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13.1 Introduction

Volatility modelling is the key to the theory and practice of pricing finan-
cial products. Asset allocation and portfolio as well as risk management
depend heavily on a correct modelling of the underlying(s). This insight
has spurred extensive research in financial econometrics and mathematical
finance. Stochastic volatility models with separate dynamic structure for the
volatility process have been in the focus of the mathematical finance liter-
ature, see Heston (1993) and Bates (2000), while parametric GARCH-type
models for the returns of the underlying(s) have been intensively analyzed in
financial econometrics.

The validity of these models in practice though depends upon specific dis-
tributional properties or the knowledge of the exact (parametric) form of
the volatility dynamics. Moreover, the evaluation of the predictive ability of
volatility models is quite important in empirical applications. However, the
latent character of the volatility poses a problem. To what measure should
the volatility forecasts be compared to? Conventionally, the forecasts of daily
volatility models, such as GARCH-type or stochastic volatility models, have
been evaluated with respect to absolute or squared daily returns. In view of
the excellent in-sample performance of these models, the forecasting perfor-
mance, however, seems to be disappointing.

The availability of ultra-high-frequency data opens the door for a refined
measurement of volatility and model evaluation. An often used and very
flexible model for logarithmic prices of speculative assets is the (continuous-
time) stochastic volatility model:

dYt = (µ + βσt)dt + σtdWt, (13.1)
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where σ2
t is the instantaneous (spot) variance, µ denotes the drift, β is the

risk premium, and Wt defines the standard Wiener process. The object of
interest is the amount of variation accumulated in a time interval ∆ (e.g.,
a day, week, month etc.). If n = 1, 2, . . . denotes a counter for the time
intervals of interest, then the term

σ2
n =

∫ n∆

(n−1)∆
σ2

t dt (13.2)

is called the actual volatility, see Barndorff-Nielsen and Shephard (2002).
The actual volatility is the quantity that reflects the market risk structure
(scaled in ∆) and is the key element in pricing and portfolio allocation. Actual
volatility (measured in scale ∆) is of course related to the integrated volatility:

V (t) =

∫ t

0
σ2

sds. (13.3)

It is worth noting that there is a small notational confusion here: the mathe-
matical finance literature would denote σt as “volatility” and σ2

t as “variance”,
see Nelson and Foster (1994), for example.

An important result is that V (t) can be estimated from Yt via the quadratic
variation:

[Yt]M =
∑

(Ytj − Ytj−1
)2, (13.4)

where t0 = 0 < t1 < · · · < tM = t is a sequence of partition points and
supj |tj+1 − tj| → 0. Andersen and Bollerslev (1998) have shown that

[Yt]M
p→ V (t), M →∞. (13.5)

This observation leads us to consider in an interval ∆ with M observations

RVn =
M∑

j=1

(Ytj − Ytj−1
)2 (13.6)

with tj = ∆{(n − 1) + j/M}. Note that RVn is a consistent estimator of
σ2

n and is called realized volatility. Barndorff-Nielsen and Shephard (2002)
point out that RVn − σ2

n is approximately mixed Gaussian and provide the
asymptotic law of √

M(RVn − σ2
n). (13.7)

The realized volatility turns out to be very useful in the assessment of the
validity of volatility models. For instance, reconciling evidence in favor of the
forecast accuracy of GARCH-type models is observed when using realized
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volatility as a benchmark rather than daily squared returns. Moreover, the
availability of the realized volatility measure initiated the development of a
new and quite accurate class of volatility models. In particular, based on
the ex-post observability of the realized volatility measure, volatility is now
treated as an observed rather than a latent variable to which standard time
series procedures can be applied.

The remainder of this chapter is structured as follows. We first discuss
the practical problems encountered in the empirical construction of realized
volatility which are due to the existence of market microstructure noise. Sec-
tion 13.3 presents the stylized facts of realized volatility, while Section 13.4
reviews the most popular realized volatility models. Section 13.5 illustrates
the usefulness of the realized volatility concept for measuring time-varying
systematic risk within a conditional asset pricing model (CAPM).

13.2 Market Microstructure Effects

The consistency of the realized volatility estimator builds on the notion that
prices are observed in continuous time and without measurement error. In
practice, however, the sampling frequency is inevitably limited by the actual
quotation or transaction frequency. Since high-frequency prices are subject to
market microstructure noise, such as price-discreteness, bid-and-ask bounce
effects, transaction costs etc., the true price is unobservable. Market mi-
crostructure effects induce a bias in the realized volatility measure, which can
straightforwardly be illustrated in the following simple discrete-time setup.
Assume that the logarithmic high-frequency prices are observed with noise,
i.e.,

Ytj = Y ∗
tj

+ εtj , (13.8)

where Y ∗
tj

denotes the latent true price. Moreover, the microstructure noise

εtj is assumed to be iid distributed with mean zero and variance η2, and is
independent of the true return. Let r∗tj denote the efficient return, then the
high-frequency continuously compounded returns

rtj = r∗tj + εtj − εtj−1
(13.9)

follow an MA(1) process. Such a return specification is well established in
the market microstructure literature and is usually justified by the existence
of the bid-ask bounce effect, see, e.g., Roll (1984). In this model, the realized
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volatility is given by

RVn =
M∑
i=1

(r∗tj)
2 + 2

M∑
j=1

r∗tj(εtj − εtj−1
) +

M∑
j=1

(εtj − εtj−1
)2. (13.10)

with

E[RVn] = E[RV ∗
n ] + 2Mη2. (13.11)

If the sampling frequency goes to infinity, we know from the previous section
that RV ∗

n consistently estimates σ2
n and, thus, the realized volatility based on

the observed price process is a biased estimator of the actual volatility with
bias term 2Mη2. Obviously, for M →∞, RVn diverges.
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Figure 13.1. Volatility signature plot for IBM, 2001-2006.
Average time between trades: 6.78 seconds. XFGsignature

This diverging behavior can also be observed empirically in so–called volatil-
ity signature plots. Figure 13.1 shows the volatility signature for one stock
of the IBM incorporation over the period ranging from January 2, 2001 to
December 29, 2006. The plot depicts the average annualized realized volatil-
ity over the full sample period constructed at different frequencies measured
in number of ticks (depicted in log scale). Obviously, the realized volatility
is large at the very high frequency, but decays for lower frequencies and sta-
bilizes around a sampling frequency of 300 ticks, which corresponds approx-
imately to a 30 minute sampling frequency, given that the average duration
between two consecutive trades is around 6.78 seconds.

Thus, sampling at a lower frequency, such as every 10, 15 or 30 minutes,
seems to alleviate the problem of market microstructure noise and has thus
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frequently been applied in the literature. This so–called sparse sampling,
however, comes at the cost of a less precise estimate of the actual volatility.
Alternative methods have been proposed to solve this bias-variance trade-off
for the above simple noise assumption as well as for more general noise pro-
cesses, allowing also for serial dependence in the noise and/or for dependence
between the noise and the true price process, which is sometimes referred to
as endogenous noise. A natural approach to reduce the market microstructure
noise effect is to construct the realized volatility measure based on prefiltered
high-frequency returns, using, e.g., an MA(1) model.

In the following we briefly present two more elaborate and under specific noise
assumptions consistent procedures for estimating actual volatility. Both have
been theoretically considered in several papers. The subsampling approach
originally suggested by Zhang et al. (2005) builds on the idea of averaging
over various realized volatilities constructed from different high-frequency
subsamples. For the ease of exposition we focus again on one time period,
e.g., one day, and denote the full grid of time points at which the M intradaily
prices are observed by Gt = {t0, . . . , tM}. The realized volatility that makes

use of all observations in the full grid is denoted by RV
(all)
n . Moreover, the grid

is partitioned into L nonoverlapping subgrids G(l), l = 1, . . . , L. A simple way
for selecting such a subgrid may be the so–called regular allocation, in which
the l-th subgrid is given by G(l) = {tl−1, tl−1+L, . . . , tl−1+MlL} for l = 1, . . . , L,
and Ml denoting the number of observations in each subgrid. E.g., consider
5-minute returns that can be measured at the time points 9:30, 9:35, 9:40,
. . . , and at the time points 9:31, 9:36, 9:41, . . . and so forth. In analogy to the

full grid, the realized volatility for subgrid l, denoted by RV
(l)
n , is constructed

from all data points in subgrid l. Thus, RV
(l)
n is based on sparsely sampled

data.

The actual volatility is then estimated by:

RV (ZMA)
n =

1

L

L∑
l=1

RV (l)
n − M̄

M
RV (all)

n , (13.12)

where M̄ = 1
L

∑L
l=1 Ml. The latter term on the right-hand side is included to

bias-correct the averaging estimator 1
L

∑L
l=1 RV

(l)
n . As the estimator (13.12)

consists of a component based on sparsely sampled data and one based on
the full grid of price observations, the estimator is also called the two time
scales estimator.

Given the similarity to the problem of estimating the long-run variance of a
stationary time series in the presence of autocorrelation, it is not surprising
that kernel-based methods have been developed for estimating the realized
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volatility. Most recently, Barndorff-Nielsen et al. (2008) proposed the flat-top
realized kernel estimator

RV (BHLS)
n = RVn +

H∗∑
h=1

K

(
h− 1

H∗

)
(γ̂h + γ̂−h) (13.13)

with

γ̂h =
M

M − h

M∑
j=1

rtjrtj−h
, (13.14)

and K(0) = 1, K(1) = 0. Obviously, the summation term on the right-
hand side is the realized kernel correction of the market microstructure noise.
Zhou (1996), who was the first to consider realized kernels, proposed (13.13)
with H = 1, while Hansen and Lunde (2006) allowed for general H but
restricted K(x) = 1. Both of these estimators, however, have been shown
to be inconsistent. Barndorff-Nielsen et al. (2008) instead propose several
consistent realized kernel estimators with an optimally chosen H∗, such as
the Tukey-Hanning kernel, i.e. K(x) = {1−cos π(1−x)2}/2, which performs
also very well in terms of efficiency as illustrated in a Monte Carlo analysis.
They further show, that these realized kernel estimators are robust to market
microstructure frictions that may induce endogenous and dependent noise
terms.

13.3 Stylized Facts of Realized Volatility

Figure 13.2 shows kernel density estimates of the plain and logarithmic daily
realized volatility in comparison to plots of a correspondingly fitted (log)
normal distribution based on the IBM data, 2001-2006. The pictures in the
top of Figure 13.2 show the unconditional distribution of the (plain) realized
volatility in contrast to a fitted normal distribution. As also confirmed by the
corresponding descriptive statistics displayed by Table 13.1, we observe that
realized volatility reveals severe right-skewness and excess kurtosis. This re-
sult might be surprising given that the realized volatility consists of the sum
of squared intra-day returns and thus central limit theorems should apply.
However, it is a common finding that intra-day returns are strongly serially
dependent requiring significantly higher intra-day sampling frequencies to ob-
serve convergence to normality. In contrast, the unconditional distribution of
the logarithmic realized volatility is well approximated by a normal distribu-
tion. The sample kurtosis is strongly reduced and is close to 3. Though slight
right-skewness and deviations from normality in the tails of the distribution
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Figure 13.2. Kernel density estimates of the (logarithmic) re-
alized volatility and of correspondingly standardized returns
for IBM, 2001-2006. The dotted line depicts the density
of the correspondingly fitted normal distribution. The left
column depicts the kernel density estimates based on a log
scale. XFGkernelcom

are still observed, the underlying distribution is remarkably close to that of
a Gaussian distribution.
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RVn ln RVn rn/
√

RVn

Mean 2.26 0.14 -.000
Median 1.05 0.05 -.013
Skewness 9.93 0.42 .035
Variance 22.57 1.13 .979
Kurtosis 150.47 3.43 2.349
1%-quantile 0.13 -2.03 -1.980
5%-quantile 0.24 -1.41 -1.558
95%-quantile 7.58 2.00 1.628
99%-quantile 17.66 2.87 2.141
LB(40) 2140.48 14213.07 39.780
p-value LB(40) 0.00 0.00 0.480

d̂ 0.38 0.62 -

Table 13.1. Descriptive statistics of the realized volatility, log
realized volatility and standardized returns, IBM stock, 2001-
2006. LB (40) denotes the Ljung-Box statistic based on 40
lags. The last row gives an estimate of the order of fractional
integration based on the Geweke and Porter-Hudak estimator.
XFGIBm

A common finding is that financial returns have fatter tails than the normal
distribution and reveal significant excess kurtosis. Though GARCH models
can explain excess kurtosis, they cannot completely capture these properties
in real data. Consequently, (daily) returns standardized by GARCH-induced
volatility, typically still show clear deviations from normality. However, a
striking result in recent literature is that return series standardized by the
square root of realized volatility, rn/

√
RV n, are quite close to normality. This

result is illustrated by the plots in the bottom of Figure 13.2 and the descrip-
tive statistics in Table 13.1. Though we observe deviations from normality
for returns close to zero resulting in a kurtosis which is even below 3, the fit
in the tails of the distribution is significantly better than that for plain log
returns. Summarizing the empirical findings from Figure 13.2, we can con-
clude that the unconditional distribution of daily returns is well described
by a lognormal-normal mixture. This confirms the mixture-of-distribution
hypothesis by Clark (1973) as well as the idea of the basic stochastic volatil-
ity model, where the log variance is modelled in terms of a Gaussian AR(1)
process.

Figure 13.3 shows the evolvement of daily realized volatility over the analyzed
sample period and the implied sample autocorrelation functions (ACFs). As
also shown by the corresponding Ljung-Box statistics in Table 13.1, the re-
alized volatility is strongly positively autocorrelated with high persistence.
This is particularly true for the logarithmic realized volatility. The plot
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Figure 13.3. Time evolvement and sample autocorrela-
tion function of the realized volatility for IBM, 2001-2006.
XFGrvtsacf

shows that the ACF decays relatively slowly providing hints on the existence
of long range dependence. Indeed, a common finding is that the realized
volatility processes reveal long range dependence which is well captured by
fractionally integrated processes. In particular, if RVn is integrated of the
order d ∈ (0, 0.5), it can be shown that

Var

[
h∑

j=1

RVn+j

]
≈ ch2d+1, (13.15)

with c denoting a constant. Then, plotting lnVar
[∑h

j=1 RVn+j

]
against lnh

should result in a straight line with slope 2d + 1. Most empirical studies
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strongly confirm this relationship and find values for d between 0.35 and 0.4
providing clear evidence for long range dependence. Estimating d using the
Geweke and Porter-Hudak estimator, we obtain d̂ = 0.38 for the series of
realized volatilities and d̂ = 0.62 for its logarithmic counterpart. Hence, for
both series we find clear evidence for long range dependence. However, the
persistence in logarithmic realized volatilities is remarkably high providing
even hints on non-stationarity of the process.

Summarizing the most important empirical findings, we can conclude that
the unconditional distributions of logarithmic realized volatility and of cor-
respondingly standardized log returns are well approximated by normal dis-
tributions and that realized volatility itself follows a long memory process.
These results suggest (Gaussian) ARFIMA models as valuable tools to model
and to predict (log) realized volatility.

13.4 Realized Volatility Models

As illustrated above, realized volatility models should be able to capture
the strong persistence in the sample autocorrelation function. While this
seemingly long-memory pattern is widely acknowledged, there is still no con-
sensus on the mechanism generating it. One approach is to assume that
the long memory is generated by a fractionally integrated process as origi-
nally introduced by Granger and Joyeux (1980) and Hosking (1981). In the
GARCH literature this has lead to the development of the fractionally inte-
grated GARCH model as, e.g., proposed by Baillie et al. (1996). For realized
volatility the use of a fractionally integrated autoregressive moving average
(ARFIMA) process was advocated, for example, by Andersen et al. (2003).
The ARFIMA(p, q) model is given by

φ(L)(1− L)d(yn − µ) = ψ(L)un, (13.16)

with φ(L) = 1−φ1L− . . .−φpL
p, ψ(L) = 1+ψ1L+ . . . ψqL

q, and d denoting
the fractional difference parameter. Moreover, un is usually assumed to be a
Gaussian white noise process, and yn denotes either the realized volatility (see
Koopman et al. (2005)) or its logarithmic transformation. Several extensions
of the realized volatility ARFIMA model have been proposed, accounting, for
example, for leverage effects (see Martens et al. (2004)), for non–Gaussianity
of (log) realized volatility or for time-variation in the volatility of realized
volatility (see Corsi et al. (2008)). Generally the empirical results show sig-
nificant improvements in the point forecasts of volatility when using ARFIMA
rather than GARCH-type models.
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An alternative model for realized volatility has been suggested by Corsi
(2004). The so-called heterogeneous autoregressive (HAR) model of realized
volatility approximates the long-memory pattern by a sum of multi-period
volatility components. The simulation results in Corsi (2004) show, that
the HAR model can quite adequately reproduce the hyperbolic decay in the
sample autocorrelation function of realized volatility even if the number of
volatility components is small. For the HAR model, let the k–period realized
volatility component be defined by the average of the single-period realized
volatilities, i.e.,

RVn+1−k:n =
1

k

k∑
j=1

RVn−j. (13.17)

The HAR model with the so-defined daily, weekly and monthly realized-
volatility components, is given by

log RVn = α0 + αd log RVn−1 + αw log RVn−5:n−1

+αm log RVn−21:n−1 + un, (13.18)

with un typically being a Gaussian white noise. The HAR model has become
very popular due to its simplicity in estimation and its excellent in-sample
fit and predictive ability (see e.g. Andersen et al. (2004), Corsi et al. (2008)).
Several extensions exist and deal, for example, with the inclusion of jump
measures (see Andersen et al. (2004)) or non-linear specifications based on
neural networks (see Hillebrand and Medeiros (2007)).

Alternative realized volatility models have been proposed in, e.g., Barndorff-
Nielsen and Shephard (2002), who consider a superposition of Ornstein–
Uhlenbeck processes, and in Deo et al. (2006), who specify a long-memory
stochastic volatility model. A recent and comprehensive review on realized
volatility models can also be found in McAleer and Medeiros (2008).

13.5 Time-Varying Betas

So far, our discussion focused on the measurement and modeling of the volatil-
ity of a financial asset using high-frequency transaction data. From a pricing
perspective, however, systematic risk is most important. In this section, we
therefore discuss, how high-frequency information can be used for the evalua-
tion and modeling of systematic risk. A common measure for the systematic
risk is given by the so-called (market) beta, which represents the sensitivity
of a financial asset to movements of the overall market. As the beta plays a
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crucial role in asset pricing, investment decisions, and the evaluation of the
performance of asset managers, a precise estimate and forecast of betas is
indispensable. While the unconditional capital asset pricing model implies
a linear and stable relationship between the asset’s return and the system-
atic risk factor, i.e., the return of the market, empirical results suggest that
the beta is time-varying, see, for example, Bos and Newbold (1984), Hafner
and Herwartz (1973), and Fabozzi and Francis (1978). Similar evidence has
been found for multi-factor asset pricing models, where the factor loadings
seem to be time-varying rather than constant. A large amount of research
has therefore been devoted to conditional CAPM and APT models, which
allow for time-varying factor loadings, see, for example, Dumas and Solnik
(1995), Ferson and Harvey (1991), Ferson and Harvey (1993), and Ferson and
Korajcyzyk (1995).

13.5.1 The Conditional CAPM

Below we consider the general form of the conditional CAPM. A similar dis-
cussion for multi-factor models can be found in Bollerslev and Zhang (2003).
Assume that the continuously compounded return of a financial asset i from
period n to n + 1 is generated by the following process

ri;n+1 = αi;n+1|n + βi;n+1|nrm;n+1 + ui;n+1, (13.19)

with rm;n+1 denoting the excess market return and αn+1|n denoting the inter-
cept that may be time-varying conditional on the information set available at
time n, as indicated by the subscript. The idiosyncratic risk un+1 is serially
uncorrelated, En(un+1) = 0, but may exhibit conditionally time-varying vari-
ance. Note that En(·) denotes the expectation conditional on the information
set available at time n. Moreover, we assume that E(rm;n+1un+1) = 0 for all
n. The conditional beta coefficient of the CAPM regression (13.19) is defined
as

βi;n+1|n =
Cov(ri;n+1, rm;n+1)

Var(ri;n+1)
. (13.20)

Now, assume that lending and borrowing at a one-period risk-free rate rf ;n
is possible. Then, the arbitrage-pricing theory implies that the conditional
expectation of the next period’s return at time n is given by

En(ri;n+1) = rf ;n + βi;n+1|nEn(rm;n+1). (13.21)

Thus, the computation of the future return of asset i requires to specify how
the beta coefficient evolves over time.
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The most common approach to allow for time-varying betas is to re-run the
CAPM regression in each period based on a sample of 3 or 5 years. We refer
to this as the rolling regression (RR) method. More elaborate estimates of
the beta can be obtained using the Kalman-filter, which builds on a state-
space representation of the conditional CAPM or by specifying a dynamic
model for the covariance matrix between the return of asset i and the market
return.

13.5.2 Realized Betas

The evaluation of the in-sample fit and predictive ability of various beta mod-
els is also complicated by the unobservability of the true beta. Consequently,
model comparisons are usually conducted in terms of implied pricing errors,
i.e., ei,n+1 = r̂i,n+1 − ri,n+1, with r̂i,n+1 = rf ;n + β̂i;n+1|n En(rm;n+1). Owing
to the discussion on the evaluation of volatility models, the question arises,
whether high-frequency data may also be useful for the evaluation of com-
peting beta estimates. The answer is a clear “yes”. In fact, high-frequency
based estimates of betas are quite informative for the dynamic behavior of
systematic risk. The construction of so-called realized betas is straightforward
and builds on realized covariance and realized volatility measures. In partic-
ular, denote the realized volatility of the market by RVm;n and the realized

covariance between the market and asset i by RCovm,i;n =
∑M

j=1 ri,tjrm,tj ,
where ri,tj and rm,tj denote the j-th high-frequency return of the asset and
the market, respectively, during day n. The realized beta is then defined as

β̂HF ;i;n =
RCovm,i;n

RVm;n
. (13.22)

Barndorff-Nielsen and Shephard (2004) show that the realized beta converges
almost surely for all n to the integrated beta over the time period from n−1 to
n, i.e., the daily systematic risk associated with the market index. Note that
the realized beta can also be obtained from a simple regression of the high-
frequency returns of asset i on the high-frequency returns of the market, see,
e.g., Andersen et al. (2006). The preciseness of the realized beta estimator
can easily be assessed by constructing the (1−α)-percent confidence intervals,
which have been derived in Barndorff-Nielsen and Shephard (2004) and are
given by

β̂HF ;i;n ± zα/2

√√√√√(
M∑

j=1

r2
m,tj

)−2

ĝi;n, (13.23)
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where zα/2 denotes the (α/2)-quantile of the standard normal distribution,

ĝi;n =
M∑

j=1

x2
i;j −

M−1∑
j=1

xi;jxi;j+1, (13.24)

and

xi;j = ri,tjrm,tj − β̂HF ;i;nr
2
m,tj

. (13.25)

The upper panel in Figure 13.4 presents the time-evolvement of the monthly
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Figure 13.4. Time evolvement and sample autocorrelation
function of monthly realized betas for IBM, 2001-2006. The
dashed lines in the upper panel present the 95% confidence
intervals of the realized beta estimator as given in (13.23).
The dashed lines in the lower panel depict the 95% Bartlett
confidence intervals. XFGbetatsacf
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realized beta for IBM incorporation over the period ranging from 2001 to
2006. We use the Dow Jones Industrial Average Index as the market in-
dex and construct the realized betas using 30 minute returns. The graph
also shows the 95%-confidence intervals of the realized beta estimator. The
time-varying nature of systematic risk emerges strikingly from the figure and
provides once more evidence for the relevance of its inclusion in asset pricing
models.

Interestingly, the sample autocorrelation function of the realized betas de-
picted in the lower panel of Figure 13.4 indicates significant serial correlation
over the short horizon. This dependency can be explored for the prediction
of systematic risk. Bollerslev and Zhang (2003), for example, find that an au-
toregressive model for the realized betas outperforms the RR approach both
in terms of forecast accuracy as well as in terms of pricing errors.

13.6 Summary

We review the usefulness of high-frequency data for measuring and modeling
actual volatility at a lower frequency, such as a day. We present the realized
volatility as an estimator of the actual volatility along with the practical prob-
lems arising in the implementation of this estimator. We show that market
microstructure effects induce a bias to the realized volatility and we discuss
several approaches for the alleviation of this problem. The realized volatility
is a more precise estimator of the actual volatility than the conventionally
used daily squared returns, and thus provides more accurate information on
the distributional and dynamic properties of volatility. This is important
for many financial applications, such as asset pricing, portfolio allocation or
risk management. As a consequence, several modeling approaches for real-
ized volatility exist and have been shown to usually outperform traditional
GARCH or stochastic volatility models, both in terms of in-sample as well
as out-of-sample performance. We further demonstrate the usefulness of the
realized variance and covariance estimator for measuring and modeling sys-
tematic risk. For the empirical examples provided in this chapter we use
tick-by-tick transaction data of one stock of the IBM incorporation and of
the DJIA index.
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