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Spectral risk measures provide the framework to formulate the risk aversion of
a firm specifically for each quantile of the loss distribution of a portfolio. More
precisely the risk aversion is codified in a weight function, weighting each
quantile. Since the basic coherent building blocks of spectral risk measures
are expected shortfall measures, the most intuitive approach comes from
combinations of those. For investment decisions the marginal risk or the
capital allocation is the sensible approach. Since spectral risk measures are
coherent there exists also a sensible capital allocation based on the notion of
derivatives or more in the light of the coherency approach as an expectation
under a generalized maximal scenario.

7.1 Introduction

Portfolio modeling has two main objectives: the quantification of portfolio
risk, which is usually expressed as the economic capital of the portfolio, and
its allocation to subportfolios and individual transactions. The standard
approach in credit portfolio modeling is to define the economic capital in
terms of a quantile of the portfolio loss distribution

qα(L) = F−1
L (α).

The capital charge of an individual transaction is traditionally based on a
covariance technique and called volatility contribution. We refer to Bluhm et
al. (2002) and Crouhy et al. (2000) for a survey on credit portfolio modeling
and capital allocation.

Since the work by Artzner et al (1997) coherent risk measures are discussed
intensively in finance and risk management. More recent is the question of
a more coherent capital allocation. Especially the use of expected shortfall
allocation as an allocation rule is recommend in Overbeck (2000),Denault
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(2001), Bluhm et al. (2002), Kurth and Tasche (2003) and Kalkbrener et al.
(2004).

Expected shortfall measures

E Sα(L) =
1

1− α

∫ 1

α

qu(L)du

are the building blocks of more general coherent risk measures, the spectral
risk measure ρ. These are convex mixtures of expected shortfall measures.
They can be represented by their spectral measure µ through

ρ = ρµ =

∫ t

0
E Sα(1− α)µ(da) (7.1)

or as a weighted sum of quantiles with w(α) = µ([0, α]),

ρ = ρµ = ρw =

∫ 1

0
qα(·)w(α)dα. (7.2)

In this paper we apply the allocation rules associated with a spectral risk
measure to a credit portfolio and point out, which consequences to risk man-
agement the choice of the weight function w, the spectral measure µ or the
measure

µ̃
def
= (1− α)µ(dα),

which we call mixing measure and thought to be the most easily one to cali-
brate and implement. The theoretical basis of the approach can be found in
the basic papers Kalkbrener (2002), Kalkbrener et al (2004) and the explicit
application to spectral capital allocation is provided by Overbeck (2005). We
will first present the theoretical foundation of the proposed risk and alloca-
tion measures and then discuss general impact of the choice of the weight
or mixing function and finally exhibits the differences on a concrete credit
portfolio example.

7.2 Review of Coherent Risk Measures and
Allocation

7.2.1 Coherent Risk Measures

It is well-known that the following four conditions define a coherent risk
measure, Artzner et al (1997, 1999), Delbaen (2000).
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Formally, a risk measure is nothing else as a positive real valued function r
defined on the set of random variable (potential losses) V. The number r(X)
denotes the risk in portfolio X. r is called coherent if it obeys the following
4 rules.

� Subadditivity (Diversification)

r(X + Y ) < r(X) + r(Y )

� Positive homogenous (Scaling)

r(aX) = ar(X), a > 0

� Monotone
r(X) < r(Y ) if X < Y (almost surely)

� Translation property

r(X + a) = r(X)− a

Convex analysis gives already that a sub-additive positive homogenous func-
tion r can be point wise written as the maximal value of all linear functions
which are below r (Delbaen (2000), Kalkbrener (2002), Kalkbrener et al
(2004)). For risk measures this means that the first two axioms above lead
to the following representation

r(X) = max{l(X) | l < r, l linear function } (7.3)

The risk measure evaluate at a loss variable X takes the same value as the
largest value of all linear function which lies below r on V evaluated on X.

Conceptually, this is similar to the gradient of the function r evaluated at
the point X or as the best linear approximation of r which coincides with r
at the point X. We will later see that this intuition gives rise to a sensible
capital allocation.

A typical linear function for random variable is the expectation operator.
Hence the basic result by Artzner et al (1997), Delbaen (2000)

r(X) = sup{EQ[X] | Q ∈ Q} (7.4)

Q, = Qr, a suitable set of probability measures of absolutely continuous
probability measures Q << P with density dQ/dP , is similar to the repre-
sentation (7.3).
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The set Q is called the generalized scenarios associated with r. If the supre-
mum is actually taken at some probability measure, this probability measure
or its density with respect to P is called the generalized scenario associated
with r. These approach also fits into the intuitive feature of risk measure-
ment, namely scenario or stress analysis. For the interpretation in terms of
scenarios the formulation with probability measure is more natural, but for
the axiomatic approach to capital allocation the representation (7.3) is very
useful.
The currently most prominent example of a coherent risk measure is Expected
Shortfall (sometimes called Conditional VaR /tail conditional expectation).
It is denoted by E Sα and measures the average loss above the α-quantile of
the loss distribution. The associated generalized scenarios can be explained
as follows:
To each loss variable Y define the scenario as the “historical” calibrated ob-
jective scenario constraint on the condition that the loss variable exceeded
its quantile. The expected shortfall coincides with the largest mean loss in
these scenarios. Intuitively,

E{L|L > qα(L)} = max{E{L|Y > qα(Y )}| all Y ∈ L∞}

Even if generalized scenarios are defined as a supremum, in the case of Ex-
pected Shortfall we can identify the density of the maximal ”scenario”. For
this we need the formally correct definition of Expected Shortfall at level α.
The problem with the intuitive definition above is the possible positive mass
at the quantile itself. The exact definition of the Expected Shortfall at level
α is therefore (Acerbi and Tasche (2002), Kalkbrener et al (2004):

DEFINITION 7.1

E Sα(L)
def
= (1− α)−1(E[L1{L > qα(L)}] + qα(L) · [P{L ≤ qα(L)} − α]

)
.

Here we take the quantile defined by

qu(L) = inf{x|P (L ≤ x) ≥ u}

the smallest u-quantile

Since E Sα(L) = E{Lgα(L)} with the function

gα(Y )
def
= (1− α)−1[1{Y > qα(Y )}+ βY 1{Y = qα(Y )}], (7.5)

where βY is a real number and

βY
def
=

P{Y ≤ qα(Y )} − α

P{Y = qα(Y )} if P{Y = qα(Y )} > 0.
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the density of the associated maximal scenario turns out to be the function
gα. Note that E Sα(Y ) = E{Y · g(Y )} and E Sα(X) ≥ E{X · g(Y )} for every
X, Y ∈ V .

7.2.2 Spectral Risk Measures

For the interpretation of this density function (7.5) in terms of risk aversion
as outlined in Acerbi (2002), let us reformulate the expected shortfall as an
integral over the quantile function, the inverse of the distribution of L. It is
well-known that

E Sα(L) = (1− α)−1
∫ 1

α

qu(L)du.

The implicit risk aversion with expected shortfall is, that all quantiles below α
or all losses below the α quantile have no weights, i.e. there is no risk aversion
and all losses above the α-quantile have the same risk aversion. Therefore
the risk aversion weight function associated with E Sα turns out to be

wE Sα
(u) = (1− α)−11(u > α). (7.6)

From a risk management point of view there might be many other weights
given to some confidence levels u. If the weight function is increasing, which
is reasonable since higher losses should have larger risk aversion weight, then
we arrive at spectral risk measures.

DEFINITION 7.2 Let w be an increasing function from [0, 1] such that∫ 1
0 w(u)du = 1, then the map rw defined by

rw(L) =

∫ 1

0
w(u)qu(L)du

is called a spectral risk measure with weight function w.

The name spectral risk measure comes from the representation

rw(X) =

∫ 1

0
E Sα(1− α)µu(da) (7.7)

with the spectral measure µ([0, b]) = w(b). (7.8)

This representation is very useful when we want to find the scenario function
representing a spectral risk measure rw.
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PROPOSITION 7.1 The density of the scenario associated with the risk
measure equals

Lw
def
= gw(L)

def
=

∫ 1

0
gα(L)(1− α)µ(dα). (7.9)

Here gα(L) is defined in formula (7.5). In particular

rw(L) = E(LLw) (7.10)

Proof: We have

rw(L) =

∫ 1

0
E Sα(L)(1− α)µ(dα)

=

∫ 1

0
E(LLα)(1− α)µ(dα)

=

∫ 1

0
max[E{Lgα(Y )}|Y ∈ L∞](1− α)µ(dα)

≥ max[

∫ 1

0
E{L

∫ 1

0
gα(Y )(1− α)µ(dα)}|Y ∈ L∞]

= max[E{Lgw(Y )}|∀Y ∈ L∞]

≥ E{Lgw(L)}

Hence
rw(L) = max[E{Lgw(Y )}|∀Y ∈ L∞] = E{Lgw(L)}

�.

7.2.3 Coherent Allocation Measures

Starting with the representation (7.3) one can now find for each Y a linear
function hY = hr

Y which satisfies

r(Y ) = hY (Y ) and hY (X) ≤ r(X), ∀X. (7.11)

A ”diversifying” capital allocation associated with r is given by

Λr(X, Y ) = hY (X). (7.12)

The function Λr is then linear in the first variable and diversifying in the
sense that the capital allocated to a portfolio X is always bounded by the
capital of X viewed as its own subportfolio

Λ(X,Y ) ≤ Λ(X, X). (7.13)
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Λ(X, X) can be called the standalone capital or risk measure of X. In gen-
eral we have the following two theorems: A linear and diversifying capital
allocation Λ, which is continuous, i.e. limε→0 Λ(X, Y + εX) = Λ(X, Y ) ∀X,
at a portfolio Y , is uniquely determined by its associated risk measure, i.e.
the diagonal values of Λ. More specifically, given the portfolio Y then the
capital allocated to a subportfolio X of Y is the derivative of the associated
risk measure ρ at Y in the direction of X.

PROPOSITION 7.2 Let Λ be a linear, diversifying capital allocation. If
Λ is continuous at Y ∈ V then for all X ∈ V

Λ(X, Y ) = lim
ε→0

r(Y + εX)− ρ(Y )

ε
.

The following theorem states the equivalence between positively homoge-
neous, sub-additive risk measures and linear, diversifying capital allocations.

PROPOSITION 7.3 (a) If there exists a linear, diversifying capital al-
location Λ with associated risk measure r, i.e. r(X) = Λ(X,X), then r is
positively homogeneous and sub-additive.
(b) If r is positively homogeneous and sub-additive then Λr as defined in
(7.12) is a linear, diversifying capital allocation with associated risk measure
r.

7.2.4 Spectral Allocation Measures

Since in the case of spectral risk measures rw the maximal linear functional
in (7.11) can be identified as an integration with respect to the probability
measure with density (7.9) from Theorem 1, we obtain hY (X) = E{Xgw(Y )}
and therefore the following capital allocation

Λw(X, Y ) = E{Xgw(Y )} =

∫ 1

0
E SCα(X, Y )(1− α)µ(dα) (7.14)

=

∫ 1

0
E SCα(X, Y )µ̃(dα) (7.15)

where E SCα(X, Y ) = E{Xgα(Y )} (7.16)

is the Expected Shortfall Contribution and µ̃ is defined in (7.17). Intuitively,
the capital allocated to transaction or subportfolio X in a portfolio Y equals
its expectation under the generalized maximal scenario associated with w.
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7.3 Weight Function and Mixing Measure

One might try to base the calibration or determination of the spectral risk
measure based on the spectral measure µ or the weight function w. Since the
weight function w is nothing else as the distribution function of µ, there is
also a 1-1 correspondence to the more intuitive mixing measure

µ̃(dα) = (1− α)µ(dα). (7.17)

If we define more generally for an arbitrary measure µ̃ the functional

ρ̃ =

∫ 1

0
E Sαµ̃(da) (7.18)

then ρ̃ is coherent iff µ̃ is a probability measure. Since

1 = µ̃([0, 1]) =

∫ 1

0
(1− u)µ(du)

=

∫ 1

0

∫ 1

0
1[u, 1](v)dvµ(du) =

∫ 1

0

∫ 1

0
1[0, v](u)µ(du)dv

=

∫ 1

0
w(v)dv.

If we have now a probability measure µ̃ on [0, 1] the representing µ and w in
(7.1,7.2) can be obtained by

dµ

dµ̃
=

1

1− α
(7.19)

w(b) = µ([0, b]) =

∫ b

0

1

1− α
µ̃(dα). (7.20)

7.4 Risk Aversion

If we assume a discrete measure

µ̃ =
n∑

i=1

piδαi
(7.21)
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then the risk aversion function w is an increasing step function with step size
of pi/(1− αi) at the points αi

w(b) =
∑
αi≤b

pi

1− αi
. (7.22)

This has to be kept in mind. If we assume equal weights for the two expected
shortfall at 99% and 90% then the increase in risk aversion at the first quantile
90% is 0.5/0.1 = 5 and 0.5/0.01 = 50. The risk aversion against losses above
the 99% is therefore 11 times higher than against those between the 90% and
99% quantile. It is therefore sensible to assume quite small weights on E Sα

with large αs.

7.5 Implementation

There are several ways to implement a spectral contribution in a portfolio
model. According to Acerbi(2002) a Monte-Carlo-based implementation of
the spectral risk measure would work as follows:

Let Ln be the n-th realization of the portfolio loss. If we have generated N
loss distribution scenario, let us denote by n : N index of the n-th largest loss
which itself is then denote by Ln:N , i.e. the indices 1 : N, 2 : N, .., N : N ∈ N
are defined by the property that

L1:N < L2:N < ... < LN :N

The approximative spectral risk measure is then defined by

N∑
n=1

Ln:Nw(n/N)/
N∑

k=1

w(k/N)

Therefore a natural way to approximate the spectral contribution of another
random variable Li, which specifically might be a transaction in the portfolio
represented by L or a subportfolio of L, is

N∑
n=1

Ln:N
i

w(n/N)∑N
k=1 w(k/N)

, (7.23)

where Ln,N
i denotes the loss in transaction i in the scenario n : N , i.e. in the

scenario where the portfolio loss was the n-th largest. It is then expected
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that

E(LiLw) = lim
N→∞

N∑
n=1

Ln:N
i

w(n/N)∑N
k=1 w(k/N)

.

As in most applications we assume that

L =
∑

i

Li

with the transaction loss variable Li and in the example later we will actually
calculate within a multi-factor Merton-type credit portfolio model.

7.5.1 Mixing Representation

Let us review the standard implementation of the expected shortfall contri-
bution. In the setting of the previous setting we can see that for w(u) =

1
1−α1[α, 1](u) the weights for all scenarios with n

N < α is 0 and for all others
it is

1
1−α∑N

k={(α)N}
1

1−α

∼= 1

(1− α)N

(Here [·] denote the Gauss brackets.) Therefore the expected shortfall con-
tribution equals

1

{(1− α)N}

N∑
n=(αN)

Ln:N
i (7.24)

or more intuitively the average of the counterparty i losses in all scenarios
where the portfolio losses was higher or equal than the [αN ] largest portfolio
loss.

Due to the fact that we have chosen a finite convex combination of Expected
Shortfall , i.e. the mixing measure

µ̃(du) =
K∑

k=1

piδαi

and formulae (7.24) and (7.18) we will take for a transaction Li the approxi-
mation

SCA(Li, L)vecp,vecα,N =
K∑

k=1

pi

[ 1

{(1− αi)N}

N∑
n=[αiN ]

Ln:N
i

]
(7.25)
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as the Spectral Capital Allocation with discrete mmixing measure µ repre-
sented by the vectors vecp = (p1, .., pK), vecα = (α1, .., αK) for a Monte-
Carlo-Sample of length N .

7.5.2 Density Representation

Another possibility is to rely on the approximation of the Expected Shortfall
Contribution as in Kalkbrener et al (2004) and to integrate over the spectral
measure µ:

E(LiLw) = lim
N→∞

∫ 1

0

{ N∑
n=1

Ln:N
i

wα(i/N)∑N
k=1 wα(k/N)

(1− α)
}

µ(da) (7.26)

If L has a continuous distribution than we have that

E(LiLw) = E{Li

∫ 1

0
Lαµ(dα)}

=

∫ 1

0
E[Li1{L > qα(L)}](1− α)−1µ(dα)

= lim
N→∞

N−1
N∑

n=1

Ln
i

∫ 1

0
1{Ln > qα(L)}(1− α)−1µ(dα) (7.27)

If L has not a continuous distribution we have to use the density function
(7.9) and might approximate the spectral contribution by

E(LiLw) ∼ N−1
N∑

n=1

Ln
i gw(Ln). (7.28)

The actual calculation of the density gw in (7.28) might be quite involved. On
the other hand the integration with respect to µ in (7.26) and (7.27) is also
not easy. If w is a step function as in the example 1 above, then µ is a sum
of weighted Dirac-measure and the implementation of spectral risk measure
as in (7.23) is straightforward.

7.6 Credit Portfolio Model

In the examples below we apply the presented concepts to a standard default
only type model with a normal copula based on an industry and region factor
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model, with 27 factors mainly based on MSCI equity indices. We assume
fixed recovery and exposure-at-default. For a specification of such a model,
we could refer to Bluhm et al. (2002) or other text books on credit risk
modeling.

7.7 Examples

7.7.1 Weighting Scheme

Lets take 5 quantile 50%, 90%, 95%, 99%, 99.9% and the 99.98% quantile. We
like now to find weighting scheme for Expected Shortfall, which still gives a
nice risk aversion function. Or inversely we start with a sensible risk aversion
as in (7.29) and then solve for the suitable convex combination of expected
shortfall measures.

As a first step in the application of spectral risk measures one might think
to give to different loss probability levels different weight. This is a straight-
forward extension of expected shortfall. One might view Expected Shortfall
at the 99%-level view as a risk aversion which ignores losses below the 99%-
quantile and all losses above the 99%-quantile have the same influence. From
an investors point of view this means that only senior debts are cushioned by
risk capital. One might on the other hand also be aware of losses which oc-
cur more frequently, but of course with a lower aversion than those appearing
rarely.

As a concrete example one might set that losses up to the 50% confidence
level should have zero weights, losses between 50% and 99% should have a
weight w0 and losses above the 99%-quantile should have a weight of k1w0
and above the 99.9% quantile it should have a weight of k2w0. The first
tranch from 50% to 99% correspond to an investor in junior debt, and the
tranch from 99% to 99.9% to a senior investor and above the 99.9% a super
senior investor or the regulators are concerned. This gives a step function for
w:

w(u) = w01(0.99 > u > 0.5) + k1w01(0.999 > u > 0.99)

+k2w01(1 > u > 0.999) (7.29)

The parameter w0 should be chosen such that the integral over w is still 1.
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7.7.2 Concrete Example

The portfolio consists of 279 assets with total notional EUR 13.7bn and the
following industry and regions breakdown:

0 2 4 6 8 10 12 14 16 18 20

Commercial Services

Food&Staple Retl

Durables&Apparel

Media

Pharmaceuticals

Sovereign

Consumer Services

Food&Bev&Tobacco

Banks

Telecom

Diversified Fin

Retailing

Transportation

Energy

Utilities

Insurance

Hardware&Equipment

Materials

Automobile&Compo

Capital Goods

MSCI Industries

Figure 7.1. MSCI industry breakdown
XFGIndustryBreakdown

0 10 20 30 40 50 60 70 80 90

Eastern Europe

Pacific

Latin America

Europe&Mid East&Africa

Asia

North America

Europe

MSCI Regions

Figure 7.2. MSCI region breakdown XFGRegionsBreakdown

The portfolio correlation structure is obtained from the R2 and the correla-
tion structure of the industry and regional factors. The R2 is the R2 of the
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one-dimensional regression of the asset returns with respect to its composite
factor, modeled as the sum of industry and country factor. The underly-
ing factor model is based on 24 MSCI Industries and 7 MSCI Regions. The
weighted average R2 is 0.5327.

0 5 10 15 20 25

Pharmaceuticals

Sovereign

Commercial Services

Telecom

Food&Staple Retl

Media

Consumer Services

Hardware&Equipment

Energy

Insurance

Food&Bev&Tobacco

Durables&Apparel

Automobile&Compo

Utilities

Diversified Fin

Materials

Transportation

Banks

Capital Goods

Retailing

R2

Figure 7.3. R2 values of different MSCI industries.
XFGRsquared

The risk contributions are calculated at quantiles 50%, 90%, 95%, 99%, 99.9%
and 99.98%.

Figure 7.4 shows the total Expected Shortfall Contributions allocated to the
industries normalized with respect to automobile industry risk contributions
and ordered by ESC99%.

In order to capture all risks of the portfolio a risk measure, which combines
few quantile levels, is needed. As one can see, Hardware and Materials have
mainly tail exposure (largest consumption of ESC at the 99.98%-quantile),
where Transportation, Diversified Finance and Sovereign have the second to
fourth largest consumption of ESC at the 50%-quantile, i.e. are considerable
more exposed to events happening roughly every second year as Hardware
and Materials.

The spectral risk measure as a convex combination of Expected Shortfall risk
measures at the following quantiles 50%, 90%, 95%, 99%, 99.9% and 99.98%
can capture both effects, at the tail and at the median of the loss distribution.

Four spectral risk measures are calculated. The first three are calibrated in
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Figure 7.4. Expected shortfall contributions for different in-
dustries at different quantiles. XFGESC

terms of increase of the risk aversion function at each considered quantile as
in Figure 7.5. The least conservative one is “SCA - decreasing steps” in which
the risk aversion increases at each quantile by half the size it has increased at
the quantile before. ”SCA -equal steps” increases in risk aversion by the same
amount at each quantile, “SCA -increasing steps” increases in risk aversion
at each quantile by doubling the increase at each quantile. The last most
conservative one is SCA - 0.1/0.1/0.1/0.15/0.15/0.4, in which the weights of
µ̃ are directly set to 0.1 at the 50%, 90%, 95%- quantiles, 0.15 at the 99% and
99.9%- quantiles and 0.4 at the 99.98%-quantile as in Figure 7.6. The last
one has a very steep increase in the risk aversion at the extreme quantiles.

As a comparison to the expected shortfall, the chart below shows the Spec-
tral risk allocation allocated to industries ordered by SCA - equal steps and
normalized with respect to automobile industry SCA as in Figure 7.7.

All tables so far were based on the risk allocated to the industries. Much
of the displayed effects are just driven by exposure, i.e. “Automotive” is by
far the largest exposure in that portfolio and all sensible risk measure should
mirror this concentration. Interestingly enough the most tail emphasizing
measures are the exceptions. There the largest contributors Hardware and
Materials have actually less than 10% of the entire exposure.

Usually one uses as well percentage figures and risk return figures for portfolio
management. On the chart “RC/TRC” the percentage of total risk (TRC)
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Figure 7.5. Risk aversion calculated with respect to dif-
ferent methods. The dotted blue, dashed-dotted and
solid lines represent “SCA - decreasing steps”, “SCA -
equal steps” and “SCA - incresing steps” correspondingly.
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Figure 7.6. Risk aversion when the weights are directly
set to 0.1 at the 50%, 90%, 95%- quantiles, 0.15 at the
99% and 99.9%- quantiles and 0.4 at the 99.98%-quantile.
XFGriskaversion2
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Figure 7.7. Different risk contributions with respect to differ-
ent SCA methods. XFGSCA

allocated to the specific industries is displayed in Figure 7.8.
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Figure 7.8. Total risk contributions with respect to different
SCA methods. XFGRCTRC

For the risk management the next table showing allocated risk capital per
exposure is very useful. It compares the riskiness of the industry normalized



156 Ludger Overbeck and Maria Sokolova

by their exposure. Intuitively it means that if you increase the exposure in
“transportation” by a small amount like 100.000 Euro than the additionally
capital measured by SCA-increasing steps will increase by 2.5%, i.e. by 2.5000
Euro. In that sense it gives the marginal capital rate in each industry class.
Here the sovereign class is the most risky one. In that portfolio the sovereign
exposure was a single transaction with a low rated country and it is therefore
no surprise that “sovereign” performance worst in all risk measures.
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Figure 7.9. Allocated risk capital per exposure with respect
to different SCA methods. XFGRCExposure

With that information one should now be in the position to judge about the
possible choice of the most sensible spectral risk measure among the four
presented. The measure denoted by SCA based on the weights 0.1,0.1,0.1,
0.15,0.15, 0.4, overemphasis tail risk and ignores volatility risk like the 50%-
quantile. From the other three spectral risk measures, also the risk aversion
function of the one with increasing steps, does emphasis too much the higher
quantiles. SCA decreasing steps seems to punished counterparties with a low
rating very much, it seems to a large extend expected loss driven, which can
be also seen in the following table on the RAROC-type Figures 7.10. On
that table “decreasing steps” does not show much dispersion. One could in
summary therefore recommend SCA-equal steps.

For information purpose we have also displayed the Expected Loss/Risk Ratio
for the Expected Shortfall Contribution in Figure 7.11. Here the dispersion
for the ESC at the 50% quantile is even lower as for the SCA-decreasing
steps.
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Figure 7.10. EL/SCA with respect to different SCA methods.
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7.8 Summary

In order to combine different loss levels in one risk measure spectral risk
measures provide a sensible tool. Weighting of the quantiles is usually be
done by the risk aversion function. Starting from an implementation point
of view it looks more convenient to write a spectral risk measure as a convex
combination of expected shortfall measures. However one has to be careful in
the effects on the risk aversion function. All this holds true and become even
more important if capital allocation is considered, which finally serves as a
decision tool to differentiate sub-portfolios with respect to their riskiness. We
analyze an example portfolio with respect to the risk impact of the industries
invested in. Our main focus are the different specification of the spectral
risk measure and we argue in favour for the spectral risk measure based on
a risk aversion which has the same magnitude of increase at each considered
quantile, namely the 50%, 90%, 95%, 99%, 99.9%, and 99.98% quantile. This
risk measure exhibits a proper balance between tail risk and more volatile
risk.
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