
6 Cross- and Autocorrelation in

Multi-Period Credit Portfolio Models
Christoph K.J. Wagner

6.1 Introduction

For the risk assessment of credit portfolios single-period credit portfolio mod-
els are by now widely accepted and used in the practical analysis of loan
respectively bonds books in the context of capital modeling. But already
Finger (2000) pointed to the role of inter-period correlation in structural
models and Thompson, McLeod, Teklos and Gupta (2005) strongly advo-
cated that it is ‘time for multi-period capital models’. With the emergence
of structured credit products like CDOs the default-times/Gaussian-copula
framework became standard for valuing and quoting liquid tranches at differ-
ent maturities, Bluhm, Overbeck and Wagner (2002). Although it is known
that the standard Gaussian-copula-default-times approach has questionable
term structure properties the approach is quite often also used for the risk as-
sessment by simply switching from a risk-neutral to a historical or subjective
default measure.

From a pricing perspective Andersen (2006) investigates term structure ef-
fects and inter-temporal dependencies in credit portfolio loss models as these
characteristics become increasingly important for new structures like forward-
start CDOs. But the risk assessment is also affected by inter-temporal de-
pendencies. For the risk analysis at different time horizons the standard
framework is not really compatible with a single-period correlation structure;
Morokoff (2003) highlighted the necessity for multi-period models in that
case. Long-only investors in the bespoke tranche market with a risk-return
and hold-to-maturity objective have built in the past CDO books with various
vintage and maturity years, based only on a limited universe of underlying
credits with significant overlap between the pools. A proper assessment of
such a portfolio requires a consistent multi-period portfolio framework with
reasonable inter-temporal dependence. Similarly, an investor with a large
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loan or bond book, enhanced with non-linear credit products, needs a reli-
able multi-period model with sensible inter-temporal properties as both bond
or structured investments display different term structure characteristics.

In the following, we investigate several multi-period models, a CreditMetrics-
type approach, i.e. a Markov chain Monte Carlo model with dependency
introduced via a Gaussian copula, the well-known model for correlated de-
fault times, a continuous threshold model driven by time-changed correlated
Wiener processes by Overbeck and Schmidt (2005), and a discrete barrier
model (Finger (2000), Hull and White (2001)), also based on a driving Brown-
ian motion. All models meet by construction the marginal default probability
term structures. We then investigate the effect of a finer time discretization
on the cumulative loss distribution at a given time horizon. The time-changed
threshold model is invariant under this operation, whereas the credit migra-
tion approach converges to the limit of vanishing cross correlation, i.e. the
correlation is ‘discretized away’. Thompson et al. (2005) analyse the same
problem for the discrete barrier model and observe decreasing loss volatility
and tail risk. They conjecture that it converges to the limit of the ’true’
portfolio loss distribution. We have similar findings but draw a different con-
clusion as we attribute the decreasing loss volatility to inherent features of
the discrete model. Obviously, it is not congruent with a continuous-time
default barrier model like the time-changed threshold model. Hence, the as-
sumption that the time-changed model is the continuous limit of the discrete
threshold model is wrong.

These findings imply that these types of credit portfolio models not only have
to be calibrated to marginals, but also to a correlation structure for a given
time horizon and time discretization in order to yield consistent valuation and
risk assessment. We therefore turn to the problem of how to adjust the corre-
lation structure, at least in the credit migration framework, while shortening
the time steps such that the cumulative loss distribution is commensurate to
a one-period setting at a given time horizon. This approach assumes that we
are given a certain correlation structure for a fixed period, e.g. yearly correla-
tions through time series estimation. We show that it suffices to compare the
joint default probabilities and adapt the correlation parameter accordingly
to obtain commensurate cumulative loss distribution at a given horizon.

Finally, we take a look at the autocorrelation of the different models and
briefly highlight the different inter-temporal loss dependency of the models,
as this plays an important part in risk-assessing books of CDOs.
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6.2 The Models

6.2.1 A Markov-Chain Credit Migration Model

The first model we investigate is essentially a CreditMetrics-type approach
in a multi-period setting. A Markov state (rating) Y ∈ {1, . . . , K} is as-
signed to each single credit risky entity i, the absorbing state K is the
default state. A default probability term-structure Fi(t) exists for each
initial credit state i together with a sequence of migration matrices Mtk

that is adapted to meet the term-structure. The migration matrix Mtn

defines a natural discretization of Yt, but we can subdivide or refine the
discretization arbitrarily through the introduction of a matrix square root

M
1/2
t = Mt/2 or a generator matrix Q, Mt = exp(tQ), see Bluhm et al. (2002)

for more details. The discrete Markov process Yt with time-homogeneous
migration matrix does not necessarily meet a given PD-term structure i.e.,(
Mk

0
)
iK
�= Fi(tk), k = 1, 2, 3, . . . , (with K as default state). This can easily

be rectified by adapting the transition matrices recursively, i.e. the default
column of the first matrix is set to the term structure and the remaining
entries are renormalized.

With some linear algebra the next matrix can be adjusted accordingly, and
so on. These transition matrices are chained together and create a discrete
credit migration process for each credit entity, Y i

tk
, on a time grid 0 = t0 <

t1 < t2 < t3 < . . . < tn. As migration matrix a Rating Agency’s one-
year transition matrix is typically used. In the multi-firm context we add a
dependency structure between different credit entities, i.e. credit migrations
are coupled through a Gaussian copula function with correlation matrix Σ
in each step. There is no explicit interdependence between the steps apart
from the autocorrelation generated by the migrations. From each migration
matrix we can now calculate migration thresholds that separate the transition
buckets. For some period tj the thresholds ckl,tj are obtained from

ckl,tj = Φ−1

(
K∑

n=l

Mkn,tj

)
, for k, l = 1, . . . , K, with

K∑
n=l

Mkn,tj �= 0, 1

ckl,tj = −∞, for k, l = 1, . . . , K, with
K∑

n=l

Mkn,tj = 0

ckl,tj = +∞, for k, l = 1, . . . , K, with
K∑

n=l

Mkn,tj = 1.

(6.1)
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Figure 6.1. Refining Time-Discretization, migration model:
annual(blue solid), semi-annual(red dotted), and quar-
terly(black dashed) discretization.

For each period ]tj−1, tj] correlated normal random variables are sampled,(
ri,tj

)
i=1,...,n

∼ Φ(0, Σ), and credit i migrates from the initial state l to the

final state k if
clk−1,tj ≤ ri,tj < clk,tj .

As a remark, this type of correlated credit migration model is also the basis
of the credit component in Moody’s SIV Capital Model (Tabe and Rosa
(2004)) and of Moody’s KMV CDO Analyzer (Morokoff (2003)). MKMV’s
CDO Analyzer applies the migration technique to the MKMV Distance-to-
Default-Indicator which is far more fine grained than usual rating classes.

But note one problem: The correlation structure of the model is not invariant
under the refinement of the time discretization. Denote L the portfoli loss,
then Figure 6.1 shows the tail probability P(L > x) for a sample portfolio with
non-vanishing correlation at the one year horizon under annual, semi-annual,
and quarterly discretization. For this, we have simply calculated appropriate
square-roots of the migration matrices. The fatness in the tail of the loss
distribution is significantly reduced for smaller migration intervals. As soon
as we introduce correlation to the rating transitions a link between global
correlation and discretization is generated. By this we mean that choosing
the same local correlation parameter ρ for each time step, the joint arrival
probability in the states m, n of two entities at time t, given they start at
time 0 in states k, l

P(Y i
t = m, Y j

t = n|Y i
0 = k, Y j

0 = l),



6 Cross- and Autocorrelation in Multi-Period Credit Portfolio Models 129

is a function of how fine we discretize the process, while keeping the local
correlation constant. Smaller step-sizes de-correlate the processes Y i

t and Y j
t .

This can easily be seen by the fact that for smaller step sizes the migration
probabilities to the default state get smaller, but since the Gaussian copula
has no tail dependence the correlation converges asymptotically to zero as
we move the step size to zero. Obviously, this is an unpleasant feature when
it comes to practical applications of the model, as e.g. the pricing or risk
assessment of correlation sensitive product like a CDO depend then on the
time discretization of the implementation.

In order to reconstitute the original correlation over a fixed time interval
while halving the time step, one way is to adapt, i.e. increase, the local cross
correlation. Suppose

P(Y i
1 = K, Y j

1 = K|Y i
0 = k, Y j

0 = l)

is the joint default probability for one large step. Cutting the discretization
in halves, the joint default probability is now

P(Y i
1 = K, Y j

1 = K|Y i
0 = k, Y j

0 = l) =

=
∑
p,q

P(Y i
1 = K, Y j

1 = K|Y i
1/2 = p, Y j

1/2 = q)×

P(Y i
1/2 = p, Y j

1/2 = q|Y i
0 = k, Y j

0 = l). (6.2)

Instead of trying to adjust the correlation for all pairs i, j we confine our-
selves to a homogeneous state in the sense of a large pool approximation
(Kalkbrener, Lotter and Overbeck (2004)). We obtain one adjustment fac-
tor and apply it to all names in the portfolio. For further discretization we
simply nest the approach. Figure 6.2 shows the effect of the adjustment for
an example. We use an inhomogeneous portfolio of 100 positions with ex-
posures distributed uniformly in [500, 1500], 1-year default probabilities in
[10bp, 100bp], and correlation between [10%, 30%]. As can be seen from the
graph both loss distribution are now commensurable. From a risk perspec-
tive this degree of similarity seems sufficient, particularely if risk measures
like expected shortfall are used. Further improvement can be achieved by
computing adjustment factors for each rating state and for each matrix in
the sequence of transition matrices (if they are different).

In case of the migration model we have so far chosen independent cross cou-
pling mechanisms at each time step, so autocorrelation is solely introduced
through the dispersion of the transition matrices. Defining a copula that
couples transitions not only at one step but also between different steps
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Figure 6.2. Refining Time-Discretization, migration model
with adapted correlation: annual(blue solid), semi-annual(red
dotted), and quarterly(black dashed) discretization.

would introduce explicit autocorrelation to the migration model (see An-
dersen (2006)), but we run into a heavy calibration problem, since (i) the
calibration to the marginal default term structure becomes more involved,
and (ii) the adjustment of the correlation structure while refining the dis-
cretization is much more difficult. If the cross dependency is formulated
via a factor model we can also induce autocorrelation between the time
steps by introducing an auto-regressive process for these factors, i.e. the
factors Zn that couple the transitions at each time step n are linked through
Zn+1 = αZn +

√
1− α2ξn, Z1, ξn ∼ Φ(0, 1), independent, and α is some

coupling factor.

6.2.2 The Correlated-Default-Time Model

Another wide spread approach for a credit portfolio model is to generate
correlated default times for the credit securities. This is done in analogy
to a one-year-horizon asset value model by taking the credit curves of the
securities as cumulative distributions of random default times and coupling
these random variables by some copula function, usually the Normal copula,
thus generating a multivariate dependency structure for the single default
times. It is not by chance that this approach already has been used for the
valuation of default baskets as the method focuses only on defaults and not
on rating migrations.
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From a simulation point of view, the default times approach involves much
less random draws than a multi-step approach as we directly model the de-
fault times as continuous random variable. Time-consuming calculations
in the default times approach could be expected in the part of the algo-
rithm inverting the credit curves Fi(t) in order to calculate default times
according to the formula τi = F−1

i {Φ(ri)}. Fortunately, for practical appli-
cations the exact time when a default occurs is not relevant. Instead, the
only relevant information is if an instrument defaults between two consec-
utive payment dates. Therefore, the copula function approach for default
times can be easily discretized by calculating thresholds at each payment
date t1 < t2 < t3 < . . . < tn according to

ci,tk = Φ−1 {Fi(tk)} ,

where Fi denotes the credit curve for some credit i. Clearly, one has

ci,t1 < ci,t2 < . . . < ci,tn .

Setting ci,t0 = −∞, asset i defaults in period ]tk−1, tk] if and only if

ci,tk−1
< ri ≤ ci,tk ,

where (r1, ..., rm) ∼ Φ(0, Σ) denotes the random vector of standardized asset
value log-returns with asset correlation matrix Σ. In a one-factor model
setting ri is typically represented as

ri =
√

�Y +
√

1− �Zi,

where Y , Zi ∼ Φ(0, 1) are the systematic and specific risk components of the
log-return ri. Obviously, the discrete implementation of correlated default
times is invariant to the refinement of the time discretization by construction.

Note further that the correlated-default-times approach with Gaussian-copula
is in fact a static model. For this, we write the conditional joint default prob-
ability at different time horizons in a one-factor setting as

P[τ1 < s, τ2 < t|Y = y] =

= P[r1 < Φ−1 {F1(s)} , r2 < Φ−1 {F2(t)} |Y = y]

= P[Z1 <
Φ−1 {F1(s)} −

√
�y√

1− �
, Z2 <

Φ−1 {F2(t)} −
√

�y√
1− �

]

= Φ

[
Φ−1 {F1(s)} −

√
�y√

1− �

]
Φ

[
Φ−1 {F2(t)} −

√
�y√

1− �

]
. (6.3)

The sample of the common factor Y is static for all time horizons, there is
no dynamics through time.
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6.2.3 A Discrete Barrier Model

Finger (2000) and Hull and White (2001) proposed a discrete multi-period
barrier model on a time grid t0 < t1 < . . . < tn based on correlated Brownian
processes Bi

t where the default thresholds ci(tk) are decreasing functions of
time calibrated to satisfy the marginal term structure Fi(tk). Credit entity i
defaults in period k if, for the first time, Bi

tk
< ci(tk), i.e.

τi = min
{
tk ≥ 0 : Bi

tk
< ci(tk), k = 0, . . . , n

}
.

The default barriers ci(tk) are to be calibrated to match Fi(tk) such that

Fi(tk) = P(τi < tk).

Denote δk = tk − tk−1, then from

P
{
Bi

t1
< ci(t1)

}
= Fi(t1)

follows that
ci(t1) =

√
δ1Φ

−1 {Fi(t1)} .

The successive thresholds ci(tk) are then found by solving

Fi(tk)− Fi(tk−1) =

= P
{
Bi

t1
> ci(t1) ∩ · · · ∩Bi

tk−1
> ci(tk−1) ∩Bi

tk
< ci(tk)

}
=

∫ ∞

ci(tk−1)
fi(tk−1, u)Φ

[
ci(tk)− u√

δk

]
du,

where fi(tk, x) is the density of Bi
tk

given Bi
tj

> ci(tj) for all j < k:

fi(t1, x) =
1√
2πδ1

exp

(
− x2

2δ1

)
fi(tk, x) =

∫ ∞

ci(tk−1)
fi(tk−1, u)

1√
2πδk

exp

{
−(x− u)2

2δk

}
du.

Hence, the calibration of the default thresholds is an iterative process and re-
quires the numerical evaluation of integrals with increasing dimension, which
renders the model computationally very heavy. Another shortcoming of the
model is that it is not invariant under the refinement of the time discretiza-
tion, Thompson et al. (2005). Figure 6.3 shows the tail probability P(L > x)
of a portfolio loss with different discretization (annual, semi-annual, quar-
terly) of the model. Obviously, the volatility and tail fatness of the loss
distribution decreases with increasing refinement, and it is not clear where
the limiting distribution is.
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Figure 6.3. Refining Discretization, Hull-White Model:
annual(blue solid), semi-annual(red dotted), and quar-
terly(black dashed) discretization.

6.2.4 The Time-Changed Barrier Model

The above mentioned discrete barrier model is drawn from a continuous ver-
sion, i.e. correlated Brownian processes Bi

t with time-dependent barriers
ci(t). The default time of credit i is then the first hitting time of the barrier
ci(t) by the driving process Bi

t:

τi = inf
{
t ≥ 0 : Bi

t < ci(t)
}

.

If ci(t) is absolutely continuous, we can write

ci(t) = ci(0) +

∫ t

0
µi

sds,

and the default time τi is the first hitting time of the constant barrier ci(0)
by a Wiener process with drift.

Y i
t = Bi

t −
∫ t

0
µi

sds

τi = inf
{
t ≥ 0 : Y i

t < ci(0)
}

. (6.4)

The problem is now to calibrate the model to the prescribed default term
structure, P[τi < t] = Fi(t). To this end, Overbeck and Schmidt (2005)
put forward a barrier model based on Brownian processes Bi

t with suitably
transformed time scales, (T i

t ), strictly increasing, T i
0 = 0. The first passage
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time to default τi of credit entity i is define through the process

Y i
t = Bi

T i
t

and
τi = inf

{
s ≥ 0 : Y i

s < ci

}
,

with a time independent barrier ci. From the strong Markov property or the
reflection principle of the Brownian motion follows that the first passage time
of an untransformed Brownian motion with respect to a constant barrier c

τ̃ = inf {t ≥ 0 : Bt < c}
is distributed as

P(τ̃ < t) = P
(

min
0<s<t

Bs < c
)

= 2Φ

(
c√
t

)
. (6.5)

As T i
t is strictly increasing we find that

P(τi < t) = P
(

min
0<s<t

Bi
T i

t
< ci

)
= P

(
min

0<s<T i
t

Bi
t < ci

)
= 2Φ

(
ci√
T i

t

)
(6.6)

Hence, given a default term structure Fi(t) the model is calibrated to the
marginals via the time transformation

T i
t =

[
ci

Φ−1 {Fi(t)/2}

]2

. (6.7)

Since F (t) is strictly increasing this also follows for Tt. The constant default
barrier ci is then obtained by fixing a time t0 with T i

t0
= t0 which implies

ci = Φ−1 {Fi(t0)/2}
√

t0. (6.8)

An obvious, but not necessarily the only sensible choice is to take t0 as the
final maturity. Dependency between credits is introduce here through the
(local) instantaneous correlation matrix Σ of the Brownian processes Bi

t. The
joint default probabilities P[τi < t, τj < t] can be written in analytical, but
rather technical form, which allows the calibration of the model to prescribed
joint default probabilities.

The discretization of the time-changed model for practical applications is
straight forward and simply obtained by discretizing the SDE of the corre-
lated Brownian motion while taking into account that the different dimen-
sions evolve at different time scales. Figure 6.4 shows the behavior of the
time-changed model under a refinement of the time discretization. Obvi-
ously, the model is within sampling errors invariant under this operation.
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Figure 6.4. Refining Discretization, time-change Model:
annual(blue solid), semi-annual(red dotted), and quar-
terly(black dashed) discretization.

6.3 Inter-Temporal Dependency and
Autocorrelation

Finally, let us take a look at the inter-temporal dependency of the various
models. All models are set up to meet by construction the default-term struc-
ture, hence produce the same first order loss moments through time, and they
are calibrated to the same loss volatility at maturity (4 years). Figures 6.5-
6.7 now serve to demonstrate the different inter-temporal characteristics of
the four models. The graphs show the different joint loss distributions at the
2- and 4-year horizon, depicted as heat map. The upper triangle is empty as
L(4 years) ≥ L(2 years). Clearly, the migration model has the least autocor-
relation as joint losses accumulate at the edges of the triangle. In contrast, the
correlated-default-times model shows the highest inter-temporal dependency
between losses, as joint losses accumulate in the middle of the triangle. This
comes not as a surprise and reflects the fact that the model is essentially a
static one where static factors drive the dependency through the whole time.
Due to the driving Brownian motion it is also obvious that the two barrier
models show similar inter-temporal dependency that lie somewhere between
the first two extreme cases.

The control of inter-temporal dependency is not so much a problem if we
only model a single plain vanilla CDO, but as soon as we have a structure
with significant default-timing feature or if we want to assess the risk of a
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portfolio of non-linear credit products the inter-temporal dependency plays
indeed an important role. For risk assessment the dependency through time
should also be estimated from credit data, but these estimates seem not to
support the high degree of inter-temporal dependency as generated by the
barrier models.

Figure 6.5. Joint Loss Distribution (2-4 years), Credit migra-
tion model

Figure 6.6. Joint Loss Distribution (2-4 years), Correlated-
default-times model
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Figure 6.7. Joint Loss Distribution (2-4 years), Time-change
barrier model

Figure 6.8. Joint Loss Distribution (2-4 years), Discrete bar-
rier model

6.4 Conclusion

For an assessment of a portfolio of structured credit products a multi-period
model with known cross- and autocorrelation is necessary. We investigate im-
plementations of four different multi-period credit portfolio model and show
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that not for all of the models the correlation structure is invariant under the
operation of a refined time discretization. Hence one should not blindly use
these tpye of models at different periods and discretizations. In case of the
discrete barrier model the continuous limit is unclear, but it is definitely not
congruent to the time-changed barrier model. In case of a Markov Chain mi-
gration framework we argue that the cumulative loss distribution converges in
the limit to a loss distribution with zero correlation as the time discretization
is refined towards zero.

We then show how to correct the correlation structure while refining the
discretization to obtain a congruent loss distribution at a given horizon. Fi-
nally, we analyse the inter temporal dependency of the different models and
find that the correlated-default times model has the highest degree of inter-
temporal dependency, the migration model relatively little and that the mod-
els driven by a Brownian motion are in between these two cases. We therefore
conclude that before applying a multi-period model for risk assessment to a
structured credit book the properties of the model in terms of inter-temporal
and cross correlations should be fully understood, as different models have
obviously different properties and will lead to differing results.
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