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Stochastic volatility (SV) models are workhorses for the modelling and pre-
diction of time-varying volatility on financial markets and are essential tools
in risk management, asset pricing and asset allocation. In financial mathe-
matics and financial economics, stochastic volatility is typically modeled in
a continuous-time setting which is advantageous for derivative pricing and
portfolio optimization. Nevertheless, since data is typically only observable
at discrete points in time, in empirical applications, discrete-time formula-
tions of SV models are equally important.

SV models can be economically motivated by the mixture-of-distribution hy-
pothesis (MDH) postulated by Clark (1973), whereby asset returns follow
a mixture of normal distributions with a mixing process depending on the
(unobservable) information arrival process. If the mixing process is positively
autocorrelated, the resulting return process reveals volatility clustering which
is a well-known and typical feature of financial return series. The MDH gives
rise to the idea that asset return volatility follows its own stochastic pro-
cess which is updated by unobservable innovations. This is in contrast to an
autoregressive conditional heteroscedasticity (ARCH) model introduced by
Engle (1982), where the conditional variance given the available information
set is a function of past observations. Denote ht as the time-t conditional

variance of asset return yt with conditional mean µt and yt − µt = h
1/2
t zt,

zt ∼ IID(0, 1), and let Ft denote the time-t information set. Then, ARCH
processes imply Var[ht|Ft−1] = 0, i.e., the variance is conditionally determin-
istic given the (observable) history of the process. Conversely, SV models
can be characterized by the property Var[ht|Ft−1] �= 0, i.e., there is an unpre-
dictable component in ht.

A main difficulty of the SV framework compared to the widely used (Gen-
eralized) ARCH model is that the likelihood of SV models is not directly
available. This requires the use of simulation techniques, like simulated max-
imum likelihood, method of simulated moments or Markov chain Monte Carlo
(MCMC) techniques. Because of the computational costs, SV models are
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still less popular in financial practice. Nevertheless, increasing computer
power and the further development of efficient sampling techniques weaken
this drawback noticeably. Furthermore, recent literature on the estimation of
realized volatility confirms the idea of the MDH that log returns follow a nor-
mal - log normal mixture (see, e.g., Andersen, Bollerslev, Diebold and Labys
(2003)) and thus strengthens the economic foundation of the SV model. Fi-
nally, SV models provide a natural framework to accommodate specific prop-
erties of financial return processes such as fat-tailedness, leverage effects and
the occurrence of jumps.

The main objective of this chapter is to present the most important specifica-
tions of discrete-time SV models, to illustrate the major principles of Markov
Chain Monte Carlo (MCMC) based statistical inference, and to show how
to implement these techniques to estimate SV models. In this context, we
provide a hands-on approach which is easily extended in various directions.
Moreover, we will illustrate empirical results based on different SV specifica-
tions using returns on stock indices and foreign exchange rates.

In Section 12.1, we will introduce the standard SV model. Section 12.2
presents several extended SV models. MCMC based Bayesian inference is
discussed in Section 12.3, whereas empirical illustrations are given in Sec-
tion 12.4.

12.1 The Standard Stochastic Volatility Model

The standard stochastic volatility model as introduced by Taylor (1982) is
given by

yt = exp(ht/2)ut, ut ∼ N(0, 1), (12.1a)

ht = µ + φ(ht−1 − µ) + ηt, ηt ∼ N(0, σ2
η), (12.1b)

where yt denotes the log return at time t, t = 1, . . . , T , and ht is the log
volatility which is assumed to follow a stationary AR(1) process with persis-
tence parameter |φ| < 1. The error terms ut and ηt are Gaussian white noise
sequences. The unconditional distribution of ht is given by

ht ∼ N
(
µh, σ

2
h

)
, µh = µ, σ2

h =
σ2

η

1− φ2 , (12.2)

where µh and σ2
h denote the unconditional mean and variance of returns,

respectively.
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Under the assumption that E[y4
t ] < ∞, the first two even moments of yt are

given by

E[y2
t ] = E[exp(ht)] E[u2

t ] = exp(µh + σ2
h/2), (12.3)

E[y4
t ] = E[exp(2ht)] E[u4

t ] = 3 exp(2µh + 2σ2
h). (12.4)

Consequently, the kurtosis is

K(yt)
def
=

E[y4
t ]

E[y2
t ]

2 = 3 exp(σ2
h) = 3 exp

(
σ2

η

1− φ2

)
(12.5)

with K(yt) > 3 as long as σ2
η > 0. Hence, the kurtosis generated by SV

processes increases with σ2
η and |φ| (given |φ| < 1).

The autocorrelation function (ACF) of y2
t is computed as

Corr(y2
t , y

2
t−τ) =

exp(σ2
hφ

τ)− 1

3 exp(σ2
h)− 1

, τ = 1, 2, . . . , (12.6)

and thus decays exponentially in τ . Consequently, for φ ∈ (0, 1), squared
returns are positively autocorrelated.

The estimation of SV models is not straightforward since the likelihood can-
not be computed in closed form. Let θ denote the collection of all model
parameters, e.g., θ = (µ, φ, σ2

η) for the standard SV model. Then, the likeli-
hood function is defined by

p(y|θ) def
=

∫
h

p(y|h, θ)p(h|θ)dh, (12.7)

where y = (y1, . . . , yT ) and h = (h1, . . . , hT ) are the vectors of returns and
latent volatility states, respectively. The so-called full-information likeli-
hood, corresponding to the conditional probability density function (p.d.f.),
p(y|h, θ), is specified by (12.1a), whereas the conditional p.d.f. of the volatil-
ity states, p(h|θ), is given by (12.1b). The likelihood function (12.7) is an
analytically intractable T -dimensional integral with respect to the unknown
latent volatilities. In the econometric literature, several estimation methods
have been proposed, including generalized method of moments (Melino and
Turnbull, 1990), quasi-maximum likelihood estimation (Harvey, Ruiz, and
Shephard, 1994), efficient method of moments (Gallant, Hsie, and Tauchen,
1997), simulated maximum likelihood (Danielsson, 1994) and efficient impor-
tance sampling (Liesenfeld and Richard, 2003). Markov Chain Monte Carlo
(MCMC) techniques have been introduced by Jacquier, Polson, and Rossi
(1994) and Kim, Shephard, and Chib (1998). More details on MCMC-based
inference will be given in Section 12.3.
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12.2 Extended SV Models

12.2.1 Fat Tails and Jumps

Though the standard SV model is able to capture volatility clustering typ-
ically exhibited by financial and economic time series, the model implied
kurtosis is often far too small to match the sample kurtosis observed in most
financial return series. See, for example, Liesenfeld and Jung (2000) and
Chib, Nardari, and Shephard (2002). An obvious reason is that a normal
- log normal mixture as implied by the standard SV model is not flexible
enough to capture the fat-tailedness commonly observed in financial return
distributions. A further reason is that the basic SV model cannot account
for potential jumps in the return process.

In this section, we discuss two SV specifications taking into account both
pitfalls. The first one is an extension of the standard SV model allowing the
error term ut to be Student-t distributed resulting in the so-called SVt model.
In the second approach, a jump component is introduced in the measurement
equation in (12.1). This will lead to the so-called SVJ model.

The SVt Model

The SVt model is specified by

yt = exp(ht/2)ut, ut ∼ tv, (12.8a)

ht = µ + φ(ht−1 − µ) + ηt, ηt ∼ N(0, σ2
η), (12.8b)

where ut follows a standardized t-distribution with v > 2 degrees of freedom.
The model can be alternatively represented by a scale mixture of normal
distributions. Let λt denote an i.i.d. random variable following an inverse-
gamma distribution. Then, the SVt model can be rewritten as

yt = exp(ht/2)
√

λtut, ut ∼ N(0, 1), (12.9a)

ht = µ + φ(ht−1 − µ) + ηt, ηt ∼ N(0, σ2
η), (12.9b)

λt ∼ Inv-Gamma(v/2, v/2), v > 2, (12.9c)

where λt itself is a latent variable. The representation of the SVt model in
terms of a scale mixture is particularly useful in an MCMC context since it
converts a non-log-concave sampling problem into a log-concave one. This
allows for sampling algorithms which guarantee convergence in finite time,
see ,e.g., Frieze, Kannan and Polson (1994).
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Allowing log returns to be Student-t distributed naturally changes the be-
havior of the stochastic volatility process. In the standard SV model, large
values of |yt| induce large values of ht. In contrast, with an additional source
of flexibility, λt, the SVt model can caputure large values of |yt| without
necessarily increasing ht. A tpyical consequence is that SVt models imply a
higher persistence in volatility dynamics than the standard SV model.

Employing simulated maximum likelihood methods Liesenfeld and Jung (2000)
provide an estimate ν̂ = 6.31 for the USD/DM foreign exchange (FX) rate
from 1980 to 1990, and a value of 6.30 for the USD/JPY FX rate over 5
years from 1981 to 1985. Chib et al. (2002) estimate the SVt model based
on MCMC techniques and report an estimate ν̂ = 12.53 for daily S&P 500
returns between July 1962 and August 1997.

The SV Model with Jump Components

The question of to which extent asset return processes are driven by contin-
uous and/or jump components is an ongoing topic in the current literature.
Both (G)ARCH and standard SV models rest on the assumption of a contin-
uous price process and thus are not able to accommodate jumps in returns.
The latter is particularly important during periods of news arrivals when the
market gets under stress and becomes less liquid. However, the SV frame-
work allows for a natural inclusion of a jump component in the return process.
This yields the SVJ model given by

yt = ktqt + exp(ht/2)ut, ut ∼ N(0, 1), (12.10)

ht = µ + φ(ht−1 − µ) + ηt, ηt ∼ N(0, σ2
η), (12.11)

kt ∼ N(αk, βk), (12.12)

qt ∼ B(κ), (12.13)

where qt is a Bernoulli random variable taking on the value one whenever
a jump occurs with probability κ, and is zero otherwise. The jump size
is represented by the time-varying random variable kt which is assumed to
follow a normal distribution with mean αk and variance βk. Both qt and kt

are latent variables. Then, the model is based on three latent components,
ht, qt, and kt.

As in the SVt model, the inclusion of a jump component influences the proper-
ties of the stochastic volatility process. Large values of |yt| are now attributed
rather to the the jump component than to the volatility process. As in the
SVt model this typically induces a higher persistence in the volatility process.

Eraker, Johannes, and Polson (2003) estimate the number of jumps in returns
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to be approximately 1.5 per year for daily S&P 500 returns from 1980 to 1999,
and 4.4 per year for NASDAQ 100 index returns from 1985 to 1999. Chib
et al. (2002) estimate 0.92 jumps per year for daily S&P 500 returns covering
a period from 1962 to 1997.

Similarly, jump components can be also included in the volatility process in
order to capture instantaneous movements in volatility. Bates (2000) and
Duffie, Pan, and Singleton (2000) provide evidence that both jumps in re-
turns and volatilities are important to appropriately capture the dynamics in
financial return processes. For S&P 500 returns from 1980 to 1999, Eraker
et al. (2003) estimate 1.4 volatility jumps per year.

12.2.2 The Relationship Between Volatility and Returns

Studying the relation between expected stock returns and expected variance
is a fundamental topic in financial economics. Though a positive relation-
ship between expected returns and expected variances is consistent with the
notion of rational risk-averse investors requiring higher expected returns as
a risk premium during volatile market periods, it is not consistently sup-
ported by empirical research. Whereas French, Schwert, and Stambaugh
(1987) and Campbell and Hentschel (1992) find positive relationships be-
tween expected risk premia and conditional volatility, several other studies
find converse dependencies. In fact, there is evidence that unexpected returns
and innovations to the volatility process are negatively correlated. This can
be explained either by the volatility feedback theory by French et al. (1987),
or by the well-known leverage effect discussed by Black (1976).

In this section, we will discuss two types of SV models allowing the return
and volatility process to be correlated, namely the SV-in-Mean (SVM) model
and the Asymmetric SV (ASV) model. While the SVM model includes the
volatility component directly in the mean equation, the ASV model allows
for mutual correlations between return and volatility innovations.

The SV-in-Mean Model

The SV-in-Mean (SVM) model is given by

yt = d · ht + exp(ht/2)ut, ut ∼ N(0, 1), (12.14a)

ht = µ + φ(ht−1 − µ) + ηt, ηt ∼ N(0, σ2
η), (12.14b)

where the parameter d captures the relationship between returns and both
expected as well as unexpected volatility components. This can be seen by
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rewriting (12.14a) as

yt = d · ht|t−1 + d
(
ht − ht|t−1

)
+ exp(ht/2)ut, (12.15)

where ht|t−1 denotes the expected volatility defined by the conditional vari-
ance at time t given the information available at time t− 1. Accordingly, the
term (ht − ht|t−1) gives the innovation to the volatility process.

French et al. (1987) regress monthly excess returns of U.S. stock portfolios on
both expected and unexpected volatility components stemming from ARMA
models based on daily data. Excluding the unexpected volatility component
results in a weakly positive relationship between excess returns and volatility.
In contrast, including both volatility components does not only result in a
significantly negative impact of the volatility innovation but also reverses the
sign of the ex ante relationship. Hence, the negative relationship between un-
expected returns and innovations to the volatility process seems to dominate
the weaker, presumably positive, relation between the expected components.

The Asymmetric SV Model

Empirical evidence for ’good’ and ’bad’ news having different effects on the
future volatility is typically referred to as the leverage or asymmetric effect.
According to the leverage effect, an unexpected drop in prices (’bad’ news)
increases the expected volatility more than an unexpected increase (’good’
news) of similar magnitude. According to Black (1976) this is due to asym-
metric effects of changes of the firm’s financial leverage ratio. In SV models,
leverage effects are captured by allowing the observation error ut and the
future process error ηt+1 to be correlated. Then, the ASV model is specified
by

yt = exp(ht/2)ut, (12.16a)

ht = µ + φ(ht−1 − µ) + ηt, (12.16b)(
ut

ηt+1

)
∼ N

{(
0
0

)
,

(
1 ρση

ρση ση

)}
, (12.16c)

where ρ denotes the correlation between ut and ηt+1.

The ASV model has been extensively studied in the literature. Harvey and
Shephard (1996) estimate the model using quasi-maximum likelihood provid-
ing ρ̂ = −0.66 for daily U.S. stock returns ranging from 1962 to 1987. Based
on the same data, Sandmann and Koopman (1998) and Jacquier, Polson, and
Rossi (2004) estimate an ASV specification, where the contemporaneous re-
turn and volatility are correlated. Using simulated MLE methods and MCMC
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based Bayesian inference, the two studies provide estimates of ρ̂ = −0.38 and
ρ̂ = −0.48, respectively.

12.2.3 The Long Memory SV Model

In the previous sections, we have considered a first order autoregressive pro-
cess for the log volatility ht. This induces that the autocorrelations of ht

decay geometrically and volatility is said to exhibit short memory. However,
empirical autocorrelations for absolute and squared returns typically decay
more slowly and thus are not geometrically bounded. This implies so-called
long range dependence or long memory effects. See, for example, Bollerslev
and Mikkelsen (1996). One possibility to capture such effects is to allow for
fractionally integrated processes, which have been developed and extensively
studied over the last 25 years, see, e.g., Granger and Joyeux (1980), and Be-
ran (1994), among others. Long memory SV models have been introduced
by Breidt, Carto, and de Lima (1998), Harvey (1998), and Arteche (2004).
Then, the log volatility process follows an ARFIMA(p, d, q) process given by

yt = exp(ht/2)ut, ut ∼ N(0, 1), (12.17)

φ(L)(1− L)d(ht − µ) = θ(L)ηt, ηt ∼ N(0, σ2
η), (12.18)

where d denotes the fractional differencing parameter and L denotes the lag
operator with

φ(L) = 1−
p∑

i=1

φiL
i, θ(L) = 1 +

q∑
i=1

θiL
i, (12.19)

and the roots of the polynomials φ(·) and θ(·) lying strictly outside the unit
circle. If d ∈ (−0.5, 0.5), the volatility process reveals long memory and
is weakly stationary. The fractional differencing operator (1 − L)d can be
expressed in terms of the series expansion

(1− L)d =
∞∑

k=0

Γ(d + 1)

Γ(k + 1)Γ(d− k + 1)
(−1)kLk, (12.20)

with Γ(·) denoting the gamma function (see, e.g., Beran (1994)).

The autocorrelation of log h2
t is derived, e.g., by Baillie (1996), Breidt et al.

(1998), or Harvey (1998). It is asymptotically proportional to π2d−1, as long
as d ∈ (−0.5, 0.5). Similar asymptotic results are applicable to |yt| and y2

t .

Breidt et al. (1998) estimate the Fractionally Integrated SV (FISV) model by
maximizing the spectral quasi-likelihood and obtain estimates of d = 0.44 and
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φ = 0.93 for daily returns of a value-weighted market portfolio of U.S. stocks
between 1962 and 1989. Gallant et al. (1997) use efficient method of moments
techniques to provide estimates of d ranging between 0.48 and 0.55 for a
series of daily returns from the S&P composite price index ranging from
1928 to 1987. Brockwell (2005) develops an MCMC sampling algorithm for
the estimation of the FISV model and provides d = 0.42 for daily ASD-USD
FX rates between 1999 and 2004.

12.3 MCMC-Based Bayesian Inference

In this section, we will give a brief review of MCMC-based Bayesian inference
and will illustrate its application to estimate the standard SV model. For an
introduction to Bayesian econometrics, see, for example, Koop (2006) and
Greenberg (2008).

12.3.1 Bayes’ Theorem and the MCMC Algorithm

Let θ denote a vector of model parameters including all latent variables, and
let y collect the observed data. By considering θ to be a random vector, its
inference is based on the posterior distribution, p(θ|y), which can be repre-
sented by Bayes’ theorem

p(θ|y) ∝ p(y|θ)p(θ), (12.21)

where p(y|θ) denotes the likelihood function depending on the model param-
eters and the data y. Correspondingly, p(θ) defines the prior distribution
reflecting subjective prior beliefs on the distribution of θ. Consequently, the
posterior distribution p(θ|y) can be viewed as a combination of objective and
subjective information. If the prior is noninformative, Bayesian inference for
the parameter vector θ is equivalent to likelihood-based inference.

The principle of MCMC-based Bayesian inference is to simulate p(θ|y) based
on a Markov chain of random draws stemming from a family of candidate-
generating densities from which it is easy to sample. Let x ∈ R

d denote a
random variable (in the given context it corresponds to θ) following a Markov
chain with transition kernel p(x, y) corresponding to the conditional density of
y given x. The invariant distribution is given by π∗(y) =

∫
Rd p(x, y)π∗(x)dx.

An important result in Markov chain theory is that if p(x, y) satisfies the
reversibility condition

f(x)p(x, y) = f(y)p(y, x), (12.22)
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• For g = 1, . . . , G:
1. Generate Y from q(x(j), y) and U from U[0, 1].

2. If U ≤ α(x(j), Y ) = min
{

f(Y )q(Y,x(j))
f(x(j))q(x(j),Y ) , 1

}
Set x(j+1) = Y .

Else
Set x(j+1) = x(j).

3. Return {x(1), x(2), . . . , x(G)}.

Figure 12.1. The Metropolis-Hasings Sampling Algorithm

then, f(·) is the invariant density for the kernel p(·), i.e., f(·) = π∗(·).
An important MCMC technique is the Metropolis-Hastings (M-H) algorithm
as developed by Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller (1953)
and generalized by Hastings (1970). The major idea is to build on (12.22)
and finding a reversible kernel whose invariant distribution equals the target
distribution f(·). This is performed by starting with an irreversible kernel
(proposal density) q(y, x) for which f(x)q(x, y) > f(y)q(y, x), i.e., loosely
speaking, the process moves from x to y too often and from y to x too rarely.
This can be corrected by introducing a probability α(x, y) < 1 that the move
is made. I.e., we choose α(x, y) such that

f(x)α(x, y)q(x, y) = f(y)α(y, x)q(y, x). (12.23)

It is easily shown that this relationship is fulfilled for

α(x, y) =

{
min

{
f(y)q(y,x)
f(x)q(x,y) , 1

}
, if f(x)q(x, y) �= 0,

0, otherwise.
(12.24)

This yields a transition kernel qMH(x, y) satisfying the reversibility condition
and is defined by

qMH(x, y)
def
= q(x, y)α(x, y), x �= y. (12.25)

The resulting M-H sampling algorithm is summarized by Figure 12.1.

A crucial issue is an appropriate choice of the family of candidate-generating
densities. Depending on the form and the complexity of the sampling prob-
lem, various techniques have been proposed in the literature. The proba-
bly most straightforward technique is proposed by Metropolis, Rosenbluth,
Rosenbluth, Teller, and Teller (1953) suggesting a random walk chain, where
q(x, y) = q0(y − x), and q0(·) is a multivariate density. Then, y is drawn
from y = x + z with z following q0. If q0 is symmetric around zero, we
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have q(x, y) = q(y, x) and thus α(x, y) = f(y)/f/(x). A further simple
choice of candidate-generating densities is proposed by Hastings (1970) and
is given by q(x, y) = q0(y), i.e., y is sampled independently from x resulting
in an independence chain. Then, α(x, y) = f(y)/f(x) · q(x)/q(y). A popular
and more efficient method is the acceptance-rejection (A-R) M-H sampling
method which is available whenever the target density is bounded by a density
from which it is easy to sample. If the target density is fully bounded, the
M-H algorithm is straightforwardly combined with an acceptance-rejection
step. This principle will be illustrated in more detail in the next section in
order to sample the latent volatility states ht. A more sophisticated M-H
A-R algorithm which does not need a blanketing function but only a pseudo-
dominating density is proposed by Tierney (1994).

If the dimension of x is high, the M-H algorithm is facilitated by applying it
to blocks of parameters. For instance, if the target density can be expressed
in terms of two blocks of variables, i.e., f(x1, x2), the M-H algorithm allows
to sample from each block xi given the other block xj, j �= i. Then, the
probability for moving from x1 to the candidate value Y1 given x2 is

α(x1, Y1|x2) =
f(Y1, x2)q1(Y1, x1|x2)

f(x1, x2)q1(x1, Y1|x2)
. (12.26)

If the kernel q1(x1, Y1|x2) is the conditional distribution f(x1|x2), then

α(x1, Y1|x2) =
f(Y1, x2)f(x1|x2)

f(x1, x2)f(Y1|x2)
= 1 (12.27)

since f(Y1|x2) = f(Y1, x2)/f(x2) and f(x1|x2) = f(x1, x2)/f(x2). If f(x1|x2)
is available for direct sampling, the resulting algorithm is referred to as the
Gibbs sampler, see (Geman and Geman, 1984).

Applying the M-H (or Gibbs) algorithm to sub-blocks of the vector x is
a common proceeding in Bayesian statistics if the posterior distribution is
of high dimension. This is particularly true for SV models where θ also
includes the unobservable volatility states. In this context, the posterior
distribution p(θ|y) is broken up into its complete conditional distributions
p(θi|θ−i, y), i = 1, . . . , N , where N is the number of conditional distributions,
θi denotes the i-th block of parameters and θ−i denotes all elements of θ
excluding θi. The theoretical justification for this proceeding is given by the
theorem by Hammersley and Clifford (71) which is proven by Besag (1974).
The intuition behind this theorem is that the knowledge of the complete set



260 Nikolaus Hautsch and Yangguoyi Ou

of conditional posterior distributions,

p(θ1|θ2, θ3, . . . , θk, y),

p(θ2|θ1, θ3, . . . , θk, y),
...

p(θk|θ1, θ2, . . . , θk−1, y),

up to a constant of proportionality, is equivalent to the knowledge of the pos-
terior distribution p(θ1, . . . , θk|y). This allows applying the M-H algorithm to
sub-blocks of θ leading to the Gibbs sampler if the individual conditional pos-
terior distributions p(θi|θ−i, y) are directly available for sampling. In practice,
Gibbs and M-H algorithms are often combined resulting in “hybrid” MCMC
procedures as also illustrated in the next section.

The implementation of MCMC algorithms involves two steps. In the first
step, M-H algorithms generate a sequence of random variables, {θ(i)}G

i=1, con-
verging to the posterior distribution p(θ|y). The algorithm is applied until
convergence is achieved. In practice, the convergence of the Markov chain
can be checked based on trace plots, autocorrelation plots or convergence
tests, such as Geweke’s Z-score test, Heidelberg-Welch’s stationarity test and
the half-width test, see, e.g., Cowles and Carlin (1996). In the second step,
Monte Carlo methods are employed to compute the posterior mean of the
parameters. In particular, given the generated Markov chain, {θ(g)}G

g=1, the

population mean E[f(θ)|y] =
∫

f(θ)p(θ|y)dθ can be consistently estimated
by the sample mean

1

G− g1

G∑
g=g1+1

f(θ(g)), (12.28)

where g1 is the number of burn-in periods which are discarded to reduce the
influence of initial values (θ(0)). The length of the burn-in period typically
consists of 10%− 15% of all MCMC iterations.

Consequently, the implementation of MCMC techniques requires both the
convergence of the Markov chain and the convergence of the sample aver-
age. If the Markov chain is irreducible, aperiodic and positive recurrent, the
Markov chain {Θ(g)}G

g=1 generated from the MCMC algorithm converges to
its invariant distribution, i.e.

θ(g) L→ θ for g →∞, (12.29)

where θ ∼ p(θ|y). For more details, see, e.g.,Tierney (1994) or Greenberg
(2008).
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The convergence of the sample average of a function m(·) of {Θ(g)}G
g=1 to its

population counterpart,

1

G

G∑
g=1

m(θ(g))
a.s.→ E[m(θ)|y] for G →∞ (12.30)

is ensured by the ergodicity of the Markov chain. As shown by Tierney
(1994), the latter property is sufficient to ensure also the convergence of the
Markov chain to its invariant distribution.

12.3.2 MCMC-Based Estimation of the Standard SV
Model

In this section, we will illustrate the estimation of the standard SV model
using the M-H algorithm. For convenience, we restate model (12.1) as given
by

yt = exp(ht/2)ut, ut ∼ N(0, 1), (12.31a)

ht = µ + φ(ht−1 − µ) + ηt, ηt ∼ N(0, σ2
η) (12.31b)

with θ = (µ, φ, σ2
η) and h = (h1, · · · , hT ). Applying Bayes’ theorem we have

p(θ, h|y) ∝ p(y|θ, h)p(h|θ)p(θ). (12.32)

Bayesian inference for the model parameters θ and the volatility states h
is based on the posterior distribution p(θ, h|y) which is proportional to the
product of the likelihood function p(y|θ, h) specified by (12.31a), the condi-
tional distribution of the volatility states p(h|θ) given by (12.31b), and the
prior distribution p(θ).

The model is completed by specifying the prior distributions for θ. We assume
that the model parameters are a priori independently distributed as follows:

p(µ) = N(αµ, β
2
µ), (12.33a)

p(φ) = N(αφ, β
2
φ)1(−1, +1)(φ), (12.33b)

p(σ2
η) = IG(ασ, βσ), (12.33c)

where IG(·, ·) denotes an inverse-gamma distribution and N(a, b)1(−1, +1)(x)
defines a normal distribution with mean a, variance b, which is truncated
between −1 and 1. This rules out near unit-root behavior of φ. The pa-
rameters α(·) and β(·), characterizing the prior distributions, are called hyper-
parameters, which are specified by the researcher.
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• Initialize h(0), µ(0), φ(0) and σ2
η
(0)

.
• For g = 1, . . . , G:

1. For t = 1, . . . , T :

Sample h
(g)
t from p(ht|y, h

(g)
<t , h

(g−1)
>t , µ(g−1), φ(g−1), σ2

η
(g−1)

).

2. Sample σ2
η
(g)

from p(σ2
η|y, h(g), µ(g−1), φ(g−1)).

3. Sample φ(g) from p(φ|y, h(g), σ2
η
(g)

, µ(g−1)).

4. Sample µ(g) from p(µ|y, h(g), φ(g), σ2
η
(g)

).

Figure 12.2. Single-move Gibbs sampler for the standard SV
model

Given the prior distributions, the conditional posteriors for the model pa-
rameters are derived as

p(µ|y, h, φ, σ2
η) ∝ p(y|h, µ, φ, σ2

η)p(h|µ, φ, σ2
η)p(µ), (12.34a)

p(φ|y, h, σ2
η, µ) ∝ p(y|h, µ, φ, σ2

η)p(h|µ, φ, σ2
η)p(φ), (12.34b)

p(σ2
η|y, h, µ, φ) ∝ p(y|h, µ, φ, σ2

η)p(h|µ, φ, σ2
η)p(σ2

η). (12.34c)

Since the volatility states h subsume all information about (µ, φ, σ2
η), the full

information likelihood function p(y|h, µ, φ, σ2
η) is a constant with respect to

the model parameters, and thus can be omitted.

By successively conditioning we get

p(h|µ, φ, σ2
η) = p(h1|µ, φ, σ2

η)
T−1∏
t=1

p(ht+1|ht, µ, φ, σ2
η), (12.35)

where p(ht+1|ht, µ, φ, σ2
η) is specified according to (12.31b). Moreover, insert-

ing p(σ2
η), p(φ), p(µ), given by (12.33), and p(h|µ, φ, σ2

η), given by (12.35), into
(12.34), the full conditional posteriors can be reformulated, after eliminating
constant terms, as (for details, see Appendix 12.5.1)

p(σ2
η|y, h, µ, φ) ∝ IG(α̂σ, β̂σ), (12.36)

p(φ|y, h, σ2
η, µ) ∝ N(α̂φ, β̂

2
φ)1(−1, +1)(φ), (12.37)

p(µ|y, h, φ, σ2
η) ∝ N(α̂µ, β̂

2
µ), (12.38)
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where the hyper-parameters are estimated by

α̂σ = ασ +
T

2
, (12.39)

β̂σ = βσ +
1

2

{
T−1∑
t=1

(ht+1 − µ− φ(ht − µ))2 + (h1 − µ)2(1− φ2)

}
, (12.40)

α̂φ = β̂2
φ

{∑T−1
t=1 (ht+1 − µ)(ht − µ)

σ2
η

+
αφ

β2
φ

}
, (12.41)

β̂2
φ =

{∑T−1
t=1 (ht − µ)2 − (h1 − µ)2

σ2
η

+
1

β2
φ

}−1

, (12.42)

α̂µ = β̂2
µ

{
h1(1− φ2) + (1− φ)

∑T−1
t=1 (ht+1 − φht)

σ2
η

+
αµ

β2
µ

}
, (12.43)

β̂2
µ =

{
1− φ2 + (T − 1)(1− φ)2

σ2
η

+
1

β2
µ

}−1

. (12.44)

Since it is possible to directly sample from the conditional posteriors, we
obtain a straightforward (single-move) Gibbs sampler which breaks the joint
posterior p(θ, h, y) into T +3 univariate conditional posteriors. The resulting

Gibbs algorithm is summarized in Figure 12.2, where the subscripts of h
(·)
<t

and h
(·)
>t denote the periods before and after t respectively.

The most difficult part of the estimation of SV models is to effectively sample
the latent states ht from their full conditional posterior. In this context, an
M-H A-R algorithm can be applied. Below we briefly illustrate a sampling
procedure which is also used by Kim et al. (1998). In this context, Bayes’
theorem implies

p(ht|y, h−t, θ) ∝ p(yt|ht, θ)p(ht|h−t, θ), (12.45)

=
1√

2π exp(ht)
exp

{
− y2

t

2 exp(ht)

}
p(ht|h−t, θ), (12.46)

= f ∗(yt, ht, θ)p(ht|h−t, θ), (12.47)

where, h−t denotes all elements of h = (h1, · · · , hT ) excluding ht. Exploiting
the Markovian structure of the SV model we can derive

p(ht|h−t, θ) = p(ht|ht−1, ht+1, θ) = pN(ht|αt, β
2), (12.48)

where, pN(x|a, b) denotes the normal density function with mean a and vari-
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ance b, and

αt = µ +
φ{(ht−1 − µ) + (ht+1 − µ)}

(1 + φ2)
, β2 =

σ2
η

1 + φ2 . (12.49)

An acceptance-rejection step is implemented exploiting the fact that exp(−ht)
is bounded by a linear function in ht. By applying a Taylor expansion for
exp(−ht) around αt we obtain

log f ∗(yt, ht, θ) ≤ −
1

2
log(2π)− 1

2
ht −

y2
t

2
[exp(−αt){1 + αt − ht exp(−αt)}]

(12.50)
def
= log g∗(yt, ht, θ). (12.51)

Since p(ht|h−t, θ) = pN(ht|αt, β
2), we have

p(ht|h−t, θ)f
∗(yt, ht, θ) ≤ pN(ht|αt, β

2)g∗(yt, ht, θ). (12.52)

Then, the right-hand side of (12.52), after eliminating constant terms, can
be represented by

pN(ht|αt, β
2)g∗(yt, ht, θ) = k · pN(ht|α∗t , β2), (12.53)

where k is a real valued constant, and pN(ht|α∗t , β2) denotes a normal density

with mean α∗t = αt + β2

2 (y2
t exp{−αt} − 1) and variance β2.

Hence, since the target distribution, p(ht|h−t, θ)f
∗(yt, ht, θ), is bounded by

pN(ht|α∗t , β2) up to a constant k, the acceptance-rejection method can be
applied to sample ht from p(ht|y, h−t, θ) with acceptance probability

P

{
U ≤ f ∗∗(yt, ht, θ)p(ht|h−t, θ)

kpN(ht|α∗t , β2)

}
=

f ∗∗(yt, ht, θ)

g∗∗(yt, ht, θ)

where U ∼ U[0, 1]. Figure 12.3 summarizes the A-R algorithm to sample the
latent volatility states ht.

12.4 Empirical Illustrations

12.4.1 The Data

Below we will illustrate estimations of the standard SV model, the SVt model
and the SVJ model based on time series of the DAX index, the Dow Jones
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• For t = 1, · · · , T :
1. Draw h∗t from pN(ht|α∗t , β2).
2. Draw U from U[0, 1].
3. If U ≤ f ∗(yt, h

∗
t , θ)/g

∗(yt, h
∗
t , θ)

set ht = h∗t .
Else

go to step 1.

Figure 12.3. A-R method to sample the volatility states ht

Mean SD Median 0.1-q 0.9-q Skewness Kurtosis
DAX 3.7e-04 0.013 5.0e-4 -0.021 0.006 -0.295 7.455

Dow Jones 3.6e-04 0.009 3.0e-4 -0.009 0.008 -0.230 8.276
GBP/USD 3.6e-06 0.005 <1.0e-9 -0.006 0.009 -0.126 5.559

Table 12.1. Summary statistics for daily returns of the DAX
index, the Dow Jones index, and the GBP/USD exchange rate
from 01/01/1991 to 21/03/2007. XFGsummary

index and the GBP/USD FX rate. All time series cover the period from 1
January, 1991 to 21 March, 2007. We use daily continuously compounded
returns yielding 4,231 observations. Table 12.1 reports the mean, standard
deviation, median, 10%- and 90%-quantiles, and the empirical skewness as
well as kurtosis of the three series. All series reveal negative skewness and
overkurtosis which is a common finding for financial returns.

12.4.2 Estimation of SV Models

The standard SV model is estimated by running the Gibbs and A-R M-H
algorithm based on 25,000 MCMC iterations, where 5, 000 iterations are used
as burn-in period. Table 12.2 displays the choice of the prior distributions
and the hyper-parameters as well as the resulting prior mean and standard
deviation.

Table 12.3 shows the sample mean (MEAN), the sample standard deviation
(SD), the time-series standard errors (ts-SE), and the 95%-credibility interval
(CI) based on G = 20, 000 MCMC replications. The time-series standard
errors give an estimate of the variation that is expected in computing the
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Prior Distribution Hyper-Parameters Mean S.D.
p(µ) = N(αµ, β

2
µ) αµ = 0 βµ = 100 0 10

p(φ) = N(αφ, β
2
φ)I(−1,+1)(φ) αµ = 0 βµ = 100 0 1

p(σ2
η) = IG(ασ, βσ) ασ = 2.5 βσ = 0.025 0.167 0.024

Table 12.2. Prior distributions, hyper-parameters, and im-
plied prior means as well as standard deviations for the stan-
dard SV model. XFGprior

Parameter Mean SD ts-SE 95% CI
DAX

µ -8.942 0.192 1.5e-3 (-9.327,-8.565)
φ 0.989 0.002 2.0e-4 ( 0.983, 0.994)
ση 0.115 0.009 1.0e-3 ( 0.096, 0.137)

Dow Jones
µ -9.471 0.171 1.3e-3 (-9.810,-9.142)
φ 0.990 0.003 2.0e-4 ( 0.984, 0.995)
ση 0.087 0.010 1.1e-3 ( 0.069, 0.108)

GBP/USD
µ -10.238 0.649 4.3e-3 (-10.519,-9.997)
φ 0.993 0.002 2.0e-4 ( 0.988, 0.997)
ση 0.041 0.006 8.0e-4 ( 0.029, 0.054)

Table 12.3. Estimation results for the standard SV
model. XFGparameter

mean of the MC replications and is computed as SD/
√

n. As a rule of thumb,
Geweke (1992) suggests to choose G such that the time series standard error
is less than approximately 5% of the sample standard deviation.

Since the three time series reveal similar properties, we concentrate on the
results for DAX index returns. The volatility process is highly persistent as
indicated by an estimate of φ of 0.989. This near-to-unit-root behavior is
a quite typical finding for financial return series and is consistent with the
commonly observed volatility clustering. The estimated (smoothed) volatility



12 Stochastic Volatility Estimation 267

states are computed by

ĥt =
1

G− g1

G∑
g=g1+1

exp(h
(g)
t /2), (12.54)

where h
(g)
t denotes the realizations of the Markov chain stemming from the

M-H A-R algorithm illustrated in the previous section, and g1 is the burn-in
period. The resulting plots of the smoothed volatilities are shown in Fig-
ure 12.4. It is nicely illustrated that the estimated latent volatility closely
mimics the movements of |yt| supporting the idea of using absolute or squared
returns as (noisy) proxies for ht.
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Figure 12.4. Top: Smoothed estimates of ht. Bottom: Abso-
lute returns, |yt|. XFGvolabs

Misspecification tests are implemented based on the standardized innova-
tions, yt exp(−ĥt/2) which should be i.i.d. Applying Ljung-Box tests and
ARCH tests (Engle, 1982) shown in Figure 12.5 yield p-values of 0.094 and
0.023, respectively. For the BDS independence test we find a p-value of 0.011.
The corresponding plot of the standardized innovations as well as ACF plots
of standardized innovations and squared standardized innovations are given
by graphs (a), (c) and (d), respectively, in Figure 12.5. The standardized in-
novations reveal a big outlier on 19/08/1991 where the DAX index dropped
from 1653.33 to 1497.93. Such a behavior is not easily captured by a con-
tinuous distribution for ht and requires accounting for jumps. Nevertheless,
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though it is evident that the model is obviously not flexible enough to com-
pletely explain the volatility dynamics, the diagnostics indicate a quite sat-
isfying dynamic performance. This is particularly true when the parameter
parsimony of the model is taken into account.

It is not surprising that the model is unable to capture the distributional
properties of the returns. We observe that the standard SV model with a
model implied kurtosis of 5.74 is not able to fully explain the over-kurtosis
in the data. This is confirmed by the Jarque-Bera normality test and the
QQ plot revealing departures from normality mainly stemming from extreme
innovations.

8
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(a) Standardized innovations
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Figure 12.5. Time series plot, QQ plot and autocorrelogram
of (squared) standardized innovations. XFGstdinnov

Finally, the results of convergence diagnostics are reported in Table 12.4.
All parameters pass both the Geweke’s z-scores test and the Heidelberg-
Welch’s stationarity and half-width tests indicating a proper convergence of
the Markov chain to its invariant distribution.

Table 12.5 shows the estimation results based on the SVt and SVJ model.
For the sake of brevity and given that we have qualitatively similar findings
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Parameter Z-score Test Stationarity and Half-Width Test
z-score p-value p-value Mean Half-width Ratio

µSV 0.199 0.843 0.645 -8.895 0.003 -0.001
φSV 0.032 0.972 0.897 0.928 0.001 0.001
σSV

u -0.413 0.686 0.979 0.329 0.003 0.009

Table 12.4. Convergence Diagnostics. The half-width
test is passed if the corresponding ratio is less than
0.01. XFGconvergence

Parameter Mean SD ts-SE 95% CI
The SVt model:

µ -9.201 0.230 2.3e-3 (-9.663,-8.752)
φ 0.991 0.002 1.0e-4 ( 0.985, 0.995)
ση 0.117 0.012 1.1e-3 ( 0.095, 0.145)
ν 12.443 1.812 2.3e-1 ( 9.600,16.923)

The SVJ model:
µ -9.107 2.3e-01 1.8e-03 (-9.568,-8.663)
φ 0.991 2.7e-03 2.1e-04 ( 0.984, 0.995)
ση 0.124 1.3e-02 1.4e-03 ( 0.101, 0.153)
αk -0.005 2.9e-05 1.8e-07 (-0.005,-0.004)√
βk 0.029 6.5e-03 8.7e-04 ( 0.020, 0.045)
κ 0.010 3.9e-03 3.1e-04 ( 0.003, 0.019)

Table 12.5. Estimation results for the SVt and SVJ model
based on DAX index returns. XFGsvtjparameter

for the other return series, we focus only on DAX index returns. We obtain
an estimate of the degrees of freedom in the SVt model of about ν̂ = 12.44
indicating the presence of fat-tailedness in the data and a clear misspecifica-
tion of the standard (Gaussian) SV model. The estimates for the SVJ model
reveal a daily average jump size of about α̂k = 0.005% with estimated stan-

dard deviation

√
β̂k = 0.029. Estimates of κ reveal an average probability of

observing a jump of about 1% on a daily basis. This implies that on average
a jump in returns may occur on average every 100 trading days.

Figure 12.6 depicts the QQ plots of the normalized innovations based on the
standard SV model (left), the SVt model (middle), and the SVJ model (right).
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It is shown that the inclusion of Student-t errors improves the distributional
properties of the model only slightly. Actually, we observe that both the
basic SV and the SVt model are not able to capture extreme observations in
the tails of the distribution. In contrast, the SVJ model turns out to be more
appropriate to accommodate outliers. This result indicates the importance
of allowing returns to be driven by a jump component.
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Figure 12.6. QQ plots of normalized innovations based on the
standard SV model (left), the SVt model (middle), and the
SVJ model (right). XFGsvtsvjqq

12.5 Appendix

12.5.1 Derivation of the Conditional Posterior Distributions

Using Bayes’ theorem, the conditional posterior distribution of σ2
η is given by

p(σ2
η|y, h, µ, φ) ∝ p(y|h, µ, φ, σ2

η)p(h|µ, φ, σ2
η)p(σ2

η).

By assuming σ2
η to follow an inverse-gamma distribution and successively

conditioning on p(h|µ, φ, σ2
η), we obtain

p(σ2
η|y, h, µ, φ) ∝ p(h1|µ, φ, σ2

η)
T−1∏
t=1

p(ht+1|ht, µ, φ, σ2
η)IG(σ2

η|ασ, βσ),

where the density function p(ht+1|ht, µ, φ, σ2
η) is given by (12.1b).
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After eliminating all constant terms with respect to σ2
η, we obtain

p(σ2
η|y, h, µ, φ)

∝ exp

[
−(h1 − µ)2(1− φ2)

2σ2
η

−
∑T−1

t=1 {ht+1 − µ− φ(ht − µ)}2

2σ2
η

]

×
(

1

σ2
η

)T
2 (βσ)

ασe−βσ/σ2
η

Γ(ασ)(σ2
η)

ασ+1

∝ exp

[
−

βσ + 1
2(h0 − µ)2(1− φ2) + 1

2

∑T−1
t=1 {ht+1 − µ− φ(ht − µ)}2

σ2
η

]

×
(

1

σ2
η

)(ασ+T
2 )+1

.

It is easy to see that the posterior density p(σ2
η|y, h, µ, φ) is proportional to

an inverse-gamma density. Consequently, we have

p(σ2
η|y, h, µ, φ) ∝ IG(α̂σ, β̂σ),

where,

α̂σ = ασ +
T

2
,

β̂σ = βσ +
1

2
(h1 − µ)2(1− φ2) +

1

2

T−1∑
t=1

{ht+1 − µ− φ(ht − µ)}2.

Mimicking the proceeding for σ2
η we can derive the conditional posteriors for

µ and φ in a similar way. Then, we obtain

p(µ|y, h, φ, σ2
η) ∝ p(h|µ, φ, σ2

η)p(µ),

∝ p(h1|µ, φ, σ2
η)

T−1∏
t=1

p(ht+1|ht, µ, φ, σ2
η)N(αµ, βµ),

∝ exp

(
− 1

2

[
µ2
{

1− φ2 + (T − 1)(1− φ)2

σ2
η

+
1

β2
µ︸ ︷︷ ︸

A

}

− 2µ

{
h1(1− φ2) + (1− φ)

∑T−1
t=1 (ht+1 − φht)

σ2
η

+
αµ

β2
µ︸ ︷︷ ︸

B

}])
,

∝ N

(
B

A
,
1

A

)
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and

p(φ|y, h, σ2
η, µ) ∝ p(h|µ, φ, σ2

η)p(φ),

∝ p(h1|µ, φ, σ2
η)

T−1∏
t=1

p(ht+1|ht, µ, φ, σ2
η)N(αφ, β

2
φ)∞(−1,+1)(φ),

∝ exp

(
− 1

2

[
φ2
{
−(h1 − µ)2 +

∑T−1
t=1 (ht − µ)2

σ2
η

+
1

β2
φ︸ ︷︷ ︸

C

}

− 2φ

{∑T−1
t=1 (ht+1 − µ)(ht − µ)

σ2
η

+
αφ

β2
φ︸ ︷︷ ︸

D

}])
∞(−1,+1)(φ),

∝ N

(
D

C
,

1

C

)
∞(−1,+1)(φ).
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