended Jacobian JN(q)

In this section an explicit form for the inverse of the matrix

JN (q) =

(
J(q)(

Z(q)M(q)Z(q)T
)−1

Z(q)M (q)

)
=

(
J(q)
N(q)

)
(A.13)

from Section 4.4 is derived. The following properties of the matrices J(q) ∈
R

m×n, Z(q) ∈ R
(n−m)×n and M (q) ∈ R

n×n are assumed:

• The matrix J(q) has full row rank.
• The row vectors of the matrix Z(q) span the (right) nullspace of J(q), such

that J(q)Z(q)T = 0 holds and Z(q) has full row rank.
• The matrix M(q) is positive definite.

First the invertibility of JN (q) is shown by the following lemma.

Lemma A.24. Let J ∈ R
m×n, with n > m, be a rectangular matrix which has

full row rank. Let further be Z ∈ R
(n−m)×n a full rank right annihilator of J,

such that JZT = 0 holds. Then the matrix

JN =

⎛
⎝ J(

ZWZT
)−1

ZW

⎞
⎠

is non-singular for any positive definite matrix W ∈ R
n×n.

Proof. 1 Notice first that, since the row vectors of Z span the right nullspace of
J , the same is also true for the matrix (ZWZT )−1Z for any positive definite
matrix W . The proof of the Lemma is now done by contradition. Suppose that
JN were singular. Then there would exist a vector v �= 0 such that JNv = 0.
From this, one can follow2

Jv = 0 ⇒ v ∈ ker(J) ,(
ZWZT

)−1

ZWv = 0 ⇒ Wv ⊥ ker(J) .

But this implies that

v ⊥ Wv ⇒ vT Wv = 0

must hold, which is clearly in contradiction to the assumption that the matrix
W is positive definite. Hence one can conclude by contradiction that the matrix
JN cannot be singular.

1 The author would like to thank Udo Frese for pointing out this proof.
2 Notice that in the following the symbol ⊥ refers to the orthogonality in the Euclidean

sense.
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The existence of the inverse of the square matrix JN (q) follows immediately
from the above Lemma. Let the inverse JN (q)−1 now be partitioned as

JN (q)−1 =
[
A(q) B(q)

]
, (A.14)

with non-square matrices A(q) ∈ R
n×m and B(q) ∈ R

n×(n−m). From

JN (q)JN (q)−1 =

[
I 0
0 I

]

=

[
J(q)A(q) J(q)B(q)
N (q)A(q) N(q)B(q)

]
(A.15)

one gets the four identities

J(q)A(q) = I , (A.16)(
Z(q)M (q)Z(q)T

)−1
Z(q)M(q)A(q) = 0 , (A.17)(

Z(q)M(q)Z(q)T
)−1

Z(q)M (q)B(q) = I , (A.18)
J(q)B(q) = 0 . (A.19)

One can now determine the matrix A(q) from the first two identities and the
matrix B(q) from the last two as follows:

Equation A.17 is obviously satisfied for any matrix A(q) of the form

A(q) = M(q)−1J(q)T QA(q) (A.20)

with an arbitrary matrix QA(q) ∈ R
m×m. The matrix QA(q) can then be de-

termined from equation A.16 easily as QA(q) = (J(q)M (q)−1J(q)T )−1 and
hence

A(q) = M(q)−1J(q)T (J(q)M(q)−1J(q)T )−1 . (A.21)

The same procedure can be applied to get B(q). Equation A.19 is satisfied for
any matrix B(q) of the form

B(q) = Z(q)T QB(q) (A.22)

with an arbitrary matrix QB(q) ∈ R
(n−m)×(n−m). The matrix QB(q) can then

be determined from equation A.18 as QB(q) = I and hence

B(q) = Z(q)T (A.23)

Therefore, the solution is given by

JN (q)−1 =
[
M (q)−1J(q)T (J(q)M (q)−1J(q)T )−1 Z(q)T

]
. (A.24)
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A.6 Model Parameters for the DLR-Lightweight-Robot-II

Figure A.1 shows the kinematic structure of the DLR-Lightweight-Robot-II. The
parameters needed for the computation of the robot kinematics from Chapter
2.1 are given in Table A.1.
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Fig. A.1. Kinematic structure of the DLR-Lightweight-Robot-II

Table A.1. Kinematics data of the DLR-Lightweight-Robot-II: d1 = 0.213 m, d2 =
0.463 m, d3 = d4 = 0.723 m, d5 = 1.0615 m, d6 = 1.14 m

i 1 2 3 4 5 6 7

ωi

0
B@

0

0

1

1
CA

0
B@

0

1

0

1
CA

0
B@
−1

0

0

1
CA

0
B@

0

1

0

1
CA

0
B@

0

0

1

1
CA

0
B@

0

1

0

1
CA

0
B@

0

0

1

1
CA

li[m]

0
B@

0

0

0

1
CA

0
B@

0

0

d1

1
CA

0
B@

0

0

d2

1
CA

0
B@

0

0

d3

1
CA

0
B@

0

0

d4

1
CA

0
B@

0

0

d5

1
CA

0
B@

0

0

d6

1
CA



188 Appendix

Table A.2. Motor inertia and joint stiffness values of the DLR-Lightweight-Robot-
II. The gear ratios have a value of 160 (for all the joints) and are already taken into
account for the motor inertia values.

Joint Motor Inertia Joint Stiffness

i Bi [kgm2] Ki [Nm/rad]

1 1.836 8000.0

2 4.447 15000.0

3 3.242 14000.0

4 1.817 12000.0

5 1.392 8800.0

6 1.402 6000.0

7 1.392 8800.0

A.7 List of Used Symbols

Throughout this book scalar quantities are denoted by plain letters (e.g. m, n, δ, ε).
For vector and matrix quantities bold letters are used instead. Dots denote deriv-
atives with respect to the time t up to the second order (i.e. q̇ := d

dtq, q̈ := d2

dt2 q).
Higher time derivatives are denoted in the form q(k) := dk

dtk q , k > 2.
The following list contains the symbols which are used in several chapters.

n ∈ Z · · · Number of joints.
m ∈ Z · · · Number of Cartesian coordinates (usually m = 6).
r ∈ Z · · · Degree of redundancy r = n − m.
t ∈ R · · · Time variable.
S · · · Base (or world) frame.
T · · · Tool frame at the robot end-effector.
D · · · Desired frame, i.e. virtual equilibrium frame.
λi(A) · · · The ith eigenvalue of a symmetric matrix A.
λmin(A) · · · The minimum eigenvalue of a symmetric matrix A.
λmax(A) · · · The maximum eigenvalue of a symmetric matrix A.
λm,M · · · The minimum eigenvalue of the inertia matrix, i.e.

λm,M := infq∈Qp mini=1..n λi(M(q)).
λM,M · · · The maximum eigenvalue of the inertia matrix, i.e.

λM,M := supq∈Qp maxi=1..n λi(M(q)).
σi(A) · · · The ith singular value of a matrix A.
σmin(A) · · · The minimum singular value of a matrix A.
σmax(A) · · · The maximum singular value of a matrix A.
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σm,J · · · The minimum singular value of the Jacobian matrix,
i.e. σm,J := infq∈Q̄p mini=1..n σi(J(q)).

σM,J · · · The maximum singular value of the Jacobian matrix,
i.e. σM,J := supq∈Qp maxi=1..n σi(J(q)).

Q · · · Configuration space
Qp · · · Subsection of the configuration space,

where all prismatic joints keep bounded, cf. (2.36).
Q̄p · · · Subsection of the configuration space,

where the Jacobian is non-singular, cf. (3.6).
Q̄p

c · · · Q̄p
c := f(Q̄p).

q ∈ R
n · · · Vector of link side joint angles.

θ ∈ R
n · · · Vector of motor side joint angles.

τ ∈ R
n · · · Vector of joint torques, τ = K(θ − q).

τm ∈ R
n · · · Vector of motor torques.

τ ext ∈ R
n · · · Vector of external torques.

f (q) ∈ R
m · · · Forward Kinematics for a set of Cartesian Coordinates.

J(q) ∈ R
m×,n · · · Analytical Jacobian, J(q) = ∂f(q)/∂q.

Jb(q) ∈ R
m×,n · · · Body (or geometrical) Jacobian.

V b · · · Body twist.
F ext ∈ R

m · · · Vector of generalized external forces.
x ∈ R

m · · · Vector of Cartesian coordinates, x = f (q).
x ∈ R

n · · · Generic state vector (used only in the appendix).
xd ∈ R

m · · · Desired position, i.e. virtual equilibrium position.
x̃ ∈ R

m · · · Cartesian error, x̃ = x − xd.
φ ∈ R

3 · · · Roll-pitch-yaw Euler angles.
hab ∈ SE(3) · · · Homogeneous transformation from frame B to frame A.
Rab ∈ SO(3) · · · Rotation matrix according go hab.

apab ∈ R
3 · · · Translation according go hab.

pab ∈ R
3 · · · Vector from the origin of frame A to frame B,

represented in the base frame S, pab = Rsaapab.

bvsb ∈ R
3 · · · Velocity of frame B with respect to frame B,

represented in B.

bωsb ∈ R
3 · · · Angular velocity of frame B with respect to frame B,

represented in B.
I · · · Identity matrix.
Bi · · · Rotor inertia of motor i, for i = 1, · · · , n.
Ki · · · Stiffness of joint i, for i = 1, · · · , n.
B ∈ R

n×n · · · Motor inertia matrix of the manipulator, B = diag(Bi).
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K ∈ R
n×n · · · Joint stiffness matrix, K = diag(Ki).

Kd ∈ R
m×m · · · Matrix of desired stiffness.

Kn ∈ R
n×n · · · Nullspace stiffness matrix.

Dd ∈ R
m×m · · · Matrix of desired damping.

Dn ∈ R
r×r · · · Nullspace damping matrix.

Λd ∈ R
m×m · · · Matrix of desired inertia.

M (q) ∈ R
n×n · · · Link side inertia matrix of the manipulator.

C(q, q̇) ∈ R
n×n · · · Link side Coriolis/centrifugal matrix of the manipulator.

g(q) ∈ R
n · · · Gravity torques.

Λ(x) · · · Cartesian inertia matrix.
μ(x, ẋ) · · · Cartesian Coriolis/centrifugal matrix.
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