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The state price density (SPD) carries important information on the behavior
and expectations of the market and it often serves as a base for option pricing
and hedging. Many commonly used SPD estimation technique are based on
the observation (Breeden and Litzenberger, 1978) that the SPD f(.) may be
expressed as

f(K) = exp{r(T − t)}∂
2Ct(K, T )

∂K2 , (11.1)

where Ct(K, T ) is a price of European call option with strike price K at time
t expiring at time T and r denotes the risk free interest rate. An overview of
estimation techniques is given in Jackwerth (1999). Kernel smoothers were
in this framework applied by A¨it-Sahalia and Lo (1998), A¨it-Sahalia and
Lo (2000), or Huynh, Kervella, and Zheng (2002). Some modifications of
the nonparametric smoother allowing to apply no-arbitrage constraints were
proposed, e.g., by A¨it-Sahalia and Duarte (2003), Bondarenko (2003), or
Yatchew and Härdle (2006). Apart of the choice of a suitable estimation
method, Härdle and Hlávka (2005) show that the covariance structure of the
observed option prices carries additional important information that should
to be considered in the estimation procedure. Härdle and Hlávka (2005) sug-
gest a simple and easily applicable approximation of the covariance. A more
detailed discussion of option price errors may be found in Renault (1997).

In this chapter, we will estimate the SPD from observed call option prices
using the well-known Kalman filter, invented already in the early sixties and
marked by Harvey (1989). Kalman filter may be shortly described as a sta-
tistical method used for estimation of the non-observable component of a
state-space model and it already became an important econometric tool for
financial and economic estimation problems in continuous time finance. More
precisely, the Kalman filter is a recursive procedure for computing the opti-
mal estimator of the state vector ξi at time i, based on information available
at time i. For derivation of the Kalman filter, we focus on the general system
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characterized by a measurement equation

yi = Bi(ψ)ξi + εi(ψ), i = 1, . . . , n, (11.2)

and a transition equation

ξi = Φi(ψ)ξi−1 + ηi(ψ), i = 1, . . . , n, (11.3)

where yi is the g-dimensional vector of the observable variables and ξi de-
notes the unobservable k-dimensional state vector, with unknown parameters
ψ, a known matrix Bi(ψ), and a noise term εi(ψ) of serially uncorrelated
disturbances with zero mean and variance matrix Hi(ψ). The symbols used
in the transition equation (11.3) are the transition matrix Φi(ψ) and a zero
mean Gaussian noise term ηi(ψ) with a known variance matrix Qi(ψ). The
specification of the state space model is completed by assuming independence
between the error terms εt(ψ) and ηt(ψ). Additionally, we assume that these
error terms are uncorrelated with the normally distributed initial state vector
ξ0 having expected value ξ0|0 and variance matrix Σ0|0.

The state-space model (11.2)–(11.3) is suitable for situations in which, instead
of being able to observe the state vector ξi directly, we can only observe some
noisy function yi of ξi. The problem of determining the state of the system
from noisy measurements yi is called estimation. Filtering is a special case of
estimation with the objective of obtaining an estimate of ξi given observations
up to time i. It can be shown that the optimal estimator of ξi, i.e., minimizing
the mean squared error (MSE), is the mean of the conditional distribution
of the state vector ξi. When estimating ξi using information up to time
s, we denote the conditional expectation of ξi given Fs for convenience by
ξi|s = E[ξi|Fs]. The conditional variance matrix of ξi given Fs is denoted as
Σi|s = Var[ξi|Fs].

In our case, we will see that the relationship between the state and observed
variables is nonlinear and the problem has to be linearized by Taylor expan-
sion.

11.1 Linear Model

Let us remind that the payoff for a call option is given by

(ST −K)+ = max(ST −K, 0).

Let Ct(K, T ) be the call pricing function of a European call option with strike
price K observed at time t and expiring at time T . We consider a call option
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with this payoff. Let ST denotes the price of the underlying asset at T , and
r the risk free interest rate. Then, the fair price Ct(K, T ) of a European call
option at the current time t may be expressed as the discounted expected
value of the payoff (ST −K)+ with respect to the SPD f(.), i.e.,

Ct(K, T ) = e−r(T−t)
∫ +∞

0
(ST −K)+f(ST )dST . (11.4)

Clearly, the call pricing function Ct(K, T ) is monotone decreasing and convex
in K.

In the rest of this chapter, we will assume that the discount factor e−r(T−t)

in (11.4) is equal to 1. In practice, this may be easily achieved by dividing
the observed option prices by this known discount factor.

In (11.1), we have already seen that the SPD may be expressed as the dis-
counted second derivative of the call pricing function Ct(K, T ) with respect
to the strike price K. We will use this relationship to construct an SPD
estimator based on the observed call option prices.

11.1.1 Linear Model for Call Option Prices

On a fixed day t, the i-th observed option price corresponding to the time
of expiry T will be denoted as Ci = Ct,i(Ki, T ), where Ki denotes the corre-
sponding strike price. The vector of all observed option prices will be denoted
as C = (C1, . . . ,Cn)

�. Without loss of generality, we assume that the cor-
responding vector of the strike prices K = (K1, . . . , Kn)

� has the following
structure

K =

⎛⎜⎜⎝
K1
K2
...

Kn

⎞⎟⎟⎠ =

⎛⎜⎜⎝
k11n1

k21n2

...
kn1np

⎞⎟⎟⎠ ,

where k1 < k2 < · · · < kp are the p distinct values of the strike prices, 1nj

denotes a vector of ones of length nj, and nj =
∑n

i=1 1(Ki = kj).

The further assumptions and constraints that have to be satisfied by the
developing the linear model are largely taken from Härdle and Hlávka (2005).
We impose only constraints that guarantee that the estimated function is
probability density, i.e., it is positive and it integrates to one. The SPD
is parameterized by assuming that for a fixed day t and time to maturity
τ = T − t, the i-th observed option price Ci corresponding to strike price Ki,
the option prices Ci = Ct,i(Ki, T ) follows the linear model

Ct,i(Ki, T ) = µ(Ki) + εi, (11.5)
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where ε = (ε1, . . . , εn)
� ∼ N(0, Σ) is random vector of correlated normally

distributed random errors.

In the next section, we will parameterize the vector of the mean option prices
µ(.) in terms of the state price density. This parameterization will allow us
to derive SPD estimators directly from the linear model (11.5).

11.1.2 Estimation of State Price Density

In Härdle and Hlávka (2005), it was suggested to rewrite the vector of the
conditional means µ = (µ1, µ2, . . . , µp)

� in terms of the parameters β =
(β0, β1, . . . , βp−1)

� as

µ = ∆β, (11.6)

where

∆ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 ∆1
p ∆1

p−1 ∆1
p−2 · · · ∆1

3 ∆1
2

1 ∆2
p ∆2

p−1 ∆2
p−2 · · · ∆2

3 0
...

...

1 ∆p−2
p ∆p−2

p−1 0 · · · 0 0
1 ∆p−1

p 0 0 · · · 0 0
1 0 0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(11.7)

and ∆i
j = max(kj − ki, 0) denotes the positive part of the distance between

ki and kj, i.e. the i-th and the j-th (1 ≤ i ≤ j ≤ p) sorted distinct observed
values of the strike price.

The vector of parameters β in (11.6) may be interpreted as an estimate of
the second derivatives of the call pricing function and consequently, according
to (11.1), also as the estimator of the state price density.

The constraints on the conditional means µj such as positivity, monotonicity
and convexity can be reexpressed in terms of βj—it suffices to request that

βj > 0 for j = 0, . . . , p− 1 and that
∑p−1

j=2 βj ≤ 1.

Using this notation, the linear model for the observed option prices C is
obtained by

C(K) = X∆β + ε, (11.8)

where X∆ is the design matrix obtained by repeating each row of the matrix
∆ ni-times for i = 1, . . . , p.
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11.1.3 State-Space Model for Call Option Prices

In order to apply Kalman filter without any constraints on the resulting
SPD estimates (βi, i = 0, . . . , p− 1), we rewrite the linear model (11.8) in a
state-space form for the i-th observation on a fixed day t:

Ci(K) = X∆βi + εi, (11.9)

βi = βi−1 + ηi, (11.10)

where X∆ is the design matrix from (11.8) and εi ∼ N
(
0, σ2I

)
and ηi ∼

N
(
0, ν2δiI

)
are uncorrelated random vectors. We assume that the variance

of ηi depends linearly on the time δi between the i-th and the (i−1)-st trade.

In the following, we determine the Kalman filter in a standard way. The
standard approach has to be only slightly modified as in every step i we
observe only option price Ci(Ki) corresponding to only one strike price Ki.

Prediction step In the prediction step, we forecast the state vector by cal-
culating the conditional moments of the state variables given the information
up to time t− 1 to obtain the prediction equations

βi|i−1 = E(βi|Fi−1) = βi−1|i−1, (11.11)

Σi|i−1 = Σi−1|i−1 + ν2δiI. (11.12)

Updating step Denoting by ∆i the i-th row of the design matrix X∆, i.e.,
the row corresponding to the i-th observed strike price Ki, we arrive to the
updating equations

βi|i = βi|i−1 + KiIi, (11.13)

Σi|i = (I−Ki∆i)Σi|i−1, (11.14)

where
Ii = Ci(Ki)− Ci|i−1(Ki) = Ci(Ki)−∆iβi|i−1

is the prediction error with variance Fi|i−1 = Var(Ii|Fi−1) = σ2 +∆iΣi|i−1∆
�
i

and Ki = Σi|i−1∆
�
i F−1

i|i−1 is the Kalman gain.

The prediction and updating equations (11.11)–(11.14) jointly constitute the
linear Kalman filter for a European call option. Unfortunately, in this case
the practical usefulness of the linear Kalman filter is limited as the resulting
SPD estimator does not have to be probability density. A more realistic
nonlinear model is presented in the following Section 11.2.
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11.2 Extended Kalman Filter and Call Options

In the following, we constrain the vector of parameters βi = (β0, . . . , βp−1)
�

so that it may always be reasonably interpreted as a probability density.
We propose a reparameterization of the model in terms of parameters ξi =

(ξ0, . . . , ξp−1)
� via a smooth function gi(·) =

(
g0(·), . . . , gp−1(·)

)�
by setting

β0 = g0(ξi) = exp(ξ0), (11.15)

βk = gk(ξi) = S−1exp(ξk), for k = 1, . . . , p− 1, (11.16)

where S =
∑p−1

j=1 exp(ξj) simplifies the notation.

Obviously,
∑p−1

j=1 βj = 1 and βj > 0, j = 0, . . . , p − 1. This means that the
parameters βj, j = 1, . . . , p− 1 are positive and integrate to one and may be
interpreted as a reasonable estimates of the values of the SPD.

The linear model for the option prices (11.8) rewritten in terms of ξi leads a
nonlinear state space model given by the measurement equation

Ci(K) = X∆gi(ξi) + εi, (11.17)

and the transition equation

ξi = ξi−1 + ηi, (11.18)

where εi ∼ N
(
0, σ2I

)
and ηi ∼ N

(
0, ν2δiI

)
satisfy the same assumptions as

in Section 11.1.3.

The extended Kalman filter for the above problem may be linearized by
Taylor expansion using the Jacobian matrix Bi|i−1 computed in ξi = ξi|i−1:

Bi|i−1 =
∂gi(ξi)

∂ξ�i

∣∣∣∣∣
ξi=ξi|i−1

(11.19)

=
1

S2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S2eξ0 0 0 · · · 0

0 eξ1
(
S − eξ1

)
−eξ1+ξ2 · · · −eξ1+ξp−1

0 −eξ2+ξ1 eξ2
(
S − eξ2

)
· · · −eξ2+ξp−1

...
...

... . . . ...

0 −eξp−1+ξ1 −eξp−1+ξ2 · · · eξp−1
(
S − eξp−1

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Now, the linearized version of the Kalman filter algorithm for model (11.17)–
(11.18) is straightforward. Similarly as in Section 11.1.3, we obtain extended
prediction equations

ξi|i−1 = ξi−1|i−1, (11.20)

Σi|i−1 = Σi−1|i−1 + ν2δiI, (11.21)

and extended updating equations

ξi|i = ξi|i−1 + KiIi, (11.22)

Σi|i =
(
I−Ki∆iBi|i−1

)
Σi|i−1, (11.23)

where Ii = Ci(Ki)−∆igi(ξi|i−1) is the prediction error, Fi|i−1 = Var(Ii|Fi−1) =

σ2 + ∆iBi|i−1Σi|i−1B
�
i|i−1∆

�
i its variance, and Ki = Σi|i−1B

�
i|i−1∆

�
i F−1

i|i−1 the

Kalman gain.

The recursive equations (11.20)–(11.23) form the extended Kalman filter re-
cursions and lead the vector gi(ξi) = βi representing estimates of the SPD.

11.3 Empirical Results

In this section, the extended Kalman filter is used to estimate SPD from
DAX call option prices. In other words, our objective is to estimate the call
function Ct(K, T ) subject to monotonicity and convexity constraints, i.e., the
constraint that the implied SPD is non-negative and it integrates to one.

We choose data over a sufficiently brief time span so that the time to maturity
τ , the interest rate r, and both the current time t and the time of expiry T
may be considered as constant. The full data set contains observed call and
put option prices for various strike prices and maturities τ . From now on,
for each trading day, we consider only a subset containing the call options
Ct,i(Ki, T ), i = 1, . . . , n with the shortest time to expiry τ = T − t. In 1995,
we have few hundreds such observations each day. In 2003, the number of
daily observations increases to thousands.

Apart of the strike prices Ki and option prices Ct,i(Ki, T ), the data set con-
tains also information on the risk-free interest rate r, the time of trade (given
in seconds after midnight), the current value of the underlying asset (DAX),
time to expiry, and type of the option (Call/Put).

As the risk-free interest rate r and the time to expiry T − t are known and
given in our data set, we may work with option prices corrected by the
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known discount factor e−r(T−t). This modification guarantees that the second
derivative of the discounted call pricing function is equal to the state price
density.

11.3.1 Extended Kalman Filtering in Practice

In order to implement the Kalman filter in practice, we need to:

1. set the initial values of unknown parameters,

2. estimate the unknown parameters from data.

Initialization In order to use the extended version Kalman filter, we have
to choose initial values Σ0|0 and β0|0 and variances of both error terms εi and
ηi. We choose initial Σ0|0 = I and

β0|0 =

(
Ê{C(kp)}︸ ︷︷ ︸

β0

,
1

p− 1
, . . . ,

1

p− 1︸ ︷︷ ︸
p−1

)
,

i.e., β0 is set as the sample mean of option prices corresponding to the largest
strike price kp. The remaining values, defining the initial distribution of the
SPD, are set uniformly.

The parameter σ2 may be interpreted as the standard error of the option
price in Euros. The interpretation of the parameter ν2 is more difficult and
it depends on the time intervals between consecutive trades and on the range
of the observed strike prices. For the first run of the algorithm, we set the
variance matrices as Var[εi] = σ2I and Var[ηi] = ν2δiI, with σ2 = 1 and

ν2 = 1/[{( max
i=1,...,n

Ki − min
i=1,...,n

Ki)/2}2 min
i=1,...,n

δi].

This choice is quite arbitrary but it reflects that the parameter σ2 should be
small (in Euros) and that the parameter ν2 is related to the time and to the
range of the observed strike prices. Note that these are only initial values and
more realistic estimates are obtained in the next iterations of the extended
Kalman filter.

Extended Kalman filter Given the starting values β0|0, Σ0|0, σ2, and ν2,
the extended Kalman filter is given by equations (11.20)–(11.23). The non-
linear projections gi(.) guarantee that the state vector βi = gt(ξi) satisfies
the required constraints.
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Parameter estimation The unknown parameters σ2 and ν2 are estimated
by Maximum Likelihood (ML) method. More precisely, we use the predic-
tion error decomposition of the likelihood function described in Kellerhals
(2001, Chapter 5), the resulting log-likelihood is then maximized numerically.
Note that another approach to parameter estimation based on the Kalman
smoother and EM-algorithm is described in Harvey (1989, Section 4.2.4).

The behavior of the extended Kalman filter depends also on the choice of
the starting value β0|0. Assuming that the shape of the SPD doesn’t change
too much during the day, we may improve on the initial “uniform” SPD by
taking βn|n, shift the corresponding SPD by the difference of the value of the
underlying asset, and by using the resulting set of parameters as the starting
value β0|0. In practice, one might use the final estimator βn|n from day t as
the initial estimator on the next day t + 1

Kalman filter iterations Combining the initial parameter choice, the Kalman
filter, and the parameter estimation, we obtain the following iterative algo-
rithm:

1. Choose the initial values.

2. Run the extended Kalman filter (11.20)–(11.23) with current values of
the parameters.

3. Use the Kalman filter predictions to estimate the parameters σ2 and ν2

by numerical maximization of the log-likelihood and update the initial
values β0|0 and Σ0|0 using βn|n and Σn|n.

4. Either stop the algorithm or return to step 2 depending on the chosen
stopping rule.

In practice, the stopping rule for the above iterative algorithm may be based
on the values of the log-likelihood obtained in step 3 of the iterative algorithm.
In the following real life examples, we will run fixed number of iterations as
an illustration.

11.3.2 SPD Estimation in 1995

The first example is using data from two trading days in 1995; these are
the two data sets as in Härdle and Hlávka (2005). The call option prices
observed on 11th (January 14th) and 12th trading day (January 15th) in
1995 are plotted on the left-hand side graphics in Figures 11.1 and 11.2.
The main difference between these two trading days is that the strike prices
traded on 15th January cover larger range of strike prices. This means that



242 Zdeněk Hlávka and Marek Svojik

2000 2050 2100 2150 2200

0
20

40
60

80
10

0
CALL Option Prices in 1995, Trading Day 11.

Strike Price K

C
A

LL
 O

pt
io

n 
P

ric
e 

C
(K

)

2020 2040 2060 2080 2100 2120 2140

0.
05

0.
15

0.
25

Estimate of the SPD based on 287 observations

Strike price K

P
oi

nt
 e

st
im

at
io

n

2020 2040 2060 2080 2100 2120 2140

0.
05

0.
15

0.
25

Estimate of the SPD based on 575 observations

Strike price K
P

oi
nt

 e
st

im
at

io
n

Figure 11.1. European call option prices with shortest time to
expiry plotted against strike price K (left) and two of the fil-
tered SPD estimates (right) on JAN-14-1995. XFGKF1995a

also the support of the estimated SPDs will be larger on January 15th than
on January 14th.

JAN-14-1995 Using the data from January 14th, 1995, we ran 10 itera-
tions of the algorithm described in Section 11.3.1. The resulting parameter
estimates, σ̂2 = 0.0111 and ν̂2 = 2.6399, seem to be stable. In the last four
iterations, estimates of σ2 vary between 0.0081 and 0.0115 and estimates of
ν2 are varying between 2.4849 and 2.6399.

The Kalman filter provides SPD estimate in each time i = 1, . . . , n and we
thus obtain altogether n = 575 estimates of βi during this one day. Two
of these filtered SPD estimates on JAN-14-1995 are displayed on the on the
right-hand side of Figure 11.1; the upper plot shows the estimator at time
i1 = 287

.
= n/2 (12:45:44.46) and the lower plot the estimator at time i2 =

n = 575 (15:59:59.78), i.e., The lower plot contains the estimator of the SPD
at the end of this trading day.

Both estimates look very similar but the latter one is shifted a bit towards
higher values. This shift is clearly due to a change in the value of the under-
lying asset (DAX) from 2087.691 to 2090.17 during the same time period.

JAN-15-1995 Next, the same technique is applied to data observed on Jan-
uary 15th, 1995, see Figure 11.2. Two of the resulting filtered SPD estimates
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Figure 11.2. European call option prices with the short-
est time to expiry plotted against strike price K (left) and
two of the filtered SPD estimates (right) on JAN-15-1995.
XFGKF1995b

are plotted in the graphics on the right-hand side of Figure 11.2. The SPD
estimator calculated at the time i1 = n/2 = 205 (12:09:14.65) is almost iden-
tical to the final estimate from January 14th; the most visible difference is
the larger support for the estimated SPD on JAN-15-1995. At the end of this
trading day, for i2 = n = 410 (15:59:52.14), the estimate is shifted a bit to
the left and more concentrated. The shift to the left corresponds again to a
decrease in the value of the DAX from 2089.377 to 2075.989.

The parameter estimates obtained after 10 iterations of the algorithm de-
scribed in Section 11.3.1 are σ̂2 = 0.0496 and ν̂2 = 0.621. Smaller value of ν̂2

seemingly suggests that the SPD was changing more slowly on JAN-15-1995
but this parameter must be interpreted with a caution as its scale depends
also on the size of the time interval between consecutive trades and on the
range of the observed strike prices.

11.3.3 SPD Estimation in 2003

The next example is using the most recent data set in our database. On
February 25th, 2003, we observe altogether 1464 call option prices with the
shortest time to expiry. Compared to the situation in 1995, the option mar-
kets in 2003 are more liquid and the number of distinct strike prices included
in the data set is larger than in 1995. Our data set contains 30 distinct strike
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prices on FEB-25-2003 compared to 8 on JAN-14-1995 and 12 on JAN-15-
1995.

The call option prices observed on FEB-25-2003 are plotted as a function of
their strike price on the left-hand side plot in Figure 11.3.
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Figure 11.3. European call option prices with shortest time
to expiry plotted against strike price K on FEB-25-2003, n =
1464 observed prices (left) and the resulting SPD estimates
after 10 iterations (right). XFGKF2003

After ten iterations of the iterative extended Kalman filtering algorithm de-
scribed in Section 11.3.1, we obtain parameter estimates σ̂2 = 0.0324 and
ν̂2 = 3.1953. The corresponding SPD estimates for times i1 = n/2 = 732 and
i2 = n = 1464 are plotted on the right-hand side of Figure 11.3.

On FEB-25-2003, the resulting estimates do not look very much like a typical
(smooth and unimodal) probability densities. Instead, we observe a lot of
spikes and valleys. This is due to the fact that the algorithm does not penalize
non-smoothness and the reparameterization (11.15)–(11.16) guarantees only
that the resulting SPD estimates are positive and integrate to one.

In order to obtain more easily interpretable results, the resulting estimates
may be smoothed using, e.g., the Nadaraya-Watson kernel regression esti-
mator (Nadaraya, 1964; Watson, 1964). As the smoothing of the vector
βn|n corresponds to a multiplication with a (smoothing) matrix, say S, the
smoothing step may be implemented after the Kalman filtering, see Härdle
(1991) or Simonoff (1996) for more details on kernel regression.

Using the variance matrix Σn|n from the filtering step of the extended Kalman
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filtering algorithm, we calculate the variance matrix of ξsmooth
n|n = Sξn|n

as Varξsmooth
n|n = SΣn|nS

�. This leads an approximation of the asymp-

totic variance of the smooth SPD estimate βsmooth
n|n = gn(ξsmooth

n|n) as

Varβsmooth
n|n = BnSΣn|nS

�B�
n , where Bn now denotes the Jacobian ma-

trix (11.19) calculated in ξsmooth
n|n.

The resulting smooth SPD estimate at the end of the trading day (time n)
βsmooth

n|n with pointwise asymptotic 95% confidence intervals obtained as

βsmooth
n|n ± 1.96

√
diag(Varβsmooth

n|n) is plotted in Figure 11.4.
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Figure 11.4. Smoothed SPD estimate on FEB-25-2003,
n = 1464 with pointwise asymptotic confidence intervals.
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11.4 Conclusions

We presented and illustrated the application of extended Kalman filtering
towards arbitrage free SPD estimation.

An application of the extended Kalman filtering methodology on real-world
data sets in Section 11.3 shows that this method provides very good results
for data sets with small number of distinct strike prices, see Figures 11.1
and 11.2.

When the number of distinct strike price increases, the linear model be-
comes overparameterized, and the resulting SPD estimators are not smooth
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anymore, see Figure 11.3. However, even in this case, the SPD estimator
captures quite well the general shape of the SPD and smooth SPD estimator
may be obtained by applying, e.g., the Nadaraya-Watson kernel regression
estimator allowing also easy calculation of pointwise asymptotic confidence
intervals.

Compared to other commonly used estimation techniques, the extended Kal-
man filtering methodology is able to capture the intra-day development of
the SPD and it allows to update the estimates dynamically whenever new
information becomes available. The extended Kalman filtering methodology
combined with kernel smoothing is fast, easily applicable, and it provides
interesting insights.
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Härdle, W., 1991, Applied Nonparametric Regression. Cambridge University Press, Cam-
bridge.
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