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Denis Belomestny and Grigori N. Milstein

Here we develop an approach for efficient pricing discrete-time American and
Bermudan options which employs the fact that such options are equivalent
to the European ones with a consumption, combined with analysis of the
market model over a small number of steps ahead. This approach allows
constructing both upper and lower bounds for the true price by Monte Carlo
simulations. An adaptive choice of local lower bounds and use of the kernel
interpolation technique enhance efficiency of the whole procedure, which is
supported by numerical experiments.

18.1 Introduction

The valuation of high-dimensional American and Bermudan options is one
of the most difficult numerical problems in financial engineering. Several ap-
proaches have recently been proposed for pricing such options using Monte
Carlo simulation technique (see, e.g. Andersen and Broadie (2004), Bally,
Pagès, and Printems (2005), Belomestny and Milstein (2004), Boyle, Broadie,
and Glasserman (1997), Broadie and Glasserman (1997), Clément, Lam-
berton and Protter (2002), Glasserman (2004), Haugh and Kogan (2004),
Jamshidian (2003), Kolodko and J. Schoenmakers (2004), Longstaff and
Schwartz (2001), Rogers (2001) and references therein). In some papers, pro-
cedures are proposed that are able to produce upper and lower bounds for
the true price and hence allow for evaluating the accuracy of price estimates.

In Belomestny and Milstein (2004) we develop the approach for pricing Amer-
ican options both for discrete-time and continuous-time models. The ap-
proach is based on the fact that any American option is equivalent to the
European one with a consumption process involved. This approach allows
us, in principle, to construct iteratively a sequence v1, V 1, v2, V 2, v3, ...,
where v1, v2, v3, ... is an increasing (at any point) sequence of lower bounds
and V 1, V 2, ..., is a decreasing sequence of upper bounds. Unfortunately,
the complexity of the procedure increases dramatically with any new itera-
tion step. Even V 2 is too expensive for the real construction.
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Let us consider a discrete-time financial model and let

(Bti, Xti) = (Bti, X
1
ti
, ..., Xd

ti
), i = 0, 1, ..., L,

be the vector of prices at time ti, where Bti is the price of a scalar riskless asset
(we assume that Bti is deterministic and Bt0 = 1) and Xti = (X1

ti
, ..., Xd

ti
)�

is the price vector process of risky assets ( along with index ti we shall use
below the index i and instead of (ti, Xti) we will write (ti, Xi)). Let fi(x) be
the profit made by exercising an American option at time ti if Xti = Xi = x.

Here we propose to use an increasing sequence of lower bounds for construct-
ing an upper bound and lower bound for the initial position (t0, X0). It is
supposed that the above sequence is not too expensive from the computa-
tional point of view. This is achieved by using local lower bounds which take
into account a small number of exercise dates ahead.

Let (ti, Xi,m), i = 0, 1, ..., L; m = 1, ...,M, be M independent trajectories all
starting from the point (t0, X0) and let v1 ≤ v2 ≤ ... ≤ vl be a finite sequence
of lower bounds which can be calculated at any position (ti, x). Clearly, these
lower bounds are also ordered according to their numerical complexities and
a natural number l indicates the maximal such complexity as well as the
quality of the lower bound vl. Any lower bound gives a lower bound for the
corresponding continuation value (lower continuation value) and an upper
bound for the consumption process (upper consumption process). If the
payoff at (ti, Xi,m) is less or equal to the lower continuation value, then the
position (ti, Xi,m) belongs to the continuation region and the consumption
at (ti, Xi,m) is equal to zero. Otherwise the position (ti, Xi,m) can belong
either to the exercise region or to the continuation region. In the latter cases
we compute the upper consumption at (ti, Xi,m) as a difference between the
payoff and the lower continuation value.

It is important to emphasize that the lower bounds are applied adaptively.
It means that if, for instance, using the lower bound v1 (which is the cheap-
est one among v1, v2, ..., vl) at the position (ti, Xi,m), we have found that
this position belongs to the continuation region (i.e., the corresponding up-
per consumption process is equal to zero), we do not calculate any further
bounds. Similarly, if the upper consumption process is positive but com-
paratively small, we can stop applying further bounds at (ti, Xi,m) because
a possible error will not be large. Finally, if the upper consumption pro-
cess is not small enough after applying lower bounds v1, ..., vj but changes
not significantly after applying vj+1, we can stop applying further bounds as
well. The lower bounds are prescribed to every position (ti, Xi,m) and are,
as a rule, local. Applying them means, in some sense, a local analysis of
the considered financial market at any position. Such a local analysis for all
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positions (ti, Xi,m), i = 0, 1, ..., L; m = 1, ...,M , yields some global lower
bound and upper bound at the original position (t0, X0). If we detect that
the difference between the global upper and lower bounds is large, we can
return to the deeper local analysis. It is clear that, in principle, this analysis
can give exhaustive results in a finite number of steps (it suffices to take the
following sequence of American options at (ti, Xi,m): v1 is the price of the
American option on the time interval [ti, ti+1], v2 is the price on [ti, ti+2] and
so on, in a way that vL−i is the price on [ti, tL]). Thus, we have no problems
with convergence of the algorithms based on the approach considered.

In Subsection 18.2 we recall the basic notions related to the pricing of Ameri-
can and Bermudan options and sketch the approach developed in Belomestny
and Milstein (2004). The developed method is presented in Subsection 18.3
. Two numerical examples are given in Subsection 18.4 .

18.2 The Consumption Based Processes

To be self-contained, let us briefly recall the approach to pricing American
options that has been developed in Belomestny and Milstein (2004).

18.2.1 The Snell Envelope

i 0≤i≤L, Q),
where the probability measure Q is the risk-neutral pricing measure for the
problem under consideration, and Xi is a Markov chain with respect to the
filtration (Fi)0≤i≤L .

The discounted process X̃i
def
= Xi/Bi is a martingale with respect to the Q

and the price of the corresponding discrete American option at (ti, Xi) is
given by

ui(Xi) = sup
τ∈Ti,L

Bi E

{
fτ(Xτ)

Bτ
|Fi

}
, (18.1)

where Ti,L is the set of stopping times τ taking values in {i, i + 1, ..., L}.
The value process ui (Snell envelope) can be determined by the dynamic
programming principle:

uN(x) = fN(x), (18.2)

ui(x) = max

{
fi(x), Bi E

{
ui+1(Xi+1)

Bi+1
|Xi = x

}}
, i = L− 1, ..., 0.

We assume that the modelling is based on the filtered space (Ω,F,(F )
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We see that theoretically the problem of evaluating u0(x), the price of the
discrete-time American option, is easily solved using iteration procedure
(18.2). However, if X is high dimensional and/or L is large, the above itera-
tion procedure is not practical.

18.2.2 The Continuation Value, the Continuation and
Exercise Regions

For the considered American option, let us introduce the continuation value

Ci(x) = Bi E

{
ui+1(Xi+1)

Bi+1
|Xi = x

}
, (18.3)

the continuation region C and the exercise (stopping) region E :

C = {(ti, x) : fi(x) < Ci(x)} , (18.4)

E = {(ti, x) : fi(x) ≥ Ci(x)} .

Let X i,x
j , j = i, i + 1, ..., L, be the Markov chain starting at time ti from the

point x : X i,x
i = x, and X i,x

j,m, m = 1, ...,M, be independent trajectories of
the Markov chain. The Monte Carlo estimator ûi(x) of ui(x) (in the case
when E is known) has the form

ûi(x) =
1

M

M∑
m=1

Bi

Bτ
f(X i,x

τ,m), (18.5)

where τ is the first time at which X i,x
j gets into E (of course, τ in (18.5)

depends on i, x, and m : τ = τ i,x
m ). Thus, for estimating ui(x), it is sufficient

to examine sequentially the position (tj, X
i,x
j,m) for j = i, i + 1, ..., L, whether

it belongs to E or not. If (tj, X
i,x
j,m) ∈ E , then we stop at the instant τ = tj

on the trajectory considered. If (tj, X
i,x
j,m) ∈ C, we move one step more along

the trajectory.

Let v be any lower bound, i.e. ui(x) ≥ vi(x), i = 0, 1, ..., L. Clearly, fi(x) is
a lower bound. If v1

i , ..., v
l
i are some lower bounds then the function vi(x) =

max1≤k≤l v
k
i (x) is also a lower bound. Henceforth we consider lower bounds

satisfying the inequality vi(x) ≥ fi(x). Introduce the set

Cv =

{
(ti, x) : fi(x) ≤ Bi E

{
vi+1(Xi+1)

Bi+1
|Xi = x

}}
.

Since Cv ⊂ C, any lower bound provides us with a sufficient condition for
moving along the trajectory: if (tj, X

i,x
j,m) ∈ Cv, we do one step ahead.
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18.2.3 Equivalence of American Options to European Ones
with Consumption Processes

For 0 ≤ i ≤ L− 1 the equation (18.2) can be rewritten in the form

ui(x) = BiE

{
ui+1(Xi+1)

Bi+1
|Xi = x

}
+

[
fi(x)−BiE

{
ui+1(Xi+1)

Bi+1
|Xi = x

}]+

.

(18.6)

Introduce the functions

γi(x) =

[
fi(x)−Bi E

{
ui+1(Xi+1)

Bi+1
|Xi = x

}]+

, i = L− 1, ..., 0. (18.7)

Due to (18.6), we have

uL−1(XL−1) = BL−1 E

{
fL(XL)

BL
|FL−1

}
+ γL−1(XL−1),

uL−2(XL−2) = BL−2 E

{
uL−1(XL−1)

BL−1
|FL−2

}
+ γL−2(XL−2)

= BL−2 E

{
fL(XL)

BL
|FL−2

}
+ BL−2 E

{
γL−1(XL−1)

BL−1
|FL−2

}
+ γL−2(XL−2).

Analogously, one gets

ui(Xi) = Bi E

{
fL(XL)

BL
|Fi

}
+ Bi

L−(i+1)∑
k=1

E

{
γL−k(XL−k)

BL−k
|Fi

}
(18.8)

+γi(Xi), i = 0, ..., L− 1.

Putting X0 = x and recalling that B0 = 1, we obtain

u0(x) = E

{
fL(XL)

BL

}
+ γ0(x) +

L−1∑
i=1

E

{
γi(Xi)

Bi

}
. (18.9)

Formula (18.9) gives us the price of the European option with the payoff
function fi(x) in the case when the underlying price process is equipped with
the consumption γi defined in (18.7).

18.2.4 Upper and Lower Bounds Using Consumption
Processes

The results about the equivalence of the discrete-time American option to the
European one with the consumption process cannot be used directly because



368 Denis Belomestny and Grigori N. Milstein

ui(x) and consequently γi(x) are unknown. We take the advantage of this
connection in the following way (see Belomestny and Milstein (2004)).

Let vi(x) be a lower bound on the true option price ui(x). Introduce the
function (upper consumption process)

γi,v(x) =

[
fi(x)−Bi E

{
vi+1(Xi+1)

Bi+1
|Xi = x

}]+

, i = 0, ..., L− 1. (18.10)

Clearly,
γi,v(x) ≥ γi(x).

Hence the price Vi(x) of the European option with payoff function fi(x) and
upper consumption process γi,v(x) is an upper bound: Vi(x) ≥ ui(x).

Conversely, if Vi(x) is an upper bound on the true option price ui(x) and

γi,V (x) =

[
fi(x)−Bi E

{
Vi+1(Xi+1)

Bi+1
|Xi = x

}]+

, i = 0, ..., L− 1, (18.11)

then the price vi(x) of the European option with lower consumption process
γi,V (x) is a lower bound.

Thus, starting from a lower bound v1
i (x), one can construct the sequence of

lower bounds v1
i (x) ≤ v2

i (x) ≤ v3
i (x) ≤ ... ≤ ui(x), and the sequence of upper

bounds V 1
i (x) ≥ V 2

i (x) ≥ ... ≥ ui(x). All these bounds can be, in principle,
evaluated by the Monte Carlo simulations. However, each further step of the
procedure requires labor-consuming calculations and in practice it is possi-
ble to realize only a few steps of this procedure. In this connection, much
attention in Belomestny and Milstein (2004) is given to variance reduction
technique and some constructive methods for reducing statistical errors are
proposed there.

18.2.5 Bermudan Options

As before, let us consider the discrete-time model

(Bi, Xi) = (Bi, X
1
i , ..., X

d
i ), i = 0, 1, ..., L.

Suppose that an investor can exercise only at an instant from the set of
stopping times S = {s1, ..., sl} within {0, 1, ..., L}, where sl = L. The price
ui(Xi) of the so called Bermudan option is given by

ui(Xi) = sup
τ∈TS∩[i,L]

Bi E

{
fτ(Xτ)

Bτ
|Fi

}
,
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where TS∩[i,L] is the set of stopping times τ taking values in {s1, ..., sl}∩{i, i+
1, ..., L} with sl = L.

The value process ui is determined as follows:

uL(x) = fL(x),

ui(x) =

⎧⎪⎪⎨⎪⎪⎩
max

{
fi(x), Bi E

{
ui+1(Xi+1)

Bi+1
|Xi = x

}}
, i ∈ S,

Bi

{
ui+1(Xi+1)

Bi+1
|Xi = x

}
, i /∈ S.

Similarly to American options, any Bermudan option is equivalent to the
European one with the payoff function fi(x) and the consumption process γi

defined as

γi(x) =

⎧⎨⎩
[
fi(x)−Bi E

{
ui+1(Xi+1)

Bi+1
|Xi = x

}]+

, i ∈ S,

0, i /∈ S.

Thus, all the results obtained in this section for discrete-time American op-
tions can be carried over to Bermudan options. For example, if vi(x) is a
lower bound on the true option price ui(x), the price Vi(x) of the European
option with the payoff function fi(x) and with the consumption process

γi,v(x) =

⎧⎨⎩
[
fi(x)−Bi E

{
vi+1(Xi+1)

Bi+1
|Xi = x

}]+

, i ∈ S,

0, i /∈ S.

is an upper bound: Vi(x) ≥ ui(x).

18.3 The Main Procedure

The difficulties mentioned in Subsection 2.4 can be avoided by using an in-
creasing sequence of simple lower bounds.

18.3.1 Local Lower Bounds

The trivial lower bound is fi(x) and the simplest nontrivial one is given by

vi+1
i (x) = max

{
fi(x), Bi E

{
fi+1(Xi+1)

Bi+1
|Xi = x

}}
.
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The function vi+1
i (x) is the price of the American option at the position

(ti, x) on the time interval [ti, ti+1]. It takes into account the behavior of
assets at one step ahead. Let vi+k

i (x) be the price of the American option
at the position (ti, x) on the time interval [ti, ti+k]. The function vi+k

i (x)
corresponds to an analysis of the market over k steps ahead. The calculation
of vi+k

i (x) can be done iteratively. Indeed, the price of the American option
on the interval [ti, ti+k+1] with k + 1 exercise periods can be calculated using
the American options on the interval [ti+1, ti+k+1] with k exercise periods

vi+k+1
i (x) = max

{
fi(x), Bi E

{
vi+k+1

i+1 (Xi+1)

Bi+1
|Xi = x

}}
. (18.12)

We see that vi+k+1
i (x) is, as a rule, much more expensive than vi+k

i (x). The
direct formula (18.12) can be too laborious even for k ≥ 3. As an example of
a simpler lower bound, let us consider the maximum of the American option
on the interval [ti, ti+k] and the European option on the interval [ti, ti+k+1]:

v̄i+k
i (x) = max

{
vi+k

i (x), Bi E

{
fi+k+1(Xi+k+1)

Bi+k+1
|Xi = x

}}
.

This lower bound is not so expensive as vi+k+1
i (x). Clearly

vi+k
i (x) ≤ v̄i+k

i (x) ≤ vi+k+1
i (x).

Different combinations consisting of European, American, and Bermudan
options can give other simple lower bounds.

The success of the main procedures (see below) exceedingly depends on a
choice of lower bounds. Therefore their efficient construction is of great
importance. To this aim one can use the known methods and among them
the method from Belomestny and Milstein (2004).

We emphasize again (see Introduction) that if after using some lower bound
it is established that the position belongs to C, then this position does not
need any further analysis. Therefore, at the beginning the simplest nontrivial
lower bound vi+1

i (x) should be applied and then other lower bounds should
be used adaptively in the order of increasing complexity.

18.3.2 The Main Procedure for Constructing Upper
Bounds for the Initial Position (Global Upper
Bounds)

Aiming to estimate the price of the American option at a fixed position
(t0, x0), we simulate the independent trajectories Xi,m, i = 1, ..., L, m =
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1, ...,M, of the process Xi, starting at the instant t = t0 from x0 : X0 =
x0. Let vi(x) be a lower bound and (ti, Xi,m) be the position on the m-th
trajectory at the time instant ti. We calculate the lower continuation value

ci,v(Xi,m) = Bi E

{
vi+1(Xi+1,m)

Bi+1
|Fi

}
(18.13)

at the position (ti, Xi,m). If

fi(Xi,m) < ci,v(Xi,m), (18.14)

then (ti, Xi,m) ∈ C (see (18.4)) and we move one step ahead along the trajec-
tory to the next position (ti+1, mXi+1). Otherwise if

fi(Xi,m) ≥ ci,v(Xi,m), (18.15)

then we cannot say definitely whether the position (ti, Xi,m) belongs to C or
to E. In spite of this fact we do one step ahead in this case as well. Let us
recall that the true consumption at (ti, x) is equal to

γi(x) = [fi(x)− Ci(x)]+ (18.16)

(see (18.7) and (18.3)). Thus, it is natural to define the upper consumption
γi,v at any position (ti, Xi,m) by the formula

γi,v(Xi,m) = [fi(Xi,m)− ci,v(Xi,m)]+. (18.17)

Obviously, ci,v ≤ Ci and hence γi,v ≥ γi. Therefore, the price Vi(x) of the
European option with payoff function fi(x) and upper consumption process
γi,v is an upper bound on the price ui(x) of the original American option. In
the case (18.14) γi,v(Xi,m) = γi(Xi,m) = 0 and we do not get any error. If
(18.15) holds and besides ci,v(Xi,m) < Ci(Xi,m), we get an error. If γi,v(Xi,m)
is large, then it is in general impossible to estimate this error, but if γi,v(Xi,m)
is small, the error is small as well.

Having found γi,v, we can construct an estimate V̂0(x0) of the upper bound
V0(x0) for u0(x0) by the formula

V̂0(x0) =
1

M

M∑
m=1

fL(XL,m)

BL
+

1

M

L−1∑
i=0

M∑
m=1

γi,v(Xi,m)

Bi
. (18.18)

Note that for the construction of an upper bound V0 one can use different local
lower bounds depending on a position. This opens various opportunities for
adaptive procedures. For instance, if γi,v(Xi,m) is large, then it is reasonable
to use a more powerful local instrument at the position (ti, Xi,m).
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18.3.3 The Main Procedure for Constructing Lower
Bounds for the Initial Position (Global Lower
Bounds)

Let us proceed to the estimation of a lower bound v0(x0). We stress that both
V0(x0) and v0(x0) are estimated for the initial position {t0, x0} only. Since we
are interested in obtaining as large as possible lower bound, it is reasonable
to calculate different not too expensive lower bounds at the position {t0, x0}
and to take the largest one. Let us fix a local lower bound v. We denote by

t0 ≤ τ
(m)
1 ≤ L the first time when either (18.15) is fulfilled or τ

(m)
1 = L. The

second time τ
(m)
2 is defined in the following way. If τ

(m)
1 < L, then τ

(m)
2 is

either the first time after τ
(m)
1 for which (18.15) is fulfilled or τ

(m)
2 = L. So,

t0 ≤ τ
(m)
1 < τ

(m)
2 ≤ L. In the same way we can define θ times

0 ≤ τ
(m)
1 < τ

(m)
2 < ... < τ

(m)
θ = L. (18.19)

The number θ depends on the m-th trajectory: θ = θ(m) and can vary between

1 and L + 1 : 1 ≤ θ ≤ L + 1. We put by definition τ
(m)
θ+1 = τ

(m)
θ = L, τ

(m)
θ+2 =

... = τ
(m)
L+1 = L. Thus, we get times τ1, ..., τL+1 which are connected with

the considered process Xi. For any 1 ≤ k ≤ L + 1 the time τk does not
anticipate the future because at each point Xi at time ti the knowledge of
Xj, j = 0, 1, ..., i, is sufficient to define it uniquely. So, the times τ1, ..., τL+1
are stopping rules and the following lower bound can be proposed

v0(x0) = max
1≤k≤L+1

E
fτk

(Xτk
)

Bτk

which can be in turn estimated as

v̂0(x0) = max
1≤k≤L+1

1

M

M∑
m=1

f
τ

(m)
k

(X
τ

(m)
k ,m

)

B
τ

(m)
k

.

Of course, v0(x0) depends on the choice of the local lower bound v. Clearly,
increasing the local lower bound implies increasing the global lower bound
v0(x0).

REMARK 18.1 It is reasonable instead of the stopping criterion (18.15)
to use the following criterion

γi,v(Xi,m) ≥ ε (18.20)

for some ε > 0. On the one hand, γi,v ≥ γi and hence the stopping criterion
with ε = 0 can lead to earlier stopping and possibly to a large error when
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γi,v > 0 but γi = 0. On the other hand, if 0 < γi,v(Xi,m) < ε we can make an
error using criterion (18.20). Indeed, in this case we continue and if γi > 0
then (ti, Xi,m) ∈ E and the true decision is to stop. Since the price of the
option at (ti, Xi,m) upon the continuation is Ci(Xi,m) and

fi(Xi,m)− Ci(Xi,m) = γi ≤ γi,v < ε,

the error due to the wrong decision at (ti, Xi,m) is small as long as ε is small. It
is generally difficult to estimate the influence of many such wrong decisions
on the global lower bound. Fortunately, any ε > 0 leads to a sequence of
stopping times (18.19) and, consequently, to a global lower bound v0(x0).
What the global upper bound is concerned, we have 0 ≤ γi,v − γi < ε when
γi,v < ε and hence the error in estimating V0 is small due to (18.18). The
choice of ε can be based on some heuristics and the empirical analysis of
overall errors in estimating true γi’s.

18.3.4 Kernel Interpolation

The computational complexity of the whole procedure can be substantially
reduced by using methods from the interpolation theory. As discussed in the
previous sections, the set of independent paths

PM
def
= {Xi,m, i = 1, ..., L, m = 1, ...,M}

and the sequence of local lower bounds {v1
i , ..., v

l
i} deliver the set of the

upper consumption values {γi,v(mXi), i = 0, ..., L, m = 1, ...,M}, where

vi
def
= max{v1

i , ..., v
l
i}. If M is large one may take a subset P

M̃
of PM contain-

ing first M̃ ! M trajectories

P
M̃

def
= {Xi,m, i = 1, ..., L, m = 1, ..., M̃} (18.21)

and compute {γi,v(Xi,m), i = 0, ..., L, m = 1, ..., M̃}. The remaining con-

sumption values γi,v(nXi) for n = M̃ + 1, ...,M can be approximated by

γ̂i,v(Xi,n)
def
=

∑
{

m:Xi,m∈Bk
P

M̃
(nXi)

}wn,mγi,v(mXi),

where Bk
P

M̃
(nXi) is the set of k nearest neighbors of nXi lying in the P

M̃
for

fixed exercise date ti and

wn,m
def
=

K(‖nXi −Xi,m‖/h)∑{
m:Xi,m∈Bk

P
M̃

(nXi)
} K(‖nXi −Xi,m‖/h)
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with K(·) being a positive kernel. A bandwidth h and the number of nearest
neighbors k are chosen experimentally. Having found γ̂i,v(nXi), we get the
global upper bound at (t0, x0) according to (18.18) by plugging estimated

values γ̂i,v(mXi) with m = M̃+1, ...,M in place of the corresponding γi,v(mXi)
.
The simulations show that an essential reduction of computational time can
be sometimes achieved at small loss of precision. The reason for the success
of kernel methods is that the closeness of the points in the state space implies
the closeness of the corresponding consumption values.

18.4 Simulations

18.4.1 Bermudan Max Calls on d Assets

This is a benchmark example studied in Broadie and Glasserman (1997),
Haugh and Kogan (2004) and Rogers (2001) among others. Specifically,
the model with d identical assets is considered where each underlying has
dividend yield δ. The risk-neutral dynamic of assets is given by

dXk
t

Xk
t

= (r − δ)dt + σdW k
t , k = 1, ..., d, (18.22)

where W k
t , k = 1, ..., d, are independent one dimensional Brownian motions

and r, δ, σ are constants. At any time t ∈ {t0, ..., tL} the holder of the option
may exercise it and receive the payoff

f(Xt) = (max(X1
t , ..., X

d
t )−K)+.

In applying the method developed in this paper we take ti = iT/L, i =
0, ..., L, with T = 3, L = 9 and simulate M = 50000 trajectories

PM = {Xi,m, i = 0, ..., L}M
m=1

using Euler scheme with a time step h = 0.1. Setting M̃ = 500, we define the
set P

M̃
as in (18.21) and compute adaptively the lower continuation values

for every point in P
M̃

. To this end we simulate N = 100 points

nX
(ti, Xi,m)
i+1 , 1 ≤ n ≤ N,

from each point (ti, Xi,m) with i < L and m ≤ M̃ . For any natural l such
that 0 ≤ l ≤ L− i− 1, values

v
(j)
i+1

(
n
X

(ti, Xi,m)
i+1

)
, 0 ≤ j ≤ l,



18 Simulation Based Option Pricing 375

based on local lower bounds of increasing complexity, can be constructed

as follows. First, v
(0)
i+1

(
n
X

(ti, Xi,m)
i+1

)
= f

(
n
X

(ti, Xi,m)
i+1

)
and v

(j)
i+1 for j = 1, 2 are

values of the American option on the intervals [ti+1, ti+1+j] . If j > 2 then

v
(j)
i+1 is defined as value of the Bermudan option with three exercise instances

at time points {ti+1, ti+j, ti+j+1}. Now, we estimate the corresponding lower
continuation value by

ĉi,l(Xi,m) =
e−r(ti+1−ti)

N

N∑
n=1

max
0≤j≤l

{
v

(j)
i+1(nX

(ti, Xi,m)
i+1 )

}
.

Clearly, ĉi,l is the Monte-Carlo estimate of ci,v, where v = max0≤j≤l v
(j)
i+1.

Let us fix a maximal complexity l∗. Sequentially increasing l from 0 to
l∗i = min{l∗, L− i− 1}, we compute ĉi,l until l ≤ l∗, where

l∗
def
= min{l : fi(Xi,m) < ĉi,l(Xi,m)}

or l∗
def
= l∗i if

fi(Xi,m) ≥ ĉi,l(Xi,m), l = 1, . . . , l∗i .

Note, that in the case l∗ < l∗i the numerical costs are reduced as compared
to the non-adaptive procedure while the quality of the estimate ĉi,v∗, where

v∗ = max0≤j≤l∗ v
(j)
i+1 is preserved. The estimated values ĉi,v∗(Xi,m) allow us,

in turn, to compute the estimates for the corresponding upper consumptions

γi,v∗(Xi,m) with m = 1, . . . , M̃ . The upper consumptions values for m = M̃ +
1, . . . M are estimated using kernel interpolation with an exponential kernel
(see Subsection 3.4). In Table 18.1 the corresponding results are presented
in dependence on l∗ and x0 with X0 = (X1

0 , . . . , X
d
0 )T , X1

0 = ... = Xd
0 = x0.

The true values are quoted from Glasserman (2004). We see that while the
quality of bounds increases significantly from l∗ = 1 to l∗ = 3, the crossover
to l∗ = 6 has a little impact on it. It means that either the true value is
achieved (as for x0 = 90) or deeper analysis is needed (as for x0 = 100).

18.4.2 Bermudan Basket-Put

In this example we consider again the model with d identical assets driven
by independent identical geometrical Brownian motions (see (18.22)) with
δ = 0. Defining the basket at any time t as X̄t = (X1

t + ... + Xd
t )/d, let us

consider the Bermudan basket put option granting the holder the right to sell
this basket for a fixed price K at time t ∈ {t0, ..., tL} getting the profit given
by f(X̄t) = (K − X̄t)

+. We apply our method for constructing lower and
upper bounds on the true value of this option at the initial point (t0, X0). In



376 Denis Belomestny and Grigori N. Milstein

l∗ x0 Lower Bound Upper Bound True Value
v0(X0) V0(X0)

90 7.892±0.1082 8.694±0.0023 8.08
1 100 12.872±0.1459 15.2568±0.0042 13.90

110 19.275±0.1703 23.8148±0.0062 21.34
90 8.070±0.1034 7.900±0.0018 8.08

3 100 13.281±0.1434 14.241±0.0038 13.90
110 19.526±0.1852 21.807±0.0058 21.34
90 8.099±0.1057 7.914±0.0018 8.08

6 100 13.196±0.1498 13.844±0.0038 13.90
110 19.639±0.1729 21.411±0.0056 21.34

Table 18.1. Bounds (with 95% confidence intervals) for the
2-dimensional Bermudan max call with parameters K =
100, r = 0.05, σ = 0.2, L = 9 and l∗ varying as shown in
the table.

order to construct local lower bounds we need to compute the prices of the
corresponding European style options vt+θ

t (x) = e−rθ E(f(X̄t+θ)|Xt = x) for
different θ and t. It can be done in principle by Monte-Carlo method since
the closed form expression for vt+θ

t (x) is not known. However, in this case it
is more rational to use the so-called moment-matching procedure from Brigo,
Mercurio, Rapisarda and Scotti (2002) and to approximate the distribution
of the basket X̄t+θ by a log-normal one with parameters r̃ − σ̃2/2 and σ̃θ1/2,
where r̃ and σ̃ are chosen in a such way that the first two moments of the
above log-normal distribution coincide with the true ones. In our particular
example r̃ = r and

σ̃2 =
1

θ
log

⎧⎪⎨⎪⎩
∑d

i,j=1 X i
tX

j
t exp(1{i=j}σ

2θ)[∑d
i=1 X i

t

]2

⎫⎪⎬⎪⎭ . (18.23)

In Table 18.2 the results of simulations for different maximal complexity l∗

and initial values x0 = X1
0 = ... = Xd

0 are presented. Here, overall M =

50000 paths are simulated and on the subset of M̃ = 500 trajectories the
local analysis is conducted. Other trajectories are handled with the kernel
interpolation method as described in Subsection 3.4. Similar to the previous
example, significant improvements are observed for l∗ = 2 and l∗ = 3. The
difference between the upper bound and lower bound for l∗ > 3 is less than
5%.
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l x0 Lower Bound Upper Bound True Value
v0(X0) V0(X0)

100 2.391±0.0268 2.985±0.0255 2.480
1 105 1.196±0.0210 1.470±0.0169 1.250

110 0.594±0.0155 0.700±0.0105 0.595
100 2.455±0.0286 2.767±0.0238 2.480

2 105 1.210±0.0220 1.337±0.0149 1.250
110 0.608±0.0163 0.653±0.0094 0.595
100 2.462±0.0293 2.665±0.0228 2.480

3 105 1.208±0.0224 1.295±0.0144 1.250
110 0.604±0.0166 0.635±0.0090 0.595
100 2.473±0.0200 2.639±0.0228 2.480

6 105 1.237±0.0231 1.288±0.0142 1.250
110 0.611±0.0169 0.632±0.0089 0.595
100 2.479±0.0300 2.627±0.0226 2.480

9 105 1.236±0.0232 1.293±0.0144 1.250
110 0.598±0.0167 0.627±0.0087 0.595

Table 18.2. Bounds (with 95% confidence intervals) for the
5-dimensional Bermudan basket put with parameters K =
100, r = 0.05, σ = 0.2, L = 9 and different l∗.

18.5 Conclusions

In this paper a new Monte-Carlo approach towards pricing discrete Amer-
ican and Bermudan options is presented. This approach relies essentially
on the representation of an American option as the European one with the
consumption process involved. The combination of the above representation
with the analysis of the market over a small number of time steps ahead
provides us with a lower as well an upper bound on the true price at a given
point. Additional ideas concerning adaptive computation of the continuation
values and the use of interpolation techniques help reducing the computa-
tional complexity of the procedure. In summary, the approach proposed has
following features:

� It is Monte-Carlo based and is applicable to the problems of medium
dimensionality.

� The propagation of errors is transparent and the quality of final bounds
can be easily assessed.

� It is adaptive that is its numerical complexity can be tuned to the
accuracy needed.
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� Different type of sensitivities can be efficiently calculated by combin-
ing the current approach with the method developed in Milstein and
Tretyakov (2005).
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