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14.1 Introduction

Multi-dimensional option pricing becomes an important topic in financial
markets (Franke et al., 2008). Among which, the American-type derivative
(e.g. the Bermudan option) pricing is a challenging problem. Unlike the Eu-
ropean options which can only be exercised on the expiration date, the owner
of a Bermudan option has the right to exercise early on a contractually speci-
fied finite set of dates. The dynamic programming approach is a practical and
popular approach used to price the Bermudan option (Shreve, 2004, p.91). In
that approach, the option value on each possible early exercise date is set to
be the maximum of the payoff associated with immediate exercise, called the
intrinsic value, and the discounted conditional expectation of the future op-
tion value, called the continuation value. The major problem of the approach
lies in the computation of the continuation value.

In the literature, numerical methods, Barraquand and Martineau (1995) and
Jeantheau (1998), and simulation based methods, Rust (1997), Tsitsiklis and
Van Roy (1999), Longstaff and Schwartz (2001) and Broadie and Glasserman
(2004), were proposed to solve this problem. Here we consider a dynamic
semiparametric method to valuate multi-dimensional options. The proposed
approach uses nonparametric step functions to approximate the option val-
ues on each possible early exercise date and evaluate the continuation values
by parametric transition density. Unlike the simulation based method gen-
erating random sample paths, the proposed method selects the asset price
points beforehand. And instead of numerically evaluating the multiple inte-
gral involved in computation of the continuation values, the proposed method
provides closed form expressions for the integrals. Using this semiparamet-
ric technique, the proposed method provides a flexible and handy tool for
multidimensional derivative pricing. Details of the dynamic semiparametric
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method are given in Section 14.3. The computational effort of the method is
linear in the number of exercise opportunities and quadratic in the number of
partition points. In addition, it is easily implemented when the multivariate
joint distributions of the underlying assets are modeled by copula functions
(Nelsen, 2006), which are to be introduced in the next section.

Section 14.2 defines the model assumptions. The proposed approach for
valuing multidimensional Bermudan option is introduced in Section 14.3.
One dimensional Bermudan option pricing of Black-Scholes model, multi-
dimensional Bermudan option of multivariate geometric Brownian processes
and a real example are demonstrated in Section 14.4. Section 14.5 concludes.

14.2 Model Assumptions

Consider a Bermudan option on d-dimensional underlying assets. Assume the
price of each underlying asset S�,t follows a risk-neutral geometric Brownian
process:

dS�,t

S�,t
= (r − q�)dt + σ�dW�,t, � = 1, · · · , d, (14.1)

where q� and σ� are the continuously compounded dividend yield and the
instantaneous volatility of the �th asset, respectively, W�,t’s are Wiener pro-
cesses and the dependence among the W�,t’s will be modeled by copula func-
tion introduced below. Let Xt = (X1,t, · · · , Xd,t)

� be the standardized log
price per strike price, that is, X�,t = log(S�,t/K), � = 1, · · · , d. Thus the
(conditional) marginal distribution of X�,t is N(X�,0 + (r − q� − 1

2σ
2
� )t, σ

2
� t).

We will use copula functions to connect the asset marginals to their joint dis-
tribution. Since copula functions provide a flexible methodology for modeling
of multivariate asset dependence, it has recently become a popular technique
in financial markets, Sklar (1959), Cherubini et al. (2004), Nelsen (2006) and
Giacomini et al. (2007). Let F�(x�), � = 1, · · · , d denote the marginal distri-
bution of X�, throughout we assume the joint distribution of (X1, · · · , Xd)

�,
F (x1, · · · , xd), is modeled by a copula function C, that is

F (x1, · · · , xd) = C{F1(x1), · · · , Fd(xd)}. (14.2)

For example, the Gaussian copula has the form C(u1, · · · , ud) = ΦR{Φ−1(u1),
· · · , Φ−1(ud)}, where Φ is the distribution of N(0, 1) and ΦR is the standard-
ized multivariate normal distribution with correlation matrix R. When the
univariate Xj’s are normally distributed, the Gaussian copula is correspond-
ing to the multivariate normal distribution. If the correlation matrix R is the
identity matrix, then the Gaussian copula becomes the independence copula,
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implying that the random variables are independent. For example, in case
R = I2 the 2 × 2 identity matrix, by (14.2) and the definition of Gaussian
copula, we have the joint distribution

F (x1, x2) = ΦI2

[
Φ−1{F1(x1)}, Φ−1{F2(x2)}

]
= Φ

[
Φ−1{F1(x1)}

]
Φ
[
Φ−1{F2(x2)}

]
= F1(x1)F2(x2).

Copulae also provide a natural perspective to study the dependence in the tail
of a multivariate distribution. For bivariate case, the lower tail dependence
of X1 and X2 is defined as λL = limv→0+ P{F2(X2) ≤ v | F1(X1) ≤ v} =

limv→0+
C(v,v)

v . If λL > 0, then the two variables X1 and X2 are said to have
lower tail dependence. Similarly, the upper tail dependence is defined as

λU = limv→1− P{F2(X2) > v | F1(X1) > v} = limv→1−
1−2v+C(v,v)

1−v . If λU > 0,
then there exists upper tail dependence. Archimedean copulae such as the
Clayton and Gumbel copulae are two popular functions used to model the
tail dependence of data. The Clayton copula has the form

C(u1, · · · , up) =
( p∑

j=1

u−θ
j − p + 1

)−1
θ

, θ > 0,

and the Gumbel copula is

C(u1, · · · , up) = exp
[
−
{ p∑

j=1

(− log uj)
θ
} 1

θ
]
, θ ≥ 1.

The lower tail dependence of the bivariate Clayton copula is λL = 2−1/θ > 0,
and the upper tail dependence of the Gumbel copula is λU = 2 − 21/θ >
0, for θ > 1. Thus the Clayton and Gumbel copulae are usable to model
assets with lower and upper tail dependence, respectively. On the contrary,
the Gaussian copula has neither upper nor lower dependence, unless the
correlation coefficient ρ = 1. In Figure 21.1, we plot the random samples
of four bivariate copulae, independent and correlated Gaussian, Clayton and
Gumbel copulae with N(0, 1) marginals. Although the marginals are the
same in the four cases, the plots display different tail dependence. The top-
left is the independent Gaussian copula, denoted by Gaussian(0). The top-
right is the Gaussian copula with correlation 0.5, which is the same as the
bivariate normal distribution with zero mean, unit variance and correlation
0.5. The bottom-left and bottom-right are the Clayton and Gumbel copulae
with parameter θ = 2, which show a lower tail dependence and a upper tail
dependence, respectively.
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Figure 14.1. Bivariate copula plots with N(0, 1) marginals.
Output of XFGbicopula .

14.3 Methodology

In this section, we introduce the proposed semiparametric method to val-
uate a d-dimensional Bermudan option with expiration date T . Assume
the Bermudan option can only be exercised at time ti, i = 1, · · · , n, where
0 = t0 < t1 < · · · < tn = T and for simplicity we assume ti’s are equidis-
tant with constant interval length ∆ = ti − ti−1. Let Vi denote the time ti
value of the Bermudan option, Si = (S1,i, · · · , Sd,i)

� be the corresponding d
underlying asset values, and g(Si) be the option payoff function. Then the
no arbitrage option values on possible early exercise dates are{

Vn(Sn) = g(Sn) and

Vi(Si) = max{g(Si), e
−r∆ E(Vi+1 | Si)}, if i < n

, (14.3)

where r > 0 is the riskless interest rate and E(·|Si) is the conditional expec-
tation under a risk-neutral probability measure given the information up to
time ti, Shreve (2004, p.91). In (14.3), the term g(Si) is also called the early
exercise value and e−r∆ E(Vi+1|Si) is the continuation value at time ti. The
Bermudan option will be exercised at time ti if g(Si) ≥ e−r∆ E(Vi+1|Si), and
will be held continuously if g(Si) < e−r∆ E(Vi+1|Si).

The objective is to derive the initial option value V0(S0), the main difficulty
arises from evaluation of the continuation value. For instance, consider a uni-
variate Bermudan put option on an underlying asset without paying dividend,
q = 0, with payoff function (K − Sn)

+. Under geometric Brownian motion
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model assumption, the continuation value at time tn−1 can be obtained by
the following Black and Scholes (1973) formula,

e−r∆ E[(K − Sn)
+ | Sn−1] = Ke−r∆Φ(−d2)− Sn−1Φ(−d1),

where d1 =
log(Sn−1/K)+(r+σ2

2 )∆
σ
√

∆
and d2 = d1 − σ

√
∆. Thus the continuation

value at time tn−2 is

e−r∆ E(Vn−1 | Sn−2)

= e−r∆ E
(

max{(K − Sn−1)
+, Ke−r∆Φ(−d2)− Sn−1Φ(−d1)} | Sn−2

)
,

which is difficult to evaluate and has no closed-form solution. As the time
move backwards to time t0, the problem becomes more knotty. To han-
dle the problem, we use step functions to approximate the option value at
time tn, Vn(Sn) defined in (14.3). Since the conditional joint distribution
of Xt given Xt−1 is modeled by the copula function C{F1(X1,t|X1,t−1), · · · ,
Fd(Xd,t|Xd,t−1)}, it is relatively easy to evaluate the continuation value at
time tn−1. Accordingly, we define the approximate option value at time tn−1
to be the maximum of the intrinsic value and this continuation value. Con-
tinue the procedure backwards to t0, we can obtain the initial option value.
The proposed procedure uses a dynamic semiparametric approach, which in-
corporates nonparametric step function approximation and parametric model
assumption, to tackle the difficult multiple integral computation involved in
the high-dimensional derivative pricing problem. The details of the procedure
is given below.

First, we confine the space of XT to a proper finite region, say ±5 standard
deviation region of a given initial value X0, and then partition the region with

equidistant grid points, denoted by x(j) = (x
(j)
1 , · · · , x(j)

d )�, j = 1, · · · , N .
The distance between two adjacent points in each dimension is denoted by
∆x (see Figure 21.2 for the two-dimensional case). We keep the partition
length ∆x constant throughout the time. Start from the time point i = n,
we use Ṽi(·) to denote the approximate option function at time ti, and set

Ṽn(x
(j)) = g(x(j)) on the expiration date. The proposed steps to compute the

d-dimensional Bermudan option are:

(1) Set the grid A(j) =
∏d

�=1[x
(j)
� − (1 − c)∆x, x

(j)
� + c∆x], j = 1, · · · , N

(see Figure 21.2 for the two-dimensional case) and c is a pre-chosen
constant. Based on the grids {A(j)}N

j=1, define the step function

V̂i =
N∑

j=1

Ṽi(x
(j))1{Xi ∈ A(j)}.
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Figure 14.2. Two-dimensional grid points.

The constant c is chosen to meet the criterion that the European op-
tion values derived from this scheme are close to the benchmarks. In
which the European benchmark option values can either be obtained
analytically or by Monte Carlo simulation. For instance, the option
on a geometric average for multivariate normal distributed underlying
assets, the benchmark can be obtained by Black-Scholes formula since
it can be reduced to a one-dimensional problem (for details see example
14.2).

(2) Compute the continuation value at time ti−1 given Xi−1 = x(h) by

E(V̂i|Xi−1) =
N∑

j=1

Ṽi(x
(j))P(Xi ∈ A(j) | Xi−1 = x(h)) = PhṼi,

where Ph is the hth row of the transition matrix P = (phj)N×N with

phj = P(Xi ∈ A(j) | Xi−1 = x(h))

=
2∑

i1=1

· · ·
2∑

id=1

(−1)i1+···+idC(u1i1, · · · , udid),

where C is the copula, u�1 = F�(x
(j)
� −(1−c)∆x | x(h)

� ) and u�2 = F�(x
(j)
� +

c∆x | x
(h)
� ) for all � = 1, · · · , d, and Ṽi =

(
Ṽi(x

(1)), · · · , Ṽi(x
(N))

)�
is

the approximate option value at time ti, McNeil et al. (2005). Note
that the transition matrix P is the same for i = 1, · · · , n.

(3) The approximate option value at time ti−1 given Xi−1 = x(h) is obtained

by Ṽi−1(x
(h)) = max{g(x(h)), e−r∆PhṼi}. Note that if the interest is to

valuate a European option, then just set Ṽi−1(x
(h)) = e−r∆PhṼi.

(4) If i− 1 = 0, then stop; otherwise set i = i− 1 and return to (1).

Since the proposed method performs iterative matrix vector multiplication
at each time ti, its computational effort is linear in the number of exercise
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Figure 14.3. Non-zero elements in the two-dimensional case.

opportunities n. At each time ti, on account of the matrix size (N ×N), the
computational work of matrix multiplication is quadratic in the total number
of grid points N . Although the size (N ×N) of the transition matrix P gets
large as either the maturity time T or the dimension d of the underlying assets
increases, lots (most) of it elements are zeros. This is due to the reason that
the transition probabilities are negligible for far apart grid points, say more
greater than five standard deviations (see Figure 21.3 for the two-dimensional
example). Specifically, the row length (N) of the transition matrix P is of
order O(T d/2) and the number of nonzero entries of each row is of order
O(∆d/2) = O((T

n )d/2), as a result the ratio of non-zero elements of P is of

order O(n−d/2). In another word, the transition matrix P is a sparse matrix
populated primarily with zeros.

When storing and manipulating sparse matrices on a computer, we can uti-
lize specialized algorithms and data structures, eg. the SPARSE routine
of MATLAB, to save the computation time and to consume less memory.
Furthermore, since the partition grid points of the d-dimensional asset price
space are determined in advance and kept fixed, the transition matrix remains
unchanged throughout the time, which contrasts sharply with the time vary-
ing transition matrix used in simulation based approach. In the simulation
based method, e.g. see Rust (1997) and Broadie and Glasserman (2004),
random samples are generated by Monte Carlo method at each time ti, and

the continuation value at time ti−1 given the kth random sample, S
(k)
i−1, is

approximated by
∑N

j=1 w
(k,j)
i Vi(S

(j)
i ), where w

(k,j)
i determines the stochastic

weights of the sample at time ti. In Figure 21.4 and 21.5, we illustrate the
design grid points of the proposed scheme and the random samples of the

simulation based method, respectively. Let P(i) = (w
(k,j)
i )k,j, the matrix of

stochastic weights, then the continuation value at time ti−1 can be viewed as
a matrix multiplication of the option value at time ti, and the matrix P(i)

varies as time changes.
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Figure 14.4. The designed points of the proposed scheme.
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Figure 14.5. The random samples of the simulation based
method.

14.4 Examples

In this section, we demonstrate three simulated examples (example 14.1-14.3)
and one real application (example 14.4) to valuate Bermudan options by the
proposed scheme.

EXAMPLE 14.1 Suppose the underlying asset satisfies the following risk-
neutral geometric Brownian motion

dSt = (r − q)Stdt + σStdWt, (14.4)

where r = 0.08, σ = 0.2 and q = 0, 0.04, 0.08 or 0.12. Consider a one
dimensional Bermudan put option with strike price K = 100, time to maturity
T = 3, length of time interval ∆ = 1

52 (i.e. n = 156) and payoff function
g(St) = (K−St)

+. In Figure 21.6, we plot a simulated path of {St} satisfying
(14.4) with r = 0.08, σ = 0.2, q = 0, T = 3, ∆ = 1

52 and the initial stock price
S0 = K = 100. The stock price at the maturity date is 117. Thus the payoff
is 17 at time T in this realization. At each time t < T , the owner of this
option would exercise early only when the payoff is positive, i.e. St > K, and
would hold the option continuously when St < K. If St > K, then she needs
to compute the continuation value of her option in order to decide whether
exercising immediately or not.
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Figure 14.6. A simulated path of the stock price process satis-
fying (14.4) with r = 0.08, σ = 0.2, q = 0, T = 3, ∆ = 1

52 and
the initial stock price S0 = K = 100. Output of XFGstock
.

Let Xt = log(St/K) denote the standardized log price per strike price and
let {x(j)}401

j=1 denote the 401 pre-chosen equidistant grid points of Xt, where

x(1) = X0 − 5σ
√

T and x(401) = X0 + 5σ
√

T , that is the distance between
two adjacent points is ∆x = 0.0087 and X0 = x(201). In the following, we
illustrate the procedure to compute the approximate option values backwards
from time t155 to t154. First the continuation values of x(j) at time t155,
e−0.0015 E(V155 | x(j)), are derived by the Black-Scholes formula, and the option
values of x(j)’s are obtained by

Ṽ155(x
(j)) = max{100− 100 exp(x(j)), e−0.0015 E(V156 | x(j))},

j = 1, · · · , 401. In Figure 21.7, we show the evolution of the intrinsic and
continuation values at ti in (a) to the approximate option value at ti−1 in
(b). In Figure 21.7 (a), the green line is the intrinsic value, the red dash
curve is the continuation value and the intersection of the green line and the
red curve represents the early exercised boundary of the Bermuda option. In
Figure 21.7 (b), the blue curve is the approximate option value, Ṽi−1. Define
the following step function

V̂155 =
401∑
j=1

Ṽ155(x
(j))1{X155∈A(j)},

where A(j) = [x(j)− (1− c)∆x, x
(j) + c∆x] and c is chosen to let the European

option price of X0 computed by proposed method meets that of the Black-
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Figure 14.7. (a) The intrinsic and continuation values at ti
(b) The approximate option value, Ṽi−1, at ti−1.

Scholes formula. The continuation value of x(h) at time t154 is given by

e−0.0015 E(V̂155 | x(h)) = e−0.0015
401∑
j=1

Ṽ155(x
(j))P(X155 ∈ A(j) | x(h))

= e−0.0015PhṼ155,

where Ph is the hth row of the transition matrix P = (phj)401×401 with

phj = P(X155 ∈ A(j) | x(h))

= Φ(x(j)+c∆x−x(h)−(r−q−0.5σ2)∆
σ
√

∆
)− Φ(x(j)−(1−c)∆x−x(h)−(r−q−0.5σ2)∆

σ
√

∆
),

Φ(·) is the standard normal cumulative distribution function and Ṽ155 =(
Ṽ155(x

(1)), · · · , Ṽ155(x
(401))

)�
are the approximate option values at time t155.

Therefore, the approximate option values of x(j)’s at time t154 are Ṽ154(x
(j)) =

max{100− 100 exp(x(j)), e−0.0015 E(V̂155 | x(j))}, j = 1, · · · , 401. Note that the
transition matrix P remains unchanged throughout the time. Proceeding the
above procedure backwards to time zero, one obtains the desired option value.

Table 14.1 presents the simulation results for different initial stock prices,
S0 = 90, 100, 110. In the table, we give the option prices obtained by the pro-
posed method and the methods by Ju (1998), denoted as EXP3, by and Lai
and AitSahalia (2001), denoted as LSP4. In approximating the early exercise
boundary of the Bermuda option, Ju (1998) adopts multipiece exponential
function and Lai and AitSahalia (2001) adopt a linear spline method. The
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S0 Bin. LSP4 EXP3 Alg.
90 (1) 20.08 20.08 20.08 20.09

100 q = 0.12 15.50 15.51 15.50 15.50
110 11.80 11.81 11.80 11.81
90 (2) 16.21 16.20 16.20 16.21

100 q = 0.08 11.70 11.70 11.70 11.71
110 8.37 8.37 8.36 8.37
90 (3) 13.50 13.49 13.49 13.50

100 q = 0.04 8.94 8.94 8.93 8.95
110 5.91 5.91 5.90 5.92
90 (4) 11.70 11.70 11.69 11.69

100 q = 0.00 6.93 6.93 6.92 6.93
110 4.16 4.15 4.15 4.16

Table 14.1. Bermudan put values of example 14.1 with pa-
rameters r = 0.08, σ = 0.20, K = 100, T = 3 and ∆ = 1/52.
Output of XFGBP1 .

values based on 10,000 steps of the binomial method are taken as the bench-
mark option prices. The results show that our approach is competitive and
comparable with the LSP4 and EXP3 methods.

2, with parameters r = 0.05, q1 = q2 = 0, σ1 = σ2 = 0.2 and the joint distri-
bution of the two log stock price processes is bivariate normal with correlation
coefficient ρ = 0.3. Consider a Bermudan put option on a geometric aver-
age with K = 100, T = 1, S0 = 100, ∆ = 1/12 (i.e. n = 12) and payoff
function g(St) = (K −

√
S1,tS2,t)

+. First, we confine the space of X12 to
[−0.57, 0.63]2, and partition the region with 25 equidistance partition points
in each dimension, that is we have 625 two-dimensional grid points, denoted
by x(1), · · · ,x(625). The transition matrix P = (phj)625×625 has entries

phj = P(Xi ∈ A(j) | x(h)) =
2∑

i1=1

2∑
i2=1

(−1)i1+i2CGa
0.3 (u1i1, u2i2),

where u�1 = Φ(
x

(j)
� +c∆x−x

(h)
� −0.03∆

0.2
√

∆
), u�2 = Φ(

x
(j)
� +c∆x−x

(h)
� −0.03∆

0.2
√

∆
), for � = 1, 2,

and CGa
0.3 is the Gaussian copula with correlation coefficient 0.3. Obviously,

the the entries of phj of the transition matrix are independent of the time
index. To decide the adjusting coefficient c of the grids, we demonstrate the

EXAMPLE 14.2 Assume now two underlying assets satisfying (14.1), i.e. d =
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European Bermudan
Copula T (year) Ben. (std.) Alg. Ben. Alg.

2-dim. Gaussian(0) 0.25 2.33 2.34 2.38 2.39
0.5 3.02 3.02 3.18 3.18
1 3.75 3.75 4.13 4.13

Gaussian(0.3) 0.25 2.69 2.69 2.74 2.75
0.5 3.50 3.50 3.67 3.67
1 4.38 4.37 4.79 4.79

Clayton(5) 0.25 3.30 (0.004) 3.30 3.37
0.5 4.33 (0.006) 4.33 4.52
1 5.46 (0.006) 5.48 5.94

Gumbel(5) 0.25 3.33 (0.004) 3.33 3.39
0.5 4.36 (0.005) 4.36 4.55
1 5.50 (0.008) 5.49 5.96

3-dim. Gaussian(0) 0.25 1.86 1.86 1.91 1.92
0.5 2.38 2.37 2.53 2.53

Gaussian(0.3) 0.25 2.41 2.41 2.47 2.47
0.5 3.13 3.11 3.29 3.28

Clayton(5) 0.25 3.27 (0.002) 3.27 3.35
0.5 4.29 (0.004) 4.29 4.49

Table 14.2. Multi-dimensional put option prices on a ge-
ometric average with parameters r = 0.05, σ = 0.2,
S0=K=100 and ∆ = 1/12 (year). Gaussian(ρ): ρ de-
notes the equi-correlation among securities. Clayton(α) and
Gumbel(α): α is the parameter of Clayton and Gumbel cop-
ulae. The Ben. values of the Gaussian cases are computed
by XFGBPgmeanR1 , while the Ben. values of the Clayton
and Gumbel cases are from XFGEPmean2MC (2 dimensional
case) and XFGEPmean3MC (3 dimensional case). The 2 and
3 dimensional Alg. values are obtained by XFGBPgmean2
and XFGBPgmean3 , respectively.

Gaussian copula case. In the case of Gaussian copula, this problem can also
be considered as a one-dimensional option pricing problem. Let S̄t denote the
geometric mean of S1,t and S2,t, that is S̄t =

√
S1,tS2,t. Since S1,t and S2,t

both are geometric Brownian motions, thus by Ito’s lemma we have

d log S̄t = (r̃ − 1

2
σ̃2)dt + σ̃dWt,

where Wt is a Wiener process, σ̃2 = 1
4(σ

2
1 + σ2

2 + 2ρσ1σ2), which is due to

the bivariate normal distributed assumption, and r̃ = r + 1
2 σ̃

2 − 1
4(σ

2
1 + σ2

2).
Consequently, the European put option values can be obtained by the following
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European Bermudan
Copula T (year) Ben. (std.) Alg. Alg.
Gaussian(0) 2/3 8.46 (0.006) 8.45 8.65

1 9.55 (0.009) 9.55 10.04
Gaussian(0.3) 2/3 7.90 (0.011) 7.89 8.07

1 8.93 (0.013) 8.93 9.36
Clayton(5) 2/3 6.73 (0.014) 6.74 6.92

1 7.66 (0.013) 7.61 8.02

Table 14.3. Multi-dimensional max call option prices with
parameters r = 0.05, q = 0.1, σ = 0.2, S0=K=100 and ∆ =
1/3 (year). The Ben. values are computed by XFGECmax2MC
and the Alg. values are from XFGBCmax2 .

formula

V0(S0) = e−rT E[(K − S̄T )+ | S0] = e−(r−r̃)T{Ke−r̃TΦ(−d2)− S̄0Φ(−d1)},
(14.5)

where d1 = log(S̄0/K)+(r̃+0.5σ̃2)T
σ̃
√

T
, d2 = d1 − σ̃

√
T and the second equality is

due to the Black-Scholes formula. The above result can also be extended to
d-dimensional European option on geometric average.

Assume that the random vector (log S1,t, · · · , log Sd,t)
� has a multivariate nor-

mal distribution with covariance matrix t·Σ = t·(σjk). Let S̄t = (S1,t · · ·Sd,t)
1/d,

thus log S̄t given S0 is normally distributed with mean log S̄0 +(r̃− 1
2σ̃

2)t and

variance σ̃2t, where σ̃ = 1
d

√∑
j,k σjk and r̃ = r + 1

2σ̃
2 − 1

2d

∑
j σjj. Thus

the European put option values on a d-dimensional geometric average can be
obtained by (14.5) analogously. And the corresponding Bermudan option can
also be valuated using this reduced one-dimensional version. Thus for Gaus-
sian copula, we can use (14.5) to obtain the benchmarks of the European and
Bermudan geometric option prices and the adjusting coefficient c can then be
determined.

Table 14.2 presents the results of several expiration dates T for Gaussian,
Clayton and Gumbel copulae. For Clayton and Gumbel copulae, since no
closed-form solutions exit, thus the benchmarks of European options are ob-
tained by Monte Carlo simulation. For the Gaussian cases, the estimated op-
tion values are all close to the benchmarks, which shows the proposed scheme
provides a promising approach for multi-dimensional options on a geometric
average.

EXAMPLE 14.3 Suppose two underlying assets satisfying (14.1) with r =
0.05, q1 = q2 = 0.1 and σ1 = σ2 = 0.2. Consider a Bermudan max-call
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T = 1/4 T = 1/2 T = 1
S0/K Euro. Berm. Euro. Berm. Euro. Berm.
0.9 7.86 20.49 4.01 20.49 1.18 20.49
1.0 2.41 3.90 1.45 4.27 0.48 4.42
1.1 0.62 0.84 0.49 1.11 0.19 1.24

Table 14.4. European and Bermudan put values of example
14.4 with parameters r = 0.5736, σ = 0.304, ∆ = 1/12 and
S0 = 184.375. Output of XFGBP1 .

option with K = 100, T = 2/3, 1, S0 = 100, ∆ = 1/3 (i.e. n = 3) and
payoff function g(St) = {max(S1,t, S2,t) − K}+. Table 14.3 gives the results
of Bermudan max call option prices for Gaussian copula with ρ = 0, 0.3, and
Clayton copula with α = 5. Since no closed-form solutions of European max-
call option exit for Gaussian and Clayton copulae, the European benchmarks
are obtained by Monte Carlo simulation. The simulation results show that all
the Bermudan options are more valuable than their European counterparts.

EXAMPLE 14.4 Consider a standard Bermuda put option on the IBM
shares. In (Tsay, 2005, p.259 − 260) a geometric Brownian motion process
(14.4) is fitted to the 252 daily IBM stock prices of 1998. The parameters’
estimated values are r = 0.5732, q = 0 and σ = 0.304. The stock price of
IBM on Dec. 31, 1998 is S0 = 184.375. Assume the possible early exercise
dates are at the end of each month, that is the length of the time interval
is ∆ = 1/12. Table 14.4 presents the European and Bermudan put option
values on Dec. 31, 1998, for different S0/K = 0.9, 1, 1.1, where K is the
strike price, and maturity time T = 1/4, 1/2, 1. The European put values
are computed by the Black-Scholes formula and the Bermudan put values are
computed by the proposed method with 401 pre-chosen equidistant grid points
as in example 14.1. The results show the Bermudan options are all more
valuable than their European counterparts.

14.5 Conclusion

The proposed method gives an innovative semiparametric approach to mul-
tidimensional Bermudan option pricing. The method is applicable to use
copula functions modeling multivariate asset dependence. The simulation
results show that the proposed approach is very tractable for numerical im-
plementation and provides an accurate method for pricing Bermudan options.
Although the transition matrix of the proposed method is a sparse matrix
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containing lots of zeros, the geometrically increasing rate (in time) of the
matrix size still impedes its application. To tackle this problem, Huang and
Guo (2007) apply important sampling idea to re-weight the grid probabilities
and keep the matrix size constant throughout the time.
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