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17.1 Introduction

Modelling particular features (“stylized facts”) of financial time series such
as volatility clustering, heavy tails, asymmetry, etc. is an important task
arising in financial engineering. For instance, attempts to model volatility
clustering, i.e. the tendency of volatility jumps to appear in groups followed
by periods of stability, led to the development of conditional heteroskedastic
(CH) models including ARCH by Engle (1982) and GARCH by Bollerslev
(1986) as well as their derivatives. The main idea underlying the mentioned
methods is that volatility clustering can be modelled globally by a stationary
process.

However, the assumption of stationarity is often compromised by the shape of
the autocorrelation function (ACF) of squared log returns that for a typical
financial time series decays slower than exponentially. Furthermore, Mikosch
and Stărică (2004) showed that long range memory effects in financial time
series may be caused by structural breaks rather than that constitutes an
essential feature of stationary processes to be modeled by global methods.
Diebold and Inoue (2001) and Hillebrand (2005) argue that one can easily
overlook structural breaks with negative impact on the quality of modelling,
estimation and forecasting. This circumstance motivates the development of
methods involving processes that are stationary only locally. Local meth-
ods consider just the most recent data and imply subsetting of data using
some localization scheme that can itself be either global or local and adap-
tive. Methods of this kind have been presented e.g. in Fan and Gu (2003)
for adaptive selection of the decay factor used to weight components of the
pseudo-likelihood function, in Dahlhaus and Subba Rao (2006) for the for-
mulation of the locally stationary ARCH(∞) processes, in Cheng, Fan and
Spokoiny (2003) for locally choosing parameters of a filter. In a recent paper
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by Giacomini, Härdle and Spokoiny (2008) a local adaptive method has been
applied to the problem of copulae estimation.

Below we compare three methods for estimation of parameters in the context
of univariate time series: the local change point (LCP) procedure by Mercurio
and Spokoiny (2004), the local model selection (LMS), also known as the
intersection of confidence intervals (ICI) by Katkovnik and Spokoiny (2008),
and the stagewise aggregation (SA) by Belomestny and Spokoiny (2007). A
universal procedure for the choice of parameters (critical values) is given. The
performance of the procedures is compared using genuine financial data. It
is shown that adaptive methods often outperform the standard GARCH(1,1)
method.

The chapter is organized as follows. Section 17.2 is devoted to the formu-
lation of the problem and theoretical introduction. Section 17.3 describes
the methods under comparison. In Section 17.4 the procedure for obtaining
critical values, essential parameters of the procedures, is given. Section 17.5
shows the application of the adaptive methods to the computation of the
value-at-risk.

17.2 Model and Setup

17.2.1 Conditional Heteroskedastic Model

Let St be a one-dimensional stochastic asset price process in discrete time
t ∈ N and Rt = log St/St−1 be the corresponding log returns process. The
latter is typically described using the conditional heteroskedastic model

Rt = σtεt, (17.1)

where εt are independent and identically (standard Gaussian) distributed
innovations, and σt is the volatility process progressively measurable w.r.t. the
filtration (Ft−1) = F(R1, . . . , Rt−1) generated by past returns. Equivalently,

Yt = θtε
2
t (17.2)

where Yt = R2
t are the squared log returns and θt = σ2

t . We aim to estimate
θt from the past observations Y1, . . . , Yt−1. This problem commonly arises
in financial applications such as value-at-risk determination and portfolio
optimisation.
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17.2.2 Parametric and Local Parametric Estimation and
Inference

If θt = θ one can apply the method of maximum likelihood to obtain the
estimate θ̂. The model (17.2) leads to the log-likelihood function

L(θ) =
∑

t

�(Yt, θ)

where �(y, θ) = −1
2 log(2πθ)− y/(2θ) is the log density of the normal distri-

bution with zero mean. The estimate θ̂ is then obtained by maximizing the
log-likelihood function w.r.t. to θ:

θ̂ = arg max
θ

L(θ) =

∑
t Yt

N
,

where N is the sample size. When the volatility does depend on time, θt =
θ(t) �= const., the method of maximum likelihood is not directly applicable,
since the joint distribution of the observations and therefore the log likelihood
function are not available. Hence, we take the local parametric approach by
supposing that for the time point of estimation T there exists some interval
I = [T − NI , T ] of length NI , to be estimated from the data, within which
the model (17.2) describes the process adequately. If the interval I has been
found, then the log likelihood function assumes the form

LI(θ) =
∑
t∈I

�(Yt, θ)

and the maximum likelihood estimate corresponding to the interval I is

θ̃I = arg max
θ

LI(θ) =
∑
t∈I

Yt/NI .

For the purpose of describing the quality of estimation we use the fitted likeli-
hood L(θ̃, θ) defined as the difference between the likelihood corresponding to

the ML estimate θ̃ and the likelihood corresponding to a different parameter
value:

L(θ̃, θ) = L(θ̃)− L(θ).

For the model considered here the fitted likelihood can be represented in the
form

L(θ̃I , θ) = NIK(θ̃I , θ), (17.3)

where

K(θ1, θ2) =
1

2
(θ1/θ2 − 1)− 1

2
log(θ1/θ2)

denotes the Kullback – Leibler divergence that measures the “distance” be-
tween distributions indexed by θ1 and θ2.
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17.2.3 Nearly Parametric Case

In practice the parametric assumption may be overly stringent and not hold
even within an arbitrarily small interval. We describe the deviation from the
parametric situation within an interval I by a magnitude:

∆I(θ) =
∑
t∈I
K(θt, θ),

that we shall call divergence. The following small modelling bias (SMB)
condition imposes a limit on the deviation from the parametric case which
provides the applicability of the local parametric approach.

Condition 1 There exists some parameter value θ ∈ Θ and some interval
I such that the expectation under the true measure of the divergence ∆I(θ)
over the interval I is bounded by some ∆ ≥ 0:

E ∆I(θ) ≤ ∆. (17.4)

If the SMB condition 17.4 holds, then for any r > 0 the risk of the local
maximum likelihood estimate in the nearly parametric case satisfies:

E log

⎛⎝1 +

∣∣∣NIK(θ̃I , θ)
∣∣∣r

Rr,θ

⎞⎠ ≤ ∆ + 1,

where

Rr,θ = Eθ

∣∣∣NIK(θ̃I , θ)
∣∣∣r (17.5)

is the risk of the local maximum likelihood estimate in the parametric case.
Here the logarithm under the expectation comes from the Cramér – Rao in-
equality, and the additional term ∆ on the right-hand side can be interpreted
as payment for the violation of the parametric assumption.

The last result leads to the notion of the oracle estimate as the “largest”
one under the small modelling bias condition. In the next section we present
three methods suitable for construction of estimates performing almost as
well as the oracle estimate.



17 Locally Time Homogeneous Time Series Modelling 349

TT −Nk+1 T −Nk T −Nk−1

Ik−1

Ik

Ik+1

Figure 17.1. Nested intervals.

17.3 Methods for the Estimation of Parameters

17.3.1 Sequence of Intervals

Local methods imply subsetting of data. A localization scheme that we use
is a growing sequence of intervals. Let T denote the time point at which
the value of interest is to be estimated. We define an ordered sequence of
intervals {Ik}K

k=1 of length Nk with the common right edge at T (Figure 17.1),
so Ik = [T −Nk, T [. We associate with each interval Ik from this sequence

the corresponding maximum likelihood estimate θ̃k ≡ θ̃Ik
, which we shall call

weak estimate. We aim to select or construct the “largest” one still satisfying
the small modelling bias condition. The LCP and LMS procedures obtain
the best estimate by choosing one from the sequence, whereas SSA builds
the estimate by taking convex combinations of previously found estimates.
Below we describe each of the methods.

17.3.2 Local Change Point Selection

The LCP method introduced in Mercurio and Spokoiny (2004) is a proce-
dure that detects the largest interval of homogeneity and provides an adap-
tive estimate as the one associated with the interval found. The idea of the
method consists in the testing of the null hypothesis of an interval contain-
ing no change points against the alternative hypothesis of a change point
being present, whereas the interval under testing is taken from the growing
sequence.

Consider a tested interval I that possibly contains a change point, and an
enclosing testing interval I (Figure 17.2). The statistic to test the hypoth-
esis about the parameter change in some internal point τ of the candidate
interval can be expressed as the difference between the sum of log likelihoods
corresponding to the intervals I ′, I ′′ into which the change point splits the
testing interval, and the log likelihood corresponding to the testing interval
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Figure 17.2. Intervals involved in the change point detection
procedure.

containing no change points:

TI,τ = max
θ′,θ′′

{LI ′′(θ
′′) + LI ′(θ

′)} −max
θ

LI(θ) = LI ′(θ̃I ′) + LI ′′(θ̃I ′′)− LI(θ̃I),

where L(·) denotes the log likelihood function. For the volatility distribution
the test statistic can be represented in the form

TI,τ = min
θ

{
NI ′′K(θ̃I ′′, θ) + NI ′K(θ̃I ′, θ)

}
= NI ′′K(θ̃I ′′, θ̃I) + NI ′K(θ̃I ′, θ̃I)

(17.6)
due to (17.3). The test statistic for the whole candidate interval is the max-
imum of the pointwise statistics over all internal points:

TI = max
τ∈I

TI,τ

The hypothesis is rejected if the test statistic exceeds some critical value z,
which is a parameter of the procedure specific to the problem design.

We let I = Ik\Ik−1 and I = Ik+1 and take the adaptive estimate θ̂ to be

equal to the k̂-th weak estimate, where k̂ is the largest interval number such
that all test statistics corresponding to the intervals I1, . . . , Ik̂ do not exceed

their critical values with the opposite holding for k̂ + 1:

θ̂ = θ̃k̂, where k̂ = max k such that Tl ≤ zl for all l ≤ k̂.

The initial condition is that the smallest interval is always considered to be
homogeneous. Since it is not feasible to test the largest interval, the greatest
possible value of k̂ is K − 1.

17.3.3 Local Model Selection

The idea of the local model selection procedure introduced in Katkovnik and
Spokoiny (2008) consists in the choice of the “largest” weak estimate among
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Figure 17.3. Principle of the local model selection. θ̂ = θ̃3.

θ̃1 . . . θ̃K as the adaptive estimate θ̂ in such a way that the adaptive estimate
belongs to the confidence interval E of each of the previous weak estimates
(Figure 17.3). Formally, θ̂ = θ̃k̂, where

k̂ is such that

{
θ̃k̂ ∈ El for all l < k̂

θ̃k̂+1 �∈ El for some l < k̂ + 1

Confidence interval of level α for a weak estimate θ̃ is provided by

E(zα) =
{

θ : L(θ̃, θ) ≤ zα

}
.

As with the LCP procedure, the first weak estimate is always accepted. How-
ever, the LMS procedure checks all estimates including the one corresponding
to the last interval.

17.3.4 Stagewise Aggregation

The SA procedure introduced in Belomestny and Spokoiny (2007) differs from
the two methods described above in that it does not choose the adaptive
estimate θ̂ from the weak estimates θ̃1 . . . θ̃K . Instead, based on the weak
estimates, it sequentially constructs aggregated estimates θ̂1 . . . θ̂K possessing
the property that any aggregated estimate θ̂k has smaller variance than the
corresponding weak estimate θ̃k, while keeping “close” to it in terms of the
statistical difference, the latter being measured through the likelihood ratio
L(θ̃k, θ̂k−1) = L(θ̃k) − L(θ̂k−1). The adaptive estimate is finally taken equal

to the last aggregated estimate: θ̂ = θ̂K (unless an early stopping occurs).
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Formally, the first aggregated estimate is equal to the first weak estimate
and every next aggregated estimate is a convex combination of the previous
aggregated estimate and the current weak estimate:

θ̂k =

{
θ̃1, k = 1

γkθ̃k + (1− γk)θ̂k−1, k = 2, . . . , K

Here γk is the mixing coefficient that reflects the statistical difference between
the previous aggregated estimate θ̂k−1 and the current weak estimate θ̃k, and
is obtained by applying an aggregation kernel Kag to the likelihood ratio

L(θ̃k, θ̂k−1) scaled by the critical value zk :

γk = Kag

(
L(θ̃k, θ̂k−1)

zk

)
.

The aggregation kernel acts as a link between the likelihood ratio and the
mixing coefficient. The principle behind its selection is that a smaller sta-
tistical difference between θ̃k and θ̂k−1 should lead to the mixing coefficient

close to 1 and thus to the aggregated estimate θ̂k close to θ̃k, whereas a larger
difference should provide the mixing coefficient close to zero and thus keep
θ̂k close to θ̂k−1. Whenever the difference is very large, the mixing coefficient

is zero, and the procedure stops prematurely by setting θ̂ = θ̂k−1. We call
this situation early stopping.

To satisfy the stated requirements, the kernel must be supported on the closed
interval [0, 1] and monotonously decrease from 1 on the left edge to 0 on the
right edge. It is also recommended that the kernels have a plateau of size b
starting with zero. Thus, the aggregation kernel assumes the form:

Kag(u) =

{
1, 0 ≤ u < b
1− K̄ag(u), b ≤ u ≤ 1

Examples of K̄ag(u) include u−b
1−b (triangular kernel),

(
u−b
1−b

)2
(Epanechnikov

kernel) etc.

17.4 Critical Values and Other Parameters

All procedures described above depend on the set of parameters z1 . . . zK

known as critical values. The critical values reflect the problem design (in-
terval length, model, method etc.). They are selected based on the following
propagation condition:
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Condition 2 (Propagation condition) For any θ∗ ∈ Θ

Eθ∗ |L(θ̃k, θ̂k)|r
Rr,θ∗

≤ α
k

K
for k = 1, . . . , K, (17.7)

where θ̂k is the adaptive estimate obtained on the k-th step and Rr,θ∗ is the
risk delivered by the local maximum likelihood estimate in the parametric case
(see (17.5)).

This condition means that in the homogeneous case the risk associated with
the k-th adaptive estimate must not exceed a certain fraction of the risk in
the parametric case.

Critical values constructed this way provide with high probability the pre-
scribed performance of the procedures in the parametric situation (under the
null hypothesis). Namely, under the parametric hypothesis on every step k

the adaptive estimate θ̂k should be close enough to the oracle estimate θ̃k.
However, the propagation condition is not explicit. For the computation of
critical values we use the following sequential method based on Monte-Carlo
simulations. Denote as θ̂l(zk) for l ≥ k the adaptive estimate obtained after
the l-th step of the procedure run with he critical values z1, . . . , zk−1 known
and zk+1, . . . , zK set to infinity:

θ̂l(zk) = θ̂l(z1, . . . , zk, zk+1 = ∞, . . . , zK = ∞).

The first critical value can be selected to satisfy the conditions

Eθ∗

∣∣∣L(θ̃l, θ̂l(z1))
∣∣∣r

Rr,θ∗
≤ α

K
, l = 2, . . . , K.

Such a value exists, since for z1 taken sufficiently large the weak and adaptive
estimates coincide for any l and all Monte-Carlo paths, thus leading to the
zero risk. With the first k − 1 critical values fixed the procedure is carried
out sequentially for the remaining critical values. The k-th critical value is
selected using the condition

Eθ∗

∣∣∣L(θ̃l, θ̂l(zk))
∣∣∣r

Rr,θ∗
≤ k

α

K
, l = k + 1, . . . , K.

Obviously, the critical values depend on the specific form of the likelihood
function and hence of the Kullback-Leibler distance. Further, the critical
values depend on the global parameters α and r.
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Figure 17.4. Exchange rate of the British pound to the US
dollar 19900101-19991231 (above) and corresponding log re-
turns (below).

17.5 Applications

We illustrate the performance of the methods introduced in the section 17.3
by analyzing daily exchange rates of six currencies (GBP, AUD, NZD, JPY,
CAD, DKR) to the US dollar available from the site of the US Federal Re-
serve. We use the data for the period from Januar 1, 1990 till December
31, 1999. Unless indicated otherwise, we use the GBP/USD exchange rate.
Observed GBP/USD exchange rates along with the log returns are shown on
the Figure 17.4, while Figure 17.5 presents the volatility estimates obtained
by three adaptive methods.

A well known feature of financial time series is the uncorrelatedness of the
log returns. However, in spite of the uncorrelatedness, the log returns are
not independent, as one can see by plotting the autocorrelation of a non-
linear transformation. For instance, absolute log returns show significant
autocorrelation (Figure 17.6, upper plot). We obtain standardized absolute
log returns by dividing the absolute log returns by the volatility estimated
using the LCP method. The ACF plot (Figure 17.6, lower plot) shows that
nearly all autocorrelation has been removed by standardizing. This result
indicates the reasonable quality of volatility estimation.
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17.5.1 Forecasting Performance for One and Multiple
Steps

In order to assess the performance of the adaptive procedures we compare
their ability to forecast the conditional variance of the aggregated returns
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with that of the GARCH(1,1) model, one of the most popular parameter-
izations of the volatility process of financial time series. Namely, for a se-
quence of intervals and forecasting horizons we use the mean square root
error (MSqE) criterion

MSqEI =
∑
t∈I
|V ♥

t,h − V ◦
t,h|1/2

/∑
t∈I
|V ♠

t,h − V ◦
t,h|1/2, (17.8)

where
V ◦

t,h = R2
t+1 + . . . + R2

t+h (17.9)

is the realized variance of h aggregated returns starting at time t, and V ♥
t,h, V

♠
t,h

denote the conditional variance forecast of the aggregated returns by an adap-
tive procedure and GARCH(1,1), respectively.

The h-step ahead conditional variance forecast originating at time t is defined
as

Vt,h
def
= Var

(
h∑

k=1

Rt+k

∣∣∣∣∣Ft

)
.

By definition of the conditional variance

Var

(
h∑

k=1

Rt+k

∣∣∣∣∣Ft

)
= E

⎡⎣{ h∑
k=1

Rt+k − E

(
h∑

k=1

Rt+k

∣∣∣∣∣Ft

)}2
∣∣∣∣∣∣Ft

⎤⎦ ,

but since
E (Rt+k| Ft) = 0 (17.10)

the conditional variance simplifies to

Var

(
h∑

k=1

Rt+k

∣∣∣∣∣Ft

)
= E

⎧⎨⎩
(

h∑
k=1

Rt+k

)2
∣∣∣∣∣∣Ft

⎫⎬⎭ .

As the log returns are conditionally uncorrelated, conditional expectation of
the squared sum is equal to the conditional expectation of the sum of squares:

Var

(
h∑

k=1

Rt+k

∣∣∣∣∣Ft

)
= E

(
h∑

k=1

R2
t+k

∣∣∣∣∣Ft

)
.

Using the linearity of the expectation and equation (17.10), one finally obtains

Var

(
h∑

k=1

Rt+k

∣∣∣∣∣Ft

)
=

h∑
k=1

E
(
R2

t+k

∣∣Ft

)
=

h∑
k=1

Var (Rt+k| Ft) .
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By definition of the local constant approach the conditional variance of the
log returns is constant for a certain horizon h:

Var (Rt+k| Ft) = σ̂2
t , k = 1, . . . , h. (17.11)

Therefore the estimated conditional variance of the aggregated returns Rt +
Rt+1 + . . . + Rt+h is simply

V ♥
t,h = hσ̂2

t . (17.12)

The GARCH(1,1) model describes the volatility dynamics by the relation

σ2
t = ω + αR2

t−1 + βσ2
t−1,

where the requirement of the stationarity implies the following conditions on
the coefficients:

α > 0, β > 0, α + β < 1.

The h-step ahead variance forecast of the GARCH(1,1) model is given by:

σ2,♠
t+h|t

def
=

h∑
k=1

E
(
R2

t+h

∣∣Ft

)
= σ̄2 + (α + β)h(σ2

t − σ̄2),

where σ̄ is the unconditional volatility. Thus, the conditional variance fore-
cast of the aggregated returns is

V ♠
t,h =

h∑
k=1

σ2,♠
t+k|t. (17.13)

Substituting the expressions (17.9), (17.12) and (17.13) for V ◦
t,h, V ♥

t,h and V ♠
t,h

respectively in (17.8), one obtains the performance data shown in the Fig-
ure 17.7. The results are presented for various years and forecasting horizons.
As seen from the figure, adaptive methods outperform the GARCH(1,1) in
many cases.

17.5.2 Value-at-Risk

In the present section we apply the adaptive procedures to the computation of
value at risk, an important problem in financial engineering. The value at risk
(VaR) is defined as “the maximum loss not exceeded with a given probability
defined as the confidence level, over a given period of time”. The problem of
the VaR estimation can be represented as the problem of quantile estimation



358 Mstislav Elagin and Vladimir Spokoiny

M
S

qE
1

2
3

4
5

6

G
A

R
C

H
LC

P
LM

S
S

S
A

● ● ●
●

1992

G
A

R
C

H
LC

P
LM

S
S

S
A

● ● ●●

1993

G
A

R
C

H
LC

P
LM

S
S

S
A

● ● ●●

1994

G
A

R
C

H
LC

P
LM

S
S

S
A

● ● ●●

1995

G
A

R
C

H
LC

P
LM

S
S

S
A

● ● ●●

1996

G
A

R
C

H
LC

P
LM

S
S

S
A

● ● ●●

1997

G
A

R
C

H
LC

P
LM

S
S

S
A

● ● ●●

1998

G
A

R
C

H
LC

P
LM

S
S

S
A

●
●

●●

1999

Horizon
1
5
10

●

Figure 17.7. Peformance of adaptive methods and
GARCH(1,1) in terms of MSqE. XFGadamethperf

for the distribution of aggregated returns. We consider three distributions of
innovations: standard Gaussian distributions, Student’s scaled distribution
with 5 degrees of freedom and the empirical distribution:

Rt+h = σ̂tξt+h, with ξt+h ∼ N(0, 1), or
√

5/3ξt+h ∼ t5, or ξt+h ∼ F̂t .

We aim to describe the quality of VaR computation in terms of the frequency
of exceptions, where an “exception” is the event of the predicted value at risk
exceeding the aggregated returns. According to the prescribed assessment
rule, we examine the particular case of the value at risk predicted at 1%
level for 10 steps ahead on 250 observations. Under the assumption that
the exceptions follow the binomial distribution, we conduct a test with the
null hypothesis about the probability of exception being equal to 0.01, and
one-sided alternative hypothesis about the probability of exception exceeding
0.01. A procedure predicting the value at risk belongs in one of the three
“zones”: “green” zone if the null hypothesis can not be rejected with 95%
confidence (corresponding to not more than 5 exceptions on 250 observations,
or 2% frequency), “yellow” zone if the null should be rejected with 95%
confidence (from 6 to 10 exceptions, or not more than 4% frequency), and
“red zone” if the null should be rejected with 99.99% confidence (11 or more
exceptions, or more than 4% frequency).

Figure 17.8 shows the percentage of time points at which the loss within a
certain horizon overshoots the value at risk predicted with the corresponding
confidence level. The results were obtained for three distributions of inno-
vations. One observes that none of the adaptive methods falls in the red
zone. Stagewise aggregation always belongs to the green zone. LCP and
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LMS combined with the Gaussian innovations sometimes fall into the yellow
zone. Use of Student’s innovations slightly, and of the empirically distributed
innovations considerably improves the performance. Overall performance of
the adaptive methods is rather good.

17.5.3 A Multiple Time Series Example

The local parametric approach can be extended to multiple time series. In
this case one observes a vector of exchange rate processes St ∈ R

d, t = 1, 2, . . .
and Rt,m is the vector of the corresponding log returns:

Rt,m = log(St,m/St−1,m), m = 1, . . . , d.

The conditional heteroskedasticity model reads in this case as

Rt = Σ
1/2
t εt ,

where εt, t ≥ 1, is a sequence of independent standard Gaussian random
innovations and Σt is a symmetric d × d volatility matrix, which is to be
estimated. As an example, Figure 17.9 shows annualized volatility estimated
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Figure 17.9. Adaptive estimation of the annualized volatility
of four exchange rates. XFGcovmatexch

for exchange rates of several currencies to the US dollar. Annualized volatility

is defined as

√
250Σ̂ii, where Σ̂ii represent diagonal elements of the volatility

matrix, Similar evolution of the estimates indicates a possible common low-
order component.
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Figure 17.10. ACF for the NZD and AUD time series. Left:
absolute log returns, right: absolute standardized log re-
turns. XFGacfabsaud

As in one-dimensional case, we observe significant correlation and autocor-
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relation of the absolute log returns (Figure 17.10, left) as a non-linear trans-
formation of the log returns, indicating lack of independence in spite of the
log returns being uncorrelated. We estimate the volatility matrix using the
LCP method and obtain the standardized absolute log returns by solving the
equation

Rt = Σ̂
1/2
t ξt

for ξt. The multivariate ACF plot of the standardized absolute log returns is
shown in the right part of Figure 17.10. Although some autocorrelation still
remains in the NZD series, the remaining three ACF plots show almost no
significant correlation.
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Giacomini, E., Härdle, W. and Spokoiny, V. (2008). Inhomogeneous dependency modelling
with time varying copulae, Journal of Business and Economic Statistics. Forthcoming.

Hillebrand, E. (2005). Neglecting parameter changes in GARCH models, J. Econometrics
129(1-2): 121–138.

Katkovnik, V. and Spokoiny, V. (2008). Spatially adaptive estimation via fitted local likeli-
hood techniques, ForthcomingIEEE Transactions on Signal Processing. Forthcoming.

Mercurio, D. and Spokoiny, V. (2004). Statistical inference for time-inhomogeneous volatility
models, Ann. Statist. 32(2): 577–602.

Mikosch, T. and Stărică, C. (2004). Changes of structure in financial time series and the
GARCH model, REVSTAT 2(1): 41–73.


