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Preface to the 2nd Edition

The second edition of this book widens the scope of presented methods and
topics. We have introduced new chapters covering ongoing and currently
dominant topics like Value-at-Risk, Credit Risk, the pricing of multivariate
Bermudan options and Collaterized Debt Obligations, Realized Volatility and
High-Frequency Econometrics. Since modern statistical methods, like e.g.
copulae estimation, are increasingly important in quantitative finance such
as in credit risk management, we have put more weight on the presentation
of these themes. Moreover, we included more up-to-date data sets in our
examples and applications. These modifications and give the text a higher
degree of timeliness and strengthens the applicability. Accordingly, we the
structure of the second edition is slightly changed.

The probably most important step towards readability and user friendliness
of this book is that we have translated all numerical Quantlets into the R and
Matlab language. The algorithms can be downloaded from the publisher’s
web sites. In the preparation of this 2nd edition, we received helpful input
from Ying Chen and Song Song. We would like to thank them.

Wolfgang Karl Härdle, Nikolaus Hautsch and Ludger Overbeck

Berlin and London, August 2008



Preface to the 1st Edition

This book is designed for students and researchers who want to develop pro-
fessional skill in modern quantitative applications in finance. The Center for
Applied Statistics and Economics (CASE) course at Humboldt-Universität zu
Berlin that forms the basis for this book is offered to interested students who
have had some experience with probability, statistics and software applica-
tions but have not had advanced courses in mathematical finance. Although
the course assumes only a modest background it moves quickly between dif-
ferent fields of applications and in the end, the reader can expect to have
theoretical and computational tools that are deep enough and rich enough to
be relied on throughout future professional careers.

The text is readable for the graduate student in financial engineering as well
as for the inexperienced newcomer to quantitative finance who wants to get
a grip on modern statistical tools in financial data analysis. The experienced
reader with a bright knowledge of mathematical finance will probably skip
some sections but will hopefully enjoy the various computational tools of
the presented techniques. A graduate student might think that some of the
econometric techniques are well known. The mathematics of risk manage-
ment and volatility dynamics will certainly introduce him into the rich realm
of quantitative financial data analysis.

The computer inexperienced user of this e-book is softly introduced into
the interactive book concept and will certainly enjoy the various practical
examples. The e-book is designed as an interactive document: a stream of
text and information with various hints and links to additional tools and
features. Our e-book design offers also a complete PDF and HTML file
with links to world wide computing servers. The reader of this book may
therefore without download or purchase of software use all the presented
examples and methods via the enclosed license code number with a local
XploRe Quantlet Server (XQS). Such XQ Servers may also be installed in a
department or addressed freely on the web, click to www.xplore-stat.de and
www.quantlet.com.



viii Preface

“Applied Quantitative Finance” consists of four main parts: Value at Risk,
Credit Risk, Implied Volatility and Econometrics. In the first part Jaschke
and Jiang treat the Approximation of the Value at Risk in conditional Gaus-
sian Models and Rank and Siegl show how the VaR can be calculated using
copulas.

The second part starts with an analysis of rating migration probabilities
by Höse, Huschens and Wania. Frisch and Knöchlein quantify the risk of
yield spread changes via historical simulations. This part is completed by
an analysis of the sensitivity of risk measures to changes in the dependency
structure between single positions of a portfolio by Kiesel and Kleinow.

The third part is devoted to the analysis of implied volatilities and their dy-
namics. Fengler, Härdle and Schmidt start with an analysis of the implied
volatility surface and show how common PCA can be applied to model the dy-
namics of the surface. In the next two chapters the authors estimate the risk
neutral state price density from observed option prices and the corresponding
implied volatilities. While Härdle and Zheng apply implied binomial trees to
estimate the SPD, the method by Huynh, Kervella and Zheng is based on
a local polynomial estimation of the implied volatility and its derivatives.
Blaskowitz and Schmidt use the proposed methods to develop trading strate-
gies based on the comparison of the historical SPD and the one implied by
option prices.

Recently developed econometric methods are presented in the last part of the
book. Fengler and Herwartz introduce a multivariate volatility model and ap-
ply it to exchange rates. Methods used to monitor sequentially observed data
are treated by Knoth. Chen, Härdle and Kleinow apply the empirical likeli-
hood concept to develop a test about a parametric diffusion model. Schulz
and Werwatz estimate a state space model of Berlin house prices that can be
used to construct a time series of the price of a standard house. The influ-
ence of long memory effects on financial time series is analyzed by Blaskowitz
and Schmidt. Mercurio proposes a methodology to identify time intervals of
homogeneity for time series. The pricing of exotic options via a simulation
approach is introduced by Lüssem and Schumacher The chapter by Franke,
Holzberger and Müller is devoted to a nonparametric estimation approach of
GARCH models. The book closes with a chapter of Aydinli, who introduces
a technology to connect standard software with the XploRe server in order
to have access to quantlets developed in this book.



Preface ix

We gratefully acknowledge the support of Deutsche Forschungsgemeinschaft,
SFB 373 Quantifikation und Simulation Ökonomischer Prozesse. A book of
this kind would not have been possible without the help of many friends,
colleagues and students. For the technical production of the e-book platform
we would like to thank Jörg Feuerhake, Zdeněk Hlávka, Sigbert Klinke, Heiko
Lehmann and Rodrigo Witzel.

W. Härdle, T. Kleinow and G. Stahl

Berlin and Bonn, June 2002
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10.1 Construction of the IBT . . . . . . . . . . . . . . . . . . . . . 210
10.1.1 The Derman and Kani Algorithm . . . . . . . . . . . . 212
10.1.2 Compensation . . . . . . . . . . . . . . . . . . . . . . . 218
10.1.3 Barle and Cakici Algorithm . . . . . . . . . . . . . . . 219

10.2 A Simulation and a Comparison of the SPDs . . . . . . . . . . 220
10.2.1 Simulation Using the DK Algorithm . . . . . . . . . . 221
10.2.2 Simulation Using the BC Algorithm . . . . . . . . . . . 223
10.2.3 Comparison with the Monte-Carlo Simulation . . . . . 224

10.3 Example – Analysis of EUREX Data . . . . . . . . . . . . . . 227

11 Application of Extended Kalman Filter to SPD Estimation 233
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Frequently Used Notation

x
def
= . . . x is defined as ...

R real numbers
� real part

R
def
= R ∪ {∞,∞}

A� transpose of matrix A
X ∼ D the random variable X has distribution D
E[X] expected value of random variable X
Var(X) variance of random variable X
Std(X) standard deviation of random variable X
Cov(X, Y ) covariance of two random variables X and Y
N(µ, Σ) normal distribution with expectation µ and covariance matrix Σ, a
similar notation is used if Σ is the correlation matrix
cdf denotes the cumulative distribution function
pdf denotes the probability density function
L→ convergence in distribution
Φ standard normal cummulative distribution function
ϕ standard normal density function
χ2

p chi-squared distribution with p degrees of freedom
tp t-distribution (Student’s) with p degrees of freedom
Wt Wiener process
vech(B) half-vectorization operator stacking the elements of a (m×m) matrix
B from the main diagonal downwards in a m(m + 1)/2 dimensional column
vector
P[A] or P(A) probability of a set A
1 indicator function
(F ◦G)(x)

def
= F{G(x)} for functions F and G

x ≈ y x is approximately equal to y
αn = O(βn) iff αn

βn
−→ constant, as n −→∞

αn = O(βn) iff αn

βn
−→ 0, as n −→∞

Ft is the information set generated by all information available at time t
Let An and Bn be sequences of random variables.
An = Op(Bn) iff ∀ε > 0 ∃M, ∃N such that P[|An/Bn| > M ] < ε, ∀n > N .
An = Op(Bn) iff ∀ε > 0 : limn→∞ P[|An/Bn| > ε] = 0.



xxvi Frequently Used Notation

′�′ matrix multiplication by element
vechl(B) an operator stacking the elements below the diagonal of a symmetric
(m×m) matrix B in a {m(m− 1)/2} dimensional column vector
⊗ Kronecker product



Part I

Value at Risk



1 Modeling Dependencies with Copulae
Wolfgang Härdle, Ostap Okhrin and Yarema Okhrin

1.1 Introduction

The modeling and estimation of multivariate distributions is one of the most
critical issues in financial and economic applications. The distributions are
usually restricted to the class of multivariate elliptical distributions. This
limits the analysis to a very narrow class of candidate distribution and re-
quires the estimation of a large number of parameters. Two further problems
are illustrated in Figure 1.1. The scatter plot in the first figure shows re-
alizations of two Gaussian random variables, the points are symmetric and
no extreme outliers can be observed. In contrast, the second picture exhibits
numerous outliers. The outliers in the first and third quadrants show that ex-
treme values often occur simultaneously for both variables. Such behavior is
observed in crisis periods, when strong negative movements on financial mar-
kets occur simultaneously. In the third figure we observe that the dependency
between negative values is different compared to positive values. This type
of non-symmetric dependency cannot be modeled by elliptical distributions,
because they impose a very specific radially symmetric dependency structure.
Both types of dependencies are often observed in financial applications. The
assumption of Gaussian distribution is therefore rarely consistent with the
empirical evidence and possibly leads to incorrect inferences from financial
models. Moreover, the correlation coefficient is equal for all three samples,
despite clear differences in the dependencies. This questions the suitability
of the correlation coefficient as the key measure of dependence for financial
data.

The seminal result of Sklar (1959) provides a partial solution to these prob-
lems. It allows the separation of marginal distributions from the dependency
structure between the random variables. Since the theory on modeling and
estimation of univariate distributions is well established compared to the
multivariate case, the initial problem reduces to modeling the dependency by
copulae. This approach has several important advantages. Firstly, it dramat-
ically widens the class of candidate distribution. Secondly, it allows a simple
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Figure 1.1. Scatter plots of bivariate samples with different
dependency structures

construction of distributions with less parameters than imposed by elliptical
models. Thirdly, the copula-based models reflect the real-world relationships
on financial markets better.

The purpose of this chapter is twofold. Firstly, to provide the theoretical
background, dealing with the estimation, simulation and testing of copula-
based models, and secondly, to discuss several important applications of cop-
ulae to financial problems. The chapter is structured as follows. The next
section provides a review of bivariate copulae. Here we also consider differ-
ent copula families and dependency measures. The third section extends the
discussion to a multivariate framework. The fourth and fifth sections provide
estimation and simulation techniques. The final section illustrates the use
of copulae in financial problems. We omit all proofs and follow the notation
used in Joe (1997).

1.2 Bivariate Copulae

Modeling and measuring the dependency between two random variables using
copulae is the subject of this section. There are several equivalent definitions
of the copula function. We define it as a bivariate distribution function with
both marginal distributions being uniform on [0, 1].

DEFINITION 1.1 The bivariate copula is a function C: [0, 1]2 → [0, 1]
with the following properties:

1. For every u1, u2 ∈ [0, 1] C(u1, 0) = 0 = C(0, u2).

2. For every u1, u2 ∈ [0, 1] C(u1, 1) = u1 and C(1, u2) = u2.

3. For every (u1, u2), (u′1, u
′
2) ∈ [0, 1]2 such that u1 ≤ u2 and u′1 ≤ u′2

C(u2, u
′
2)− C(u2, u

′
1)− C(u1, u

′
2) + C(u1, u

′
1) ≥ 0.
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Copulae gained their popularity due to a seminal paper by Sklar (1959),
where this term was first coined. The separation of the bivariate distribu-
tion function into the copula function and margins is formalized in the next
theorem (Nelsen (2006), Theorem 2.3.3).

PROPOSITION 1.1 Let F be a bivariate distribution function with mar-
gins F1 and F2, then there exists a copula C such that

F (x1, x2) = C{F1(x1), F2(x2)}, x1, x2 ∈ R. (1.1)

If F1 and F2 are continuous then C is unique. Otherwise C is uniquely
determined on F1(R)× F2(R).

Conversely, if C is a copula and F1 and F2 are univariate distribution func-
tions, then function F in (1.1) is a bivariate distribution function with mar-
gins F1 and F2.

The theorem allows us to depart an arbitrary continuous bivariate distribu-
tion into its marginal distributions and the dependency structure. The latter
is defined by the copula function.

The representation (1.1) also shows how new bivariate distributions can be
constructed. We can extend the class of standard elliptical distributions by
keeping the same elliptical copula function and varying the marginal distribu-
tions or vice versa. Going further we can take elliptical margins and impose
some non-symmetric form of dependency by considering non-elliptical cop-
ulae. This shows that copulae substantially widen the family of elliptical
distributions. To determine the copula function of a given bivariate distribu-
tion we use the transformation

C(u1, u2) = F{F−1
1 (u1), F

−1
2 (u2)}, u1, u2 ∈ [0, 1], (1.2)

where F−1
i , i = 1, 2 are generalized inverses of the marginal distribution

functions.

Since the copula function is a bivariate distribution with uniform margins, it
follows that the copula density could be determined in the usual way

c(u1, u2) =
∂2C(u1, u2)

∂u1∂u2
, u1, u2 ∈ [0, 1]. (1.3)

Being armed with the Theorem 1.1 and (1.3) we could write density function
f(·) of the bivariate distribution F in terms of copula as follows

f(x1, x2) = c{F1(x1), F2(x2)}f1(x1)f2(x2), x1, x2 ∈ R.
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A very important property of copulae is given in Theorem 2.4.3 in Nelsen
(2006), in it, it is shown that copula is invariant under strictly monotone
transformations. This implies that the copulae capture only those features of
the joint distribution, which are invariant under increasing transformations.

1.2.1 Copula Families

Naturally there is an infinite number of different copula functions satisfying
the assumptions of Definition 1. In this section we discuss in details three
important sub-classes of simple, elliptical and Archimedean copulae.

Simplest Copulae

We are often interested in some extreme, special cases, like independence and
perfect positive or negative dependence. If two random variables X1 and X2
are stochastically independent, from the Theorem 1.1 the structure of such a
relationship is given by the product (independence) copula defined as

Π(u1, u2) = u1u2, u1, u2 ∈ [0, 1].

The contour diagrams of the bivariate density function with product copula
and either Gaussian or t-distributed margins are given in Figure 1.2.

Another two extremes are the lower and upper Fréchet-Hoeffding bounds.
They represent the perfect negative and positive dependences respectively

W (u1, u2) = max(0, u1+u2−1) and M(u1, u2) = min(u1, u2), u1, u2 ∈ [0, 1].

If C = W and (X1, X2) ∼ C(F1, F2) then X2 is a decreasing function of X1.
Similarly, if C = M , then X2 is an increasing function of X1. In general
we can argue that an arbitrary copula which represents some dependency
structure lies between these two bounds, i.e.

W (u1, u2) ≤ C(u1, u2) ≤ M(u1, u2), u1, u2 ∈ [0, 1].

The bounds serve as benchmarks for the evaluation of the dependency mag-
nitude.

Elliptical Family

Due to the popularity of Gaussian and t-distributions in financial applica-
tions, the elliptical copulae also play an important role. The construction of
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this type of copulae is based directly on the Theorem 1.1 and (1.2). By the
Theorem 2.3.7 of Nelsen (2006) bivariate copula is elliptical (has reflection
symmetry) if and only if

C(u1, u2, θ) = u1 + u2 − 1 + C(1− u1, 1− u2, θ), u1, u2 ∈ [0, 1].

From (1.2) the Gaussian copula and its copula density are given by

CN(u1, u2, δ) = Φδ{Φ−1(u1), Φ
−1(u2)},

cN(u1, u2, δ) = (1− δ2)−
1
2 exp

{
− 1

2
(1− δ2)−1(u2

1 + u2
2 − 2δu1u2)

}
× exp

{1

2
(u2

1 + u2
2)
}

, for all u1, u2 ∈ [0, 1], δ ∈ [−1, 1]

where Φ is the distribution function of N(0, 1), Φ−1 is the functional inverse
of Φ and Φδ denotes the bivariate standard normal distribution function with
the correlation coefficient δ. The level plots of the respective density are given
in Figure 1.2. The t-distributed margins lead to more mass and variability
in the tails of the distribution. However, the curves are symmetric, which
reflects the ellipticity of the underlying copula.

In the bivariate case the t-copula and its density are given by

Ct(u1, u2, ν, δ) =

∫ t−1
ν (u1)

−∞

∫ t−1
ν (u2)

−∞

Γ
(

ν+2
2

)
Γ
(

ν
2

)
πν
√

(1− δ2)

×
(

1 +
x2

1 − 2δx1x2 + x2
2

(1− δ2)ν

)−ν
2−1

dx1dx2,

ct(u1, u2, ν, δ) =
fνδ{t−1

ν (u1), t
−1
ν (u2)}

fν{t−1(u1)}fν{t−1(u2)}
, u1, u2, δ ∈ [0, 1],

where δ denotes the correlation coefficient, ν is the number of degrees of
freedom. fνδ and fν are joint and marginal t-distributions respectively, while
t−1
ν denotes the quantile function of the tν distribution. In-depth analysis of

the t-copula is done in Demarta and McNeil (2004).

Using (1.2) we can derive the copula function for an arbitrary elliptical dis-
tribution. The problem is, however, that such copulae depend on the in-
verse distribution functions and these are rarely available in an explicit form.
Therefore, the next class of copulae and their generalizations provide an im-
portant flexible and rich family of alternatives to the elliptical copulae.

Archimedean Family

Opposite to elliptical copulae, the Archimedean copulae are not constructed
using (1.2), but are related to Laplace transforms of bivariate distribution
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functions (see Section 1.6.2). Let L denote the class of Laplace transforms
which consists of strictly decreasing differentiable functions Joe (1997), i.e.

L = {φ : [0;∞) → [0, 1] |φ(0) = 1, φ(∞) = 0; (−1)jφ(j) ≥ 0; j = 1, . . . ,∞}.

The function C : [0, 1]2 → [0, 1] defined as

C(u1, u2) = φ{φ−1(u1) + φ−1(u2)}, u1, u2 ∈ [0, 1]

is a 2-dimensional Archimedean copula, where φ ∈ L and is called the gener-
ator of the copula. It is straightforward to show that C(u1, u2) satisfies the
conditions of Definition 1. The generator usually depends on some param-
eters, however, generators with a single parameter θ are mainly considered.
Joe (1997) and Nelsen (2006) provide a thoroughly classified list of popular
generators for Archimedean copulae and discuss their properties. The most
useful in financial applications (see Patton (2004)) appears to be the Gumbel
copula with the generator function

φ(x, θ) = exp (−x1/θ), 1 ≤ θ < ∞, x ∈ [0,∞].

It leads to the copula function

C(u1, u2, θ) = exp
[
−
{
(− log u1)

θ + (− log u2)
θ
}1/θ

]
,

1 ≤ θ < ∞, u1, u2 ∈ [0, 1].

Consider a bivariate distribution based on the Gumbel copula with univariate
extreme valued marginal distributions. Genest and Rivest (1989) show that
this distribution is the only bivariate extreme value distribution based on an
Archimedean copula. Moreover, all distributions based on Archimedean cop-
ulae belong to its domain of attraction under common regularity conditions.

In contrary to the elliptical copulae, the Gumbel copula leads to asymmetric
contour diagrams in Figure 1.2. The Gumbel copula shows stronger linkage
between positive values, however, more variability and more mass in the
negative tail. The opposite is observed for the Clayton copula with the
generator and copula functions

φ(x, θ) = (θx + 1)−
1
θ , 1 ≤ θ < ∞, θ �= 0, x ∈ [0,∞],

C(u1, u2, θ) = (u−θ
1 + u−θ

2 − 1)−
1
θ , 1 ≤ θ < ∞, θ �= 0, u1, u2 ∈ [0, 1].

Another popular copula generator is the Frank generator given by

φ(x, θ) = θ−1 log{1− (1− e−θ)e−x}, 0 ≤ θ < ∞, x ∈ [0,∞].
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The respective Frank copula is the only elliptical Archimedean copula, with
the copula function

C(u1, u2, θ) = −θ−1 log

{
1− e−θ − (1− e−θu1)(1− e−θu2)

1− e−θ

}
,

0 ≤ θ < ∞, u1, u2 ∈ [0, 1].

1.2.2 Dependence Measures

Since copulae define the dependency structure between random variables,
there is a relationship between the copulae and different dependency mea-
sures. The classical measures for continuous random variables are Kendall’s
τ and Spearman’s ρ. Similarly as copula functions, these measures are in-
variant under strictly increasing transformations. They are equal to 1 or −1
under perfect positive or negative dependence respectively. In contrast to
τ and ρ, the Pearson correlation coefficient measures the linear dependence
and, therefore, is unsuitable for measuring nonlinear relationships. Next we
discuss the relationship between τ , ρ and the underlying copula function.

DEFINITION 1.2 Let F be a continuous bivariate cumulative distribution
function with the copula C. Moreover, let (X1, X2) ∼ F and (X ′

1, X
′
2) ∼ F

be independent random pairs. Then Kendall’s τ2 is given by

τ2 = P{(X1 −X ′
1)(X2 −X ′

2) > 0} − P{(X1 −X ′
1)(X2 −X ′

2) < 0}

= 2P{(X1 −X ′
1)(X2 −X ′

2) > 0} − 1 = 4

∫∫
[0,1]2

C(u1, u2) dC(u1, u2)− 1.

Kendall’s τ represents the difference between the probability of two random
concordant pairs and the probability of two random discordant pairs.

For most copula functions with a single parameter θ there is a one-to-one
relationship between θ and the Kendall’s τ2. For example, it holds that

τ2(Gaussian and t) =
2

π
arcsin δ,

τ2(Archimedean) = 4

∫ 1

0

φ−1(t)

(φ−1(t))′
dt + 1, (Genest and MacKay (1986)),

τ2(Π) = 0, τ2(W ) = 1, τ2(M) = −1.

This implies, that for Gaussian, t and an arbitrary Archimedean copula we
can estimate the unknown copula parameter θ using a type of method of
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Figure 1.2. Contour diagrams for product, Gaussian, Gum-
bel and Clayton copulae with Gaussian (left column) and t3
distributed (right column) margins.
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moments procedure with a single moment condition. This requires, however,
an estimator of τ2. Naturally (Kendall (1970)) it is computed by

τ̂2n =
4

n(n− 1)
Pn − 1,

where n stands for the sample size and Pn denotes the number of concordant
pairs, e.g. such pairs (X1, X2) and (X ′

1, X
′
2) that (X1 − X ′

1)(X2 − X ′
2) > 0.

However, as argued by Genest, Ghoudi and Rivest (1995) the MM estimator
of copula parameters is highly inefficient (see Section 1.4). Next we provide
the definition and similar results for the Spearman’s ρ.

DEFINITION 1.3 Let F be a continuous bivariate distribution function
with the copula C and the univariate margins F1 and F2 respectively. Assume
that (X1, X2) ∼ F . Then the Spearman’s ρ is given by

ρ2 = 12

∫∫
R

2

F1(x1)F2(x2) dF (x1, x2)− 3 = 12

∫∫
[0,1]2

u1u2 dC(u1, u2)− 3.

Similarly as for Kendall’s τ , we provide the relationship between Spearman’s
ρ and copulae.

ρ2(Gaussian and t) =
6

π
arcsin

δ

2
,

ρ2(Π) = 0, ρ2(W ) = 1, ρ2(M) = −1.

Unfortunately there is no explicit representation of Spearman’s ρ2 for Archim-
edean in terms of generator functions as by Kendall’s τ . The estimator of ρ
is easily computed using

ρ̂2n =
12

n(n + 1)(n− 1)

n∑
i=1

RiSi − 3
n + 1

n− 1
,

where Ri and Si denote the ranks of two samples. For a detailed discussion
and relationship between these two measures we refer to Fredricks and Nelsen
(2004), Chen (2004), etc.

1.3 Multivariate Copulae

In this section we generalize the above theory to the multivariate case. First
we define the copula function and state Sklar’s theorem.
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DEFINITION 1.4 A d-dimensional copula is a function C: [0, 1]d → [0, 1]
with the following properties:

1. C(u1, . . . , ud) is increasing in each component ui ∈ [0, 1], i = 1, . . . , d.

2. C(1, . . . , 1, ui, 1, . . . , 1) = ui for all ui ∈ [0, 1], i = 1, . . . , d.

3. For all (u1, . . . , ud), (u′1, . . . , u
′
d) ∈ [0, 1]d with ui < u′i we have

2∑
i1=1

· · ·
2∑

id=1

(−1)i1+···+idC(vj1, . . . , vjd) ≥ 0,

where vj1 = uj and vj2 = u′j, for all j = 1, . . . , d.

Thus a d-dimensional copula is the distribution function on [0, 1]d where
all marginal distributions are uniform on [0,1]. In the Sklar’s theorem the
very importance of copulae in the area of multivariate distributions has been
recapitulated in an exquisite way.

PROPOSITION 1.2 (Sklar (1959)) Let F be a multivariate distribution
function with margins F1, . . . , Fd, then there exists the copula C such that

F (x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)}, x1, . . . , xd ∈ R.

If Fi are continuous for i = 1, . . . , d then C is unique. Otherwise C is uniquely
determined on F1(R)× · · · × Fd(R).

Conversely, if C is a copula and F1, . . . , Fd are univariate distribution func-
tions, then function F defined above is a multivariate distribution function
with margins F1, . . . , Fd.

The representation in Sklar’s Theorem can be used to construct new multi-
variate distributions by changing either the copula function or the marginal
distributions. For an arbitrary continuous multivariate distribution we can
determine its copula from the transformation

C(u1, . . . , ud) = F{F−1
1 (u1), . . . , F

−1
d (ud)}, u1, . . . , ud ∈ [0, 1], (1.4)

where F−1
i are inverse marginal distribution functions. Copula density and

density of the multivariate distribution with respect to copula are

c(u1, . . . , ud) =
∂dC(u1, . . . , ud)

∂u1 . . . ∂ud
, u1, . . . , ud ∈ [0, 1],

f(x1, . . . , xd) = c{F1(x1), . . . , Fd(xd)}
d∏

i=1

fi(xi), x1, . . . , xd ∈ R.

For the multivariate case as well as for the bivariate case copula function is
invariant under monotone transformations.
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1.3.1 Copula Families

It is straightforward to generalize the independence copula and the upper and
lower Fréchet-Hoeffdings bounds to the multivariate case. The independence
copula is defined by the product

Π(u1, . . . , ud) =
d∏

i=1

ui.

The upper and lower Fréchet-Hoeffdings bounds are given by

W (u1, . . . , ud) = max
(
0,

d∑
i=1

ui + 1− d
)
,

M(u1, . . . , ud) = min(u1, . . . , ud), u1, . . . , ud ∈ [0, 1].

respectively. An arbitrary copula C(u1, . . . , ud) lies between the upper and
lower Fréchet-Hoeffdings bounds

W (u1, . . . , ud) ≤ C(u1, . . . , ud) ≤ M(u1, . . . , ud).

Note, however, that the lower Fréchet-Hoeffding bound is not a copula func-
tion for d > 2.

The generalization of elliptical copulae to d > 2 is straightforward. In the
Gaussian case we have:

CN(u1, . . . , ud,Σ) = ΦΣ{Φ−1(u1), . . . , Φ
−1(ud)},

cN(u1, . . . , ud,Σ) = |Σ|−1/2×

exp

{
− [Φ−1(u1), . . . , Φ

−1(ud)](Σ
−1 − I)[Φ−1(u1), . . . , Φ

−1(uk)]

2

}�
,

for all u1, . . . , ud ∈ [0, 1],

where ΦΣ is a d-dimensional normal distribution with zero mean and the
correlation matrix Σ. The variances of the variables are imposed by the
marginal distributions. Note, that in the multivariate case the implemen-
tation of elliptical copulae is very involved due to technical difficulties with
multivariate cdf’s.

Archimedean and Hierarchical Archimedean copulae

In contrast to the bivariate case, the multivariate setting allows construc-
tion methods for copulae. The simplest multivariate generalization of the
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Archimedean copulae is C : [0, 1]d → [0, 1] and is defined as

C(u1, . . . , ud) = φ{φ−1(u1) + · · ·+ φ−1(ud)}, u1, . . . , ud ∈ [0, 1], (1.5)

where φ ∈ L. This definition provides a simple, but rather limited technique
for the construction of multivariate copulae. The whole complex multivariate
dependency structure is determined by a single copula parameter. Further-
more, the multivariate Archimedean copulae imply that the variables are ex-
changeable. This means, that the distribution of (u1, . . . , ud) is the same as
of (uj1, . . . , ujd

) for all j� �= jv. This is certainly not an acceptable assumption
in practical applications.

A much more flexible method is provided by hierarchical Archimedean copu-
lae (HAC), discussed by Joe (1997), Whelan (2004), Savu and Trede (2006),
Embrechts, Lindskog and McNeil (2003), Okhrin, Okhrin and Schmid (2007).
In the most general case of fully nested copulae, the copula function is given
by

C(u1, . . . , ud) = φd−1
{
φ−1

d−1 ◦ φd−2
(
. . . [φ−1

2 ◦ φ1{φ−1
1 (u1) + φ−1

1 (u2)} (1.6)

+ φ−1
2 (u3)] + · · ·+ φ−1

d−2(ud−1)
)

+ φ−1
d−1(ud)

}
= φd−1[φ

−1
d−1 ◦ C({φ1, . . . , φd−2})(u1, . . . , ud−1) + φ−1

d−1(ud)]

for φ−1
d−i ◦ φd−j ∈ L

∗, i < j, where

L
∗ = {ω : [0;∞) → [0,∞) |ω(0) = 0,

ω(∞) = ∞; (−1)j−1ω(j) ≥ 0; j = 1, . . . ,∞},

and “◦” is the composition operator. In contrast to the usual Archimedean
copula (1.5), the HAC defines the whole dependency structure in a recursive
way. At the lowest level, the dependency between the first two variables is
modeled by a copula function with the generator φ1, i.e. z1 = C(u1, u2) =
φ1{φ−1

1 (u1) + φ−1
1 (u2)}. At the second level another copula function is used

to model the dependency between z1 and u3, etc. Note, that the generators
φi can come from the same family and differ only through the parameter or,
to introduce more flexibility, come from different generator families. As an
alternative to the fully nested model, we can consider copula functions, with
arbitrary chosen combinations at each copula level, so-called partially nested
copulae. For example the following 4-dimensional copula, where the first and
the last two variables are joined by individual copulae with generators φ12
and φ34. Further, the resulted copulae are combined by a copula with the
generator φ.

C(u1, u2, u3, u4) = φ
(
φ−1[φ12{φ−1

12 (u1) + φ−1
12 (u2)}] (1.7)

+ φ−1[φ34{φ−1
34 (u3) + φ−1

34 (u4)}]
)
.
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Whelan (2004) and McNeil (2007) provide tools for generating samples from
Archimedean copulae, Savu and Trede (2006) derived the density of such cop-
ulae and Joe (1997) proves their positive quadrant dependence (see Theorem
4.4). Okhrin et al. (2007) considered methods for determining the optimal
structure of the HAC and provided asymptotic theory for the estimated pa-
rameters.

1.3.2 Dependence Measures

MMeasuring dependence in a multivariate framework is a tedious task. This
is due to the fact that, the generalizations of bivariate measures are not
unique. One of the multivariate extensions of the Kendall’s τ and its estima-
tor is proposed in Barbe, Genest, Ghoudi and Rémillard (1996)

τd =
2d

2d−1 − 1
E(V )− 1 =

2d

2d−1 − 1

∫
t dK(t)− 1, (1.8)

τ̂dn =
2d

2d−1 − 1
· 1

n

n∑
i=1

Vin − 1 =
2d

2d−1 − 1

∫
t dKn(t)− 1, (1.9)

where Vin = 1
n−1

∑n
m=1

∏d
j=1 1(xjm ≤ xim) and V = C{F1(X1), . . . , Fd(Xd)} ∈

[0, 1]. Kn(t) and K(t) are distribution functions of Vin and V respectively.
The expression in (1.8) implies that τd is an affine transformation of the ex-
pectation of the value of the copula. Genest and Rivest (1993) and Barbe
et al. (1996) provide in-depth investigation and derivation of the distribution
K.

A multivariate extension of Spearman’s ρ based on multivariate copula was
introduced in Wolff (1980):

ρd =
d + 1

2d − (d + 1)

{
2d

∫
· · ·

∫
[0,1]d

C(u1, . . . , ud) du1 . . . dud − 1

}
.

Schmid and Schmidt (2006a) and Schmid and Schmidt (2006b) discuss its
properties and provide a detailed analysis of its estimator given by

ρ̂dn =
d + 1

2d − d− 1

[
2d

n

n∑
i=1

d∏
j=1

{1− F̂ (xij)} − 1

]
.

A version of the pairwise Spearman’s ρ was introduced in Kendall (1970)

ρr = 22
∑
m<l

(
d

2

)−1 ∫∫
[0,1]2

Cml(u, v) dudv − 1,

where Cml denotes the bivariate copula of the variables m and l.
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Generalizations

There are numerous techniques which allow for the construction of new types
of copulae from simple, elliptical or Archimedean copulae. For example,
copula families B11 and B12 (Joe (1997)) arise as a combination of the upper
Fréchet-Hoeffding bound and the product copula

CB11(u1, u2, θ) = θM(u1, u3) + (1− θ)Π(u1, u2)

= θ min{u1, u2}+ (1− θ)u1u2,

CB12(u1, u2, θ) = M θ(u1, u2)Π
1−θ(u1, u2)

= (min{u1, u2})θ(u1u2)
1−θ, u1, u2, θ ∈ [0, 1].

For the family B11 we used the property, that every convex combination of
copulae is a copula too. Family B12 is also known as Spearman or Cuadras-
Augé copula, which is a weighted geometric mean of the upper Fréchet-
Hoeffding bound and the product copula. Further generalization is done by
using power mean over the upper Fréchet-Hoeffding bound and the product
copula

Cp(u1, u2, θ1, θ2) = {θ1M
θ2(u1, u2) + (1− θ1)Π

θ2(u1, u2)}1/θ2

= {θ1 min(u1, u2)
θ2 + (1− θ1)(u1u2)

θ2}1/θ2,

θ1 ∈ [0, 1], θ2 ∈ R.

Nelsen (2006), Chapter 3 provides further methods of constructing multi-
variate copulae, one of them is based on the Archimedean n-copulae. This
family of copulae arises from simple multivariate Archimedean copula from
reparametrization λ = e−φt. We get

C(u1, . . . , ud) = λ−1{λ(u1) . . . λ(ud)} = λ−1[Π{λ(u1), . . . , λ(ud)}].

The function λ is known as a multiplicative generator of C. Replacing product
copula Π with an arbitrary copula C1 of dimension d we get a new copula
family, investigated in Morillas (2005).

Another popular approach to modeling multivariate distributions is based on
vines. This class was introduced in Joe (1996) and then discussed by Bedford
and Cooke (2001), Bedford and Cooke (2002), Kurowicka and Cooke (2006),
Aas, Czado, Frignessi and Bakken (2006) and Berg and Aas (2007). The
idea is based on the decomposition of a multivariate density into d(d− 1)/2
bivariate densities. In the literature we have only come accross two types of
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such structures D-vines and canonical vines. For the D-vine the density is

f(x1, . . . , xd) =

=
d∏

m=1

f(xm)
d−1∏
j=1

d−j∏
i=1

cji{F (xi|xi+1, . . . , xi+j−1), F (xi+j|xi+1, . . . , xi+j−1)},

where the conditional distribution is computed as a derivative with respect
to known arguments (in details in Sections 2.5 and 2.6.1). To get the copula
function we integrate the density over the d-dimensional hyper cube. As
noted by Berg and Aas (2007) there are only d(d− 1)/2 possible copulae to
be described using vines. For d = 10 it is only 45 different models, while using
HAC as in Okhrin et al. (2007) more than 300 million copulae are available.
However the estimation of the parameters of the model and simulation from
the copula are faster when vines are used.

1.4 Estimation Methods

The estimation of a copula-based multivariate distribution involves both the
estimation of the copula parameters θ and the estimation of the margins Fj,
j = 1, . . . , d. The properties and quality of the estimator of θ heavily depend
on the estimators of Fj, j = 1, . . . , d. We distinguish between a parametric
and a nonparametric specification of the margins. If we are interested only
in the dependency structure, the estimator of θ should be independent of
any parametric models for the margins. In practical applications, however,
we are interested in a complete distribution model and, therefore, parametric
models for margins are preferred (see Joe (1997)).

In the bivariate case a standard method of estimating the univariate param-
eter θ is based on Kendall’s τ statistic by Genest and Rivest (1993). The
estimator of τ complemented by the method of moments allows for the es-
timation of the parameters. However, as shown in Genest et al. (1995) the
maximum-likelihood method lead to substantially more efficient and general
estimators. For non-parametrically estimated margins, Genest et al. (1995)
show the consistency and asymptotic normality of ML estimators and derive
the moments of the asymptotic distribution. The maximum-likelihood esti-
mation can be performed simultaneously for the parameters of the margins
and of the copula function. Alternatively, a two-stage procedure can be ap-
plied, where we estimate the parameters of margins at the first stage and the
copula parameters at the second stage (see Joe (1997), Joe (2005)). Ferma-
nian and Scaillet (2003), Chen, Fan and Patton (2004) and Chen, Fan and
Tsyrennikov (2006) analyze the case of nonparametrically estimated margins.
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Chen and Huang (2007) considered a fully nonparametric estimation of the
copula. Next we provide details on both approaches.

Parametric margins

Let α = (α�
1 , . . . ,α�

d )� denote the vector of parameters of marginal distri-
butions and θ parameters of the copula. The classical full ML estimator η̂
of η = (α�, θ�)� solves the system

∂L(η,X)

∂η�
= 0,

where L(η,X) =
n∑

i=1

log

[
c{F1(x1i, α1), . . . , Fd(xdi, αd), θ}

d∏
j=1

fj(xji, αj)

]

=
n∑

i=1

[
log c{F1(x1i, α1), . . . , Fd(xdi, αd), θ}

+
d∑

j=1

log fj(xji, αj)
]
.

Following the standard theory on ML estimation, the estimator is efficient
and asymptotically normal, however, it is often computationally demanding
to solve the system simultaneously. Alternatively the multistage optimization
proposed in Joe (1997), Chapter 10 also known as inference of margins, can
be applied. First, we estimate separately the parameters of the margins and
then use them in the estimation of the copula parameters as known quantities.
The above optimization problem is then replaced by(

∂L1

∂α�
1
, . . . ,

∂Ld

∂α�
d

,
∂Ld+1

∂θ�

)�
= 0, (1.10)

where Lj =
n∑

i=1

lj(Xi), for j = 1, . . . , d + 1,

lj(Xi) = log fj(xji, αj), for j = 1, . . . , d, i = 1, . . . , n,

ld+1(Xi) = log
[
c
{
F1(x1i, α1), . . . , Fd(xdi, αd)

}]
, for i = 1, . . . , n.

The first d components in (1.10) correspond to the usual ML estimation of
the parameters of the marginal distributions. The last component reflects
the estimation of the copula parameters. Detailed discussion on this method
could be found in Joe and Xu (1996). Note, that this procedure does not
lead to efficient estimators; however, as argued by Joe (1997) the loss in the
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efficiency is modest. The advantage of the two-stage procedure lies in the dra-
matic reduction of the numerical complexity. This is especially pronounced
in the case of hierarchical Archimedean copulae (see Okhrin et al. (2007)).
This method is a special case of the generalized method of moments with
an identity weighting matrix (see Cherubini, Luciano and Vecchiato (2004),
Section 4.5).

Canonical Maximum Likelihood

In this section we consider a nonparametric estimation of the marginal dis-
tributions. The asymptotic properties of the multistage estimators of θ do
not depend explicitly on the type of the nonparametric estimator, but on its
convergence properties. Here we use the rectangular kernel (histogram). The
estimator is given by

F̂j(x) =
1

n + 1

n∑
i=1

1(xji ≤ x), j = 1, . . . , d.

The factor n/(n+1) is used to bound the cdf from one. Let F̂1, . . . , F̂d denote

the nonparametric estimators of F1, . . . , Fd. The canonical ML estimator θ̂ of
θ solves the system by maximizing the pseudo log-likelihood with estimated
margins F̂1, . . . , F̂d, i.e.

∂L
∂θ�

= 0,

where L =
n∑

i=1

l(Xi),

l(Xi) = log
[
c
{
F̂1(x1i), . . . , F̂d(xdi)

}]
, for i = 1, . . . , n.

As in the parametric case, the semiparametric estimator θ̂ is asymptotically
normal under suitable regularity conditions. This method was first used in
Oakes (2005) and then investigated by Genest et al. (1995) and Shih and
Louis (1995). For properties we refer to these papers.

1.5 Goodness-of-Fit Tests for Copulae

In this section we review the goodness-of-fit (GOF) tests for copulae. With
the GOF tests we test whether the underlying copula is equal to some target
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copula function or belongs to some copula family. The test problem could be
written as a composite or a simple null hypothesis

H0 : C ∈ C0, against H1 : C /∈ C0,

H0 : C = C0, against H1 : C �= C0,

where C0 is some known parametric family of copulae, C0 is some known
target copula and C is the underlying true copula. The test problem is in
general equivalent to the GOF tests for multivariate distributions. However,
since the margins are estimated we cannot apply the standard test procedures
directly.

Several related tests have been introduced into the literature. As a simple
generalization of the standard χ2 an adopted χ2-test is proposed in Fermanian
(2005) (Section 2) which is based directly on the distance between C and C0.
Genest and Rivest (1993) consider, in a bivariate setup, a test based on the
true and empirical distributions of the pseudo-variable Z = C0(X, Y ). As a
measure they use the L2 norm. This approach is extended to the multivariate
case and other measures of proximity by Barbe et al. (1996), Wang and
Wells (2000), Genest, Quessy and Rémillard (2006). Wang and Wells (2000)
propose to compute a Crámer-von-Mises statistic of the form

Snξ =

∫ 1

ξ

{Kn(w)−K(w)}2 dw, ξ ∈ (0, 1),

where Kn(w) and K(w) are empirical and theoretical K-distributions from
Section 2.3.2. However exact p-values for this statistic cannot be com-
puted explicitly. Savu and Trede (2004) propose a χ2-test based on the
K-distribution. Tests of LR type were proposed in Chen and Fan (2005).
Unfortunately in most cases the distribution of the test statistic does not
follow a standard distribution and either bootstrap or other computationally
intensive methods should be used.

An alternative approach is based on the probability integral transform intro-
duced in Rosenblatt (1952) and applied in Breymann, Dias and Embrechts
(2003), Chen et al. (2004). The idea of the transformation is to construct the
variables

Y1 = F1(X1),

Yj = C0{Fj(Xj)|F1(X1), . . . , Fj−1(Xj−1)}, for j = 2, . . . , d,

where the conditional copula is defined as

C0(uj|u1, . . . , uj−1) =

∂j−1

∂u1...∂uj−1
C0(u1, . . . , uj, 1, . . . , 1)

∂j−1

∂u1...∂uj−1
C0(u1, . . . , uj−1, 1, . . . , 1)

.
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Under H0 the variables Yi, for i = 1, . . . , d are independently and uniformly
distributed on [0, 1]. Since the variables Yi are not directly observable, we

compute the pseudo variables Ŷji defined by

Ŷ1i = F̂1(X1i), (1.11)

Ŷji = C{F̂j(Xji)|F̂1(X1i), . . . , F̂j−1(Xj−1,i)},

for j = 2, . . . , d, i = 1, . . . , n. Chen et al. (2004) proposed two tests based on

Ŷji. Both can be used for our purposes, however here we discuss the second

test. Consider the variable W =
∑d

j=1[Φ
−1(Yj)]

2. Under H0 it holds that

W ∼ χ2
d. Similarly as Yj’s, W is not observed and its pseudo-observations

are computed as Ŵi =
∑d

j=1[Φ
−1(Yji)]

2. Breymann et al. (2003) assume
that estimating margins and copula parameters does not significantly affect
the distribution of Ŵi and apply a standard χ2 test directly to the pseudo-
observations.

Chen et al. (2004) develop a kernel-based test for the distribution of W and,
thus, account for estimation errors. Let ĝW (w) denote the kernel estimator

of the density of W , i.e. ĝW (w) = 1
nh

∑n
i=1 Kh{w, Fχ2

d
(Ŵi)}, where Kh is

the univariate boundary kernel with the second order kernel function k(·).
Under H0 the density gW (w) is equal to one. As a measure of divergency

we use Ĵn =
∫ 1

0 {ĝW (w)− 1}2dw. Assuming non-parametric estimator of the
marginal distributions Chen et al. (2004) prove under regularity conditions
that

Tn = (n
√

hĴn − cn)/σ → N(0, 1),

where the parameters are defined in Chen et al. (2004). The proof of this
statement does not depend explicitly on the type of the non-parametric esti-
mator of the marginals Fi, but uses the order of F̂j(Xji)−Fj(Xji) as a function
of n. It can be shown that if the parametric families of marginal distribu-
tions are correctly specified and their parameters are consistently estimated,
then the statement holds also if we use parametric estimators for marginal
distributions. Since the test is distribution-free it is convenient to use it as
a GOF measure for different copulae in different dimensions. Moreover as
argued by Chen et al. (2004), the power and size of the test are comparable
with other more sophisticated tests.

1.6 Simulation Methods

Monte-Carlo simulations are often a single reliable solution method in many
financial problems. Within the simulation study the random variables are
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generated from some prescribed distributions. There are numerous methods
of simulating from copula-based distributions (see Frees and Valdez (1998),
Whelan (2004), Marshall and Olkin (1988), McNeil (2007), Embrechts, Mc-
Neil and Straumann (1999), Frey and McNeil (2003), Devroye (1986), etc.).
Here we focus on two of them, on the conditional inversion method and on
the method proposed by Marshall and Olkin (1988) for Archimedean copulae
with generalizations to hierarchical Archimedean copulae by McNeil (2007).

1.6.1 Conditional Inverse Method

The conditional inverse method is a general approach aimed of simulating
random variables from an arbitrary multivariate distribution. Here we sketch
this method on the example of simulating from copulae. The idea is to gen-
erate random variables recursively from the conditional distributions. Let
u1, . . . , ud be the sample we generate and let v1, . . . , vd ∼ U(0, 1) be a uni-
formly distributed random sample. We set u1 = v1. The rest of the variables
we generate using the recursion ui = C−1

i (vi|u1, . . . , ui−1) for i = 2, . . . , d,
where Ci = C(u1, . . . , ui, 1, . . . , 1) and the conditional distribution of Ui is
given by

Ci(ui|u1, . . . , ui−1) = P(Ui ≤ ui|U1 = u1 . . . Ui−1 = ui−1) =

∂i−1Ci(u1,...,ui)
∂u1...∂ui−1

∂i−1Ci−1(u1,...,ui−1)
∂u1...∂ui−1

.

The method is numerically expensive, since it depends on higher order deriva-
tives of C and the inverse of the conditional distribution function.

1.6.2 Marshal-Olkin Method

For simulating from Archimedean copulae a simpler method is introduced in
Marshall and Olkin (1988). The idea of the method is based on the fact that
the Archimedean copulae are derived from Laplace transforms. Let M be a
univariate cumulative distribution function of a positive random variable (so
that M(0) = 0) and φ is the Laplace transform of M , i.e.

φ(s) =

∫ ∞

0
exp{−sw} dM(w), s ≥ 0.

For any univariate distribution function F , a unique distribution G exists
such that

F (x) =

∫ ∞

0
Gα(x) dM(α) = φ{− log G(x)}.



1 Modeling Dependencies with Copulae 23

Considering d different univariate distributions F1, . . . , Fd, we obtain that

C(u1, . . . , ud) =

∫ ∞

0

d∏
i=1

Gα
i dM(α) = φ

[
d∑

i=1

φ−1{Fi(ui)}
]

is a multivariate distribution function. To add even more generality we re-
place the product of univariate distributions Gi with an arbitrary copula
function R

C(u1, . . . , ud) =

∫ ∞

0
. . .

∫ ∞

0
R(Gα

1 , . . . , Gα
d ) dM(α).

Note that for the classical Archimedean copula R is equal to a product cop-
ula. Following the paper of Marshall and Olkin (1988) we proceed with the
following three steps to make a draw from a distribution described by an
Archimedean copula:

1. generate an observation u from M ;

2. generate observations (v1, . . . , vd) from R;

3. the generated vector is computed by x = {G−1
1 (v

1/u
1 ), . . . , G−1

d (v
1/u
d )}.

This method works much faster than the classical conditional inverse tech-
nique. The drawback is that the distribution M can be determined explicitly
only for a few generator functions φ. This can be done, for example, for
Frank, Gumbel and Clayton families (see McNeil (2007), Marshall and Olkin
(1988)). The same problem arises in the case of hierarchical copulae, where
φi◦φ−1

i+1 should satisfy the properties of generator functions. A slightly modi-
fied but more simple procedure for simulating from hierarchical Archimedean
copulae is considered in McNeil (2007).

1.7 Applications to Finance

The dependency plays a key role in many financial applications. Elliptical
distributions, with the correlation coefficient as the main measure of depen-
dency, constitute a well established class of dependency models commonly
used in finance. However, the symmetry assumption and the imposed tail
behavior do not reflect the empirical evidence on financial time series. This
leads to numerous extensions of Gaussian models to copula-based distribu-
tions. In this section we discuss three such extensions. Firstly, we consider
the asset allocation problem with non-Gaussian asset returns. Secondly, we
discuss the peculiarities of the Value-at-Risk estimation in the non-elliptical
framework. Thirdly, we consider the time series models with the residuals
following a copula-based distribution.
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1.7.1 Asset Allocation

In this section we illustrate the extension of the classical asset allocation
problem to copula-based models following Patton (2004). Further discussion
and application of the impact of copula-based distribution on portfolio selec-
tion procedures can be found in Longin and Solnik (2001) and Hennessy and
Lapan (2002).

We consider an investor with a CRRA utility function U(x) = (1− γ)−1x1−γ

willing to allocate his wealth to d risky assets. We denote the d-dimensional
vector of continuously compounded asset returns at time t + 1 by rt+1 =
(r1,t+1, . . . , rd,t+1)

� and the vector of portfolio weights by w = (w1, . . . , wd)
�.

Let Ft+1 be the d-dimensional distribution function of rt+1 with the mean
µt+1 and covariance matrix Σt+1. The aim is to forecast Ft+1 for the time
period t + 1 using the data up to time t. The estimator is denoted by F̂t+1
with the mean µ̂t+1, the covariance matrix Σ̂t+1 and the density f̂t+1. The
objective of the investor is to maximize the expected utility at the time point
t + 1. This leads to the optimization problem

max
w∈W

E U(1 + w�rt+1). (1.12)

In the case of no-short-sales constraint we set W = {w ∈ [0, 1]d : w�1 = 1}
else we set W = {w ∈ R

d : w�1 = 1}. The conditional expectation in
(1.12) implies that we integrate the utility with respect to the forecasted

distribution F̂t+1. This reduces the problem (1.12) to the problem

max
w∈W

∫
· · ·

∫
U(1 + w�rt+1)f̂t+1(rt+1)drt+1.

There are several alternative parametric approaches to modeling Ft+1. Let
Σd,t+1 denote the diagonal matrix containing only the main diagonal of Σt+1.

Then Σt+1 = Σ
1/2
d,t+1Rt+1Σ

1/2
d,t+1, where Rt+1 denotes the correlation matrix.

A standard approach is to define the model of the asset returns in the form

Σ
−1/2
d,t (rt − µt) ∼ Nd(0,Rt), (1.13)

where the conditional moments µt and Σt are modeled by a GARCH-in-mean
type of process (Franke, Härdle and Hafner (2008)). As a simpler alternative
we can consider a Bayesian framework where Ft+1 denotes the predictive dis-
tribution of the asset returns as in Barberis (2000). The unknown parameters
of the conditional moments are usually estimated numerically using the ML
methodology.

To introduce a copula-based distribution into the asset allocation we deviate
from the normality assumption and, following the Sklar’s theorem, assume
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that F = C(F1, . . . , Fd). Thus the model (1.14) is replaced with the model

Σ
−1/2
d,t (rt − µt) ∼ C(F1, . . . , Fd) (1.14)

with some given functional forms of the copula and the marginal distributions.
Similarly as above, the parameters of the conditional moments, of the copula
and of the marginal distributions are estimated using the ML method.

In Patton (2004) the investor allocates his wealth between small cap and
large cap stocks (i.e. d = 2). The conditional mean is defined as linear
function of the lagged asset returns and additional explanatory variables. The
conditional variance is stated in the TARCH(1,1) form. The rotated Gumbel
copula with skewed t margins are used to construct the bivariate distribution
of the residuals. This model reveals the highest likelihood function and the
lowest AIC and BIC criterion. It is concluded that unconstrained portfolios
derived from the normality assumption performed worse in 9 of 10 different
trading strategies compared to the Gumbel model.

1.7.2 Value-at-Risk

One of the main advantages of copulae is the fact that they allow for flexible
modeling of the tail behavior of multivariate distributions. Since the tail
behavior explains the simultaneous outliers of asset returns, it is of special
interest in risk management. Therefore, in this section we illustrate the
use of copulae for computing the Value-at-Risk (VaR) of portfolios following
Embrechts et al. (1999) and Junker and May (2005). The VaR of a portfolio
at level α is defined as the lower α-quantile of the distribution of the portfolio
return rp = w�r, i.e.

V aR(α) = F−1
rp

(α).

The VaR is a reasonable measure of risk if we assume that the returns are
elliptically distributed. This follows from the fact that VaR is a coherent
risk measure (see Embrechts et al. (1999)). Moreover, the assumption of
ellipticity implies that minimizing the variance in the Markowitz problem also
minimizes the VaR, the expected shortfall and any other coherent measure
of risk. However, this statement is false in the non-elliptical case. Moreover,
regarding the effect of diversification the variance is the smallest (highest)
for perfect negative (positive) correlation of the assets. This also holds for
the VaR in the elliptical case, however, not for the non-elliptical distributions
(see Embrechts et al. (1999), Theorem 5). This implies that for copula-based
distribution the VaR should be used with caution and its computation should
be awarded more attention.
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Consider the probability that the portfolio return rp does not exceed some
predetermined value ξ, i.e. P(rp ≤ ξ). Our aim is to determine the lower
α-quantile of the distribution of rp, or, equivalently, to determine such ξ that
P(rp ≤ ξ) = α. Note that

rp = w�r =
d∑

i=1

wiri =
d∑

i=1

wiF
−1
i (ui),

where Fi denote the marginal distributions of individual asset returns, ui =
Fi(ri) ∼ U [0, 1] for all i = 1, . . . , d and u1, . . . , ud ∼ C. The copula C defines
the dependency structure between the asset returns. This implies that

P(rp ≤ ξ) =

∫
U

c(u1, . . . , ud)du1 . . . dud, (1.15)

with

U = {[0, 1]d−1 × [0, ud(ξ)]}, ud(ξ) = Fd

[
ξ/wd −

d−1∑
i=1

wiF
−1
i (ui)/wd

]
.

For fixed α, the VaR is determined by solving (1.15) numerically for ξ. Di-
rect multidimensional numerical integration is a tedious task which can be
substantially simplified by using the Monte-Carlo integration. For this pur-
pose we have to generate random samples from C using methods described
in Section 1.6.

Junker and May (2005) apply the above methodology to a portfolio consisting
of two assets, Hoechts and Volkswagen shares. The returns are standardized
by the sample mean and the conditional volatility from the GARCH(1,1)
process. The copula function is defined as a convex linear combination of
the Frank copula and its survival copula. It is concluded that empirical
or t-margins and asymmetric copula-based dependency structures provide
the best fit in terms of χ2 goodness-of-fit test of Diebold, Gunther and Tay
(1998). Moreover, the VaR estimator from this model well approximates the
empirical estimator. The assumption of Gaussian GARCH(1,1) standardized
returns renders the worst results.

1.7.3 Time Series Modeling

Time series models constitute one of the most important tools in dealing
with financial data. However, multivariate modeling used up to now does
not properly describe financial and economic time series. The reason is that
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these models are mainly based on the Gaussian or on elliptical distributions.
Nowadays there are numerous papers extending the classical time series mod-
els to model copula distributed residuals. First we consider the semiparamet-
ric copula-based multivariate dynamic model (SCOMDY) of Chen and Fan
(2006). Let {y�t ,x�t }n

t=1 be stochastic processes, where xt contains the ex-
ogenous variables and the d-dimensional vector yt contains the variables of
interest. Let Ft−1 denote the information up to the time point t. They
specified the model in the following way

yt = µt(θ1) +
√

Ht(θ)εt,

where

θ = {θ�1 , θ�2 }�

µt(θ1) = (µ1,t(θ1), . . . , µd,t(θ1))
�

= E{yt|Ft−1}
Ht(θ) = diag{h1,t(θ), . . . , hd,t(θ)}

= diag{h1,t(θ1, θ2), . . . , hd,t(θ1, θ2)}
= diag

(
E[{y1t − µt(θ1)}2|Ft−1], . . . , E[{ydt − µt(θ1)}2|Ft−1]

)
.

µt(·) is the true conditional mean of the yt given Ft−1 and hjt(·) is the true
conditional variance of the yjt given Ft−1. The residuals are assumed to
be serially independent with zero mean and unit variances, i.e. E[εjt] = 0
and E[ε2

jt] = 1 for j = 1, . . . , d. The joint distribution of ε is assumed to
be given by C{F1(ε1), . . . , Fd(εd)}, where the margins and the copula func-
tion are unknown. This general specification includes the standard processes
GARCH, ARCH, VAR as special cases, however, it allows for much more flex-
ibility in the choice of the dependency structure of the residuals. For exam-
ple considering θ1 = (δ�

1 , . . . , δ�
d )�, θ2 = (κ1, . . . , κd; β1, . . . , βd; γ1, . . . , γd)

�,
µt = (x�1tδ1, . . . ,x

�
dtδd)

�, Ht = diag{h1t, . . . , hdt} and the copula for ε is as-
sumed to be the Gaussian copula, where κj > 0, βj ≥ 0, γj ≥ 0 and βj+γj < 1
for j = 1, . . . , d we get GARCH(1,1) model with normal innovations

yjt = x�jtδj +
√

hjtεjt

hjt = κj + βjhj,t+1 + γj(yj,t−1 − x�j,t−1δj)
2, j = 1, . . . , d.

Chen and Fan (2006) consider maximum likelihood estimators of the parame-
ters in these models and establish large sample properties when the copula is
mis-specified. For the choice between two SCOMDY models they introduce
a pseudo likelihood ratio test and provide the limiting distribution of the test
statistic.

In contrast to the paper by Chen and Fan (2006), Fermanian and Scaillet
(2003) consider a nonparametric estimation of copulae for time series and
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derived asymptotic properties of the kernel estimator of copulae. Further
generalization is discussed in Giacomini, Härdle and Spokoiny (2008), where
the parameter of the copula is assumed to be time dependent. The aim is to
determine the periods with constant dependency structure.

1.8 Simulation Study and Empirical Results

In this section we illustrate the considered algorithms on simulated and real-
world data. The next sub-section contains the simulation study, where we
show that the aggregated binary structures outperform the alternative strate-
gies of artificial data. In Section 1.8.2 we used Bayes and Akaike information
criterion to compare the performance of the HAC-based model with the clas-
sical Gaussian and t-models on real data.

1.8.1 Simulation Study

Setup of the study

The aim of this simulation study is the comparison of grouping methods on
the example of simulated data. We consider two different true structures
s = (123)(45) and s = (12(34))5 with the Gumbel generator function given
by

φ−1 = {− log(u)}θ, φ = exp(−u
1
θ ).

This naturally corresponds to the Gumbel copula. The parameters are set
for the first structure equal to θ123 = 4, θ45 = 3 and θ(123)(45) = 2 and for
the second structure to θ34 = 4, θ12(34) = 3 and θ(12(34))5 = 2. Without loss
of generality the marginal distributions are taken as uniform on [0, 1]. We
simulate a sample of 1000 observations. The procedure is repeated 101 times.
This number is selected to simplify the interpretation and computation of
median structures.

For the simulation we use the conditional inversion method. This method is
also used by Frees and Valdez (1998) and Whelan (2004) and we discussed it
in Section 1.6. The copula parameters are estimated using the multistage ML
method with the nonparametric estimation of margins based on the Epanech-
nikov kernel. The vector of bandwidths h = {hi}i=1,...,d in the estimation of
the density and in the estimation of the distribution function is based on the
Silverman’s rule of thumb.
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Discussion of the results

The results of the simulation study are summarized in Table 1.1 for the first
structure and in Table 1.2 for the second structure. For each simulated data
set and for each structure we compare the fit and the structure obtained from
the grouping procedures. We consider the simple Archimedean copula (sAC)
and groupings based on the Chen et al. (2004) test statistics (Chen), on the
θ (θ), binary copulae (θbinary) and aggregated binary copulae (θbinary aggr.).
As benchmark models we consider the 5-dimensional multivariate normal
distribution (N) with Σ̂ and µ̂ estimated from the data; the multivariate
Gaussian copula with nonparametric margins (Nnonparam.); the multivariate

t-distribution with eight degrees of freedom and with Σ̂ and µ̂ estimated from
the data set (t8); the multivariate t-copula with eight degrees of freedom and
nonparametric margins (tnonparam.).

For each grouping method and each benchmark we compute the Kullback-
Leibler divergence from the empirical distribution function as in Giacomini
et al. (2008) and the test statistic of Chen et al. (2004). The Kulback-
Leibler functional for the distribution functions estimated using two different
methods is

K(F̂method 1, F̂method 2) =
1

n

n∑
i=1

log

{
f̂method 1(x1i, . . . , xdi)

f̂method 2(x1i, . . . , xdi)

}
The Kullback-Leibler divergence for the multivariate distribution which is
based on copula, can be regarded as a distance between two copula densities.

The first blocks of Table 1.1 and Table 1.2 contain the results for groupings
based on the Kullback-Leibler divergence. The columns “K” contain the
value of the Kullback-Leibler divergence which is the closest to the median
divergence given in parenthesis. The corresponding structure and the test
statistic of Chen et al. (2004) are given in the columns “copula structure”
and “Chen.” respectively. The variance of the Kullback-Leibler divergence is
given in the last column. The same holds for the lower blocks of both tables,
however, here we find the structure which has the test statistics of Chen et al.
(2004) which is the closest to the median of the test statistics. Note that we
provide the results for the median performance measures and not for the best
replications of the simulation study. This makes the conclusions more robust.

The results show that the grouping method based on the aggregated binary
structure is dominant. It provides for both structures the smallest Kullback-
Leibler divergence as well as the lowest test statistics. The simple binary
copula also provides good results, however, we see that some of the parame-
ters are very close. This indicates that the variables can be joined together
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into an aggregated copula. Although, the method based on θ’s performs bet-
ter than the benchmark strategies, it leads, however, to incorrect structures
and much higher goodness-of-fit measures compared to the binary copula.
The grouping based on the test statistic of Chen et al. (2004) provides very
poor results, which indicates a low power of the test against similar struc-
tures. Similarly, the ignorance of the hierarchical structure of the distribution
imposed by the simple Archimedean copulae leads to the worst results among
copula-based methods. The comparison with normal and t-distributions is
possible only on the basis of the Kullback-Leibler divergence. We see that,
despite of the substantially larger number of parameters, the normal and
t-distributions cannot outperform the θ-based grouping methods. Thus we
conclude that the proposed grouping methodology based on the aggregated
binary structure provides robust and precise results. Moreover, the method
is computationally more efficient than the considered alternatives.

method copula structure Chen. K (µ̂K) σ̂2
K(10−3)

N 1.074 (1.074) 4.0
Nnonparam. 0.282 (0.283) 1.0
t8 1.104 (1.104) 3.0
tnonparam. 0.199 (0.199) 0.0
sAC (1.2.3.4.5) 85.535463 0.811 (0.809) 3.0
CHEN ((1.3)4.517.(2.4.5)2.341)2.34 31.432 0.611 (0.613) 78.0
θ ((1.3.4.5)2.288.2)2.286 82.510 0.697 (0.560) 142.0
θbinary (((1.(2.3)4.39)4.282.5)2.078.4)2.077 3.929 0.132 (0.133) 0.4
θbinary aggr. (((1.3)4.26.2)3.868.(4.5)3.093)2.259 2.737 0.022 (0.021) 0.0

method copula structure Chen. (µ̂Chen) K σ̂2
Chen stat

sAC (1.2.3.4.5) 88.842 (88.850) 0.704 68.127
CHEN ((1.2)4.316.(3.4.5)2.256)2.255 31.558 (32.419) 0.585 490.059
θ ((1.2.4.5)2.376.3)2.375 56.077 (56.910) 0.769 1407.632
θbinary ((((1.2)4.487.3)4.469.5)2.247.4)2.246 4.789 (4.827) 0.112 4.388
θbinary aggr. (((1.3)4.228.2)3.68.(4.5)3.369)2.333 2.253 (2.248) 0.021 1.914

Table 1.1. Model fit for the true structure (123)(45): Averages
of the Kullback-Leibler Divergence and Averages of the Chen
Statistics separately

1.8.2 Empirical Example

In this subsection we apply the proposed estimation techniques to financial
data. We consider the daily returns of four companies listed in DAX index:
Commerzbank (CBK), Merck (MRK), Thyssenkrupp (TKA) and Volkswa-
gen (VOW). The sample period covers more than 2300 observations from
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method copula structure Chen. K (µ̂K) σ̂2
K(10−3)

N 1.088 (1.089) 4
Nnonparam. 0.289 (0.289) 1
t8 1.113 (1.114) 3
tnonparam. 0.202 (0.202) 1
sAC (1.2.3.4.5) 78.604 0.502 (0.502) 2
CHEN (((1.2)3.22.3)3.177.(4.5)2.116)2.114 8.544 0.305 (0.304) 23
θ (((1.2.3)3.207.4)3.205.5)2.15 5.741 0.079 (0.079) 0
θbinary (((1.(3.4)4.157)3.099.2)3.012.5)2.028 2.293 0.003 (0.003) 0
θbinary aggr. (((3.4)4.32.1.2)3.268.5)1.83 1.220 0.019 (0.019) 0

method copula structure Chen. (µ̂Chen.) K σ̂2
Chen stat

sAC (1.2.3.4.5) 86.245 (86.278) 0.480 142.714
CHEN (((1.3)2.835.5)1.987.(2.4)2.898)1.986 16.263 (16.512) 0.453 281.615
θ (((1.2.4)3.009.3)3.007.5)1.973 4.235 (4.222) 0.083 6.229
θbinary (((1.(3.4)4.122)3.155.2)3.07.5)2.027 1.934 (1.955) 0.000 1.520
θbinary aggr. (((3.4)4.195.1.2)3.305.5)1.724 2.561 (2.526) 0.014 3.287

Table 1.2. Model fit for the true structure (12(34))5: Averages
of the Kullback-Leibler Divergence and Averages of the Chen
Statistics separately

13.11.1998 to 18.10.2007. Margins are estimated nonparametrically with
Epanechnikov kernel, normal and t-distributed with three degrees of freedom.
The results are given in Tables 1.3, 1.4 and 1.5 respectively. For goodness-
of-fit measures we choose BIC (Bayes or Schwarz Information Criteria) and
AIC (Akaike Information Criteria) and provide the value of the likelihood as
intermediate results.

We fit the following multivariate copula functions to the data: HAC with
binary and binary aggregated structure, simple Archimedean copula. For
comparison purposes we also provide the results for the multivariate normal
distribution and multivariate t-distribution with eight degrees of freedom in
each table. We also provide the optimal binary and aggregated binary HACs
and the simple Archimedean copula for all types of the margins.

We calculate the maximum likelihood value as described in Section 1.4. For
the copula-base distributions we use

ML =

n∑
i=1

log{c(u1, . . . , ud, θ)f1(u1) . . . fd(ud)},

where c is the copula density and fi for i = 1, . . . , d are marginal densities.
For the multivariate normal and t-distribution, we computed the likelihood
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as

ML =
n∑

i=1

log{f(u1, . . . , ud, θ)},

where f denotes the joint multivariate density function and θ is the set of
parameters. To penalize the likelihood for large number of parameters we
consider the AIC and BIC criterion computed as

AIC = −2ML + 2m, BIC = −2ML + 2 log(m),

where m is the number of the parameters to be estimated. The values of ML
for the best structure should the the highest, while AIC and BIC should be
as small as possible.

We emphasize with bold font the best strategy in each column and with italic
the worst strategies. We can conclude that the multivariate t distribution
outperforms all other methods and shows the best results for all types of the
margins. Nevertheless, note that with the properly selected marginal distri-
butions and copula function, the HAC outperforms the normal distribution.
Moreover, note that we considered only HACs based on the Gumbel gener-
ator functions. Alternative generator specifications and HACs dependent on
several different generators may outperform the t-distribution as well.

ML AIC BIC
HAC 28319.3701 -56632.7402 -56614.9003
HACbinary 28319.3701 -56632.7402 -56614.9003
AC 28028.5201 -56055.0403 -56049.0937
N 28027.4098 -56026.8195 -55943.5669
t8 28726.8637 -57425.7273 -57342.4747

Table 1.3. Information Criteria: Nonparametric Margins

Optimal binary structure = (((CBK VOW)1.5631 TKA)1.4855 MRK)1.1437

Optimal structure = (((CBK VOW)1.5631 TKA)1.4855 MRK)1.1437

Simple Archimedean Copula = (CBK MRK TKA VOW)1.4116
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ML AIC BIC
HAC 27961.0997 -55918.1995 -55906.3062
HACbinary 27961.2399 -55916.4799 -55898.6400
AC 27737.7392 -55473.4784 -55467.5317
N 28027.4098 -56026.8195 -55943.5669
t8 28726.8637 -57425.7273 -57342.4747

Table 1.4. Information Criteria: Normal margins

Optimal binary structure = (((CBK VOW)1.3756 TKA)1.3571 MRK)1.1071

Optimal structure = ((CBK TKA VOW)1.3756 MRK)1.1071

Simple Archimedean Copula = (CBK MRK TKA VOW)1.1944

ML AIC BIC
HAC 28613.9640 -57223.9280 -57212.0347
HACbinary 28612.2069 -57218.4138 -57200.5740
AC 28404.8899 -56807.7798 -56801.0347
N 28027.4098 -56026.8195 -55943.5669
t8 28726.8637 -57425.7273 -57342.4747

Table 1.5. Information Criteria: t margins

Optimal binary structure = (((CBK VOW)1.3416 TKA)1.3285 MRK)1.1007

Optimal structure = ((CBK TKA VOW)1.3416 MRK)1.1007

Simple Archimedean Copula = (CBK MRK TKA VOW)1.1987

1.9 Summary

In this chapter we provide a detailed review of the copula models in discrete
time. We review the construction and simulation of bivariate and multi-
variate copula models. For practical applications we discuss the alternative
estimation procedures and goodness-of-fit tests. Special attention is paid to
the hierarchical Archimedean copulae. The chapter is complemented with an
extensive simulation study and an application to financial data.
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2 Quantification of Spread Risk by

Means of Historical Simulation
Christoph Frisch and Germar Knöchlein

2.1 Introduction

Modeling spread risk for interest rate products, i.e., changes of the yield dif-
ference between a yield curve characterizing a class of equally risky assets and
a riskless benchmark curve, is a challenge for any financial institution seeking
to estimate the amount of economic capital utilized by trading and treasury
activities. With the help of standard tools this contribution investigates some
of the characteristic features of yield spread time series available from com-
mercial data providers. From the properties of these time series it becomes
obvious that the application of the parametric variance-covariance-approach
for estimating idiosyncratic interest rate risk should be called into question.
Instead we apply the non-parametric technique of historical simulation to
synthetic zero-bonds of different riskiness, in order to quantify general mar-
ket risk and spread risk of the bond. The quality of value-at-risk predictions
is checked by a backtesting procedure based on a mark-to-model profit/loss
calculation for the zero-bond market values. From the backtesting results
we derive conclusions for the implementation of internal risk models within
financial institutions.

2.2 Risk Categories – a Definition of Terms

For the analysis of obligor-specific and market-sector-specific influence on
bond price risk we make use of the following subdivision of “price risk”,
Gaumert (1999), Bundesaufsichtsamt für das Kreditwesen (2001).

1. General market risk: This risk category comprises price changes of
a financial instrument, which are caused by changes of the general
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market situation. General market conditions in the interest rate sec-
tor are characterized by the shape and the moves of benchmark yield
curves, which are usually constructed from several benchmark instru-
ments. The benchmark instruments are chosen in such a way so that
they allow for a representative view on present market conditions in a
particular market sector.

2. Residual risk: Residual risk characterizes the fact that the actual price
of a given financial instrument can change in a way different from the
changes of the market benchmark (however, abrupt changes which are
caused by events in the sphere of the obligor are excluded from this
risk category). These price changes cannot be accounted for by the
volatility of the market benchmark. Residual risk is contained in the
day-to-day price variation of a given instrument relative to the market
benchmark and, thus, can be observed continuously in time. Residual
risk is also called idiosyncratic risk.

3. Event risk: Abrupt price changes of a given financial instrument relative
to the benchmark, which significantly exceed the continuously observ-
able price changes due to the latter two risk categories, are called event
risk. Such price jumps are usually caused by events in the sphere of the
obligor. They are observed infrequently and irregularly.

Residual risk and event risk form the two components of so-called specific
price risk or specific risk — a term used in documents on banking regulation,
Bank for International Settlements (1998a), Bank for International Settle-
ments (1998b) — and characterize the contribution of the individual risk of
a given financial instrument to its overall risk.

The distinction between general market risk and residual risk is not unique
but depends on the choice of the benchmark curve, which is used in the anal-
ysis of general market risk: The market for interest rate products in a given
currency has a substructure (market-sectors), which is reflected by product-
specific (swaps, bonds, etc.), industry-specific (bank, financial institution,
retail company, etc.) and rating-specific (AAA, AA, A, BBB, etc.) yield
curves. For the most liquid markets (USD, EUR, JPY), data for these sub-
markets is available from commercial data providers like Bloomberg. More-
over, there are additional influencing factors like collateral, financial restric-
tions etc., which give rise to further variants of the yield curves mentioned
above. Presently, however, hardly any standardized data on these factors is
available from data providers.

The larger the universe of benchmark curves a bank uses for modeling its
interest risk, the smaller is the residual risk. A bank, which e.g. only uses
product-specific yield curves but neglects the influence of industry- and rating-
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specific effects in modelling its general market risk, can expect specific price
risk to be significantly larger than in a bank which includes these influences
in modeling general market risk. The difference is due to the consideration
of product-, industry- and rating-specific spreads over the benchmark curve
for (almost) riskless government bonds. This leads to the question, whether
the risk of a spread change, the spread risk, should be interpreted as part of
the general market risk or as part of the specific risk. The uncertainty is due
to the fact that it is hard to define what a market-sector is. The definition of
benchmark curves for the analysis of general market risk depends, however,
critically on the market sectors identified.

We will not further pursue this question in the following but will instead
investigate some properties of this spread risk and draw conclusions for mod-
eling spread risk within internal risk models. We restrict ourselves to the
continuous changes of the yield curves and the spreads, respectively, and do
not discuss event risk. In this contribution different methods for the quantifi-
cation of the risk of a fictive USD zero bond are analyzed. Our investigation
is based on time series of daily market yields of US treasury bonds and US
bonds (banks and industry) of different credit quality (rating) and time to
maturity.

2.3 Yield Spread Time Series

Before we start modeling the interest rate and spread risk we will investigate
some of the descriptive statistics of the spread time series. Our investigations
are based on commercially available yield curve histories. The Bloomberg
dataset we use in this investigation consists of daily yield data for US trea-
sury bonds as well as for bonds issued by banks and financial institutions with
ratings AAA, AA+/AA, A+, A, A− (we use the Standard & Poor‘s naming
convention) and for corporate/industry bonds with ratings AAA, AA, AA−,
A+, A, A−, BBB+, BBB, BBB−, BB+, BB, BB−, B+, B, B−. The data
we use for the industry sector covers the time interval from March 09 1992 to
June 08 2000 and corresponds to 2147 observations. The data for banks/fi-
nancial institutions covers the interval from March 09 1992 to September 14
1999 and corresponds to 1955 observations. We use yields for 3 and 6 month
(3M, 6M) as well as 1, 2, 3, 4, 5, 7, and 10 year maturities (1Y, 2Y, 3Y, 4Y,
5Y, 7Y, 10Y). Each yield curve is based on information on the prices of a set
of representative bonds with different maturities. The yield curve, of course,
depends on the choice of bonds. Yields are option-adjusted but not corrected
for coupon payments. The yields for the chosen maturities are constructed
by Bloomberg’s interpolation algorithm for yield curves. We use the USD
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treasury curve as a benchmark for riskless rates and calculate yield spreads
relative to the benchmark curve for the different rating categories and the
two industries. We correct the data history for obvious flaws using comple-
mentary information from other data sources. Some parts of our analysis in
this section can be compared with the results given in Kiesel, Perraudin and
Taylor (1999).

2.3.1 Data Analysis

We store the time series of the different yield curves in individual files. The
file names, the corresponding industries and ratings and the names of the
matrices used in the XploRe code are listed in Table 2.2. Each file contains
data for the maturities 3M to 10Y in columns 4 to 12. XploRe creates
matrices from the data listed in column 4 of Table 2.2 and produces summary
statistics for the different yield curves. As example files the data sets for US
treasury and industry bonds with rating AAA are provided. The output of
the summarize command for the INAAA curve is given in Table 2.1.

Minimum Maximum Mean Median Std.Error
3M 3.13 6.93 5.0952 5.44 0.95896
6M 3.28 7.16 5.2646 5.58 0.98476
1Y 3.59 7.79 5.5148 5.75 0.95457
2Y 4.03 8.05 5.8175 5.95 0.86897
3Y 4.4 8.14 6.0431 6.1 0.79523
4Y 4.65 8.21 6.2141 6.23 0.74613
5Y 4.61 8.26 6.3466 6.36 0.72282
7Y 4.75 8.3 6.5246 6.52 0.69877
10Y 4.87 8.36 6.6962 6.7 0.69854

Table 2.1. Output of summarize for the INAAA curve.
XFGsummary

The long term means are of particular interest. Therefore, we summarize
them in Table 2.3. In order to get an impression of the development of the
treasury yields in time, we plot the time series for the USTF 3M, 1Y, 2Y, 5Y,
and 10Y yields. The results are displayed in Figure 2.1, XFGtreasury .
The averaged yields within the observation period are displayed in Figure 2.2
for USTF, INAAA, INBBB2, INBB2 and INB2, XFGyields .

In the next step we calculate spreads relative to the treasury curve by sub-
tracting the treasury curve from the rating-specific yield curves and store
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Industry Rating File Name Matrix Name
Government riskless USTF USTF

Industry AAA INAAA INAAA

Industry AA INAA2.DAT INAA2

Industry AA- INAA3.DAT INAA3

Industry A+ INA1.DAT INA1

Industry A INA2.DAT INA2

Industry A- INA3.DAT INA3

Industry BBB+ INBBB1.DAT INBBB1

Industry BBB INBBB2.DAT INBBB2

Industry BBB- INBBB3.DAT INBBB3

Industry BB+ INBB1.DAT INBB1

Industry BB INBB2.DAT INBB2

Industry BB- INBB3.DAT INBB3

Industry B+ INB1.DAT INB1

Industry B INB2.DAT INB2

Industry B- INB3.DAT INB3

Bank AAA BNAAA.DAT BNAAA

Bank AA+/AA BNAA12.DAT BNAA12

Bank A+ BNA1.DAT BNA1

Bank A BNA2.DAT BNA2

Bank A- BNA3.DAT BNA3

Table 2.2. Data variables

them to variables SINAAA, SINAA2, etc. For illustrative purposes we display
time series of the 1Y, 2Y, 3Y, 5Y, 7Y, and 10Y spreads for the curves INAAA,
INA2, INBBB2, INBB2, INB2 in Figure 2.3, XFGseries .

We run the summary statistics to obtain information on the mean spreads.
Our results, which can also be obtained with the mean command, are
collected in Table 2.4, XFGmeans .
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Curve 3M 6M 1Y 2Y 3Y 4Y 5Y 7Y 10Y
USTF 4.73 4.92 5.16 5.50 5.71 5.89 6.00 6.19 6.33
INAAA 5.10 5.26 5.51 5.82 6.04 6.21 6.35 6.52 6.70
INAA2 5.19 5.37 5.59 5.87 6.08 6.26 6.39 6.59 6.76
INAA3 5.25 - 5.64 5.92 6.13 6.30 6.43 6.63 6.81
INA1 5.32 5.50 5.71 5.99 6.20 6.38 6.51 6.73 6.90
INA2 5.37 5.55 5.76 6.03 6.27 6.47 6.61 6.83 7.00
INA3 - - 5.84 6.12 6.34 6.54 6.69 6.91 7.09
INBBB1 5.54 5.73 5.94 6.21 6.44 6.63 6.78 7.02 7.19
INBBB2 5.65 5.83 6.03 6.31 6.54 6.72 6.86 7.10 7.27
INBBB3 5.83 5.98 6.19 6.45 6.69 6.88 7.03 7.29 7.52
INBB1 6.33 6.48 6.67 6.92 7.13 7.29 7.44 7.71 7.97
INBB2 6.56 6.74 6.95 7.24 7.50 7.74 7.97 8.34 8.69
INBB3 6.98 7.17 7.41 7.71 7.99 8.23 8.46 8.79 9.06
INB1 7.32 7.53 7.79 8.09 8.35 8.61 8.82 9.13 9.39
INB2 7.80 7.96 8.21 8.54 8.83 9.12 9.37 9.68 9.96
INB3 8.47 8.69 8.97 9.33 9.60 9.89 10.13 10.45 10.74
BNAAA 5.05 5.22 5.45 5.76 5.99 6.20 6.36 6.60 6.79
BNAA12 5.14 5.30 5.52 5.83 6.06 6.27 6.45 6.68 6.87
BNA1 5.22 5.41 5.63 5.94 6.19 6.39 6.55 6.80 7.00
BNA2 5.28 5.47 5.68 5.99 6.24 6.45 6.61 6.88 7.07
BNA3 5.36 5.54 5.76 6.07 6.32 6.52 6.68 6.94 7.13

Table 2.3. Long term mean for different USD yield curves

US Treasury Yields (3M, 1Y, 2Y, 5Y, 10Y)
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Figure 2.1. US Treasury Yields. XFGtreasury

Now we calculate the 1-day spread changes from the observed yields and store
them to variables DASIN01AAA, etc. We run the descriptive routine to
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Figure 2.2. Averaged Yields. XFGyields
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Figure 2.3. Credit Spreads. XFGseries

calculate the first four moments of the distribution of absolute spread changes.
Volatility as well as skewness and kurtosis for selected curves are displayed
in Tables 2.5, 2.6 and 2.7.

XFGchange
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Curve 3M 6M 1Y 2Y 3Y 4Y 5Y 7Y 10Y
INAAA 36 35 35 31 33 31 35 33 37
INAA2 45 45 43 37 37 36 40 39 44
INAA3 52 - 48 42 42 40 44 44 49
INA1 58 58 55 49 49 49 52 53 57
INA2 63 63 60 53 56 57 62 64 68
INA3 - - 68 62 63 64 69 72 76
INBBB1 81 82 78 71 72 74 79 83 86
INBBB2 91 91 87 80 82 82 87 90 94
INBBB3 110 106 103 95 98 98 104 110 119
INBB1 160 156 151 142 141 140 145 151 164
INBB2 183 182 179 173 179 185 197 215 236
INBB3 225 225 225 221 228 233 247 259 273
INB1 259 261 263 259 264 271 282 294 306
INB2 306 304 305 304 311 322 336 348 363
INB3 373 377 380 382 389 400 413 425 441
BNAAA 41 39 38 33 35 35 41 43 47
BNAA12 50 47 45 40 42 42 49 52 56
BNA1 57 59 57 52 54 54 59 64 68
BNA2 64 65 62 57 59 60 65 71 75
BNA3 72 72 70 65 67 67 72 76 81

Table 2.4. Mean spread in basis points p.a.

For the variable DASIN01AAA[,12] (the 10 year AAA spreads) we demon-
strate the output of the descriptive command in Table 2.8.

Finally we calculate 1-day relative spread changes and run the descriptive

command. The results for the estimates of volatility, skewness and kurtosis
are summarized in Tables 2.9, 2.10 and 2.11. XFGrelchange

2.3.2 Discussion of Results

Time Development of Yields and Spreads: The time development of US trea-
sury yields displayed in Figure 2.1 indicates that the yield curve was steeper
at the beginning of the observation period and flattened in the second half.
However, an inverse shape of the yield curve occurred hardly ever. The long
term average of the US treasury yield curve, the lowest curve in Figure 2.2,
also has an upward sloping shape.

The time development of the spreads over US treasury yields displayed in
Figure 2.3 is different for different credit qualities. While there is a large
variation of spreads for the speculative grades, the variation in the investment
grade sector is much smaller. A remarkable feature is the significant spread
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Curve 3M 6M 1Y 2Y 3Y 4Y 5Y 7Y 10Y
INAAA 4.1 3.5 3.3 2.3 2.4 2.2 2.1 2.2 2.5
INAA2 4.0 3.5 3.3 2.3 2.4 2.2 2.2 2.2 2.5
INAA3 4.0 - 3.3 2.2 2.3 2.2 2.2 2.2 2.5
INA1 4.0 3.7 3.3 2.3 2.4 2.2 2.2 2.2 2.6
INA2 4.1 3.7 3.3 2.4 2.4 2.1 2.2 2.3 2.5
INA3 - - 3.4 2.4 2.4 2.2 2.2 2.3 2.6
INBBB1 4.2 3.6 3.2 2.3 2.3 2.2 2.1 2.3 2.6
INBBB2 4.0 3.5 3.4 2.3 2.4 2.1 2.2 2.3 2.6
INBBB3 4.2 3.6 3.5 2.4 2.5 2.2 2.3 2.5 2.9
INBB1 4.8 4.4 4.1 3.3 3.3 3.1 3.1 3.9 3.4
INBB2 4.9 4.6 4.5 3.8 3.8 3.8 3.7 4.3 4.0
INBB3 5.5 5.1 4.9 4.3 4.4 4.2 4.1 4.7 4.3
INB1 6.0 5.2 4.9 4.5 4.5 4.4 4.4 4.9 4.6
INB2 5.6 5.2 5.2 4.8 4.9 4.8 4.8 5.3 4.9
INB3 5.8 6.1 6.4 5.1 5.2 5.1 5.1 5.7 5.3
BNAAA 3.9 3.5 3.3 2.5 2.5 2.3 2.2 2.3 2.6
BNAA12 5.4 3.6 3.3 2.4 2.3 2.2 2.1 2.3 2.6
BNA1 4.1 3.7 3.2 2.1 2.2 2.1 2.0 2.2 2.6
BNA2 3.8 3.5 3.1 2.3 2.2 2.0 2.1 2.2 2.5
BNA3 3.8 3.5 3.2 2.2 2.2 2.1 2.1 2.2 2.5

Table 2.5. volatility for absolute spread changes in basis
points p.a.

Curve 3M 6M 1Y 2Y 3Y 4Y 5Y 10Y
INAAA 0.1 0.0 -0.1 0.6 0.5 0.0 -0.5 0.6
INAA2 0.0 -0.2 0.0 0.4 0.5 -0.1 -0.2 0.3
INA2 0.0 -0.3 0.1 0.2 0.4 0.1 -0.1 0.4
INBBB2 0.2 0.0 0.2 1.0 1.1 0.5 0.5 0.9
INBB2 -0.2 -0.5 -0.4 -0.3 0.3 0.5 0.4 -0.3

Table 2.6. Skewness for absolute 1-day spread changes (in
σ3).

Curve 3M 6M 1Y 2Y 3Y 4Y 5Y 10Y
INAAA 12.7 6.0 8.1 10.1 16.8 9.1 11.2 12.8
INAA2 10.5 6.4 7.8 10.1 15.8 7.8 9.5 10.0
INA2 13.5 8.5 9.2 12.3 18.2 8.2 9.4 9.8
INBBB2 13.7 7.0 9.9 14.5 21.8 10.5 13.9 14.7
INBB2 11.2 13.0 11.0 15.8 12.3 13.2 11.0 11.3

Table 2.7. Kurtosis for absolute spread changes (in σ4).

increase for all credit qualities in the last quarter of the observation period
which coincides with the emerging market crises in the late 90s. The term
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=========================================================

Variable 10Y

=========================================================

Mean 0.000354147

Std.Error 0.0253712 Variance 0.000643697

Minimum -0.18 Maximum 0.2

Range 0.38

Lowest cases Highest cases

1284: -0.18 1246: 0.14

1572: -0.14 1283: 0.14

1241: -0.13 2110: 0.19

1857: -0.11 1062: 0.19

598: -0.1 2056: 0.2

Median 0

25% Quartile -0.01 75% Quartile 0.01

Skewness 0.609321 Kurtosis 9.83974

Observations 2146

Distinct observations 75

Total number of {-Inf,Inf,NaN} 0

=========================================================

Table 2.8. Output of descriptive for the 10 years AAA
spread.

Curve 3M 6M 1Y 2Y 3Y 4Y 5Y 7Y 10Y
INAAA 36.0 19.2 15.5 8.9 8.4 8.0 6.4 7.8 10.4
INAA2 23.5 13.1 11.2 7.2 7.4 6.4 5.8 6.2 7.6
INAA3 13.4 - 9.0 5.8 6.2 5.3 5.0 5.8 6.4
INA1 13.9 9.2 7.7 5.7 5.6 4.7 4.5 4.6 5.7
INA2 11.5 8.1 7.1 5.1 4.9 4.3 4.0 4.0 4.5
INA3 - - 6.4 4.6 4.3 3.8 3.5 3.5 4.1
INBBB1 8.1 6.0 5.4 3.9 3.7 3.3 3.0 3.2 3.8
INBBB2 7.0 5.3 5.0 3.3 3.3 2.9 2.8 2.9 3.3
INBBB3 5.7 4.7 4.4 3.2 3.0 2.7 2.5 2.6 2.9
INBB1 4.3 3.8 3.4 2.5 2.4 2.2 2.1 2.5 2.2
INBB2 3.7 3.3 3.0 2.2 2.1 2.0 1.8 2.0 1.7
INBB3 3.2 2.8 2.5 2.0 1.9 1.8 1.6 1.8 1.5
INB1 3.0 2.4 2.1 1.7 1.7 1.6 1.5 1.6 1.5
INB2 2.3 2.1 1.9 1.6 1.6 1.5 1.4 1.5 1.3
INB3 1.8 2.2 2.3 1.3 1.3 1.2 1.2 1.3 1.1
BNAAA 37.0 36.6 16.9 9.8 9.0 8.2 6.1 5.9 6.5
BNAA12 22.8 9.7 8.3 7.0 6.3 5.8 4.6 4.8 5.5
BNA1 36.6 10.1 7.9 5.6 4.8 4.4 3.8 3.9 4.4
BNA2 17.8 8.0 6.6 4.5 4.1 3.6 3.4 3.3 3.7
BNA3 9.9 6.9 5.6 3.7 3.6 3.3 3.1 3.1 3.4

Table 2.9. Volatility for relative spread changes in %

structure of the long term averages of the rating-specific yield curves is also
normal. The spreads over the benchmark curve increase with decreasing
credit quality.
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Curve 3M 6M 1Y 2Y 3Y 4Y 5Y 10Y
INAAA 2.3 4.6 4.3 2.2 2.3 2.1 0.6 4.6
INAA2 5.4 2.6 3.7 1.6 2.0 0.6 0.8 1.8
INA2 7.6 1.5 1.2 0.9 1.6 0.8 0.9 0.8
INBBB2 5.5 0.7 0.8 0.8 1.4 0.8 0.7 0.8
INBB2 0.8 0.4 0.6 0.3 0.4 0.5 0.3 -0.2

Table 2.10. Skewness for relative spread changes (in σ3).

Curve 3M 6M 1Y 2Y 3Y 4Y 5Y 10Y
INAAA 200.7 54.1 60.1 27.8 28.3 33.9 16.8 69.3
INAA2 185.3 29.5 60.5 22.1 27.4 11.0 17.5 23.0
INA2 131.1 22.1 18.0 13.9 26.5 16.4 18.5 13.9
INBBB2 107.1 13.9 16.9 12.0 20.0 14.0 16.6 16.7
INBB2 16.3 11.9 12.9 12.4 11.0 10.1 10.2 12.0

Table 2.11. Kurtosis for relative spread changes (in σ4).

Mean Spread: The term structure of the long term averages of the rating-
specific yield curves, which is displayed in Figure 2.3, is normal (see also
Table 2.4). The spreads over the benchmark curve increase with decreasing
credit quality. For long maturities the mean spreads are larger than for
intermediate maturities as expected. However, for short maturities the mean
spreads are larger compared with intermediate maturities.

Volatility: The results for the volatility for absolute 1-day spread changes in
basis points p.a. are listed in Table 2.5. From short to intermediate maturi-
ties the volatilities decrease. For long maturities a slight volatility increase
can be observed compared to intermediate maturities. For equal maturities
volatility is constant over the investment grade ratings, while for worse credit
qualities a significant increase in absolute volatility can be observed. Volatil-
ity for relative spread changes is much larger for short maturities than for
intermediate and long maturities. As in the case of absolute spread changes,
a slight volatility increase exists for the transition from intermediate to long
maturities. Since absolute spreads increase more strongly with decreasing
credit quality than absolute spread volatility, relative spread volatility de-
creases with decreasing credit quality (see Table 2.9).

Skewness: The results for absolute 1-day changes (see Table 2.6) are all close
to zero, which indicates that the distribution of changes is almost symmetric.
The corresponding distribution of relative changes should have a positive
skewness, which is indeed the conclusion from the results in Table 2.10.
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Kurtosis: The absolute 1-day changes lead to a kurtosis, which is significantly
larger than 3 (see Table 2.6). Thus, the distribution of absolute changes is
leptokurtic. There is no significant dependence on credit quality or maturity.
The distribution of relative 1-day changes is also leptokurtic (see Table 2.10).
The deviation from normality increases with decreasing credit quality and
decreasing maturity.

We visualize symmetry and leptokursis of the distribution of absolute spread
changes for the INAAA 10Y data in Figure 2.4, where we plot the empiri-
cal distribution of absolute spreads around the mean spread in an averaged
shifted histogram and the normal distribution with the variance estimated
from historical data.
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Figure 2.4. Historical distribution and estimated normal dis-
tribution. XFGdist

We note that by construction the area below both curves is normalized to
one. We calculate the 1%, 10%, 90% and 99% quantiles of the spread dis-
tribution with the quantile command. Those quantiles are popular in
market risk management. For the data used to generate Figure 2.4 the re-
sults are 0.30%, 0.35%, 0.40%, and 0.45%, respectively. The corresponding
quantiles of the plotted normal distribution are 0.31%, 0.34%, 0.41%, 0.43%.
The differences are less obvious than the difference in the shape of the distri-
butions. However, in a portfolio with different financial instruments, which
is exposed to different risk factors with different correlations, the difference
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in the shape of the distribution can play an important role. That is why a
simple variance-covariance approach, J.P. Morgan (1996) and Kiesel et al.
(1999), seems not adequate to capture spread risk.

2.4 Historical Simulation and Value at Risk

We investigate the behavior of a fictive zero-bond of a given credit quality
with principal 1 USD, which matures after T years. In all simulations t = 0
denotes the beginning and t = T the end of the lifetime of the zero-bond.
The starting point of the simulation is denoted by t0, the end by t1. The
observation period, i.e., the time window investigated, consists of N ≥ 1
trading days and the holding period of h ≥ 1 trading days. The confidence
level for the VaR is α ∈ [0, 1]. At each point in time 0 ≤ t ≤ t1 the risky
yields Ri(t) (full yield curve) and the riskless treasury yields Bi(t) (benchmark
curve) for any time to maturity 0 < T1 < · · · < Tn are contained in our data
set for 1 ≤ i ≤ n, where n is the number of different maturities. The
corresponding spreads are defined by Si(t) = Ri(t)−Bi(t) for 1 ≤ i ≤ n.

In the following subsections 2.4.1 to 2.4.5 we specify different variants of the
historical simulation method which we use for estimating the distribution
of losses from the zero-bond position. The estimate for the distribution of
losses can then be used to calculate the quantile-based risk measure Value-
at-Risk. The variants differ in the choice of risk factors, i.e., in our case the
components of the historical yield time series. In Section 2.6 we describe
how the VaR estimation is carried out with XploRe commands provided that
the loss distribution has been estimated by means of one of the methods
introduced and can be used as an input variable.

2.4.1 Risk Factor: Full Yield

1. Basic Historical Simulation:

We consider a historical simulation, where the risk factors are given by the
full yield curve, Ri(t) for i = 1, . . . , n. The yield R(t, T − t) at time t0 ≤
t ≤ t1 for the remaining time to maturity T − t is determined by means of
linear interpolation from the adjacent values Ri(t) = R(t, Ti) and Ri+1(t) =
R(t, Ti+1) with Ti ≤ T − t < Ti+1 (for reasons of simplicity we do not consider
remaining times to maturity T − t < T1 and T − t > Tn):

R(t, T − t) =
[Ti+1 − (T − t)]Ri(t) + [(T − t)− Ti]Ri+1(t)

Ti+1 − Ti
. (2.1)
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The present value of the bond PV (t) at time t can be obtained by discounting,

PV (t) =
1[

1 + R(t, T − t)
]T−t

, t0 ≤ t ≤ t1. (2.2)

In the historical simulation the relative risk factor changes

∆
(k)
i (t) =

Ri

(
t− k/N

)
−Ri

(
t− (k + h)/N

)
Ri

(
t− (k + h)/N

) , 0 ≤ k ≤ N − 1, (2.3)

are calculated for t0 ≤ t ≤ t1 and each 1 ≤ i ≤ n. Thus, for each scenario k
we obtain a new fictive yield curve at time t + h, which can be determined
from the observed yields and the risk factor changes,

R
(k)
i (t + h) = Ri(t)

[
1 + ∆

(k)
i (t)

]
, 1 ≤ i ≤ n, (2.4)

by means of linear interpolation. This procedure implies that the distribution
of risk factor changes is stationary between t − (N − 1 + h)/N and t. Each
scenario corresponds to a drawing from an identical and independent distri-
bution, which can be related to an i.i.d. random variable εi(t) with variance
one via

∆i(t) = σiεi(t). (2.5)

This assumption implies homoscedasticity of the volatility of the risk factors,
i.e., a constant volatility level within the observation period. If this were
not the case, different drawings would originate from different underlying
distributions. Consequently, a sequence of historically observed risk factor
changes could not be used for estimating the future loss distribution.

In analogy to (2.1) for time t + h and remaining time to maturity T − t one
obtains

R(k)(t + h, T − t) =
[Ti+1 − (T − t)]R

(k)
i (t) + [(T − t)− Ti]R

(k)
i+1(t)

Ti+1 − Ti

for the yield. With (2.2) we obtain a new fictive present value at time t+h:

PV (k)(t + h) =
1[

1 + R(k)(t + h, T − t)
]T−t

. (2.6)

In this equation we neglected the effect of the shortening of the time to
maturity in the transition from t to t + h on the present value. Such an
approximation should be refined for financial instruments whose time to ma-
turity/time to expiration is of the order of h, which is not relevant for the
constellations investigated in the following.
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Now the fictive present value PV (k)(t+h) is compared with the present value
for unchanged yield R(t + h, T − t) = R(t, T − t) for each scenario k (here
the remaining time to maturity is not changed, either).

PV (t + h) =
1{

1 + R(t + h, T − t)
}T−t

. (2.7)

The loss occurring is

L(k)(t + h) = PV (t + h)− PV (k)(t + h) 0 ≤ k ≤ N − 1, (2.8)

i.e., losses in the economic sense are positive while profits are negative. The
VaR is the loss which is not exceeded with a probability α and is estimated
as the [(1− α)N + 1]-th-largest value in the set

{L(k)(t + h) | 0 ≤ k ≤ N − 1}.

This is the (1− α)-quantile of the corresponding empirical distribution.

2. Mean Adjustment:

A refined historical simulation includes an adjustment for the average of
those relative changes in the observation period which are used for generating
the scenarios according to (2.3). If for fixed 1 ≤ i ≤ n the average of

relative changes ∆
(k)
i (t) is different from 0, a trend is projected from the past

to the future in the generation of fictive yields in (2.4). Thus the relative

changes are corrected for the mean by replacing the relative change ∆
(k)
i (t)

with ∆
(k)
i (t)−∆i(t) for 1 ≤ i ≤ n in (2.4):

∆i(t) =
1

N

N−1∑
k=0

∆
(k)
i (t), (2.9)

This mean correction is presented in Hull (1998).

3. Volatility Updating:

An important variant of historical simulation uses volatility updating Hull
(1998). At each point in time t the exponentially weighted volatility of rela-
tive historical changes is estimated for t0 ≤ t ≤ t1 by

σ2
i (t) = (1− γ)

N−1∑
k=0

γk
{
∆

(k)
i (t)

}2
, 1 ≤ i ≤ n. (2.10)

The parameter γ ∈ [0, 1] is a decay factor, which must be calibrated to
generate a best fit to empirical data. The recursion formula

σ2
i (t) = (1− γ)σ2

i (t− 1/N) + γ
{
∆

(0)
i (t)

}2
, 1 ≤ i ≤ n, (2.11)
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is valid for t0 ≤ t ≤ t1. The idea of volatility updating consists in adjust-
ing the historical risk factor changes to the present volatility level. This is
achieved by a renormalization of the relative risk factor changes from (2.3)
with the corresponding estimation of volatility for the observation day and a
multiplication with the estimate for the volatility valid at time t. Thus, we
calculate the quantity

δ
(k)
i (t) = σi(t) ·

∆
(k)
i (t)

σi(t− (k + h)/N)
, 0 ≤ k ≤ N − 1. (2.12)

In a situation, where risk factor volatility is heteroscedastic and, thus, the
process of risk factor changes is not stationary, volatility updating cures this
violation of the assumptions made in basic historical simulation, because the
process of re-scaled risk factor changes ∆i(t)/σi(t)) is stationary. For each
k these renormalized relative changes are used in analogy to (2.4) for the
determination of fictive scenarios:

R
(k)
i (t + h) = Ri(t)

{
1 + δ

(k)
i (t)

}
, 1 ≤ i ≤ n, (2.13)

The other considerations concerning the VaR calculation in historical simu-
lation remain unchanged.

4. Volatility Updating and Mean Adjustment:

Within the volatility updating framework, we can also apply a correction for
the average change according to 2.4.1(2). For this purpose, we calculate the
average

δi(t) =
1

N

N−1∑
k=0

δ
(k)
i (t), (2.14)

and use the adjusted relative risk factor change δ
(k)
i (t)−δi(t) instead of δ

(k)
i (t)

in (2.13).

2.4.2 Risk Factor: Benchmark

In this subsection the risk factors are relative changes of the benchmark curve
instead of the full yield curve. This restriction is adequate for quantifying
general market risk, when there is no need to include spread risk. The risk
factors are the yields Bi(t) for i = 1, . . . , n. The yield B(t, T − t) at time
t for remaining time to maturity T − t is calculated similarly to (2.1) from
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adjacent values by linear interpolation,

B(t, T − t) =
{Ti+1 − (T − t)}Bi(t) + {(T − t)− Ti}Bi+1(t)

Ti+1 − Ti
. (2.15)

The generation of scenarios and the interpolation of the fictive benchmark
curve is carried out in analogy to the procedure for the full yield curve. We
use

∆
(k)
i (t) =

Bi

(
t− k/N

)
−Bi

(
t− (k + h)/N

)
Bi

(
t− (k + h)/N

) , 0 ≤ k ≤ N − 1, (2.16)

and
B

(k)
i (t + h) = Bi(t)

[
1 + ∆

(k)
i (t)

]
, 1 ≤ i ≤ n. (2.17)

Linear interpolation yields

B(k)(t + h, T − t) =
{Ti+1 − (T − t)}B(k)

i (t) + {(T − t)− Ti}B(k)
i+1(t)

Ti+1 − Ti
.

In the determination of the fictive full yield we now assume that the spread
remains unchanged within the holding period. Thus, for the k-th scenario we
obtain the representation

R(k)(t + h, T − t) = B(k)(t + h, T − t) + S(t, T − t), (2.18)

which is used for the calculation of a new fictive present value and the cor-
responding loss. With this choice of risk factors we can introduce an adjust-
ment for the average relative changes or/and volatility updating in complete
analogy to the four variants described in the preceding subsection.

2.4.3 Risk Factor: Spread over Benchmark Yield

When we take the view that risk is only caused by spread changes but not by
changes of the benchmark curve, we investigate the behavior of the spread
risk factors Si(t) for i = 1, . . . , n. The spread S(t, T − t) at time t for time
to maturity T − t is again obtained by linear interpolation. We now use

∆
(k)
i (t) =

Si

(
t− k/N

)
− Si

(
t− (k + h)/N

)
Si

(
t− (k + h)/N

) , 0 ≤ k ≤ N − 1, (2.19)

and
S

(k)
i (t + h) = Si(t)

{
1 + ∆

(k)
i (t)

}
, 1 ≤ i ≤ n. (2.20)
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Here, linear interpolation yields

S(k)(t + h, T − t) =
{Ti+1 − (T − t)}S(k)

i (t) + {(T − t)− Ti}S(k)
i+1(t)

Ti+1 − Ti
.

Thus, in the determination of the fictive full yield the benchmark curve is
considered deterministic and the spread stochastic. This constellation is the
opposite of the constellation in the preceding subsection. For the k-th sce-
nario one obtains

R(k)(t + h, T − t) = B(t, T − t) + S(k)(t + h, T − t). (2.21)

In this context we can also work with adjustment for average relative spread
changes and volatility updating.

2.4.4 Conservative Approach

In the conservative approach we assume full correlation between risk from the
benchmark curve and risk from the spread changes. In this worst case scenario
we add (ordered) losses, which are calculated as in the two preceding sections
from each scenario. From this loss distribution the VaR is determined.

2.4.5 Simultaneous Simulation

Finally, we consider simultaneous relative changes of the benchmark curve
and the spreads. For this purpose (2.18) and (2.21) are replaced with

R(k)(t + h, T − t) = B(k)(t + h, T − t) + S(k)(t, T − t), (2.22)

where, again, corrections for average risk factor changes or/and volatility
updating can be added. We note that the use of relative risk factor changes
is the reason for different results of the variants in subsection 2.4.1 and this
subsection.

2.5 Mark-to-Model Backtesting

A backtesting procedure compares the VaR prediction with the observed loss.
In a mark-to-model backtesting the observed loss is determined by calculation
of the present value before and after consideration of the actually observed
risk factor changes. For t0 ≤ t ≤ t1 the present value at time t + h is
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calculated with the yield R(t + h, T − t), which is obtained from observed
data for Ri(t + h) by linear interpolation, according to

PV (t) =
1{

1 + R(t + h, T − t)
}T−t

. (2.23)

This corresponds to a loss L(t) = PV (t) − PV (t + h), where, again, the
shortening of the time to maturity is not taken into account.

The different frameworks for the VaR estimation can easily be integrated
into the backtesting procedure. When we, e.g., only consider changes of the
benchmark curve, R(t + h, T − t) in (2.23) is replaced with B(t + h, T − t) +
S(t, T − t). On an average (1 − α) · 100 per cent of the observed losses in
a given time interval should exceed the corresponding VaR (outliers). Thus,
the percentage of observed losses is a measure for the predictive power of
historical simulation.

2.6 VaR Estimation and Backtesting

In this section we explain, how a VaR can be calculated and a backtesting
can be implemented with the help of XploRe routines. We present numeri-
cal results for the different yield curves. The VaR estimation is carried out
with the help of the VaRest command. The VaRest command calcu-
lates a VaR for historical simulation, if one specifies the method parameter
as ”EDF” (empirical distribution function). However, one has to be careful
when specifying the sequence of asset returns which are used as input for
the estimation procedure. If one calculates zero-bond returns from relative
risk factor changes (interest rates or spreads) the complete empirical distri-
bution of the profits and losses must be estimated anew for each day from
the N relative risk factor changes, because the profit/loss observations are
not identical with the risk factor changes.

For each day the N profit/loss observations generated with one of the methods
described in subsections 2.4.1 to 2.4.5 are stored to a new row in an array
PL. The actual profit and loss data from a mark-to-model calculation for
holding period h are stored to a one-column-vector MMPL. It is not possible to
use a continuous sequence of profit/loss data with overlapping time windows
for the VaR estimation. Instead the VaRest command must be called
separately for each day. The consequence is that the data the VaRest

command operates on consists of a row of N + 1 numbers: N profit/loss
values contained in the vector (PL[t,])’, which has one column and N rows
followed by the actual mark-to-model profit or loss MMPL[t,1] within holding
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period h in the last row. The procedure is implemented in the quantlet XFGpl
which can be downloaded from quantlet download page of this book.

VaR timeplot

5 10 15
time*E2

-1
0

-5
0

5
10

15

re
tu

rn
s*

E-
2

Figure 2.5. VaR time plot basic historical simulation.
XFGtimeseries

The result is displayed for the INAAA curve in Figures. 2.5 (basic historical
simulation) and 2.6 (historical simulation with volatility updating). The
time plots allow for a quick detection of violations of the VaR prediction.
A striking feature in the basic historical simulation with the full yield curve
as risk factor is the platform-shaped VaR prediction, while with volatility
updating the VaR prediction decays exponentially after the occurrence of
peak events in the market data. This is a consequence of the exponentially
weighted historical volatility in the scenarios. The peak VaR values are much
larger for volatility updating than for the basic historical simulation.

In order to find out, which framework for VaR estimation has the best pre-
dictive power, we count the number of violations of the VaR prediction and
divide it by the number of actually observed losses. We use the 99% quantile,
for which we would expect an violation rate of 1% for an optimal VaR estima-
tor. The history used for the drawings of the scenarios consists of N = 250
days, and the holding period is h = 1 day. For the volatility updating we use
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Figure 2.6. VaR time plot historical simulation with volatility
updating. XFGtimeseries2

a decay factor of γ = 0.94, J.P. Morgan (1996). For the simulation we assume
that the synthetic zero-bond has a remaining time to maturity of 10 years at
the beginning of the simulations. For the calculation of the first scenario of
a basic historical simulation N + h − 1 observations are required. A histor-
ical simulation with volatility updating requires 2(N + h − 1) observations
preceding the trading day the first scenario refers to. In order to allow for a
comparison between different methods for the VaR calculation, the beginning
of the simulations is t0 = [2(N +h−1)/N ]. With these simulation parameters
we obtain 1646 observations for a zero-bond in the industry sector and 1454
observations for a zero-bond in the banking sector.

In Tables 2.12 to 2.14 we list the percentage of violations for all yield curves
and the four variants of historical simulation V1 to V4 (V1 = Basic Historical
Simulation; V2 = Basic Historical Simulation with Mean Adjustment; V3 =
Historical Simulation with Mean Adjustment; V4 = Historical Simulation
with Volatility Updating and Mean Adjustment). In the last row we display
the average of the violations of all curves. Table 2.12 contains the results
for the simulation with relative changes of the full yield curves and of the
yield spreads over the benchmark curve as risk factors. In Table 2.13 the
risk factors are changes of the benchmark curves. The violations in the
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conservative approach and in the simultaneous simulation of relative spread
and benchmark changes are listed in Table 2.14.

XFGexc

Full yield Spread curve
Curve V1 V2 V3 V4 V1 V2 V3 V4
INAAA 1,34 1,34 1,09 1,28 1,34 1,34 1,34 1,34
INAA2 1,34 1,22 1,22 1,22 1,46 1,52 1,22 1,22
INAA3 1,15 1,22 1,15 1,15 1,09 1,09 0,85 0,91
INA1 1,09 1,09 1,46 1,52 1,40 1,46 1,03 1,09
INA2 1,28 1,28 1,28 1,28 1,15 1,15 0,91 0,91
INA3 1,22 1,22 1,15 1,22 1,15 1,22 1,09 1,15
INBBB1 1,28 1,22 1,09 1,15 1,46 1,46 1,40 1,40
INBBB2 1,09 1,15 0,91 0,91 1,28 1,28 0,91 0,91
INBBB3 1,15 1,15 1,09 1,09 1,34 1,34 1,46 1,52
INBB1 1,34 1,28 1,03 1,03 1,28 1,28 0,97 0,97
INBB2 1,22 1,22 1,22 1,34 1,22 1,22 1,09 1,09
INBB3 1,34 1,28 1,28 1,22 1,09 1,28 1,09 1,09
INB1 1,40 1,40 1,34 1,34 1,52 1,46 1,09 1,03
INB2 1,52 1,46 1,28 1,28 1,34 1,40 1,15 1,15
INB3 1,40 1,40 1,15 1,15 1,46 1,34 1,09 1,15
BNAAA 1,24 1,38 1,10 1,10 0,89 0,89 1,03 1,31
BNAA1/2 1,38 1,24 1,31 1,31 1,03 1,10 1,38 1,38
BNA1 1,03 1,03 1,10 1,17 1,03 1,10 1,24 1,24
BNA2 1,24 1,31 1,24 1,17 0,76 0,83 1,03 1,03
BNA3 1,31 1,24 1,17 1,10 1,03 1,10 1,24 1,17
Average 1,27 1,25 1,18 1,20 1,22 1,24 1,13 1,15

Table 2.12. Violations full yield and spread curve (in %)

Curve V1 V2 V3 V4
INAAA, INAA2, INAA3, INA1,
INA2, INA3, INBBB1, INBBB2,
INBBB3, INBB1, INBB2,
INBB3, INB1, INB2, INB3

1,52 1,28 1,22 1,15

BNAAA, BNAA1/2, BNA1,
BNA2, BNA3

1,72 1,44 1,17 1,10

Average 1,57 1,32 1,20 1,14

Table 2.13. Violations benchmark curve (in %)
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conservative approach simultaneous simulation
Curve V1 V2 V3 V4 V1 V2 V3 V4
INAAA 0,24 0,24 0,30 0,30 1,22 1,28 0,97 1,03
INAA2 0,24 0,30 0,36 0,30 1,22 1,28 1,03 1,15
INAA3 0,43 0,36 0,30 0,30 1,22 1,15 1,09 1,09
INA1 0,36 0,43 0,55 0,55 1,03 1,03 1,03 1,09
INA2 0,49 0,43 0,49 0,49 1,34 1,28 0,97 0,97
INA3 0,30 0,36 0,30 0,30 1,22 1,15 1,09 1,09
INBBB1 0,43 0,49 0,36 0,36 1,09 1,09 1,03 1,03
INBBB2 0,49 0,49 0,30 0,30 1,03 1,03 0,85 0,79
INBBB3 0,30 0,30 0,36 0,36 1,15 1,22 1,03 1,03
INBB1 0,36 0,30 0,43 0,43 1,34 1,34 1,03 0,97
INBB2 0,43 0,36 0,43 0,43 1,40 1,34 1,15 1,09
INBB3 0,30 0,30 0,36 0,36 1,15 1,15 0,91 0,91
INB1 0,43 0,43 0,43 0,43 1,34 1,34 0,91 0,97
INB2 0,30 0,30 0,30 0,30 1,34 1,34 0,97 1,03
INB3 0,30 0,30 0,36 0,30 1,46 1,40 1,22 1,22
BNAAA 0,62 0,62 0,48 0,48 1,31 1,31 1,10 1,03
BNAA1/2 0,55 0,55 0,55 0,48 1,24 1,31 1,10 1,17
BNA1 0,62 0,62 0,55 0,55 0,96 1,03 1,10 1,17
BNA2 0,55 0,62 0,69 0,69 0,89 1,96 1,03 1,03
BNA3 0,55 0,55 0,28 0,28 1,38 1,31 1,03 1,10
Average 0,41 0,42 0,41 0,40 1,22 1,22 1,03 1,05

Table 2.14. Violations in the conservative approach and si-
multaneous simulation(in %)

2.7 P-P Plots

The evaluation of the predictive power across all possible confidence levels
α ∈ [0, 1] can be carried out with the help of a transformation of the em-
pirical distribution {L(k) | 0 ≤ k ≤ N − 1}. If F is the true distribution
function of the loss L within the holding period h, then the random quantity
F (L) is (approximately) uniformly distributed on [0, 1]. Therefore we check
the values Fe

[
L(t)

]
for t0 ≤ t ≤ t1, where Fe is the empirical distribution.

If the prediction quality of the model is adequate, these values should not
differ significantly from a sample with size 250 (t1 − t0 + 1) from a uniform
distribution on [0, 1].

The P-P plot of the transformed distribution against the uniform distribu-
tion (which represents the distribution function of the transformed empirical
distribution) should therefore be located as closely to the main diagonal as
possible. The mean squared deviation from the uniform distribution (MSD)
summed over all quantile levels can serve as an indicator of the predictive
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creates a P-P plot and calculates the MSD indicator.

2.8 Q-Q Plots

With a quantile plot (Q-Q plot) it is possible to visualize whether an ordered
sample is distributed according to a given distribution function. If, e.g., a
sample is normally distributed, the plot of the empirical quantiles vs. the
quantiles of a normal distribution should result in an approximately linear
plot. Q-Q plots vs. a normal distribution can be generated with the following
command:

VaRqqplot (matrix(N,1)|MMPL,VaR,opt)

2.9 Discussion of Simulation Results

In Figure 2.7 the P-P plots for the historical simulation with the full yield
curve (INAAA) as risk factor are displayed for the different variants of the sim-
ulation. From the P-P plots it is apparent that mean adjustment significantly
improves the predictive power in particular for intermediate confidence levels
(i.e., for small risk factor changes).

Figure 2.8 displays the P-P plots for the same data set and the basic historical
simulation with different choices of risk factors. A striking feature is the poor
predictive power for a model with the spread as risk factor. Moreover, the
over-estimation of the risk in the conservative approach is clearly reflected by
a sine-shaped function, which is superposed on the ideal diagonal function.

In Figs. 2.9 and 2.10 we show the Q-Q plots for basic historic simulation and
volatility updating using the INAAA data set and the full yield curve as risk
factors. A striking feature of all Q-Q plots is the deviation from linearity
(and, thus, normality) for extreme quantiles. This observation corresponds
to the leptokurtic distributions of time series of market data changes (e.g.
spread changes as discussed in section 2.3.2).

2.9.1 Risk Factor: Full Yield

The results in Table 2.12 indicate a small under-estimation of the actually
observed losses. While volatility updating leads to a reduction of violations,

power of a quantile-based risk measure like VaR. The XFGpp quantlet
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Figure 2.7. P-P Plots variants of the simulation. XFGpp

this effect is not clearly recognizable for the mean adjustment. The positive
results for volatility updating are also reflected in the corresponding mean
squared deviations in Table 2.15. Compared with the basic simulation, the
model quality can be improved. There is also a positive effect of the mean
adjustment.

2.9.2 Risk Factor: Benchmark

The results for the number of violations in Table 2.13 and the mean squared
deviations in Table 2.16 are comparable to the analysis, where risk factors
are changes of the full yield. Since the same relative changes are applied
for all yield curves, the results are the same for all yield curves. Again, the
application of volatility updating improves the predictive power and mean
adjustment also has a positive effect.

2.9.3 Risk Factor: Spread over Benchmark Yield

The number of violations (see Table 2.12) is comparable to the latter two
variants. Volatility updating leads to better results, while the effect of mean
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Figure 2.8. P-P Plots choice of risk factors. XFGpp

adjustment is only marginal. However, the mean squared deviations (see
Table 2.15) in the P-P plots are significantly larger than in the case, where
the risk factors are contained in the benchmark curve. This can be traced
back to a partly poor predictive power for intermediate confidence levels (see
Figure 2.8). Mean adjustment leads to larger errors in the P-P plots.

2.9.4 Conservative Approach

From Table 2.14 the conclusion can be drawn, that the conservative approach
significantly over-estimates the risk for all credit qualities. Table 2.17 indi-
cates the poor predictive power of the conservative approach over the full
range of confidence levels. The mean squared deviations are the worst of all
approaches. Volatility updating and/or mean adjustment does not lead to
any significant improvements.

2.9.5 Simultaneous Simulation

From Tables 2.14 and 2.17 it is apparent that simultaneous simulation leads to
much better results than the model with risk factors from the full yield curve,
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VaR reliability plot
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Figure 2.9. Q-Q Plot for basic historical simulation.

when volatility updating is included. Again, the effect of mean adjustment
does not in general lead to a significant improvement. These results lead to
the conclusion that general market risk and spread risk should be modeled
independently, i.e., that the yield curve of an instrument exposed to credit
risk should be modeled with two risk factors: benchmark changes and spread
changes.

2.10 Internal Risk Models

In this contribution it is demonstrated that XploRe can be used as a tool
in the analysis of time series of market data and empirical loss distribu-
tions. The focus of this contribution is on the analysis of spread risk. Yield
spreads are an indicator of an obligor’s credit risk. The distributions of spread
changes are leptokurtic with typical fat tails, which makes the application of
conventional variance-covariance risk models problematic. That is why in
this contribution we prefer the analysis of spread risk by means of historical
simulation. Since it is not a priori clear, how spread risk should be inte-
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Figure 2.10. Q-Q plot for volatility updating.

grated in a risk model for interest rate products and how it can be separated
from general market risk, we investigate several possibilities, which include
modelling the full yield curve (i.e., consideration of only one risk factor cat-
egory, which covers both benchmark and spread risk) as well as separately
modelling spread risk and benchmark risk. The aggregation of both risk cat-
egories is carried out in a conservative way (addition of the risk measure for
both risk categories) as well as coherently (simultaneous simulation of spread
and benchmark risk). Moreover, in addition to the basic historical simulation
method we add additional features like mean adjustment and volatility up-
dating. Risk is quantified by means of a quantile-based risk measure in this
contribution - the VaR. We demonstrate the differences between the different
methods by calculating the VaR for a fictive zero-bond.

The numerical results indicate, that the conservative approach over-estimates
the risk of our fictive position, while the simulation results for the full yield as
single risk factor are quite convincing. The best result, however, is delivered
by a combination of simultaneous simulation of spread and benchmark risk
and volatility updating, which compensates for non-stationarity in the risk
factor time series. The conclusion from this contribution for model-builders
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full yield spread curve

Curve V1 V2 V3 V4 V1 V2 V3 V4
INAAA 0,87 0,28 0,50 0,14 8,13 22,19 8,14 16,15
INAA2 0,45 0,36 0,32 0,16 6,96 21,41 7,25 15,62
INAA3 0,54 0,41 0,43 0,23 7,91 21,98 7,97 15,89
INA1 0,71 0,27 0,41 0,13 7,90 15,32 8,10 8,39
INA2 0,50 0,39 0,42 0,17 9,16 15,15 9,51 6,19
INA3 0,81 0,24 0,58 0,24 9,53 12,96 9,61 7,09
INBBB1 0,71 0,29 0,54 0,13 9,59 15,71 9,65 11,13
INBBB2 0,33 0,34 0,26 0,12 11,82 14,58 11,59 10,72
INBBB3 0,35 0,59 0,40 0,34 7,52 11,49 7,78 6,32
INBB1 0,31 0,95 0,26 0,28 4,14 4,57 3,90 1,61
INBB2 0,52 0,49 0,36 0,19 6,03 3,63 5,89 2,12
INBB3 0,53 0,41 0,36 0,17 3,11 3,65 3,09 1,67
INB1 0,51 0,29 0,38 0,15 3,59 1,92 2,85 1,16
INB2 0,51 0,48 0,31 0,22 4,29 2,31 3,41 1,42
INB3 0,72 0,38 0,32 0,16 3,70 2,10 2,99 3,02
BNAAA 0,59 0,19 0,48 0,56 10,13 17,64 9,74 11,10
BNAA1/2 0,54 0,21 0,45 0,46 5,43 13,40 5,73 7,50
BNA1 0,31 0,12 0,29 0,25 8,65 17,19 8,09 8,21
BNA2 0,65 0,19 0,57 0,59 6,52 12,52 6,95 6,45
BNA3 0,31 0,19 0,32 0,29 6,62 9,62 6,59 3,80
Average 0,54 0,35 0,40 0,25 7,04 11,97 6,94 7,28

Table 2.15. MSD P-P Plot for the full yield and the spread
curve(×10 000)

Curve V1 V2 V3 V4
INAAA, INAA2, INAA3 0,49 0,23 0,26 0,12
INA1 0,48 0,23 0,26 0,12
INA2, INA3, INBBB1, INBBB2,
INBBB3, INBB1, INBB2

0,49 0,23 0,26 0,12

INBB3 0,47 0,23 0,25 0,12
INB1 0,49 0,23 0,26 0,12
INB2 0,47 0,23 0,25 0,12
INB3 0,48 0,23 0,26 0,12
BNAAA, BNAA1/2 0,42 0,18 0,25 0,33
BNA1 0,41 0,18 0,23 0,33
BNA2 0,42 0,18 0,25 0,33
BNA3 0,41 0,18 0,24 0,33
Average 0,47 0,22 0,25 0,17

Table 2.16. MSD P-P-Plot benchmark curve (×10 000)

in the banking community is, that it should be checked, whether the full yield
curve or the simultaneous simulation with volatility updating yield satisfac-
tory results for the portfolio considered.
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conservative approach simultaneous simulation
Curve V1 V2 V3 V4 V1 V2 V3 V4
INAAA 14,94 14,56 14,00 13,88 1,52 0,64 0,75 0,40
INAA2 13,65 13,51 14,29 14,31 0,79 0,38 0,40 0,23
INAA3 14,34 13,99 13,66 13,44 0,79 0,32 0,49 0,27
INA1 15,39 15,60 15,60 15,60 0,95 0,40 0,52 0,29
INA2 13,95 14,20 14,32 14,10 0,71 0,55 0,50 0,39
INA3 14,73 14,95 14,45 14,53 0,94 0,30 0,59 0,35
INBBB1 13,94 14,59 14,05 14,10 1,00 0,33 0,43 0,17
INBBB2 13,74 13,91 13,67 13,73 0,64 0,52 0,45 0,29
INBBB3 13,68 14,24 14,10 14,09 0,36 0,78 0,31 0,31
INBB1 19,19 20,68 18,93 19,40 0,73 1,37 0,52 0,70
INBB2 13,21 14,17 14,79 15,15 0,30 0,82 0,35 0,51
INBB3 15,19 16,47 15,40 15,67 0,55 0,65 0,15 0,21
INB1 15,47 15,64 15,29 15,51 0,53 0,44 0,19 0,26
INB2 14,47 14,93 15,46 15,77 0,24 0,55 0,24 0,24
INB3 14,78 14,67 16,77 17,03 0,38 0,44 0,27 0,22
BNAAA 14,80 15,30 16,30 16,64 1,13 0,33 0,99 0,96
BNAA1/2 13,06 13,45 14,97 15,43 0,73 0,16 0,57 0,50
BNA1 11,95 11,83 12,84 13,08 0,52 0,26 0,44 0,41
BNA2 13,04 12,58 14,31 14,56 0,78 0,13 0,51 0,58
BNA3 12,99 12,70 15,19 15,42 0,34 0,18 0,58 0,70
Average 14,33 14,60 14,92 15,07 0,70 0,48 0,46 0,40

Table 2.17. MSD P-P Plot for the conservative approach and
the simultaneous simulation(×10 000)
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3 A Copula-Based Model of the Term

Structure of CDO Tranches
Umberto Cherubini, Sabrina Mulinacci and Silvia Romagnoli

3.1 Introduction

A large literature has been devoted to the evaluation of CDO tranches in a
cross-section setting. The main idea is that the cross-section dependence of
the times to default of the assets or names of the securitization deal is speci-
fied, the dynamics of the losses in the pool of credits is simulated accordingly
and the value of tranches is recovered. The dependence structure is usually
represented in terms of copula functions, which provides flexibility and allows
to separate the specification of marginal default probability distributions and
dependence. The application of copula was first proposed by Li (2000) and
nowadays is a common practice in the market of basket credit derivatives,
particularly in the version of factor copulas (see Gregory and Laurent (2005)
for a review and Burtshell, Gregory and Laurent (2005) for a comparison of
the approach). This approach is obviously feasible for CDOs with a limited
number of assets. Even for those, however, there is an issue that remains to
be solved, and it has to do with the temporal consistency of prices.

This has become more and more evident with the growth of the so called
standardized CDO markets. CDX or iTraxx tranches are in fact traded for
the same degrees of protection (attachment/detachment) and on the same set
of names for different time horizons. This has naturally raised the question
whether the premium quoted for protection on a 5 year horizon for a CDX
tranche was consistent with the observed price of protection for 10 years on
the same tranche. For example, take the (0, 3%) equity tranche of a CDX. On
June 15 2005 the CDX equity tranche (0, 3%) quoted a price of 42.375% and
the 10 price for the same tranche on a 10 year horizon was 63% (remember
that it is market convention to price equity tranche premia upfront plus
500 bp running premium). It is natural to assess that buying protection on
a 10 year tranche should be weakly more expensive that buying the same
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protection for a 5 year horizon. The question is how huge this difference in
price ought to be.

A major flaw of copula functions applications to CDO pricing is that it has not
provided an answer to this question. This is due to the static nature of copula
functions, or at least to the fact that they have been used as static objects in
these pricing problems. An alternative approach would be to directly specify
the stochastic process of losses, for example using a general Lévy process.
This choice comes at the cost of losing almost all of the flexibility provided
by the copula approach. The infinite divisibility property of Lévy processes,
for example, would imply that the probability distribution of losses on every
time interval of the same length would have the same distribution. We could
of course handle this by resorting to a suitable time change Carr and Wu
(2004). Even after this, a crucial assumption would be retained, which is
that losses in the second 5 year period should be independent from those in
the first 5 years. Of course everyone who has been at least once exposed to
studies on business cycles would hardly subscribe this statement. For this
reason, it is possible that Lévy processes be too restrictive to explain the
term structure behavior of premia in the market of basket credit derivatives.

The excessive flexibility of the copula tool on one side versus the excessive
restriction of Lévy processes specification on the other raises the issue of an
approach bridging the two together, for example using copulas to represent
temporal dependence of losses, and encompassing the Lévy representation of
them as a special case. This is the main question addressed in this paper,
and the solution is handled by retaining the copula pricing methodology. To
make the problem more formal, denote Xs the amount of losses cumulated up
to time s on a basket of assets or names (say it is s = 5) and Xt the amount
of losses ut to time t = 10. Denote Yt−s = Xt−Xs the amount of losses in the
period between 5 and 10 years. Temporal consistency requires to define the
dependency structure between Xs, Xt and Yt−s. The current approach is to
specify different copula functions for Xs and Xt. The Lévy process approach
is to define a specific process for Xs, assuming Ys to be iid. Our approach is
to select a dependence structure between Xs and Yt−s and the correspond-
ing marginal distributions to recover the distribution of Xt. Of course, the
process could be in turn iterated to recover the distribution of Xt+s based
on the dependence structure of Xt and Ys and their marginal distributions,
and so on. In other words, by tuning the distributions of the losses over
a set of time intervals and the dependence structure between each of them
and the corresponding amount of cumulated losses at the beginning of the
period, we can recursively recover a set of distributions of cumulated losses.
From this, we can recover the term structure of the premia for protection
on such losses. This preserves the flexibility of copula functions and encom-
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passes Lévy processes as a special case in which the distribution of losses is
assumed to be the same across all the intervals of time, and independent of
the cumulated losses at the beginning of the period. The approach applies
copula functions to represent the temporal dynamics in first order Markov
process (see the seminal paper by Darsow, Nguyen and Olsen (1992) and
the recent applications in econometrics, Ibragimov (2005), Gagliardini and
Gourieroux (2005)). The technical contribution to this stream of literature is
the proposal of a way to construct a class of such copulas starting from the
dependence structure between the levels of a variable and its increments.

The plan of the paper is as follows. In section 3.2 we briefly describe a
copula-based dynamics of the losses in a basket. In section 3.3 the show how
to recover the distribution of the cumulated losses at the end of a period
given the distributions of the cumulated losses at the beginning and the
increment of losses in the period in a fully general setting. In section 3.4
we apply the theoretical analysis to recover the algorithm for the cumulated
losses distribution. In section 3.5 we present a sensitivity analysis of the term
structure of CDX premia to changes in the temporal correlation. Section 3.6
concludes.

3.2 A Copula-Based Model of Basket Credit
Losses Dynamics

We assume a filtered probability space {Ω,�t, P} satisfying the usual condi-

1 2 n

in a set of periods limited by a dates {t0, t1, t2, ..., tn}. The set of cumulated
losses are every time is given by Xi = Xi−1 + Yi. We assume that the deriva-
tive contract starts at time t0 so that X0 = 0. We assume that each loss Yi is
endowed with a probability distribution FYi

, i = 1, ....n. We want to recover
the set of distributions FXi

. Of course, we have FY1
= FX1

. We assume a set
of copula functions CXi−1,Yi

representing the dependence structure between
the losses in a period and the cumulated losses at the beginning of that pe-
riod. Our task is to jointly determine: i) the probability distribution of each
Xi and ii) the temporal dependence structure between Xi−1 and Xi. It is
possible to show that this will generate a first order Markov process in the
representation of Darsow, Nguyen and Olsen (1992).

tions with P the risk-neutral measure. We consider a set of losses {Y , Y , ..., Y }
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3.3 Stochastic Processes with Dependent
Increments

In this paragraph we focus on a single date ti, i = 2, ..., n so that we drop
reference to time for simplicity. Let X, Y be two random variables with
continuous c.d.f. FX and FY , representing losses at the beginning of the
period and losses during the period respectively. Let CX,Y (w, λ) be the copula
function that describes their mutual dependence.

We begin by reminding a standard result in the copula functions literature
(see Cherubini, Luciano and Vecchiato (2004) and Nelsen (2006)) that will
be heavily used throughout the paper, stating that the partial derivative
of a copula function corresponds to the conditional probability distribution.
Formally, we have

LEMMA 3.1 Let X and Y be two real-valued random variables on the same
probability space (Ω,A, P) with corresponding copula C(w, λ) and continuous
marginals FX and FY . Then for every x, y ∈ R, setting FX = w and FY = λ,
we have that

D1C {FX(x), FY (y)} is a version of P (Y ≤ y|X) and

D1C {FX(x), FY (Y )} is a version of P (X ≤ x|Y ) .

For every continuous c.d.f. F we define the generalized inverse F−1 : (0, 1) →
R as

F−1(w) = inf {l ∈ R : F (l) ≥ w} . (3.1)

We have

Proposition 3.1 Let X e Y be two real-valued random variables on the same
probability space (Ω,A, P) with corresponding copula CX,Y (w, λ) and contin-
uous marginals FX and FY . Then,

CX,X+Y (u, v) =

∫ u

0
D1CX,Y

[
w, FY {F−1

X+Y (v)− F−1
X (w)}

]
dw, ∀u, v ∈ [0, 1],

(3.2)
and

FX+Y (t) =

∫ 1

0
D1CX,Y

[
w, FY {t− F−1

X (w)}
]
dw. (3.3)
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Proof:

FX,X+Y (s, t) = P (X ≤ s, X + Y ≤ t) =

=

∫ s

−∞
P (X + Y ≤ t|X = x) dFX(x) =

=

∫ s

−∞
P (Y ≤ t− x|X = x) dFX(x) =

=

∫ s

−∞
D1CX,Y {FX(x), FY (t− x)} dFX(x) =

=

∫ FX(s)

0
D1CX,Y

[
w,FY {t− F−1

X (w)}
]
dw

where we made the substitution w = FX(x) ∈ (0, 1).

Then, the copula function of X and X + Y is

CX,X+Y (u, v) = FX,X+Y

{
F−1

X (u), F−1
X+Y (v)

}
=

=

∫ u

0
D1CX,Y

[
w,FY {F−1

X+Y (v)− F−1
X (w)}

]
dw.

Moreover

FX+Y (t) = lim
s→+∞

FX,X+Y (s, t) =

∫ 1

0
D1CX,Y

[
w, FY {t− F−1

X (w)}
]
dw.

�

DEFINITION 3.1 Let F , G be two continuous c.d.f. and C a copula func-
tion. We define the C-convolution of F and G the c.d.f.

F
C∗ G(t) =

∫ 1

0
D1C

[
w,G{t− F−1(w)}

]
dw

Proposition 3.2 Let F , G, H be three continuous c.d.f., C(w, λ) a copula
function and

Ĉ(u, v) =

∫ u

0
D1C

[
w, F{G−1(v)−H−1(w)}

]
dw.

Ĉ(u, v) is a copula function iff

G = H
C∗ F. (3.4)
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Proof:
Let us assume (3.4) to hold. Since there exist a probability space and
two random variables X and Y with joint distribution function F (x, y) =

C(FX(x), FY (y)), thanks to Proposition 3.1, Ĉ is a copula function.

Viceversa. Let Ĉ be a copula function. Necessarily Ĉ(1, v) = v holds. But

Ĉ(1, v) =

∫ 1

0
D1C

[
w,F

{
G−1(v)−H−1(w)

}]
dw =

= H
C∗ F

{
G−1(v)

}
and

H
C∗ F

{
G−1(v)

}
= v

for all v ∈ (0, 1) if and only if G = H
C∗ F . �

DEFINITION 3.2 Let F and H be two continuous c.d.f. and C a copula
function. We define the copula function

Ĉ(u, v) =

∫ u

0
D1C

[
w, F{(H C∗ F )−1(v)−H−1(w)}

]
dw. (3.5)

REMARK 3.1 Independence

If C is the product copula, the C-convolution of H and F coincides with the
convolution of H and F , while the copula Ĉ defined through (3.5) takes the
form

Ĉ(u, v) =

∫ u

0
F{(H ∗ F )−1(v)−H−1(w)}dw. (3.6)

REMARK 3.2 The co-monotonic case In the case C(w, λ) = w ∧ λ, it
is easy to verify

H
C∗ F (t) =

∫ 1

0
1{(0, F{t−H−1(w)})}(w)dw =

=

∫ 1

0
1{w : F−1(w) + H−1(w) < t}(w)dw

= sup
{
w ∈ (0, 1) : H−1(w) + F−1(w) < t

}
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and

Ĉ(u, v) =

∫ u

0
1{(0, F [{H C∗ F}−1(v)−H−1(w)])}(w)dw =

=

∫ u

0
1{w : H−1(w) + F−1(w) < (H

C∗ F )−1(v)}(w)dw

= u ∧ sup
{

w ∈ (0, 1) : F−1(w) + H−1(w) < (H
C∗ F )−1(v)

}
= u ∧ v.

(3.7)

3.4 An Algorithm for the Propagation of Losses

In this Section we use the analysis above to recover a recursive algorithm for
the computation of the distribution of losses over an increasing set of dates.
We simply consider the same setting and the same symbology of section 3.2.

Thanks to (3.3) it is possible to compute the distribution of every Xi through
the following iterated formula

FXi
(t) = FXi−1+Yi

(t) =

=

∫ 1

0
D1CXi−1,Yi

[
w, FYi

{t− F−1
Xi−1

(w)}
]
dw

with FX1
= FY1

.

From the distribution of losses it would be easy to integrate the value of
protection of equity tranches with increasing detachment points.

Here below we describe the algorithm for the propagation of the probability
distribution of losses based on the previous results. The algorithm consists
of the following steps:

1. Start with the distribution of losses in the first period and set X1 = Y1

2. Numerically compute the integral in equation 3.4 yielding FX2

3. Go back to step 2 and use FX2
and FY2

to compute FX3

4. Iterate until i < n

The algorithm is very general and may be applied to any problem of propa-
gation of a distribution of increments. It may be thought of as an empirical
way to generalize the scaling law of temporal aggregation of measures.
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3.5 Empirical Analysis

Here we apply the model above to market data with the goal to gauge the sen-
sitivity of the prices of tranches to changes in temporal dependence, and how
these effects compare with those due to changes in cross-section dependence.
Even though the structure of the algorithm is very flexible and general, and
may allow for complex cross-section and temporal dependence structures, we
keep the model simple. We assume that the joint distribution of losses in
every period is given by the Vasicek (1991) formula

Pr(Z < z) = Φ

{√
1− ρ2 Φ−1(z)− Φ−1(p)

ρ

}
(3.8)

where Z represents the fraction of losses, ρ represent asset correlation of the
names in the basket and p denotes their default probability. Notice that the
model is homogeneous, meaning that all firms are assumed to have the same
default probability and same asset correlation. As for temporal dependence,
we have used the main Archimedean copulas, namely the Frank, Gumbel and
Clayton. In order to save space, we report the results for the Frank, which
for its symmetry properties is the member of the class that corresponds to
the Gaussian distribution in the elliptical class.

The details of the analysis are as follows. We used the CDS quotes of the
names included in the CDX, series number 8. For each of the 125 names, we
bootstrapped the probability of default in each year, up 10 years. The data
refers to the series number 8, and was collected on July 3rd 2007. The joint
distribution of losses is computed using the Vasicek formula above, using the
average default probability of the names and a dependence figure. Then,
the joint distribution of losses is propagated forward using the algorithm
described in the previous section. Finally, the prices of the tranches are
computed using the standard market conventions.

In the base scenario, we assume that cross-section correlation is 40% in the
Vasicek formula and the losses in each period are assumed to be independent.
Then we change cross-section correlation by decreasing it to 20% and we
compare the effects with changes in temporal dependence. We tried scenarios
with both positive and negative dependence corresponding to a Kendall τ
figures of 20% and 40%.

In Figure 3.1 we report the distribution of losses in the base scenario and
in the hypothesis of a decrease of correlation from 40% to 20%. The curve
describing the percentiles is tilted, and the percentile for a low percentage of
losses is higher, while the percentile of a high percentage of losses is lower.
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Figure 3.1. Probability Distribution of Losses. Different
Cross-Section and Temporal Dependence. Blue line represents
the base scenario, green sketched line assume cross section
rho=0.2 and red dotted line a temporal dependence Kendall
τ = −0.2. XFGProbability

In financial terms, this means that risk is more idiosyncratic than in the base
scenario. The third curve relaxes the assumption of temporal independence
of losses. If the amount of losses in a period is negatively associated to
cumulated losses at the beginning of the period the increase in idiosyncratic
risk is even higher. In Figure 3.2 we report the effect of changes in temporal
dependence on the distribution of losses. As temporal dependence decreases,
the distribution is twisted upward.

The results on the distribution of losses foreshadow that equity tranches
should be short on both cross-section and temporal correlation. Figure 3.3
reports the term structure of the equity tranche for different maturities. Con-
trary to the market practice, the price is reported in terms of running basis
premium instead of upfront, but this does not make any difference for the
discussion. As we move from the base scenario to a decrease in cross-section
dependence the value of equity tranche increases. As expected, if we also
allow for negative dependence between period losses and cumulated losses
the impact on equity tranches is even higher. Figure 3.4 reports the effect
on the senior tranche 15-30%. As expected, the impact is of opposite sign.
The decrease in both cross-section and temporal dependence brings about a
decrease in value of the 15-30% tranche. Figures 3.5 and 3.6 reports instead
the effect of changes of temporal dependence on the base scenario. Notice
that in this case, temporal correlation has a relevant impact only on the 10
year maturity, which is typically the most difficult to calibrate.
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Figure 3.2. Probability Distribution of Losses: 10 Year
Horizon. Different Temporal Dependence. Blue line repre-
sents the base scenario, green line the Frank copula for a
temporal dependence Kendall τ = 0.4, red sketched-dotted
line the Frank copula for a temporal dependence Kendall
τ = 0.2, light blue dotted line the Frank copula for a tem-
poral dependence Kendall τ = −0.2 and purple sketched
line the Frank copula for a temporal dependence Kendall
τ = −0.4. XFGProbability
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Figure 3.3. Term Structure of Equity Tranche. Different
Cross-Section and Temporal Dependence. Red sketched line
represents the base scenario, blue dotted line assume cross sec-
tion rho=0.2 and green line a temporal dependence Kendall
τ = −0.2. XFGUpFront
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Figure 3.4. Term Structure of the Senior 15-30% Tranche.
Different Cross-Section and Temporal Dependence. Red line
represents the base scenario, green sketched line assume cross
section rho=0.2 and blue dotted line a temporal dependence
Kendall τ = −0.2. XFGRunningBasis
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Figure 3.5. Term Structure of the Equity Tranche. Different
Temporal Dependence. Red sketched-dotted line represents
the base scenario, light blue dotted line for a temporal depen-
dence Kendall τ = 0.2, purple sketched line for a temporal
dependence Kendall τ = 0.4, green line for a temporal depen-
dence Kendall τ = −0.2 and blue marked line for a temporal
dependence Kendall τ = −0.4. XFGUpFront
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Figure 3.6. Term Structure of the Senior 15-30% Tranche.
Different Temporal Dependence. Red dotted line represents
the base scenario, green sketched line for a temporal depen-
dence Kendall τ = 0.2, blue marked line for a temporal depen-
dence Kendall τ = 0.4, light blue marked line for a temporal
dependence Kendall τ = −0.2 and purple line for a temporal
dependence Kendall τ = −0.4. XFGRunningBasis

3.6 Concluding Remarks

In this paper we have proposed a copula based model to jointly model cross-
section and temporal dependence. Cross section dependence of losses is spec-
ified for every period, while cumulated losses are propagated from a period to
the next one by integrating a conditional distribution of the losses in a period
given the cumulated losses at the beginning of the period. The conditional
distribution is modelled using copula functions. We apply our strategy to
market data showing the sensitivity of the distribution of cumulated losses to
changes in temporal dependence. Changes in temporal dependence turn out
to have the same sign of impact on the value tranches as changes in cross-
section dependence. Namely, equity tranches are made more valuable by a
decrease in temporal dependence while senior tranches are made cheaper.

Using copulas to model both cross-section and temporal dependence in mul-
tivariate credit products open a new research program in the application of
these tools to these products. It is the ideal approach to try to jointly model
the entire term structure of the different tranches, which is one of the open
issues in the pricing of standard CDO (iTraxx and CDX). Future work will be
devoted to the calibration of the model with the goal to identify and separate
the cross-section and temporal correlation implied by the market prices.
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4 VaR in High Dimensional Systems – a

Conditional Correlation Approach
Helmut Herwartz and Bruno Pedrinha

In empirical finance multivariate volatility models are widely used to cap-
ture both volatility clustering and contemporaneous correlation of asset re-
turn vectors. In higher dimensional systems, parametric specifications often
become intractable for empirical analysis owing to large parameter spaces.
On the contrary, feasible specifications impose strong restrictions that may
not be met by financial data as, for instance, constant conditional correla-
tion (CCC). Recently, dynamic conditional correlation (DCC) models have
been introduced as a means to solve the trade off between model feasibil-
ity and flexibility. Here we employ alternatively the CCC and the DCC
modeling framework to evaluate the Value-at-Risk associated with portfolios
comprising major U.S. stocks. In addition, we compare their performance
with corresponding results obtained from modeling portfolio returns directly
via univariate volatility models.

4.1 Introduction

Volatility clustering, i.e. positive correlation of price variations observed
on speculative markets, motivated the introduction of autoregressive condi-
tionally heteroscedastic (ARCH) processes by Engle (1982) and its popu-
lar generalizations by Bollerslev (1986) (Generalized ARCH, GARCH) and
Nelson (1991) (Exponential GARCH). Being univariate in nature, however,
these models neglect a further stylized feature of empirical price variations,
namely contemporaneous correlation over a cross section of assets, stock or
foreign exchange markets (Engle, Ito and Lin, 1990; Hamao, Masulis and
Ng, 1990; Hafner and Herwartz, 1998; Engle and Sheppard, 2001; Lee and
Long, 2008).

The covariance between asset returns is of essential importance in finance. Ef-
fectively, many problems in financial theory and practice like asset allocation,
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hedging strategies or Value-at-Risk (VaR) evaluation require some formaliza-
tion not merely of univariate risk measures but rather of the entire covariance
matrix (Bollerslev et al., 1988; Cecchetti, Cumby and Figlewski, 1988). Simi-
larly, pricing of options with more than one underlying asset will require some
(dynamic) forecasting scheme for time varying variances and covariances as
well (Duan, 1995).

When modeling time dependent second order moments, a multivariate model
is a natural framework to take cross sectional information into account. Over
recent years, multivariate volatility models have been attracting high inter-
est in econometric research and practice. Popular examples of multivari-
ate volatility models comprise the GARCH model class recently reviewed by
Bauwens, Laurent and Rombouts (2006). Numerous versions of the multivari-
ate GARCH (MGARCH) model suffer from huge parameter spaces. Thus,
their scope in empirical finance is limited since the dimension of vector val-
ued systems of asset returns should not exceed five (Ding and Engle, 1994).
Factor structures (Engle, Ng and Rothschild, 1990) and so-called correla-
tion models (Bollerslev, 1990) have been introduced to cope with the curse
of dimensionality in higher dimensional systems. The latter start from uni-
variate GARCH specifications to describe volatility patterns and formalize
in a second step the conditional covariances implicitly via some model for
the systems’ conditional correlations. Recently, dynamic conditional corre-
lation models have been put forth by Engle (2002), Engle and Sheppard
(2001) and Tse and Tsui (2002) that overcome the restrictive CCC pattern
(Bollerslev, 1990) while retaining its computational feasibility.

Here, we will briefly review two competing classes of MGARCH models,
namely the half-vec model family and correlation models. The latter will be
applied to evaluate the VaR associated with portfolios comprised by stocks
listed in the Dow Jones Industrial Average (DJIA) index. We compare the
performance of models building on constant and dynamic conditional corre-
lation. Moreover, it is illustrated how a univariate volatility model performs
in comparison with both correlation models.

The remainder of this paper is organized as follows. The next section intro-
duces the MGARCH model and briefly mentions some specifications that fall
within the class of so-called half-vec MGARCH models. Correlation models
are the focus of Section 4.3 where issues like estimation or inference within
this model family are discussed in some detail. An empirical application of
basic correlation models to evaluate the VaR for portfolios comprising U.S.
stocks is provided in Section 4.5.
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4.2 Half-Vec Multivariate GARCH Models

Let εt = (ε1t, ε2t, . . . , εNt)
� denote an N -dimensional vector of serially uncor-

related components with mean zero. The latter could be directly observed
or estimated from a multivariate regression model. The process εt follows a
multivariate GARCH process if it has the representation

εt|Ft−1 ∼ N(0, Σt), Σt = [σij,t], (4.1)

where Σt is measurable with respect to information generated up to time
t − 1, formalized by means of the filtration Ft−1. The N × N conditional
covariance matrix, Σt = E[εtε

�
t |Ft−1], has typical elements σij,t with i = j

(i �= j) indexing conditional variances (covariances). In a multivariate setting
potential dependencies of the second order moments in Σt on Ft−1 become
easily intractable for practical purposes.

The assumption of conditional normality in (4.1) allows to specify the like-
lihood function for observed processes εt, t = 1, 2, . . . , T . In empirical ap-
plications of GARCH models, it turned out that conditional normality of
speculative returns is more an exception than the rule. Maximizing the
misspecified Gaussian log-likelihood function is justified by quasi maximum
likelihood (QML) theory. Asymptotic theory on properties of the QML
estimator in univariate GARCH models is well developed (Bollerslev and
Wooldridge, 1992; Lee and Hansen, 1994; Lumsdaine, 1996). Recently, a few
results on consistency (Jeantheau, 1998) and asymptotic normality (Comte
and Lieberman, 2003; Ling and McAleer, 2003) have been derived for multi-
variate processes.

The so-called half-vec specification encompasses all MGARCH variants that
are linear in (lagged) second order moments or squares and cross products
of elements in (lagged) εt. Let vech(B) denote the half-vectorization oper-
ator stacking the elements of a (m × m) matrix B from the main diagonal
downwards in a m(m + 1)/2 dimensional column vector. We concentrate the
formalization of MGARCH models on the MGARCH(1,1) case which is, by
far, the dominating model order used in the empirical literature (Bollerslev et
al., 1994). Within the so-called half-vec representation of the GARCH(1, 1)
model Σt is specified as follows:

vech(Σt) = c + A vech(εt−1ε
�
t−1) + G vech(Σt−1). (4.2)

In (4.2) the matrices A and G each contain {N(N + 1)/2}2 elements. De-
terministic covariance components are collected in c, a column vector of di-
mension N(N + 1)/2. On the one hand, the half-vec model in (4.2) allows a
very general dynamic structure of the multivariate volatility process. On the
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other hand this specification suffers from huge dimensionality of the relevant
parameter space which is of order O(N 4). In addition, it might be cumber-
some or even impossible in applied work to restrict the admissible parameter
space such that the time path of implied matrices Σt is positive definite.

To reduce the dimensionality of MGARCH models, numerous avenues have
been followed that can be nested in the general class of half-vec models.
Prominent examples in this vein of research are the Diagonal model (Bollerslev
et al., 1988), the BEKK model (Baba, Engle, Kraft and Kroner, 1990; Engle
and Kroner, 1995), the Factor GARCH (Engle, Ng and Rothschild, 1990), the
orthogonal GARCH (OGARCH) (Alexander, 1998; Alexander, 2001) or the
generalized OGARCH model put forth by van der Weide (2002). Evaluating
the merits of these proposals requires to weight model parsimony and compu-
tational issues against the implied loss of generality. For instance, the BEKK
model is convenient to allow for cross sectional dynamics of conditional co-
variances, and weak restrictions have been formalized keeping Σt positive
definite over time (Engle and Kroner, 1995). Implementing the model will,
however, involve simultaneous estimation of O(N 2) parameters such that the
BEKK model has been rarely applied in higher dimensional systems (N > 4).
Factor models build upon univariate factors, such as, an observed stock mar-
ket index (Engle, Ng and Rothschild, 1990) or underlying principal compo-
nents (Alexander, 1998; Alexander, 2001). The latter are assumed to exhibit
volatility dynamics which are suitably modeled by univariate GARCH-type
models. Thereby, factor models drastically reduce the number of model pa-
rameters undergoing simultaneous estimation. Model feasibility is, however,
paid with restrictive correlation dynamics implied by the (time invariant)
loading coefficients. Moreover, it is worthwhile mentioning that in case of
factor specifications still O(N) parameters have to be estimated jointly when
maximizing the Gaussian (quasi) likelihood function.

4.3 Correlation Models

4.3.1 Motivation

Correlation models comprise a class of multivariate volatility models that is
not nested within the half-vec specification. Similar to factor models cor-
relation models circumvent the curse of dimensionality by separating the
empirical analysis in two steps. First, univariate volatility models are em-
ployed to estimate volatility dynamics of each asset specific return process
εit, i = 1, . . . , N . In a second step Σt is obtained imposing some parsimo-
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nious structure on the correlation matrix (Bollerslev, 1990). Thus, in the
framework of correlation models we have

Σt = Vt(θ)Rt(φ)Vt(θ), (4.3)

where Vt = diag(
√

σ11,t, . . . ,
√

σNN,t) is a diagonal matrix having as typical
elements the square roots of the conditional variances estimates σii,t. The
latter could be obtained from some univariate volatility model specified with
parameter vectors θi stacked in θ = (θ�1 , . . . , θ�N)�. If univariate GARCH(1,1)
models are used for the conditional volatilities σii,t, θi will contain 3 parame-
ters such that θ is of length 3N . Owing to its interpretation of a correlation
matrix the diagonal elements in R(φ) are unity (rii = 1, i = 1, . . . , N). From
the general representation in (4.3) it is apparent that alternative correlation
models particularly differ with regard to the formalization of the correlation
matrix Rt(φ) specified with parameter vector φ.

In this section, we will highlight a few aspects of correlation models. First,
a log-likelihood decomposition is given that motivates the stepwise empirical
analysis. Then, two major variants of correlation models are outlined, the
early CCC model (Bollerslev, 1990) and the DCC approach introduced by
Engle (2002) and Engle and Sheppard (2001). Tools for inference in corre-
lation models that have been applied in the empirical part of the paper are
collected in an own subsection. Also, a few remarks on recent generalizations
of the basic DCC specification are provided.

4.3.2 Log-Likelihood Decomposition

The adopted separation of volatility and correlation analysis is motivated by a
decomposition of the Gaussian log-likelihood function (Engle, 2002) applying
to the model in (4.1) and (4.3):

l(θ, φ) = −1

2

{
T∑

t=1

N log(2π) + log(|Σt|) + ε�t Σ−1
t εt

}
(4.4)

= −1

2

{
T∑

t=1

N log(2π) + 2 log(|Vt|) + log(|Rt|) + ε�t Σ−1
t εt

}

=
T∑

t=1

lt(θ, ϕ),

(4.5)
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lt(θ, φ) = lVt (θ) + lCt (θ, φ), (4.6)

lVt (θ) = −1

2

{
N log 2π + 2 log(|Vt(θ)|) + ε�t Vt(θ)

−2εt

}
(4.7)

lCt (θ, φ) = −1

2

(
log |Rt(φ)|+ v�t Rt(φ)−1vt − v�t vt

)
. (4.8)

According to (4.7) and (4.8), the maximization of the log likelihood function
may proceed in two steps. First, univariate volatility models are used to max-
imize the volatility component, lVt (θ), and conditional on first step estimates

θ̂, the correlation part lCt (θ, φ) is maximized in a second step. To perform a se-
quential estimation procedure efficiently, it is required that the volatility and
correlation parameters are variation free (Engle, Hendry and Richard, 1983)
meaning that there are no cross relationships linking single parameters in θ
and φ when maximizing the Gaussian log-likelihood function. In the present
case, the parameters in θ will impact on vt = V −1

t εt, vt = (v1t, v2t, . . . , vNt)
�,

and, thus, the condition necessary to have full information and limited in-
formation estimation equivalent is violated. Note, however, that univariate
GARCH estimates (θ̂) will be consistent. Thus, owing to the huge number
of available observations which is typical for empirical analyses of financial
data, the efficiency loss involved with a sequential procedure is likely to be
smaller in comparison with the gain in estimation feasibility.

4.3.3 Constant Conditional Correlation Model

Bollerslev (1990) proposes a constant conditional correlation (CCC) model

σij,t = rij
√

σii,tσjj,t, i, j = 1, . . . , N, i �= j. (4.9)

Given positive time paths of the systems’ volatilities, positive definiteness
of Σt is easily guaranteed for the CCC model (|rij| < 1, i �= j). As an
additional objective of this specification, it is important to notice that the
estimation of the correlation pattern may avoid iterative QML estimation of
the {N(N−1)/2} correlation parameters rij comprising Rt(φ) = R. Instead,
one may generalize the idea of variance targeting (Engle and Mezrich, 1996)
towards the case of correlation targeting. Then, D = E[vtv

�
t ] is estimated

as the unconditional covariance matrix of standardized returns, vt = V −1
t εt,

and R is the correlation matrix implied by D. With ′�′ denoting matrix
multiplication by element we have formally

R̂ = D̂∗−1/2D̂D̂∗−1/2, D̂ =
1

T

T∑
t=1

vtv
�
t , D̂∗ = D̂ � IN . (4.10)
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The price paid for the feasibility of CCC is, however, the assumption of a
rather restrictive conditional correlation pattern which is likely at odds with
empirical systems of speculative returns. Applying this model in practice
therefore requires at least some pretest for constant correlation (Tse, 2000;
Engle, 2002).

4.3.4 Dynamic Conditional Correlation Model

The dynamic conditional correlation model introduced by Engle (2002) and
Engle and Sheppard (2001) preserves the analytic separability of the models’
volatilities and correlations, but allows a richer dynamic structure for the
latter. For convenience, we focus the representation of the DCC model again
on the DCC(1,1) case formalizing the conditional correlation matrix Rt(φ) as
follows:

Rt(φ) = {Q∗
t (φ)}−1/2Qt(φ){Q∗

t (φ)}−1/2, Q∗
t (φ) = Qt(φ)� IN , (4.11)

with

Qt(φ) = R(1− α− β) + αvt−1v
�
t−1 + βQt−1(φ) (4.12)

and R is a positive definite (unconditional) correlation matrix of vt.

Sufficient conditions guaranteeing positive definiteness of the time path of
conditional covariance matrices Σt implied by (4.3), (4.11) and (4.12) are
given in Engle and Sheppard (2001). Apart from well known positivity con-
straints to hold for the univariate GARCH components, the DCC(1,1) model
will deliver positive definite covariances if α > 0, β > 0 while α + β < 1 and
λmin, the smallest eigenvalue of R, is strictly positive, i.e. λmin > δ > 0. It is
worthwhile to point out that the DCC framework not only preserves the sep-
arability of volatility and correlation estimation, but also allows to estimate
the nontrivial parameters in R via correlation targeting described in (4.10).

Given consistent estimates of unconditional correlations rij, i �= j, the re-
maining parameters describing the correlation dynamics are collected in the
two-dimensional vector ϕ = (α, β)�. Note that, making use of correlation
targeting the number of parameters undergoing nonlinear iterative estima-
tion in the DCC model is constant (= 2), and, thus, avoids the curse of
dimensionality even in case of very large systems of asset returns.

Instead of estimating the model in three steps one could alternatively esti-
mate the unconditional correlation parameters in R and the coefficients in ϕ
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jointly. Note that the number of unknown parameters in R is O(N 2). For-
mal representations of first and second order derivatives to implement two
step estimation and inference can be found in Hafner and Herwartz (2007).
We prefer the three step approach here, since it avoids iterative estimation
procedures in large parameter spaces.

4.3.5 Inference in the Correlation Models

QML-inference on significance of univariate GARCH parameter estimates is
discussed in Bollerslev and Wooldridge (1992). Analytical expressions nec-
essary to evaluate the asymptotic covariance matrix are given in Bollerslev
(1986). In the empirical part of the chapter we will not provide univariate
GARCH parameter estimates at all to economize on space. Two issues of
evaluating parameter significance remain, inference for correlation estimates
given in (4.10) and for estimated DCC parameters ϕ̂. We consider these two
issues in turn:

1. Inference for unconditional correlations

Conditional on estimates θ̂, we estimate R from standardized univari-
ate GARCH residuals as formalized in (4.10). The elements in R̂ are
obtained as a nonlinear and continuous transformation of the elements
in D̂, i.e. R̂ = D̂∗−1/2

D̂D̂∗−1/2

. Denote with vechl(B) an operator stack-
ing the elements below the diagonal of a symmetric (m × m) matrix
B in a {m(m− 1)/2} dimensional column vector bl = vechl(B). Thus,

r̂l = vechl(R̂) collects the nontrivial elements in R̂. Standard errors
for the estimates in r̂l can be obtained from a robust estimator of the
covariance of the (nontrivial) elements in D̂, d̂ = vech(D̂), via the delta
method. To be precise, we estimate the covariance of r̂l by means of
the following result (Ruud, 2000):

√
T (r̂l − rl)

L→ N
(
0,H(r̂)GH(r̂)�

)
, (4.13)

where G is an estimate of the covariance matrix of the elements in d,

G = Ĉov(d̂), and H(r̂) is a {N(N − 1)/2× (N(N + 1)/2)} dimensional

matrix collecting the first order derivatives ∂rl/∂d� evaluated at d̂. We
determine G by means of the covariance estimator

G =
1

T

T∑
t=1

(vv)t(vv)�t , (vv)t = vech(vtv
�
t )− d̂. (4.14)
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The derivatives in H(r) are derived from a result in Hafner and Her-
wartz (2007) as

∂rl

∂d�
= P�

N,−(D∗ ⊗D∗)PN +P�
N,−(DD∗ ⊗ IN + IN ⊗DD∗)PN

∂vech(D∗)

∂vech(D)�

and
∂vech(D∗)

∂vech(D)�
= −1

2
diag

[
vech

{
(IN �D)−3/2

}]
,

where the matrices PN,− and PN serve as duplication matrices
(Lütkepohl, 1996) such that vec(B) = PN−vechl(B) and vec(B) =
PNvech(B).

2. Inference for correlation parameters

The correlation parameters are estimated by maximizing the correlation
part, lC(θ, φ), of the Gaussian (quasi) log-likelihood function. When

evaluating the estimation uncertainty associated with ϕ̂ = (α̂, β̂)�, the
sequential character of the estimation procedure has to be taken into
account. To provide standard errors for QML estimates ϕ̂, we follow
a GMM approach introduced in Newey and McFadden (1994), which
works in case of sequential GMM estimation under typical regularity
conditions. In particular, it is assumed that all steps of a sequential
estimation procedure are consistent. The following result on the asymp-
totic behavior of γ̂ = (θ̂�, ϕ̂�)� applies:

√
T (γ̂ − γ) ∼ N(0,N−1M(N−1)�). (4.15)

In (4.15) M is the (estimated) expectation of the outer product of the
scores of the log-likelihood function evaluated at γ̂,

M =
1

T

T∑
t=1

(
∂lt
∂γ

)(
∂lt
∂γ

)�
,

∂lt
∂γ

=

(
∂lVt
∂θ�

,
∂lCt
∂ϕ�

)�
. (4.16)

Compact formal representations for the derivatives in (4.16) can be
found in Hafner and Herwartz (2007) and Bollerslev (1986). The matrix
N in (4.15) has a lower blockdiagonal structure containing (estimates)
of expected second order derivatives, i.e.

N =

(
N11 0
N21 N22

)
,

with

N11 =
1

T

T∑
t=1

∂2lVt
∂θ∂θ�

, N21 =
1

T

T∑
t=1

∂2lCt
∂ϕ∂θ�

, N22 =
1

T

T∑
t=1

∂2lCt
∂ϕ∂ϕ�

.
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Formal representations of the latter second order quantities are pro-
vided in Hafner and Herwartz (2007).

4.3.6 Generalizations of the DCC Model

Generalizing the basic DCC(1,1) model in (4.11) and (4.12) towards higher
model orders is straightforward and in analogy to the common GARCH
volatility model. In fact, it turns out that the DCC(1,1) model is often suffi-
cient to capture empirical correlation dynamics (Engle and Sheppard, 2001).
Tse and Tsui (2002) propose a direct formalization of the dynamic correlation
matrix Rt as a weighted average of unconditional correlation, lagged correla-
tion and a local correlation matrix estimated over a time window comprising
the M most recent GARCH innovation vectors ξt−i, i = 1, ...,M, M ≥ N . As
discussed so far, dynamic correlation models are restrictive in the sense that
asset specific dynamics are excluded. Hafner and Franses (2003) discuss a
generalized DCC model where the parameters α and β in (4.12) are replaced
by outer products of N -dimensional vectors, e.g. α̃ = (α1, α2, . . . , αN)�, ob-
taining

Qt = R(1− α̃α̃� − β̃β̃�) + α̃α̃� � vt−1v
�
t−1 + β̃β̃� �Qt−1. (4.17)

From (4.17) it is apparent that implied time paths of conditional correlations
show asset specific characteristics. Similar to the generalization of the basic
GARCH volatility model towards threshold specifications (Glosten, Jagan-
nathan and Runkle, 1993) one may also introduce asymmetric dependencies
of Qt on vech(vtv

�
t ) as in Cappiello, Engle and Sheppard (2003). A semi-

parametric conditional correlation model is provided by Hafner, van Dijk
and Franses (2006). In this model the elements in Qt are determined via lo-
cal averaging where the weights entering the nonparametric estimates depend
on a univariate factor as, for instance, market volatility or market returns.

4.4 Value-at-Risk

Financial institutions and corporations can suffer financial losses in their
portfolios or treasury department due to unpredictable and sometimes ex-
treme movements in the financial markets. The recent increase in volatility
in financial markets and the surge in corporate failures are driving investors,
management and regulators to search for ways to quantify and measure risk
exposure. One answer came in the form of Value-at-Risk (VaR) being the
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minimum loss a portfolio can have with a given probability over a specific
time horizon (Jorion, 2001; Christoffersen, Hahn and Inoue, 2001).

The VaR of some portfolio (.) may be defined as a one-sided confidence
interval of expected h-periods ahead losses:

VaR
(.)
t+h,ζ = Ξ

(.)
t (1 + ξ̄t+h,ζ), (4.18)

where Ξ
(.)
t is the value of a portfolio in time t and ξ̄t+h,ζ is a time dependent

quantile of the conditional distribution of portfolio returns ξ
(.)
t+h such that

P[ξ
(.)
t+h < ξ̄t+h,ζ ] = ζ, ξ̄t+h,ζ = σt+hzζ , (4.19)

and zζ is a quantile from an unconditional distribution with unit variance. In
the light of the assumption of conditional normality in (4.1), we will take the
quantiles zζ from the Gaussian distribution. As outlined in (4.18) and (4.19)
the quantities ξ̄t+h,ζ and σt+h generally depend on the portfolio composition.
For convenience our notation, however, does not indicate this relationship.
Depending on the risk averseness of the agent the parameter ζ is typically
chosen as some small probability, for instance, ζ = 0.005, 0.01, 0.05.

4.5 An Empirical Illustration

4.5.1 Equal and Value Weighted Portfolios

We analyze portfolios comprised by all 30 stocks listed in the Dow Jones
Industrial Average (DJIA) over the period Jan, 2nd, 1990 to Jan, 31st, 2005.
Measured at the daily frequency, 3803 observations are used for the empirical
analysis. Two alternative portfolio compositions are considered. In the first
place we analyze a portfolio weighting each asset equally. Returns of this
equal weight portfolio (EWP) are obtained from asset specific returns (εit, i =
1, . . . , N) as

ξ
(e)
t =

N∑
i=1

w
(e)
it εit, w

(e)
it = N−1.

Secondly, we consider value weighted portfolios (VWP) determined as:

ξ
(v)
t =

N∑
i=1

w
(v)
it εit, w

(v)
it = wit−1(1 + εit−1)/w

(v)
t , w

(v)
t =

∑
i

wit−1(1 + εit−1).

Complementary to an analysis of EWP and VWP, dynamics of minimum
variance portfolios (MVP) could also be of interest. The MVP, however, will
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typically depend on some measure of the assets’ volatilities and covariances.
The latter, in turn, depend on the particular volatility model used for the
analysis. Since the comparison of alternative measures of volatility in deter-
mining VaR is a key issue of this investigation we will not consider MVP to
immunize our empirical results from impacts of volatility specific portfolio
compositions.

Our empirical comparison of alternative approaches to implement VaR con-
centrates on the relative performance of one step ahead ex-ante evaluations of
VaR (h = 1). Note that the (M)GARCH model specifies covariance matrices
Σt or univariate volatilities σ2

t conditional on Ft−1. Therefore, we practically
consider the issue of two step ahead forecasting when specifying

VaR
(.)
t+1,ζ |Ft−1 = VaR(.)(σ̂2

t+1), σ̂2
t+1|Ft−1 = E[(ξ

(.)
t+1)

2|Ft−1].

The performance of alternative approaches to forecast VaR is assessed by
means of the relative frequency of actual hits observed over the entire sample
period, i.e.

hf
(.)
ζ =

1

3800

3802∑
t=3

1(ξ
(.)
t < ξ̄t,ζ), (4.20)

where 1(.) is an indicator function. To determine the forecasted conditional
standard deviation entering the VaR we adopt three alternative strategies.
As a benchmark, we consider standard deviation forecasts obtained from
univariate GARCH processes fitted directly to the series of portfolio returns

ξ
(.)
t . For the two remaining strategies, we exploit forecasts of the covariance

matrix, Σ̂t+1 = E[εt+1ε
�
t+1|Ft−1], to determine VaR. Note that given portfolio

weights wt = (w1t, w2t, . . . , wNt)
� the expected conditional variance of the

portfolio is σ̂2
t+1 = w�Σ̂t+1w. Feasible estimates for the expected covariance

matrix are determined alternatively by means of the CCC and DCC model.

The empirical exercises first cover a joint analysis of all assets comprising
the DJIA. Moreover, we consider 1000 portfolios composed of 5 securities
randomly drawn from all assets listed in the DJIA. Implementing the volatil-
ity parts of both the CCC and the DCC model, we employ alternatively
the symmetric GARCH(1,1) and the threshold GARCH(1,1) model as in-
troduced by Glosten, Jagannathan and Runkle (1993). Opposite to the
symmetric GARCH model, the latter accounts for a potential leverage ef-
fect (Black, 1976) stating that volatility is larger in the sequel of bad news
(negative returns) in comparison with good news (positive returns).
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G TG G TG
N = 30 N = 5

Loss frequencies
ζe + 03 hf hf h̄f s(h̄f) h̄f s(h̄f)

EWP
D 5.00 8.15 7.36 7.56 .033 7.13 .034

10.0 13.2 12.4 11.7 .041 11.2 .042
50.0 41.6 41.8 40.4 .075 40.3 .078

C 5.00 10.8 9.73 7.78 .034 7.36 .035
10.0 14.2 14.2 11.9 .040 11.5 .042
50.0 42.6 41.8 40.8 .074 40.7 .077

U 5.00 11.6 11.6 8.70 .036 8.36 .037
10.0 14.7 14.7 13.2 .045 12.9 .045
50.0 47.3 47.3 43.5 .076 44.0 .077

VWP
D 5.00 6.58 7.10 7.86 .033 7.55 .033

10.0 12.9 11.8 11.9 .043 11.6 .041
50.0 41.6 40.5 40.3 .076 40.4 .078

C 5.00 9.21 9.21 8.18 .036 7.90 .035
10.0 14.5 13.4 12.3 .043 12.1 .043
50.0 42.6 41.8 41.1 .072 41.3 .071

U 5.00 9.99 9.99 8.71 .037 8.62 .035
10.0 15.5 15.5 13.0 .048 12.9 .048
50.0 43.7 43.7 42.6 .095 43.2 .098

Estimation results
D α̂ 2.8e-03 2.8e-03 6.6e-03 4.5e-05 6.7e-03 4.8e-05

tα 17.5 17.3

β̂ .992 .992 .989 8.3e-05 .989 9.5e-05
tβ 1.8e+03 1.8e+03

Table 4.1. Estimation results and performance of VaR
estimates. G and TG are short for GARCH(1,1) and
TGARCH(1,1) models for asset specific volatilities, respec-
tively. D,C and U indicate empirical results obtained from
DCC, CCC and univariate GARCH(1,1) models applied to
evaluate forecasts of conditional variances of equal weight
(EWP) and value weighted portfolios (VWP). Entries in hf
and s(hf) are relative frequencies of extreme losses and corre-
sponding standard errors, respectively.
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Figure 4.1. Returns, conditional volatilities and correlations
for Verizon and SBC communications.

4.5.2 Estimation Results

A few selected estimation results are given in Table 4.1.
tigate 30 assets or 1000 random portfolios each containing N = 5 securi-
ties we refrain from providing detailed results on univariate GARCH(1,1) or
TGARCH(1,1) estimates. Moreover, we leave estimates of the unconditional
correlation matrix R undocumented since the number of possible correlations
in our sample is N(N − 1)/2 = 435.

The lower left part of Table 4.1 provides estimates of the DCC parameters
α and β and corresponding t-ratios for the analysis of all assets compris-
ing the DJIA. Although the estimated α parameter governing the impact
of lagged GARCH innovations on the conditional correlation matrix is very
small (around 2.8·10−3 for both implementations of the DCC model) it is
significant at any reasonable significance level. The relative performance of

Since we inves-
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Figure 4.2. Conditional volatilities for General Electric and
Boeing and conditional correlations with Verizon.

likelihood difference. Using symmetric and asymmetric volatility models for
the diagonal elements of Σt the log likelihood difference between DCC and
CCC is 645.66 and 622.00, respectively. Since the DCC specification has only
two additional parameters, it apparently provides a substantial improvement
of fitting multivariate returns. It is also instructive to compare, for the DCC
case say, the log likelihood improvement achieved when employing univariate
TGARCH instead of a symmetric GARCH. Interestingly, implementing the
DCC model with asymmetric GARCH the improvement of the log likelihood
is ’only’ 236.27, which is to be related to the number of N = 30 additional
model parameters. Reviewing the latter two results one may conclude that
dynamic correlation is a more striking feature of US stock market returns
than leverage.

The sum of both DCC parameter estimates, α̂ + β̂, is slightly below unity
and, thus, the estimated model of dynamic covariances is stationary. The

the CCC and DCC model may also be evaluated in terms of the models’ log
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Figure 4.3. Returns for General Electric and Boeing

lower right part of Table 4.1 gives average estimates obtained for the DCC
parameters when modeling 1000 portfolios randomly composed of five secu-
rities contained in the DJIA. We also provide an estimator of the empirical
standard error associated with the latter average. Irrespective of using a
symmetric or asymmetric specification of univariate volatility models, esti-
mates for α are small throughout. According to the reported standard error
estimates, however, the true α parameter is apparently different from zero at
any reasonable significance level.

The maximum over all 435 unconditional correlations is obtained for two
firms operating on the telecommunication market, namely Verizon Commu-
nications and SBC Communications. To illustrate the performance of the
DCC model and compare it with the more restrictive CCC counterpart, Fig-
ure 4.1 provides the return processes for these two assets, the corresponding
time paths of conditional standard deviations as implied by TGARCH(1,1)
models and the estimated time paths of conditional correlations implied by
the DCC model fitted over all assets contained in the DJIA. Facilitating the
interpretation of the results, we also give the level of unconditional correla-
tion.
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Apparently, the univariate volatility models provide accurate descriptions of
the return variability for both assets. Not surprisingly, estimated volatility
turns out to be larger over the last third of the sample period in comparison
with the first half. Although conditional correlation estimates vary around
their unconditional level, the time path of correlation estimates exhibits only
rather slow mean reversion. Interestingly, over the last part of the sample pe-
riod the conditional correlation measured between Verizon and SBC increases
with the volatilities of both securities.

As mentioned, Verizon and SBC provide the largest measure of unconditional
correlation within the DJIA over the considered sample period. To illustrate
that time varying conditional correlation with slow mean reversion is also
an issue for bivariate returns exhibiting medium or small correlation we pro-
vide the conditional correlation estimates for Verizon and General Electric
(medium unconditional correlation) and Verizon and Boeing (small uncon-
ditional correlation) in Figure 4.2. For completeness Figure 4.3 provides
empirical return processes for General Electric and Boeing.

The upper part of Table 4.1 shows relative frequencies of realized losses ex-
ceeding the one step ahead ex-ante VaR forecasts. We provide average relative
frequencies when summarizing the outcome for 1000 portfolios with random
composition. To facilitate the discussion of the latter results all frequencies
given are multiplied with a factor of 1000.

The relative frequency of empirical hits of dynamic VaR estimates at the
5% level is uniformly below the nominal probability, indicating that dynamic
VaR estimates are too conservative on average. For the remaining probability
levels ζ = 0.5% and ζ = 1% the empirical frequencies of hitting the VaR
exceed the nominal probability. We concentrate the discussion of empirical
results on the latter cases. With regard to the performance of alternative
implementations of VaR it is worthwhile to mention that the basic results are
qualitatively similar for EWP in comparison with VWP. Similarly, employing
an asymmetric GARCH model instead of symmetric GARCH has only minor
impacts on the model comparison between the univariate benchmark and
the CCC and DCC model, respectively. For the latter reason, we focus our
discussion of the relative model performance on VaR modeling for EWP with
symmetric GARCH(1,1) applied to estimate conditional variances.

Regarding portfolios composed of 30 securities, it turns out that for both
probability levels ζ = 1% and ζ = 0.5% the empirical frequencies of hitting
the dynamic VaR estimates are closest to the nominal level for the DCC model
and worst for modeling portfolio returns directly via univariate GARCH. Al-
though it provides the best empirical frequencies of hitting the VaR, the DCC
model still underestimates (in absolute value) on average the true quantile.
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For instance, the 0.5% VaR shows an empirical hit frequency of 0.82% (EWP)
and 0.66% (VWP), respectively. Drawing randomly 5 out of 30 assets to form
portfolios, and regarding the average empirical frequencies of hitting the VaR
estimates, we obtain almost analogous results in comparison with the case
N = 30. The reported standard errors of average frequencies, however, in-
dicate that the discussed differences of nominal and empirical probabilities
are significant at a 5% significance level since the difference between both
exceeds twice the standard error estimates.

In summary, using the CCC and DCC model and, alternatively, univariate
GARCH specifications to determine VaR, it turns out that the former out-
perform the univariate GARCH as empirical loss frequencies are closer to
the nominal VaR coverage. DCC based VaR estimates in turn outperform
corresponding quantities derived under the CCC assumption. Empirical fre-
quencies of large losses, however, exceed the corresponding nominal levels if
the latter are rather small, i.e. 0.5% and 1%. This might indicate that the
DCC framework is likely to restrictive to hold homogeneously over a sample
period of the length (more than 15 years) considered in this work. More
general versions of dynamic correlation models are available but allowance of
asset specific dynamics requires simultaneous estimation of O(N) parameters.
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Credit Risk



5 Rating Migrations
Steffi Höse, Stefan Huschens and Robert Wania

The bond rating is one of the most important indicators of a corporation’s
credit quality and therefore its default probability. It was first developed by
Moody’s in 1914 and by Poor’s Corporation in 1922 and it is generally as-
signed by external agencies to publicly traded debts (Altman and Kao, 1992).
Apart from the external ratings by independent rating agencies, there are in-
ternal ratings by banks and other financial institutions (Basel Committee
on Banking Supervision, 2006). External rating data by agencies are avail-
able for many years, in contrast to internal ratings. Their short history in
most cases does not exceed 5–10 years. Both types of ratings are usually
recorded on an ordinal scale and labeled alphabetically or numerically. For
the construction of a rating system see Crouhy, Galai and Mark (2001).

A change in a rating reflects the assessment that the company’s credit qual-
ity has improved (upgrade) or deteriorated (downgrade). Analyzing these
rating migrations including default is one of the preliminaries for credit risk
models in order to measure future credit loss. In such models, the matrix of
rating transition probabilities, the so called transition matrix, plays a crucial
role. It allows the calculation of the joint distribution of future ratings for
borrowers in a portfolio (Gupton, Finger and Bhatia, 1997). An element of a
transition matrix gives the probability that an obligor with a certain initial
rating migrates to another rating by the risk horizon. For the econometric
analysis of transition data see Lancaster (1990).

In a study by Jarrow, Lando and Turnbull (1997) rating transitions were
modeled as a time-homogeneous Markov chain, so future rating changes are
not affected by the rating history (Markov property). The probability of
changing from one rating to another is constant over time (homogeneous),
which is assumed solely for simplicity of estimation. Empirical evidence in-
dicates that transition probabilities are time-varying. Nickell, Perraudin and
Varotto (2000) show that different transition matrices are identified across
various factors such as the obligor’s domicile and industry and the stage of
business cycle. The latter has also been studied by Lando and Skødeberg
(2002), Bangia, Diebold, Kronimus, Schagen and Schuermann (2002) and
Krüger, Stötzel and Trück (2005).
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Rating migrations are reviewed from a statistical point of view throughout
this chapter. The way from the observed data to the estimated one-year
transition probabilities is shown and estimates for the standard deviations
of the transition rates are given. In further extension, dependent rating
migrations are discussed. In particular, the modeling by a threshold normal
model is presented.

Time stability of transition matrices is one of the major issues for credit risk
estimation. Therefore, a chi-square test of homogeneity for the estimated
rating transition probabilities is applied. The test is illustrated by an exam-
ple and is compared to a simpler approach using standard errors. Further,
assuming time stability, multi-period rating transitions are discussed. An
estimator for multi-period transition matrices is given and its distribution is
approximated by bootstrapping. Finally, the change of the composition of
a credit portfolio caused by rating migrations is considered. The expected
composition and its variance is calculated for independent migrations.

To demonstrate the computational solution of the described problems, pro-
gram code for some examples is provided. The statistical software GAUSS is
used, see www.aptech.com. Example programs and data can be downloaded
from www.tu-dresden.de/wwqvs/f-publ.htm.

This chapter is an updated version of Höse, Huschens and Wania (2002) with
minor changes and corrections. Additional literature has been included.

5.1 Rating Transition Probabilities

In this section, the way from raw data to estimated rating transition prob-
abilities is described. First, migration events of the same kind are counted.
The resulting migration counts are transformed into migration rates, which
are used as estimates for the unknown transition probabilities. These esti-
mates are complemented with estimated standard errors for two cases, for
independence and for a special correlation structure.

5.1.1 From Credit Events to Migration Counts

It is assumed that credits or credit obligors are rated in d categories ranging
from 1, the best rating category, to the category d containing defaulted cred-
its. The raw data consist of a collection of migration events. The n observed
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migration events form a n× 2 matrix with rows

(ei1, ei2) ∈ {1, . . . , d− 1} × {1, . . . , d}, i = 1, . . . , n. (5.1)

Thereby, ei1 characterizes the rating of i-th credit at the beginning and ei2 the
rating at the end of the risk horizon, which is usually one year. Subsequently,
migration events of the same kind are aggregated in a (d− 1)× d matrix C
of migration counts, where the generic element

cjk
def
=

n∑
i=1

1{(ei1, ei2) = (j, k)} (5.2)

is the number of migration events from j to k. Thereby, 1{·} denotes the
indicator function, which is one if the logical expression in brackets is true
and otherwise zero. Clearly, their total sum is

d−1∑
j=1

d∑
k=1

cjk = n.

5.1.2 Estimating Rating Transition Probabilities

It is assumed that the observations ei1 and ei2 are realizations of the ran-
dom variables ẽi1 and ẽi2. In the following, only the conditional probability
distribution

pjk
def
= P(ẽi2 = k|ẽi1 = j),

d∑
k=1

pjk = 1

is of interest, where pjk is the probability that a credit migrates from an
initial rating j = 1, . . . , d − 1 to rating k = 1, . . . , d. These probabilities
are the so called rating transition (or migration) probabilities. Note that the
distribution of the indicator variable 1{ẽi2 = k}, conditional on ẽi1 = j, is a
Bernoulli distribution with success parameter pjk,

1{ẽi2 = k} | ẽi1 = j ∼ Ber(pjk). (5.3)

In order to estimate these rating transition probabilities the number of mi-
grations starting from rating j are defined as

nj =
d∑

k=1

cjk, j = 1, . . . , d− 1. (5.4)

In the following it is assumed that a fixed vector of initial ratings (e11, . . . , en1)
is given with nj > 0 for j = 1, . . . , d − 1. Thus, all following probabilities
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are conditional probabilities given (ẽ11, . . . , ẽn1) = (e11, . . . , en1). The com-
position of the portfolio at the beginning of the period is then given by
(n1, . . . , nd−1) and (

d−1∑
j=1

cj1, . . . ,

d−1∑
j=1

cjd

)
(5.5)

is the composition of the portfolio at the end of the period, where the last
element is the number of defaulted credits. The observed migration rate from
j to k,

p̂jk
def
=

cjk

nj
, (5.6)

is the natural estimate of the unknown transition probability pjk.

If the migration events are independent, i. e., the variables ẽ12, . . . , ẽn2 are
stochastically independent, cjk is the observed value of the binomially dis-
tributed random variable

c̃jk ∼ B(nj, pjk),

and therefore the standard deviation of p̂jk is

σjk =

√
pjk(1− pjk)

nj
,

which may be estimated by

σ̂jk =

√
p̂jk(1− p̂jk)

nj
. (5.7)

The estimated standard errors must be carefully interpreted, because they
are based on the assumption of independence.

5.1.3 Dependent Migrations

The case of dependent rating migrations raises new problems. In this context,
c̃jk is distributed as sum of nj correlated Bernoulli variables, see (5.3), indicat-
ing for each credit with initial rating j a migration to k by 1. If these Bernoulli
variables are pairwise correlated with correlation ρjk, then the variance σ2

jk

of the unbiased estimator p̂jk for pjk is (Huschens and Locarek-Junge, 2002,
p. 108)

σ2
jk =

pjk(1− pjk)

nj
+

nj − 1

nj
ρjkpjk(1− pjk).
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The limit
lim

nj→∞
σ2

jk = ρjkpjk(1− pjk)

shows that the sequence p̂jk does not obey a law of large numbers for ρjk > 0.
Generally, the failing of convergence in quadratic mean does not imply the
failing of convergence in probability. But in this case all moments of higher
order exist since the random variable p̂jk is bounded and so the convergence
in probability implies the convergence in quadratic mean. For ρjk = 0 the
law of large numbers holds. Negative correlations can only be obtained for
finite nj. The lower boundary for the correlation is given by ρjk ≥ − 1

nj−1 ,

which converges to zero when the number of credits nj grows to infinity.

The law of large numbers fails also if the correlations are different with either
a common positive lower bound, or non-vanishing positive average correlation
or constant correlation blocks with positive correlations in each block (Finger,
1998, p. 5). This failing of the law of large numbers may not surprise a time
series statistician, who is familiar with mixing conditions to ensure mean
ergodicity of stochastic processes (Davidson, 1994, chapter 14). In statistical
words, in the case of non-zero correlation the relative frequency is not a
consistent estimator of the Bernoulli parameter.

The parameters ρjk may be modeled in consistent way in the framework of
a threshold normal model with a single parameter ρ (Basel Committee on
Banking Supervision, 2006; Gupton et al., 1997; Kim, 1999; McNeil, Frey
and Embrechts, 2005). This model specifies a special dependence structure
based on a standard multinormal distribution for a vector (R1, . . . , Rn) with
equicorrelation matrix (Mardia, Kent and Bibby, 1979, p. 461), where Ri

(i = 1, . . . , n) is the standardized asset return of obligor i and n is the number
of obligors in the portfolio. The parameter ρ ≥ 0 may be interpreted as a
mean asset return correlation. In this model each pair of variables (X, Y ) =
(Ri, Ri′) with i, i′ = 1, . . . , n and i �= i′ is bivariate normally distributed with
density function

ϕ(x, y; ρ) =
1

2π
√

1− ρ2
exp

{
− x2 − 2ρxy + y2

2(1− ρ2)

}
.

The probability P[(X, Y ) ∈ (a, b)2] is given by

β(a, b; ρ) =

∫ b

a

∫ b

a

ϕ(x, y; ρ) dx dy. (5.8)

Thresholds for initial rating j are derived from pj1, . . . , pj,d−1 by

zj0
def
= −∞, zj1

def
= Φ−1(pj1), zj2

def
= Φ−1(pj1 + pj2), . . . , zjd

def
= +∞,
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where Φ is the distribution function of the standard normal distribution and
Φ−1 it’s inverse. Each credit with initial rating j is characterized by a nor-
mally distributed variable Z which determines the migration events from j
to k by

pjk = P{Z ∈ (zj,k−1, zjk)} = Φ(zjk)− Φ(zj,k−1).

The simultaneous transition probabilities of two credits i and i′ from category
j to k are given by

pjj:kk = P(ẽi2 = ẽi′2 = k|ẽi1 = ẽi′1 = j) = β(zj,k−1, zjk; ρ),

i.e., the probability of simultaneous default is

pjj:dd = β(zj,d−1, zjd; ρ).

For a detailed example see Saunders (1999, pp. 122-125). In the special case
of independence pjj:kk = p2

jk holds true. Defining a migration from j to k
as success correlated Bernoulli variables are obtained with common success
parameter pjk, with probability pjj:kk of a simultaneous success, and with the
migration correlation

ρjk =
pjj:kk − p2

jk

pjk(1− pjk)
.

Note that ρjk = 0 if ρ = 0.

Given ρ ≥ 0 the migration correlation ρjk ≥ 0 can be estimated by the
restricted Maximum-Likelihood estimator

ρ̂jk = max

{
0;

β(ẑj,k−1, ẑjk; ρ)− p̂2
jk

p̂jk(1− p̂jk)

}
(5.9)

with

ẑjk = Φ−1

(
k∑

i=1

p̂ji

)
. (5.10)

The estimate

σ̂jk =

√
p̂jk(1− p̂jk)

nj
+

nj − 1

nj
ρ̂jkp̂jk(1− p̂jk) (5.11)

of the standard deviation

σjk =

√
pjk(1− pjk)

nj
+

nj − 1

nj
ρjkpjk(1− pjk)

is used. The estimator in (5.11) generalizes (5.7), which results in the special
case ρ = 0.
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5.1.4 Computational Aspects

The procedure RatMigCounts can be used to compute migration counts from
migration events. For the application, the migration events (5.1) have to be
stored within an n×2 data matrix containing n migration events. The result
of RatMigCounts is the (d− 1)× d matrix of migration counts with elements
given in (5.2). An example is given by RatMigExample1.gau.

The procedure RatMigRate computes migration rates and related estimated
standard errors for m periods from an (d − 1) × d × m array of m-period
migration counts and a given non-negative correlation parameter. The cal-
culation uses stochastic integration in order to determine the probability β
from (5.8). The accuracy of the applied Monte Carlo procedure is controlled
by the input parameter s. For s > 0 the number m of Monte Carlo repli-
cations is at least (2s)−2. This guarantees that the user-specified value s is
an upper bound for the standard deviation of the Monte Carlo estimator for
β. Note that with increasing accuracy (i. e. decreasing s) the computational
effort increases proportionally to m. The output contains matrices nstart

and nend which components are given by (5.4) and (5.5). The matrices etp,
emc, and esd contain the p̂jk, ρ̂jk, and σ̂jk from (5.6), (5.9), and (5.11) for
j = 1, . . . , d−1 and k = 1, . . . , d. The estimates ρ̂jk are given only for p̂jk > 0.
The matrix etv contains the ẑjk from (5.10) for j, k = 1, . . . , d−1. Note that
zj0 = −∞ and zjd = +∞. An example is given by RatMigExample2.gau.

5.2 Analyzing the Time-Stability of Transition
Probabilities

5.2.1 Aggregation over Periods

It is assumed that migration data are given for m periods. This data consist in
m matrices of migration counts C(t) for t = 1, . . . , m each of type (d−1)×d.
The generic element cjk(t) of the matrix C(t) is the number of migrations
from j to k in period t. These matrices may be computed from m data sets
of migration events.

An obvious question in this context is whether the transition probabilities can
be assumed to be time-invariant or not. A first approach to analyze the time-
stability of transition probabilities is to compare the estimated transition
probabilities per period for m periods with estimates from pooled data.
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The aggregated migration counts from m periods are

c+
jk

def
=

m∑
t=1

cjk(t) (5.12)

which are combined in the matrix

C+ def
=

m∑
t=1

C(t)

of type (d− 1)× d. The migration rates computed per period

p̂jk(t)
def
=

cjk(t)

nj(t)
, t = 1, . . . , m (5.13)

with

nj(t)
def
=

d∑
k=1

cjk(t)

have to be compared with the migration rates from the pooled data. Based
on the aggregated migration counts the estimated transition probabilities

p̂+
jk

def
=

c+
jk

nj
+ (5.14)

with

n+
j

def
=

d∑
k=1

c+
jk =

m∑
t=1

nj(t), j = 1, . . . , d− 1

can be computed.

5.2.2 Testing the Time-Stability of Transition Probabilities

Under the assumption of independence for the migration events the vector
of migration counts (cj1(t), . . . cjd(t)) starting from j is in each period t a
realization from a multinomial distributed random vector

(c̃j1(t), . . . , c̃jd(t)) ∼ Mult{nj(t); pj1(t), . . . , pjd(t)},

where pjk(t) denotes the transition probability from j to k in period t. For
fixed j ∈ {1, . . . , d− 1} the hypothesis of homogeneity

H0 : pj1(1) = . . . = pj1(m), pj2(1) = . . . = pj2(m), . . . , pjd(1) = . . . = pjd(m)
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may be tested (cp. Anderson and Goodman (1957)) with the statistic

X2
j =

d∑
k=1

m∑
t=1

{
c̃jk(t)− nj(t)p̂

+
jk

}2

nj(t)p̂
+
jk

. (5.15)

This statistic is asymptotically χ2-distributed with (d− 1)(m− 1) degrees of
freedom under H0. H0 is rejected with approximative level α if the statis-
tic computed from the data is greater than the (1 − α)-quantile of the χ2-
distribution with (d− 1)(m− 1) degrees of freedom.

The combined hypothesis of homogeneity

H0 : pjk(t) = pjk(m), t = 1, . . . , m− 1, j = 1, . . . , d− 1, k = 1, . . . , d

means that the matrix of transition probabilities is constant over time. There-
fore, the combined null hypothesis may equivalently be formulated as

H0 : P(1) = P(2) = . . . = P(m),

where P(t) denotes the transition matrix at t with generic element pjk(t).
This hypothesis may be tested using the statistic

X2 =
d−1∑
j=1

X2
j , (5.16)

which is under H0 asymptotically χ2-distributed with (d−1)2(m−1) degrees
of freedom. The combined null hypothesis is rejected with approximative
level α if the computed statistic is greater than the (1 − α)-quantile of the
χ2-distribution with (d − 1)2(m − 1) degrees of freedom (Bishop, Fienberg
and Holland, 1975, p. 265).

This approach creates two problems. Firstly, the two tests are based on the
assumption of independence. Secondly, the test statistics are only asymp-
totically χ2-distributed. This means that sufficiently large sample sizes are
required. A rule of thumb given in the literature is nj(t)p̂

+
jk ≥ 5 for all j and

k which is hardly fulfilled in the context of credit migrations.

The two χ2-statistics in (5.15) and (5.16) are of the Pearson type. Two other
frequently used and asymptotically equivalent statistics are the corresponding
χ2-statistics of the Neyman type

Y 2
j =

d∑
k=1

m∑
t=1

{
c̃jk(t)− nj(t)p̂

+
jk

}2

c̃jk(t)
, Y 2 =

d−1∑
j=1

Y 2
j
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and the χ2-statistics

G2
j = 2

d∑
k=1

m∑
t=1

c̃jk(t) log

[
c̃jk(t)

nj(t)p̂
+
jk

]
, G2 =

d−1∑
j=1

G2
j ,

which results from Wilks log-likelihood ratio.

Considering the strong assumptions on which these test procedures are based
on, a simpler approach, complementing the point estimates p̂jk(t) by esti-
mated standard errors

σ̂jk(t) =

√
p̂jk(t){1− p̂jk(t)}

nj(t)

for each period t ∈ {1, . . . , m}, may be preferable. For correlated migrations
the estimated standard deviation is computed analogously to (5.11).

5.2.3 Example

The following example is based on transition matrices given by Nickell et al.
(2000, pp. 208, 213). The data set covers long-term bonds rated by Moody’s
in the period 1970–1997. Instead of the original matrices of type 8 × 9
condensed matrices of type 3 × 4 are used by combining the original data
in the d = 4 basic rating categories A, B, C, and D, where D stands for the
category of defaulted credits.

The aggregated data for the full period from 1970 to 1997 are

C =

⎡⎣ 21726 790 0 0
639 21484 139 421

0 44 307 82

⎤⎦ , P̂ =

⎡⎣ 0.965 0.035 0 0
0.028 0.947 0.006 0.019

0 0.102 0.709 0.189

⎤⎦ ,

where C is the matrix of migration counts and P̂ is the corresponding matrix
of estimated transition probabilities. These matrices may be compared with
corresponding matrices for three alternative states of the business cycles:

C(1) =

⎡⎣ 7434 277 0 0
273 7306 62 187

0 15 94 33

⎤⎦ , P̂(1) =

⎡⎣ 0.964 0.036 0 0
0.035 0.933 0.008 0.024

0 0.106 0.662 0.232

⎤⎦ ,

for the trough of the business cycle,

C(2) =

⎡⎣ 7125 305 0 0
177 6626 35 147

0 15 92 24

⎤⎦ , P̂(2) =

⎡⎣ 0.959 0.041 0 0
0.025 0.949 0.005 0.021

0 0.115 0.702 0.183

⎤⎦ ,
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for the normal phase of the business cycle, and

C(3) =

⎡⎣ 7167 208 0 0
189 7552 42 87

0 14 121 25

⎤⎦ , P̂(3) =

⎡⎣ 0.972 0.028 0 0
0.024 0.960 0.005 0.011

0 0.088 0.756 0.156

⎤⎦ ,

for the peak of the business cycle. The three states have been identified by
Nickell et al. (2000, Sec. 2.4) as depending on whether the real GDP growth
in the country was in the upper, middle or lower third of the growth rates
recorded in the sample period.

In the following, these matrices are used for illustrative purposes as if data
from m = 3 periods are given. In order to illustrate the testing procedures
presented in Section 5.2.2 the hypothesis is tested that the data from the three
periods came from the same theoretical transition probabilities. Clearly, from
the construction of the three periods it is to be expected, that the test rejects
the null hypothesis. The three χ2-statistics with 6 = (4−1)(3−1) degrees of
freedom for testing the equality of the rows of the transition matrices have p-
values 0.005, < 0.0001, and 0.697. Thus, the null hypothesis must be clearly
rejected for the first two rows at any usual level of confidence while the test
for the last row suffers from the limited sample size. Nevertheless, the χ2-
statistic for the simultaneous test of the equality of the transition matrices has
18 = (4−1)2(3−1) degrees of freedom and a p-value < 0.0001. Consequently,
the null hypothesis must be rejected at any usual level of confidence.

5.2.4 Computational Aspects

The program RatMigExample3.gau computes aggregated migration counts,
estimated transition probabilities and χ2-statistics from a (d − 1) × d × m
array of counts for m periods, compare Section 5.1.4. The output contains
matrices cagg, etpagg and etp with components given by (5.12), (5.14) and
(5.13). The elements of esdagg and esd result by replacing p̂jk in (5.11)
by p̂+

jk or p̂jk(t), respectively. The matrix chi contains in the first row the

statistics from (5.15) for j = 1, . . . , d − 1 and (5.16). The second and third
row gives the corresponding degrees of freedom and p-values.

5.3 Multi-Period Transitions

In the multi-period case, transitions in credit ratings are also characterized
by rating transition matrices. The m-period transition matrix is labeled

P(m). Its generic element p
(m)
jk gives the rating transition probability from



116 Steffi Höse et al.

rating j to k over the m ≥ 1 periods. For the sake of simplicity the one-
period transition matrix P(1) is shortly denoted by P in the following. This
transition matrix is considered to be of type d × d. The last row contains
(0, 0, . . . , 0, 1) expressing the absorbing default state. Multi-period transition
matrices can be constructed from one-period transition matrices under the
assumption of the Markov property.

5.3.1 Homogeneous Markov Chain

Let {X(t)}t≥0 be a discrete-time stochastic process with countable state
space. It is called a first-order Markov chain if

P [(X(t + 1) = x(t + 1)|X(t) = x(t), . . . , X(0) = x(0)]

= P [X(t + 1) = x(t + 1)|X(t) = x(t)] (5.17)

whenever both sides are well-defined. Further, the process is called a homoge-
neous first-order Markov chain if the right-hand side of (5.17) is independent
of t (Brémaud, 1999).

Transferred to rating transitions, homogeneity and the Markov property im-
ply time-invariant one-period transition matrices P. Then the one-period
d× d transition matrix P contains the non-negative rating transition proba-
bilities

pjk = P(X(t + 1) = k|X(t) = j).

They fulfill the conditions
d∑

k=1

pjk = 1

and
(pd1, pd2, . . . , pdd) = (0, . . . , 0, 1).

The latter reflects the absorbing default state.

The two-period transition matrix is then calculated by ordinary matrix mul-
tiplication, P(2) = PP. Qualitatively, the composition of the portfolio after
one period undergoes the same transitions again. Extended for m periods
this reads as

P(m) = P(m−1)P = Pm

with non-negative elements

p
(m)
jk =

d∑
i=1

p
(m−1)
ji pik.
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The recursive scheme can also be applied for non-homogeneous transitions,
i.e. for one-period transition matrices being not equal, which is the general
case.

5.3.2 Bootstrapping Markov Chains

The one-period transition matrix P is unknown and must be estimated. The
estimator P̂ is associated with estimation errors which consequently influence
the estimated multi-period transition matrices. The traditional approach to
quantify this influence turns out to be tedious since it is difficult to obtain
the distribution of (P̂ − P), which could characterize the estimation errors.

Furthermore, the distribution of (P̂
(m) −P(m)), with

P̂
(m) def

= P̂
m
, (5.18)

has to be discussed in order to address the sensitivity of the estimated tran-
sition matrix in the multi-period case. It might be more promising to apply
resampling methods like the bootstrap combined with Monte Carlo sampling.
For a representative review of resampling techniques see Efron and Tibshirani
(1993) and Shao and Tu (1995), for bootstrapping Markov chains see Athreya
and Fuh (1992), Härdle, Horowitz and Kreiss (2003) and Lahiri (2003).

Assuming a homogeneous first-order Markov chain {X(t)}t≥0, the rating tran-
sitions are generated from the unknown transition matrix P. In the spirit
of the bootstrap method, the unknown transition matrix P is substituted by
the estimated transition matrix P̂, containing transition rates. This then al-
lows to draw a bootstrap sample from the multinomial distribution assuming
independent rating migrations,

(c̃∗j1, . . . , c̃
∗
jd) ∼ Mult(nj; p̂j1, . . . , p̂jd), (5.19)

for all initial rating categories j = 1, . . . , d−1. Here, c̃∗jk denotes the bootstrap
random variable of migration counts from j to k in one period and p̂jk is
an estimate of the one-period transition probability (the observed transition
rate) from j to k.

A bootstrap transition matrix P̂
∗

with generic stochastic elements p̂∗jk is es-
timated according to

p̂∗jk =
c̃∗jk
nj

. (5.20)

Obviously, defaulted credits can not upgrade. Therefore, the bootstrap is

not necessary for obtaining the last row of P̂
∗
, which is (p̂∗d1, . . . , p̂

∗
dd) =
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(0, . . . , 0, 1). Then matrix multiplication gives the m-period transition matrix
estimated from the bootstrap sample,

P̂
∗(m)

= P̂
∗m

,

with generic stochastic elements p̂
∗(m)
jk .

Now the distribution of P̂
∗(m)

can be accessed by Monte Carlo sampling,

e. g. B samples are drawn and labeled P̂
∗(m)
b for b = 1, . . . , B. Then the dis-

tribution of P̂
∗(m)

estimates the distribution of P̂
(m)

. This is justified since the
consistency of this bootstrap estimator has been proven by Basawa, Green,
McCormick and Taylor (1990). In order to characterize the distribution of

P̂
∗(m)

, the standard deviation Std
(
p̂
∗(m)
jk

)
which is the bootstrap estimator

of Std
(
p̂

(m)
jk

)
, is estimated by

Ŝtd
(
p̂
∗(m)
jk

)
=

√√√√ 1

B − 1

B∑
b=1

{
p̂
∗(m)
jk,b − Ê

(
p̂
∗(m)
jk

)}2
(5.21)

with

Ê
(
p̂
∗(m)
jk

)
=

1

B

B∑
b=1

p̂
∗(m)
jk,b

for all j = 1, . . . , d− 1 and k = 1, . . . , d. Here, p̂
∗(m)
jk,b is the generic element of

the b-th m-period bootstrap sample P̂
∗(m)
b . So (5.21) estimates the unknown

standard deviation of the m-period transition rate p̂
(m)
jk using B Monte Carlo

samples. Please note that p̂
(m)
jk is here the generic element of the random

matrix P̂
(m)

in (5.18).

5.3.3 Rating Transitions of German Bank Borrowers

In the following the bootstrapping is illustrated in an example. As an estimate
of the one-period transition matrix P the 7 × 7 rating transition matrix of
small and medium-sized German bank borrowers from Machauer and Weber
(1998, p. 1375) is used, which is shown in Table 5.1. The data cover the
period from January 1992 to December 1996.

With this data the m-period transition probabilities are estimated by p̂
(m)
jk

and the bootstrap estimators of their standard deviations are calculated.
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To k
From j 1 2 3 4 5 6 Default nj

1 0.51 0.40 0.09 0.00 0.00 0.00 0.00 35
2 0.08 0.62 0.19 0.08 0.02 0.01 0.00 103
3 0.00 0.08 0.69 0.17 0.06 0.00 0.00 226
4 0.01 0.01 0.10 0.64 0.21 0.03 0.00 222
5 0.00 0.01 0.02 0.19 0.66 0.12 0.00 137
6 0.00 0.00 0.00 0.02 0.16 0.70 0.12 58

Default 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0

Table 5.1. German rating transition matrix (d = 7) and the
number of migrations starting from rating j = 1, . . . , d

Estimates

From j p̂
(1)
jd Ŝtd

(
p̂
∗(1)
jd

)
p̂

(5)
jd Ŝtd

(
p̂
∗(5)
jd

)
p̂

(10)
jd Ŝtd

(
p̂
∗(10)
jd

)
1 0.00 0.000 0.004 0.003 0.037 0.015
2 0.00 0.000 0.011 0.007 0.057 0.022
3 0.00 0.000 0.012 0.005 0.070 0.025
4 0.00 0.000 0.038 0.015 0.122 0.041
5 0.00 0.000 0.079 0.031 0.181 0.061
6 0.12 0.042 0.354 0.106 0.465 0.123

Table 5.2. Estimates of the m-period default probabilities
and bootstrap estimates of their standard deviations for m ∈
{1, 5, 10} periods

These calculations are done for m ∈ {1, 5, 10} periods and B = 1000 Monte
Carlo steps. A part of the results is summarized in Table 5.2, where only
default probabilities are considered. Note that the probabilities in Table 5.1
are rounded and the following computations are based on integer migration
counts.

5.3.4 Portfolio Migration

Based on the techniques presented in the last sections the problem of port-
folio migration can be considered, i. e. the distribution of n(t) credits over
the d rating categories and its evolution over periods t ∈ {1, . . . m} can be
assessed. Here, a time-invariant transition matrix P is assumed. The ran-
domly changing number of credits in category j at time t is labeled by ñj(t)
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and allows to define non-negative portfolio weights

w̃j(t)
def
=

ñj(t)

n(t)
, j = 1, . . . , d,

which are also random variables. They can be related to migration counts
c̃jk(t) of period t by

w̃k(t + 1) =
1

n(t)

d∑
j=1

c̃jk(t) (5.22)

counting all migrations going from any category to the rating category k.
Given ñj(t) = nj(t) at t, the migration counts c̃jk(t) are binomially dis-
tributed

c̃jk(t)|ñj(t) = nj(t) ∼ B (n(t) wj(t), pjk) . (5.23)

The non-negative weights are aggregated in a row vector

w̃(t) = (w̃1(t), . . . , w̃d(t))

and sum up to one
d∑

j=1

w̃j(t) = 1.

In the case of independent rating migrations, the expected portfolio weights
at t + 1 given the weights at t result from (5.22) and (5.23) as

E[w̃(t + 1)|w̃(t) = w(t)] = w(t)P

and the conditional covariance matrix V [w̃(t + 1)|w̃(t) = w(t)] has elements

vkl
def
=

⎧⎪⎨⎪⎩
1

n(t)

∑d
j=1 wj(t)pjk(1− pjk) k = l

for

− 1
n(t)

∑d
j=1 wj(t)pjkpjl k �= l.

(5.24)

For m periods the multi-period transition matrix P(m) = Pm has to be used,
see Section 5.3.1. Hence, (5.22) and (5.23) are modified to

w̃k(t + m) =
1

n(t)

d∑
j=1

c̃
(m)
jk (t)

and
c̃
(m)
jk (t)|ñj(t) = nj(t) ∼ B

(
n(t) wj(t), p

(m)
jk

)
.
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Here, c̃
(m)
jk (t) denotes the randomly changing number of credits migrating from

j to k over m periods starting in t. The conditional mean of the portfolio
weights is now given by

E[w̃(t + m)|w̃(t) = w(t)] = w(t)P(m)

and the elements of the conditional covariance matrix V [w̃(t+m)|w̃(t) = w(t)]

result by replacing pjk and pjl in (5.24) by p
(m)
jk and p

(m)
jl .

5.3.5 Computational Aspects

Assuming time-invariant transition probabilities, in RatMigExample4.gau

from a given one-period transition matrix the t-period transition matrices
are computed. For a given m, all t = 1, 2, . . . , m multi-period transition matri-
ces are computed from the one-period d× d matrix p. Therefore, the output
q is a d × d × m array. As an example, the one-year transition matrix given
in Nickell et al. (2000, p. 208), which uses Moody’s unsecured bond ratings
between 31/12/1970 and 31/12/1997, is condensed for simplicity to 4 × 4
with only 4 basic rating categories, see the example in Section 5.2.3. Again,
the last category stands for defaulted credits.

The bootstrapping of Markov chains as described in Section 5.3.2 is performed
by the procedure RatMigRateM. The bootstrap sample is generated from a
(d − 1)×d matrix of migration counts, which is input of the procedure. The
result consists of the matrices in the array btm which is calculated according
(5.19) and (5.20), of the matrix etm given in (5.18) and of the matrix stm

with components given in (5.21). RatMigExample5.gau contains an example.
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6 Cross- and Autocorrelation in

Multi-Period Credit Portfolio Models
Christoph K.J. Wagner

6.1 Introduction

For the risk assessment of credit portfolios single-period credit portfolio mod-
els are by now widely accepted and used in the practical analysis of loan
respectively bonds books in the context of capital modeling. But already
Finger (2000) pointed to the role of inter-period correlation in structural
models and Thompson, McLeod, Teklos and Gupta (2005) strongly advo-
cated that it is ‘time for multi-period capital models’. With the emergence
of structured credit products like CDOs the default-times/Gaussian-copula
framework became standard for valuing and quoting liquid tranches at differ-
ent maturities, Bluhm, Overbeck and Wagner (2002). Although it is known
that the standard Gaussian-copula-default-times approach has questionable
term structure properties the approach is quite often also used for the risk as-
sessment by simply switching from a risk-neutral to a historical or subjective
default measure.

From a pricing perspective Andersen (2006) investigates term structure ef-
fects and inter-temporal dependencies in credit portfolio loss models as these
characteristics become increasingly important for new structures like forward-
start CDOs. But the risk assessment is also affected by inter-temporal de-
pendencies. For the risk analysis at different time horizons the standard
framework is not really compatible with a single-period correlation structure;
Morokoff (2003) highlighted the necessity for multi-period models in that
case. Long-only investors in the bespoke tranche market with a risk-return
and hold-to-maturity objective have built in the past CDO books with various
vintage and maturity years, based only on a limited universe of underlying
credits with significant overlap between the pools. A proper assessment of
such a portfolio requires a consistent multi-period portfolio framework with
reasonable inter-temporal dependence. Similarly, an investor with a large
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loan or bond book, enhanced with non-linear credit products, needs a reli-
able multi-period model with sensible inter-temporal properties as both bond
or structured investments display different term structure characteristics.

In the following, we investigate several multi-period models, a CreditMetrics-
type approach, i.e. a Markov chain Monte Carlo model with dependency
introduced via a Gaussian copula, the well-known model for correlated de-
fault times, a continuous threshold model driven by time-changed correlated
Wiener processes by Overbeck and Schmidt (2005), and a discrete barrier
model (Finger (2000), Hull and White (2001)), also based on a driving Brown-
ian motion. All models meet by construction the marginal default probability
term structures. We then investigate the effect of a finer time discretization
on the cumulative loss distribution at a given time horizon. The time-changed
threshold model is invariant under this operation, whereas the credit migra-
tion approach converges to the limit of vanishing cross correlation, i.e. the
correlation is ‘discretized away’. Thompson et al. (2005) analyse the same
problem for the discrete barrier model and observe decreasing loss volatility
and tail risk. They conjecture that it converges to the limit of the ’true’
portfolio loss distribution. We have similar findings but draw a different con-
clusion as we attribute the decreasing loss volatility to inherent features of
the discrete model. Obviously, it is not congruent with a continuous-time
default barrier model like the time-changed threshold model. Hence, the as-
sumption that the time-changed model is the continuous limit of the discrete
threshold model is wrong.

These findings imply that these types of credit portfolio models not only have
to be calibrated to marginals, but also to a correlation structure for a given
time horizon and time discretization in order to yield consistent valuation and
risk assessment. We therefore turn to the problem of how to adjust the corre-
lation structure, at least in the credit migration framework, while shortening
the time steps such that the cumulative loss distribution is commensurate to
a one-period setting at a given time horizon. This approach assumes that we
are given a certain correlation structure for a fixed period, e.g. yearly correla-
tions through time series estimation. We show that it suffices to compare the
joint default probabilities and adapt the correlation parameter accordingly
to obtain commensurate cumulative loss distribution at a given horizon.

Finally, we take a look at the autocorrelation of the different models and
briefly highlight the different inter-temporal loss dependency of the models,
as this plays an important part in risk-assessing books of CDOs.
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6.2 The Models

6.2.1 A Markov-Chain Credit Migration Model

The first model we investigate is essentially a CreditMetrics-type approach
in a multi-period setting. A Markov state (rating) Y ∈ {1, . . . , K} is as-
signed to each single credit risky entity i, the absorbing state K is the
default state. A default probability term-structure Fi(t) exists for each
initial credit state i together with a sequence of migration matrices Mtk

that is adapted to meet the term-structure. The migration matrix Mtn

defines a natural discretization of Yt, but we can subdivide or refine the
discretization arbitrarily through the introduction of a matrix square root

M
1/2
t = Mt/2 or a generator matrix Q, Mt = exp(tQ), see Bluhm et al. (2002)

for more details. The discrete Markov process Yt with time-homogeneous
migration matrix does not necessarily meet a given PD-term structure i.e.,(
Mk

0
)
iK
�= Fi(tk), k = 1, 2, 3, . . . , (with K as default state). This can easily

be rectified by adapting the transition matrices recursively, i.e. the default
column of the first matrix is set to the term structure and the remaining
entries are renormalized.

With some linear algebra the next matrix can be adjusted accordingly, and
so on. These transition matrices are chained together and create a discrete
credit migration process for each credit entity, Y i

tk
, on a time grid 0 = t0 <

t1 < t2 < t3 < . . . < tn. As migration matrix a Rating Agency’s one-
year transition matrix is typically used. In the multi-firm context we add a
dependency structure between different credit entities, i.e. credit migrations
are coupled through a Gaussian copula function with correlation matrix Σ
in each step. There is no explicit interdependence between the steps apart
from the autocorrelation generated by the migrations. From each migration
matrix we can now calculate migration thresholds that separate the transition
buckets. For some period tj the thresholds ckl,tj are obtained from

ckl,tj = Φ−1

(
K∑

n=l

Mkn,tj

)
, for k, l = 1, . . . , K, with

K∑
n=l

Mkn,tj �= 0, 1

ckl,tj = −∞, for k, l = 1, . . . , K, with
K∑

n=l

Mkn,tj = 0

ckl,tj = +∞, for k, l = 1, . . . , K, with
K∑

n=l

Mkn,tj = 1.

(6.1)
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Figure 6.1. Refining Time-Discretization, migration model:
annual(blue solid), semi-annual(red dotted), and quar-
terly(black dashed) discretization.

For each period ]tj−1, tj] correlated normal random variables are sampled,(
ri,tj

)
i=1,...,n

∼ Φ(0, Σ), and credit i migrates from the initial state l to the

final state k if
clk−1,tj ≤ ri,tj < clk,tj .

As a remark, this type of correlated credit migration model is also the basis
of the credit component in Moody’s SIV Capital Model (Tabe and Rosa
(2004)) and of Moody’s KMV CDO Analyzer (Morokoff (2003)). MKMV’s
CDO Analyzer applies the migration technique to the MKMV Distance-to-
Default-Indicator which is far more fine grained than usual rating classes.

But note one problem: The correlation structure of the model is not invariant
under the refinement of the time discretization. Denote L the portfoli loss,
then Figure 6.1 shows the tail probability P(L > x) for a sample portfolio with
non-vanishing correlation at the one year horizon under annual, semi-annual,
and quarterly discretization. For this, we have simply calculated appropriate
square-roots of the migration matrices. The fatness in the tail of the loss
distribution is significantly reduced for smaller migration intervals. As soon
as we introduce correlation to the rating transitions a link between global
correlation and discretization is generated. By this we mean that choosing
the same local correlation parameter ρ for each time step, the joint arrival
probability in the states m, n of two entities at time t, given they start at
time 0 in states k, l

P(Y i
t = m, Y j

t = n|Y i
0 = k, Y j

0 = l),
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is a function of how fine we discretize the process, while keeping the local
correlation constant. Smaller step-sizes de-correlate the processes Y i

t and Y j
t .

This can easily be seen by the fact that for smaller step sizes the migration
probabilities to the default state get smaller, but since the Gaussian copula
has no tail dependence the correlation converges asymptotically to zero as
we move the step size to zero. Obviously, this is an unpleasant feature when
it comes to practical applications of the model, as e.g. the pricing or risk
assessment of correlation sensitive product like a CDO depend then on the
time discretization of the implementation.

In order to reconstitute the original correlation over a fixed time interval
while halving the time step, one way is to adapt, i.e. increase, the local cross
correlation. Suppose

P(Y i
1 = K, Y j

1 = K|Y i
0 = k, Y j

0 = l)

is the joint default probability for one large step. Cutting the discretization
in halves, the joint default probability is now

P(Y i
1 = K, Y j

1 = K|Y i
0 = k, Y j

0 = l) =

=
∑
p,q

P(Y i
1 = K, Y j

1 = K|Y i
1/2 = p, Y j

1/2 = q)×

P(Y i
1/2 = p, Y j

1/2 = q|Y i
0 = k, Y j

0 = l). (6.2)

Instead of trying to adjust the correlation for all pairs i, j we confine our-
selves to a homogeneous state in the sense of a large pool approximation
(Kalkbrener, Lotter and Overbeck (2004)). We obtain one adjustment fac-
tor and apply it to all names in the portfolio. For further discretization we
simply nest the approach. Figure 6.2 shows the effect of the adjustment for
an example. We use an inhomogeneous portfolio of 100 positions with ex-
posures distributed uniformly in [500, 1500], 1-year default probabilities in
[10bp, 100bp], and correlation between [10%, 30%]. As can be seen from the
graph both loss distribution are now commensurable. From a risk perspec-
tive this degree of similarity seems sufficient, particularely if risk measures
like expected shortfall are used. Further improvement can be achieved by
computing adjustment factors for each rating state and for each matrix in
the sequence of transition matrices (if they are different).

In case of the migration model we have so far chosen independent cross cou-
pling mechanisms at each time step, so autocorrelation is solely introduced
through the dispersion of the transition matrices. Defining a copula that
couples transitions not only at one step but also between different steps
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Figure 6.2. Refining Time-Discretization, migration model
with adapted correlation: annual(blue solid), semi-annual(red
dotted), and quarterly(black dashed) discretization.

would introduce explicit autocorrelation to the migration model (see An-
dersen (2006)), but we run into a heavy calibration problem, since (i) the
calibration to the marginal default term structure becomes more involved,
and (ii) the adjustment of the correlation structure while refining the dis-
cretization is much more difficult. If the cross dependency is formulated
via a factor model we can also induce autocorrelation between the time
steps by introducing an auto-regressive process for these factors, i.e. the
factors Zn that couple the transitions at each time step n are linked through
Zn+1 = αZn +

√
1− α2ξn, Z1, ξn ∼ Φ(0, 1), independent, and α is some

coupling factor.

6.2.2 The Correlated-Default-Time Model

Another wide spread approach for a credit portfolio model is to generate
correlated default times for the credit securities. This is done in analogy
to a one-year-horizon asset value model by taking the credit curves of the
securities as cumulative distributions of random default times and coupling
these random variables by some copula function, usually the Normal copula,
thus generating a multivariate dependency structure for the single default
times. It is not by chance that this approach already has been used for the
valuation of default baskets as the method focuses only on defaults and not
on rating migrations.
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From a simulation point of view, the default times approach involves much
less random draws than a multi-step approach as we directly model the de-
fault times as continuous random variable. Time-consuming calculations
in the default times approach could be expected in the part of the algo-
rithm inverting the credit curves Fi(t) in order to calculate default times
according to the formula τi = F−1

i {Φ(ri)}. Fortunately, for practical appli-
cations the exact time when a default occurs is not relevant. Instead, the
only relevant information is if an instrument defaults between two consec-
utive payment dates. Therefore, the copula function approach for default
times can be easily discretized by calculating thresholds at each payment
date t1 < t2 < t3 < . . . < tn according to

ci,tk = Φ−1 {Fi(tk)} ,

where Fi denotes the credit curve for some credit i. Clearly, one has

ci,t1 < ci,t2 < . . . < ci,tn .

Setting ci,t0 = −∞, asset i defaults in period ]tk−1, tk] if and only if

ci,tk−1
< ri ≤ ci,tk ,

where (r1, ..., rm) ∼ Φ(0, Σ) denotes the random vector of standardized asset
value log-returns with asset correlation matrix Σ. In a one-factor model
setting ri is typically represented as

ri =
√

�Y +
√

1− �Zi,

where Y , Zi ∼ Φ(0, 1) are the systematic and specific risk components of the
log-return ri. Obviously, the discrete implementation of correlated default
times is invariant to the refinement of the time discretization by construction.

Note further that the correlated-default-times approach with Gaussian-copula
is in fact a static model. For this, we write the conditional joint default prob-
ability at different time horizons in a one-factor setting as

P[τ1 < s, τ2 < t|Y = y] =

= P[r1 < Φ−1 {F1(s)} , r2 < Φ−1 {F2(t)} |Y = y]

= P[Z1 <
Φ−1 {F1(s)} −

√
�y√

1− �
, Z2 <

Φ−1 {F2(t)} −
√

�y√
1− �

]

= Φ

[
Φ−1 {F1(s)} −

√
�y√

1− �

]
Φ

[
Φ−1 {F2(t)} −

√
�y√

1− �

]
. (6.3)

The sample of the common factor Y is static for all time horizons, there is
no dynamics through time.
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6.2.3 A Discrete Barrier Model

Finger (2000) and Hull and White (2001) proposed a discrete multi-period
barrier model on a time grid t0 < t1 < . . . < tn based on correlated Brownian
processes Bi

t where the default thresholds ci(tk) are decreasing functions of
time calibrated to satisfy the marginal term structure Fi(tk). Credit entity i
defaults in period k if, for the first time, Bi

tk
< ci(tk), i.e.

τi = min
{
tk ≥ 0 : Bi

tk
< ci(tk), k = 0, . . . , n

}
.

The default barriers ci(tk) are to be calibrated to match Fi(tk) such that

Fi(tk) = P(τi < tk).

Denote δk = tk − tk−1, then from

P
{
Bi

t1
< ci(t1)

}
= Fi(t1)

follows that
ci(t1) =

√
δ1Φ

−1 {Fi(t1)} .

The successive thresholds ci(tk) are then found by solving

Fi(tk)− Fi(tk−1) =

= P
{
Bi

t1
> ci(t1) ∩ · · · ∩Bi

tk−1
> ci(tk−1) ∩Bi

tk
< ci(tk)

}
=

∫ ∞

ci(tk−1)
fi(tk−1, u)Φ

[
ci(tk)− u√

δk

]
du,

where fi(tk, x) is the density of Bi
tk

given Bi
tj

> ci(tj) for all j < k:

fi(t1, x) =
1√
2πδ1

exp

(
− x2

2δ1

)
fi(tk, x) =

∫ ∞

ci(tk−1)
fi(tk−1, u)

1√
2πδk

exp

{
−(x− u)2

2δk

}
du.

Hence, the calibration of the default thresholds is an iterative process and re-
quires the numerical evaluation of integrals with increasing dimension, which
renders the model computationally very heavy. Another shortcoming of the
model is that it is not invariant under the refinement of the time discretiza-
tion, Thompson et al. (2005). Figure 6.3 shows the tail probability P(L > x)
of a portfolio loss with different discretization (annual, semi-annual, quar-
terly) of the model. Obviously, the volatility and tail fatness of the loss
distribution decreases with increasing refinement, and it is not clear where
the limiting distribution is.
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Figure 6.3. Refining Discretization, Hull-White Model:
annual(blue solid), semi-annual(red dotted), and quar-
terly(black dashed) discretization.

6.2.4 The Time-Changed Barrier Model

The above mentioned discrete barrier model is drawn from a continuous ver-
sion, i.e. correlated Brownian processes Bi

t with time-dependent barriers
ci(t). The default time of credit i is then the first hitting time of the barrier
ci(t) by the driving process Bi

t:

τi = inf
{
t ≥ 0 : Bi

t < ci(t)
}

.

If ci(t) is absolutely continuous, we can write

ci(t) = ci(0) +

∫ t

0
µi

sds,

and the default time τi is the first hitting time of the constant barrier ci(0)
by a Wiener process with drift.

Y i
t = Bi

t −
∫ t

0
µi

sds

τi = inf
{
t ≥ 0 : Y i

t < ci(0)
}

. (6.4)

The problem is now to calibrate the model to the prescribed default term
structure, P[τi < t] = Fi(t). To this end, Overbeck and Schmidt (2005)
put forward a barrier model based on Brownian processes Bi

t with suitably
transformed time scales, (T i

t ), strictly increasing, T i
0 = 0. The first passage
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time to default τi of credit entity i is define through the process

Y i
t = Bi

T i
t

and
τi = inf

{
s ≥ 0 : Y i

s < ci

}
,

with a time independent barrier ci. From the strong Markov property or the
reflection principle of the Brownian motion follows that the first passage time
of an untransformed Brownian motion with respect to a constant barrier c

τ̃ = inf {t ≥ 0 : Bt < c}
is distributed as

P(τ̃ < t) = P
(

min
0<s<t

Bs < c
)

= 2Φ

(
c√
t

)
. (6.5)

As T i
t is strictly increasing we find that

P(τi < t) = P
(

min
0<s<t

Bi
T i

t
< ci

)
= P

(
min

0<s<T i
t

Bi
t < ci

)
= 2Φ

(
ci√
T i

t

)
(6.6)

Hence, given a default term structure Fi(t) the model is calibrated to the
marginals via the time transformation

T i
t =

[
ci

Φ−1 {Fi(t)/2}

]2

. (6.7)

Since F (t) is strictly increasing this also follows for Tt. The constant default
barrier ci is then obtained by fixing a time t0 with T i

t0
= t0 which implies

ci = Φ−1 {Fi(t0)/2}
√

t0. (6.8)

An obvious, but not necessarily the only sensible choice is to take t0 as the
final maturity. Dependency between credits is introduce here through the
(local) instantaneous correlation matrix Σ of the Brownian processes Bi

t. The
joint default probabilities P[τi < t, τj < t] can be written in analytical, but
rather technical form, which allows the calibration of the model to prescribed
joint default probabilities.

The discretization of the time-changed model for practical applications is
straight forward and simply obtained by discretizing the SDE of the corre-
lated Brownian motion while taking into account that the different dimen-
sions evolve at different time scales. Figure 6.4 shows the behavior of the
time-changed model under a refinement of the time discretization. Obvi-
ously, the model is within sampling errors invariant under this operation.
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Figure 6.4. Refining Discretization, time-change Model:
annual(blue solid), semi-annual(red dotted), and quar-
terly(black dashed) discretization.

6.3 Inter-Temporal Dependency and
Autocorrelation

Finally, let us take a look at the inter-temporal dependency of the various
models. All models are set up to meet by construction the default-term struc-
ture, hence produce the same first order loss moments through time, and they
are calibrated to the same loss volatility at maturity (4 years). Figures 6.5-
6.7 now serve to demonstrate the different inter-temporal characteristics of
the four models. The graphs show the different joint loss distributions at the
2- and 4-year horizon, depicted as heat map. The upper triangle is empty as
L(4 years) ≥ L(2 years). Clearly, the migration model has the least autocor-
relation as joint losses accumulate at the edges of the triangle. In contrast, the
correlated-default-times model shows the highest inter-temporal dependency
between losses, as joint losses accumulate in the middle of the triangle. This
comes not as a surprise and reflects the fact that the model is essentially a
static one where static factors drive the dependency through the whole time.
Due to the driving Brownian motion it is also obvious that the two barrier
models show similar inter-temporal dependency that lie somewhere between
the first two extreme cases.

The control of inter-temporal dependency is not so much a problem if we
only model a single plain vanilla CDO, but as soon as we have a structure
with significant default-timing feature or if we want to assess the risk of a
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portfolio of non-linear credit products the inter-temporal dependency plays
indeed an important role. For risk assessment the dependency through time
should also be estimated from credit data, but these estimates seem not to
support the high degree of inter-temporal dependency as generated by the
barrier models.

Figure 6.5. Joint Loss Distribution (2-4 years), Credit migra-
tion model

Figure 6.6. Joint Loss Distribution (2-4 years), Correlated-
default-times model
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Figure 6.7. Joint Loss Distribution (2-4 years), Time-change
barrier model

Figure 6.8. Joint Loss Distribution (2-4 years), Discrete bar-
rier model

6.4 Conclusion

For an assessment of a portfolio of structured credit products a multi-period
model with known cross- and autocorrelation is necessary. We investigate im-
plementations of four different multi-period credit portfolio model and show
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that not for all of the models the correlation structure is invariant under the
operation of a refined time discretization. Hence one should not blindly use
these tpye of models at different periods and discretizations. In case of the
discrete barrier model the continuous limit is unclear, but it is definitely not
congruent to the time-changed barrier model. In case of a Markov Chain mi-
gration framework we argue that the cumulative loss distribution converges in
the limit to a loss distribution with zero correlation as the time discretization
is refined towards zero.

We then show how to correct the correlation structure while refining the
discretization to obtain a congruent loss distribution at a given horizon. Fi-
nally, we analyse the inter temporal dependency of the different models and
find that the correlated-default times model has the highest degree of inter-
temporal dependency, the migration model relatively little and that the mod-
els driven by a Brownian motion are in between these two cases. We therefore
conclude that before applying a multi-period model for risk assessment to a
structured credit book the properties of the model in terms of inter-temporal
and cross correlations should be fully understood, as different models have
obviously different properties and will lead to differing results.
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7 Risk Measurement with Spectral

Capital Allocation
Ludger Overbeck and Maria Sokolova

Spectral risk measures provide the framework to formulate the risk aversion of
a firm specifically for each quantile of the loss distribution of a portfolio. More
precisely the risk aversion is codified in a weight function, weighting each
quantile. Since the basic coherent building blocks of spectral risk measures
are expected shortfall measures, the most intuitive approach comes from
combinations of those. For investment decisions the marginal risk or the
capital allocation is the sensible approach. Since spectral risk measures are
coherent there exists also a sensible capital allocation based on the notion of
derivatives or more in the light of the coherency approach as an expectation
under a generalized maximal scenario.

7.1 Introduction

Portfolio modeling has two main objectives: the quantification of portfolio
risk, which is usually expressed as the economic capital of the portfolio, and
its allocation to subportfolios and individual transactions. The standard
approach in credit portfolio modeling is to define the economic capital in
terms of a quantile of the portfolio loss distribution

qα(L) = F−1
L (α).

The capital charge of an individual transaction is traditionally based on a
covariance technique and called volatility contribution. We refer to Bluhm et
al. (2002) and Crouhy et al. (2000) for a survey on credit portfolio modeling
and capital allocation.

Since the work by Artzner et al (1997) coherent risk measures are discussed
intensively in finance and risk management. More recent is the question of
a more coherent capital allocation. Especially the use of expected shortfall
allocation as an allocation rule is recommend in Overbeck (2000),Denault
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(2001), Bluhm et al. (2002), Kurth and Tasche (2003) and Kalkbrener et al.
(2004).

Expected shortfall measures

E Sα(L) =
1

1− α

∫ 1

α

qu(L)du

are the building blocks of more general coherent risk measures, the spectral
risk measure ρ. These are convex mixtures of expected shortfall measures.
They can be represented by their spectral measure µ through

ρ = ρµ =

∫ t

0
E Sα(1− α)µ(da) (7.1)

or as a weighted sum of quantiles with w(α) = µ([0, α]),

ρ = ρµ = ρw =

∫ 1

0
qα(·)w(α)dα. (7.2)

In this paper we apply the allocation rules associated with a spectral risk
measure to a credit portfolio and point out, which consequences to risk man-
agement the choice of the weight function w, the spectral measure µ or the
measure

µ̃
def
= (1− α)µ(dα),

which we call mixing measure and thought to be the most easily one to cali-
brate and implement. The theoretical basis of the approach can be found in
the basic papers Kalkbrener (2002), Kalkbrener et al (2004) and the explicit
application to spectral capital allocation is provided by Overbeck (2005). We
will first present the theoretical foundation of the proposed risk and alloca-
tion measures and then discuss general impact of the choice of the weight
or mixing function and finally exhibits the differences on a concrete credit
portfolio example.

7.2 Review of Coherent Risk Measures and
Allocation

7.2.1 Coherent Risk Measures

It is well-known that the following four conditions define a coherent risk
measure, Artzner et al (1997, 1999), Delbaen (2000).
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Formally, a risk measure is nothing else as a positive real valued function r
defined on the set of random variable (potential losses) V. The number r(X)
denotes the risk in portfolio X. r is called coherent if it obeys the following
4 rules.

� Subadditivity (Diversification)

r(X + Y ) < r(X) + r(Y )

� Positive homogenous (Scaling)

r(aX) = ar(X), a > 0

� Monotone
r(X) < r(Y ) if X < Y (almost surely)

� Translation property

r(X + a) = r(X)− a

Convex analysis gives already that a sub-additive positive homogenous func-
tion r can be point wise written as the maximal value of all linear functions
which are below r (Delbaen (2000), Kalkbrener (2002), Kalkbrener et al
(2004)). For risk measures this means that the first two axioms above lead
to the following representation

r(X) = max{l(X) | l < r, l linear function } (7.3)

The risk measure evaluate at a loss variable X takes the same value as the
largest value of all linear function which lies below r on V evaluated on X.

Conceptually, this is similar to the gradient of the function r evaluated at
the point X or as the best linear approximation of r which coincides with r
at the point X. We will later see that this intuition gives rise to a sensible
capital allocation.

A typical linear function for random variable is the expectation operator.
Hence the basic result by Artzner et al (1997), Delbaen (2000)

r(X) = sup{EQ[X] | Q ∈ Q} (7.4)

Q, = Qr, a suitable set of probability measures of absolutely continuous
probability measures Q << P with density dQ/dP , is similar to the repre-
sentation (7.3).
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The set Q is called the generalized scenarios associated with r. If the supre-
mum is actually taken at some probability measure, this probability measure
or its density with respect to P is called the generalized scenario associated
with r. These approach also fits into the intuitive feature of risk measure-
ment, namely scenario or stress analysis. For the interpretation in terms of
scenarios the formulation with probability measure is more natural, but for
the axiomatic approach to capital allocation the representation (7.3) is very
useful.
The currently most prominent example of a coherent risk measure is Expected
Shortfall (sometimes called Conditional VaR /tail conditional expectation).
It is denoted by E Sα and measures the average loss above the α-quantile of
the loss distribution. The associated generalized scenarios can be explained
as follows:
To each loss variable Y define the scenario as the “historical” calibrated ob-
jective scenario constraint on the condition that the loss variable exceeded
its quantile. The expected shortfall coincides with the largest mean loss in
these scenarios. Intuitively,

E{L|L > qα(L)} = max{E{L|Y > qα(Y )}| all Y ∈ L∞}

Even if generalized scenarios are defined as a supremum, in the case of Ex-
pected Shortfall we can identify the density of the maximal ”scenario”. For
this we need the formally correct definition of Expected Shortfall at level α.
The problem with the intuitive definition above is the possible positive mass
at the quantile itself. The exact definition of the Expected Shortfall at level
α is therefore (Acerbi and Tasche (2002), Kalkbrener et al (2004):

DEFINITION 7.1

E Sα(L)
def
= (1− α)−1(E[L1{L > qα(L)}] + qα(L) · [P{L ≤ qα(L)} − α]

)
.

Here we take the quantile defined by

qu(L) = inf{x|P (L ≤ x) ≥ u}

the smallest u-quantile

Since E Sα(L) = E{Lgα(L)} with the function

gα(Y )
def
= (1− α)−1[1{Y > qα(Y )}+ βY 1{Y = qα(Y )}], (7.5)

where βY is a real number and

βY
def
=

P{Y ≤ qα(Y )} − α

P{Y = qα(Y )} if P{Y = qα(Y )} > 0.
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the density of the associated maximal scenario turns out to be the function
gα. Note that E Sα(Y ) = E{Y · g(Y )} and E Sα(X) ≥ E{X · g(Y )} for every
X, Y ∈ V .

7.2.2 Spectral Risk Measures

For the interpretation of this density function (7.5) in terms of risk aversion
as outlined in Acerbi (2002), let us reformulate the expected shortfall as an
integral over the quantile function, the inverse of the distribution of L. It is
well-known that

E Sα(L) = (1− α)−1
∫ 1

α

qu(L)du.

The implicit risk aversion with expected shortfall is, that all quantiles below α
or all losses below the α quantile have no weights, i.e. there is no risk aversion
and all losses above the α-quantile have the same risk aversion. Therefore
the risk aversion weight function associated with E Sα turns out to be

wE Sα
(u) = (1− α)−11(u > α). (7.6)

From a risk management point of view there might be many other weights
given to some confidence levels u. If the weight function is increasing, which
is reasonable since higher losses should have larger risk aversion weight, then
we arrive at spectral risk measures.

DEFINITION 7.2 Let w be an increasing function from [0, 1] such that∫ 1
0 w(u)du = 1, then the map rw defined by

rw(L) =

∫ 1

0
w(u)qu(L)du

is called a spectral risk measure with weight function w.

The name spectral risk measure comes from the representation

rw(X) =

∫ 1

0
E Sα(1− α)µu(da) (7.7)

with the spectral measure µ([0, b]) = w(b). (7.8)

This representation is very useful when we want to find the scenario function
representing a spectral risk measure rw.
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PROPOSITION 7.1 The density of the scenario associated with the risk
measure equals

Lw
def
= gw(L)

def
=

∫ 1

0
gα(L)(1− α)µ(dα). (7.9)

Here gα(L) is defined in formula (7.5). In particular

rw(L) = E(LLw) (7.10)

Proof: We have

rw(L) =

∫ 1

0
E Sα(L)(1− α)µ(dα)

=

∫ 1

0
E(LLα)(1− α)µ(dα)

=

∫ 1

0
max[E{Lgα(Y )}|Y ∈ L∞](1− α)µ(dα)

≥ max[

∫ 1

0
E{L

∫ 1

0
gα(Y )(1− α)µ(dα)}|Y ∈ L∞]

= max[E{Lgw(Y )}|∀Y ∈ L∞]

≥ E{Lgw(L)}

Hence
rw(L) = max[E{Lgw(Y )}|∀Y ∈ L∞] = E{Lgw(L)}

�.

7.2.3 Coherent Allocation Measures

Starting with the representation (7.3) one can now find for each Y a linear
function hY = hr

Y which satisfies

r(Y ) = hY (Y ) and hY (X) ≤ r(X), ∀X. (7.11)

A ”diversifying” capital allocation associated with r is given by

Λr(X, Y ) = hY (X). (7.12)

The function Λr is then linear in the first variable and diversifying in the
sense that the capital allocated to a portfolio X is always bounded by the
capital of X viewed as its own subportfolio

Λ(X,Y ) ≤ Λ(X, X). (7.13)
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Λ(X, X) can be called the standalone capital or risk measure of X. In gen-
eral we have the following two theorems: A linear and diversifying capital
allocation Λ, which is continuous, i.e. limε→0 Λ(X, Y + εX) = Λ(X, Y ) ∀X,
at a portfolio Y , is uniquely determined by its associated risk measure, i.e.
the diagonal values of Λ. More specifically, given the portfolio Y then the
capital allocated to a subportfolio X of Y is the derivative of the associated
risk measure ρ at Y in the direction of X.

PROPOSITION 7.2 Let Λ be a linear, diversifying capital allocation. If
Λ is continuous at Y ∈ V then for all X ∈ V

Λ(X, Y ) = lim
ε→0

r(Y + εX)− ρ(Y )

ε
.

The following theorem states the equivalence between positively homoge-
neous, sub-additive risk measures and linear, diversifying capital allocations.

PROPOSITION 7.3 (a) If there exists a linear, diversifying capital al-
location Λ with associated risk measure r, i.e. r(X) = Λ(X,X), then r is
positively homogeneous and sub-additive.
(b) If r is positively homogeneous and sub-additive then Λr as defined in
(7.12) is a linear, diversifying capital allocation with associated risk measure
r.

7.2.4 Spectral Allocation Measures

Since in the case of spectral risk measures rw the maximal linear functional
in (7.11) can be identified as an integration with respect to the probability
measure with density (7.9) from Theorem 1, we obtain hY (X) = E{Xgw(Y )}
and therefore the following capital allocation

Λw(X, Y ) = E{Xgw(Y )} =

∫ 1

0
E SCα(X, Y )(1− α)µ(dα) (7.14)

=

∫ 1

0
E SCα(X, Y )µ̃(dα) (7.15)

where E SCα(X, Y ) = E{Xgα(Y )} (7.16)

is the Expected Shortfall Contribution and µ̃ is defined in (7.17). Intuitively,
the capital allocated to transaction or subportfolio X in a portfolio Y equals
its expectation under the generalized maximal scenario associated with w.
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7.3 Weight Function and Mixing Measure

One might try to base the calibration or determination of the spectral risk
measure based on the spectral measure µ or the weight function w. Since the
weight function w is nothing else as the distribution function of µ, there is
also a 1-1 correspondence to the more intuitive mixing measure

µ̃(dα) = (1− α)µ(dα). (7.17)

If we define more generally for an arbitrary measure µ̃ the functional

ρ̃ =

∫ 1

0
E Sαµ̃(da) (7.18)

then ρ̃ is coherent iff µ̃ is a probability measure. Since

1 = µ̃([0, 1]) =

∫ 1

0
(1− u)µ(du)

=

∫ 1

0

∫ 1

0
1[u, 1](v)dvµ(du) =

∫ 1

0

∫ 1

0
1[0, v](u)µ(du)dv

=

∫ 1

0
w(v)dv.

If we have now a probability measure µ̃ on [0, 1] the representing µ and w in
(7.1,7.2) can be obtained by

dµ

dµ̃
=

1

1− α
(7.19)

w(b) = µ([0, b]) =

∫ b

0

1

1− α
µ̃(dα). (7.20)

7.4 Risk Aversion

If we assume a discrete measure

µ̃ =
n∑

i=1

piδαi
(7.21)
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then the risk aversion function w is an increasing step function with step size
of pi/(1− αi) at the points αi

w(b) =
∑
αi≤b

pi

1− αi
. (7.22)

This has to be kept in mind. If we assume equal weights for the two expected
shortfall at 99% and 90% then the increase in risk aversion at the first quantile
90% is 0.5/0.1 = 5 and 0.5/0.01 = 50. The risk aversion against losses above
the 99% is therefore 11 times higher than against those between the 90% and
99% quantile. It is therefore sensible to assume quite small weights on E Sα

with large αs.

7.5 Implementation

There are several ways to implement a spectral contribution in a portfolio
model. According to Acerbi(2002) a Monte-Carlo-based implementation of
the spectral risk measure would work as follows:

Let Ln be the n-th realization of the portfolio loss. If we have generated N
loss distribution scenario, let us denote by n : N index of the n-th largest loss
which itself is then denote by Ln:N , i.e. the indices 1 : N, 2 : N, .., N : N ∈ N
are defined by the property that

L1:N < L2:N < ... < LN :N

The approximative spectral risk measure is then defined by

N∑
n=1

Ln:Nw(n/N)/
N∑

k=1

w(k/N)

Therefore a natural way to approximate the spectral contribution of another
random variable Li, which specifically might be a transaction in the portfolio
represented by L or a subportfolio of L, is

N∑
n=1

Ln:N
i

w(n/N)∑N
k=1 w(k/N)

, (7.23)

where Ln,N
i denotes the loss in transaction i in the scenario n : N , i.e. in the

scenario where the portfolio loss was the n-th largest. It is then expected
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that

E(LiLw) = lim
N→∞

N∑
n=1

Ln:N
i

w(n/N)∑N
k=1 w(k/N)

.

As in most applications we assume that

L =
∑

i

Li

with the transaction loss variable Li and in the example later we will actually
calculate within a multi-factor Merton-type credit portfolio model.

7.5.1 Mixing Representation

Let us review the standard implementation of the expected shortfall contri-
bution. In the setting of the previous setting we can see that for w(u) =

1
1−α1[α, 1](u) the weights for all scenarios with n

N < α is 0 and for all others
it is

1
1−α∑N

k={(α)N}
1

1−α

∼= 1

(1− α)N

(Here [·] denote the Gauss brackets.) Therefore the expected shortfall con-
tribution equals

1

{(1− α)N}

N∑
n=(αN)

Ln:N
i (7.24)

or more intuitively the average of the counterparty i losses in all scenarios
where the portfolio losses was higher or equal than the [αN ] largest portfolio
loss.

Due to the fact that we have chosen a finite convex combination of Expected
Shortfall , i.e. the mixing measure

µ̃(du) =
K∑

k=1

piδαi

and formulae (7.24) and (7.18) we will take for a transaction Li the approxi-
mation

SCA(Li, L)vecp,vecα,N =
K∑

k=1

pi

[ 1

{(1− αi)N}

N∑
n=[αiN ]

Ln:N
i

]
(7.25)
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as the Spectral Capital Allocation with discrete mmixing measure µ repre-
sented by the vectors vecp = (p1, .., pK), vecα = (α1, .., αK) for a Monte-
Carlo-Sample of length N .

7.5.2 Density Representation

Another possibility is to rely on the approximation of the Expected Shortfall
Contribution as in Kalkbrener et al (2004) and to integrate over the spectral
measure µ:

E(LiLw) = lim
N→∞

∫ 1

0

{ N∑
n=1

Ln:N
i

wα(i/N)∑N
k=1 wα(k/N)

(1− α)
}

µ(da) (7.26)

If L has a continuous distribution than we have that

E(LiLw) = E{Li

∫ 1

0
Lαµ(dα)}

=

∫ 1

0
E[Li1{L > qα(L)}](1− α)−1µ(dα)

= lim
N→∞

N−1
N∑

n=1

Ln
i

∫ 1

0
1{Ln > qα(L)}(1− α)−1µ(dα) (7.27)

If L has not a continuous distribution we have to use the density function
(7.9) and might approximate the spectral contribution by

E(LiLw) ∼ N−1
N∑

n=1

Ln
i gw(Ln). (7.28)

The actual calculation of the density gw in (7.28) might be quite involved. On
the other hand the integration with respect to µ in (7.26) and (7.27) is also
not easy. If w is a step function as in the example 1 above, then µ is a sum
of weighted Dirac-measure and the implementation of spectral risk measure
as in (7.23) is straightforward.

7.6 Credit Portfolio Model

In the examples below we apply the presented concepts to a standard default
only type model with a normal copula based on an industry and region factor
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model, with 27 factors mainly based on MSCI equity indices. We assume
fixed recovery and exposure-at-default. For a specification of such a model,
we could refer to Bluhm et al. (2002) or other text books on credit risk
modeling.

7.7 Examples

7.7.1 Weighting Scheme

Lets take 5 quantile 50%, 90%, 95%, 99%, 99.9% and the 99.98% quantile. We
like now to find weighting scheme for Expected Shortfall, which still gives a
nice risk aversion function. Or inversely we start with a sensible risk aversion
as in (7.29) and then solve for the suitable convex combination of expected
shortfall measures.

As a first step in the application of spectral risk measures one might think
to give to different loss probability levels different weight. This is a straight-
forward extension of expected shortfall. One might view Expected Shortfall
at the 99%-level view as a risk aversion which ignores losses below the 99%-
quantile and all losses above the 99%-quantile have the same influence. From
an investors point of view this means that only senior debts are cushioned by
risk capital. One might on the other hand also be aware of losses which oc-
cur more frequently, but of course with a lower aversion than those appearing
rarely.

As a concrete example one might set that losses up to the 50% confidence
level should have zero weights, losses between 50% and 99% should have a
weight w0 and losses above the 99%-quantile should have a weight of k1w0
and above the 99.9% quantile it should have a weight of k2w0. The first
tranch from 50% to 99% correspond to an investor in junior debt, and the
tranch from 99% to 99.9% to a senior investor and above the 99.9% a super
senior investor or the regulators are concerned. This gives a step function for
w:

w(u) = w01(0.99 > u > 0.5) + k1w01(0.999 > u > 0.99)

+k2w01(1 > u > 0.999) (7.29)

The parameter w0 should be chosen such that the integral over w is still 1.
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7.7.2 Concrete Example

The portfolio consists of 279 assets with total notional EUR 13.7bn and the
following industry and regions breakdown:
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Energy
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MSCI Industries

Figure 7.1. MSCI industry breakdown
XFGIndustryBreakdown
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Figure 7.2. MSCI region breakdown XFGRegionsBreakdown

The portfolio correlation structure is obtained from the R2 and the correla-
tion structure of the industry and regional factors. The R2 is the R2 of the
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one-dimensional regression of the asset returns with respect to its composite
factor, modeled as the sum of industry and country factor. The underly-
ing factor model is based on 24 MSCI Industries and 7 MSCI Regions. The
weighted average R2 is 0.5327.
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Sovereign
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Media
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Energy
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Automobile&Compo
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Diversified Fin

Materials

Transportation

Banks

Capital Goods

Retailing

R2

Figure 7.3. R2 values of different MSCI industries.
XFGRsquared

The risk contributions are calculated at quantiles 50%, 90%, 95%, 99%, 99.9%
and 99.98%.

Figure 7.4 shows the total Expected Shortfall Contributions allocated to the
industries normalized with respect to automobile industry risk contributions
and ordered by ESC99%.

In order to capture all risks of the portfolio a risk measure, which combines
few quantile levels, is needed. As one can see, Hardware and Materials have
mainly tail exposure (largest consumption of ESC at the 99.98%-quantile),
where Transportation, Diversified Finance and Sovereign have the second to
fourth largest consumption of ESC at the 50%-quantile, i.e. are considerable
more exposed to events happening roughly every second year as Hardware
and Materials.

The spectral risk measure as a convex combination of Expected Shortfall risk
measures at the following quantiles 50%, 90%, 95%, 99%, 99.9% and 99.98%
can capture both effects, at the tail and at the median of the loss distribution.

Four spectral risk measures are calculated. The first three are calibrated in
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Figure 7.4. Expected shortfall contributions for different in-
dustries at different quantiles. XFGESC

terms of increase of the risk aversion function at each considered quantile as
in Figure 7.5. The least conservative one is “SCA - decreasing steps” in which
the risk aversion increases at each quantile by half the size it has increased at
the quantile before. ”SCA -equal steps” increases in risk aversion by the same
amount at each quantile, “SCA -increasing steps” increases in risk aversion
at each quantile by doubling the increase at each quantile. The last most
conservative one is SCA - 0.1/0.1/0.1/0.15/0.15/0.4, in which the weights of
µ̃ are directly set to 0.1 at the 50%, 90%, 95%- quantiles, 0.15 at the 99% and
99.9%- quantiles and 0.4 at the 99.98%-quantile as in Figure 7.6. The last
one has a very steep increase in the risk aversion at the extreme quantiles.

As a comparison to the expected shortfall, the chart below shows the Spec-
tral risk allocation allocated to industries ordered by SCA - equal steps and
normalized with respect to automobile industry SCA as in Figure 7.7.

All tables so far were based on the risk allocated to the industries. Much
of the displayed effects are just driven by exposure, i.e. “Automotive” is by
far the largest exposure in that portfolio and all sensible risk measure should
mirror this concentration. Interestingly enough the most tail emphasizing
measures are the exceptions. There the largest contributors Hardware and
Materials have actually less than 10% of the entire exposure.

Usually one uses as well percentage figures and risk return figures for portfolio
management. On the chart “RC/TRC” the percentage of total risk (TRC)



154 Ludger Overbeck and Maria Sokolova

40 50 60 70 80 90 100 110

0

10

20

30

40

50

60

70
Risk Aversion

Quantile

W
ei

gh
t

Figure 7.5. Risk aversion calculated with respect to dif-
ferent methods. The dotted blue, dashed-dotted and
solid lines represent “SCA - decreasing steps”, “SCA -
equal steps” and “SCA - incresing steps” correspondingly.
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Figure 7.6. Risk aversion when the weights are directly
set to 0.1 at the 50%, 90%, 95%- quantiles, 0.15 at the
99% and 99.9%- quantiles and 0.4 at the 99.98%-quantile.
XFGriskaversion2



7 Risk Measurement with Spectral Capital Allocation 155
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Figure 7.7. Different risk contributions with respect to differ-
ent SCA methods. XFGSCA

allocated to the specific industries is displayed in Figure 7.8.
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Figure 7.8. Total risk contributions with respect to different
SCA methods. XFGRCTRC

For the risk management the next table showing allocated risk capital per
exposure is very useful. It compares the riskiness of the industry normalized
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by their exposure. Intuitively it means that if you increase the exposure in
“transportation” by a small amount like 100.000 Euro than the additionally
capital measured by SCA-increasing steps will increase by 2.5%, i.e. by 2.5000
Euro. In that sense it gives the marginal capital rate in each industry class.
Here the sovereign class is the most risky one. In that portfolio the sovereign
exposure was a single transaction with a low rated country and it is therefore
no surprise that “sovereign” performance worst in all risk measures.
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Figure 7.9. Allocated risk capital per exposure with respect
to different SCA methods. XFGRCExposure

With that information one should now be in the position to judge about the
possible choice of the most sensible spectral risk measure among the four
presented. The measure denoted by SCA based on the weights 0.1,0.1,0.1,
0.15,0.15, 0.4, overemphasis tail risk and ignores volatility risk like the 50%-
quantile. From the other three spectral risk measures, also the risk aversion
function of the one with increasing steps, does emphasis too much the higher
quantiles. SCA decreasing steps seems to punished counterparties with a low
rating very much, it seems to a large extend expected loss driven, which can
be also seen in the following table on the RAROC-type Figures 7.10. On
that table “decreasing steps” does not show much dispersion. One could in
summary therefore recommend SCA-equal steps.

For information purpose we have also displayed the Expected Loss/Risk Ratio
for the Expected Shortfall Contribution in Figure 7.11. Here the dispersion
for the ESC at the 50% quantile is even lower as for the SCA-decreasing
steps.
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Figure 7.10. EL/SCA with respect to different SCA methods.
XFGELSCA
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Shortfall Contribution at different quantiles. XFGELESC
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7.8 Summary

In order to combine different loss levels in one risk measure spectral risk
measures provide a sensible tool. Weighting of the quantiles is usually be
done by the risk aversion function. Starting from an implementation point
of view it looks more convenient to write a spectral risk measure as a convex
combination of expected shortfall measures. However one has to be careful in
the effects on the risk aversion function. All this holds true and become even
more important if capital allocation is considered, which finally serves as a
decision tool to differentiate sub-portfolios with respect to their riskiness. We
analyze an example portfolio with respect to the risk impact of the industries
invested in. Our main focus are the different specification of the spectral
risk measure and we argue in favour for the spectral risk measure based on
a risk aversion which has the same magnitude of increase at each considered
quantile, namely the 50%, 90%, 95%, 99%, 99.9%, and 99.98% quantile. This
risk measure exhibits a proper balance between tail risk and more volatile
risk.
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Notes in Statistics, Springer.

L. Overbeck and G. Stahl. (2003). Stochastic essentials for the risk management of credit
portfolios, Kredit und Kapital, 1.

L. Overbeck (2004). Spectral Capital Allocation, RISK Books, London.

R.T. Rockafellar and S. Uryasev. (2000). Optimization of conditional value-at-risk, Journal
of Risk, 2: 21-41.



8 Valuation and VaR Computation for

CDOs Using Stein’s Method
Nicole El Karoui, Ying Jiao, David Kurtz

8.1 Introduction

8.1.1 A Primer on CDO

Collateralized debt obligations (CDOs) are an innovation in the structured
finance market that allow investors to invest in a diversified portfolio of assets
at different risk attachment points to the portfolio. The basic concept behind
a CDO is the redistribution of risk: some securities backed by a pool of assets
in a CDO will be higher rated than the average rating of the portfolio and
some will be lower rated.

Generally, CDOs take two forms, cash flow or synthetic. For a cash flow
vehicle, investor capital is used directly to purchase the portfolio collateral
and the cash generated by the portfolio is used to pay the investors in the
CDO. Synthetic CDOs are usually transactions that involve an exchange of
cash flow through a credit default swap or a total rate of return swap. The
CDO basically sells credit protection on a reference portfolio and receives all
cash generated on the portfolio. In these types of transaction, the full capital
structure is exchanged and there is no correlation risk for the CDO issuer.

In this study, we are primarily interested in valuing (synthetic) single tranche
CDO. It is very important to note that these products are exposed to corre-
lation risk. In practice the CDO issuer sells protection on a portion of the
capital structure on a reference portfolio of names. In exchange, he receives
a running spread, usually paid quarterly, which value depends on the risk of
the individual issuers in the reference portfolio and on a correlation hypothe-
sis between those names. For liquid reference portfolios (indices) like Trac-X
and iBoxx there exists now a liquid market for these single tranche CDOs
and as a consequence for the correlation.
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We now describe mathematically the payoff of a single tranche CDO on a
reference portfolio of size n and maturity T . Let τi denote the default time
of the ith name in the underlying portfolio and Ni be its notional value. The
total notional is N =

∑n
i=1 Ni. We use ωi to represent the weight of the ith

name in the portfolio i.e. ωi = Ni/N . Let Ri be the recovery rate of name i.
The cumulative loss process is given by Lt =

∑n
i=1 Ni(1−Ri)1{τi≤t} and the

percentage loss process is

lt = Lt/N =
n∑

i=1

ωi(1−Ri)1{τi≤t}.

Usually the capital structure is decomposed in the following way: let us write
the interval (0, 1] as the unions of the non-overlapping interval (αj−1, αj]
where 0 = α0 < α1 < · · · < αk = 1. The points αj−1 and αj are called,
respectively, the attachment and detachment points of the jth tranche. At

time t, the loss of the jth tranche is given as a call spread i.e. l
(j)
t = (lt −

αj−1)
+ − (lt − αj)

+.

The cash flows of a single tranche CDO are as follows: The protection
seller, on one hand, receives at times {t1, · · · , tM = T} the coupon κjc

j
tu

(u = 1, · · · , M) where κj is called the spread of the tranche and cj
tu =

1 − l
(j)
tu /(αj − αj−1) is the outstanding notional of the tranche at time tu.

The protection buyer, on the other hand, receives at each default time t that

occurs before the maturity the amount ∆l
(j)
t l

(j)
t − l

(j)
t− .

From the point of view of pricing, for the jth tranche of the CDO, our objective
is to find the value of the spread κj. From now on, we shall consider a
continuously compounded CDO of maturity T . The value of the default leg
and the premium leg are given respectively by the following formulas:

Default Leg = −(αj − αj−1)

∫ T

0
B(0, t)q(αj−1, αj, dt),

Premium Leg = κj × (αj − αj−1)

∫ T

0
B(0, t)q(αj−1, αj, t)dt

where B(0, t) is the value at time 0 of a zero coupon maturing at time t

assuming deterministic interest rates and q(αj−1, αj, t) := E(cj
t) is the tranche

survival probability at time t computed under a given risk-neutral probability.
Thanks to the integration by part formula, the fair spread κj is then computed
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as

κj =

1−B(0, T )q(αj−1, αj, T ) +

∫ T

0
q(αj−1, αj, t)B(0, dt)∫ T

0
B(0, t)q(αj−1, αj, t)dt

. (8.1)

To obtain the value of the preceding integrals, the key term to compute is
the functions q, which can be expressed as a linear combination of call prices
of the form

C(t, k) = E{(lt − k)+}. (8.2)

8.1.2 Factor Models

The main element in computing CDO value is the distribution of the per-
centage loss l. As mentioned earlier, this distribution depends in a critical
manner on the spread (or market implied default probabilities) of the individ-
ual names and their correlation as quoted for instance in the liquid tranche
market. As a consequence, we need a way to model the correlation between
default times of individual names. In practice and in order to obtain tractable
results, the market adopts a simplified approach - the factor models.

The main characteristic of the factor models, e.g. see Andersen and Sidenius
and Basu (2003), is the conditional independence between the default times
τ1, · · · , τn. In this framework, the market is supposed to contain some latent
factors which impact all concerning firms at the same time. Conditionally on
these factors, denoted by U (and we may assume U is uniformly distributed
on (0, 1) without loss of generality), the default events Ei = {τi ≤ t} are
supposed to be independent. To define the correlation structure using the
factor framework, it is sufficient to define the conditional default probabilities.
In a nutshell, this tantamounts to choose a function F such that 0 ≤ F ≤ 1
and ∫ 1

0
F (p, u)du = p, 0 ≤ p ≤ 1.

If pi = P(Ei), the function F (pi, u) is to be interpreted as P(Ei|U = u).

The standard Gaussian copula case with correlation ρ corresponds to the
function F defined by

F (p, u) = Φ

{
Φ−1(p)−√ρΦ−1(u)√

1− ρ

}
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where Φ(x) is the distribution function of the standard normal distribution
N(0, 1). Other copula functions, which corresponds to different types of
correlation structure, can be used in a similar way. The main drawback of
the Gaussian correlation approach is the fact that one cannot find a unique
model parameter ρ able to price all the observed market tranches on a given
basket. This phenomenon is referred to as correlation skew by the market
practitioners. One way to take into account this phenomenon is to consider
that the correlation ρ is itself dependent on the factor value. See Burtschell,
Gregory and Laurent (2007) for a discussion of this topic.

In the factor framework, the conditional cumulative loss l can be written as a
sum of independent random variables given U . It is then possible to calculate
(8.2) by analytical or numerical methods:

� Firstly, calculate the conditional call value using exact or approximated
numerical algorithms,

� secondly, integrate the result over the factor U .

In the sequel, we will explore new methodologies to compute approximations
of the conditional call value in an accurate and very quick manner.

8.1.3 Numerical Algorithms

The challenge for the practitioners is to compute quickly prices for their
(usually large) books of CDOs in a robust way.

Several methods are proposed to speed up the numerical calculations, such
as the recursive method: Hull and White (2004), Brasch (2004), saddle-
point method: Martin, Thompson and Browne (2001), Antonov, Mechkov
and Misirpashaev (2005) and the Gaussian approximation method: Vasicek
(1991). In this paper, we propose a new numerical method which is based on
the Stein’s method and the zero-bias transformation.

Stein’s method is an efficient tool to estimate the approximation errors in the
limit theorem problems. We shall combine the Stein’s method and the zero
bias transformation to propose first-order approximation formulas in both
Gauss and Poisson cases. The error estimations of the corrected approxi-
mations are obtained. We shall compare our method with other methods
numerically. Thanks to the simple closed-form formulas, we reduce largely
the computational burden for standard single tranche deals.

In financial problems, the binomial-normal approximation has been studied
in different contexts. In particular, Vasicek (1991) has introduced the normal
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approximation to a homogeneous portfolio of loans. In general, this approx-
imation is of order O(1/

√
n). The Poisson approximation, less discussed in

the financial context, is known to be robust for small probabilities in the
approximation of binomial laws. (One usually asserts that the normal ap-
proximation remains robust when np ≥ 10. If np is small, the binomial law
approaches a Poisson law.) In our case, the size of the portfolio is fixed for
a standard synthetic CDO tranche and n ≈ 125. In addition, the default
probabilities are usually small. Hence we may encounter both cases and it is
mandatory to study the convergence speed since n is finite.

The rest of this study is organized as follows: We present in Section 8.2
the theoretical results; Section 8.3 is devoted to numerical tests; finally
Section 8.4 explores real life applications, namely, efficient pricing of single
tranche CDO and application of this new methodology to VaR computation.

8.2 First Order Gauss-Poisson Approximations

8.2.1 Stein’s Method - the Normal Case

Stein’s method is an efficient tool to study the approximation problems. In
his pioneer paper, Stein (1972) first proposed this method to study the normal
approximation in the central limit theorem. The method has been extended
to the Poisson case later by Chen (1975).

Generally speaking, the zero bias transformation is characterized by some
functional relationship implied by the reference distributions, normal or Pois-
son, such that the “distance” between one distribution and the reference dis-
tribution can be measured by the “distance” between the distribution and
its zero biased distribution.

In the framework of Stein’s method, the zero bias transformation in the
normal case is introduced by Goldstein and Reinert (1997), which provides
practical and concise notation for the estimations. In the normal case,
the zero biasing is motivated by the following observation of Stein: a ran-
dom variable Z has the centered normal distribution N(0, σ2) if and only if
E{Zf(Z)} = σ2 E{f ′(Z)} for all regular enough functions f . In a more gen-
eral context, Goldstein and Reinert propose to associate with any random
variable X of mean zero and variance σ2 > 0 its zero bias transformation
random variable X∗ if the following relationship (8.3) holds for any function
f of C1-type,

E{Xf(X)} = σ2 E{f ′(X∗)}. (8.3)
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The distribution of X∗ is unique with density function given by pX∗(x) =
σ−2 E(X1{X>x}).

The centered normal distribution is invariant by the zero bias transformation.
In fact, X∗ and X have the same distribution if and only if X is a centered
Gaussian variable.

We are interested in the error of the normal approximation E{h(X)} −
E{h(Z)} where h is some given function and Z is a centered normal r.v.
with the same variance σ2 of X. By Stein’s equation:

xf(x)− σ2f ′(x) = h(x)− Φσ(h) (8.4)

where Φσ(h) = E{h(Z)}. We have that

E{h(X)} − Φσ(h) = E{Xfh(X)− σ2f ′h(X)} = σ2 E{f ′h(X∗)− f ′h(X)}
≤ σ2‖f ′′h‖sup E(|X∗ −X|)

(8.5)

where fh is the solution of (8.4). Here the property of the function fh and
the difference between X and X∗ are important for the estimations.

The Stein’s equation can be solved explicitly. If h(t) exp(− t2

2σ2 ) is integrable
on R, then one solution of (8.4) is given by

fh(x) =
1

σ2φσ(x)

∫ ∞

x

{h(t)− Φσ(h)}φσ(t)dt (8.6)

where φσ(x) is the density function of N(0, σ2). The function fh is one order
more differentiable than h. Stein has established that ‖f ′′h‖sup ≤ 2‖h′‖sup/σ

2

if h is absolutely continuous.

For the term X −X∗, the estimations are easy when X and X∗ are indepen-
dent by using a symmetrical term Xs = X − X̃ where X̃ is an independent
duplicate of X:

E(|X∗ −X|) =
1

4σ2 E
(
|Xs|3

)
, E(|X∗ −X|k) =

1

2(k + 1)σ2 E
(
|Xs|k+2).

(8.7)

When it concerns dependent random variables, a typical example is the sum
of independent random variables. We present here a construction of zero
biased variable introduced in Goldstein and Reinert (1997) using a random
index to well choose the weight of each summand variable.

Proposition 8.1 Let Xi (i = 1, . . . , n) be independent zero-mean r.v. of
finite variance σ2

i > 0 and X∗
i having the Xi-zero normal biased distribution.
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We assume that (X̄, X̄∗) = (X1, . . . , Xn, X
∗
1 , . . . , X

∗
n) are independent r.v.

Let W = X1 + · · ·+ Xn and denote its variance by σ2
W . Let W (i) = W −Xi

and I be an random index which is independent of (X̄, X̄∗) such that P(I =
i) = σ2

i /σ
2
W . Then W ∗ = W (I) + X∗

I has the W -zero biased distribution.

Although W and W ∗ are dependent, the above construction based on a ran-
dom index choice enables us to obtain the estimation of W −W ∗, which is
of the same order of X −X∗ in the independent case:

E
(
|W ∗ −W |k

)
=

1

2(k + 1)σ2
W

n∑
i=1

E
(
|Xs

i |k+2), k ≥ 1. (8.8)

8.2.2 First-Order Gaussian Approximation

In the classical binomial-normal approximation, as discussed in Vasicek (1991),
the expectation of functions of conditional losses can be calculated using a
Gaussian expectation. More precisely, the expectation E{h(W )} where W is
the sum of conditional independent individual loss variables can be approxi-
mated by ΦσW

(h) where

ΦσW
(h) =

1√
2πσW

∫ ∞

−∞
h(u) exp

(
− u2

2σ2
W

)
du

and σW is the standard deviation of W . The error of this zero-order approxi-
mation is of order O(1/

√
n) by the well-known Berry-Esseen inequality using

the Wasserstein distance, e.g. Petrov (1975), Chen and Shao (2005), except
in the symmetric case.

We shall improve the approximation quality by finding a correction term such
that the corrected error is of order O(1/n) even in the asymmetric case. Some
regularity condition is required on the considered function. Notably, the call
function, not possessing second order derivative, is difficult to analyze. In the
following theorem, we give the explicit form of the corrector term alongside
the order of the approximation.

PROPOSITION 8.1 Let X1, . . . , Xn be independent random variables of
mean zero such that E(X4

i ) (i = 1, . . . , n) exists. Let W = X1 + · · · + Xn

and σ2
W = Var(W ). For any function h such that h′′ is bounded, the normal

approximation ΦσW
(h) of E{h(W )} has the corrector:

Ch =
µ(3)

2σ4
W

ΦσW

{( x2

3σ2
W

− 1
)
xh(x)

}
(8.9)
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where µ(3) =
∑n

i=1 E(X3
i ). The corrected approximation error is bounded by∣∣∣E{h(W )} − ΦσW

(h)− Ch

∣∣∣
≤
∥∥f (3)

h

∥∥
sup

{ 1

12

n∑
i=1

E
(
|Xs

i |4
)

+
1

4σ2
W

∣∣∣ n∑
i=1

E(X3
i )
∣∣∣ n∑

i=1

E
(
|Xs

i |3
)

+
1

σW

√√√√ n∑
i=1

σ6
i

}
.

Proof:
By taking first order Taylor expansion, we obtain

E{h(W )} − ΦσW
(h) = σ2

W E{f ′h(W ∗)− f ′h(W )}
= σ2

W E{f ′′h (W )(W ∗ −W )}+ σ2
W E

[
f

(3)
h

{
ξW + (1− ξ)W ∗}ξ(W ∗ −W )2

]
(8.10)

where ξ is a random variable on [0, 1] independent of all Xi and X∗
i . First,

we notice that the remaining term is bounded by

E
[∣∣f (3)

h

{
ξW + (1− ξ)W ∗}∣∣ξ(W ∗ −W )2

]
≤
∥∥f (3)

h

∥∥
sup

2
E{(W ∗ −W )2}.

Then we have

σ2
W

∣∣∣E [f (3)
h

{
ξW +(1−ξ)W ∗}ξ(W ∗−W )2

]∣∣∣ ≤ ∥∥f (3)
h

∥∥
sup

12

n∑
i=1

E
(
|Xs

i |4
)
. (8.11)

Secondly, we consider the first term in the right-hand side of (8.10). Since
X∗

I is independent of W , we have

E{f ′′h (W )(W ∗ −W )} = E{f ′′h (W )(X∗
I −XI)}

= E(X∗
I ) E{f ′′h (W )} − E{f ′′h (W )XI}. (8.12)

For the second term E{f ′′h (W )XI} of (8.12), since

E{f ′′h (W )XI} = E
{
f ′′h (W ) E(XI |X̄, X̄∗)

}
,

we have using the conditional expectation that

∣∣∣E{f ′′h (W )XI}
∣∣∣ ≤ 1

σ2
W

√
Var{f ′′h (W )}

√√√√ n∑
i=1

σ6
i . (8.13)
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Notice that

Var{f ′′h (W )} = Var{f ′′h (W )− f ′′h (0)} ≤ E[{f ′′h (W )− f ′′h (0)}2] ≤ ‖f (3)
h ‖2

supσ
2
W .

Therefore ∣∣∣E{f ′′h (W )XI}
∣∣∣ ≤ ‖f (3)

h ‖sup

σW

√√√√ n∑
i=1

σ6
i .

For the first term E(X∗
I ) E{f ′′h (W )} of (8.12), we write it as the sum of two

parts

E(X∗
I ) E{f ′′h (W )} = E(X∗

I )ΦσW
(f ′′h ) + E(X∗

I ) E{f ′′h (W )− ΦσW
(f ′′h )}.

The first part is the candidate for the corrector. We apply the zero order
estimation to the second part and get

∣∣∣E(X∗
I )
[
E{f ′′h (W )} − ΦσW

(f ′′h )
]∣∣∣ ≤ ∥∥f (3)

h

∥∥
sup

4σ4
W

∣∣∣ n∑
i=1

E(X3
i )
∣∣∣ n∑

i=1

E
(
|Xs

i |3
)
.

(8.14)
Then, it suffices to write

E{h(W )} − ΦσW
(h)

= σ2
W

[
E(X∗

I )ΦσW
(f ′′h ) + E(X∗

I )
[
E{f ′′h (W )} − ΦσW

(f ′′h )
]
− E{f ′′h (W )XI}

]
+ σ2

W E
[
f

(3)
h

{
ξW + (1− ξ)W ∗}ξ(W ∗ −W )2

]
.

(8.15)

Combining (8.11), (8.13) and (8.14), we let Ch = σ2
W E(X∗

I )ΦσW
(f ′′h ) and we

deduce the error bound. Finally, we use the invariant property of the normal
distribution under zero bias transformation and the Stein’s equation to ob-
tain (8.9). �

The corrector is written as the product of two terms: the first one depends
on the moments of Xi up to the third order and the second one is a nor-
mal expectation of some polynomial function multiplying h. Both terms are
simple to calculate, even in the inhomogeneous case.

To adapt to the definition of the zero biasing random variable, and also to
obtain a simple representation of the corrector, the variables Xi’s are set to be
of expectation zero in Theorem 8.1. This condition requires a normalization
step when applying the theorem to the conditional loss. A useful example
concerns the centered Bernoulli random variables which take two real values
and are of expectation zero.
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Note that the moments of Xi play an important role here. In the symmetric
case, we have µ(3) = 0 and as a consequence Ch = 0 for any function h.
Therefore, Ch can be viewed as an asymmetric corrector in the sense that,
after correction, the approximation realizes the same error order as in the
symmetric case.

To precise the order of the corrector, let us consider the normalization of
an homogeneous case where Xi’s are i.i.d. random variables whose moments
may depend on n. Notice that

ΦσW

{( x2

3σ2
W

− 1
)
xh(x)

}
= σWΦ1

{(x2

3
− 1

)
xh(σWx)

}
.

To ensure that the above expectation term is of constant order, we often
suppose that the variance of W is finite and does not depend on n. In
this case, we have µ(3) ∼ O(1/

√
n) and the corrector Ch is also of order

O(1/
√

n). Consider now the percentage default indicator variable 1{τi≤t}/n,
whose conditional variance given the common factor equals to p(1 − p)/n2

where p is the conditional default probability of ith credit, identical for all
in the homogeneous case. Hence, we shall fix p to be zero order and let
Xi = (1{τi≤t}−p)/

√
n. Then σW is of constant order as stated above. Finally,

for the percentage conditional loss, the corrector is of order O(1/n) because
of the remaining coefficient 1/

√
n.

The Xi’s are not required to have the same distribution: we can handle easily
different recovery rates (as long as they are independent r.v.) by computing
the moments of the product variables (1−Ri)1{τi≤t}. The corrector depends
only on the moments of Ri up to the third order. Note however that the
dispersion of the recovery rates, also of the nominal values can have an impact
on the order of the corrector.

We now concentrate on the call function h(x) = (x − k)+. The Gauss ap-
proximation corrector is given in this case by

Ch =
µ(3)

6σ2
W

kφσW
(k) (8.16)

where φσ(x) is the density function of the distribution N(0, σ2). When the
strike k = 0, the corrector Ch = 0. On the other hand, the function k exp

(
−

k2

2σ2
W

)
reaches its maximum and minimum values when k = σW and k = −σW ,

and then tends to zero quickly.

The numerical computation of this corrector is extremely simple since there
is no need to take expectation. Observe however that the call function is a
Lipschitz function with h′(x) = 1{x>k} and h′′ exists only in the distribution
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sense. Therefore, we can not apply directly Theorem 8.1 and the error esti-
mation deserves a more subtle analysis. The main tool we used to establish
the error estimation for the call function is a concentration inequality in Chen
and Shao (2001). For detailed proof, interested reader may refer to El Karoui
and Jiao (2007).

We shall point out that the regularity of the function h is essential in the
above result. For more regular functions, we can establish correction terms
of corresponding order. However, for the call function, the second order
correction can not bring further improvement to the approximation results
in general.

8.2.3 Stein’s Method - the Poisson Case

The Poisson case is parallel to the Gaussian one. Recall that Chen (1975) has
observed that a non-negative integer-valued random variable Λ of expectation
λ follows the Poisson distribution if and only if E{Λg(Λ)} = λ E{g(Λ + 1)}
for any bounded function g. Similar as in the normal case, let us consider a
random variable Y taking non-negative integer values and E(Y ) = λ < ∞.
A r.v. Y ∗ is said to have the Y -Poisson zero biased distribution if for any
function g such that E{Y g(Y )} exists, we have

E{Y g(Y )} = λ E{g(Y ∗ + 1)}. (8.17)

Stein’s Poisson equation is also introduced in Chen (1975):

yg(y)− λg(y + 1) = h(y)− Pλ(h) (8.18)

where Pλ(h) = E{h(Λ)} with Λ ∼ P (λ). Hence, for any non-negative integer-
valued r.v. V with expectation λV , we obtain the error of the Poisson ap-
proximation

E{h(V )}−Pλ(h) = E
{
V gh(V )−λV gh(V +1)

}
= λV E

{
gh(V

∗+1)−gh(V +1)
}

(8.19)
where gh is the solution of (8.18) and is given by

gh(k) =
(k − 1)!

λk

∞∑
i=k

λi

i!

{
h(i)− Pλ(h)

}
. (8.20)

It is unique except at k = 0. However, the value g(0) does not enter into our
calculations afterwards.
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We consider now the sum of independent random variables. Let Yi (i =
1, · · · , n) be independent non-negative integer-valued r.v. with positive ex-
pectations λi and let Y ∗

i have the Yi-Poisson zero biased distribution. As-
sume that Yi and Y ∗

i are mutually independent. Denote by V = Y1 + · · ·+Yn

and λV = E(V ). Let I be a random index independent of (Ȳ , Ȳ ∗) satisfying
P (I = i) = λi/λV . Then V (I)+Y ∗

I has the V -Poisson zero biased distribution
where V (i) = V − Yi.

For any integer l ≥ 1, assume that Y and Yi have to up (l+1)-order moments.
Then

E(|Y ∗ − Y |l) =
1

λ
E
(
Y |Y s − 1|l

)
, E(|V ∗ − V |l) =

1

λV

n∑
i=1

E
(
Yi|Y s

i − 1|l
)
.

Finally, recall that Chen has established ‖∆gh‖sup ≤ 6‖h‖sup min
(
λ−

1
2 , 1
)

with which we obtain the following zero order estimation

|E{h(V )} − PλV
(h)| ≤ 6‖h‖sup min

( 1√
λV

, 1
) n∑

i=1

E
(
Yi|Y s

i − 1|
)
. (8.21)

There also exist other estimations of error bound (see e.g. Barbour and
Eagleson (1983)). However we here are more interested in the order than the
constant of the error.

8.2.4 First-Order Poisson Approximation

We now present the first-order Poisson approximation following the same idea
as in the normal case. Firstly, recall the zero-order approximation formula.
If V is a random variable taking non-negative integers with expectation λV ,
then we may approximate E{h(V )} by a Poisson function

PλV
(h) =

n∑
m=0

λm
V

m!
e−λV h(m).

The Poisson approximation is efficient under some conditions, for example,
when V ∼ B(n, p) and np < 10. We shall improve the Poisson approximation
by presenting a corrector term as above. We remark that due to the property
that a Poisson distributed random variable takes non-negative integer values,
the variables Yi’s in Theorem 8.2 are discrete integer random variables.

PROPOSITION 8.2 Let Y1, . . . , Yn be independent random variables tak-
ing non-negative integer values such that E(Y 3

i ) (i = 1, . . . , n) exist. Let
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V = Y1 + · · · + Yn with expectation λV = E(V ) and variance σ2
V = Var(V ).

Then, for any bounded function h defined on N+, the Poisson approximation
PλV

(h) of E{h(V )} has the corrector:

CP
h =

σ2
V − λV

2
PλV

(∆2h) (8.22)

where Pλ(h) = E{h(Λ)} with Λ ∼ P(λ) and ∆h(x) = h(x + 1) − h(x). The
corrected approximation error is bounded by∣∣E{h(V )} − PλV

(h)− λVPλV
{∆gh(x + 1)}E(Y ∗

I − YI)
∣∣

≤ 2‖∆gh‖sup

n∑
i=1

λi E
{
|Y ∗

i − Yi|
(
|Y ∗

i − Yi| − 1
)}

+ 6‖∆gh‖sup

{ n∑
i=1

E(Yi|Y s
i − 1|)

}2

+ Var{∆gh(V + 1)}1
2

{ n∑
i=1

λ2
i Var(Y ∗

i − Yi)
}1

2

.

Proof:
Let us first recall the discrete Taylor formula. For any integers x and any
positive integer k ≥ 1,

g(x + k) = g(x) + k∆g(x) +
k−1∑
j=0

(k − 1− j)∆2g(x + j).

Similar as in the Gaussian case, we apply the above formula to right-hand
side of E{h(V )}−PλV

(h) = λV E{gh(V
∗+1)− gh(V +1)} and we shall make

decompositions. Since V ∗ − V is not necessarily positive, we take expansion
around V (i) for the following three terms respectively and obtain

E
{
gh(V

∗ + 1)− gh(V + 1)−∆gh(V + 1)(V ∗ − V )
}

=
n∑

i=1

λi

λV
·

[
E
{
gh(V

(i) + 1) + Y ∗
i ∆gh(V

(i) + 1) +

Y ∗
i −1∑
j=0

(Y ∗
i − 1− j)∆2gh(V

(i) + 1 + j)
}

− E
{
gh(V

(i) + 1) + Yi∆gh(V
(i) + 1) +

Yi−1∑
j=0

(Yi − 1− j)∆2gh(V
(i) + 1 + j)

}
− E

{
∆gh(V

(i) + 1)(Y ∗
i − Yi) +

Yi−1∑
j=0

(Y ∗
i − Yi)∆

2gh(V
(i) + 1 + j)

}]
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which implies that the remaining term is bounded by∣∣∣E{gh(V
∗ + 1)− gh(V + 1)−∆gh(V + 1)(V ∗ − V )

}∣∣∣
≤ ‖∆2gh‖sup

n∑
i=1

λi

λV

[
E
{(Y ∗

i

2

)
+

(
Yi

2

)}
+ E

{
|Yi(Y

∗
i − Yi)|

}]
.

We then make decomposition

E
{
∆gh(V + 1)(V ∗ − V )

}
= PλV

{∆gh(x + 1)}E(Y ∗
I − YI) + Cov

{
Y ∗

I − YI , ∆gh(V + 1)
}

+
[
E{∆gh(V + 1)} − PλV

{∆gh(x + 1)}
]
E(Y ∗

I − YI).

(8.23)

Similar as in the Gaussian case, the first term of (8.23) is the candidate of
the corrector. For the second term, we use again the technique of conditional
expectation and obtain

Cov
{
∆gh(V + 1), Y ∗

I − YI

}
≤ 1

λV
Var

{
∆gh(V + 1)

}1
2

{ n∑
i=1

λ2
i Var(Y ∗

i − Yi)
}1

2

.

For the last term of (8.23), we have by the zero order estimation

[
E{∆gh(V + 1)} − PλV

{∆gh(x + 1)}
]
E(Y ∗

I − YI) ≤ 6‖∆gh‖sup

λV
×{ n∑

i=1

E(Yi|Y s
i − 1|)

}2
.

It remains to observe that PλV
{∆gh(x+1)} = 1

2PλV
(∆2h) and let the corrector

to be

CP
h =

λV

2
PλV

(∆2h) E(Y ∗
I − YI).

Combining all these terms, we obtain∣∣E{h(V )} − PλV
(h)− CP

h

∣∣
≤ ‖∆2gh‖sup

n∑
i=1

λi E
{
|Y ∗

i − Yi|
(
|Y ∗

i − Yi| − 1
)}

+ Var
{
∆gh(V + 1)

} 1
2

{ n∑
i=1

λ2
i Var(Y ∗

i − Yi)
}1

2

+ 6‖∆gh‖sup

{ n∑
i=1

E(Yi|Y s
i − 1|)

}2
.

(8.24)
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�

The Poisson corrector CP
h is of similar form with the Gaussian one and con-

tains two terms as well: one term depends on the moments of Yi and the
other is a Poisson expectation.

Since Yi’s are N+-valued random variables, they can represent directly the
default indicators 1{τi≤t}. This fact limits however the recovery rate to be
identical or proportional for all credits. We now consider the order of the
corrector. Suppose that λV does not depend on n to ensure that PλV

(∆2h)
is of constant order. Then in the homogeneous case, the conditional default
probability p ∼ O(1/n). For the percentage conditional losses, as in the
Gaussian case, the corrector is of order O(1/n) with the coefficient 1/n.

Since ∆2h(x) = 1{x=k−1} for the call function, its Poisson approximation
corrector is given by

CP
h =

σ2
V − λV

2(�k� − 1)!
e−λV λ

�k�−1
V (8.25)

where �k� is the integer part of k. The corrector vanishes when the expecta-
tion and the variance of the sum variable V are equal. The difficulty here is
that the call function is not bounded. However, we can prove that Theorem
8.2 holds for any function of polynomial increasing speed El Karoui and Jiao
(2007).

8.3 Numerical Tests

Before exploring real life applications, we would like in this section to perform
some basic testing of the preceding formulae. In the sequel, we consider
the call value E{(l − k)+} where l = n−1∑n

i=1(1 − Ri)ξi and the ξi’s are
independent Bernoulli random variables with success probability equal to pi.

8.3.1 Validity Domain of the Approximations

We begin by testing the accuracy of the corrected Gauss and Poisson approx-
imations for different values of np =

∑n
i=1 pi in the case Ri = 0, n = 100

and for different values of k such that 0 ≤ k ≤ 1. The benchmark value is
obtained through the recursive methodology well known by the practitioners
which computes the loss distribution by reducing the portfolio size by one
name at each recursive step.
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Figure 8.1. Gauss and Poisson approximation errors for vari-
ous values of np as a function of the strike over the expected
loss, with line curve for Gaussian errors and dotted curve for
Poisson errors. XFGgperror

In Figure 8.1 are plotted the differences between the corrected Gauss approx-
imation and the benchmark (Error Gauss) and the corrected Poisson approx-
imation and the benchmark (Error Poisson) for different values of np as a
function of the call strike over the expected loss. Note that when the tranche
strike equals the expected loss, the normalized strike value in the Gaussian
case equals zero due to the centered random variables, which means that
the correction vanishes. We observe in Figure 8.1 that the Gaussian error is
maximal around this point.

We observe on these graphs that the Poisson approximation outperforms the
Gaussian one for approximately np < 15. On the contrary, for large values of
np, the Gaussian approximation is the best one. Because of the correction,
the threshold between the Gauss-Poisson approximation is higher than the
classical one np ≈ 10. In addition, the threshold may be chosen rather
flexibly around 15. Combining the two approximations, the minimal error of
the two approximations is relatively larger in the overlapping area when np
is around 15. However, we obtain satisfactory results even in this case. In all
the graphs presented, the error of the mixed approximation is inferior than
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1 bp.

Our tests are made with inhomogeneous pi’s obtained as

pi = p exp(σWi − 0.5σ2)

(log-normal random variable with expectation p and volatility σ) where Wi

is a family of independent standard normal random variables and values of
σ ranging from 0% to 100%. Qualitatively, the results were not affected by
the heterogeneity of the pi’s.

Observe that there is oscillation in the Gaussian approximation error, while
the Poisson error is relatively smooth. This phenomenon is related to the
discretization impact of discrete laws.

As far as a unitary computation is concerned (one call price), the Gaussian
and Poisson approximation perform much better than the recursive method-
ology: we estimate that these methodologies are 200 times faster. To be fair
with the recursive methodology one has to recall that by using it we obtain
not only a given call price but the whole loss distribution which correspond
to about 100 call prices. In that case, our approximations still outperform
the recursive methodology by a factor 2.

8.3.2 Stochastic Recovery Rate - Gaussian Case

We then consider the case of stochastic recovery rate and check the validity of
the Gauss approximation in this case. Following the standard in the industry
(Moody’s assumption), we will model the Ri’s as independent beta random
variables with expectation 50% and standard deviation 26%.

An application of Theorem 8.1 is used so that the first order corrector term
takes into account the first three moments of the random variables Ri. To
describe the obtained result let us first introduce some notations. Let µRi

, σ2
Ri

and γ3
Ri

be the first three centered moments of the random variable Ri, namely

µRi
= E(Ri), σ2

Ri
= E{(Ri − µRi

)2}, γ3
Ri

= E{(Ri − µRi
)3}.

We also define Xi = n−1(1 − Ri)ξi − µi where µi = n−1(1 − µRi
)pi and

pi = E(ξi). Let W be
∑n

i=1 Xi. We have

σ2
W = Var(W ) =

n∑
i=1

σ2
Xi

where σ2
Xi

=
pi

n2

{
σ2

Ri
+ (1− pi)(1− µRi

)2
}

.



178 Nicole El Karoui et al.

Figure 8.2. Gaussian approximation errors in the stochastic
recovery case for various values of np as a function of the strike
over the expected loss, compared with upper and lower 95%
confidence interval bounds of Monte Carlo 1,000,000 simula-
tions. XFGstoerror

Finally, if k̃ = k −
∑n

i=1 µi, we have the following approximation

E{(l − k)+} ≈ ΦσW
( · − k)+ +

1

6

1

σ2
W

n∑
i=1

E
(
X3

i )k̃φσW
(k̃)

where

E(X3
i ) =

pi

n3

{
(1− µRi

)3(1− pi)(1− 2pi) + 3(1− pi)(1− µRi
)σ2

Ri
− γ3

Ri

}
.

The benchmark is obtained using standard Monte Carlo integration with
1,000,000 simulations. We display, in Figure 8.2, the difference between the
approximated call price and the benchmark as a function of the strike over
the expected loss. We also consider the lower and upper 95% confidence
interval for the Monte Carlo results. As in the standard case, one observes
that the greater the value of np the better the approximation. Furthermore,
the stochastic recovery brings a smoothing effect since the conditional loss
no longer follows a binomial law.
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The Poisson approximation, due to constraint of integer valued random vari-
ables, can not treat directly the stochastic recovery rates. We can however
take the mean value of Ri’s as the uniform recovery rate especially for low
value of np without improving the results except for very low strike (equal to
a few bp).

8.3.3 Sensitivity Analysis

We are finally interested in calculating the sensitivity with respect to pj. As
for the Greek of the classical option theory, direct approximations using the
finite difference method implies large errors. We hence propose the following
procedure.

Let ljt = 1−R
n 1{τj≤t}. Then for all j = 1, · · · , n,

(lt − k)+ = 1{τj≤t}

(∑
i�=j

lit +
1−R

n
− k

)
+

+ 1{τj>t}

(∑
i�=j

lit − k
)

+
.

As a consequence, we may write

E{(lt − k)+|U} = F (pj, U) E
{(∑

i�=j

lit +
1−R

n
− k

)
+

∣∣∣U}
+
{
1− F (pj, U)

}
E
{(∑

i�=j

lit − k
)

+

∣∣∣U}.

Since the only term which depends on pj is the function F (pj, U), we obtain
that ∂pj

C(t, k) can be calculated as∫ 1

0
du∂1F (pj, u) E

[{∑
i�=j

lit +ωj(1−Rj)−k
}

+
−
(∑

i�=j

lit−k
)

+

∣∣∣U = u
]

(8.26)

where we compute the call spread using the mixed approximation for the
partial total loss.

We test this approach in the case where Ri = 0 on a portfolio of 100 names
such that one fifth of the names has a default probability of 25 bp, 50 bp,
75 bp, 100 bp and 200 bp respectively for an average default probability of
90 bp. We compute call prices derivatives with respect to each individual
name probability according to the formula (8.26) and we benchmark this
result by the sensitivities given by the recursive methodology.

In Figure 8.3, we plot these derivatives for a strike value of 3% computed
using the recursive and the approximated methodology. Our finding is that
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Figure 8.3. Sensitivity with respect to individual default prob-
ability by the approximated and the recursive methodology,
for 5 types of 100 total names. XFGsensibility

in all tested cases (strike ranging from 3% to 20%), the relative errors on these
derivatives are less than 1% except for strike higher than 15%, in which case
the relative error is around 2%. Note however that in this case, the absolute
error is less than 0.1 bp for derivatives whose values are ranging from 2 bp to
20 bp. We may remark that the approximated methodology always overvalues
the derivatives value. However in the case of a true mezzanine tranche this
effect will be offset. We consider these results as very satisfying.

8.4 Real Life Applications

After recalling the main mathematical results, we use them on two real life
applications: valuation of single tranche CDOs and computing VaR figures
in a timely manner.

8.4.1 Gaussian Approximation

Let µi and σi be respectively the expectation and standard deviation of the
random variable χi = n−1(1−R)1{τi≤t}. Let Xi = χi−µi and W =

∑n
i=1 Xi,
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so that the expectation and standard deviation of the random variable W
are 0 and σW =

√∑n
i=1 σ2

i respectively. Let also pi be the default probability
of issuer i. We want to calculate

C(t, k) = E{(lt − k)+} = E{(W − k̃)+}

where k̃ = k −
∑n

i=1 µi.

Assuming that the random variables Xi’s are mutually independent, the re-
sult of Theorem 8.1 may be stated in the following way

C(t, k) ≈
∫ +∞

−∞
dxφσW

(x)(x− k̃)+ +
1

6

1

σ2
W

n∑
i=1

E(X3
i )k̃φσW

(k̃) (8.27)

where E(X3
i ) = (1−R)3

n3 pi(1 − pi)(1 − 2pi). The first term on the right-hand
side of (8.27) is the Gaussian approximation that can be computed in closed
form thanks to Bachelier formula whereas the second term is a correction
term that accounts for the non-normality of the loss distribution.

In the sequel, we will compute the value of the call option on a loss dis-
tribution by making use of the approximation (8.27). In the conditionally
independent case, one can indeed write

E(lt − k)+ =

∫
PU(du) E{(lt − k)+|U = u}

where U is the latent variable describing the general state of the economy.
As the default time are conditionally independent upon the variable U , the
integrand may be computed in closed form using (8.27).

We note finally that in the real life test, we model U in a non-parametric
manner such that the base correlation skew of the market can be reproduced.

8.4.2 Poisson Approximation

Recall that Pλ is the Poisson measure of intensity λ. Let λi = pi and λV =∑n
i=1 λi where now V =

∑n
i=1 Yi with Yi = 1{τi≤t}. We want to calculate

C(t, k) = E{(lt − k)+} = E{(n−1(1−R)V − k)+}.

Recall that the operator ∆ is such that (∆f)(x) = f(x + 1)− f(x). We also
let the function h be defined by h(x) = {n−1(1−R)x− k}+ .
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Assuming that the random variables Yi’s are mutually independent, we may
write according to the results of theorem 8.2 that

C(t, k) ≈ PλV
(h)− 1

2

( n∑
i=1

λ2
i

)
PλV

(∆2h) (8.28)

where

PλV
(∆2h) = n−1(1−R)e−λV

λ
�m�−1
V

(�m� − 1)!

where m = nk/(1 − R). The formula (8.28) may be used to compute the
unconditional call price in the same way as in the preceding subsection.

8.4.3 CDO Valuation

In this subsection, we finally use both Gaussian and Poisson first order ap-
proximations to compute homogeneous single tranche CDO value and break
even as described in formula (8.1). As this formula involves conditioning on
the latent variable U , we are either in the validity domain of the Poisson ap-
proximation or in the validity domain of the Gaussian approximation. Taking
into account the empirical facts underlined in Section 8.3, we choose to apply
the Gaussian approximation for the call value as soon as

∑
i F (pi, u) > 15

and the Poisson approximation otherwise. All the subsequent results are
benchmarked using the recursive methodology.

Our results for the quoted tranches are gathered in the following table. Level
represents the premium leg for the spread of 1 bp and break even is the spread
of CDO in (8.1).

In the following table are gathered the errors on the break even expressed in
bp. We should note that in all cases, the error is less than 1.15 bp which is
below the market uncertainty that prevails on the bespoke CDO business. We
observe furthermore that the error is maximal for the tranche 3%-6% which
correspond to our empirical finding (see Figure 8.1) that the approximation
error is maximal around the expected loss of the portfolio (equal here to
4.3%).

Trying to understand better these results, we display now in the following
two tables the same results but for equity tranches.
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Attach Detach Output REC Approx.
0% 3% Default Leg 2.1744% 2.1752%

Level 323.2118% 323.2634%
Break Even 22.4251% 22.4295%

3% 6% Default Leg 0.6069% 0.6084%
Level 443.7654% 443.7495%

Break Even 4.5586% 4.5702%
6% 9% Default Leg 0.1405% 0.1404%

Level 459.3171% 459.3270%
Break Even 1.0197% 1.0189%

9% 12% Default Leg 0.0659% 0.0660%
Level 462.1545% 462.1613%

Break Even 0.4754% 0.4758%
12% 15% Default Leg 0.0405% 0.0403%

Level 463.3631% 463.3706%
Break Even 0.2910% 0.2902%

15% 22% Default Leg 0.0503% 0.0504%
Level 464.1557% 464.1606%

Break Even 0.1549% 0.1552%
0% 100% Default Leg 3.1388% 3.1410%

Level 456.3206% 456.3293%
Break Even 1.1464% 1.1472%

Table 8.1. Break even values for the quoted tranches, by
recursive method and our approximation method respectively

Error
0-3 0.44
3-6 1.15
6-9 - 0.08

9-12 0.04
12-15 - 0.08
15-22 0.02
0-100 0.08

Table 8.2. Break even errors for the quoted tranches compared
to the recursive method, expressed in bp
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Attach Detach Output REC Mixte
0% 3% DL 2.1744% 2.1752%

Level 323.2118% 323.2634%
BE 22.4251% 22.4295%

0% 6% DL 2.7813% 2.7836%
Level 383.4886% 383.5114%

BE 12.0878% 12.0969%
0% 9% DL 2.9218% 2.9240%

Level 408.7648% 408.7853%
BE 7.9422% 7.9476%

0% 12% DL 2.9877% 2.9900%
Level 422.1122% 422.1302%

BE 5.8984% 5.9025%
0% 15% DL 3.0282% 3.0303%

Level 430.3624% 430.3788%
BE 4.6909% 4.6940%

0% 22% DL 3.0785% 3.0807%
Level 441.1148% 441.1280%

BE 3.1723% 3.1744%
0% 100% DL 3.1388% 3.1410%

Level 456.3206% 456.3293%
BE 1.1464% 1.1472%

Table 8.3. Break even values for the equity tranches, by re-
cursive method and our approximation method respectively

Error
0-3 0.44
0-6 0.92
0-9 0.55

0-12 0.41
0-15 0.31
0-22 0.21

0-100 0.08

Table 8.4. Break even errors for the equity tranches compared
to the recursive method, expressed in bp

8.4.4 Robustness of VaR Computation

In this section, we consider the VaR computation for a given CDOs book and
show that the use of the Gaussian first order approximation as in subsection
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8.4.1 can speed up substantially credit derivatives VaR computation without
loss of numerical accuracy. We restrict our attention on the Gaussian ap-
proximation as we want to be able to consider non-homogeneous reference
portfolio. We study the approximation effect on VaR computation by using
a stylized portfolio which strikes and maturities are distributed such that the
resulting book is reasonably liquid and diversified.

Our finding is that we may safely use this approximation without a significant
loss of accuracy for our stylized portfolio and this could lead, according to
our estimation, to a reduction of 90% of VaR computation time as compared
with the recursive methodology. The production of the VaR in due time for
financial institution will then still be possible even if its business on single
tranche increases steadily.

To test the robustness of the proposed approximation in VaR computation,
we decide to study the accuracy (as compared by a full recursive valuation)
of differences of the form

∆ω(T,K) = Eω{(lT −K)+} − Eω0{(lT −K)+}

for various (spreads and correlation) VaR scenarios ω randomly generated.
Here ω0 denotes the initial scenario.

Generating VaR Scenarios

We aim here at generating by a Monte Carlo procedure a family of scenarios
for spreads and the base correlation that we will assume constant in this set
of tests.

We choose the following dynamic for the daily variation of the spreads of the
common reference portfolio

∆si

si
= 50%

(√
30%ε +

√
70%εi

)√
∆t

where ε, ε1, . . . , εM are independent standard Gaussian random variables and
∆t1/252. In other words, we assume a joint log-normal dynamic with volatil-
ity 50% and correlation 30%.

We then assume that the shocks on the base correlation are normally dis-
tributed with initial value 30% and annual volatility of 15%.

In the sequel and for our testing, we will use a sample of 1000 such scenarios
of spreads and correlation daily moves.
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Stylized Portfolio Description

We start from the stylized distribution of a single tranche CDO portfolio.
The resulting position is chosen so that is is reasonably liquid and diversified
in term of maturity, strike and credit risk.

Each strike (expressed in expected loss unit) and maturity will be assigned
a positive and a negative weight according to the corresponding notional in
position. Hence, we come up with two positive normalized (=unity total
mass) measures µ+ and µ− that reflects the book repartition in terms of
strike (expressed in expected loss) and maturity. We also let µ = µ+ − µ−
and µ̃ = |µ|/2 = (µ+ + µ−)/2.

We give below an example to explain more precisely. Let us consider, for
instance, a protection buyer CDO position with maturity T , with expected
loss E(lT ), with notional N and strikes A and B expressed in percentage.
We also define a(T ) = A/ E(lT ) and b(T ) = B/ E(lT ). Using the following
approximate formulas for the payout of the default and premium legs

Default Leg = N ×
[
{lT − a(T ) E(lT )}+ − {lT − b(T ) E(lT )}+

]
,

Premium Leg = N × Spread× T

2
×[

(B − A)− {lT/2 − a(T/2) E(lT/2)}+ + {lT/2 − b(T/2) E(lT/2)}+
]
,

we observe that this deal will contribute for a positive amount of N on the
point {a(T ), T}, a negative amount of −N on the point {b(T ), T}, a positive
amount of N × Spread × T/2 on the point {a(T/2), T/2} and a negative
amount of −N × Spread× T/2 on the point {b(T/2), T/2}.

Error Computation

Let ∆ω
GA(T, K) and ∆ω

REC(T, K) be the value of the difference

Eω{(lT −K)+} − Eω0{(lT −K)+}
as given respectively by the Gaussian approximation and a full recursive
valuation.

We are interested in different types of errors that will allow us to assess the
robustness of the proposed approximation for VaR computation purposes.
The algebraic average error (see Figure 8.4) arising from the use of the ap-
proximation on the book level and expressed in spread term may be defined
as

Algebraic Average Error(ω)

∫
µ(dk, dT )

T

{
∆ω

GA(T, kET )−∆ω
REC(T, kET )

}
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Figure 8.4. Algebraic Average Error of VaR per Scenario,
expressed in bp. XFGalgerror

where ET = E(lT ). The maximum algebraic average error on the book in
spread term is defined as

Max Algebraic Error = max
ω
|Algebraic Average Error(ω)| .

Note that this way of computing the error allows the offset of individual er-
rors due to the book structure. It is reasonable to take these effects into
account when one tries to degrade numerical computation for VaR compu-
tation purposes. However, we will also compute the more stringent absolute
average error (see Figure 8.5) on the book in spread term which is defined as

Absolute Average Error(ω)

∫
µ̃(dk, dT )

T

∣∣∆ω
GA(T, kET )−∆ω

REC(T, kET )
∣∣.

The maximum absolute average error on the book in spread term is then
defined as

Max Absolute Error = max
ω

Absolute Average Error(ω).

Our main results are
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Figure 8.5. Absolute Average Error of VaR per Scenario, ex-
pressed in bp. XFGabsolute

Max Algebraic Error = 0.1785 bp,

Max Absolute Error = 0.3318 bp.

As expected the maximum algebraic error is half the maximum absolute error
as we allow the offsetting of the error due to the book structure.

These results are quite satisfying and justify the use of this approach for VaR
computations in an industrial setting.
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Part III

Implied Volatility



9 Least Squares Kernel Smoothing of

the Implied Volatility Smile
Matthias R. Fengler and Qihua Wang

9.1 Introduction

Functional flexibility is the cornerstone for model building and model selec-
tion in quantitative finance, for it is often difficult, if not impossible, to justify
a specific parametric form of an economic relationship on theoretical grounds.
Furthermore, in a dynamic context, the economic structure may be subject
to changes and fluctuations. Hence, estimation techniques that do not im-
pose a priori restrictions on the estimate, such as non- and semiparametric
methods, are increasingly popular.

In finance, a common challenge is to the implied volatility smile function.
Based on the assumption of a geometric Brownian motion governing the
stock price dynamics, an unknown volatility parameter is implied from ob-
served option prices using the Black and Scholes (1973) formula. By theory
the resulting function should be constant in strike prices and dates of matu-
rity. Yet, as a matter of fact, one typically observes a curved and ‘smiley’
functional pattern across different strikes for a fixed maturity which is called
the implied volatility smile.

Although a large number of alternative pricing models were proposed in the
literature, it remains difficult to fully explain the shape of the smile with op-
tion standard option pricing models, see Bergomi (2004) for an assessment.
Therefore, it is common practice to fit a parametric function directly to the
observed implied volatility smile, which is used by market makers at plain
vanilla desks to manage their positions. As a pathway for more flexibility
one combines both the Black and Scholes (BS) model and nonparametric
smoothing of the smile. For instance, Ait-Sahalia and Lo (1998) suggest to
replace the constant volatility parameter by a semiparametric function. Al-
ternatively, Fengler, Härdle and Mammen (2007a) propose to model implied
volatility as a latent factor process fitted by semiparametric methods.
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These approaches share in common that they first derive implied volatilities
by equating the BS formula with observed market prices to solve for the
diffusion coefficient and that the actual fitting algorithm is applied in a second
step. As an alternative one can directly base the estimate on a least squares
kernel estimator that takes observed option prices, e.g. call prices C̃t, as
input parameters. This estimator was proposed by Gouriéroux, Monfort and
Tenreiro (1994) and Gouriéroux, Monfort and Tenreiro (1995) to predict a
stochastic volatility process in a latent factor model; we shall employ it here
for smoothing the smile. It is based on the representation

σ̂(κt, τ) = arg min
σ

n∑
i=1

{
C̃ti − CBS(·, σ)

}2
w(κti)

× K(1)

(
κt − κti

h1,n

)
K(2)

(
τ − τi

h2,n

)
,

where CBS(·, σ) denotes the BS price for calls, κt
def
= K/St is moneyness with

K denoting the strike and St the current asset price, and τ
def
= T − t time to

maturity, where T is the expiry date. K(1)(·) and K(2)(·) are kernel functions
and w(·) denotes a uniformly continuous and bounded weight function, which
allows for different weights of observed option prices. It can be used to give
less weight to in-the-money options which a may contain a liquidity premium.

An advantage of this estimator of the smile is that it allows for constructing
pointwise confidence intervals which explicitly take the nonlinear transforma-
tion from option prices to implied volatility into account. These confidence
intervals can be used to derive bid-ask-spreads in a statistically based fashion,
or to support trading decisions of statistical arbitrage models.

9.2 Least Squares Kernel Smoothing of the
Smile

European style calls are contingent claims on an asset St (for simplicity,
paying no dividends), which yield at a given expiry day T a pay-off max(ST−
K, 0). The strike price is denoted by K. Assuming that the asset price process
St follows a geometric Brownian motion with a constant diffusion coefficient



9 Least Squares Kernel Smoothing of the Implied Volatility Smile 195

σ, the BS formula is given by

CBS(St, t, K, T, r, σ) = StΦ(d1)− e−rτKΦ(d2), (9.1)

d1
def
=

log(St/K) + (r + 1
2σ

2)τ

σ
√

τ
,

d2
def
= d1 − σ

√
τ ,

where Φ(·) denotes the cumulative distribution function of a standard normal

random variable, r the risk-free interest rate, τ
def
= T − t time to maturity.

Since the actual volatility σ of the underlying price process cannot be ob-
served directly, one studies the volatility that is implied in option prices
observed on markets C̃t. Implied volatility σ̂ is defined as:

σ̂ : CBS
t (St, t, K, T, r, σ̂)− C̃t = 0 , (9.2)

By monotonicity in volatility, the solution σ̂ > 0 is unique. The purpose
is to estimate the function σ̂ : (K, T ) → σ̂(K, T ). More convenient is the
representation σ̂ : (κ, τ) → σ̂(κ, τ) expressed in relative terms by moneyness

κt
def
= K/St and time to maturity τ .

By homogeneity in K and S, the BS formula can be rewritten in terms of
moneyness:

CBS(St, t, K, T, r, σ) = St c
BS(κt, τ, r, σ) (9.3)

where cBS(κt, τ, r, σ) = Φ(d1) − e−rτκtΦ(d2) and d1 =
− log κt+(r+1

2σ2)τ
σ
√

τ
, d2 =

d1 − σ
√

τ (as before). As observed by Gouriéroux et al. (1995), this allows
for weaker assumptions on the estimator. The least squares kernel estimator
is then defined by:

σ̂(κt, τ) = arg min
σ

n∑
i=1

{
c̃ti − cBS(κti, τi, r, σ)

}2
w(κti)

× K(1)

(
κt − κti

h1,n

)
K(2)

(
τ − τi

h2,n

)
, (9.4)

where c̃t
def
= C̃t/St. The kernel functions are denoted by K(1)(·) and K(2)(·),

w(·) is a weight function, and i = 1, . . . , n a numbering of the option data.

In (9.4), we minimize the pricing error between observed option prices and
the BS formula where the volatility is replaced by an unknown nonparametric
function. We point out that we do not interpret the pricing error as a mis-
pricing which could be exploited by an arbitrage strategy, but rather follow
the notion of pricing errors developed in Renault (1997). We perceive the
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error term as an option pricing error due to a neglected heterogeneity factor.
Hence, the econometric specification is with respect to another martingale
measure equivalent to the actual pricing measure. This notion allows us to
stay within Harrison and Kreps (1979) framework.

The least squares kernel estimator is based on the following assumptions:

(A1) Etκ
4
t < ∞, where Et denotes the expectation operator with respect to

time-t information;

(A2) w(·) is a uniformly continuous and bounded weight function;

(A3) K(1)(·) and K(2)(·) are bounded probability density kernel functions
with bounded support;

(A4) interest rate r is constant.

Assumption (A1) is a weak assumption. It is justified, since by the institu-
tional arrangements at futures exchanges, options at new strikes are always
launched in the neighborhood of St. To understand this assumption note
that St is measureable with respect to the information at time t and that by
simple no-arbitrage considerations, we have 0 ≤ EtC̃t ≤ St. (A2) is usually
satisfied by weight functions. In Section 9.3 we will discuss possible choices
for w(·). Condition (A3) is met by a lot of kernels used in nonparametric re-
gression, such as the quartic or Epanechnikov kernel functions. Assumption
(A4) is needed to derive the BS formula. It can be justified by the empiri-
cal observation that asset price variability largely outweighs changes in the
interest rate, Bakshi, Cao and Chen (1997). Nevertheless, the impact from
changing interest rates can be substantial for options with a very long time
to maturity.

Given assumptions (A1) to (A4) one obtains consistency:

PROPOSITION 9.1 Let σ(κt, τ) be the solution of
Et[{c̃t1 − cBS(κt, τ, r, σ)}w(κt)] = 0. If conditions (A1), (A2), (A3) and (A4)
are satisfied, we have:

σ̂(κt, τ)
p−→ σ(κt, τ)

as nh1,nh2,n →∞.
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Furthermore, we introduce the notations:

Ai(κt, τ, r, σ)
def
= c̃ti − cBS(κti, τi, r, σ) ,

B(κt, τ, r, σ)
def
=

∂cBS(κt, τ, r, σ)

∂σ
= S−1

t

∂CBS(·)
∂σ

=
√

τφ(d1) , (9.5)

D(κt, τ, r, σ)
def
=

∂2cBS(κt, τ, r, σ)

∂σ2 = S−1
t

∂2CBS(·)
∂σ2

=
√

τφ(d1)d1d2σ
−1 , (9.6)

where φ(u) = 1√
2π

e−u2/2. In financial language, B, the sensitivity of the

option price with respect to volatility, is called ‘vega’. Its second derivative
D is termed ‘volga’. Then one can establish

PROPOSITION 9.2 Under conditions (A1), (A2), (A3), and (A4), if
Et{B2(κt, τ, r, σ)w(κt)} �= Et{A(κt, τ, r, σ)D(κt, τ, r, σ)w(κt)}, we have√

nh1nh2n{σ̂(κt, τ)− σ(κt, τ)} L−→ N(0, γ−2ν2),

where

γ2 def
=

[
Et{−B2(κt, τ, r, σ)w(κt) + A(κt, τ, r, σ)D(κt, τ, r, σ)w(κt)}

]2
ft(κt, τ)

ν2 def
= Et{A2(κt, τ, r, σ)B2(κt, τ, r, σ)w2(κt)}

∫
K2

(1)(u)K2
(2)(v) dudv ,

and ft(κt, τ) is the joint (time-t conditional) probability density function of
κt and τ respectively.

The proof can be found in Gouriéroux et al. (1994) and in the appendix.
The asymptotic distribution depends on first and second order derivatives,
and the weight function. Nevertheless an approximation is simple, since first
and second order derivatives have the analytical expressions given in (9.5)
and (9.6).

9.3 Application

9.3.1 Weighting Functions, Kernels, and Minimization
Scheme

In order to obtain a good forecast of asset price variability, the early literature
on implied volatility discusses different weighting schemes of implied volatility
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the observations intensively. In principle, this results in scalar estimates of
the form

σ̂∗ = arg min
σ

n∑
i=1

wi{C̃i − CBS(σ)}2/

n∑
i=1

wi , (9.7)

where wi is a weight. Schmalensee and Trippi (1978) and Whaley (1982)
argue in favor of unweighted averages, i.e. wi = 1. Beckers (1981) suggests
the vega as weights, wi = ∂Ci/∂σ, while Latané and Rendelman (1976)
propose squared vega as weights. Chiras and Manaster (1978) employ the
elasticity with respect to volatility, i.e. wi = ∂Ci

∂σ
σ
Ci

.

The vega is a Gaussian shaped function in the underlying centered approx-
imately at-the-money (ATM), cf. Equation (9.5). Elasticity is a decreasing
function in the underlying for calls. Thus, obvious concern of these weighting
procedures is to give low weight to in-the-money (ITM) options, and high-
est weight to ATM or out-of-the-money (OTM) options. Due to the lower
trading volume of the first, ITM options are suspected to trade at a liquidity
premium which may ensue biased estimates of volatility. In contrast to this
argument, one could also give little weight to ATM options and much bigger
to ITM and OTM options, e.g. by using the inverse of the squared vega
wi = (∂Ci/∂σ)−2. The rationale of this choice is that inserting the inverse of
the squared vega into the call price smoother (9.4) implies smoothing in the
implied volatility domain at first order.

As kernel functions we use quartic kernels,

K(u) =
15

16
(1− u2)21(|u| ≤ 1) ,

where 1(A) denotes the indicator function of the event A. In practice, the
choice of the kernel function has little impact on the estimates Härdle (1990).
Given global convexity (see appendix), we use the Golden section search im-
plemented in the statistical software package XploRe. The estimation toler-
ance is fixed at 10−5.

9.3.2 Data Description and Empirical Demonstration

The data used contain the January and February 2001 tick statistics of the
DAX futures contracts and DAX index options and is provided by the futures
exchange EUREX, Frankfurt/Main. Both futures and option data are con-
tract based data, i.e. each single contract is registered together with its price,
contract size, and the time of settlement up to a second. Interest rate data in
daily frequency, i.e. 1, 3, 6, 12 months EURIBOR rates, are gathered from
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Observation Time to min max mean standard total number of
date expiry (days) deviation observations calls

Jan. 02, 2001 17 0.1711 0.3796 0.2450 0.0190 1219 561
Feb. 02, 2001 14 0.1199 0.4615 0.1730 0.0211 1560 813

Table 9.1. Implied volatility data obtained by inverting the BS formula
separately for each observation in the sense of two-step estimators.

Thomson Financial Datastream, and linearly interpolated to approximate the
riskless interest rate for the option specific time to maturity.

For our application, we use data from January 02 and February 02, 2001. For
data preparation we apply a scheme described in more detail in Hafner and
Wallmeier (2001). In a first step, we recover the DAX index values. To this
end, we group to each option price observation the futures price Ft of the near-
est available futures contract, which was traded within a one minute interval
around the observed option price. The futures price observation is taken from
the most heavily traded futures contract on the particular day, which is the
March 2001 contract. The no-arbitrage price of the underlying index in a
frictionless market without dividends is given by St = Fte

−rTF ,t(TF−t), where
St and Ft denote the index and the futures price respectively, TF the fu-
tures contract’s maturity date, and rT,t the interest rate with maturity T − t.
In the case of a capital weighted performance index as is the DAX index,
Deutsche Börse (2006), dividends less corporate tax are reinvested into the
index. Thus, the dividend yield can be assumed to be zero.

In Table 12.1, we give an overview of the data set. We present summary
statistics in the form of the implied volatility data rather than in form of the
option price data. The corresponding option data (each option price divided
by the discounted future) can be seen in the top panel of Figure 9.1. Since
the data are transaction data containing potential misprints, we apply a filter
in deleting all observations whose implied volatility is bigger than 0.7 and
less than 0.1. The settlement price of the March 2001 futures contract was
6340 EUR at a volume of 30 088 contracts on Jan. 02, 2001, and 6669.5 EUR
and 34 244 contracts on Feb. 02, 2001.

The plots are displayed in Figures 9.1 and 9.2. The top panel shows the
observed option prices given on the moneyness scale, while the lower panel
demonstrates the estimate (with equal weighting) together with a pointwise
confidence interval. For the construction we used a kernel estimate of the den-
sity based on Silverman’s rule of thumb Härdle, Müller, Sperlich and Werwatz
(2004). Naturally, the interval broadens in the wings of the smile, when data
become scarce. In a trading context, these confidence intervals allow for sta-



200 Matthias R. Fengler and Qihua Wang

tistically well defined bid-ask spread. They could be used to support trading
decisions, for instance, in statistical arbitrage models. Extensions of these
ideas for multi-asset equity options and correlation products can be found in
Fengler and Schwendner (2004) and Fengler, Pilz and Schwendner (2007b).
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Figure 9.1. Upper panel: observed option price data on Jan 02, 2001.
From lower left to upper right put prices, from upper left to lower right
(normalized) call prices. Lower panel: least squares kernel smoothed im-
plied volatility smile for 17 days to expiry on Jan 02, 2001. Bandwidth
h1 = 0.025. Dotted lines are the 95% confidence intervals for σ̂. Sin-
gle dots are implied volatility data obtained by inverting the BS formula.
XFGLSK
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Figure 9.2. Upper panel: observed option price data on Feb. 02, 2001.
From lower left to upper right put prices, from upper left to lower right
(normalized) call prices. Lower panel: least squares kernel smoothed im-
plied volatility smile for 14 days to expiry on Jan 02, 2001. Bandwidth
h1 = 0.015. Dotted lines are the 95% confidence intervals for σ̂. Sin-
gle dots are implied volatility data obtained by inverting the BS formula.
XFGLSK
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9.4 Proofs

Proof of Theorem (9.1):

For notational simplicity, we introduce:

Z(x, y)
def
= w(x) K(1)

(
κt − x

h1,n

)
K(2)

(
τ − y

h2,n

)
, (9.8)

and

L̂n(σ)
def
=

1

nh1,nh2,n

n∑
i=1

{c̃ti − cBS(κti, τi, r, σ)}2 Z(κti, τi) . (9.9)

We also drop in the following the dependence of the option prices on r.

As a first step, let us prove

L̂n(σ)
p−→ L(σ)

def
= Et

[
{c̃t − cBS(κt, τ, σ)}2w(κt)

]
. (9.10)

It is observed that

L̂n(σ) =
1

nh1,nh2,n

n∑
i=1

{
{c̃ti − cBS(κti, τi, σ)}2 Z(κti, τi)

− Et

[
{c̃ti − cBS(κti, τi, σ)}2 Z(κti, τi)

]}
+

1

h1,nh2,n
Et

[
{c̃t1 − cBS(κt1, τ1, σ)}2 Z(κt1, τ1)

]
def
= αn + βn . (9.11)

Standard arguments can be used to prove

Etα
2
n = O

(
(nh1,nh2,n)

−1
)

(9.12)

by conditions (A1) and (A2).

By Taylor’s expansion, we have

βn =
1

h1,nh2,n
Et

∫
{c̃t1 − cBS(x, y, σ)}2 Z(x, y) dx dy

= Et

∫
{c̃t − cBS(κt − h1,nu, τ − h2,nv, σ)}2

× w(κt − h1,nu)K(1)(u)K(2)(v) du dv
p−→ L(σ) . (9.13)
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Equations (9.12) and (9.13) together prove (9.10).

In a second step, we have, recalling the definition of σ(κt, τ):

∂L(σ)

∂σ

∣∣∣
σ=σ(κt,τ)

= −2 Etc̃tw(κt)
∂

∂σ
cBS(κt, τ, σ)

∣∣∣
σ=σ(κt,τ)

+ 2 Etc
BS(κt, τ, σ(κt, τ))w(κt)

∂

∂σ
cBS(κt, τ, σ)

∣∣∣
σ=σ(κt,τ)

= 0 , (9.14)

and

∂2L(σ)

∂σ2

∣∣∣
σ=σ(κt,τ)

= −2 Etc̃tw(κt)
∂2

∂σ2c
BS(κt, τ, σ)

∣∣∣
σ=σ(κt,τ)

+ 2 Etw(κt)

(
∂

∂σ
cBS(κt, τ, σ)

∣∣∣
σ=σ(κt,τ)

)2

+ 2 Etw(κt)c
BS(κt, τ, σ(κ, τ))

∂2

∂σ2c
BS(κt, τ, σ)

∣∣∣
σ=σ(κ,τ)

= 2 Etw(κt)

(
∂

∂σ
cBS(κt, τ, σ)

∣∣∣
σ=σ(κt,τ)

)2

. (9.15)

This together with (9.10) proves that L̂n(σ) converges in probability to a con-

vex function with a unique minimum at σ = σ(κt, τ). σ̂n(κt, τ)
p−→ σ(κt, τ)

is proved.

Proof of Theorem (9.2):

Recalling the definition of σ̂(κt, τ), it follows that σ̂(κt, τ) is the solution of
the following equation:

Un(σ)
def
=

1

nh1,nh2,n

n∑
i=1

Ai(κti, τi, σ)Bi(κti, τi, σ) Z(κti, τi)

= 0 . (9.16)

By Taylor’s expansion, we get

0 = Un(σ̂(κt, τ)) = Un(σ(κt, τ)) + U ′
n(σ

∗)
(
σ̂t(κt, τ)− σ(κt, τ)

)
, (9.17)

where σ∗ lies between σ and σ̂ and U ′
n(σ

∗)
def
= ∂

∂σUn(σ)|σ=σ∗.
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From (9.17), we have

σ̂(κt, τ)− σ(κt, τ) = −{U ′
n(σ

∗)}−1Un(σ) . (9.18)

By some algebra, we obtain

U ′
n(σ) =

1

nh1,nh2,n

n∑
i=1

({( ∂

∂σ
Ai(κti, τi, σ)

)
Bi(κti, τi, σ)

+ Ai(κti, τi, σ)
( ∂

∂σ
Bi(κti, τi, σ)

)}
Z(κti, τi)

− Et

[{( ∂

∂σ
Ai(κti, τi, σ)

)
Bi(κti, τi, σ)

+ Ai(κti, τi, σ)
∂

∂σ
Bi(κti, τi, σ)

}
Z(κti, τi)

])

+
1

nh1,nh2,n

n∑
i=1

Et

[{( ∂

∂σ
Ai(κti, τi, σ)

)
Bi(κti, τi, σ)

+ Ai(κti, τi, σ)
∂

∂σ
Bi(κti, τi, σ)

}
Z(κti, τi)

]
def
= �1,n +�2,n . (9.19)

Inspect first �1,n in Equation (9.19): by some algebra, we get

Et�2
1,n ≤ 1

n2h2
1,nh

2
2,n

n∑
i=1

Et

[{
(

∂

∂σ
Ai(κti, τi, σ))Bi(κti, τi, σ)

+ Ai(κti, τi, σ)
∂

∂σ
Bi(κti, τi, σ)

}
Z(κti, τi)

]2

=
f 2

t (κt, τ)
∫

K2
(1)(u) du

∫
K2

(2)(v)dv

nh1,nh2,n
Et

[{( ∂

∂σ
A1(κt, τ, σ)B1(κt, τ, σ)

+ A1(κt, τ, σ)
∂

∂σ
B1(κt, τ, σ)

)2}
w(κt)

]
+ O

(
1

nh1,nh2,n

)
−→ 0 , (9.20)

as nh1,nh2,n →∞. The joint (time-t conditional)probability density function
of κt and τ is denoted by ft(κt, τ).

To consider �2,n in Equation (9.19), denote D(κt, τ, σ)
def
= ∂

∂σB(κt, τ, σ), for
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simplicity. Note that ∂
∂σA(κt, τ, σ) = −B(κt, τ, σ). Thus, we have:

�2,n =
1

h1,nh2,n
Et

{∫ (
−B2(x, y, σ) + A(x, y, σ)D(x, y, σ)

)
× Z(x, y)ft(x, y) dx dy

}
= Et

∫ {
−B2(κt − h1,nu, τ − h2,nv, σ)

+ A(κt − h1,nu, τ − h2,nv, σ)D(κt − h1,nu, τ − h2,nv, σ)
}

× w(κt) ft(κt − h1,nu, τ − h2,nv)K(1)(u)K(2)(v) du dv

−→
[
− Et

{
B2(κt, τ, σ)w(κt)

}
+ Et

{
A(κt, τ, σ)D(κt, τ, σ)w(κt)

}]
ft(κt, τ) . (9.21)

Equations (9.19), (9.20), (9.21) and the fact U ′
n(σ

∗) − U ′
n(σ) → 0 together

prove:

U ′
n(σ

∗)
p−→

[
Et

{
−B2(κt, τ, σ)w(κt)

}
+ Et

{
A(κt, τ, σ)D(κt, τ, σ)w(κt)

}]
ft(κt, τ) .

(9.22)

Now, let

uni
def
=

1

h1,nh2,n
A(κti, τi, σ)B(κti, τi, σ) Z(κti, τi) . (9.23)
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For some δ > 0, we have:

Et|uni|2+δ =
1

h2+δ
1,n h2+δ

2,n

EtA
2+δ(κti, τi, σ)B2+δ(κti, τi, σ)2+δ Z2+δ(κti, τi)

=
1

h1+δ
1,n h1+δ

2,n

Et

[ ∫
A2+δ(κt − hnu, τ − hnv, σ)

× B2+δ(κt − hnu, τ − hnu, σ)

× Z2+δ(κt − h1,nu, τ − h2,nv) du dv

]
=

ft(κt, τ)
∫

K2+δ
(1) (u) du

∫
K2+δ

(2) (v) dv

h1+δ
1,n h1+δ

2,n

× Et

[
A2+δ(κt, τ, σ)B2+δ(κt, τ, σ)w2+δ(κt)

]
+ O

(
1

h1+δ
1,n h1+δ

2,n

)
. (9.24)

Similarly, we get:

Etu
2
ni =

ft(κt, τ)
∫

K2
(1)(u) du

∫
K2

(2)(v) dv

h1,nh2,n

× Et{A2(κt, τ, σ)B2(κ, τ, σ)w2(κt)}

+ O

(
1

h1,nh2,n

)
. (9.25)

(9.24) and (9.25) together prove∑n
i=1 Et|uni|2+δ

(
∑n

i=1 Et|uni|2)
2+δ
2

= O((nh1,nh2,n)
− δ

2 ) = O(1) (9.26)

as nh1,nh2,n → 0.

Applying the Liapounov central limit theorem, we get√
nh1,nh2,n Un(σ)

L−→ N
(
0, ft(κt, τ) ν2

)
, (9.27)

where

ν2 def
= Et{A2(κt, τ, σ)B2(κt, τ, σ)w2(κt)}

∫
K2

(1)(u)K2
(2)(v) dudv . (9.28)

By (9.22) and (9.27), Theorem (9.2) is proved.



10 Numerics of Implied Binomial Trees
Wolfgang Härdle and Alena Myšičková

For about 20 years now, discrepancies between market option prices and Black
and Scholes (BS) prices have widened. The observed market option price
showed that the BS implied volatility, computed from the market option price
by inverting the BS formula varies with strike price and time to expiration.
These variations are known as “the volatility smile (skew)” and volatility
term structure, respectively.

In order to capture the dependence on strike and time to maturity, various
smile-consistent models (based on an arbitrage-free approach), have been pro-
posed in the literature. One approach is to model the volatility as a stochas-
tic process, see Hull and White (1987) or Derman and Kani (1998); another
works with discontinuous jumps in the stock price, see Merton (1976). How-
ever, these extensions cause several practical difficulties such as the violation
of the risk-neutrality or no-arbitrage. In contrast, more recent publications
proposed by Rubinstein (1994), Derman and Kani (1994), Dupire (1994),
and Barle and Cakici (1998) have introduced a locally deterministic volatility
function that varies with market price and time. These models independently
construct a discrete approximation to the continuous risk neutral process for
the underlying assets in the form of binomial or trinomial trees. These de-
terministic volatility models have both practical and theoretical advantages:
they are easily realisable and preserve the no-arbitrage idea inherent in the
BS model.

The implied binomial tree (IBT) method constructs a numerical procedure
which is consistent with the smile effect and the term structure of the implied
volatility. The IBT algorithm is a data adaptive modification of the Cox,
Ross and Rubinstein (1979)(CRR) method where the stock evolves along a
risk neutral binomial tree with constant volatility.

The following three requirements should be minimally satisfied by an IBT:

� correct reproduction of the volatility smile

� node transition probabilities lying in [0, 1]-intervall only

� risk neutral branching process (forward price of the underlying asset
equals the conditional expected value of itself) at each step.
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The last two conditions also guarantee no-arbitrage; should the stock price
fall below or above its corresponding forward price, the transition probability
would exceed the [0, 1]-interval.

The basic aim of the IBT is the estimation of implied probability distribu-
tions, or state price densities (SPD), and local volatility surfaces. Further-
more, the IBT may evaluate the future stock price distributions according to
the BS implied volatility surfaces which are calculated from observed daily
market European option prices.

In this chapter, we describe the numerical construction of the IBT and com-
pare the predicted implied price distributions. In Section 10.1, a detailed
construction of the IBT algorithm for European options is presented. First,
we introduce the Derman and Kani (1994) (DK) algorithm and show its pos-
sible drawbacks. Afterwards, we follow an alternative IBT algorithm by Barle
and Cakici (1998) (BC), which modifies the DK method by a normalisation
of the central nodes according to the forward price in order to increase its
stability in the presence of high interest rates. In Section 10.2 we compare
the SPD estimations with simulated conditional density from a diffusion pro-
cess with a non-constant volatility. In the last section, we apply the IBT to
a real data set containing underlying asset price, strike price, time to matu-
rity, interest rate, and call/put option price from EUREX (Deutsche Börse
Database). We compare the SPD estimated by real market data with those
predicted by the IBT.

10.1 Construction of the IBT

In the early 1970s, Black and Scholes presented the Geometric Brownian
Motion (GBM) model, where the stock price St is a solution of the stochastic
differential equation (SDE):

dSt

St
= µdt + σdWt , (10.1)

with a standard Wiener process Wt and the constant instantaneous drift
µ. The constant instantaneous volatility function σ measures the return
variability around its expectation µ. Using a risk neutral measure Q, see
Fengler (2005), the BS pricing formulae for european call and put options
are:

Ct = e−rτEQ{max(ST −K, 0)} (10.2)

Pt = e−rτEQ{max(K − ST , 0)} . (10.3)
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Under these relations the underlying at the expiration date follows a condi-
tional lognormal distribution with density:

q(ST |St, r, τ, σ) =
1

ST

√
2πσ2τ

exp

⎡⎢⎣−
{

log
(

ST

St

)
− (r − σ2

2 )τ
}2

2σ2τ

⎤⎥⎦ . (10.4)

In the upper equations T is the expiration date, St is the stock price at time
t, τ = T − t is time to maturity, K is the strike price and r is the riskless
interest rate.

Looking at a general SDE for an underlying asset price process:

dSt

St
= µ(St, t)dt + σ(St, t, ·)dWt , (10.5)

we can differentiate the following three concepts of volatility, see Fengler
(2005):

Instantaneous volatility σ(St, t, ·)
� measures the instantaneous standard deviation of log St

� depends on the current level of the asset price St, time t and possibly
on other state variables denoted with ‘·’.

Implied volatility σ̂t(K, T )

� the BS option price implied measure of volatility, the instantaneous
standard deviation of log St

� the volatility parameter corresponds to the BS price and a particular
observed market option price

� depends on the strike K, the expiration date T and time t.

Local volatility σK,T (St, t)

� expected instantaneous volatility conditional on a particular level of the
asset price ST = K at t = T

� In a deterministic model we can write σK,T (St, t) = σ(K, T ).

The CRR binomial tree is constructed as a discrete approximation of a GBM
process with a constant instantaneous volatility σt(St, t) = σ. Analogously,
the IBT can be viewed as a discretization of an instantaneous volatility model:

dSt

St
= µtdt + σ(St, t)dWt, (10.6)
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where σ(St, t) depends on both the underlying price and time. The purpose of
the IBT is to construct a discrete implementation of the extended BS model
based on the observed option prices yielding the variable volatility σ(St, t). In
addition, the IBT may reflect a non-constant drift µt. After the construction
of the IBT, we are able to estimate a local volatility from underlying stock
prices and transition probabilities.

In the IBT construction, only observable data (market option prices, under-
lying prices, interest rate) are used, it is therefore nonparametric in nature.
Several alternative studies based on the kernel method, A¨it-Sahalia and
Lo (1998), or nonparametric constrained least squares, Yatchew and Härdle
(2006), and curve-fitting methods, Jackwerth and Rubinstein (1996) have
been published in recent years.

10.1.1 The Derman and Kani Algorithm

In the DK IBT approach, stock prices, transition probabilities and Arrow-
Debreu prices (discounted risk neutral probabilities) are calculated iteratively
level by level, starting in the level zero.

�
t0

j = 0

t1

j = 1

t2

j = 2

�ttime:

level:

�������

�������

�������
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S1
1
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2
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2
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2

S0
2

S1
2

λ1
2

Figure 10.1. Construction of an implied binomial tree.

Figure 10.1 illustrates the construction of the first two nodes of an IBT. We
build the IBT on the time interval [0, T ] with j = 0, 1, 2, . . . , n equally spaced
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levels, �t apart. We start at zero level with t = 0, here the stock price equals
the current price of the underlying: S0

0 = S. There are n+1 nodes at the nth
level of the tree, we indicate the stock price of the ith node at the nth level
by Si

n, and the forward price at level n + 1 of Si
n at level n by F i

n = er�tSi
n.

The conditional probability pn
i+1 = P(Sn+1 = Si+1

n+1|Sn = Si
n) is the transition

probability of making a transition from node (n, i) to node (n + 1, i + 1).

The forward price Fn,i is required to satisfy the risk neutral condition:

F i
n = pn

i+1S
i+1
n+1 + (1− pn

i+1)S
i
n+1 . (10.7)

Thus we obtain the transition probability from the following equation:

pn
i+1 =

F i
n − Si

n+1

Si+1
n+1 − Si

n+1
. (10.8)

The Arrow-Debreu price is the price of an option which pays 1 unit payoff
if the stock price St at time t attains the value Si

n, and 0 otherwise. The
Arrow-Debreu price in the state i at level n can be computed as the expected
discounted value of its payoff: λi

n = E[e−rt1(St = Si
n)|S0 = S0

0 ]. In general,
Arrow-Debreu prices can be obtained by the iterative formula, where λ0

0 = 1
as a definition.

λ0
n+1 = e−r�t

{
λ0

n(1− pn
1)
}

λi+1
n+1 = e−r�t

{
λi

np
n
i+1 + λi+1

n (1− pn
i+2)

}
, 0 ≤ i ≤ n− 1 (10.9)

λn+1
n+1 = e−r�t {λn

np
n
n+1}

To illustrate the calculation of the Arrow-Debreu prices, we provide an ex-
ample with a construction of a CRR binomial tree. Let us assume that the
current value of the underlying S = 100, time to maturity τ = T = 2 years,
�t = 1 year, constant volatility σ = 10%, and riskless interest rate r = 0.03.
The Arrow-Debreu price tree shown in the Figure 10.3 can be calculated from
the stock price tree in the Figure 10.2.

Using the CRR method, the stock price at the lower node at the first level
equals S0

1 = S0
0 · e−σ�t = 100 · e−0.1 = 90.52, and at the upper node S1

1 =
S0

0 · eσ�t = 110.47. The transition probability p0
1 = 0.61 is obtained by

the formula (10.8) with F 0
0 = S0

0e
0.03 = 103.05. Now, we calculate λi

1 for
i = 0, 1, according to the formula (10.9): λ0

1 = e−r�t · λ0
0 · (1 − p0

1) = 0.36
and λ1

1 = e−r�t · λ0
0 · p0

1 = 0.61. At the second level, we calculate the stock
prices according to the corresponding nodes at the first level, for example:
S0

2 = S0
1 · e−σ�t = 81.55, S1

2 = S0
0 = 100 and S2

2 = S1
1 · eσ�t = 122.04.
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Figure 10.2. CRR binomial tree for stock prices with T = 2
years, �t = 1, σ = 0.1 and r = 0.03. XFGIBT01
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Figure 10.3. CRR binomial tree for Arrow-Debreu prices with
T = 2 years, �t = 1, σ = 0.1 and r = 0.03. XFGIBT01

The corresponding Arrow-Debreu prices λi
2 for i = 0, 1, 2 are obtained by the

substitution in the formula 10.9:

λ0
2 = e−r�t · λ0

1 · (1− p1
1) = 0.13

λ1
2 = e−r�t · {λ0

1 · p1
1 + λ1

1 · (1− p1
2) = 0.44}

λ2
2 = e−r�t · λ1

1 · p1
2 = 0.37 .

In the BS model with the state price density (SPD) from 10.4, the option
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prices are given by:

C(K, τ) = e−rτ

∫ +∞

0
max(ST −K, 0) q(ST |St, r, τ)dST , (10.10)

P (K, τ) = e−rτ

∫ +∞

0
max(K − ST , 0) q(ST |St, r, τ)dST , (10.11)

where C(K, τ) and P (K, τ) denote call option price and put option price
respectively, and K is the strike price. In the IBT, option prices are calculated
in discrete time intervals τ = n�t using the Arrow-Debreu prices,

C(K, n�t) =
n∑

i=0

λi+1
n+1 max(Si+1

n+1 −K, 0) , (10.12)

P (K, n�t) =
n∑

i=0

λi+1
n+1 max(K − Si+1

n+1, 0) . (10.13)

Using the risk neutral condition (10.7) and the discrete option price calcula-
tion from (10.12) or (10.13), one obtains the iteration formulae to construct
the IBT.

Let us assume the strike price is equal to the known stock price: K = Si
n = S.

Then the contribution from the transition to the first in-the-money upper
node can be separated from the other contributions. Using the iterative
formulae for the Arrow-Debreu prices (10.9) in the equation (10.12):
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er�tC(S, n�t) = λ0
n(1− pn

1) max(S0
n+1 − S, 0) + λn

np
n
n+1 max(Sn+1

n+1 − S, 0)

+
n−1∑
j=0

{
λj

np
n
j+1 + λj+1

n (1− pn
j+2)

}
max(Sj+1

n+1 − S, 0)

=
{
λi

np
n
i+1 + λi+1

n (1− pn
i+2)

}
(Si+1

n+1 − S) + λn
np

n
n+1(S

n+1
n+1 − S)

+
n−1∑

j=i+1

{
λj

np
n
j+1 + λj+1

n

(
1− pn

j+2
)}

(Sj+1
n+1 − S)

= λi
np

n
i+1(S

i+1
n+1 − S)

+
n−1∑

j=i+1

λj
np

n
j+1(S

j+1
n+1 − S) + λn

np
n
n+1(S

n+1
n+1 − S)

+ λi+1
n (1− pn

i+2)(S
i+1
n+1 − S) +

n∑
j=i+2

λj
n(1− pn

j+1)(S
j
n+1 − S)

= λi
np

n
i+1(S

i+1
n+1 − S)

+
n∑

j=i+1

λj
n

{(
1− pn

j+1
)
(Sj

n+1 − S) + pn
j+1(S

j+1
n+1 − S)

}
.

Entering the risk neutral condition (10.7) in the last term, one obtains:

er�tC(S, n�t) = λi
np

n
i+1
(
Si+1

n+1 − S
)

+
n∑

j=i+1

λj
n

(
F j

n − S
)

. (10.14)

Now, the stock price for the upper node can be rewritten in terms of the
known Arrow-Debreu prices λi

n, the known stock prices Si
n and the known

forwards F i
n:

Si+1
n+1 =

Si
n+1

{
C
(
Si

n, n�t
)
er�t − ρu

}
− λi

nS
i
n

(
F i

n − Si
n+1

)
C (Si

n, n�t) er�t − ρu − λi
n

(
F i

n − Si
n+1

) , (10.15)

where ρu denotes the following summation term:

ρu =
n∑

j=i+1

λj
n(F

j
n − Si

n) . (10.16)

The transition from the nth to the (n + 1)th level of the tree is defined by
(2n + 3) parameters, i.e. (n + 2) stock prices of the nodes at the (n + 1)th
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level, and (n + 1) transition probabilities (when the IBT starts at the zero-
level). Suppose (2n+1) parameters corresponding to the nth level are known,
the stock prices Si

n+1 and transition probabilities pn
i+1 at all nodes above the

centre of the tree corresponding to the (n+1)th level can be found iteratively
using the equations (10.15) and (10.8) as follows:

We always start from the central nodes, if n is odd, define Si
n+1 = S0

0 = S,
for i = (n + 1)/2. If n is even, we start from the two central nodes just
below and above the centre of the level, Si

n+1 and Si+1
n+1 for i = n/2, and set

Si
n+1 = (Si

n)
2/Si+1

n+1 = S2/Si+1
n+1, which adjusts the logarithmic CRR centring

spacing between Si
n and Si+1

n+1 to be the same as that between Si
n and Si

n+1.
Substituting this relation into (10.15) one gets the formula for the upper of
the two central nodes for the odd levels:

Si+1
n+1 =

S
{
C (S, n�t) er�t + λi

nS − ρu

}
λi

nF
i
n − er�tC (S, n�t) + ρu

for i =
n

2
. (10.17)

Once we have the initial nodes’ stock prices, according to the relationships
among the different parameters, we can repeat the process to calculate those
at higher nodes (n + 1, j), j = i + 2, . . . n + 1 one by one.

Similarly, we can calculate the parameters at lower nodes (n + 1, j), j =
i− 1, . . . , 1 at the (n + 1)th level by using the known put prices P (K, n�t)
for K = Si

n.

Si
n+1 =

Si+1
n+1

{
er�tP (Si

n, n�t)− ρl

}
− λi

nS
i
n(F

i
n − Si+1

n+1)

er�tP {Si
n, (n + 1)�t} − ρl + λi

n(F
i
n − Si+1

n+1)
, (10.18)

where ρl denotes the sum over all nodes below the one with price Si
n:

ρl =
i−1∑
j=0

λj
n(S

i
n − F j

n) . (10.19)

Transition probabilities and Arrow-Debreu prices are obtained by (10.8) and
(10.9), respectively.

C(K, τ) and P (K, τ) in (10.15) and (10.18) are the interpolated values for
a call or put struck today at strike price K and time to maturity τ . In the
DK construction, they are obtained by the CRR binomial tree with constant
parameters σ = σimp(K, τ), calculated from the known market option prices.
In practice, calculating interpolated option prices by the CRR method is
computationally intensive.
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10.1.2 Compensation

The transition probability pn
i at any node should lie between 0 and 1, this

condition avoids the riskless arbitrage: if pn
i+1 > 1, the stock price Si+1

n+1 would
fall below the forward price F i

n, similarly, if pn
i+1 < 0, the strike price Si

n+1
would fall above the forward price F i

n. Therefore it is useful to limit the
estimated stock prices by the neighbouring forwards from the previous level:

F i
n < Si+1

n+1 < F i+1
n . (10.20)

If the stock price does not fulfil the above inequality condition, we rede-
fine it by assuming that the logaritmic difference between the stock prices
at this node and its adjacent is equal to the logaritmic difference between
the corresponding stock prices at the two nodes at the previous level, i.e.,
log(Si+1

n+1/S
i
n+1) = log(Si

n/S
i−1
n ). Sometimes, the obtained price still does not

satisfy inequality (10.20), then we substitute the stock price Si+1
n+1 by the

average of F i
n and F i+1

n .

As used in the construction of the IBT in (10.12) or (10.13), the implied
conditional distribution, the SPD q(ST |St, r, τ), could be estimated at discrete
time τ = n� t by the product of the Arrow-Debreu prices λi

n+1 at the (n+1)th
level with the influence of the interest rate ern� t. To fulfill the risk-neutrality
condition (10.7), the conditional expected value of the underlying log stock
price in the following (n + 1)th level, given the stock price at the nth level is
defined as:

M = EQ{log(Sn+1)|Sn = Si
n} = pn

i+1 log(Si+1
n+1)+(1−pn

i+1) log(Si
n+1) . (10.21)

We can specify such a condition also for the conditional second moments of
log(Sn+1) at Sn = Si

n, which is the implied local volatility σ2(Si
n, n�t) during

the time period �t:

σ2(Si
n,�t) = VarQ{log(Sn+1)|Sn = Si

n}
= pn

i+1{log(Si+1
n+1)−M}2 + (1− pn

i+1){log(Si
n+1)−M}2

= 2 log

(
Si+1

n+1

Si
n+1

)
{pn

i+1(1− pn
i+1)} . (10.22)

After the construction of an IBT, all stock prices, transition probabilities,
and Arrow-Debreu prices at any node in the tree are known. We are thus
able to calculate the local volatility σ(Si

n, m�t) at any level m.

In general, the instantaneous volatility function used in the diffusion model
(10.6) is different from the local volatility function derived in (10.22), only
in the BS model are they identical. Additional, the BS implied volatility
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σ̂(K, τ), which assumes the Black-Scholes model at least locally, differs from
the local volatility σ(s, τ), they describe different characteristics of the second
moment using different parameters.

If we choose �t small enough, we obtain the estimated SPD at fixed time to
maturity, and the distribution of local volatility σ(S, τ).

10.1.3 Barle and Cakici Algorithm

Barle and Cakici (1998) (BC) suggest an improvement of the DK construc-
tion. The first major modification is the choice of the strike price in which
the option should be evaluated (as in 10.14). In the BC algorithm, the strike
price K is chosen to be equal to the forward price F i

n, and similarly to the
DK construction, using the discrete approximation (10.12) we get:

er�tC(F i
n, n�t) =

n∑
j=0

λj+1
n+1 max(Sj+1

n+1 − F i
n, 0)

=
{
λi

np
n
i+1 + λi+1
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.

Entering the risk neutral condition again (10.7) one obtains:

er�tC(F i
n, n�t) = λi

np
n
i+1
(
Si+1

n+1 − F i
n

)
+

n∑
j=i+1

λj
n

(
F j

n − F i
n

)
. (10.23)

Identify the upper sum as:

�u =
n∑

j=i+1

λj
n

(
F j

n − F i
n

)
, (10.24)

and using the equation for the transition probability (10.8) we can write the
recursion relation for the stock price in the upper node as follows:

Si+1
n+1 =

Si
n+1

{
C
(
F i

n, n�t
)
er�t − �u

}
− λi

nF
i
n

(
F i

n − Si
n+1

)
C (F i

n, n�t) er�t − �u − λi
n

(
F i

n − Si
n+1

) . (10.25)
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Analogous to the DK construction, we start from the central nodes of the
binomial tree, but in contrast with the DK construction the BC construction
takes the riskless interest rate into account. If (n + 1) is even, the price of
the central node Si

n+1 = S0
0e

r�t for i = (n + 1)/2. If (n + 1) is odd, the two
central nodes must satisfy Si

n+1 · Si+1
n+1 = (F i

n)
2. Adding this condition to the

equation (10.25) the lower central node can be calculated as:

Si
n+1 = F i

n

λi
nF

i
n − {er�tC(F i

n, n�t)− �u}
λi

nF
i
n + {er�tC(F i

n, n�t)− �u}
for i = 1 + n/2, (10.26)

the upper one is then: Si+1
n+1 = (F i

n)
2/Si

n+1.

After stock prices of the central nodes are obtained, we repeat the recursion
equation (10.25) to calculate the stock prices at higher nodes (n + 1, j), j =
i + 2, . . . , n + 1. The transition probabilities and Arrow-Debreu prices are
calculated through (10.8) and (10.9), respectively.

Similarly, an analogous recursion relation for the stock prices at lower nodes
can be found by using put option prices at strike F i

n:

Si
n+1 =

Si+1
n+1{P (F i

n, n�t)er�t − �l}λi
nF

i
n(S

i+1
n+1 − F i

n)

P (F i
n, n�t)er�t − �l − λi

n(S
i+1
n+1 − F i

n)
, (10.27)

where where �l denotes the lower sum:

�l =
i−1∑
j=0

λj
n(F

i
n − F j

n) .

Notice that BC use the Black-Scholes call and put option prices C(K, τ) and
P (K, τ), which makes the calculation faster than the interpolation technique
based on the CRR method.

The balancing inequality (10.20), to avoid negative transition probabilities,
and therewith the arbitrage is still used in the BC algorithm: they re-estimate
Si+1

n+1 by the average of F i
n and F i+1

n , though the choice of any point between
these forward prices is sufficient.

10.2 A Simulation and a Comparison of the
SPDs

The following detailed example illustrates the construction of the tree from
the smile, using the DK algorithm first, and the BC algorithm afterwards.
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Let us assume that the current value of the underlying stock S = 100, with
no dividend and the annually compounded riskless interest rate r = 3% per
year for all time expirations. For the implied volatility function, we use a
convex function:

σ̂ =
−0.2

{log(K/St)}2 + 1
+ 0.3 , (10.28)

taken from Fengler (2005). For simplicity, we do not model a term structure
of the implied volatility. The BS option prices needed for growing the tree
are calculated from this implied volatility function. We construct the IBTs
with time to maturity T = 1 year discretized in five time steps.

10.2.1 Simulation Using the DK Algorithm

Using the assumption on the BS implied volatility surface described above,
we obtain the one year stock price implied binomial tree (Figure 10.4), the
upward transition probability tree (Figure 10.5), and the Arrow-Debreu price
tree (Figure 10.6).
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Figure 10.4. Stock price tree calculated with the DK al-
gorithm with S0

0 = 100, r = 0.03 and T = 1 year.
XFGIBT01

All the IBTs correspond to time to maturity τ = 1 year, and �t = 1/5 year.
Figure 10.4 shows the estimated stock prices starting at the zero level with
S0

0 = S = 100. The elements in the j-th column correspond to the (j − 1)th
level of the stock price tree. Figure 10.5 shows the transition probabilities, its
element (n, j) represents the transition probability from the node (n−1, j−1)
to the node (n, j). The third tree displayed in Figure 10.6 contains the Arrow-
Debreu prices. Its elements in the j-th column match the Arrow-Debreu
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0 = 100, r = 0.03 and T = 1
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Figure 10.6. Arrow-Debreu price tree calculated with the
DK algorithm with S0

0 = 100, r = 0.03 and T = 1 year.
XFGIBT01

prices in the (j − 1) th level. Using the stock prices together with Arrow-
Debreu prices of the nodes at the final level, a discrete approximation of the
implied price distribution can be obtained. Notice that by the definition of
the Arrow-Debreu price, the risk neutral probability corresponding to each
node should be calculated as the product of the Arrow-Debreu price and the
factor erj�t in the level j.

Choosing the time steps small enough, we obtain more accurate estimation
of the implied price distribution and the local volatility surface σ(S, τ). We



10 Numerics of Implied Binomial Trees 223

still use the same implied volatility function from (10.28), and assume S0
0 =

100 , r = 0.03 , T = 5 years.

SPD estimation arising from fitting the implied five-year tree with 40 levels is
shown in Figure 10.7. Local volatility surface computed from the implied tree
at different times to maturity and stock price levels is shown in Figure 10.8.
Obviously, the local volatility captures the volatility smile, which decreases
with the strike price and increases with the time to maturity.
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Figure 10.7. SPD estimation by the DK IBT computed with
S0

0 = 100, r = 0.03 and T = 5 years. XFGIBT02

10.2.2 Simulation Using the BC Algorithm

The BC algorithm can be applied in analogy to the DK technique. The
computing part is replaced by the BC algorithm, we are using the implied
volatility function from (10.28) as in the DK algorithm. Figures 10.9 - 10.11
show the one-year stock price tree with five steps, transition probability tree,
and Arrow-Debreu tree. Figure 10.12 presents the plot of the estimated
SPD by fitting a five year implied binomial tree with 40 levels using BC
algorithm. Figure 10.13 shows the characteristics of the local volatility surface
of the generated IBT, the local volatility follows the “volatility smile”, which
decreases with the stock price and increases with time.
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Figure 10.8. Implied local volatility surface estimated by
the DK IBT with S0

0 = 100, r = 0.03 and T = 5 years.
XFGIBT02 .
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Figure 10.9. Stock price tree calculated with the BC algorithm
with S0

0 = 100, r = 0.03 and T = 1 year. XFGIBT01

10.2.3 Comparison with the Monte-Carlo Simulation

We now compare the SPD estimation obtained by the two IBT methods
with the estimated density function of a simulated process St generated from
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Figure 10.11. Arrow-Debreu price tree calculated with the
BC algorithm with S0

0 = 100, r = 0.03 and T = 1 year.
XFGIBT01

the diffusion process (10.6). To perform a discrete approximation of this
diffusion process, we use the Euler scheme with time step δ = 1/1000,
the constant drift µt = r = 0.03 and the volatility function σ(St, t) =[

−0.2

{log(K/St)}2 + 1
+ 0.3

]
.

Compared to Sections 10.2.2 and 10.2.2 where we started from the BS implied
volatility surface, here we construct the IBTs direct from the simulated option
price function. In the construction of the IBTs, we calculate the option prices
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Figure 10.12. SPD estimation by the BC IBT computed with
S0

0 = 100, r = 0.03 and T = 5 years. XFGIBT02

Figure 10.13. Implied local volatility surface estimated by the
BC IBT with S0

0 = 100, r = 0.03 and T = 5 years. XFGIBT02

corresponding to each node at the implied tree according to their theoretical
definitions (10.3) and (10.3) from the simulated asset prices St. We simulate
St for t = i/4 year, i = 1, . . . , 50 in the diffusion model (10.6) with the
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Monte-Carlo simulation method.
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Figure 10.14. SPD estimation from the DK IBT (blue dashed
line) and from the BC IBT (black dashed line) compared to
the estimation by Monte-Carlo simulation with its 95% con-
fidence band (red lines). Level = 50, T = 5 years, �t = 0.1
year. XFGIBT03

From the estimated distribution shown in Figure 10.14, we observe small
deviations of the SPDs obtained from the two IBT methods from the esti-
mation obtained by the Monte-Carlo simulation. The SPD estimation by
the BC algorithm coincides substantially better with the estimation from the
simulated process than the estimation by the DK algorithm, which shows a
shifted mean of its SPD.

As above, we can also estimate the local volatility surface from the both im-
plied binomial trees. Compare Figure 10.15 with Figure 10.16 and notice that
some edge values cannot be obtained directly from the five-year IBT. How-
ever, both local volatility surface plots actually coincide with the volatility
smile characteristic, the implied local volatility of the out-the-money options
decreases with the increasing stock price, and increases with time.

10.3 Example – Analysis of EUREX Data

In the following example we use the IBTs to estimate the price distribution
of the real stock market data. We use underlying asset prices, strike prices,
time to maturity, interest rates, and call/put option prices from EUREX at 19
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Figure 10.15. Implied local volatility surface of the simulated
model, calculated from DK IBT. XFGIBTcdk

Figure 10.16. Implied local volatility surface of the simulated
model, calculated from BC IBT. XFGIBTcbc

March, 2007, taken from the database of German stock exchange. First, we
estimate the BS implied volatility surface from the data set with the technique
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Figure 10.17. BS implied volatility surface estimated from
real stock and option prices. XFGIBT05

of Fengler, Härdle and Villa (2003). Figure 10.17 shows the estimated implied
volatility surface, which reflects the characteristics that the implied volatility
decreases with the strike price and increases with time to maturity.

Now we construct the IBTs, where we calculate the interpolated option prices
with the CRR binomial tree method using the estimated implied volatility.
Fitting the function of option prices directly from the market option prices
causes difficulties since the function approaches a value of zero for very high
strike prices which would violate no-arbitrage conditions.

The estimated stock price distribution, obtained by the BC and the DK IBT
with 40 levels, for τ = 0.5 year, is shown in Figure 10.18. Obviously, the both
estimated SPDs are nearly identical. The SPDs do not show any deviations
from the log-normal characteristics according to their skewness and kurtosis.

From the simulations and real data example, we conclude that the implied
binomial tree is a simple smile-consistent method to assess the future stock
prices. Still, some limitations of the algorithms remain. With an increasing
interest rate or with a small time step, negative transition probabilities occur
more often. When the interest rate is high, the BC algorithm is a better
choice. The DK algorithm cannot handle with higher interest rates such
as r = 0.2, in this case the BC algorithm still can be used. In addition,
the negative probabilities appear more rarely in the BC algorithm than in
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Figure 10.18. SPD estimation by the BC IBT (black dashed
line) and by the DK IBT (blue solid line) from the EUREX
data, τ = 0.5 year, level = 25. XFGIBT05

the DK construction, even though most of them appear at the edge of the
trees. But, by modifying these values we are effectively losing the information
about the volatility behavior at the corresponding nodes. This deficiency is
a consequence of our condition that continuous diffusion process is modeled
as a discrete binomial process. Improving of this requirement leads to a
transition to multinomial or varinomial trees which have a drawback of more
complicated models with difficult realization.

Besides its basic function to price derivatives in consistency with market
prices, IBTs are also useful for hedging, calculating local volatility surfaces
or estimation of the future price distribution according to the historical data.
In the practical application, the reliability of the approach depends critically
on the quality of the dynamics estimation of the underlying process, such as
of the BS implied volatility surface obtained from the market option prices.
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11 Application of Extended Kalman

Filter to SPD Estimation
Zdeněk Hlávka and Marek Svojik

The state price density (SPD) carries important information on the behavior
and expectations of the market and it often serves as a base for option pricing
and hedging. Many commonly used SPD estimation technique are based on
the observation (Breeden and Litzenberger, 1978) that the SPD f(.) may be
expressed as

f(K) = exp{r(T − t)}∂
2Ct(K, T )

∂K2 , (11.1)

where Ct(K, T ) is a price of European call option with strike price K at time
t expiring at time T and r denotes the risk free interest rate. An overview of
estimation techniques is given in Jackwerth (1999). Kernel smoothers were
in this framework applied by A¨it-Sahalia and Lo (1998), A¨it-Sahalia and
Lo (2000), or Huynh, Kervella, and Zheng (2002). Some modifications of
the nonparametric smoother allowing to apply no-arbitrage constraints were
proposed, e.g., by A¨it-Sahalia and Duarte (2003), Bondarenko (2003), or
Yatchew and Härdle (2006). Apart of the choice of a suitable estimation
method, Härdle and Hlávka (2005) show that the covariance structure of the
observed option prices carries additional important information that should
to be considered in the estimation procedure. Härdle and Hlávka (2005) sug-
gest a simple and easily applicable approximation of the covariance. A more
detailed discussion of option price errors may be found in Renault (1997).

In this chapter, we will estimate the SPD from observed call option prices
using the well-known Kalman filter, invented already in the early sixties and
marked by Harvey (1989). Kalman filter may be shortly described as a sta-
tistical method used for estimation of the non-observable component of a
state-space model and it already became an important econometric tool for
financial and economic estimation problems in continuous time finance. More
precisely, the Kalman filter is a recursive procedure for computing the opti-
mal estimator of the state vector ξi at time i, based on information available
at time i. For derivation of the Kalman filter, we focus on the general system
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characterized by a measurement equation

yi = Bi(ψ)ξi + εi(ψ), i = 1, . . . , n, (11.2)

and a transition equation

ξi = Φi(ψ)ξi−1 + ηi(ψ), i = 1, . . . , n, (11.3)

where yi is the g-dimensional vector of the observable variables and ξi de-
notes the unobservable k-dimensional state vector, with unknown parameters
ψ, a known matrix Bi(ψ), and a noise term εi(ψ) of serially uncorrelated
disturbances with zero mean and variance matrix Hi(ψ). The symbols used
in the transition equation (11.3) are the transition matrix Φi(ψ) and a zero
mean Gaussian noise term ηi(ψ) with a known variance matrix Qi(ψ). The
specification of the state space model is completed by assuming independence
between the error terms εt(ψ) and ηt(ψ). Additionally, we assume that these
error terms are uncorrelated with the normally distributed initial state vector
ξ0 having expected value ξ0|0 and variance matrix Σ0|0.

The state-space model (11.2)–(11.3) is suitable for situations in which, instead
of being able to observe the state vector ξi directly, we can only observe some
noisy function yi of ξi. The problem of determining the state of the system
from noisy measurements yi is called estimation. Filtering is a special case of
estimation with the objective of obtaining an estimate of ξi given observations
up to time i. It can be shown that the optimal estimator of ξi, i.e., minimizing
the mean squared error (MSE), is the mean of the conditional distribution
of the state vector ξi. When estimating ξi using information up to time
s, we denote the conditional expectation of ξi given Fs for convenience by
ξi|s = E[ξi|Fs]. The conditional variance matrix of ξi given Fs is denoted as
Σi|s = Var[ξi|Fs].

In our case, we will see that the relationship between the state and observed
variables is nonlinear and the problem has to be linearized by Taylor expan-
sion.

11.1 Linear Model

Let us remind that the payoff for a call option is given by

(ST −K)+ = max(ST −K, 0).

Let Ct(K, T ) be the call pricing function of a European call option with strike
price K observed at time t and expiring at time T . We consider a call option
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with this payoff. Let ST denotes the price of the underlying asset at T , and
r the risk free interest rate. Then, the fair price Ct(K, T ) of a European call
option at the current time t may be expressed as the discounted expected
value of the payoff (ST −K)+ with respect to the SPD f(.), i.e.,

Ct(K, T ) = e−r(T−t)
∫ +∞

0
(ST −K)+f(ST )dST . (11.4)

Clearly, the call pricing function Ct(K, T ) is monotone decreasing and convex
in K.

In the rest of this chapter, we will assume that the discount factor e−r(T−t)

in (11.4) is equal to 1. In practice, this may be easily achieved by dividing
the observed option prices by this known discount factor.

In (11.1), we have already seen that the SPD may be expressed as the dis-
counted second derivative of the call pricing function Ct(K, T ) with respect
to the strike price K. We will use this relationship to construct an SPD
estimator based on the observed call option prices.

11.1.1 Linear Model for Call Option Prices

On a fixed day t, the i-th observed option price corresponding to the time
of expiry T will be denoted as Ci = Ct,i(Ki, T ), where Ki denotes the corre-
sponding strike price. The vector of all observed option prices will be denoted
as C = (C1, . . . ,Cn)

�. Without loss of generality, we assume that the cor-
responding vector of the strike prices K = (K1, . . . , Kn)

� has the following
structure

K =

⎛⎜⎜⎝
K1
K2
...

Kn

⎞⎟⎟⎠ =

⎛⎜⎜⎝
k11n1

k21n2

...
kn1np

⎞⎟⎟⎠ ,

where k1 < k2 < · · · < kp are the p distinct values of the strike prices, 1nj

denotes a vector of ones of length nj, and nj =
∑n

i=1 1(Ki = kj).

The further assumptions and constraints that have to be satisfied by the
developing the linear model are largely taken from Härdle and Hlávka (2005).
We impose only constraints that guarantee that the estimated function is
probability density, i.e., it is positive and it integrates to one. The SPD
is parameterized by assuming that for a fixed day t and time to maturity
τ = T − t, the i-th observed option price Ci corresponding to strike price Ki,
the option prices Ci = Ct,i(Ki, T ) follows the linear model

Ct,i(Ki, T ) = µ(Ki) + εi, (11.5)
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where ε = (ε1, . . . , εn)
� ∼ N(0, Σ) is random vector of correlated normally

distributed random errors.

In the next section, we will parameterize the vector of the mean option prices
µ(.) in terms of the state price density. This parameterization will allow us
to derive SPD estimators directly from the linear model (11.5).

11.1.2 Estimation of State Price Density

In Härdle and Hlávka (2005), it was suggested to rewrite the vector of the
conditional means µ = (µ1, µ2, . . . , µp)

� in terms of the parameters β =
(β0, β1, . . . , βp−1)

� as

µ = ∆β, (11.6)

where

∆ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 ∆1
p ∆1

p−1 ∆1
p−2 · · · ∆1

3 ∆1
2

1 ∆2
p ∆2

p−1 ∆2
p−2 · · · ∆2

3 0
...

...

1 ∆p−2
p ∆p−2

p−1 0 · · · 0 0
1 ∆p−1

p 0 0 · · · 0 0
1 0 0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(11.7)

and ∆i
j = max(kj − ki, 0) denotes the positive part of the distance between

ki and kj, i.e. the i-th and the j-th (1 ≤ i ≤ j ≤ p) sorted distinct observed
values of the strike price.

The vector of parameters β in (11.6) may be interpreted as an estimate of
the second derivatives of the call pricing function and consequently, according
to (11.1), also as the estimator of the state price density.

The constraints on the conditional means µj such as positivity, monotonicity
and convexity can be reexpressed in terms of βj—it suffices to request that

βj > 0 for j = 0, . . . , p− 1 and that
∑p−1

j=2 βj ≤ 1.

Using this notation, the linear model for the observed option prices C is
obtained by

C(K) = X∆β + ε, (11.8)

where X∆ is the design matrix obtained by repeating each row of the matrix
∆ ni-times for i = 1, . . . , p.
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11.1.3 State-Space Model for Call Option Prices

In order to apply Kalman filter without any constraints on the resulting
SPD estimates (βi, i = 0, . . . , p− 1), we rewrite the linear model (11.8) in a
state-space form for the i-th observation on a fixed day t:

Ci(K) = X∆βi + εi, (11.9)

βi = βi−1 + ηi, (11.10)

where X∆ is the design matrix from (11.8) and εi ∼ N
(
0, σ2I

)
and ηi ∼

N
(
0, ν2δiI

)
are uncorrelated random vectors. We assume that the variance

of ηi depends linearly on the time δi between the i-th and the (i−1)-st trade.

In the following, we determine the Kalman filter in a standard way. The
standard approach has to be only slightly modified as in every step i we
observe only option price Ci(Ki) corresponding to only one strike price Ki.

Prediction step In the prediction step, we forecast the state vector by cal-
culating the conditional moments of the state variables given the information
up to time t− 1 to obtain the prediction equations

βi|i−1 = E(βi|Fi−1) = βi−1|i−1, (11.11)

Σi|i−1 = Σi−1|i−1 + ν2δiI. (11.12)

Updating step Denoting by ∆i the i-th row of the design matrix X∆, i.e.,
the row corresponding to the i-th observed strike price Ki, we arrive to the
updating equations

βi|i = βi|i−1 + KiIi, (11.13)

Σi|i = (I−Ki∆i)Σi|i−1, (11.14)

where
Ii = Ci(Ki)− Ci|i−1(Ki) = Ci(Ki)−∆iβi|i−1

is the prediction error with variance Fi|i−1 = Var(Ii|Fi−1) = σ2 +∆iΣi|i−1∆
�
i

and Ki = Σi|i−1∆
�
i F−1

i|i−1 is the Kalman gain.

The prediction and updating equations (11.11)–(11.14) jointly constitute the
linear Kalman filter for a European call option. Unfortunately, in this case
the practical usefulness of the linear Kalman filter is limited as the resulting
SPD estimator does not have to be probability density. A more realistic
nonlinear model is presented in the following Section 11.2.
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11.2 Extended Kalman Filter and Call Options

In the following, we constrain the vector of parameters βi = (β0, . . . , βp−1)
�

so that it may always be reasonably interpreted as a probability density.
We propose a reparameterization of the model in terms of parameters ξi =

(ξ0, . . . , ξp−1)
� via a smooth function gi(·) =

(
g0(·), . . . , gp−1(·)

)�
by setting

β0 = g0(ξi) = exp(ξ0), (11.15)

βk = gk(ξi) = S−1exp(ξk), for k = 1, . . . , p− 1, (11.16)

where S =
∑p−1

j=1 exp(ξj) simplifies the notation.

Obviously,
∑p−1

j=1 βj = 1 and βj > 0, j = 0, . . . , p − 1. This means that the
parameters βj, j = 1, . . . , p− 1 are positive and integrate to one and may be
interpreted as a reasonable estimates of the values of the SPD.

The linear model for the option prices (11.8) rewritten in terms of ξi leads a
nonlinear state space model given by the measurement equation

Ci(K) = X∆gi(ξi) + εi, (11.17)

and the transition equation

ξi = ξi−1 + ηi, (11.18)

where εi ∼ N
(
0, σ2I

)
and ηi ∼ N

(
0, ν2δiI

)
satisfy the same assumptions as

in Section 11.1.3.

The extended Kalman filter for the above problem may be linearized by
Taylor expansion using the Jacobian matrix Bi|i−1 computed in ξi = ξi|i−1:

Bi|i−1 =
∂gi(ξi)

∂ξ�i

∣∣∣∣∣
ξi=ξi|i−1

(11.19)

=
1

S2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S2eξ0 0 0 · · · 0

0 eξ1
(
S − eξ1

)
−eξ1+ξ2 · · · −eξ1+ξp−1

0 −eξ2+ξ1 eξ2
(
S − eξ2

)
· · · −eξ2+ξp−1

...
...

... . . . ...

0 −eξp−1+ξ1 −eξp−1+ξ2 · · · eξp−1
(
S − eξp−1

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Now, the linearized version of the Kalman filter algorithm for model (11.17)–
(11.18) is straightforward. Similarly as in Section 11.1.3, we obtain extended
prediction equations

ξi|i−1 = ξi−1|i−1, (11.20)

Σi|i−1 = Σi−1|i−1 + ν2δiI, (11.21)

and extended updating equations

ξi|i = ξi|i−1 + KiIi, (11.22)

Σi|i =
(
I−Ki∆iBi|i−1

)
Σi|i−1, (11.23)

where Ii = Ci(Ki)−∆igi(ξi|i−1) is the prediction error, Fi|i−1 = Var(Ii|Fi−1) =

σ2 + ∆iBi|i−1Σi|i−1B
�
i|i−1∆

�
i its variance, and Ki = Σi|i−1B

�
i|i−1∆

�
i F−1

i|i−1 the

Kalman gain.

The recursive equations (11.20)–(11.23) form the extended Kalman filter re-
cursions and lead the vector gi(ξi) = βi representing estimates of the SPD.

11.3 Empirical Results

In this section, the extended Kalman filter is used to estimate SPD from
DAX call option prices. In other words, our objective is to estimate the call
function Ct(K, T ) subject to monotonicity and convexity constraints, i.e., the
constraint that the implied SPD is non-negative and it integrates to one.

We choose data over a sufficiently brief time span so that the time to maturity
τ , the interest rate r, and both the current time t and the time of expiry T
may be considered as constant. The full data set contains observed call and
put option prices for various strike prices and maturities τ . From now on,
for each trading day, we consider only a subset containing the call options
Ct,i(Ki, T ), i = 1, . . . , n with the shortest time to expiry τ = T − t. In 1995,
we have few hundreds such observations each day. In 2003, the number of
daily observations increases to thousands.

Apart of the strike prices Ki and option prices Ct,i(Ki, T ), the data set con-
tains also information on the risk-free interest rate r, the time of trade (given
in seconds after midnight), the current value of the underlying asset (DAX),
time to expiry, and type of the option (Call/Put).

As the risk-free interest rate r and the time to expiry T − t are known and
given in our data set, we may work with option prices corrected by the
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known discount factor e−r(T−t). This modification guarantees that the second
derivative of the discounted call pricing function is equal to the state price
density.

11.3.1 Extended Kalman Filtering in Practice

In order to implement the Kalman filter in practice, we need to:

1. set the initial values of unknown parameters,

2. estimate the unknown parameters from data.

Initialization In order to use the extended version Kalman filter, we have
to choose initial values Σ0|0 and β0|0 and variances of both error terms εi and
ηi. We choose initial Σ0|0 = I and

β0|0 =

(
Ê{C(kp)}︸ ︷︷ ︸

β0

,
1

p− 1
, . . . ,

1

p− 1︸ ︷︷ ︸
p−1

)
,

i.e., β0 is set as the sample mean of option prices corresponding to the largest
strike price kp. The remaining values, defining the initial distribution of the
SPD, are set uniformly.

The parameter σ2 may be interpreted as the standard error of the option
price in Euros. The interpretation of the parameter ν2 is more difficult and
it depends on the time intervals between consecutive trades and on the range
of the observed strike prices. For the first run of the algorithm, we set the
variance matrices as Var[εi] = σ2I and Var[ηi] = ν2δiI, with σ2 = 1 and

ν2 = 1/[{( max
i=1,...,n

Ki − min
i=1,...,n

Ki)/2}2 min
i=1,...,n

δi].

This choice is quite arbitrary but it reflects that the parameter σ2 should be
small (in Euros) and that the parameter ν2 is related to the time and to the
range of the observed strike prices. Note that these are only initial values and
more realistic estimates are obtained in the next iterations of the extended
Kalman filter.

Extended Kalman filter Given the starting values β0|0, Σ0|0, σ2, and ν2,
the extended Kalman filter is given by equations (11.20)–(11.23). The non-
linear projections gi(.) guarantee that the state vector βi = gt(ξi) satisfies
the required constraints.
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Parameter estimation The unknown parameters σ2 and ν2 are estimated
by Maximum Likelihood (ML) method. More precisely, we use the predic-
tion error decomposition of the likelihood function described in Kellerhals
(2001, Chapter 5), the resulting log-likelihood is then maximized numerically.
Note that another approach to parameter estimation based on the Kalman
smoother and EM-algorithm is described in Harvey (1989, Section 4.2.4).

The behavior of the extended Kalman filter depends also on the choice of
the starting value β0|0. Assuming that the shape of the SPD doesn’t change
too much during the day, we may improve on the initial “uniform” SPD by
taking βn|n, shift the corresponding SPD by the difference of the value of the
underlying asset, and by using the resulting set of parameters as the starting
value β0|0. In practice, one might use the final estimator βn|n from day t as
the initial estimator on the next day t + 1

Kalman filter iterations Combining the initial parameter choice, the Kalman
filter, and the parameter estimation, we obtain the following iterative algo-
rithm:

1. Choose the initial values.

2. Run the extended Kalman filter (11.20)–(11.23) with current values of
the parameters.

3. Use the Kalman filter predictions to estimate the parameters σ2 and ν2

by numerical maximization of the log-likelihood and update the initial
values β0|0 and Σ0|0 using βn|n and Σn|n.

4. Either stop the algorithm or return to step 2 depending on the chosen
stopping rule.

In practice, the stopping rule for the above iterative algorithm may be based
on the values of the log-likelihood obtained in step 3 of the iterative algorithm.
In the following real life examples, we will run fixed number of iterations as
an illustration.

11.3.2 SPD Estimation in 1995

The first example is using data from two trading days in 1995; these are
the two data sets as in Härdle and Hlávka (2005). The call option prices
observed on 11th (January 14th) and 12th trading day (January 15th) in
1995 are plotted on the left-hand side graphics in Figures 11.1 and 11.2.
The main difference between these two trading days is that the strike prices
traded on 15th January cover larger range of strike prices. This means that
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Figure 11.1. European call option prices with shortest time to
expiry plotted against strike price K (left) and two of the fil-
tered SPD estimates (right) on JAN-14-1995. XFGKF1995a

also the support of the estimated SPDs will be larger on January 15th than
on January 14th.

JAN-14-1995 Using the data from January 14th, 1995, we ran 10 itera-
tions of the algorithm described in Section 11.3.1. The resulting parameter
estimates, σ̂2 = 0.0111 and ν̂2 = 2.6399, seem to be stable. In the last four
iterations, estimates of σ2 vary between 0.0081 and 0.0115 and estimates of
ν2 are varying between 2.4849 and 2.6399.

The Kalman filter provides SPD estimate in each time i = 1, . . . , n and we
thus obtain altogether n = 575 estimates of βi during this one day. Two
of these filtered SPD estimates on JAN-14-1995 are displayed on the on the
right-hand side of Figure 11.1; the upper plot shows the estimator at time
i1 = 287

.
= n/2 (12:45:44.46) and the lower plot the estimator at time i2 =

n = 575 (15:59:59.78), i.e., The lower plot contains the estimator of the SPD
at the end of this trading day.

Both estimates look very similar but the latter one is shifted a bit towards
higher values. This shift is clearly due to a change in the value of the under-
lying asset (DAX) from 2087.691 to 2090.17 during the same time period.

JAN-15-1995 Next, the same technique is applied to data observed on Jan-
uary 15th, 1995, see Figure 11.2. Two of the resulting filtered SPD estimates
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Figure 11.2. European call option prices with the short-
est time to expiry plotted against strike price K (left) and
two of the filtered SPD estimates (right) on JAN-15-1995.
XFGKF1995b

are plotted in the graphics on the right-hand side of Figure 11.2. The SPD
estimator calculated at the time i1 = n/2 = 205 (12:09:14.65) is almost iden-
tical to the final estimate from January 14th; the most visible difference is
the larger support for the estimated SPD on JAN-15-1995. At the end of this
trading day, for i2 = n = 410 (15:59:52.14), the estimate is shifted a bit to
the left and more concentrated. The shift to the left corresponds again to a
decrease in the value of the DAX from 2089.377 to 2075.989.

The parameter estimates obtained after 10 iterations of the algorithm de-
scribed in Section 11.3.1 are σ̂2 = 0.0496 and ν̂2 = 0.621. Smaller value of ν̂2

seemingly suggests that the SPD was changing more slowly on JAN-15-1995
but this parameter must be interpreted with a caution as its scale depends
also on the size of the time interval between consecutive trades and on the
range of the observed strike prices.

11.3.3 SPD Estimation in 2003

The next example is using the most recent data set in our database. On
February 25th, 2003, we observe altogether 1464 call option prices with the
shortest time to expiry. Compared to the situation in 1995, the option mar-
kets in 2003 are more liquid and the number of distinct strike prices included
in the data set is larger than in 1995. Our data set contains 30 distinct strike
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prices on FEB-25-2003 compared to 8 on JAN-14-1995 and 12 on JAN-15-
1995.

The call option prices observed on FEB-25-2003 are plotted as a function of
their strike price on the left-hand side plot in Figure 11.3.
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Figure 11.3. European call option prices with shortest time
to expiry plotted against strike price K on FEB-25-2003, n =
1464 observed prices (left) and the resulting SPD estimates
after 10 iterations (right). XFGKF2003

After ten iterations of the iterative extended Kalman filtering algorithm de-
scribed in Section 11.3.1, we obtain parameter estimates σ̂2 = 0.0324 and
ν̂2 = 3.1953. The corresponding SPD estimates for times i1 = n/2 = 732 and
i2 = n = 1464 are plotted on the right-hand side of Figure 11.3.

On FEB-25-2003, the resulting estimates do not look very much like a typical
(smooth and unimodal) probability densities. Instead, we observe a lot of
spikes and valleys. This is due to the fact that the algorithm does not penalize
non-smoothness and the reparameterization (11.15)–(11.16) guarantees only
that the resulting SPD estimates are positive and integrate to one.

In order to obtain more easily interpretable results, the resulting estimates
may be smoothed using, e.g., the Nadaraya-Watson kernel regression esti-
mator (Nadaraya, 1964; Watson, 1964). As the smoothing of the vector
βn|n corresponds to a multiplication with a (smoothing) matrix, say S, the
smoothing step may be implemented after the Kalman filtering, see Härdle
(1991) or Simonoff (1996) for more details on kernel regression.

Using the variance matrix Σn|n from the filtering step of the extended Kalman



11 Application of Extended Kalman Filter to SPD Estimation 245

filtering algorithm, we calculate the variance matrix of ξsmooth
n|n = Sξn|n

as Varξsmooth
n|n = SΣn|nS

�. This leads an approximation of the asymp-

totic variance of the smooth SPD estimate βsmooth
n|n = gn(ξsmooth

n|n) as

Varβsmooth
n|n = BnSΣn|nS

�B�
n , where Bn now denotes the Jacobian ma-

trix (11.19) calculated in ξsmooth
n|n.

The resulting smooth SPD estimate at the end of the trading day (time n)
βsmooth

n|n with pointwise asymptotic 95% confidence intervals obtained as

βsmooth
n|n ± 1.96

√
diag(Varβsmooth

n|n) is plotted in Figure 11.4.
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Figure 11.4. Smoothed SPD estimate on FEB-25-2003,
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11.4 Conclusions

We presented and illustrated the application of extended Kalman filtering
towards arbitrage free SPD estimation.

An application of the extended Kalman filtering methodology on real-world
data sets in Section 11.3 shows that this method provides very good results
for data sets with small number of distinct strike prices, see Figures 11.1
and 11.2.

When the number of distinct strike price increases, the linear model be-
comes overparameterized, and the resulting SPD estimators are not smooth
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anymore, see Figure 11.3. However, even in this case, the SPD estimator
captures quite well the general shape of the SPD and smooth SPD estimator
may be obtained by applying, e.g., the Nadaraya-Watson kernel regression
estimator allowing also easy calculation of pointwise asymptotic confidence
intervals.

Compared to other commonly used estimation techniques, the extended Kal-
man filtering methodology is able to capture the intra-day development of
the SPD and it allows to update the estimates dynamically whenever new
information becomes available. The extended Kalman filtering methodology
combined with kernel smoothing is fast, easily applicable, and it provides
interesting insights.
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12 Stochastic Volatility Estimation

Using Markov Chain Simulation
Nikolaus Hautsch and Yangguoyi Ou

Stochastic volatility (SV) models are workhorses for the modelling and pre-
diction of time-varying volatility on financial markets and are essential tools
in risk management, asset pricing and asset allocation. In financial mathe-
matics and financial economics, stochastic volatility is typically modeled in
a continuous-time setting which is advantageous for derivative pricing and
portfolio optimization. Nevertheless, since data is typically only observable
at discrete points in time, in empirical applications, discrete-time formula-
tions of SV models are equally important.

SV models can be economically motivated by the mixture-of-distribution hy-
pothesis (MDH) postulated by Clark (1973), whereby asset returns follow
a mixture of normal distributions with a mixing process depending on the
(unobservable) information arrival process. If the mixing process is positively
autocorrelated, the resulting return process reveals volatility clustering which
is a well-known and typical feature of financial return series. The MDH gives
rise to the idea that asset return volatility follows its own stochastic pro-
cess which is updated by unobservable innovations. This is in contrast to an
autoregressive conditional heteroscedasticity (ARCH) model introduced by
Engle (1982), where the conditional variance given the available information
set is a function of past observations. Denote ht as the time-t conditional

variance of asset return yt with conditional mean µt and yt − µt = h
1/2
t zt,

zt ∼ IID(0, 1), and let Ft denote the time-t information set. Then, ARCH
processes imply Var[ht|Ft−1] = 0, i.e., the variance is conditionally determin-
istic given the (observable) history of the process. Conversely, SV models
can be characterized by the property Var[ht|Ft−1] �= 0, i.e., there is an unpre-
dictable component in ht.

A main difficulty of the SV framework compared to the widely used (Gen-
eralized) ARCH model is that the likelihood of SV models is not directly
available. This requires the use of simulation techniques, like simulated max-
imum likelihood, method of simulated moments or Markov chain Monte Carlo
(MCMC) techniques. Because of the computational costs, SV models are
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still less popular in financial practice. Nevertheless, increasing computer
power and the further development of efficient sampling techniques weaken
this drawback noticeably. Furthermore, recent literature on the estimation of
realized volatility confirms the idea of the MDH that log returns follow a nor-
mal - log normal mixture (see, e.g., Andersen, Bollerslev, Diebold and Labys
(2003)) and thus strengthens the economic foundation of the SV model. Fi-
nally, SV models provide a natural framework to accommodate specific prop-
erties of financial return processes such as fat-tailedness, leverage effects and
the occurrence of jumps.

The main objective of this chapter is to present the most important specifica-
tions of discrete-time SV models, to illustrate the major principles of Markov
Chain Monte Carlo (MCMC) based statistical inference, and to show how
to implement these techniques to estimate SV models. In this context, we
provide a hands-on approach which is easily extended in various directions.
Moreover, we will illustrate empirical results based on different SV specifica-
tions using returns on stock indices and foreign exchange rates.

In Section 12.1, we will introduce the standard SV model. Section 12.2
presents several extended SV models. MCMC based Bayesian inference is
discussed in Section 12.3, whereas empirical illustrations are given in Sec-
tion 12.4.

12.1 The Standard Stochastic Volatility Model

The standard stochastic volatility model as introduced by Taylor (1982) is
given by

yt = exp(ht/2)ut, ut ∼ N(0, 1), (12.1a)

ht = µ + φ(ht−1 − µ) + ηt, ηt ∼ N(0, σ2
η), (12.1b)

where yt denotes the log return at time t, t = 1, . . . , T , and ht is the log
volatility which is assumed to follow a stationary AR(1) process with persis-
tence parameter |φ| < 1. The error terms ut and ηt are Gaussian white noise
sequences. The unconditional distribution of ht is given by

ht ∼ N
(
µh, σ

2
h

)
, µh = µ, σ2

h =
σ2

η

1− φ2 , (12.2)

where µh and σ2
h denote the unconditional mean and variance of returns,

respectively.
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Under the assumption that E[y4
t ] < ∞, the first two even moments of yt are

given by

E[y2
t ] = E[exp(ht)] E[u2

t ] = exp(µh + σ2
h/2), (12.3)

E[y4
t ] = E[exp(2ht)] E[u4

t ] = 3 exp(2µh + 2σ2
h). (12.4)

Consequently, the kurtosis is

K(yt)
def
=

E[y4
t ]

E[y2
t ]

2 = 3 exp(σ2
h) = 3 exp

(
σ2

η

1− φ2

)
(12.5)

with K(yt) > 3 as long as σ2
η > 0. Hence, the kurtosis generated by SV

processes increases with σ2
η and |φ| (given |φ| < 1).

The autocorrelation function (ACF) of y2
t is computed as

Corr(y2
t , y

2
t−τ) =

exp(σ2
hφ

τ)− 1

3 exp(σ2
h)− 1

, τ = 1, 2, . . . , (12.6)

and thus decays exponentially in τ . Consequently, for φ ∈ (0, 1), squared
returns are positively autocorrelated.

The estimation of SV models is not straightforward since the likelihood can-
not be computed in closed form. Let θ denote the collection of all model
parameters, e.g., θ = (µ, φ, σ2

η) for the standard SV model. Then, the likeli-
hood function is defined by

p(y|θ) def
=

∫
h

p(y|h, θ)p(h|θ)dh, (12.7)

where y = (y1, . . . , yT ) and h = (h1, . . . , hT ) are the vectors of returns and
latent volatility states, respectively. The so-called full-information likeli-
hood, corresponding to the conditional probability density function (p.d.f.),
p(y|h, θ), is specified by (12.1a), whereas the conditional p.d.f. of the volatil-
ity states, p(h|θ), is given by (12.1b). The likelihood function (12.7) is an
analytically intractable T -dimensional integral with respect to the unknown
latent volatilities. In the econometric literature, several estimation methods
have been proposed, including generalized method of moments (Melino and
Turnbull, 1990), quasi-maximum likelihood estimation (Harvey, Ruiz, and
Shephard, 1994), efficient method of moments (Gallant, Hsie, and Tauchen,
1997), simulated maximum likelihood (Danielsson, 1994) and efficient impor-
tance sampling (Liesenfeld and Richard, 2003). Markov Chain Monte Carlo
(MCMC) techniques have been introduced by Jacquier, Polson, and Rossi
(1994) and Kim, Shephard, and Chib (1998). More details on MCMC-based
inference will be given in Section 12.3.
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12.2 Extended SV Models

12.2.1 Fat Tails and Jumps

Though the standard SV model is able to capture volatility clustering typ-
ically exhibited by financial and economic time series, the model implied
kurtosis is often far too small to match the sample kurtosis observed in most
financial return series. See, for example, Liesenfeld and Jung (2000) and
Chib, Nardari, and Shephard (2002). An obvious reason is that a normal
- log normal mixture as implied by the standard SV model is not flexible
enough to capture the fat-tailedness commonly observed in financial return
distributions. A further reason is that the basic SV model cannot account
for potential jumps in the return process.

In this section, we discuss two SV specifications taking into account both
pitfalls. The first one is an extension of the standard SV model allowing the
error term ut to be Student-t distributed resulting in the so-called SVt model.
In the second approach, a jump component is introduced in the measurement
equation in (12.1). This will lead to the so-called SVJ model.

The SVt Model

The SVt model is specified by

yt = exp(ht/2)ut, ut ∼ tv, (12.8a)

ht = µ + φ(ht−1 − µ) + ηt, ηt ∼ N(0, σ2
η), (12.8b)

where ut follows a standardized t-distribution with v > 2 degrees of freedom.
The model can be alternatively represented by a scale mixture of normal
distributions. Let λt denote an i.i.d. random variable following an inverse-
gamma distribution. Then, the SVt model can be rewritten as

yt = exp(ht/2)
√

λtut, ut ∼ N(0, 1), (12.9a)

ht = µ + φ(ht−1 − µ) + ηt, ηt ∼ N(0, σ2
η), (12.9b)

λt ∼ Inv-Gamma(v/2, v/2), v > 2, (12.9c)

where λt itself is a latent variable. The representation of the SVt model in
terms of a scale mixture is particularly useful in an MCMC context since it
converts a non-log-concave sampling problem into a log-concave one. This
allows for sampling algorithms which guarantee convergence in finite time,
see ,e.g., Frieze, Kannan and Polson (1994).
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Allowing log returns to be Student-t distributed naturally changes the be-
havior of the stochastic volatility process. In the standard SV model, large
values of |yt| induce large values of ht. In contrast, with an additional source
of flexibility, λt, the SVt model can caputure large values of |yt| without
necessarily increasing ht. A tpyical consequence is that SVt models imply a
higher persistence in volatility dynamics than the standard SV model.

Employing simulated maximum likelihood methods Liesenfeld and Jung (2000)
provide an estimate ν̂ = 6.31 for the USD/DM foreign exchange (FX) rate
from 1980 to 1990, and a value of 6.30 for the USD/JPY FX rate over 5
years from 1981 to 1985. Chib et al. (2002) estimate the SVt model based
on MCMC techniques and report an estimate ν̂ = 12.53 for daily S&P 500
returns between July 1962 and August 1997.

The SV Model with Jump Components

The question of to which extent asset return processes are driven by contin-
uous and/or jump components is an ongoing topic in the current literature.
Both (G)ARCH and standard SV models rest on the assumption of a contin-
uous price process and thus are not able to accommodate jumps in returns.
The latter is particularly important during periods of news arrivals when the
market gets under stress and becomes less liquid. However, the SV frame-
work allows for a natural inclusion of a jump component in the return process.
This yields the SVJ model given by

yt = ktqt + exp(ht/2)ut, ut ∼ N(0, 1), (12.10)

ht = µ + φ(ht−1 − µ) + ηt, ηt ∼ N(0, σ2
η), (12.11)

kt ∼ N(αk, βk), (12.12)

qt ∼ B(κ), (12.13)

where qt is a Bernoulli random variable taking on the value one whenever
a jump occurs with probability κ, and is zero otherwise. The jump size
is represented by the time-varying random variable kt which is assumed to
follow a normal distribution with mean αk and variance βk. Both qt and kt

are latent variables. Then, the model is based on three latent components,
ht, qt, and kt.

As in the SVt model, the inclusion of a jump component influences the proper-
ties of the stochastic volatility process. Large values of |yt| are now attributed
rather to the the jump component than to the volatility process. As in the
SVt model this typically induces a higher persistence in the volatility process.

Eraker, Johannes, and Polson (2003) estimate the number of jumps in returns



254 Nikolaus Hautsch and Yangguoyi Ou

to be approximately 1.5 per year for daily S&P 500 returns from 1980 to 1999,
and 4.4 per year for NASDAQ 100 index returns from 1985 to 1999. Chib
et al. (2002) estimate 0.92 jumps per year for daily S&P 500 returns covering
a period from 1962 to 1997.

Similarly, jump components can be also included in the volatility process in
order to capture instantaneous movements in volatility. Bates (2000) and
Duffie, Pan, and Singleton (2000) provide evidence that both jumps in re-
turns and volatilities are important to appropriately capture the dynamics in
financial return processes. For S&P 500 returns from 1980 to 1999, Eraker
et al. (2003) estimate 1.4 volatility jumps per year.

12.2.2 The Relationship Between Volatility and Returns

Studying the relation between expected stock returns and expected variance
is a fundamental topic in financial economics. Though a positive relation-
ship between expected returns and expected variances is consistent with the
notion of rational risk-averse investors requiring higher expected returns as
a risk premium during volatile market periods, it is not consistently sup-
ported by empirical research. Whereas French, Schwert, and Stambaugh
(1987) and Campbell and Hentschel (1992) find positive relationships be-
tween expected risk premia and conditional volatility, several other studies
find converse dependencies. In fact, there is evidence that unexpected returns
and innovations to the volatility process are negatively correlated. This can
be explained either by the volatility feedback theory by French et al. (1987),
or by the well-known leverage effect discussed by Black (1976).

In this section, we will discuss two types of SV models allowing the return
and volatility process to be correlated, namely the SV-in-Mean (SVM) model
and the Asymmetric SV (ASV) model. While the SVM model includes the
volatility component directly in the mean equation, the ASV model allows
for mutual correlations between return and volatility innovations.

The SV-in-Mean Model

The SV-in-Mean (SVM) model is given by

yt = d · ht + exp(ht/2)ut, ut ∼ N(0, 1), (12.14a)

ht = µ + φ(ht−1 − µ) + ηt, ηt ∼ N(0, σ2
η), (12.14b)

where the parameter d captures the relationship between returns and both
expected as well as unexpected volatility components. This can be seen by
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rewriting (12.14a) as

yt = d · ht|t−1 + d
(
ht − ht|t−1

)
+ exp(ht/2)ut, (12.15)

where ht|t−1 denotes the expected volatility defined by the conditional vari-
ance at time t given the information available at time t− 1. Accordingly, the
term (ht − ht|t−1) gives the innovation to the volatility process.

French et al. (1987) regress monthly excess returns of U.S. stock portfolios on
both expected and unexpected volatility components stemming from ARMA
models based on daily data. Excluding the unexpected volatility component
results in a weakly positive relationship between excess returns and volatility.
In contrast, including both volatility components does not only result in a
significantly negative impact of the volatility innovation but also reverses the
sign of the ex ante relationship. Hence, the negative relationship between un-
expected returns and innovations to the volatility process seems to dominate
the weaker, presumably positive, relation between the expected components.

The Asymmetric SV Model

Empirical evidence for ’good’ and ’bad’ news having different effects on the
future volatility is typically referred to as the leverage or asymmetric effect.
According to the leverage effect, an unexpected drop in prices (’bad’ news)
increases the expected volatility more than an unexpected increase (’good’
news) of similar magnitude. According to Black (1976) this is due to asym-
metric effects of changes of the firm’s financial leverage ratio. In SV models,
leverage effects are captured by allowing the observation error ut and the
future process error ηt+1 to be correlated. Then, the ASV model is specified
by

yt = exp(ht/2)ut, (12.16a)

ht = µ + φ(ht−1 − µ) + ηt, (12.16b)(
ut

ηt+1

)
∼ N

{(
0
0

)
,

(
1 ρση

ρση ση

)}
, (12.16c)

where ρ denotes the correlation between ut and ηt+1.

The ASV model has been extensively studied in the literature. Harvey and
Shephard (1996) estimate the model using quasi-maximum likelihood provid-
ing ρ̂ = −0.66 for daily U.S. stock returns ranging from 1962 to 1987. Based
on the same data, Sandmann and Koopman (1998) and Jacquier, Polson, and
Rossi (2004) estimate an ASV specification, where the contemporaneous re-
turn and volatility are correlated. Using simulated MLE methods and MCMC
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based Bayesian inference, the two studies provide estimates of ρ̂ = −0.38 and
ρ̂ = −0.48, respectively.

12.2.3 The Long Memory SV Model

In the previous sections, we have considered a first order autoregressive pro-
cess for the log volatility ht. This induces that the autocorrelations of ht

decay geometrically and volatility is said to exhibit short memory. However,
empirical autocorrelations for absolute and squared returns typically decay
more slowly and thus are not geometrically bounded. This implies so-called
long range dependence or long memory effects. See, for example, Bollerslev
and Mikkelsen (1996). One possibility to capture such effects is to allow for
fractionally integrated processes, which have been developed and extensively
studied over the last 25 years, see, e.g., Granger and Joyeux (1980), and Be-
ran (1994), among others. Long memory SV models have been introduced
by Breidt, Carto, and de Lima (1998), Harvey (1998), and Arteche (2004).
Then, the log volatility process follows an ARFIMA(p, d, q) process given by

yt = exp(ht/2)ut, ut ∼ N(0, 1), (12.17)

φ(L)(1− L)d(ht − µ) = θ(L)ηt, ηt ∼ N(0, σ2
η), (12.18)

where d denotes the fractional differencing parameter and L denotes the lag
operator with

φ(L) = 1−
p∑

i=1

φiL
i, θ(L) = 1 +

q∑
i=1

θiL
i, (12.19)

and the roots of the polynomials φ(·) and θ(·) lying strictly outside the unit
circle. If d ∈ (−0.5, 0.5), the volatility process reveals long memory and
is weakly stationary. The fractional differencing operator (1 − L)d can be
expressed in terms of the series expansion

(1− L)d =
∞∑

k=0

Γ(d + 1)

Γ(k + 1)Γ(d− k + 1)
(−1)kLk, (12.20)

with Γ(·) denoting the gamma function (see, e.g., Beran (1994)).

The autocorrelation of log h2
t is derived, e.g., by Baillie (1996), Breidt et al.

(1998), or Harvey (1998). It is asymptotically proportional to π2d−1, as long
as d ∈ (−0.5, 0.5). Similar asymptotic results are applicable to |yt| and y2

t .

Breidt et al. (1998) estimate the Fractionally Integrated SV (FISV) model by
maximizing the spectral quasi-likelihood and obtain estimates of d = 0.44 and
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φ = 0.93 for daily returns of a value-weighted market portfolio of U.S. stocks
between 1962 and 1989. Gallant et al. (1997) use efficient method of moments
techniques to provide estimates of d ranging between 0.48 and 0.55 for a
series of daily returns from the S&P composite price index ranging from
1928 to 1987. Brockwell (2005) develops an MCMC sampling algorithm for
the estimation of the FISV model and provides d = 0.42 for daily ASD-USD
FX rates between 1999 and 2004.

12.3 MCMC-Based Bayesian Inference

In this section, we will give a brief review of MCMC-based Bayesian inference
and will illustrate its application to estimate the standard SV model. For an
introduction to Bayesian econometrics, see, for example, Koop (2006) and
Greenberg (2008).

12.3.1 Bayes’ Theorem and the MCMC Algorithm

Let θ denote a vector of model parameters including all latent variables, and
let y collect the observed data. By considering θ to be a random vector, its
inference is based on the posterior distribution, p(θ|y), which can be repre-
sented by Bayes’ theorem

p(θ|y) ∝ p(y|θ)p(θ), (12.21)

where p(y|θ) denotes the likelihood function depending on the model param-
eters and the data y. Correspondingly, p(θ) defines the prior distribution
reflecting subjective prior beliefs on the distribution of θ. Consequently, the
posterior distribution p(θ|y) can be viewed as a combination of objective and
subjective information. If the prior is noninformative, Bayesian inference for
the parameter vector θ is equivalent to likelihood-based inference.

The principle of MCMC-based Bayesian inference is to simulate p(θ|y) based
on a Markov chain of random draws stemming from a family of candidate-
generating densities from which it is easy to sample. Let x ∈ R

d denote a
random variable (in the given context it corresponds to θ) following a Markov
chain with transition kernel p(x, y) corresponding to the conditional density of
y given x. The invariant distribution is given by π∗(y) =

∫
Rd p(x, y)π∗(x)dx.

An important result in Markov chain theory is that if p(x, y) satisfies the
reversibility condition

f(x)p(x, y) = f(y)p(y, x), (12.22)
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• For g = 1, . . . , G:
1. Generate Y from q(x(j), y) and U from U[0, 1].

2. If U ≤ α(x(j), Y ) = min
{

f(Y )q(Y,x(j))
f(x(j))q(x(j),Y ) , 1

}
Set x(j+1) = Y .

Else
Set x(j+1) = x(j).

3. Return {x(1), x(2), . . . , x(G)}.

Figure 12.1. The Metropolis-Hasings Sampling Algorithm

then, f(·) is the invariant density for the kernel p(·), i.e., f(·) = π∗(·).
An important MCMC technique is the Metropolis-Hastings (M-H) algorithm
as developed by Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller (1953)
and generalized by Hastings (1970). The major idea is to build on (12.22)
and finding a reversible kernel whose invariant distribution equals the target
distribution f(·). This is performed by starting with an irreversible kernel
(proposal density) q(y, x) for which f(x)q(x, y) > f(y)q(y, x), i.e., loosely
speaking, the process moves from x to y too often and from y to x too rarely.
This can be corrected by introducing a probability α(x, y) < 1 that the move
is made. I.e., we choose α(x, y) such that

f(x)α(x, y)q(x, y) = f(y)α(y, x)q(y, x). (12.23)

It is easily shown that this relationship is fulfilled for

α(x, y) =

{
min

{
f(y)q(y,x)
f(x)q(x,y) , 1

}
, if f(x)q(x, y) �= 0,

0, otherwise.
(12.24)

This yields a transition kernel qMH(x, y) satisfying the reversibility condition
and is defined by

qMH(x, y)
def
= q(x, y)α(x, y), x �= y. (12.25)

The resulting M-H sampling algorithm is summarized by Figure 12.1.

A crucial issue is an appropriate choice of the family of candidate-generating
densities. Depending on the form and the complexity of the sampling prob-
lem, various techniques have been proposed in the literature. The proba-
bly most straightforward technique is proposed by Metropolis, Rosenbluth,
Rosenbluth, Teller, and Teller (1953) suggesting a random walk chain, where
q(x, y) = q0(y − x), and q0(·) is a multivariate density. Then, y is drawn
from y = x + z with z following q0. If q0 is symmetric around zero, we
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have q(x, y) = q(y, x) and thus α(x, y) = f(y)/f/(x). A further simple
choice of candidate-generating densities is proposed by Hastings (1970) and
is given by q(x, y) = q0(y), i.e., y is sampled independently from x resulting
in an independence chain. Then, α(x, y) = f(y)/f(x) · q(x)/q(y). A popular
and more efficient method is the acceptance-rejection (A-R) M-H sampling
method which is available whenever the target density is bounded by a density
from which it is easy to sample. If the target density is fully bounded, the
M-H algorithm is straightforwardly combined with an acceptance-rejection
step. This principle will be illustrated in more detail in the next section in
order to sample the latent volatility states ht. A more sophisticated M-H
A-R algorithm which does not need a blanketing function but only a pseudo-
dominating density is proposed by Tierney (1994).

If the dimension of x is high, the M-H algorithm is facilitated by applying it
to blocks of parameters. For instance, if the target density can be expressed
in terms of two blocks of variables, i.e., f(x1, x2), the M-H algorithm allows
to sample from each block xi given the other block xj, j �= i. Then, the
probability for moving from x1 to the candidate value Y1 given x2 is

α(x1, Y1|x2) =
f(Y1, x2)q1(Y1, x1|x2)

f(x1, x2)q1(x1, Y1|x2)
. (12.26)

If the kernel q1(x1, Y1|x2) is the conditional distribution f(x1|x2), then

α(x1, Y1|x2) =
f(Y1, x2)f(x1|x2)

f(x1, x2)f(Y1|x2)
= 1 (12.27)

since f(Y1|x2) = f(Y1, x2)/f(x2) and f(x1|x2) = f(x1, x2)/f(x2). If f(x1|x2)
is available for direct sampling, the resulting algorithm is referred to as the
Gibbs sampler, see (Geman and Geman, 1984).

Applying the M-H (or Gibbs) algorithm to sub-blocks of the vector x is
a common proceeding in Bayesian statistics if the posterior distribution is
of high dimension. This is particularly true for SV models where θ also
includes the unobservable volatility states. In this context, the posterior
distribution p(θ|y) is broken up into its complete conditional distributions
p(θi|θ−i, y), i = 1, . . . , N , where N is the number of conditional distributions,
θi denotes the i-th block of parameters and θ−i denotes all elements of θ
excluding θi. The theoretical justification for this proceeding is given by the
theorem by Hammersley and Clifford (71) which is proven by Besag (1974).
The intuition behind this theorem is that the knowledge of the complete set
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of conditional posterior distributions,

p(θ1|θ2, θ3, . . . , θk, y),

p(θ2|θ1, θ3, . . . , θk, y),
...

p(θk|θ1, θ2, . . . , θk−1, y),

up to a constant of proportionality, is equivalent to the knowledge of the pos-
terior distribution p(θ1, . . . , θk|y). This allows applying the M-H algorithm to
sub-blocks of θ leading to the Gibbs sampler if the individual conditional pos-
terior distributions p(θi|θ−i, y) are directly available for sampling. In practice,
Gibbs and M-H algorithms are often combined resulting in “hybrid” MCMC
procedures as also illustrated in the next section.

The implementation of MCMC algorithms involves two steps. In the first
step, M-H algorithms generate a sequence of random variables, {θ(i)}G

i=1, con-
verging to the posterior distribution p(θ|y). The algorithm is applied until
convergence is achieved. In practice, the convergence of the Markov chain
can be checked based on trace plots, autocorrelation plots or convergence
tests, such as Geweke’s Z-score test, Heidelberg-Welch’s stationarity test and
the half-width test, see, e.g., Cowles and Carlin (1996). In the second step,
Monte Carlo methods are employed to compute the posterior mean of the
parameters. In particular, given the generated Markov chain, {θ(g)}G

g=1, the

population mean E[f(θ)|y] =
∫

f(θ)p(θ|y)dθ can be consistently estimated
by the sample mean

1

G− g1

G∑
g=g1+1

f(θ(g)), (12.28)

where g1 is the number of burn-in periods which are discarded to reduce the
influence of initial values (θ(0)). The length of the burn-in period typically
consists of 10%− 15% of all MCMC iterations.

Consequently, the implementation of MCMC techniques requires both the
convergence of the Markov chain and the convergence of the sample aver-
age. If the Markov chain is irreducible, aperiodic and positive recurrent, the
Markov chain {Θ(g)}G

g=1 generated from the MCMC algorithm converges to
its invariant distribution, i.e.

θ(g) L→ θ for g →∞, (12.29)

where θ ∼ p(θ|y). For more details, see, e.g.,Tierney (1994) or Greenberg
(2008).
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The convergence of the sample average of a function m(·) of {Θ(g)}G
g=1 to its

population counterpart,

1

G

G∑
g=1

m(θ(g))
a.s.→ E[m(θ)|y] for G →∞ (12.30)

is ensured by the ergodicity of the Markov chain. As shown by Tierney
(1994), the latter property is sufficient to ensure also the convergence of the
Markov chain to its invariant distribution.

12.3.2 MCMC-Based Estimation of the Standard SV
Model

In this section, we will illustrate the estimation of the standard SV model
using the M-H algorithm. For convenience, we restate model (12.1) as given
by

yt = exp(ht/2)ut, ut ∼ N(0, 1), (12.31a)

ht = µ + φ(ht−1 − µ) + ηt, ηt ∼ N(0, σ2
η) (12.31b)

with θ = (µ, φ, σ2
η) and h = (h1, · · · , hT ). Applying Bayes’ theorem we have

p(θ, h|y) ∝ p(y|θ, h)p(h|θ)p(θ). (12.32)

Bayesian inference for the model parameters θ and the volatility states h
is based on the posterior distribution p(θ, h|y) which is proportional to the
product of the likelihood function p(y|θ, h) specified by (12.31a), the condi-
tional distribution of the volatility states p(h|θ) given by (12.31b), and the
prior distribution p(θ).

The model is completed by specifying the prior distributions for θ. We assume
that the model parameters are a priori independently distributed as follows:

p(µ) = N(αµ, β
2
µ), (12.33a)

p(φ) = N(αφ, β
2
φ)1(−1, +1)(φ), (12.33b)

p(σ2
η) = IG(ασ, βσ), (12.33c)

where IG(·, ·) denotes an inverse-gamma distribution and N(a, b)1(−1, +1)(x)
defines a normal distribution with mean a, variance b, which is truncated
between −1 and 1. This rules out near unit-root behavior of φ. The pa-
rameters α(·) and β(·), characterizing the prior distributions, are called hyper-
parameters, which are specified by the researcher.
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• Initialize h(0), µ(0), φ(0) and σ2
η
(0)

.
• For g = 1, . . . , G:

1. For t = 1, . . . , T :

Sample h
(g)
t from p(ht|y, h

(g)
<t , h

(g−1)
>t , µ(g−1), φ(g−1), σ2

η
(g−1)

).

2. Sample σ2
η
(g)

from p(σ2
η|y, h(g), µ(g−1), φ(g−1)).

3. Sample φ(g) from p(φ|y, h(g), σ2
η
(g)

, µ(g−1)).

4. Sample µ(g) from p(µ|y, h(g), φ(g), σ2
η
(g)

).

Figure 12.2. Single-move Gibbs sampler for the standard SV
model

Given the prior distributions, the conditional posteriors for the model pa-
rameters are derived as

p(µ|y, h, φ, σ2
η) ∝ p(y|h, µ, φ, σ2

η)p(h|µ, φ, σ2
η)p(µ), (12.34a)

p(φ|y, h, σ2
η, µ) ∝ p(y|h, µ, φ, σ2

η)p(h|µ, φ, σ2
η)p(φ), (12.34b)

p(σ2
η|y, h, µ, φ) ∝ p(y|h, µ, φ, σ2

η)p(h|µ, φ, σ2
η)p(σ2

η). (12.34c)

Since the volatility states h subsume all information about (µ, φ, σ2
η), the full

information likelihood function p(y|h, µ, φ, σ2
η) is a constant with respect to

the model parameters, and thus can be omitted.

By successively conditioning we get

p(h|µ, φ, σ2
η) = p(h1|µ, φ, σ2

η)
T−1∏
t=1

p(ht+1|ht, µ, φ, σ2
η), (12.35)

where p(ht+1|ht, µ, φ, σ2
η) is specified according to (12.31b). Moreover, insert-

ing p(σ2
η), p(φ), p(µ), given by (12.33), and p(h|µ, φ, σ2

η), given by (12.35), into
(12.34), the full conditional posteriors can be reformulated, after eliminating
constant terms, as (for details, see Appendix 12.5.1)

p(σ2
η|y, h, µ, φ) ∝ IG(α̂σ, β̂σ), (12.36)

p(φ|y, h, σ2
η, µ) ∝ N(α̂φ, β̂

2
φ)1(−1, +1)(φ), (12.37)

p(µ|y, h, φ, σ2
η) ∝ N(α̂µ, β̂

2
µ), (12.38)
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where the hyper-parameters are estimated by

α̂σ = ασ +
T

2
, (12.39)

β̂σ = βσ +
1

2

{
T−1∑
t=1

(ht+1 − µ− φ(ht − µ))2 + (h1 − µ)2(1− φ2)

}
, (12.40)

α̂φ = β̂2
φ

{∑T−1
t=1 (ht+1 − µ)(ht − µ)

σ2
η

+
αφ

β2
φ

}
, (12.41)

β̂2
φ =

{∑T−1
t=1 (ht − µ)2 − (h1 − µ)2

σ2
η

+
1

β2
φ

}−1

, (12.42)

α̂µ = β̂2
µ

{
h1(1− φ2) + (1− φ)

∑T−1
t=1 (ht+1 − φht)

σ2
η

+
αµ

β2
µ

}
, (12.43)

β̂2
µ =

{
1− φ2 + (T − 1)(1− φ)2

σ2
η

+
1

β2
µ

}−1

. (12.44)

Since it is possible to directly sample from the conditional posteriors, we
obtain a straightforward (single-move) Gibbs sampler which breaks the joint
posterior p(θ, h, y) into T +3 univariate conditional posteriors. The resulting

Gibbs algorithm is summarized in Figure 12.2, where the subscripts of h
(·)
<t

and h
(·)
>t denote the periods before and after t respectively.

The most difficult part of the estimation of SV models is to effectively sample
the latent states ht from their full conditional posterior. In this context, an
M-H A-R algorithm can be applied. Below we briefly illustrate a sampling
procedure which is also used by Kim et al. (1998). In this context, Bayes’
theorem implies

p(ht|y, h−t, θ) ∝ p(yt|ht, θ)p(ht|h−t, θ), (12.45)

=
1√

2π exp(ht)
exp

{
− y2

t

2 exp(ht)

}
p(ht|h−t, θ), (12.46)

= f ∗(yt, ht, θ)p(ht|h−t, θ), (12.47)

where, h−t denotes all elements of h = (h1, · · · , hT ) excluding ht. Exploiting
the Markovian structure of the SV model we can derive

p(ht|h−t, θ) = p(ht|ht−1, ht+1, θ) = pN(ht|αt, β
2), (12.48)

where, pN(x|a, b) denotes the normal density function with mean a and vari-
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ance b, and

αt = µ +
φ{(ht−1 − µ) + (ht+1 − µ)}

(1 + φ2)
, β2 =

σ2
η

1 + φ2 . (12.49)

An acceptance-rejection step is implemented exploiting the fact that exp(−ht)
is bounded by a linear function in ht. By applying a Taylor expansion for
exp(−ht) around αt we obtain

log f ∗(yt, ht, θ) ≤ −
1

2
log(2π)− 1

2
ht −

y2
t

2
[exp(−αt){1 + αt − ht exp(−αt)}]

(12.50)
def
= log g∗(yt, ht, θ). (12.51)

Since p(ht|h−t, θ) = pN(ht|αt, β
2), we have

p(ht|h−t, θ)f
∗(yt, ht, θ) ≤ pN(ht|αt, β

2)g∗(yt, ht, θ). (12.52)

Then, the right-hand side of (12.52), after eliminating constant terms, can
be represented by

pN(ht|αt, β
2)g∗(yt, ht, θ) = k · pN(ht|α∗t , β2), (12.53)

where k is a real valued constant, and pN(ht|α∗t , β2) denotes a normal density

with mean α∗t = αt + β2

2 (y2
t exp{−αt} − 1) and variance β2.

Hence, since the target distribution, p(ht|h−t, θ)f
∗(yt, ht, θ), is bounded by

pN(ht|α∗t , β2) up to a constant k, the acceptance-rejection method can be
applied to sample ht from p(ht|y, h−t, θ) with acceptance probability

P

{
U ≤ f ∗∗(yt, ht, θ)p(ht|h−t, θ)

kpN(ht|α∗t , β2)

}
=

f ∗∗(yt, ht, θ)

g∗∗(yt, ht, θ)

where U ∼ U[0, 1]. Figure 12.3 summarizes the A-R algorithm to sample the
latent volatility states ht.

12.4 Empirical Illustrations

12.4.1 The Data

Below we will illustrate estimations of the standard SV model, the SVt model
and the SVJ model based on time series of the DAX index, the Dow Jones
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• For t = 1, · · · , T :
1. Draw h∗t from pN(ht|α∗t , β2).
2. Draw U from U[0, 1].
3. If U ≤ f ∗(yt, h

∗
t , θ)/g

∗(yt, h
∗
t , θ)

set ht = h∗t .
Else

go to step 1.

Figure 12.3. A-R method to sample the volatility states ht

Mean SD Median 0.1-q 0.9-q Skewness Kurtosis
DAX 3.7e-04 0.013 5.0e-4 -0.021 0.006 -0.295 7.455

Dow Jones 3.6e-04 0.009 3.0e-4 -0.009 0.008 -0.230 8.276
GBP/USD 3.6e-06 0.005 <1.0e-9 -0.006 0.009 -0.126 5.559

Table 12.1. Summary statistics for daily returns of the DAX
index, the Dow Jones index, and the GBP/USD exchange rate
from 01/01/1991 to 21/03/2007. XFGsummary

index and the GBP/USD FX rate. All time series cover the period from 1
January, 1991 to 21 March, 2007. We use daily continuously compounded
returns yielding 4,231 observations. Table 12.1 reports the mean, standard
deviation, median, 10%- and 90%-quantiles, and the empirical skewness as
well as kurtosis of the three series. All series reveal negative skewness and
overkurtosis which is a common finding for financial returns.

12.4.2 Estimation of SV Models

The standard SV model is estimated by running the Gibbs and A-R M-H
algorithm based on 25,000 MCMC iterations, where 5, 000 iterations are used
as burn-in period. Table 12.2 displays the choice of the prior distributions
and the hyper-parameters as well as the resulting prior mean and standard
deviation.

Table 12.3 shows the sample mean (MEAN), the sample standard deviation
(SD), the time-series standard errors (ts-SE), and the 95%-credibility interval
(CI) based on G = 20, 000 MCMC replications. The time-series standard
errors give an estimate of the variation that is expected in computing the
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Prior Distribution Hyper-Parameters Mean S.D.
p(µ) = N(αµ, β

2
µ) αµ = 0 βµ = 100 0 10

p(φ) = N(αφ, β
2
φ)I(−1,+1)(φ) αµ = 0 βµ = 100 0 1

p(σ2
η) = IG(ασ, βσ) ασ = 2.5 βσ = 0.025 0.167 0.024

Table 12.2. Prior distributions, hyper-parameters, and im-
plied prior means as well as standard deviations for the stan-
dard SV model. XFGprior

Parameter Mean SD ts-SE 95% CI
DAX

µ -8.942 0.192 1.5e-3 (-9.327,-8.565)
φ 0.989 0.002 2.0e-4 ( 0.983, 0.994)
ση 0.115 0.009 1.0e-3 ( 0.096, 0.137)

Dow Jones
µ -9.471 0.171 1.3e-3 (-9.810,-9.142)
φ 0.990 0.003 2.0e-4 ( 0.984, 0.995)
ση 0.087 0.010 1.1e-3 ( 0.069, 0.108)

GBP/USD
µ -10.238 0.649 4.3e-3 (-10.519,-9.997)
φ 0.993 0.002 2.0e-4 ( 0.988, 0.997)
ση 0.041 0.006 8.0e-4 ( 0.029, 0.054)

Table 12.3. Estimation results for the standard SV
model. XFGparameter

mean of the MC replications and is computed as SD/
√

n. As a rule of thumb,
Geweke (1992) suggests to choose G such that the time series standard error
is less than approximately 5% of the sample standard deviation.

Since the three time series reveal similar properties, we concentrate on the
results for DAX index returns. The volatility process is highly persistent as
indicated by an estimate of φ of 0.989. This near-to-unit-root behavior is
a quite typical finding for financial return series and is consistent with the
commonly observed volatility clustering. The estimated (smoothed) volatility
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states are computed by

ĥt =
1

G− g1

G∑
g=g1+1

exp(h
(g)
t /2), (12.54)

where h
(g)
t denotes the realizations of the Markov chain stemming from the

M-H A-R algorithm illustrated in the previous section, and g1 is the burn-in
period. The resulting plots of the smoothed volatilities are shown in Fig-
ure 12.4. It is nicely illustrated that the estimated latent volatility closely
mimics the movements of |yt| supporting the idea of using absolute or squared
returns as (noisy) proxies for ht.
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Figure 12.4. Top: Smoothed estimates of ht. Bottom: Abso-
lute returns, |yt|. XFGvolabs

Misspecification tests are implemented based on the standardized innova-
tions, yt exp(−ĥt/2) which should be i.i.d. Applying Ljung-Box tests and
ARCH tests (Engle, 1982) shown in Figure 12.5 yield p-values of 0.094 and
0.023, respectively. For the BDS independence test we find a p-value of 0.011.
The corresponding plot of the standardized innovations as well as ACF plots
of standardized innovations and squared standardized innovations are given
by graphs (a), (c) and (d), respectively, in Figure 12.5. The standardized in-
novations reveal a big outlier on 19/08/1991 where the DAX index dropped
from 1653.33 to 1497.93. Such a behavior is not easily captured by a con-
tinuous distribution for ht and requires accounting for jumps. Nevertheless,
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though it is evident that the model is obviously not flexible enough to com-
pletely explain the volatility dynamics, the diagnostics indicate a quite sat-
isfying dynamic performance. This is particularly true when the parameter
parsimony of the model is taken into account.

It is not surprising that the model is unable to capture the distributional
properties of the returns. We observe that the standard SV model with a
model implied kurtosis of 5.74 is not able to fully explain the over-kurtosis
in the data. This is confirmed by the Jarque-Bera normality test and the
QQ plot revealing departures from normality mainly stemming from extreme
innovations.

8
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(a) Standardized innovations
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Figure 12.5. Time series plot, QQ plot and autocorrelogram
of (squared) standardized innovations. XFGstdinnov

Finally, the results of convergence diagnostics are reported in Table 12.4.
All parameters pass both the Geweke’s z-scores test and the Heidelberg-
Welch’s stationarity and half-width tests indicating a proper convergence of
the Markov chain to its invariant distribution.

Table 12.5 shows the estimation results based on the SVt and SVJ model.
For the sake of brevity and given that we have qualitatively similar findings
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Parameter Z-score Test Stationarity and Half-Width Test
z-score p-value p-value Mean Half-width Ratio

µSV 0.199 0.843 0.645 -8.895 0.003 -0.001
φSV 0.032 0.972 0.897 0.928 0.001 0.001
σSV

u -0.413 0.686 0.979 0.329 0.003 0.009

Table 12.4. Convergence Diagnostics. The half-width
test is passed if the corresponding ratio is less than
0.01. XFGconvergence

Parameter Mean SD ts-SE 95% CI
The SVt model:

µ -9.201 0.230 2.3e-3 (-9.663,-8.752)
φ 0.991 0.002 1.0e-4 ( 0.985, 0.995)
ση 0.117 0.012 1.1e-3 ( 0.095, 0.145)
ν 12.443 1.812 2.3e-1 ( 9.600,16.923)

The SVJ model:
µ -9.107 2.3e-01 1.8e-03 (-9.568,-8.663)
φ 0.991 2.7e-03 2.1e-04 ( 0.984, 0.995)
ση 0.124 1.3e-02 1.4e-03 ( 0.101, 0.153)
αk -0.005 2.9e-05 1.8e-07 (-0.005,-0.004)√
βk 0.029 6.5e-03 8.7e-04 ( 0.020, 0.045)
κ 0.010 3.9e-03 3.1e-04 ( 0.003, 0.019)

Table 12.5. Estimation results for the SVt and SVJ model
based on DAX index returns. XFGsvtjparameter

for the other return series, we focus only on DAX index returns. We obtain
an estimate of the degrees of freedom in the SVt model of about ν̂ = 12.44
indicating the presence of fat-tailedness in the data and a clear misspecifica-
tion of the standard (Gaussian) SV model. The estimates for the SVJ model
reveal a daily average jump size of about α̂k = 0.005% with estimated stan-

dard deviation

√
β̂k = 0.029. Estimates of κ reveal an average probability of

observing a jump of about 1% on a daily basis. This implies that on average
a jump in returns may occur on average every 100 trading days.

Figure 12.6 depicts the QQ plots of the normalized innovations based on the
standard SV model (left), the SVt model (middle), and the SVJ model (right).
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It is shown that the inclusion of Student-t errors improves the distributional
properties of the model only slightly. Actually, we observe that both the
basic SV and the SVt model are not able to capture extreme observations in
the tails of the distribution. In contrast, the SVJ model turns out to be more
appropriate to accommodate outliers. This result indicates the importance
of allowing returns to be driven by a jump component.
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Figure 12.6. QQ plots of normalized innovations based on the
standard SV model (left), the SVt model (middle), and the
SVJ model (right). XFGsvtsvjqq

12.5 Appendix

12.5.1 Derivation of the Conditional Posterior Distributions

Using Bayes’ theorem, the conditional posterior distribution of σ2
η is given by

p(σ2
η|y, h, µ, φ) ∝ p(y|h, µ, φ, σ2

η)p(h|µ, φ, σ2
η)p(σ2

η).

By assuming σ2
η to follow an inverse-gamma distribution and successively

conditioning on p(h|µ, φ, σ2
η), we obtain

p(σ2
η|y, h, µ, φ) ∝ p(h1|µ, φ, σ2

η)
T−1∏
t=1

p(ht+1|ht, µ, φ, σ2
η)IG(σ2

η|ασ, βσ),

where the density function p(ht+1|ht, µ, φ, σ2
η) is given by (12.1b).
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After eliminating all constant terms with respect to σ2
η, we obtain

p(σ2
η|y, h, µ, φ)

∝ exp

[
−(h1 − µ)2(1− φ2)

2σ2
η

−
∑T−1

t=1 {ht+1 − µ− φ(ht − µ)}2

2σ2
η

]

×
(

1

σ2
η

)T
2 (βσ)

ασe−βσ/σ2
η

Γ(ασ)(σ2
η)

ασ+1

∝ exp

[
−

βσ + 1
2(h0 − µ)2(1− φ2) + 1

2

∑T−1
t=1 {ht+1 − µ− φ(ht − µ)}2

σ2
η

]

×
(

1

σ2
η

)(ασ+T
2 )+1

.

It is easy to see that the posterior density p(σ2
η|y, h, µ, φ) is proportional to

an inverse-gamma density. Consequently, we have

p(σ2
η|y, h, µ, φ) ∝ IG(α̂σ, β̂σ),

where,

α̂σ = ασ +
T

2
,

β̂σ = βσ +
1

2
(h1 − µ)2(1− φ2) +

1

2

T−1∑
t=1

{ht+1 − µ− φ(ht − µ)}2.

Mimicking the proceeding for σ2
η we can derive the conditional posteriors for

µ and φ in a similar way. Then, we obtain

p(µ|y, h, φ, σ2
η) ∝ p(h|µ, φ, σ2

η)p(µ),

∝ p(h1|µ, φ, σ2
η)

T−1∏
t=1

p(ht+1|ht, µ, φ, σ2
η)N(αµ, βµ),

∝ exp

(
− 1

2

[
µ2
{

1− φ2 + (T − 1)(1− φ)2

σ2
η

+
1

β2
µ︸ ︷︷ ︸

A

}

− 2µ

{
h1(1− φ2) + (1− φ)

∑T−1
t=1 (ht+1 − φht)

σ2
η

+
αµ

β2
µ︸ ︷︷ ︸

B

}])
,

∝ N

(
B

A
,
1

A

)



272 Nikolaus Hautsch and Yangguoyi Ou

and

p(φ|y, h, σ2
η, µ) ∝ p(h|µ, φ, σ2

η)p(φ),

∝ p(h1|µ, φ, σ2
η)

T−1∏
t=1

p(ht+1|ht, µ, φ, σ2
η)N(αφ, β

2
φ)∞(−1,+1)(φ),

∝ exp

(
− 1

2

[
φ2
{
−(h1 − µ)2 +

∑T−1
t=1 (ht − µ)2

σ2
η

+
1

β2
φ︸ ︷︷ ︸

C

}

− 2φ

{∑T−1
t=1 (ht+1 − µ)(ht − µ)

σ2
η

+
αφ

β2
φ︸ ︷︷ ︸

D

}])
∞(−1,+1)(φ),

∝ N

(
D

C
,

1

C

)
∞(−1,+1)(φ).
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13 Measuring and Modeling Risk Using

High-Frequency Data
Wolfgang Härdle, Nikolaus Hautsch and Uta Pigorsch

13.1 Introduction

Volatility modelling is the key to the theory and practice of pricing finan-
cial products. Asset allocation and portfolio as well as risk management
depend heavily on a correct modelling of the underlying(s). This insight
has spurred extensive research in financial econometrics and mathematical
finance. Stochastic volatility models with separate dynamic structure for the
volatility process have been in the focus of the mathematical finance liter-
ature, see Heston (1993) and Bates (2000), while parametric GARCH-type
models for the returns of the underlying(s) have been intensively analyzed in
financial econometrics.

The validity of these models in practice though depends upon specific dis-
tributional properties or the knowledge of the exact (parametric) form of
the volatility dynamics. Moreover, the evaluation of the predictive ability of
volatility models is quite important in empirical applications. However, the
latent character of the volatility poses a problem. To what measure should
the volatility forecasts be compared to? Conventionally, the forecasts of daily
volatility models, such as GARCH-type or stochastic volatility models, have
been evaluated with respect to absolute or squared daily returns. In view of
the excellent in-sample performance of these models, the forecasting perfor-
mance, however, seems to be disappointing.

The availability of ultra-high-frequency data opens the door for a refined
measurement of volatility and model evaluation. An often used and very
flexible model for logarithmic prices of speculative assets is the (continuous-
time) stochastic volatility model:

dYt = (µ + βσt)dt + σtdWt, (13.1)
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where σ2
t is the instantaneous (spot) variance, µ denotes the drift, β is the

risk premium, and Wt defines the standard Wiener process. The object of
interest is the amount of variation accumulated in a time interval ∆ (e.g.,
a day, week, month etc.). If n = 1, 2, . . . denotes a counter for the time
intervals of interest, then the term

σ2
n =

∫ n∆

(n−1)∆
σ2

t dt (13.2)

is called the actual volatility, see Barndorff-Nielsen and Shephard (2002).
The actual volatility is the quantity that reflects the market risk structure
(scaled in ∆) and is the key element in pricing and portfolio allocation. Actual
volatility (measured in scale ∆) is of course related to the integrated volatility:

V (t) =

∫ t

0
σ2

sds. (13.3)

It is worth noting that there is a small notational confusion here: the mathe-
matical finance literature would denote σt as “volatility” and σ2

t as “variance”,
see Nelson and Foster (1994), for example.

An important result is that V (t) can be estimated from Yt via the quadratic
variation:

[Yt]M =
∑

(Ytj − Ytj−1
)2, (13.4)

where t0 = 0 < t1 < · · · < tM = t is a sequence of partition points and
supj |tj+1 − tj| → 0. Andersen and Bollerslev (1998) have shown that

[Yt]M
p→ V (t), M →∞. (13.5)

This observation leads us to consider in an interval ∆ with M observations

RVn =
M∑

j=1

(Ytj − Ytj−1
)2 (13.6)

with tj = ∆{(n − 1) + j/M}. Note that RVn is a consistent estimator of
σ2

n and is called realized volatility. Barndorff-Nielsen and Shephard (2002)
point out that RVn − σ2

n is approximately mixed Gaussian and provide the
asymptotic law of √

M(RVn − σ2
n). (13.7)

The realized volatility turns out to be very useful in the assessment of the
validity of volatility models. For instance, reconciling evidence in favor of the
forecast accuracy of GARCH-type models is observed when using realized
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volatility as a benchmark rather than daily squared returns. Moreover, the
availability of the realized volatility measure initiated the development of a
new and quite accurate class of volatility models. In particular, based on
the ex-post observability of the realized volatility measure, volatility is now
treated as an observed rather than a latent variable to which standard time
series procedures can be applied.

The remainder of this chapter is structured as follows. We first discuss
the practical problems encountered in the empirical construction of realized
volatility which are due to the existence of market microstructure noise. Sec-
tion 13.3 presents the stylized facts of realized volatility, while Section 13.4
reviews the most popular realized volatility models. Section 13.5 illustrates
the usefulness of the realized volatility concept for measuring time-varying
systematic risk within a conditional asset pricing model (CAPM).

13.2 Market Microstructure Effects

The consistency of the realized volatility estimator builds on the notion that
prices are observed in continuous time and without measurement error. In
practice, however, the sampling frequency is inevitably limited by the actual
quotation or transaction frequency. Since high-frequency prices are subject to
market microstructure noise, such as price-discreteness, bid-and-ask bounce
effects, transaction costs etc., the true price is unobservable. Market mi-
crostructure effects induce a bias in the realized volatility measure, which can
straightforwardly be illustrated in the following simple discrete-time setup.
Assume that the logarithmic high-frequency prices are observed with noise,
i.e.,

Ytj = Y ∗
tj

+ εtj , (13.8)

where Y ∗
tj

denotes the latent true price. Moreover, the microstructure noise

εtj is assumed to be iid distributed with mean zero and variance η2, and is
independent of the true return. Let r∗tj denote the efficient return, then the
high-frequency continuously compounded returns

rtj = r∗tj + εtj − εtj−1
(13.9)

follow an MA(1) process. Such a return specification is well established in
the market microstructure literature and is usually justified by the existence
of the bid-ask bounce effect, see, e.g., Roll (1984). In this model, the realized
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volatility is given by

RVn =
M∑
i=1

(r∗tj)
2 + 2

M∑
j=1

r∗tj(εtj − εtj−1
) +

M∑
j=1

(εtj − εtj−1
)2. (13.10)

with

E[RVn] = E[RV ∗
n ] + 2Mη2. (13.11)

If the sampling frequency goes to infinity, we know from the previous section
that RV ∗

n consistently estimates σ2
n and, thus, the realized volatility based on

the observed price process is a biased estimator of the actual volatility with
bias term 2Mη2. Obviously, for M →∞, RVn diverges.
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Figure 13.1. Volatility signature plot for IBM, 2001-2006.
Average time between trades: 6.78 seconds. XFGsignature

This diverging behavior can also be observed empirically in so–called volatil-
ity signature plots. Figure 13.1 shows the volatility signature for one stock
of the IBM incorporation over the period ranging from January 2, 2001 to
December 29, 2006. The plot depicts the average annualized realized volatil-
ity over the full sample period constructed at different frequencies measured
in number of ticks (depicted in log scale). Obviously, the realized volatility
is large at the very high frequency, but decays for lower frequencies and sta-
bilizes around a sampling frequency of 300 ticks, which corresponds approx-
imately to a 30 minute sampling frequency, given that the average duration
between two consecutive trades is around 6.78 seconds.

Thus, sampling at a lower frequency, such as every 10, 15 or 30 minutes,
seems to alleviate the problem of market microstructure noise and has thus



13 Measuring and Modeling Risk Using High-Frequency Data 279

frequently been applied in the literature. This so–called sparse sampling,
however, comes at the cost of a less precise estimate of the actual volatility.
Alternative methods have been proposed to solve this bias-variance trade-off
for the above simple noise assumption as well as for more general noise pro-
cesses, allowing also for serial dependence in the noise and/or for dependence
between the noise and the true price process, which is sometimes referred to
as endogenous noise. A natural approach to reduce the market microstructure
noise effect is to construct the realized volatility measure based on prefiltered
high-frequency returns, using, e.g., an MA(1) model.

In the following we briefly present two more elaborate and under specific noise
assumptions consistent procedures for estimating actual volatility. Both have
been theoretically considered in several papers. The subsampling approach
originally suggested by Zhang et al. (2005) builds on the idea of averaging
over various realized volatilities constructed from different high-frequency
subsamples. For the ease of exposition we focus again on one time period,
e.g., one day, and denote the full grid of time points at which the M intradaily
prices are observed by Gt = {t0, . . . , tM}. The realized volatility that makes

use of all observations in the full grid is denoted by RV
(all)
n . Moreover, the grid

is partitioned into L nonoverlapping subgrids G(l), l = 1, . . . , L. A simple way
for selecting such a subgrid may be the so–called regular allocation, in which
the l-th subgrid is given by G(l) = {tl−1, tl−1+L, . . . , tl−1+MlL} for l = 1, . . . , L,
and Ml denoting the number of observations in each subgrid. E.g., consider
5-minute returns that can be measured at the time points 9:30, 9:35, 9:40,
. . . , and at the time points 9:31, 9:36, 9:41, . . . and so forth. In analogy to the

full grid, the realized volatility for subgrid l, denoted by RV
(l)
n , is constructed

from all data points in subgrid l. Thus, RV
(l)
n is based on sparsely sampled

data.

The actual volatility is then estimated by:

RV (ZMA)
n =

1

L

L∑
l=1

RV (l)
n − M̄

M
RV (all)

n , (13.12)

where M̄ = 1
L

∑L
l=1 Ml. The latter term on the right-hand side is included to

bias-correct the averaging estimator 1
L

∑L
l=1 RV

(l)
n . As the estimator (13.12)

consists of a component based on sparsely sampled data and one based on
the full grid of price observations, the estimator is also called the two time
scales estimator.

Given the similarity to the problem of estimating the long-run variance of a
stationary time series in the presence of autocorrelation, it is not surprising
that kernel-based methods have been developed for estimating the realized
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volatility. Most recently, Barndorff-Nielsen et al. (2008) proposed the flat-top
realized kernel estimator

RV (BHLS)
n = RVn +

H∗∑
h=1

K

(
h− 1

H∗

)
(γ̂h + γ̂−h) (13.13)

with

γ̂h =
M

M − h

M∑
j=1

rtjrtj−h
, (13.14)

and K(0) = 1, K(1) = 0. Obviously, the summation term on the right-
hand side is the realized kernel correction of the market microstructure noise.
Zhou (1996), who was the first to consider realized kernels, proposed (13.13)
with H = 1, while Hansen and Lunde (2006) allowed for general H but
restricted K(x) = 1. Both of these estimators, however, have been shown
to be inconsistent. Barndorff-Nielsen et al. (2008) instead propose several
consistent realized kernel estimators with an optimally chosen H∗, such as
the Tukey-Hanning kernel, i.e. K(x) = {1−cos π(1−x)2}/2, which performs
also very well in terms of efficiency as illustrated in a Monte Carlo analysis.
They further show, that these realized kernel estimators are robust to market
microstructure frictions that may induce endogenous and dependent noise
terms.

13.3 Stylized Facts of Realized Volatility

Figure 13.2 shows kernel density estimates of the plain and logarithmic daily
realized volatility in comparison to plots of a correspondingly fitted (log)
normal distribution based on the IBM data, 2001-2006. The pictures in the
top of Figure 13.2 show the unconditional distribution of the (plain) realized
volatility in contrast to a fitted normal distribution. As also confirmed by the
corresponding descriptive statistics displayed by Table 13.1, we observe that
realized volatility reveals severe right-skewness and excess kurtosis. This re-
sult might be surprising given that the realized volatility consists of the sum
of squared intra-day returns and thus central limit theorems should apply.
However, it is a common finding that intra-day returns are strongly serially
dependent requiring significantly higher intra-day sampling frequencies to ob-
serve convergence to normality. In contrast, the unconditional distribution of
the logarithmic realized volatility is well approximated by a normal distribu-
tion. The sample kurtosis is strongly reduced and is close to 3. Though slight
right-skewness and deviations from normality in the tails of the distribution
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Figure 13.2. Kernel density estimates of the (logarithmic) re-
alized volatility and of correspondingly standardized returns
for IBM, 2001-2006. The dotted line depicts the density
of the correspondingly fitted normal distribution. The left
column depicts the kernel density estimates based on a log
scale. XFGkernelcom

are still observed, the underlying distribution is remarkably close to that of
a Gaussian distribution.
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RVn ln RVn rn/
√

RVn

Mean 2.26 0.14 -.000
Median 1.05 0.05 -.013
Skewness 9.93 0.42 .035
Variance 22.57 1.13 .979
Kurtosis 150.47 3.43 2.349
1%-quantile 0.13 -2.03 -1.980
5%-quantile 0.24 -1.41 -1.558
95%-quantile 7.58 2.00 1.628
99%-quantile 17.66 2.87 2.141
LB(40) 2140.48 14213.07 39.780
p-value LB(40) 0.00 0.00 0.480

d̂ 0.38 0.62 -

Table 13.1. Descriptive statistics of the realized volatility, log
realized volatility and standardized returns, IBM stock, 2001-
2006. LB (40) denotes the Ljung-Box statistic based on 40
lags. The last row gives an estimate of the order of fractional
integration based on the Geweke and Porter-Hudak estimator.
XFGIBm

A common finding is that financial returns have fatter tails than the normal
distribution and reveal significant excess kurtosis. Though GARCH models
can explain excess kurtosis, they cannot completely capture these properties
in real data. Consequently, (daily) returns standardized by GARCH-induced
volatility, typically still show clear deviations from normality. However, a
striking result in recent literature is that return series standardized by the
square root of realized volatility, rn/

√
RV n, are quite close to normality. This

result is illustrated by the plots in the bottom of Figure 13.2 and the descrip-
tive statistics in Table 13.1. Though we observe deviations from normality
for returns close to zero resulting in a kurtosis which is even below 3, the fit
in the tails of the distribution is significantly better than that for plain log
returns. Summarizing the empirical findings from Figure 13.2, we can con-
clude that the unconditional distribution of daily returns is well described
by a lognormal-normal mixture. This confirms the mixture-of-distribution
hypothesis by Clark (1973) as well as the idea of the basic stochastic volatil-
ity model, where the log variance is modelled in terms of a Gaussian AR(1)
process.

Figure 13.3 shows the evolvement of daily realized volatility over the analyzed
sample period and the implied sample autocorrelation functions (ACFs). As
also shown by the corresponding Ljung-Box statistics in Table 13.1, the re-
alized volatility is strongly positively autocorrelated with high persistence.
This is particularly true for the logarithmic realized volatility. The plot
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Figure 13.3. Time evolvement and sample autocorrela-
tion function of the realized volatility for IBM, 2001-2006.
XFGrvtsacf

shows that the ACF decays relatively slowly providing hints on the existence
of long range dependence. Indeed, a common finding is that the realized
volatility processes reveal long range dependence which is well captured by
fractionally integrated processes. In particular, if RVn is integrated of the
order d ∈ (0, 0.5), it can be shown that

Var

[
h∑

j=1

RVn+j

]
≈ ch2d+1, (13.15)

with c denoting a constant. Then, plotting lnVar
[∑h

j=1 RVn+j

]
against lnh

should result in a straight line with slope 2d + 1. Most empirical studies
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strongly confirm this relationship and find values for d between 0.35 and 0.4
providing clear evidence for long range dependence. Estimating d using the
Geweke and Porter-Hudak estimator, we obtain d̂ = 0.38 for the series of
realized volatilities and d̂ = 0.62 for its logarithmic counterpart. Hence, for
both series we find clear evidence for long range dependence. However, the
persistence in logarithmic realized volatilities is remarkably high providing
even hints on non-stationarity of the process.

Summarizing the most important empirical findings, we can conclude that
the unconditional distributions of logarithmic realized volatility and of cor-
respondingly standardized log returns are well approximated by normal dis-
tributions and that realized volatility itself follows a long memory process.
These results suggest (Gaussian) ARFIMA models as valuable tools to model
and to predict (log) realized volatility.

13.4 Realized Volatility Models

As illustrated above, realized volatility models should be able to capture
the strong persistence in the sample autocorrelation function. While this
seemingly long-memory pattern is widely acknowledged, there is still no con-
sensus on the mechanism generating it. One approach is to assume that
the long memory is generated by a fractionally integrated process as origi-
nally introduced by Granger and Joyeux (1980) and Hosking (1981). In the
GARCH literature this has lead to the development of the fractionally inte-
grated GARCH model as, e.g., proposed by Baillie et al. (1996). For realized
volatility the use of a fractionally integrated autoregressive moving average
(ARFIMA) process was advocated, for example, by Andersen et al. (2003).
The ARFIMA(p, q) model is given by

φ(L)(1− L)d(yn − µ) = ψ(L)un, (13.16)

with φ(L) = 1−φ1L− . . .−φpL
p, ψ(L) = 1+ψ1L+ . . . ψqL

q, and d denoting
the fractional difference parameter. Moreover, un is usually assumed to be a
Gaussian white noise process, and yn denotes either the realized volatility (see
Koopman et al. (2005)) or its logarithmic transformation. Several extensions
of the realized volatility ARFIMA model have been proposed, accounting, for
example, for leverage effects (see Martens et al. (2004)), for non–Gaussianity
of (log) realized volatility or for time-variation in the volatility of realized
volatility (see Corsi et al. (2008)). Generally the empirical results show sig-
nificant improvements in the point forecasts of volatility when using ARFIMA
rather than GARCH-type models.
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An alternative model for realized volatility has been suggested by Corsi
(2004). The so-called heterogeneous autoregressive (HAR) model of realized
volatility approximates the long-memory pattern by a sum of multi-period
volatility components. The simulation results in Corsi (2004) show, that
the HAR model can quite adequately reproduce the hyperbolic decay in the
sample autocorrelation function of realized volatility even if the number of
volatility components is small. For the HAR model, let the k–period realized
volatility component be defined by the average of the single-period realized
volatilities, i.e.,

RVn+1−k:n =
1

k

k∑
j=1

RVn−j. (13.17)

The HAR model with the so-defined daily, weekly and monthly realized-
volatility components, is given by

log RVn = α0 + αd log RVn−1 + αw log RVn−5:n−1

+αm log RVn−21:n−1 + un, (13.18)

with un typically being a Gaussian white noise. The HAR model has become
very popular due to its simplicity in estimation and its excellent in-sample
fit and predictive ability (see e.g. Andersen et al. (2004), Corsi et al. (2008)).
Several extensions exist and deal, for example, with the inclusion of jump
measures (see Andersen et al. (2004)) or non-linear specifications based on
neural networks (see Hillebrand and Medeiros (2007)).

Alternative realized volatility models have been proposed in, e.g., Barndorff-
Nielsen and Shephard (2002), who consider a superposition of Ornstein–
Uhlenbeck processes, and in Deo et al. (2006), who specify a long-memory
stochastic volatility model. A recent and comprehensive review on realized
volatility models can also be found in McAleer and Medeiros (2008).

13.5 Time-Varying Betas

So far, our discussion focused on the measurement and modeling of the volatil-
ity of a financial asset using high-frequency transaction data. From a pricing
perspective, however, systematic risk is most important. In this section, we
therefore discuss, how high-frequency information can be used for the evalua-
tion and modeling of systematic risk. A common measure for the systematic
risk is given by the so-called (market) beta, which represents the sensitivity
of a financial asset to movements of the overall market. As the beta plays a
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crucial role in asset pricing, investment decisions, and the evaluation of the
performance of asset managers, a precise estimate and forecast of betas is
indispensable. While the unconditional capital asset pricing model implies
a linear and stable relationship between the asset’s return and the system-
atic risk factor, i.e., the return of the market, empirical results suggest that
the beta is time-varying, see, for example, Bos and Newbold (1984), Hafner
and Herwartz (1973), and Fabozzi and Francis (1978). Similar evidence has
been found for multi-factor asset pricing models, where the factor loadings
seem to be time-varying rather than constant. A large amount of research
has therefore been devoted to conditional CAPM and APT models, which
allow for time-varying factor loadings, see, for example, Dumas and Solnik
(1995), Ferson and Harvey (1991), Ferson and Harvey (1993), and Ferson and
Korajcyzyk (1995).

13.5.1 The Conditional CAPM

Below we consider the general form of the conditional CAPM. A similar dis-
cussion for multi-factor models can be found in Bollerslev and Zhang (2003).
Assume that the continuously compounded return of a financial asset i from
period n to n + 1 is generated by the following process

ri;n+1 = αi;n+1|n + βi;n+1|nrm;n+1 + ui;n+1, (13.19)

with rm;n+1 denoting the excess market return and αn+1|n denoting the inter-
cept that may be time-varying conditional on the information set available at
time n, as indicated by the subscript. The idiosyncratic risk un+1 is serially
uncorrelated, En(un+1) = 0, but may exhibit conditionally time-varying vari-
ance. Note that En(·) denotes the expectation conditional on the information
set available at time n. Moreover, we assume that E(rm;n+1un+1) = 0 for all
n. The conditional beta coefficient of the CAPM regression (13.19) is defined
as

βi;n+1|n =
Cov(ri;n+1, rm;n+1)

Var(ri;n+1)
. (13.20)

Now, assume that lending and borrowing at a one-period risk-free rate rf ;n
is possible. Then, the arbitrage-pricing theory implies that the conditional
expectation of the next period’s return at time n is given by

En(ri;n+1) = rf ;n + βi;n+1|nEn(rm;n+1). (13.21)

Thus, the computation of the future return of asset i requires to specify how
the beta coefficient evolves over time.
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The most common approach to allow for time-varying betas is to re-run the
CAPM regression in each period based on a sample of 3 or 5 years. We refer
to this as the rolling regression (RR) method. More elaborate estimates of
the beta can be obtained using the Kalman-filter, which builds on a state-
space representation of the conditional CAPM or by specifying a dynamic
model for the covariance matrix between the return of asset i and the market
return.

13.5.2 Realized Betas

The evaluation of the in-sample fit and predictive ability of various beta mod-
els is also complicated by the unobservability of the true beta. Consequently,
model comparisons are usually conducted in terms of implied pricing errors,
i.e., ei,n+1 = r̂i,n+1 − ri,n+1, with r̂i,n+1 = rf ;n + β̂i;n+1|n En(rm;n+1). Owing
to the discussion on the evaluation of volatility models, the question arises,
whether high-frequency data may also be useful for the evaluation of com-
peting beta estimates. The answer is a clear “yes”. In fact, high-frequency
based estimates of betas are quite informative for the dynamic behavior of
systematic risk. The construction of so-called realized betas is straightforward
and builds on realized covariance and realized volatility measures. In partic-
ular, denote the realized volatility of the market by RVm;n and the realized

covariance between the market and asset i by RCovm,i;n =
∑M

j=1 ri,tjrm,tj ,
where ri,tj and rm,tj denote the j-th high-frequency return of the asset and
the market, respectively, during day n. The realized beta is then defined as

β̂HF ;i;n =
RCovm,i;n

RVm;n
. (13.22)

Barndorff-Nielsen and Shephard (2004) show that the realized beta converges
almost surely for all n to the integrated beta over the time period from n−1 to
n, i.e., the daily systematic risk associated with the market index. Note that
the realized beta can also be obtained from a simple regression of the high-
frequency returns of asset i on the high-frequency returns of the market, see,
e.g., Andersen et al. (2006). The preciseness of the realized beta estimator
can easily be assessed by constructing the (1−α)-percent confidence intervals,
which have been derived in Barndorff-Nielsen and Shephard (2004) and are
given by

β̂HF ;i;n ± zα/2

√√√√√(
M∑

j=1

r2
m,tj

)−2

ĝi;n, (13.23)
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where zα/2 denotes the (α/2)-quantile of the standard normal distribution,

ĝi;n =
M∑

j=1

x2
i;j −

M−1∑
j=1

xi;jxi;j+1, (13.24)

and

xi;j = ri,tjrm,tj − β̂HF ;i;nr
2
m,tj

. (13.25)

The upper panel in Figure 13.4 presents the time-evolvement of the monthly
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Figure 13.4. Time evolvement and sample autocorrelation
function of monthly realized betas for IBM, 2001-2006. The
dashed lines in the upper panel present the 95% confidence
intervals of the realized beta estimator as given in (13.23).
The dashed lines in the lower panel depict the 95% Bartlett
confidence intervals. XFGbetatsacf
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realized beta for IBM incorporation over the period ranging from 2001 to
2006. We use the Dow Jones Industrial Average Index as the market in-
dex and construct the realized betas using 30 minute returns. The graph
also shows the 95%-confidence intervals of the realized beta estimator. The
time-varying nature of systematic risk emerges strikingly from the figure and
provides once more evidence for the relevance of its inclusion in asset pricing
models.

Interestingly, the sample autocorrelation function of the realized betas de-
picted in the lower panel of Figure 13.4 indicates significant serial correlation
over the short horizon. This dependency can be explored for the prediction
of systematic risk. Bollerslev and Zhang (2003), for example, find that an au-
toregressive model for the realized betas outperforms the RR approach both
in terms of forecast accuracy as well as in terms of pricing errors.

13.6 Summary

We review the usefulness of high-frequency data for measuring and modeling
actual volatility at a lower frequency, such as a day. We present the realized
volatility as an estimator of the actual volatility along with the practical prob-
lems arising in the implementation of this estimator. We show that market
microstructure effects induce a bias to the realized volatility and we discuss
several approaches for the alleviation of this problem. The realized volatility
is a more precise estimator of the actual volatility than the conventionally
used daily squared returns, and thus provides more accurate information on
the distributional and dynamic properties of volatility. This is important
for many financial applications, such as asset pricing, portfolio allocation or
risk management. As a consequence, several modeling approaches for real-
ized volatility exist and have been shown to usually outperform traditional
GARCH or stochastic volatility models, both in terms of in-sample as well
as out-of-sample performance. We further demonstrate the usefulness of the
realized variance and covariance estimator for measuring and modeling sys-
tematic risk. For the empirical examples provided in this chapter we use
tick-by-tick transaction data of one stock of the IBM incorporation and of
the DJIA index.
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14 Valuation of Multidimensional

Bermudan Options
Shih-Feng Huang and Meihui Guo

14.1 Introduction

Multi-dimensional option pricing becomes an important topic in financial
markets (Franke et al., 2008). Among which, the American-type derivative
(e.g. the Bermudan option) pricing is a challenging problem. Unlike the Eu-
ropean options which can only be exercised on the expiration date, the owner
of a Bermudan option has the right to exercise early on a contractually speci-
fied finite set of dates. The dynamic programming approach is a practical and
popular approach used to price the Bermudan option (Shreve, 2004, p.91). In
that approach, the option value on each possible early exercise date is set to
be the maximum of the payoff associated with immediate exercise, called the
intrinsic value, and the discounted conditional expectation of the future op-
tion value, called the continuation value. The major problem of the approach
lies in the computation of the continuation value.

In the literature, numerical methods, Barraquand and Martineau (1995) and
Jeantheau (1998), and simulation based methods, Rust (1997), Tsitsiklis and
Van Roy (1999), Longstaff and Schwartz (2001) and Broadie and Glasserman
(2004), were proposed to solve this problem. Here we consider a dynamic
semiparametric method to valuate multi-dimensional options. The proposed
approach uses nonparametric step functions to approximate the option val-
ues on each possible early exercise date and evaluate the continuation values
by parametric transition density. Unlike the simulation based method gen-
erating random sample paths, the proposed method selects the asset price
points beforehand. And instead of numerically evaluating the multiple inte-
gral involved in computation of the continuation values, the proposed method
provides closed form expressions for the integrals. Using this semiparamet-
ric technique, the proposed method provides a flexible and handy tool for
multidimensional derivative pricing. Details of the dynamic semiparametric
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method are given in Section 14.3. The computational effort of the method is
linear in the number of exercise opportunities and quadratic in the number of
partition points. In addition, it is easily implemented when the multivariate
joint distributions of the underlying assets are modeled by copula functions
(Nelsen, 2006), which are to be introduced in the next section.

Section 14.2 defines the model assumptions. The proposed approach for
valuing multidimensional Bermudan option is introduced in Section 14.3.
One dimensional Bermudan option pricing of Black-Scholes model, multi-
dimensional Bermudan option of multivariate geometric Brownian processes
and a real example are demonstrated in Section 14.4. Section 14.5 concludes.

14.2 Model Assumptions

Consider a Bermudan option on d-dimensional underlying assets. Assume the
price of each underlying asset S�,t follows a risk-neutral geometric Brownian
process:

dS�,t

S�,t
= (r − q�)dt + σ�dW�,t, � = 1, · · · , d, (14.1)

where q� and σ� are the continuously compounded dividend yield and the
instantaneous volatility of the �th asset, respectively, W�,t’s are Wiener pro-
cesses and the dependence among the W�,t’s will be modeled by copula func-
tion introduced below. Let Xt = (X1,t, · · · , Xd,t)

� be the standardized log
price per strike price, that is, X�,t = log(S�,t/K), � = 1, · · · , d. Thus the
(conditional) marginal distribution of X�,t is N(X�,0 + (r − q� − 1

2σ
2
� )t, σ

2
� t).

We will use copula functions to connect the asset marginals to their joint dis-
tribution. Since copula functions provide a flexible methodology for modeling
of multivariate asset dependence, it has recently become a popular technique
in financial markets, Sklar (1959), Cherubini et al. (2004), Nelsen (2006) and
Giacomini et al. (2007). Let F�(x�), � = 1, · · · , d denote the marginal distri-
bution of X�, throughout we assume the joint distribution of (X1, · · · , Xd)

�,
F (x1, · · · , xd), is modeled by a copula function C, that is

F (x1, · · · , xd) = C{F1(x1), · · · , Fd(xd)}. (14.2)

For example, the Gaussian copula has the form C(u1, · · · , ud) = ΦR{Φ−1(u1),
· · · , Φ−1(ud)}, where Φ is the distribution of N(0, 1) and ΦR is the standard-
ized multivariate normal distribution with correlation matrix R. When the
univariate Xj’s are normally distributed, the Gaussian copula is correspond-
ing to the multivariate normal distribution. If the correlation matrix R is the
identity matrix, then the Gaussian copula becomes the independence copula,
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implying that the random variables are independent. For example, in case
R = I2 the 2 × 2 identity matrix, by (14.2) and the definition of Gaussian
copula, we have the joint distribution

F (x1, x2) = ΦI2

[
Φ−1{F1(x1)}, Φ−1{F2(x2)}

]
= Φ

[
Φ−1{F1(x1)}

]
Φ
[
Φ−1{F2(x2)}

]
= F1(x1)F2(x2).

Copulae also provide a natural perspective to study the dependence in the tail
of a multivariate distribution. For bivariate case, the lower tail dependence
of X1 and X2 is defined as λL = limv→0+ P{F2(X2) ≤ v | F1(X1) ≤ v} =

limv→0+
C(v,v)

v . If λL > 0, then the two variables X1 and X2 are said to have
lower tail dependence. Similarly, the upper tail dependence is defined as

λU = limv→1− P{F2(X2) > v | F1(X1) > v} = limv→1−
1−2v+C(v,v)

1−v . If λU > 0,
then there exists upper tail dependence. Archimedean copulae such as the
Clayton and Gumbel copulae are two popular functions used to model the
tail dependence of data. The Clayton copula has the form

C(u1, · · · , up) =
( p∑

j=1

u−θ
j − p + 1

)−1
θ

, θ > 0,

and the Gumbel copula is

C(u1, · · · , up) = exp
[
−
{ p∑

j=1

(− log uj)
θ
} 1

θ
]
, θ ≥ 1.

The lower tail dependence of the bivariate Clayton copula is λL = 2−1/θ > 0,
and the upper tail dependence of the Gumbel copula is λU = 2 − 21/θ >
0, for θ > 1. Thus the Clayton and Gumbel copulae are usable to model
assets with lower and upper tail dependence, respectively. On the contrary,
the Gaussian copula has neither upper nor lower dependence, unless the
correlation coefficient ρ = 1. In Figure 21.1, we plot the random samples
of four bivariate copulae, independent and correlated Gaussian, Clayton and
Gumbel copulae with N(0, 1) marginals. Although the marginals are the
same in the four cases, the plots display different tail dependence. The top-
left is the independent Gaussian copula, denoted by Gaussian(0). The top-
right is the Gaussian copula with correlation 0.5, which is the same as the
bivariate normal distribution with zero mean, unit variance and correlation
0.5. The bottom-left and bottom-right are the Clayton and Gumbel copulae
with parameter θ = 2, which show a lower tail dependence and a upper tail
dependence, respectively.
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Figure 14.1. Bivariate copula plots with N(0, 1) marginals.
Output of XFGbicopula .

14.3 Methodology

In this section, we introduce the proposed semiparametric method to val-
uate a d-dimensional Bermudan option with expiration date T . Assume
the Bermudan option can only be exercised at time ti, i = 1, · · · , n, where
0 = t0 < t1 < · · · < tn = T and for simplicity we assume ti’s are equidis-
tant with constant interval length ∆ = ti − ti−1. Let Vi denote the time ti
value of the Bermudan option, Si = (S1,i, · · · , Sd,i)

� be the corresponding d
underlying asset values, and g(Si) be the option payoff function. Then the
no arbitrage option values on possible early exercise dates are{

Vn(Sn) = g(Sn) and

Vi(Si) = max{g(Si), e
−r∆ E(Vi+1 | Si)}, if i < n

, (14.3)

where r > 0 is the riskless interest rate and E(·|Si) is the conditional expec-
tation under a risk-neutral probability measure given the information up to
time ti, Shreve (2004, p.91). In (14.3), the term g(Si) is also called the early
exercise value and e−r∆ E(Vi+1|Si) is the continuation value at time ti. The
Bermudan option will be exercised at time ti if g(Si) ≥ e−r∆ E(Vi+1|Si), and
will be held continuously if g(Si) < e−r∆ E(Vi+1|Si).

The objective is to derive the initial option value V0(S0), the main difficulty
arises from evaluation of the continuation value. For instance, consider a uni-
variate Bermudan put option on an underlying asset without paying dividend,
q = 0, with payoff function (K − Sn)

+. Under geometric Brownian motion
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model assumption, the continuation value at time tn−1 can be obtained by
the following Black and Scholes (1973) formula,

e−r∆ E[(K − Sn)
+ | Sn−1] = Ke−r∆Φ(−d2)− Sn−1Φ(−d1),

where d1 =
log(Sn−1/K)+(r+σ2

2 )∆
σ
√

∆
and d2 = d1 − σ

√
∆. Thus the continuation

value at time tn−2 is

e−r∆ E(Vn−1 | Sn−2)

= e−r∆ E
(

max{(K − Sn−1)
+, Ke−r∆Φ(−d2)− Sn−1Φ(−d1)} | Sn−2

)
,

which is difficult to evaluate and has no closed-form solution. As the time
move backwards to time t0, the problem becomes more knotty. To han-
dle the problem, we use step functions to approximate the option value at
time tn, Vn(Sn) defined in (14.3). Since the conditional joint distribution
of Xt given Xt−1 is modeled by the copula function C{F1(X1,t|X1,t−1), · · · ,
Fd(Xd,t|Xd,t−1)}, it is relatively easy to evaluate the continuation value at
time tn−1. Accordingly, we define the approximate option value at time tn−1
to be the maximum of the intrinsic value and this continuation value. Con-
tinue the procedure backwards to t0, we can obtain the initial option value.
The proposed procedure uses a dynamic semiparametric approach, which in-
corporates nonparametric step function approximation and parametric model
assumption, to tackle the difficult multiple integral computation involved in
the high-dimensional derivative pricing problem. The details of the procedure
is given below.

First, we confine the space of XT to a proper finite region, say ±5 standard
deviation region of a given initial value X0, and then partition the region with

equidistant grid points, denoted by x(j) = (x
(j)
1 , · · · , x(j)

d )�, j = 1, · · · , N .
The distance between two adjacent points in each dimension is denoted by
∆x (see Figure 21.2 for the two-dimensional case). We keep the partition
length ∆x constant throughout the time. Start from the time point i = n,
we use Ṽi(·) to denote the approximate option function at time ti, and set

Ṽn(x
(j)) = g(x(j)) on the expiration date. The proposed steps to compute the

d-dimensional Bermudan option are:

(1) Set the grid A(j) =
∏d

�=1[x
(j)
� − (1 − c)∆x, x

(j)
� + c∆x], j = 1, · · · , N

(see Figure 21.2 for the two-dimensional case) and c is a pre-chosen
constant. Based on the grids {A(j)}N

j=1, define the step function

V̂i =
N∑

j=1

Ṽi(x
(j))1{Xi ∈ A(j)}.
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Figure 14.2. Two-dimensional grid points.

The constant c is chosen to meet the criterion that the European op-
tion values derived from this scheme are close to the benchmarks. In
which the European benchmark option values can either be obtained
analytically or by Monte Carlo simulation. For instance, the option
on a geometric average for multivariate normal distributed underlying
assets, the benchmark can be obtained by Black-Scholes formula since
it can be reduced to a one-dimensional problem (for details see example
14.2).

(2) Compute the continuation value at time ti−1 given Xi−1 = x(h) by

E(V̂i|Xi−1) =
N∑

j=1

Ṽi(x
(j))P(Xi ∈ A(j) | Xi−1 = x(h)) = PhṼi,

where Ph is the hth row of the transition matrix P = (phj)N×N with

phj = P(Xi ∈ A(j) | Xi−1 = x(h))

=
2∑

i1=1

· · ·
2∑

id=1

(−1)i1+···+idC(u1i1, · · · , udid),

where C is the copula, u�1 = F�(x
(j)
� −(1−c)∆x | x(h)

� ) and u�2 = F�(x
(j)
� +

c∆x | x
(h)
� ) for all � = 1, · · · , d, and Ṽi =

(
Ṽi(x

(1)), · · · , Ṽi(x
(N))

)�
is

the approximate option value at time ti, McNeil et al. (2005). Note
that the transition matrix P is the same for i = 1, · · · , n.

(3) The approximate option value at time ti−1 given Xi−1 = x(h) is obtained

by Ṽi−1(x
(h)) = max{g(x(h)), e−r∆PhṼi}. Note that if the interest is to

valuate a European option, then just set Ṽi−1(x
(h)) = e−r∆PhṼi.

(4) If i− 1 = 0, then stop; otherwise set i = i− 1 and return to (1).

Since the proposed method performs iterative matrix vector multiplication
at each time ti, its computational effort is linear in the number of exercise



14 Valuation of Multidimensional Bermudan Options 301

1it it

)(kx)(kx

Figure 14.3. Non-zero elements in the two-dimensional case.

opportunities n. At each time ti, on account of the matrix size (N ×N), the
computational work of matrix multiplication is quadratic in the total number
of grid points N . Although the size (N ×N) of the transition matrix P gets
large as either the maturity time T or the dimension d of the underlying assets
increases, lots (most) of it elements are zeros. This is due to the reason that
the transition probabilities are negligible for far apart grid points, say more
greater than five standard deviations (see Figure 21.3 for the two-dimensional
example). Specifically, the row length (N) of the transition matrix P is of
order O(T d/2) and the number of nonzero entries of each row is of order
O(∆d/2) = O((T

n )d/2), as a result the ratio of non-zero elements of P is of

order O(n−d/2). In another word, the transition matrix P is a sparse matrix
populated primarily with zeros.

When storing and manipulating sparse matrices on a computer, we can uti-
lize specialized algorithms and data structures, eg. the SPARSE routine
of MATLAB, to save the computation time and to consume less memory.
Furthermore, since the partition grid points of the d-dimensional asset price
space are determined in advance and kept fixed, the transition matrix remains
unchanged throughout the time, which contrasts sharply with the time vary-
ing transition matrix used in simulation based approach. In the simulation
based method, e.g. see Rust (1997) and Broadie and Glasserman (2004),
random samples are generated by Monte Carlo method at each time ti, and

the continuation value at time ti−1 given the kth random sample, S
(k)
i−1, is

approximated by
∑N

j=1 w
(k,j)
i Vi(S

(j)
i ), where w

(k,j)
i determines the stochastic

weights of the sample at time ti. In Figure 21.4 and 21.5, we illustrate the
design grid points of the proposed scheme and the random samples of the

simulation based method, respectively. Let P(i) = (w
(k,j)
i )k,j, the matrix of

stochastic weights, then the continuation value at time ti−1 can be viewed as
a matrix multiplication of the option value at time ti, and the matrix P(i)

varies as time changes.
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Figure 14.4. The designed points of the proposed scheme.
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Figure 14.5. The random samples of the simulation based
method.

14.4 Examples

In this section, we demonstrate three simulated examples (example 14.1-14.3)
and one real application (example 14.4) to valuate Bermudan options by the
proposed scheme.

EXAMPLE 14.1 Suppose the underlying asset satisfies the following risk-
neutral geometric Brownian motion

dSt = (r − q)Stdt + σStdWt, (14.4)

where r = 0.08, σ = 0.2 and q = 0, 0.04, 0.08 or 0.12. Consider a one
dimensional Bermudan put option with strike price K = 100, time to maturity
T = 3, length of time interval ∆ = 1

52 (i.e. n = 156) and payoff function
g(St) = (K−St)

+. In Figure 21.6, we plot a simulated path of {St} satisfying
(14.4) with r = 0.08, σ = 0.2, q = 0, T = 3, ∆ = 1

52 and the initial stock price
S0 = K = 100. The stock price at the maturity date is 117. Thus the payoff
is 17 at time T in this realization. At each time t < T , the owner of this
option would exercise early only when the payoff is positive, i.e. St > K, and
would hold the option continuously when St < K. If St > K, then she needs
to compute the continuation value of her option in order to decide whether
exercising immediately or not.
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Figure 14.6. A simulated path of the stock price process satis-
fying (14.4) with r = 0.08, σ = 0.2, q = 0, T = 3, ∆ = 1

52 and
the initial stock price S0 = K = 100. Output of XFGstock
.

Let Xt = log(St/K) denote the standardized log price per strike price and
let {x(j)}401

j=1 denote the 401 pre-chosen equidistant grid points of Xt, where

x(1) = X0 − 5σ
√

T and x(401) = X0 + 5σ
√

T , that is the distance between
two adjacent points is ∆x = 0.0087 and X0 = x(201). In the following, we
illustrate the procedure to compute the approximate option values backwards
from time t155 to t154. First the continuation values of x(j) at time t155,
e−0.0015 E(V155 | x(j)), are derived by the Black-Scholes formula, and the option
values of x(j)’s are obtained by

Ṽ155(x
(j)) = max{100− 100 exp(x(j)), e−0.0015 E(V156 | x(j))},

j = 1, · · · , 401. In Figure 21.7, we show the evolution of the intrinsic and
continuation values at ti in (a) to the approximate option value at ti−1 in
(b). In Figure 21.7 (a), the green line is the intrinsic value, the red dash
curve is the continuation value and the intersection of the green line and the
red curve represents the early exercised boundary of the Bermuda option. In
Figure 21.7 (b), the blue curve is the approximate option value, Ṽi−1. Define
the following step function

V̂155 =
401∑
j=1

Ṽ155(x
(j))1{X155∈A(j)},

where A(j) = [x(j)− (1− c)∆x, x
(j) + c∆x] and c is chosen to let the European

option price of X0 computed by proposed method meets that of the Black-
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Figure 14.7. (a) The intrinsic and continuation values at ti
(b) The approximate option value, Ṽi−1, at ti−1.

Scholes formula. The continuation value of x(h) at time t154 is given by

e−0.0015 E(V̂155 | x(h)) = e−0.0015
401∑
j=1

Ṽ155(x
(j))P(X155 ∈ A(j) | x(h))

= e−0.0015PhṼ155,

where Ph is the hth row of the transition matrix P = (phj)401×401 with

phj = P(X155 ∈ A(j) | x(h))

= Φ(x(j)+c∆x−x(h)−(r−q−0.5σ2)∆
σ
√

∆
)− Φ(x(j)−(1−c)∆x−x(h)−(r−q−0.5σ2)∆

σ
√

∆
),

Φ(·) is the standard normal cumulative distribution function and Ṽ155 =(
Ṽ155(x

(1)), · · · , Ṽ155(x
(401))

)�
are the approximate option values at time t155.

Therefore, the approximate option values of x(j)’s at time t154 are Ṽ154(x
(j)) =

max{100− 100 exp(x(j)), e−0.0015 E(V̂155 | x(j))}, j = 1, · · · , 401. Note that the
transition matrix P remains unchanged throughout the time. Proceeding the
above procedure backwards to time zero, one obtains the desired option value.

Table 14.1 presents the simulation results for different initial stock prices,
S0 = 90, 100, 110. In the table, we give the option prices obtained by the pro-
posed method and the methods by Ju (1998), denoted as EXP3, by and Lai
and AitSahalia (2001), denoted as LSP4. In approximating the early exercise
boundary of the Bermuda option, Ju (1998) adopts multipiece exponential
function and Lai and AitSahalia (2001) adopt a linear spline method. The
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S0 Bin. LSP4 EXP3 Alg.
90 (1) 20.08 20.08 20.08 20.09

100 q = 0.12 15.50 15.51 15.50 15.50
110 11.80 11.81 11.80 11.81
90 (2) 16.21 16.20 16.20 16.21

100 q = 0.08 11.70 11.70 11.70 11.71
110 8.37 8.37 8.36 8.37
90 (3) 13.50 13.49 13.49 13.50

100 q = 0.04 8.94 8.94 8.93 8.95
110 5.91 5.91 5.90 5.92
90 (4) 11.70 11.70 11.69 11.69

100 q = 0.00 6.93 6.93 6.92 6.93
110 4.16 4.15 4.15 4.16

Table 14.1. Bermudan put values of example 14.1 with pa-
rameters r = 0.08, σ = 0.20, K = 100, T = 3 and ∆ = 1/52.
Output of XFGBP1 .

values based on 10,000 steps of the binomial method are taken as the bench-
mark option prices. The results show that our approach is competitive and
comparable with the LSP4 and EXP3 methods.

2, with parameters r = 0.05, q1 = q2 = 0, σ1 = σ2 = 0.2 and the joint distri-
bution of the two log stock price processes is bivariate normal with correlation
coefficient ρ = 0.3. Consider a Bermudan put option on a geometric aver-
age with K = 100, T = 1, S0 = 100, ∆ = 1/12 (i.e. n = 12) and payoff
function g(St) = (K −

√
S1,tS2,t)

+. First, we confine the space of X12 to
[−0.57, 0.63]2, and partition the region with 25 equidistance partition points
in each dimension, that is we have 625 two-dimensional grid points, denoted
by x(1), · · · ,x(625). The transition matrix P = (phj)625×625 has entries

phj = P(Xi ∈ A(j) | x(h)) =
2∑

i1=1

2∑
i2=1

(−1)i1+i2CGa
0.3 (u1i1, u2i2),

where u�1 = Φ(
x

(j)
� +c∆x−x

(h)
� −0.03∆

0.2
√

∆
), u�2 = Φ(

x
(j)
� +c∆x−x

(h)
� −0.03∆

0.2
√

∆
), for � = 1, 2,

and CGa
0.3 is the Gaussian copula with correlation coefficient 0.3. Obviously,

the the entries of phj of the transition matrix are independent of the time
index. To decide the adjusting coefficient c of the grids, we demonstrate the

EXAMPLE 14.2 Assume now two underlying assets satisfying (14.1), i.e. d =
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European Bermudan
Copula T (year) Ben. (std.) Alg. Ben. Alg.

2-dim. Gaussian(0) 0.25 2.33 2.34 2.38 2.39
0.5 3.02 3.02 3.18 3.18
1 3.75 3.75 4.13 4.13

Gaussian(0.3) 0.25 2.69 2.69 2.74 2.75
0.5 3.50 3.50 3.67 3.67
1 4.38 4.37 4.79 4.79

Clayton(5) 0.25 3.30 (0.004) 3.30 3.37
0.5 4.33 (0.006) 4.33 4.52
1 5.46 (0.006) 5.48 5.94

Gumbel(5) 0.25 3.33 (0.004) 3.33 3.39
0.5 4.36 (0.005) 4.36 4.55
1 5.50 (0.008) 5.49 5.96

3-dim. Gaussian(0) 0.25 1.86 1.86 1.91 1.92
0.5 2.38 2.37 2.53 2.53

Gaussian(0.3) 0.25 2.41 2.41 2.47 2.47
0.5 3.13 3.11 3.29 3.28

Clayton(5) 0.25 3.27 (0.002) 3.27 3.35
0.5 4.29 (0.004) 4.29 4.49

Table 14.2. Multi-dimensional put option prices on a ge-
ometric average with parameters r = 0.05, σ = 0.2,
S0=K=100 and ∆ = 1/12 (year). Gaussian(ρ): ρ de-
notes the equi-correlation among securities. Clayton(α) and
Gumbel(α): α is the parameter of Clayton and Gumbel cop-
ulae. The Ben. values of the Gaussian cases are computed
by XFGBPgmeanR1 , while the Ben. values of the Clayton
and Gumbel cases are from XFGEPmean2MC (2 dimensional
case) and XFGEPmean3MC (3 dimensional case). The 2 and
3 dimensional Alg. values are obtained by XFGBPgmean2
and XFGBPgmean3 , respectively.

Gaussian copula case. In the case of Gaussian copula, this problem can also
be considered as a one-dimensional option pricing problem. Let S̄t denote the
geometric mean of S1,t and S2,t, that is S̄t =

√
S1,tS2,t. Since S1,t and S2,t

both are geometric Brownian motions, thus by Ito’s lemma we have

d log S̄t = (r̃ − 1

2
σ̃2)dt + σ̃dWt,

where Wt is a Wiener process, σ̃2 = 1
4(σ

2
1 + σ2

2 + 2ρσ1σ2), which is due to

the bivariate normal distributed assumption, and r̃ = r + 1
2 σ̃

2 − 1
4(σ

2
1 + σ2

2).
Consequently, the European put option values can be obtained by the following
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European Bermudan
Copula T (year) Ben. (std.) Alg. Alg.
Gaussian(0) 2/3 8.46 (0.006) 8.45 8.65

1 9.55 (0.009) 9.55 10.04
Gaussian(0.3) 2/3 7.90 (0.011) 7.89 8.07

1 8.93 (0.013) 8.93 9.36
Clayton(5) 2/3 6.73 (0.014) 6.74 6.92

1 7.66 (0.013) 7.61 8.02

Table 14.3. Multi-dimensional max call option prices with
parameters r = 0.05, q = 0.1, σ = 0.2, S0=K=100 and ∆ =
1/3 (year). The Ben. values are computed by XFGECmax2MC
and the Alg. values are from XFGBCmax2 .

formula

V0(S0) = e−rT E[(K − S̄T )+ | S0] = e−(r−r̃)T{Ke−r̃TΦ(−d2)− S̄0Φ(−d1)},
(14.5)

where d1 = log(S̄0/K)+(r̃+0.5σ̃2)T
σ̃
√

T
, d2 = d1 − σ̃

√
T and the second equality is

due to the Black-Scholes formula. The above result can also be extended to
d-dimensional European option on geometric average.

Assume that the random vector (log S1,t, · · · , log Sd,t)
� has a multivariate nor-

mal distribution with covariance matrix t·Σ = t·(σjk). Let S̄t = (S1,t · · ·Sd,t)
1/d,

thus log S̄t given S0 is normally distributed with mean log S̄0 +(r̃− 1
2σ̃

2)t and

variance σ̃2t, where σ̃ = 1
d

√∑
j,k σjk and r̃ = r + 1

2σ̃
2 − 1

2d

∑
j σjj. Thus

the European put option values on a d-dimensional geometric average can be
obtained by (14.5) analogously. And the corresponding Bermudan option can
also be valuated using this reduced one-dimensional version. Thus for Gaus-
sian copula, we can use (14.5) to obtain the benchmarks of the European and
Bermudan geometric option prices and the adjusting coefficient c can then be
determined.

Table 14.2 presents the results of several expiration dates T for Gaussian,
Clayton and Gumbel copulae. For Clayton and Gumbel copulae, since no
closed-form solutions exit, thus the benchmarks of European options are ob-
tained by Monte Carlo simulation. For the Gaussian cases, the estimated op-
tion values are all close to the benchmarks, which shows the proposed scheme
provides a promising approach for multi-dimensional options on a geometric
average.

EXAMPLE 14.3 Suppose two underlying assets satisfying (14.1) with r =
0.05, q1 = q2 = 0.1 and σ1 = σ2 = 0.2. Consider a Bermudan max-call
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T = 1/4 T = 1/2 T = 1
S0/K Euro. Berm. Euro. Berm. Euro. Berm.
0.9 7.86 20.49 4.01 20.49 1.18 20.49
1.0 2.41 3.90 1.45 4.27 0.48 4.42
1.1 0.62 0.84 0.49 1.11 0.19 1.24

Table 14.4. European and Bermudan put values of example
14.4 with parameters r = 0.5736, σ = 0.304, ∆ = 1/12 and
S0 = 184.375. Output of XFGBP1 .

option with K = 100, T = 2/3, 1, S0 = 100, ∆ = 1/3 (i.e. n = 3) and
payoff function g(St) = {max(S1,t, S2,t) − K}+. Table 14.3 gives the results
of Bermudan max call option prices for Gaussian copula with ρ = 0, 0.3, and
Clayton copula with α = 5. Since no closed-form solutions of European max-
call option exit for Gaussian and Clayton copulae, the European benchmarks
are obtained by Monte Carlo simulation. The simulation results show that all
the Bermudan options are more valuable than their European counterparts.

EXAMPLE 14.4 Consider a standard Bermuda put option on the IBM
shares. In (Tsay, 2005, p.259 − 260) a geometric Brownian motion process
(14.4) is fitted to the 252 daily IBM stock prices of 1998. The parameters’
estimated values are r = 0.5732, q = 0 and σ = 0.304. The stock price of
IBM on Dec. 31, 1998 is S0 = 184.375. Assume the possible early exercise
dates are at the end of each month, that is the length of the time interval
is ∆ = 1/12. Table 14.4 presents the European and Bermudan put option
values on Dec. 31, 1998, for different S0/K = 0.9, 1, 1.1, where K is the
strike price, and maturity time T = 1/4, 1/2, 1. The European put values
are computed by the Black-Scholes formula and the Bermudan put values are
computed by the proposed method with 401 pre-chosen equidistant grid points
as in example 14.1. The results show the Bermudan options are all more
valuable than their European counterparts.

14.5 Conclusion

The proposed method gives an innovative semiparametric approach to mul-
tidimensional Bermudan option pricing. The method is applicable to use
copula functions modeling multivariate asset dependence. The simulation
results show that the proposed approach is very tractable for numerical im-
plementation and provides an accurate method for pricing Bermudan options.
Although the transition matrix of the proposed method is a sparse matrix



14 Valuation of Multidimensional Bermudan Options 309

containing lots of zeros, the geometrically increasing rate (in time) of the
matrix size still impedes its application. To tackle this problem, Huang and
Guo (2007) apply important sampling idea to re-weight the grid probabilities
and keep the matrix size constant throughout the time.
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15 Multivariate Volatility Models
Matthias R. Fengler and Helmut Herwartz

Multivariate volatility models are widely used in Finance to capture both
volatility clustering and contemporaneous correlation of asset return vectors.
Here we focus on multivariate GARCH models. In this common model class
it is assumed that the covariance of the error distribution follows a time
dependent process conditional on information which is generated by the his-
tory of the process. To provide a particular example, we consider a system
of exchange rates of two currencies measured against the US Dollar (USD),
namely the Deutsche Mark (DEM) and the British Pound Sterling (GBP).
For this process we compare the dynamic properties of the bivariate model
with univariate GARCH specifications where cross sectional dependencies are
ignored. Moreover, we illustrate the scope of the bivariate model by ex-ante
forecasts of bivariate exchange rate densities.

15.1 Introduction

Volatility clustering, i.e. positive correlation of price variations observed on
speculative markets, motivated the introduction of autoregressive condition-
ally heteroskedastic (ARCH) processes by Engle (1982) and its popular gen-
eralizations by Bollerslev (1986) (Generalized ARCH, GARCH) and Nelson
(1991) (exponential GARCH, EGARCH). Being univariate in nature, how-
ever, such models neglect a further stylized fact of empirical price variations,
namely contemporaneous cross correlation e.g. over a set of assets, stock
market indices, or exchange rates.

Cross section relationships are often implied by economic theory. Interest rate
parities, for instance, provide a close relation between domestic and foreign
bond rates. Assuming absence of arbitrage, the so-called triangular equation
formalizes the equality of an exchange rate between two currencies on the one
hand and an implied rate constructed via exchange rates measured towards a
third currency. Furthermore, stock prices of firms acting on the same market
often show similar patterns in the sequel of news that are important for
the entire market (Hafner and Herwartz, 1998). Similarly, analyzing global
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volatility transmission Engle, Ito and Lin (1990) and Hamao, Masulis and
Ng (1990) found evidence in favor of volatility spillovers between the world’s
major trading areas occurring in the sequel of floor trading hours. From this
point of view, when modeling time varying volatilities, a multivariate model
appears to be a natural framework to take cross sectional information into
account. Moreover, the covariance between financial assets is of essential
importance in finance. Effectively, many problems in financial practice like
portfolio optimization, hedging strategies, or Value-at-Risk evaluation require
multivariate volatility measures (Bollerslev et al., 1988; Cecchetti, Cumby
and Figlewski, 1988).

15.1.1 Model Specifications

Let εt = (ε1t, ε2t, . . . , εNt)
� denote an N -dimensional error process, which is

either directly observed or estimated from a multivariate regression model.
The process εt follows a multivariate GARCH process if it has the represen-
tation

εt = Σ
1/2
t ξt, (15.1)

where Σt is measurable with respect to information generated up to time
t − 1, denoted by the filtration Ft−1. By assumption the N components of
ξt follow a multivariate Gaussian distribution with mean zero and covariance
matrix equal to the identity matrix.

The conditional covariance matrix, Σt = E[εtε
�
t |Ft−1], has typical elements

σij with σii, i = 1, . . . , N, denoting conditional variances and off-diagonal
elements σij, i, j = 1, . . . , N, i �= j, denoting conditional covariances. To
make the specification in (15.1) feasible a parametric description relating
Σt to Ft−1 is necessary. In a multivariate setting, however, dependencies
of the second order moments in Σt on Ft−1 become easily computationally
intractable for practical purposes.

Let vech(A) denote the half-vectorization operator stacking the elements of a
quadratic (N×N)-matrix A from the main diagonal downwards in a 1

2N(N +
1) dimensional column vector. Within the so-called vec-representation of the
GARCH(p, q) model Σt is specified as follows:

vech(Σt) = c +

q∑
i=1

Ãivech(εt−iε
�
t−i) +

p∑
i=1

G̃ivech(Σt−i). (15.2)

In (15.2) the matrices Ãi and G̃i each contain {N(N + 1)/2}2 elements.
Deterministic covariance components are collected in c, a column vector of
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dimension N(N +1)/2. We consider in the following the case p = q = 1 since
in applied work the GARCH(1,1) model has turned out to be particularly
useful to describe a wide variety of financial market data (Bollerslev, Engle
and Nelson, 1994).

On the one hand the vec–model in (15.2) allows for a very general dynamic
structure of the multivariate volatility process. On the other hand this spec-
ification suffers from high dimensionality of the relevant parameter space,
which makes it almost intractable for empirical work. In addition, it might
be cumbersome in applied work to restrict the admissible parameter space
such that the implied matrices Σt, t = 1, . . . , T , are positive definite. These
issues motivated a considerable variety of competing multivariate GARCH
specifications.

Prominent proposals reducing the dimensionality of (15.2) are the constant
correlation model (Bollerslev, 1990) and the diagonal model (Bollerslev et al.,
1988). Specifying diagonal elements of Σt both of these approaches assume
the absence of cross equation dynamics, i.e. the only dynamics are

σii,t = cii + aiε
2
i,t−1 + giσii,t−1, i = 1, . . . , N. (15.3)

To determine off-diagonal elements of Σt Bollerslev (1990) proposes a con-
stant contemporaneous correlation,

σij,t = ρij
√

σiiσjj, i, j = 1, . . . , N, (15.4)

whereas Bollerslev et al. (1988) introduce an ARMA-type dynamic structure
as in (15.3) for σij,t as well, i.e.

σij,t = cij + aijεi,t−1εj,t−1 + gijσij,t−1, i, j = 1, . . . , N. (15.5)

For the bivariate case (N = 2) with p = q = 1 the constant correlation model
contains only 7 parameters compared to 21 parameters encountered in the
full model (15.2). The diagonal model is specified with 9 parameters. The
price that both models pay for parsimonity is in ruling out cross equation
dynamics as allowed in the general vec-model. Positive definiteness of Σt

is easily guaranteed for the constant correlation model (|ρij| < 1), whereas
the diagonal model requires more complicated restrictions to provide positive
definite covariance matrices.

The so-called BEKK-model (named after Baba, Engle, Kraft and Kroner,
1990) provides a richer dynamic structure compared to both restricted pro-
cesses mentioned before. Defining N ×N matrices Aik and Gik and an upper
triangular matrix C0 the BEKK–model reads in a general version as follows:
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Σt = C�
0 C0 +

K∑
k=1

q∑
i=1

A�ikεt−iε
�
t−iAik +

K∑
k=1

p∑
i=1

G�
ikΣt−iGik. (15.6)

If K = q = p = 1 and N = 2, the model in (15.6) contains 11 parameters
and implies the following dynamic model for typical elements of Σt:

σ11,t = c11 + a2
11ε

2
1,t−1 + 2a11a21ε1,t−1ε2,t−1 + a2

21ε
2
2,t−1

+ g2
11σ11,t−1 + 2g11g21σ21,t−1 + g2

21σ22,t−1,

σ21,t = c21 + a11a22ε
2
1,t−1 + (a21a12 + a11a22)ε1,t−1ε2,t−1 + a21a22ε

2
2,t−1

+ g11g22σ11,t−1 + (g21g12 + g11g22)σ12,t−1 + g21g22σ22,t−1,

σ22,t = c22 + a2
12ε

2
1,t−1 + 2a12a22ε1,t−1ε2,t−1 + a2

22ε
2
2,t−1

+ g2
12σ11,t−1 + 2g12g22σ21,t−1 + g2

22σ22,t−1.

Compared to the diagonal model the BEKK–specification economizes on the
number of parameters by restricting the vec–model within and across equa-
tions. Since Aik and Gik are not required to be diagonal, the BEKK-model
is convenient to allow for cross dynamics of conditional covariances. The pa-
rameter K governs to which extent the general representation in (15.2) can
be approximated by a BEKK-type model. In the following we assume K = 1.
Note that in the bivariate case with K = p = q = 1 the BEKK-model con-
tains 11 parameters. If K = 1 the matrices A11 and −A11, imply the same
conditional covariances. Thus, for uniqueness of the BEKK-representation
a11 > 0 and g11 > 0 is assumed. Note that the right hand side of (15.6)
involves only quadratic terms and, hence, given convenient initial conditions,
Σt is positive definite under the weak (sufficient) condition that at least one
of the matrices C0 or Gik has full rank (Engle and Kroner, 1995).

15.1.2 Estimation of the BEKK-Model

As in the univariate case the parameters of a multivariate GARCH model are
estimated by maximum likelihood (ML) optimizing numerically the Gaussian
log-likelihood function.

With f denoting the multivariate normal density, the contribution of a single
observation, lt, to the log-likelihood of a sample is given as:

lt = ln{f(εt|Ft−1)}

= −N

2
ln(2π)− 1

2
ln(|Σt|)−

1

2
ε�t Σ−1

t εt.

Maximizing the log-likelihood, l =
∑T

t=1 lt, requires nonlinear maximization
methods. Involving only first order derivatives the algorithm introduced by
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Berndt, Hall, Hall, and Hausman (1974) is easily implemented and particu-
larly useful for the estimation of multivariate GARCH processes.

If the actual error distribution differs from the multivariate normal, maxi-
mizing the Gaussian log-likelihood has become popular as Quasi ML (QML)
estimation. In the multivariate framework, results for the asymptotic prop-
erties of the (Q)ML-estimator have been derived recently. Jeantheau (1998)
proves the QML-estimator to be consistent under the main assumption that
the considered multivariate process is strictly stationary and ergodic. Further
assuming finiteness of moments of εt up to order eight, Comte and Lieberman
(2000) derive asymptotic normality of the QML-estimator. The asymptotic
distribution of the rescaled QML-estimator is analogous to the univariate
case and discussed in Bollerslev and Wooldridge (1992).

15.2 An Empirical Illustration

15.2.1 Data Description

We analyze daily quotes of two European currencies measured against the
USD, namely the DEM and the GBP. The sample period is December 31,
1979 to April 1, 1994, covering T = 3720 observations. Note that a subperiod
of our sample has already been investigated by Bollerslev and Engle (1993)
discussing common features of volatility processes.

The data is provided in fx. The first column contains DEM/USD and
the second GBP/USD. In XploRe a preliminary statistical analysis is easily
done by the summarize command. Before inspecting the summary statis-
tics, we load the data, Rt, and take log differences, εt = ln(Rt) − ln(Rt−1).
XFGmvol01 produces the following table:

[2,] " Minimum Maximum Mean Median Std.Error"

[3,] "-----------------------------------------------------------"

[4,] "DEM/USD -0.040125 0.031874 -4.7184e-06 0 0.0070936"

[5,] "GBP/USD -0.046682 0.038665 0.00011003 0 0.0069721"

XFGmvol01

Evidently, the empirical means of both processes are very close to zero (-
4.72e-06 and 1.10e-04, respectively). Also minimum, maximum and standard
errors are of similar size. First differences of the respective log exchange
rates are shown in Figure 15.1. As is apparent from Figure 15.1, variations
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Figure 15.1. Foreign exchange rate data: returns.

XFGmvol01

of exchange rate returns exhibit an autoregressive pattern: Large returns in
foreign exchange markets are followed by large returns of either sign. This
is most obvious in periods of excessive returns. Note that these volatility
clusters tend to coincide in both series. It is precisely this observation that
justifies a multivariate GARCH specification.

15.2.2 Estimating Bivariate GARCH

The quantlet bigarch provides a fast algorithm to estimate the BEKK
representation of a bivariate GARCH(1,1) model. QML-estimation is im-
plemented by means of the BHHH-algorithm which minimizes the negative
Gaussian log-likelihood function. The algorithm employs analytical first or-
der derivatives of the log-likelihood function (Lütkepohl, 1996) with respect
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to the 11-dimensional vector of parameters containing the elements of C0, A11
and G11 as given in (15.6).

The standard call is

{coeff, likest}=bigarch(theta, et),

where as input parameters we have initial values theta for the iteration al-
gorithm and the data set, e.g. financial returns, stored in et. The estimation
output is the vector coeff containing the stacked elements of the parame-
ter matrices C0, A11 and G11 in (15.6) after numerical optimization of the
Gaussian log-likelihood function. Being an iterative procedure the algorithm
requires to determine suitable initial parameters theta. For the diagonal
elements of the matrices A11 and G11 values around 0.3 and 0.9 appear rea-
sonable, since in univariate GARCH(1,1) models parameter estimates for a1
and g1 in (15.3) often take values around 0.32 = 0.09 and 0.81 = 0.92. There is
no clear guidance how to determine initial values for off diagonal elements of
A11 or G11. Therefore it might be reasonable to try alternative initializations
of these parameters. Given an initialization of A11 and G11 the starting values
for the elements in C0 are immediately determined by the algorithm assuming
the unconditional covariance of εt to exist, Engle and Kroner (1995).

Given our example under investigation the bivariate GARCH estimation
yields as output:

Contents of coeff

[ 1,] 0.0011516

[ 2,] 0.00031009

[ 3,] 0.00075685

[ 4,] 0.28185

[ 5,] -0.057194

[ 6,] -0.050449

[ 7,] 0.29344

[ 8,] 0.93878

[ 9,] 0.025117

[10,] 0.027503

[11,] 0.9391

Contents of likest

[1,] -28599

XFGmvol02

The last number is the obtained minimum of the negative log-likelihood func-
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tion. The vector coeff given first contains as first three elements the param-
eters of the upper triangular matrix C0, the following four belong to the
ARCH (A11) and the last four to the GARCH parameters (G11), i.e. for our
model

Σt = C�
0 C0 + A�11εt−1ε

�
t−1A11 + G�

11Σt−1G11 (15.7)

stated again for convenience, we find the matrices C0, A, G to be:

C0 = 10−3
(

1.15 .31
0 .76

)
,

A11 =

(
.282 −.050
−.057 .293

)
, G11 =

(
.939 .028
.025 .939

)
. (15.8)

15.2.3 Estimating the (Co)Variance Processes

The (co)variance is obtained by sequentially calculating the difference equa-
tion (15.7) where we use the estimator for the unconditional covariance matrix

as initial value (Σ0 = E�E
T ). Here, the T ×2 vector E contains log-differences

of our foreign exchange rate data. Estimating the covariance process is also
accomplished in the quantlet XFGmvol02 and additionally provided in
sigmaprocess.

We display the estimated variance and covariance processes in Figure 15.2.
The upper and the lower panel of Figure 15.2 show the variances of the
DEM/USD and GBP/USD returns respectively, whereas in the middle panel
we see the covariance process. Except for a very short period in the beginning
of our sample the covariance is positive and of non-negligible size throughout.
This is evidence for cross sectional dependencies in currency markets which
we mentioned earlier to motivate multivariate GARCH models.

Instead of estimating the realized path of variances as shown above, we could
also use the estimated parameters to simulate volatility paths
( XFGmvol03 ).

For this at each point in time an observation εt is drawn from a multivari-
ate normal distribution with variance Σt. Given these observations, Σt is
updated according to (15.7). Then, a new residual is drawn with covari-
ance Σt+1. We apply this procedure for T = 3000. The results, displayed in
the upper three panels of Figure 15.3, show a similar pattern as the origi-
nal process given in Figure 15.2. For the lower two panels we generate two
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Figure 15.2. Estimated variance and covariance processes,
105Σ̂t.

XFGmvol02

variance processes from the same residuals ξt. In this case, however, we set
off-diagonal parameters in A11 and G11 to zero to illustrate how the unre-
stricted BEKK model incorporates cross equation dynamics. As can be seen,
both approaches are convenient to capture volatility clustering. Depending
on the particular state of the system, spillover effects operating through con-
ditional covariances, however, have a considerable impact on the magnitude
of conditional volatility.
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15.3 Forecasting Exchange Rate Densities

The preceding section illustrated how the GARCH model may be employed
effectively to describe empirical price variations of foreign exchange rates. For
practical purposes, as for instance scenario analysis, VaR estimation (Chapter
??), option pricing (Chapter ??), one is often interested in the future joint
density of a set of asset prices. Continuing the comparison of the univariate
and bivariate approach to model volatility dynamics of exchange rates it is
thus natural to investigate the properties of these specifications in terms of
forecasting performance.

We implement an iterative forecasting scheme along the following lines: Given
the estimated univariate and bivariate volatility models and the correspond-
ing information sets Ft−1, t = 1, . . . , T − 5 (Figure 15.2), we employ the
identified data generating processes to simulate one-week-ahead forecasts of
both exchange rates. To get a reliable estimate of the future density we set
the number of simulations to 50000 for each initial scenario. This procedure
yields two bivariate samples of future exchange rates, one simulated under
bivariate, the other one simulated under univariate GARCH assumptions.

A review on the current state of evaluating competing density forecasts is
offered by Tay and Wallis (1990). Adopting a Bayesian perspective the com-
mon approach is to compare the expected loss of actions evaluated under
alternative density forecasts. In our pure time series framework, however, a
particular action is hardly available for forecast density comparisons. Alter-
natively one could concentrate on statistics directly derived from the simu-
lated densities, such as first and second order moments or even quantiles. Due
to the multivariate nature of the time series under consideration it is a non-
trivial issue to rank alternative density forecasts in terms of these statistics.
Therefore, we regard a particular volatility model to be superior to another if
it provides a higher simulated density estimate of the actual bivariate future
exchange rate. This is accomplished by evaluating both densities at the actu-
ally realized exchange rate obtained from a bivariate kernel estimation. Since
the latter comparison might suffer from different unconditional variances un-
der univariate and multivariate volatility, the two simulated densities were
rescaled to have identical variance. Performing the latter forecasting exer-
cises iteratively over 3714 time points we can test if the bivariate volatility
model outperforms the univariate one.

To formalize the latter ideas we define a success ratio SRJ as

SRJ =
1

|J |
∑
t∈J

1{f̂biv(Rt+5) > f̂uni(Rt+5)}, (15.9)
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Time window J Success ratio SRJ

1980 1981 0.744
1982 1983 0.757
1984 1985 0.793
1986 1987 0.788
1988 1989 0.806
1990 1991 0.807
1992 1994/4 0.856

Table 15.1. Time varying frequencies of the bivariate GARCH
model outperforming the univariate one in terms of one-week-
ahead forecasts (success ratio)

where J denotes a time window containing |J | observations and 1 an indica-

tor function. f̂biv(Rt+5) and f̂uni(Rt+5) are the estimated densities of future
exchange rates, which are simulated by the bivariate and univariate GARCH
processes, respectively, and which are evaluated at the actual exchange rate
levels Rt+5. The simulations are performed in XFGmvol04 .

Our results show that the bivariate model indeed outperforms the univariate
one when both likelihoods are compared under the actual realizations of the
exchange rate process. In 81.6% of all cases across the sample period, SRJ =
0.816, J = {t : t = 1, ..., T − 5}, the bivariate model provides a better
forecast. This is highly significant. In Table 15.1 we show that the overall
superiority of the bivariate volatility approach is confirmed when considering
subsamples of two-years length. A-priori one may expect the bivariate model
to outperform the univariate one the larger (in absolute value) the covariance
between both return processes is. To verify this argument we display in
Figure 15.4 the empirical covariance estimates from Figure 15.2 jointly with
the success ratio evaluated over overlapping time intervals of length |J | = 80.

As is apparent from Figure 15.4 there is a close co-movement between the
success ratio and the general trend of the covariance process, which confirms
our expectations: the forecasting power of the bivariate GARCH model is
particularly strong in periods where the DEM/USD and GBP/USD exchange
rate returns exhibit a high covariance. For completeness it is worthwhile to
mention that similar results are obtained if the window width is varied over
reasonable choices of |J | ranging from 40 to 150.

With respect to financial practice and research we take our results as strong
support for a multivariate approach towards asset price modeling. Whenever
contemporaneous correlation across markets matters, the system approach
offers essential advantages. To name a few areas of interest multivariate
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Covariance and success ratio
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Figure 15.4. Estimated covariance process from the bivariate
GARCH model (104σ̂12, blue) and success ratio over overlap-
ping time intervals with window length 80 days (red).

volatility models are supposed to yield useful insights for risk management,
scenario analysis and option pricing.
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16 The Accuracy of Long-term Real

Estate Valuations
Rainer Schulz, Markus Staiber, Martin Wersing and Axel Werwatz

16.1 Introduction

Real estate valuations are important for financial institutions, especially
banks, for at least two reasons. First, valuations are often needed during
the underwriting or refinancing of mortgage loans, where valuations should
provide a fair assessment of the (future) market value of the property that will
serve as collateral for the loan. Second, valuations are needed if the institu-
tion or bank wants an updated assessment of collateral values for outstanding
loans it holds on its balance sheet. Such reassessments might be necessary
and required by Basel II if new information arrives or market sentiments
change.

The two most common approaches for the valuation of single-family houses
are the sales comparison approach and the cost approach. Focussing on a
short-term horizon, the studies of Dotzour (1990) and Schulz and Werwatz
(2008) have shown that sales comparison values are more accurate than cost
values when used as forecasts of current house prices. Further, the latter
study finds that a weighted average of sales comparison values and cost values
performs best.

In this study, we complement the above results by focussing on a long-term
horizon and examine the accuracy of single-family house valuations when
used as forecasts of future house prices. Here, the future could refer to the
date when the borrower is most likely to default. The long-term valuation
would then be a forecast of collateral recovery value given default. Informal
evidence indicates that the default probabilities are highest in the early years
of a mortgage loan, so that a long-term horizon of up to five years seems to
be a reasonable choice.

It should be noted that mortgage banks in several countries are required to
compute so-called mortgage lending values for the underwriting process. The
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rules for the computation of mortgage lending values are binding and defined
in detail by the financial market supervisory authorities. This applies to
Germany, the country our data comes from. According to the German rules,
sales and cost values form the basis for the computation of single-family
house mortgage lending values, but further adjustments and deductions are
required. Deductions are reasonable if the economic loss function of valuation
errors is asymmetric. The long-term valuations we examine and the mortgage
lending values are thus not identical, but related. Evaluating the accuracy of
long-term valuations might thus also be useful for an understanding of the
accuracy of mortgage lending values.

The results of our study show that the sales comparison values provide better
long-term forecasts than cost values if the economic loss function is symmet-
ric, but a weighted average of sales comparison and cost values performs best.
If the economic loss function is asymmetric, however, then—as kernel den-
sity estimates of the valuation error distributions reveal—cost values might
provide better long-term forecasts. In summary, the study proves that it is
possible and useful to assess the long-term performance of different valuation
approaches empirically. Future work has to provide better understanding of
the economic loss function. Moreover, a discussion of the accuracy of the
different valuation approaches in a portfolio context seems to be worthwhile
(Shiller and Weiss, 1999).

The study is organized as follows. Section 16.2 discusses the sales comparison
and the cost approach in detail and explains our data set and how we compute
the different valuations. Section 16.3 presents the empirical results. Section
16.4 concludes.

16.2 Implementation

In this study, the accuracy of long-term valuations is explored with single-
family house data from Berlin. Our data set allows the computation of sales
comparison and cost values over a period of 30 quarters. These valuations
are computed for different forecast horizons and are then compared to actual
transaction prices. More precisely, we compute valuations for every trans-
action backdated up to five years, taking into account only the information
that was available that time. These valuations are adjusted for the expected
future levels of house prices and replacement cost, respectively, and also for
depreciation when necessary. In addition to a direct comparison of sales com-
parison and cost values, we also compute an equally-weighted combination of
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if two or more valuations of the same property are available.

16.2.1 Computation of the Valuations

Sales comparison approach: This approach uses transaction prices of com-
parable houses to estimate the value of the subject house. Several adjust-
ments might be necessary when this approach is applied, either because the
recent transactions are not completely comparable to the subject house or
because house prices in the aggregate have changed.

We use hedonic regression techniques to compute sales comparison values.
According to the technique, the observed transaction price of a house is a
function of an aggregate price level, the house’s characteristics and an unex-
plained part, assumed to be random. In particular, we employ the following
specification

pt = β0t +
C∑

c=1

{
βc1Tc(xct) + βc2Tc(xct)

2}+
D∑

d=1

γdxdt + εt . (16.1)

The dependent variable pt is the log price for a house transacted in period t.
β0t captures the price level in period t. Tc(·) is a Box-Cox type transformation
function for the cth continuous characteristic. Examples of continuous char-
acteristics xc are size of the lot, amount of floor space, and age of the building.
βc1 and βc2 are the implicit prices for the respective—possibly transformed—
characteristic. xd is an indicator for the dth discrete characteristic, which
could be a location indicator or the type of cellar. γd is the implicit price of
the discrete characteristic. εt is a random noise term.

Fitting equation (16.1) to transaction data requires the choice of a specific
transformation function Tc(·) for each of the continuous characteristics. In
principle, these transformations might depend on the sample period used
to fit the model. To simplify our analysis, we choose the transformations
based on the entire sample and use these transformations throughout. As a
by-product of our hedonic regressions, we also obtain constant-quality house
price indices, which we use later for forecasting the expected future house
price level. We start with a regression using the data over the period 1980Q1-
1991Q2 to obtain estimates of the price levels β0t. The second regression
covers the period 1991Q2-1995Q1 and is used to make valuations based on
information up to 1995Q1. The estimated coefficients of the price levels are
used to construct the price index series from 1980Q1-1995Q1, which is used
to forecast the future trend of the price level. The procedure continues by
shifting the sample by one quarter and fitting a new regression. The last

both. In practice, appraisers sometimes compute such weighted combinations
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regression is for the period 2002Q3-2006Q2 and we fit 47 regressions in total.
For further details on the hedonic regression model and, in particular, the
choice of functional form, see Schulz and Werwatz (2004).

The individual long-term sales comparison value of a house transacted in
t + h is computed in two steps. In the first step, we use hedonic regression
fitted with data up to quarter t to compute the market value of the subject
house in the valuation period t. Since the dependent variable in our hedonic
regression is measured in logs, a re-transformation of the computed value is
necessary. The re-transformation also corrects for any potential bias by using
an ‘optimal linear correction’ factor (Theil, 1966, pp. 34). In the second step,
we adjust the computed period t sales comparison value for the expected
future price level over the forecast horizon h, see Section 16.3.1.

As stated above, the hedonic regression technique is only one of many possi-
ble ways of implementing the sales comparison approach. A great advantage
of the hedonic regression technique is that it copes easily with large data sets
and is suitable for mass appraisals (automated valuation). Once the regres-
sion is fitted, the value of a house—its expected price—is readily computed.
The disadvantage of the hedonic regression technique is that it cannot take
into account information that is not systematically recorded in the data set
being used to fit the model. Such missing information is often of ‘soft’ na-
ture, i.e., hard to quantify exactly. Examples are the style of decoration or
the appearance of the immediate neighborhood. A valuer visiting the subject
house would take such soft factors into account when forming his appraisal.
The results presented below on the performance of the sales comparison val-
ues might thus be seen as conservative, because the performance could be
improved if soft factors were taken into account.

Cost approach: This approach uses the replacement cost of the subject
house as valuation, i.e., the sum of building cost and land cost. In case where
the building of the subject property is not new, building cost needs to be
adjusted for depreciation. The cost value C for a property is given by

C = L + {1− δ(a)}B ,

where L is land cost, B is the construction cost of a new building, and δ(a) is
the depreciation due to age a. Obviously, δ(0) = 0 and δ(a) approaches 1 as
age a becomes large. Both building cost and land cost are computed by our
data provider for the transaction period t + h, for details see Section 16.2.2.

We compute the cost values in two steps. First, we discount the land cost of
the subject house to the valuation period t by using a land cost index. This
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land cost index is derived from estimating a hedonic regression over the full
sample period. The land cost in period t is then adjusted for the expected
future growth of land cost over the forecast horizon h by using a time series
model fitted to the land cost index estimated with information up to period
t. In the second step, the observed building cost in period t+h is discounted
to the valuation period t by using the official construction cost index, see
Section 16.3.1. The building cost is then adjusted for the expected future
growth over the forecast horizon h by using a time series model fitted to the
construction cost index up to period t. The building cost for the subject
house is finally adjusted for depreciation accrued in period t+h. We employ
the following depreciation function

δ(a) = 1−
(
1− a

l

)0.65
with l =

{
98 if a � 66

98 + (a− 66) if a > 66 ,
(16.2)

where l is the conditional life span of a new building and a is the age of the
building. A simpler version of this function was first introduced by Cannaday
and Sunderman (1986). Observe that for a � 66 the depreciation accelerates
with age. Once a building has reached the age of 66, however, depreciation
slows, reflecting superior quality of long-lived buildings.

The building cost adjusted for depreciation and the land cost are then added
together to form replacement cost, i.e., the cost value C. If a valuation is
for the short term, it might be advisable to further adjust C for current
deviations of prices from cost. Such an adjustment is not necessary for long-
term valuations, however, if prices and replacement cost realign quickly over
time, as it is the case for the test market (Schulz and Werwatz, 2008).

16.2.2 Data

The data used in the study consists of transactions of single-family houses
in Berlin between 1980Q1 and 2007Q2. Data are provided by Berlin’s local
real estate surveyor commission (Gutachterausschuss für Grundstückswerte,
GAA) out of its transaction database (Automatisierte Kaufpreissammlung,
AKS). This transaction database covers information on all real estate trans-
actions in Berlin. All observations in our data set have information on the
price, appraised land cost, and many different characteristics of the house.
Only transactions from 2000Q1 onwards, however, have current information
on new building cost. Between 2000Q1 and 2007Q2, we have 9088 observa-
tions, with at least 135, at most 628, and on average 303 transactions per
quarter. Table 16.1 reports summary statistics for the main characteristics
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of the houses. Obviously, all the characteristics that a valuer would use for
computing a sales comparison value are observed.

Panel A: Continuous Characteristics, Prices, and Cost
Mean Median Std. Dev. Units

Lot size 566.8 514.0 308.3 Sqm
Floor space 147.7 137.0 53.3 Sqm
Gross volume 657.2 599.0 253.1 Cm
Gross base 247.4 232.0 90.0 Sqm
Year of construction 1961 1962 29.0 Year
Price 228.7 198.5 14.0 (000)
Building cost 185.8 173.4 82.4 (000)
Land cost 120.7 91.1 117.2 (000)

Panel B: House Type
Detached 52.7% Semi-detached 22.2%
End-row 16.9% Mid-row 15.8%

Panel C: Location and Lake Side
Simple 32.1% Average 46.5%
Good 18.9% Excellent 2.0%
Lake side 0.9%

Panel D: Number of Storeys and Attic
One 54.3% Two 43.6%
Three 2.1% Attic 55.0%

Panel E: Cellar
Full 77.4% Part 11.6%
No 10.9%

Notes : 9088 observations. Gross base is the sum of all base areas in
all storeys, gross volume is the corresponding volume. 4017 objects
have information on the gross volume and 9063 on the gross base.
Prices and cost are in year 2000 Euros. Building cost are cost of
constructing a new building. Attic in Panel D means that the attic
is upgraded for living.

Table 16.1. Summary statistics for transacted single-family
houses in Berlin between 2000Q1 to 2007Q2.

The building cost in our data set were computed by GAA surveyors based
on information gathered and published by the German government (Bundes-
ministerium für Raumordnung, Bauwesen und Städtebau, 1997; Bundesmin-
isterium für Verkehr, Bau- und Wohnungswesen, 2001). The published infor-
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mation gives the average building cost for many different house specifications
in Germany. The land cost in our data set are the value of land if the site
of the subject house were undeveloped. GAA surveyors appraised these land
cost using the sales comparison approach and their database of all land trans-
actions.

16.3 Empirical Results

16.3.1 Characterization of the Test Market

Figure 16.1 shows the trend of house price, land cost, and construction cost
for a constant-quality single-family house in Berlin over the period 1980Q1
to 2007Q2. The index values are computed as

100 exp{β̂0t − 0.5σ̂2
t } ,

which corrects for small-sample bias (Kennedy, 1998, p. 37). β̂0t is the es-
timated coefficient of the period-t dummy variable in a hedonic regression
with either house price or land cost as the dependent variable and σ̂2

t is the
corresponding estimated robust variance of the coefficient estimator. The
quarterly construction cost index is provided by the Statistical Office Berlin
in its Statistical Report M I 4. It measures the change of the construction
cost for a new single-family building.

The movement of prices for existing houses and the cost of constructing new
houses are closely related. This is in line with economic reasoning because
if house prices are above replacement cost (i.e., the sum of land cost and
building cost) then it is profitable for developers to construct new houses.
The additional supply will increase the housing stock and, given unchanged
demand, dampen house price growth. Developers will provide additional
supply until prices of existing houses are realigned with replacement cost
and no extra profits can be made. In the case that house prices fall below
replacement cost, developers will provide no new supply at all and the housing
stock will shrink until equilibrium is reached again. This reasoning motivates
the use of the cost approach for forecasting long-term house values, because
even if prices and replacement cost deviate at the date of valuation, they
ought to move closer to each other in the near future. If replacement cost
is a better predictor of the future price of a home than any function of past
prices, then this could put the cost approach at advantage even if the sales
comparison approach has been found in previous studies to perform better
with respect to short-term valuations.
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Figure 16.1. Constant-quality house price and land cost in-
dices, and construction cost indices for single-family houses
in Berlin, 1980Q1-2007Q2. Series are normalized to 100 in
1980Q1.

Variable y Model specification σ̂∆ ln y R2

House price ∆ ln yt = ct + εt 2.6 13.2
Land cost ∆ ln yt = ct + θ2εt−2 + θ3εt−3 + θ4εt−4 + εt 2.8 44.1
Construction cost ∆ ln yt = ct + φ4∆ ln yt−4 + θ3εt−3 + εt 0.9 50.6

Notes : The constant is ct = c0 + c1I1993Q2(t), where I1993Q2(t) is an indicator function,
which is 1 if t � 1993Q2 and 0 otherwise. εt is the residual. The estimated volatility
σ̂∆ ln y and the coefficient of determination R2 are expressed in percent.

Table 16.2. Time series model specifications fitted to the three
different index series. Volatility and coefficient of determi-
nation are for the full sample fit with data from 1980Q1 to
2007Q2.

For the forecast experiment, all three series are treated as difference-stationary
time series and ARMA models are fitted to their growth rates. Table 16.2
presents the ARMA specifications for the three different series, the volatil-
ity of the growth rates over the full sample and the respective regression
fit. In the case of the two estimated constant-quality series we take the log
indices directly from the hedonic regressions (instead of re-transforming the
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indices again). The regression constant ct of the specifications in Table 16.2
allows for a shift in the respective growth rate after the introduction of the
European single market in 1993. The specifications have a parsimonious
parametrization and the fitted models have uncorrelated residuals accord-
ing to the standard tests for autocorrelation (Q-Statistic and LM test). To
simplify the forecast experiment, we fit the same specifications to all sample
periods, regardless of their length. In most cases the residuals of the specifi-
cations fitted over shorter sample periods rather than the full sample period
are uncorrelated and all coefficients are statistically significant.

It follows from the specification for the house price growth rate in Table 16.2
that the house price index follows a random walk. If we were to assume
that the required return rate for a housing investment is constant and the
unobserved imputed rent is proportional to the house price, then a random
walk would indicate that prices are set in an informational efficient manner.
Without the lagged MA terms, the land cost index would follow a random
walk, too. It seems reasonable to attribute the moving average terms to the
valuation process with which land cost are computed (appraisal smoothing).
The growth of construction cost exhibits a strong seasonal component.

As is obvious from Figure 16.1, the construction cost series has a much smaller
volatility than the other two series. Moreover, because of the strong seasonal
component, the in-sample predictability of construction cost growth is higher
than for the other two series as indicated by the R2s. Thus, it might be
possible to forecast construction cost with greater accuracy. Compared to
the price regression, the land cost regression provides a much better fit of the
data, which might indicate that land cost can be forecasted more accurately
as well, making a combination of construction cost and land cost superior to
direct forecasting of the house price index.

Figure 16.2 compares two different price forecasts for the last five years of the
full sample period with the full sample house price index. The first forecast
is based on the house price specification fitted to the data up to 2002Q2.
This is a forecast of the house price index itself and corresponds to the very
idea of the sales comparison approach. The second forecast is based on a
weighted average of the land and construction cost indices, both forecasted
in 2002Q2 based on the information available at that time. We assume that
building cost account for 55% of replacement cost while land cost account
for the remaining 45%. Using the replacement cost index as a forecast of the
future level of house prices corresponds to the very idea of cost approach.
Figure 16.2 reveals that both forecasts seem to perform well.

Although the house price index estimated with the data up to 2002Q2 and
the index estimated with the full data sample show a very similar behavior
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Figure 16.2. Full sample house price index and forecasts for
the period 2002Q3-2007Q2 (right from vertical line) based on
information up to 2002Q2. The sales comparison approach
forecast (FS) is based on the time series model for the price
index, the cost approach forecast (FC) is a weighted average
of the forecasted land cost and construction cost indices.

before 2002Q3, they are not identical. This is the results of the rolling window
estimation technique we apply. New information due to the extension of the
estimation sample can influence the estimated index coefficients in preceding
quarters. The difference of the two house price indices in Figure 16.2 before
2002Q2 are not statistically significant, but the point estimates differ. The
index revision problem is not specific to the constant-quality indices, but
applies also to official indices like the construction cost index. Consequently,
the forecaster often has to work with provisional time series and there is no
solution to this problem.

There are two additional aspects that have to be considered. First, the full
sample house price index itself might not be the best benchmark for assessing
forecast accuracy. Second, and closely related, because the time series are nor-
malized indices, the seemingly good forecasting behavior of the replacement
cost in Figure 16.2 should not be misinterpreted: the near equality of the full
sample house price index and the replacement cost index in period 2002Q2
might simply be the result of the arbitrary index normalization. House prices
in that period might be larger than replacement cost, in which case forecasted
long-term cost values will be below prices during the whole forecasting hori-
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zon. If, on the other hand, replacement cost are slightly above house prices
in period 2002Q2, then the forecasted long-term cost values might be even
closer to prices over the forecasting horizon than Figure 16.2 indicates.

Because of these possible estimation and normalization effects, a pure com-
parison of index series is no substitute for the evaluation of individual house-
specific forecast errors. Only a direct comparison of valuations and transac-
tion prices can reveal the accuracy of a valuation technique. The results of
such a direct comparison are presented in the next section.

16.3.2 Horse Race

To measure forecasting accuracy at the individual level we use the valuation
error defined as

et+h = log Pt+h − log Vt ,

where Pt+h is the observed transaction price of a house in period t + h and
Vt is the valuation made for this house based on information in period t.
We focus on the five quarterly forecast horizons h ∈ {4, 8, 12, 16, 20}, which
correspond to 1, 2, 3, 4, and 5 years, respectively. We use log errors, because
they treat over- and undervaluations symmetrically. If the errors are small,
then et+h is a close approximation of the error relative to the valuation

Pt+h − Vt

Vt

and −et+h is a close approximation of the valuation error relative to the price

Vt − Pt+h

Pt+h
.

Clearly, a valuation technique is the better the smaller the valuation errors
are on average and the less dispersed they are. To save on notation, we use
Nh to denote the number of transactions for which we make valuations with
a horizon of h and we use eh,n to denote the valuation error for house n. The
mean error of a valuation technique for forecast horizon h is then

MEh =
1

Nh

Nh∑
n=1

eh,n ,

i.e., the arithmetic average over all errors with the same forecast horizon h.
The mean error does not take the dispersion of the errors into account. A
valuation technique might have a small mean error while individual valuations
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are never on the mark but either far too large or far too small. The following
two measures take the dispersion into account. The first is the mean absolute
error

MAEh =
1

Nh

Nh∑
n=1

|eh,n|

and the second is the mean squared error

MSEh =
1

Nh

Nh∑
n=1

e2
h,n .

Both measures are symmetric and give the same weight to positive and

Valuation approach Horizon ME MDE MSE MAE PE25
1 0.9 1.8 8.8 22.6 65.0
2 -0.3 0.8 8.8 22.6 65.2

Cost value 3 -2.2 -0.9 9.1 22.8 64.7
4 -5.6 -4.3 9.5 23.4 63.4
5 -11.4 -10.3 11.0 25.5 59.5
1 -3.3 -2.3 6.2 18.7 73.4
2 -3.3 -2.4 6.7 19.5 71.6

Sales comparison value 3 -4.6 -4.3 7.2 20.2 69.7
4 -6.6 -5.7 7.9 21.3 67.2
5 -7.9 -7.3 8.6 22.5 64.3
1 -1.9 -0.6 6.2 18.7 72.9
2 -2.5 -1.4 6.4 19.1 72.0

Combination 3 -4.1 -3.0 6.7 19.5 71.2
4 -6.9 -5.8 7.3 20.5 69.3
5 -10.6 -9.4 8.2 21.8 66.2

Notes : All reported measures are in percent. Number of observations is 9088 per
valuation method and forecast horizon. ME is the mean error, MDE the median
error, MSE the mean squared error, MAE the mean absolute error, and PE25 is the
relative frequency of valuation errors within the ±25% range. Combination is an
equally-weighted average of the cost and the sales comparison values.

Table 16.3. Performance of sales comparison and cost values
over different yearly forecast horizons. Summary statistics of
valuation errors for transactions between 2000:1 to 2007:2.

negative errors of equal absolute magnitude. In many situations where the
economic loss due to under- or overvaluations is unknown, this might be a
good compromise. A negative valuation error corresponds to a forecasted
value above the realized transaction price. In the context of the mortgage
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underwriting process, such overestimation could lead to underwriting based
on a false perception of collateral value in the case of default. Overestima-
tion does not necessarily need to lead to an actual loss in the case of default,
because the loss also depends on the outstanding loan balance. The sale of
the collateral may still be enough to cover borrower’s outstanding liabilities.
However, from a risk management perspective, it is desirable that loan under-
writing is based on a correct assessment of the recovery value of the collateral.
Moreover, the initial loan might be directly related to the collateral value and
overestimation could lead to larger and more risky loans than are perceived
during the underwriting process. A positive valuation error corresponds to
a forecasted value below the realized price. In this case the collateral will
always be sufficient to cover any outstanding loan balance. The economic
loss due to underestimated collateral values stems from the fact that loan ap-
plications may get declined during the underwriting process. This is foregone
business for the mortgage underwriter, because the true value of the collat-
eral could have been more than sufficient to fulfill the underwriting criteria.
Using the MSE and the MAE as accuracy measures thus corresponds to the
assumption that the economic loss of over- and undervaluation is the same.

Table 16.3 presents the forecast evaluation measures for cost and sales com-
parison values and an equally-weighted combination of both. In addition to
the measures already discussed above, Table 16.3 also reports the median
valuation error and the percentage of observations for which the valuation
lies within ±25% of the observed transaction price. The first two panels of
Table 16.3 show that the sales comparison values perform better than the
cost values for each of the five forecast horizons. Although the cost values
have smaller mean errors than the sales comparison values for all but the five
year horizon, the variation of these errors is larger, as the MSE and the MAE
clearly indicate. Moreover, the percentage of valuations that lie within ±25%
of the transaction price is larger for the sales comparison approach than for
the cost approach.

One may object that the above comparison is based on a sample of trans-
action prices only and that transaction prices in general may deviate from
unobserved market values, i.e., the expected price. It could be that cost val-
ues forecast market values perfectly well, but this goes undetected, because
observed prices can and will deviate from market values. Diebold and Mar-
iano (1995) proposed several tests for the comparison of different forecast
methods that take such uncertainty into account. The test on the MSE uses
the N = 9088 differences of the squared errors

e2
C,h,n − e2

S,h,n ,

where C stands for the cost valuation error and S for the sales comparison
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valuation error, and tests if the difference is equal to zero on average (same
MSE) or if the difference is at most as large as zero (cost values are at least
as good as sales comparison values, possibly even better). The test on the
MAE uses

|eC,h,n| − |eS,h,n| ,
but is otherwise identical to the test on the MSE. Applied to our data, we
can reject the hypothesis that the cost values have a MSE at most as large
as the sales comparison values at the 1% significance level, i.e., we reject
MSEC � MSES. We can reject the equivalent hypothesis for the MAE at the
same level of significance, i.e., we reject MAEC � MAES. Another important
test is the Sign test, which counts the number of observations where the cost
value is closer to the price than the respective sales comparison value, i.e.,
how often it is true that

|eC,h,n| � |eS,h,n| .
If both valuation approaches were of equal accuracy, then the probability
of one being better than the other would be 0.5. If we have N pairwise
observations of valuation errors, then we expect under the assumption of
equal accuracy that the cost values are better in 50% of the observations and
the sales comparison values in the remaining 50%. For our data, however,
the cost values are better for only 44.2% of the pairwise observations over all
forecast horizons, whereas the sales comparison values are better for 55.8%
of the observations. Given the total number of observations, N = 9088, these
frequencies are unlikely to have been generated by valuation approaches with
equal accuracy. We can reject the hypothesis that the cost values are at least
as accurate as the sales comparison values for each of the forecast horizons
at the 1% significance level.

Taking the first two panels of Table 16.3 and the test results together, we
conclude that the sales comparison approach performs better than the cost
approach based on the MSE and MAE criteria. The third panel of Table
16.3 shows that an equally-weighted average of both approaches delivers an
even better performance than stand-alone sales comparison values. Other
than equal weights for the two values are possible, which might enhance
the performance even further. The performance results on the long-term
valuation accuracy of sale comparison and cost values are thus identical to the
results obtained in previous studies for valuations with a short-term horizon.

Both the MSE and the MAE weigh positive and negative valuation errors
symmetrically. In the context of mortgage underwriting, however, it is open
to debate if the cost of foregone business due to underestimating the collateral
value is the same as the cost of a loan that is collateralized with a property
that has a much lower market value than indicated by the forecasted long-



16 The Accuracy of Long-term Real Estate Valuations 341

term valuation. One could therefore argue that positive valuation errors are
less costly than negative valuation errors. The true economic loss function
would be then asymmetric, putting more weight on negative valuation errors.
The main problem with this reasoning is that the true economic loss function
is unknown and might be complicated to establish. Because of this, Shiller
and Weiss (1999) have proposed to investigate the asymmetry issue by looking
at estimates of the distributions of the valuation errors.

Figures 16.3 and 16.4 show kernel density estimates for the valuation error
distributions with a horizon of two and five years. We select the bandwidth
according to Silverman’s rule of thumb; asymptotic confidence bands are
estimated at the 95% level, see Härdle, Müller, Sperlich and Werwatz (2004,
Chapter 3). The density estimates for the horizons of one, three, and four

Figure 16.3. Kernel density estimates for the valuation er-
ror distributions of the cost and the sales comparison values.
The forecast horizon is two years. The dashed lines are 95%
confidence intervals.

years are very similar in shape to the density for the two year horizon in
Figure 16.3. It emerges from these density estimates that the valuation error
distribution of the sales comparison values is quite symmetric around its
mean error, which is -3.3%, but shifted to the right if an expected error of
zero is taken as reference. The distribution of the valuation errors of the cost
values, on the other hand, is less symmetric around its mean error of -0.3%.
Furthermore, the cost values have a larger probability (51.3%) for producing
non-negative errors than the sales comparison values (45.6%). Compared to
the sales comparison values, it is more likely that a cost value underestimates
the future price. Severe underestimations, where the valuation is only 20-
40% of the transaction price, are much more likely to occur with cost values
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compared than with sales comparison values. This is shown by the dent in
the density function on the right side. If underestimation leads to a lower
economic loss than overestimation, then this might indicate an advantage
of the cost approach. Without an explicitly specified asymmetric economic
loss function, however, it is not possible to compute the magnitude of this
possible advantage.

A different picture emerges for the distribution of the valuation errors at
the five year forecast horizon. Both distributions are shifted to the left and
only 35.6% of the cost values produce a positive valuation error compared to
38.5% of the sales comparison values. The dent in the density function for
large underestimations of the transaction price is visible again.

Figure 16.4. Kernel density estimates for the valuation er-
ror distributions of the cost and the sales comparison values.
The forecast horizon is five years. The dashed lines are 95%
confidence intervals.

Figures 16.3 and 16.4 are also useful to assess the effect of proportional deduc-
tions on valuation errors. Such deductions are required for the computation
of mortgage lending values. Let γ denote the proportional deduction, say
20%, then the resulting mortgage lending value is (1−γ)V . The correspond-
ing lending valuation error distribution would then simply correspond to the
plotted valuation error distributions shifted to the right by approximately γ.
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16.4 Conclusion

The direct comparison has shown that sales comparison values perform better
than cost values if the economic loss function is symmetric. If both values are
available, however, then an equally-weighted average of both cost and sales
comparison values produces smaller losses on average than each of the values
alone. Pooling the valuations is thus advisable and the cost value, although
inferior to the sales comparison values in a direct comparison, still provides
information for better valuations. If the loss function is asymmetric, penal-
izing overvaluations more than undervaluations, then it might be possible
that cost values are better in a direct comparison than the sales comparison
values. It is more likely for a cost value to underestimate the transaction
price of a house than it is for a sales comparison value.

Without further knowledge on the proper economic loss function to be applied
to valuation errors it is not possible to arrive at a final assessment. Further
work needs to explore and incorporate a specific form of the economic loss
function. Given the deductions required for the computation of mortgage
lending values, it seems plausible that losses from overestimation are more
problematic in practice than losses from underestimation.

A shortcoming of our study is that from the first quarter of 2000 onwards
prices were steadily falling – only in the last quarter do prices seem to have
gained some upward momentum. This may explain why the mean valuation
errors are negative in all but one case. Moreover, our data are for only
one region with a large number of comparable sales. The performance of
the sales comparison approach might be worse in regions with less active
markets. Future studies have to make use of longer time periods and should
also extend the horizons over which forecasts are being made.
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17 Locally Time Homogeneous Time

Series Modelling
Mstislav Elagin and Vladimir Spokoiny

17.1 Introduction

Modelling particular features (“stylized facts”) of financial time series such
as volatility clustering, heavy tails, asymmetry, etc. is an important task
arising in financial engineering. For instance, attempts to model volatility
clustering, i.e. the tendency of volatility jumps to appear in groups followed
by periods of stability, led to the development of conditional heteroskedastic
(CH) models including ARCH by Engle (1982) and GARCH by Bollerslev
(1986) as well as their derivatives. The main idea underlying the mentioned
methods is that volatility clustering can be modelled globally by a stationary
process.

However, the assumption of stationarity is often compromised by the shape of
the autocorrelation function (ACF) of squared log returns that for a typical
financial time series decays slower than exponentially. Furthermore, Mikosch
and Stărică (2004) showed that long range memory effects in financial time
series may be caused by structural breaks rather than that constitutes an
essential feature of stationary processes to be modeled by global methods.
Diebold and Inoue (2001) and Hillebrand (2005) argue that one can easily
overlook structural breaks with negative impact on the quality of modelling,
estimation and forecasting. This circumstance motivates the development of
methods involving processes that are stationary only locally. Local meth-
ods consider just the most recent data and imply subsetting of data using
some localization scheme that can itself be either global or local and adap-
tive. Methods of this kind have been presented e.g. in Fan and Gu (2003)
for adaptive selection of the decay factor used to weight components of the
pseudo-likelihood function, in Dahlhaus and Subba Rao (2006) for the for-
mulation of the locally stationary ARCH(∞) processes, in Cheng, Fan and
Spokoiny (2003) for locally choosing parameters of a filter. In a recent paper



346 Mstislav Elagin and Vladimir Spokoiny

by Giacomini, Härdle and Spokoiny (2008) a local adaptive method has been
applied to the problem of copulae estimation.

Below we compare three methods for estimation of parameters in the context
of univariate time series: the local change point (LCP) procedure by Mercurio
and Spokoiny (2004), the local model selection (LMS), also known as the
intersection of confidence intervals (ICI) by Katkovnik and Spokoiny (2008),
and the stagewise aggregation (SA) by Belomestny and Spokoiny (2007). A
universal procedure for the choice of parameters (critical values) is given. The
performance of the procedures is compared using genuine financial data. It
is shown that adaptive methods often outperform the standard GARCH(1,1)
method.

The chapter is organized as follows. Section 17.2 is devoted to the formu-
lation of the problem and theoretical introduction. Section 17.3 describes
the methods under comparison. In Section 17.4 the procedure for obtaining
critical values, essential parameters of the procedures, is given. Section 17.5
shows the application of the adaptive methods to the computation of the
value-at-risk.

17.2 Model and Setup

17.2.1 Conditional Heteroskedastic Model

Let St be a one-dimensional stochastic asset price process in discrete time
t ∈ N and Rt = log St/St−1 be the corresponding log returns process. The
latter is typically described using the conditional heteroskedastic model

Rt = σtεt, (17.1)

where εt are independent and identically (standard Gaussian) distributed
innovations, and σt is the volatility process progressively measurable w.r.t. the
filtration (Ft−1) = F(R1, . . . , Rt−1) generated by past returns. Equivalently,

Yt = θtε
2
t (17.2)

where Yt = R2
t are the squared log returns and θt = σ2

t . We aim to estimate
θt from the past observations Y1, . . . , Yt−1. This problem commonly arises
in financial applications such as value-at-risk determination and portfolio
optimisation.
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17.2.2 Parametric and Local Parametric Estimation and
Inference

If θt = θ one can apply the method of maximum likelihood to obtain the
estimate θ̂. The model (17.2) leads to the log-likelihood function

L(θ) =
∑

t

�(Yt, θ)

where �(y, θ) = −1
2 log(2πθ)− y/(2θ) is the log density of the normal distri-

bution with zero mean. The estimate θ̂ is then obtained by maximizing the
log-likelihood function w.r.t. to θ:

θ̂ = arg max
θ

L(θ) =

∑
t Yt

N
,

where N is the sample size. When the volatility does depend on time, θt =
θ(t) �= const., the method of maximum likelihood is not directly applicable,
since the joint distribution of the observations and therefore the log likelihood
function are not available. Hence, we take the local parametric approach by
supposing that for the time point of estimation T there exists some interval
I = [T − NI , T ] of length NI , to be estimated from the data, within which
the model (17.2) describes the process adequately. If the interval I has been
found, then the log likelihood function assumes the form

LI(θ) =
∑
t∈I

�(Yt, θ)

and the maximum likelihood estimate corresponding to the interval I is

θ̃I = arg max
θ

LI(θ) =
∑
t∈I

Yt/NI .

For the purpose of describing the quality of estimation we use the fitted likeli-
hood L(θ̃, θ) defined as the difference between the likelihood corresponding to

the ML estimate θ̃ and the likelihood corresponding to a different parameter
value:

L(θ̃, θ) = L(θ̃)− L(θ).

For the model considered here the fitted likelihood can be represented in the
form

L(θ̃I , θ) = NIK(θ̃I , θ), (17.3)

where

K(θ1, θ2) =
1

2
(θ1/θ2 − 1)− 1

2
log(θ1/θ2)

denotes the Kullback – Leibler divergence that measures the “distance” be-
tween distributions indexed by θ1 and θ2.



348 Mstislav Elagin and Vladimir Spokoiny

17.2.3 Nearly Parametric Case

In practice the parametric assumption may be overly stringent and not hold
even within an arbitrarily small interval. We describe the deviation from the
parametric situation within an interval I by a magnitude:

∆I(θ) =
∑
t∈I
K(θt, θ),

that we shall call divergence. The following small modelling bias (SMB)
condition imposes a limit on the deviation from the parametric case which
provides the applicability of the local parametric approach.

Condition 1 There exists some parameter value θ ∈ Θ and some interval
I such that the expectation under the true measure of the divergence ∆I(θ)
over the interval I is bounded by some ∆ ≥ 0:

E ∆I(θ) ≤ ∆. (17.4)

If the SMB condition 17.4 holds, then for any r > 0 the risk of the local
maximum likelihood estimate in the nearly parametric case satisfies:

E log

⎛⎝1 +

∣∣∣NIK(θ̃I , θ)
∣∣∣r

Rr,θ

⎞⎠ ≤ ∆ + 1,

where

Rr,θ = Eθ

∣∣∣NIK(θ̃I , θ)
∣∣∣r (17.5)

is the risk of the local maximum likelihood estimate in the parametric case.
Here the logarithm under the expectation comes from the Cramér – Rao in-
equality, and the additional term ∆ on the right-hand side can be interpreted
as payment for the violation of the parametric assumption.

The last result leads to the notion of the oracle estimate as the “largest”
one under the small modelling bias condition. In the next section we present
three methods suitable for construction of estimates performing almost as
well as the oracle estimate.
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Figure 17.1. Nested intervals.

17.3 Methods for the Estimation of Parameters

17.3.1 Sequence of Intervals

Local methods imply subsetting of data. A localization scheme that we use
is a growing sequence of intervals. Let T denote the time point at which
the value of interest is to be estimated. We define an ordered sequence of
intervals {Ik}K

k=1 of length Nk with the common right edge at T (Figure 17.1),
so Ik = [T −Nk, T [. We associate with each interval Ik from this sequence

the corresponding maximum likelihood estimate θ̃k ≡ θ̃Ik
, which we shall call

weak estimate. We aim to select or construct the “largest” one still satisfying
the small modelling bias condition. The LCP and LMS procedures obtain
the best estimate by choosing one from the sequence, whereas SSA builds
the estimate by taking convex combinations of previously found estimates.
Below we describe each of the methods.

17.3.2 Local Change Point Selection

The LCP method introduced in Mercurio and Spokoiny (2004) is a proce-
dure that detects the largest interval of homogeneity and provides an adap-
tive estimate as the one associated with the interval found. The idea of the
method consists in the testing of the null hypothesis of an interval contain-
ing no change points against the alternative hypothesis of a change point
being present, whereas the interval under testing is taken from the growing
sequence.

Consider a tested interval I that possibly contains a change point, and an
enclosing testing interval I (Figure 17.2). The statistic to test the hypoth-
esis about the parameter change in some internal point τ of the candidate
interval can be expressed as the difference between the sum of log likelihoods
corresponding to the intervals I ′, I ′′ into which the change point splits the
testing interval, and the log likelihood corresponding to the testing interval
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τ

I

I

I ′ I ′′

Figure 17.2. Intervals involved in the change point detection
procedure.

containing no change points:

TI,τ = max
θ′,θ′′

{LI ′′(θ
′′) + LI ′(θ

′)} −max
θ

LI(θ) = LI ′(θ̃I ′) + LI ′′(θ̃I ′′)− LI(θ̃I),

where L(·) denotes the log likelihood function. For the volatility distribution
the test statistic can be represented in the form

TI,τ = min
θ

{
NI ′′K(θ̃I ′′, θ) + NI ′K(θ̃I ′, θ)

}
= NI ′′K(θ̃I ′′, θ̃I) + NI ′K(θ̃I ′, θ̃I)

(17.6)
due to (17.3). The test statistic for the whole candidate interval is the max-
imum of the pointwise statistics over all internal points:

TI = max
τ∈I

TI,τ

The hypothesis is rejected if the test statistic exceeds some critical value z,
which is a parameter of the procedure specific to the problem design.

We let I = Ik\Ik−1 and I = Ik+1 and take the adaptive estimate θ̂ to be

equal to the k̂-th weak estimate, where k̂ is the largest interval number such
that all test statistics corresponding to the intervals I1, . . . , Ik̂ do not exceed

their critical values with the opposite holding for k̂ + 1:

θ̂ = θ̃k̂, where k̂ = max k such that Tl ≤ zl for all l ≤ k̂.

The initial condition is that the smallest interval is always considered to be
homogeneous. Since it is not feasible to test the largest interval, the greatest
possible value of k̂ is K − 1.

17.3.3 Local Model Selection

The idea of the local model selection procedure introduced in Katkovnik and
Spokoiny (2008) consists in the choice of the “largest” weak estimate among
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Figure 17.3. Principle of the local model selection. θ̂ = θ̃3.

θ̃1 . . . θ̃K as the adaptive estimate θ̂ in such a way that the adaptive estimate
belongs to the confidence interval E of each of the previous weak estimates
(Figure 17.3). Formally, θ̂ = θ̃k̂, where

k̂ is such that

{
θ̃k̂ ∈ El for all l < k̂

θ̃k̂+1 �∈ El for some l < k̂ + 1

Confidence interval of level α for a weak estimate θ̃ is provided by

E(zα) =
{

θ : L(θ̃, θ) ≤ zα

}
.

As with the LCP procedure, the first weak estimate is always accepted. How-
ever, the LMS procedure checks all estimates including the one corresponding
to the last interval.

17.3.4 Stagewise Aggregation

The SA procedure introduced in Belomestny and Spokoiny (2007) differs from
the two methods described above in that it does not choose the adaptive
estimate θ̂ from the weak estimates θ̃1 . . . θ̃K . Instead, based on the weak
estimates, it sequentially constructs aggregated estimates θ̂1 . . . θ̂K possessing
the property that any aggregated estimate θ̂k has smaller variance than the
corresponding weak estimate θ̃k, while keeping “close” to it in terms of the
statistical difference, the latter being measured through the likelihood ratio
L(θ̃k, θ̂k−1) = L(θ̃k) − L(θ̂k−1). The adaptive estimate is finally taken equal

to the last aggregated estimate: θ̂ = θ̂K (unless an early stopping occurs).
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Formally, the first aggregated estimate is equal to the first weak estimate
and every next aggregated estimate is a convex combination of the previous
aggregated estimate and the current weak estimate:

θ̂k =

{
θ̃1, k = 1

γkθ̃k + (1− γk)θ̂k−1, k = 2, . . . , K

Here γk is the mixing coefficient that reflects the statistical difference between
the previous aggregated estimate θ̂k−1 and the current weak estimate θ̃k, and
is obtained by applying an aggregation kernel Kag to the likelihood ratio

L(θ̃k, θ̂k−1) scaled by the critical value zk :

γk = Kag

(
L(θ̃k, θ̂k−1)

zk

)
.

The aggregation kernel acts as a link between the likelihood ratio and the
mixing coefficient. The principle behind its selection is that a smaller sta-
tistical difference between θ̃k and θ̂k−1 should lead to the mixing coefficient

close to 1 and thus to the aggregated estimate θ̂k close to θ̃k, whereas a larger
difference should provide the mixing coefficient close to zero and thus keep
θ̂k close to θ̂k−1. Whenever the difference is very large, the mixing coefficient

is zero, and the procedure stops prematurely by setting θ̂ = θ̂k−1. We call
this situation early stopping.

To satisfy the stated requirements, the kernel must be supported on the closed
interval [0, 1] and monotonously decrease from 1 on the left edge to 0 on the
right edge. It is also recommended that the kernels have a plateau of size b
starting with zero. Thus, the aggregation kernel assumes the form:

Kag(u) =

{
1, 0 ≤ u < b
1− K̄ag(u), b ≤ u ≤ 1

Examples of K̄ag(u) include u−b
1−b (triangular kernel),

(
u−b
1−b

)2
(Epanechnikov

kernel) etc.

17.4 Critical Values and Other Parameters

All procedures described above depend on the set of parameters z1 . . . zK

known as critical values. The critical values reflect the problem design (in-
terval length, model, method etc.). They are selected based on the following
propagation condition:
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Condition 2 (Propagation condition) For any θ∗ ∈ Θ

Eθ∗ |L(θ̃k, θ̂k)|r
Rr,θ∗

≤ α
k

K
for k = 1, . . . , K, (17.7)

where θ̂k is the adaptive estimate obtained on the k-th step and Rr,θ∗ is the
risk delivered by the local maximum likelihood estimate in the parametric case
(see (17.5)).

This condition means that in the homogeneous case the risk associated with
the k-th adaptive estimate must not exceed a certain fraction of the risk in
the parametric case.

Critical values constructed this way provide with high probability the pre-
scribed performance of the procedures in the parametric situation (under the
null hypothesis). Namely, under the parametric hypothesis on every step k

the adaptive estimate θ̂k should be close enough to the oracle estimate θ̃k.
However, the propagation condition is not explicit. For the computation of
critical values we use the following sequential method based on Monte-Carlo
simulations. Denote as θ̂l(zk) for l ≥ k the adaptive estimate obtained after
the l-th step of the procedure run with he critical values z1, . . . , zk−1 known
and zk+1, . . . , zK set to infinity:

θ̂l(zk) = θ̂l(z1, . . . , zk, zk+1 = ∞, . . . , zK = ∞).

The first critical value can be selected to satisfy the conditions

Eθ∗

∣∣∣L(θ̃l, θ̂l(z1))
∣∣∣r

Rr,θ∗
≤ α

K
, l = 2, . . . , K.

Such a value exists, since for z1 taken sufficiently large the weak and adaptive
estimates coincide for any l and all Monte-Carlo paths, thus leading to the
zero risk. With the first k − 1 critical values fixed the procedure is carried
out sequentially for the remaining critical values. The k-th critical value is
selected using the condition

Eθ∗

∣∣∣L(θ̃l, θ̂l(zk))
∣∣∣r

Rr,θ∗
≤ k

α

K
, l = k + 1, . . . , K.

Obviously, the critical values depend on the specific form of the likelihood
function and hence of the Kullback-Leibler distance. Further, the critical
values depend on the global parameters α and r.
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Figure 17.4. Exchange rate of the British pound to the US
dollar 19900101-19991231 (above) and corresponding log re-
turns (below).

17.5 Applications

We illustrate the performance of the methods introduced in the section 17.3
by analyzing daily exchange rates of six currencies (GBP, AUD, NZD, JPY,
CAD, DKR) to the US dollar available from the site of the US Federal Re-
serve. We use the data for the period from Januar 1, 1990 till December
31, 1999. Unless indicated otherwise, we use the GBP/USD exchange rate.
Observed GBP/USD exchange rates along with the log returns are shown on
the Figure 17.4, while Figure 17.5 presents the volatility estimates obtained
by three adaptive methods.

A well known feature of financial time series is the uncorrelatedness of the
log returns. However, in spite of the uncorrelatedness, the log returns are
not independent, as one can see by plotting the autocorrelation of a non-
linear transformation. For instance, absolute log returns show significant
autocorrelation (Figure 17.6, upper plot). We obtain standardized absolute
log returns by dividing the absolute log returns by the volatility estimated
using the LCP method. The ACF plot (Figure 17.6, lower plot) shows that
nearly all autocorrelation has been removed by standardizing. This result
indicates the reasonable quality of volatility estimation.
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17.5.1 Forecasting Performance for One and Multiple
Steps

In order to assess the performance of the adaptive procedures we compare
their ability to forecast the conditional variance of the aggregated returns
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with that of the GARCH(1,1) model, one of the most popular parameter-
izations of the volatility process of financial time series. Namely, for a se-
quence of intervals and forecasting horizons we use the mean square root
error (MSqE) criterion

MSqEI =
∑
t∈I
|V ♥

t,h − V ◦
t,h|1/2

/∑
t∈I
|V ♠

t,h − V ◦
t,h|1/2, (17.8)

where
V ◦

t,h = R2
t+1 + . . . + R2

t+h (17.9)

is the realized variance of h aggregated returns starting at time t, and V ♥
t,h, V

♠
t,h

denote the conditional variance forecast of the aggregated returns by an adap-
tive procedure and GARCH(1,1), respectively.

The h-step ahead conditional variance forecast originating at time t is defined
as

Vt,h
def
= Var

(
h∑

k=1

Rt+k

∣∣∣∣∣Ft

)
.

By definition of the conditional variance

Var

(
h∑

k=1

Rt+k

∣∣∣∣∣Ft

)
= E

⎡⎣{ h∑
k=1

Rt+k − E

(
h∑

k=1

Rt+k

∣∣∣∣∣Ft

)}2
∣∣∣∣∣∣Ft

⎤⎦ ,

but since
E (Rt+k| Ft) = 0 (17.10)

the conditional variance simplifies to

Var

(
h∑

k=1

Rt+k

∣∣∣∣∣Ft

)
= E

⎧⎨⎩
(

h∑
k=1

Rt+k

)2
∣∣∣∣∣∣Ft

⎫⎬⎭ .

As the log returns are conditionally uncorrelated, conditional expectation of
the squared sum is equal to the conditional expectation of the sum of squares:

Var

(
h∑

k=1

Rt+k

∣∣∣∣∣Ft

)
= E

(
h∑

k=1

R2
t+k

∣∣∣∣∣Ft

)
.

Using the linearity of the expectation and equation (17.10), one finally obtains

Var

(
h∑

k=1

Rt+k

∣∣∣∣∣Ft

)
=

h∑
k=1

E
(
R2

t+k

∣∣Ft

)
=

h∑
k=1

Var (Rt+k| Ft) .
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By definition of the local constant approach the conditional variance of the
log returns is constant for a certain horizon h:

Var (Rt+k| Ft) = σ̂2
t , k = 1, . . . , h. (17.11)

Therefore the estimated conditional variance of the aggregated returns Rt +
Rt+1 + . . . + Rt+h is simply

V ♥
t,h = hσ̂2

t . (17.12)

The GARCH(1,1) model describes the volatility dynamics by the relation

σ2
t = ω + αR2

t−1 + βσ2
t−1,

where the requirement of the stationarity implies the following conditions on
the coefficients:

α > 0, β > 0, α + β < 1.

The h-step ahead variance forecast of the GARCH(1,1) model is given by:

σ2,♠
t+h|t

def
=

h∑
k=1

E
(
R2

t+h

∣∣Ft

)
= σ̄2 + (α + β)h(σ2

t − σ̄2),

where σ̄ is the unconditional volatility. Thus, the conditional variance fore-
cast of the aggregated returns is

V ♠
t,h =

h∑
k=1

σ2,♠
t+k|t. (17.13)

Substituting the expressions (17.9), (17.12) and (17.13) for V ◦
t,h, V ♥

t,h and V ♠
t,h

respectively in (17.8), one obtains the performance data shown in the Fig-
ure 17.7. The results are presented for various years and forecasting horizons.
As seen from the figure, adaptive methods outperform the GARCH(1,1) in
many cases.

17.5.2 Value-at-Risk

In the present section we apply the adaptive procedures to the computation of
value at risk, an important problem in financial engineering. The value at risk
(VaR) is defined as “the maximum loss not exceeded with a given probability
defined as the confidence level, over a given period of time”. The problem of
the VaR estimation can be represented as the problem of quantile estimation
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Figure 17.7. Peformance of adaptive methods and
GARCH(1,1) in terms of MSqE. XFGadamethperf

for the distribution of aggregated returns. We consider three distributions of
innovations: standard Gaussian distributions, Student’s scaled distribution
with 5 degrees of freedom and the empirical distribution:

Rt+h = σ̂tξt+h, with ξt+h ∼ N(0, 1), or
√

5/3ξt+h ∼ t5, or ξt+h ∼ F̂t .

We aim to describe the quality of VaR computation in terms of the frequency
of exceptions, where an “exception” is the event of the predicted value at risk
exceeding the aggregated returns. According to the prescribed assessment
rule, we examine the particular case of the value at risk predicted at 1%
level for 10 steps ahead on 250 observations. Under the assumption that
the exceptions follow the binomial distribution, we conduct a test with the
null hypothesis about the probability of exception being equal to 0.01, and
one-sided alternative hypothesis about the probability of exception exceeding
0.01. A procedure predicting the value at risk belongs in one of the three
“zones”: “green” zone if the null hypothesis can not be rejected with 95%
confidence (corresponding to not more than 5 exceptions on 250 observations,
or 2% frequency), “yellow” zone if the null should be rejected with 95%
confidence (from 6 to 10 exceptions, or not more than 4% frequency), and
“red zone” if the null should be rejected with 99.99% confidence (11 or more
exceptions, or more than 4% frequency).

Figure 17.8 shows the percentage of time points at which the loss within a
certain horizon overshoots the value at risk predicted with the corresponding
confidence level. The results were obtained for three distributions of inno-
vations. One observes that none of the adaptive methods falls in the red
zone. Stagewise aggregation always belongs to the green zone. LCP and
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LMS combined with the Gaussian innovations sometimes fall into the yellow
zone. Use of Student’s innovations slightly, and of the empirically distributed
innovations considerably improves the performance. Overall performance of
the adaptive methods is rather good.

17.5.3 A Multiple Time Series Example

The local parametric approach can be extended to multiple time series. In
this case one observes a vector of exchange rate processes St ∈ R

d, t = 1, 2, . . .
and Rt,m is the vector of the corresponding log returns:

Rt,m = log(St,m/St−1,m), m = 1, . . . , d.

The conditional heteroskedasticity model reads in this case as

Rt = Σ
1/2
t εt ,

where εt, t ≥ 1, is a sequence of independent standard Gaussian random
innovations and Σt is a symmetric d × d volatility matrix, which is to be
estimated. As an example, Figure 17.9 shows annualized volatility estimated
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√
250Σ̂ii, where Σ̂ii represent diagonal elements of the volatility

matrix, Similar evolution of the estimates indicates a possible common low-
order component.
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As in one-dimensional case, we observe significant correlation and autocor-
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relation of the absolute log returns (Figure 17.10, left) as a non-linear trans-
formation of the log returns, indicating lack of independence in spite of the
log returns being uncorrelated. We estimate the volatility matrix using the
LCP method and obtain the standardized absolute log returns by solving the
equation

Rt = Σ̂
1/2
t ξt

for ξt. The multivariate ACF plot of the standardized absolute log returns is
shown in the right part of Figure 17.10. Although some autocorrelation still
remains in the NZD series, the remaining three ACF plots show almost no
significant correlation.
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18 Simulation Based Option Pricing
Denis Belomestny and Grigori N. Milstein

Here we develop an approach for efficient pricing discrete-time American and
Bermudan options which employs the fact that such options are equivalent
to the European ones with a consumption, combined with analysis of the
market model over a small number of steps ahead. This approach allows
constructing both upper and lower bounds for the true price by Monte Carlo
simulations. An adaptive choice of local lower bounds and use of the kernel
interpolation technique enhance efficiency of the whole procedure, which is
supported by numerical experiments.

18.1 Introduction

The valuation of high-dimensional American and Bermudan options is one
of the most difficult numerical problems in financial engineering. Several ap-
proaches have recently been proposed for pricing such options using Monte
Carlo simulation technique (see, e.g. Andersen and Broadie (2004), Bally,
Pagès, and Printems (2005), Belomestny and Milstein (2004), Boyle, Broadie,
and Glasserman (1997), Broadie and Glasserman (1997), Clément, Lam-
berton and Protter (2002), Glasserman (2004), Haugh and Kogan (2004),
Jamshidian (2003), Kolodko and J. Schoenmakers (2004), Longstaff and
Schwartz (2001), Rogers (2001) and references therein). In some papers, pro-
cedures are proposed that are able to produce upper and lower bounds for
the true price and hence allow for evaluating the accuracy of price estimates.

In Belomestny and Milstein (2004) we develop the approach for pricing Amer-
ican options both for discrete-time and continuous-time models. The ap-
proach is based on the fact that any American option is equivalent to the
European one with a consumption process involved. This approach allows
us, in principle, to construct iteratively a sequence v1, V 1, v2, V 2, v3, ...,
where v1, v2, v3, ... is an increasing (at any point) sequence of lower bounds
and V 1, V 2, ..., is a decreasing sequence of upper bounds. Unfortunately,
the complexity of the procedure increases dramatically with any new itera-
tion step. Even V 2 is too expensive for the real construction.
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Let us consider a discrete-time financial model and let

(Bti, Xti) = (Bti, X
1
ti
, ..., Xd

ti
), i = 0, 1, ..., L,

be the vector of prices at time ti, where Bti is the price of a scalar riskless asset
(we assume that Bti is deterministic and Bt0 = 1) and Xti = (X1

ti
, ..., Xd

ti
)�

is the price vector process of risky assets ( along with index ti we shall use
below the index i and instead of (ti, Xti) we will write (ti, Xi)). Let fi(x) be
the profit made by exercising an American option at time ti if Xti = Xi = x.

Here we propose to use an increasing sequence of lower bounds for construct-
ing an upper bound and lower bound for the initial position (t0, X0). It is
supposed that the above sequence is not too expensive from the computa-
tional point of view. This is achieved by using local lower bounds which take
into account a small number of exercise dates ahead.

Let (ti, Xi,m), i = 0, 1, ..., L; m = 1, ...,M, be M independent trajectories all
starting from the point (t0, X0) and let v1 ≤ v2 ≤ ... ≤ vl be a finite sequence
of lower bounds which can be calculated at any position (ti, x). Clearly, these
lower bounds are also ordered according to their numerical complexities and
a natural number l indicates the maximal such complexity as well as the
quality of the lower bound vl. Any lower bound gives a lower bound for the
corresponding continuation value (lower continuation value) and an upper
bound for the consumption process (upper consumption process). If the
payoff at (ti, Xi,m) is less or equal to the lower continuation value, then the
position (ti, Xi,m) belongs to the continuation region and the consumption
at (ti, Xi,m) is equal to zero. Otherwise the position (ti, Xi,m) can belong
either to the exercise region or to the continuation region. In the latter cases
we compute the upper consumption at (ti, Xi,m) as a difference between the
payoff and the lower continuation value.

It is important to emphasize that the lower bounds are applied adaptively.
It means that if, for instance, using the lower bound v1 (which is the cheap-
est one among v1, v2, ..., vl) at the position (ti, Xi,m), we have found that
this position belongs to the continuation region (i.e., the corresponding up-
per consumption process is equal to zero), we do not calculate any further
bounds. Similarly, if the upper consumption process is positive but com-
paratively small, we can stop applying further bounds at (ti, Xi,m) because
a possible error will not be large. Finally, if the upper consumption pro-
cess is not small enough after applying lower bounds v1, ..., vj but changes
not significantly after applying vj+1, we can stop applying further bounds as
well. The lower bounds are prescribed to every position (ti, Xi,m) and are,
as a rule, local. Applying them means, in some sense, a local analysis of
the considered financial market at any position. Such a local analysis for all
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positions (ti, Xi,m), i = 0, 1, ..., L; m = 1, ...,M , yields some global lower
bound and upper bound at the original position (t0, X0). If we detect that
the difference between the global upper and lower bounds is large, we can
return to the deeper local analysis. It is clear that, in principle, this analysis
can give exhaustive results in a finite number of steps (it suffices to take the
following sequence of American options at (ti, Xi,m): v1 is the price of the
American option on the time interval [ti, ti+1], v2 is the price on [ti, ti+2] and
so on, in a way that vL−i is the price on [ti, tL]). Thus, we have no problems
with convergence of the algorithms based on the approach considered.

In Subsection 18.2 we recall the basic notions related to the pricing of Ameri-
can and Bermudan options and sketch the approach developed in Belomestny
and Milstein (2004). The developed method is presented in Subsection 18.3
. Two numerical examples are given in Subsection 18.4 .

18.2 The Consumption Based Processes

To be self-contained, let us briefly recall the approach to pricing American
options that has been developed in Belomestny and Milstein (2004).

18.2.1 The Snell Envelope

i 0≤i≤L, Q),
where the probability measure Q is the risk-neutral pricing measure for the
problem under consideration, and Xi is a Markov chain with respect to the
filtration (Fi)0≤i≤L .

The discounted process X̃i
def
= Xi/Bi is a martingale with respect to the Q

and the price of the corresponding discrete American option at (ti, Xi) is
given by

ui(Xi) = sup
τ∈Ti,L

Bi E

{
fτ(Xτ)

Bτ
|Fi

}
, (18.1)

where Ti,L is the set of stopping times τ taking values in {i, i + 1, ..., L}.
The value process ui (Snell envelope) can be determined by the dynamic
programming principle:

uN(x) = fN(x), (18.2)

ui(x) = max

{
fi(x), Bi E

{
ui+1(Xi+1)

Bi+1
|Xi = x

}}
, i = L− 1, ..., 0.

We assume that the modelling is based on the filtered space (Ω,F,(F )
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We see that theoretically the problem of evaluating u0(x), the price of the
discrete-time American option, is easily solved using iteration procedure
(18.2). However, if X is high dimensional and/or L is large, the above itera-
tion procedure is not practical.

18.2.2 The Continuation Value, the Continuation and
Exercise Regions

For the considered American option, let us introduce the continuation value

Ci(x) = Bi E

{
ui+1(Xi+1)

Bi+1
|Xi = x

}
, (18.3)

the continuation region C and the exercise (stopping) region E :

C = {(ti, x) : fi(x) < Ci(x)} , (18.4)

E = {(ti, x) : fi(x) ≥ Ci(x)} .

Let X i,x
j , j = i, i + 1, ..., L, be the Markov chain starting at time ti from the

point x : X i,x
i = x, and X i,x

j,m, m = 1, ...,M, be independent trajectories of
the Markov chain. The Monte Carlo estimator ûi(x) of ui(x) (in the case
when E is known) has the form

ûi(x) =
1

M

M∑
m=1

Bi

Bτ
f(X i,x

τ,m), (18.5)

where τ is the first time at which X i,x
j gets into E (of course, τ in (18.5)

depends on i, x, and m : τ = τ i,x
m ). Thus, for estimating ui(x), it is sufficient

to examine sequentially the position (tj, X
i,x
j,m) for j = i, i + 1, ..., L, whether

it belongs to E or not. If (tj, X
i,x
j,m) ∈ E , then we stop at the instant τ = tj

on the trajectory considered. If (tj, X
i,x
j,m) ∈ C, we move one step more along

the trajectory.

Let v be any lower bound, i.e. ui(x) ≥ vi(x), i = 0, 1, ..., L. Clearly, fi(x) is
a lower bound. If v1

i , ..., v
l
i are some lower bounds then the function vi(x) =

max1≤k≤l v
k
i (x) is also a lower bound. Henceforth we consider lower bounds

satisfying the inequality vi(x) ≥ fi(x). Introduce the set

Cv =

{
(ti, x) : fi(x) ≤ Bi E

{
vi+1(Xi+1)

Bi+1
|Xi = x

}}
.

Since Cv ⊂ C, any lower bound provides us with a sufficient condition for
moving along the trajectory: if (tj, X

i,x
j,m) ∈ Cv, we do one step ahead.



18 Simulation Based Option Pricing 367

18.2.3 Equivalence of American Options to European Ones
with Consumption Processes

For 0 ≤ i ≤ L− 1 the equation (18.2) can be rewritten in the form

ui(x) = BiE

{
ui+1(Xi+1)

Bi+1
|Xi = x

}
+

[
fi(x)−BiE

{
ui+1(Xi+1)

Bi+1
|Xi = x

}]+

.

(18.6)

Introduce the functions

γi(x) =

[
fi(x)−Bi E

{
ui+1(Xi+1)

Bi+1
|Xi = x

}]+

, i = L− 1, ..., 0. (18.7)

Due to (18.6), we have

uL−1(XL−1) = BL−1 E

{
fL(XL)

BL
|FL−1

}
+ γL−1(XL−1),

uL−2(XL−2) = BL−2 E

{
uL−1(XL−1)

BL−1
|FL−2

}
+ γL−2(XL−2)

= BL−2 E

{
fL(XL)

BL
|FL−2

}
+ BL−2 E

{
γL−1(XL−1)

BL−1
|FL−2

}
+ γL−2(XL−2).

Analogously, one gets

ui(Xi) = Bi E

{
fL(XL)

BL
|Fi

}
+ Bi

L−(i+1)∑
k=1

E

{
γL−k(XL−k)

BL−k
|Fi

}
(18.8)

+γi(Xi), i = 0, ..., L− 1.

Putting X0 = x and recalling that B0 = 1, we obtain

u0(x) = E

{
fL(XL)

BL

}
+ γ0(x) +

L−1∑
i=1

E

{
γi(Xi)

Bi

}
. (18.9)

Formula (18.9) gives us the price of the European option with the payoff
function fi(x) in the case when the underlying price process is equipped with
the consumption γi defined in (18.7).

18.2.4 Upper and Lower Bounds Using Consumption
Processes

The results about the equivalence of the discrete-time American option to the
European one with the consumption process cannot be used directly because



368 Denis Belomestny and Grigori N. Milstein

ui(x) and consequently γi(x) are unknown. We take the advantage of this
connection in the following way (see Belomestny and Milstein (2004)).

Let vi(x) be a lower bound on the true option price ui(x). Introduce the
function (upper consumption process)

γi,v(x) =

[
fi(x)−Bi E

{
vi+1(Xi+1)

Bi+1
|Xi = x

}]+

, i = 0, ..., L− 1. (18.10)

Clearly,
γi,v(x) ≥ γi(x).

Hence the price Vi(x) of the European option with payoff function fi(x) and
upper consumption process γi,v(x) is an upper bound: Vi(x) ≥ ui(x).

Conversely, if Vi(x) is an upper bound on the true option price ui(x) and

γi,V (x) =

[
fi(x)−Bi E

{
Vi+1(Xi+1)

Bi+1
|Xi = x

}]+

, i = 0, ..., L− 1, (18.11)

then the price vi(x) of the European option with lower consumption process
γi,V (x) is a lower bound.

Thus, starting from a lower bound v1
i (x), one can construct the sequence of

lower bounds v1
i (x) ≤ v2

i (x) ≤ v3
i (x) ≤ ... ≤ ui(x), and the sequence of upper

bounds V 1
i (x) ≥ V 2

i (x) ≥ ... ≥ ui(x). All these bounds can be, in principle,
evaluated by the Monte Carlo simulations. However, each further step of the
procedure requires labor-consuming calculations and in practice it is possi-
ble to realize only a few steps of this procedure. In this connection, much
attention in Belomestny and Milstein (2004) is given to variance reduction
technique and some constructive methods for reducing statistical errors are
proposed there.

18.2.5 Bermudan Options

As before, let us consider the discrete-time model

(Bi, Xi) = (Bi, X
1
i , ..., X

d
i ), i = 0, 1, ..., L.

Suppose that an investor can exercise only at an instant from the set of
stopping times S = {s1, ..., sl} within {0, 1, ..., L}, where sl = L. The price
ui(Xi) of the so called Bermudan option is given by

ui(Xi) = sup
τ∈TS∩[i,L]

Bi E

{
fτ(Xτ)

Bτ
|Fi

}
,



18 Simulation Based Option Pricing 369

where TS∩[i,L] is the set of stopping times τ taking values in {s1, ..., sl}∩{i, i+
1, ..., L} with sl = L.

The value process ui is determined as follows:

uL(x) = fL(x),

ui(x) =

⎧⎪⎪⎨⎪⎪⎩
max

{
fi(x), Bi E

{
ui+1(Xi+1)

Bi+1
|Xi = x

}}
, i ∈ S,

Bi

{
ui+1(Xi+1)

Bi+1
|Xi = x

}
, i /∈ S.

Similarly to American options, any Bermudan option is equivalent to the
European one with the payoff function fi(x) and the consumption process γi

defined as

γi(x) =

⎧⎨⎩
[
fi(x)−Bi E

{
ui+1(Xi+1)

Bi+1
|Xi = x

}]+

, i ∈ S,

0, i /∈ S.

Thus, all the results obtained in this section for discrete-time American op-
tions can be carried over to Bermudan options. For example, if vi(x) is a
lower bound on the true option price ui(x), the price Vi(x) of the European
option with the payoff function fi(x) and with the consumption process

γi,v(x) =

⎧⎨⎩
[
fi(x)−Bi E

{
vi+1(Xi+1)

Bi+1
|Xi = x

}]+

, i ∈ S,

0, i /∈ S.

is an upper bound: Vi(x) ≥ ui(x).

18.3 The Main Procedure

The difficulties mentioned in Subsection 2.4 can be avoided by using an in-
creasing sequence of simple lower bounds.

18.3.1 Local Lower Bounds

The trivial lower bound is fi(x) and the simplest nontrivial one is given by

vi+1
i (x) = max

{
fi(x), Bi E

{
fi+1(Xi+1)

Bi+1
|Xi = x

}}
.
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The function vi+1
i (x) is the price of the American option at the position

(ti, x) on the time interval [ti, ti+1]. It takes into account the behavior of
assets at one step ahead. Let vi+k

i (x) be the price of the American option
at the position (ti, x) on the time interval [ti, ti+k]. The function vi+k

i (x)
corresponds to an analysis of the market over k steps ahead. The calculation
of vi+k

i (x) can be done iteratively. Indeed, the price of the American option
on the interval [ti, ti+k+1] with k + 1 exercise periods can be calculated using
the American options on the interval [ti+1, ti+k+1] with k exercise periods

vi+k+1
i (x) = max

{
fi(x), Bi E

{
vi+k+1

i+1 (Xi+1)

Bi+1
|Xi = x

}}
. (18.12)

We see that vi+k+1
i (x) is, as a rule, much more expensive than vi+k

i (x). The
direct formula (18.12) can be too laborious even for k ≥ 3. As an example of
a simpler lower bound, let us consider the maximum of the American option
on the interval [ti, ti+k] and the European option on the interval [ti, ti+k+1]:

v̄i+k
i (x) = max

{
vi+k

i (x), Bi E

{
fi+k+1(Xi+k+1)

Bi+k+1
|Xi = x

}}
.

This lower bound is not so expensive as vi+k+1
i (x). Clearly

vi+k
i (x) ≤ v̄i+k

i (x) ≤ vi+k+1
i (x).

Different combinations consisting of European, American, and Bermudan
options can give other simple lower bounds.

The success of the main procedures (see below) exceedingly depends on a
choice of lower bounds. Therefore their efficient construction is of great
importance. To this aim one can use the known methods and among them
the method from Belomestny and Milstein (2004).

We emphasize again (see Introduction) that if after using some lower bound
it is established that the position belongs to C, then this position does not
need any further analysis. Therefore, at the beginning the simplest nontrivial
lower bound vi+1

i (x) should be applied and then other lower bounds should
be used adaptively in the order of increasing complexity.

18.3.2 The Main Procedure for Constructing Upper
Bounds for the Initial Position (Global Upper
Bounds)

Aiming to estimate the price of the American option at a fixed position
(t0, x0), we simulate the independent trajectories Xi,m, i = 1, ..., L, m =
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1, ...,M, of the process Xi, starting at the instant t = t0 from x0 : X0 =
x0. Let vi(x) be a lower bound and (ti, Xi,m) be the position on the m-th
trajectory at the time instant ti. We calculate the lower continuation value

ci,v(Xi,m) = Bi E

{
vi+1(Xi+1,m)

Bi+1
|Fi

}
(18.13)

at the position (ti, Xi,m). If

fi(Xi,m) < ci,v(Xi,m), (18.14)

then (ti, Xi,m) ∈ C (see (18.4)) and we move one step ahead along the trajec-
tory to the next position (ti+1, mXi+1). Otherwise if

fi(Xi,m) ≥ ci,v(Xi,m), (18.15)

then we cannot say definitely whether the position (ti, Xi,m) belongs to C or
to E. In spite of this fact we do one step ahead in this case as well. Let us
recall that the true consumption at (ti, x) is equal to

γi(x) = [fi(x)− Ci(x)]+ (18.16)

(see (18.7) and (18.3)). Thus, it is natural to define the upper consumption
γi,v at any position (ti, Xi,m) by the formula

γi,v(Xi,m) = [fi(Xi,m)− ci,v(Xi,m)]+. (18.17)

Obviously, ci,v ≤ Ci and hence γi,v ≥ γi. Therefore, the price Vi(x) of the
European option with payoff function fi(x) and upper consumption process
γi,v is an upper bound on the price ui(x) of the original American option. In
the case (18.14) γi,v(Xi,m) = γi(Xi,m) = 0 and we do not get any error. If
(18.15) holds and besides ci,v(Xi,m) < Ci(Xi,m), we get an error. If γi,v(Xi,m)
is large, then it is in general impossible to estimate this error, but if γi,v(Xi,m)
is small, the error is small as well.

Having found γi,v, we can construct an estimate V̂0(x0) of the upper bound
V0(x0) for u0(x0) by the formula

V̂0(x0) =
1

M

M∑
m=1

fL(XL,m)

BL
+

1

M

L−1∑
i=0

M∑
m=1

γi,v(Xi,m)

Bi
. (18.18)

Note that for the construction of an upper bound V0 one can use different local
lower bounds depending on a position. This opens various opportunities for
adaptive procedures. For instance, if γi,v(Xi,m) is large, then it is reasonable
to use a more powerful local instrument at the position (ti, Xi,m).
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18.3.3 The Main Procedure for Constructing Lower
Bounds for the Initial Position (Global Lower
Bounds)

Let us proceed to the estimation of a lower bound v0(x0). We stress that both
V0(x0) and v0(x0) are estimated for the initial position {t0, x0} only. Since we
are interested in obtaining as large as possible lower bound, it is reasonable
to calculate different not too expensive lower bounds at the position {t0, x0}
and to take the largest one. Let us fix a local lower bound v. We denote by

t0 ≤ τ
(m)
1 ≤ L the first time when either (18.15) is fulfilled or τ

(m)
1 = L. The

second time τ
(m)
2 is defined in the following way. If τ

(m)
1 < L, then τ

(m)
2 is

either the first time after τ
(m)
1 for which (18.15) is fulfilled or τ

(m)
2 = L. So,

t0 ≤ τ
(m)
1 < τ

(m)
2 ≤ L. In the same way we can define θ times

0 ≤ τ
(m)
1 < τ

(m)
2 < ... < τ

(m)
θ = L. (18.19)

The number θ depends on the m-th trajectory: θ = θ(m) and can vary between

1 and L + 1 : 1 ≤ θ ≤ L + 1. We put by definition τ
(m)
θ+1 = τ

(m)
θ = L, τ

(m)
θ+2 =

... = τ
(m)
L+1 = L. Thus, we get times τ1, ..., τL+1 which are connected with

the considered process Xi. For any 1 ≤ k ≤ L + 1 the time τk does not
anticipate the future because at each point Xi at time ti the knowledge of
Xj, j = 0, 1, ..., i, is sufficient to define it uniquely. So, the times τ1, ..., τL+1
are stopping rules and the following lower bound can be proposed

v0(x0) = max
1≤k≤L+1

E
fτk

(Xτk
)

Bτk

which can be in turn estimated as

v̂0(x0) = max
1≤k≤L+1

1

M

M∑
m=1

f
τ

(m)
k

(X
τ

(m)
k ,m

)

B
τ

(m)
k

.

Of course, v0(x0) depends on the choice of the local lower bound v. Clearly,
increasing the local lower bound implies increasing the global lower bound
v0(x0).

REMARK 18.1 It is reasonable instead of the stopping criterion (18.15)
to use the following criterion

γi,v(Xi,m) ≥ ε (18.20)

for some ε > 0. On the one hand, γi,v ≥ γi and hence the stopping criterion
with ε = 0 can lead to earlier stopping and possibly to a large error when
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γi,v > 0 but γi = 0. On the other hand, if 0 < γi,v(Xi,m) < ε we can make an
error using criterion (18.20). Indeed, in this case we continue and if γi > 0
then (ti, Xi,m) ∈ E and the true decision is to stop. Since the price of the
option at (ti, Xi,m) upon the continuation is Ci(Xi,m) and

fi(Xi,m)− Ci(Xi,m) = γi ≤ γi,v < ε,

the error due to the wrong decision at (ti, Xi,m) is small as long as ε is small. It
is generally difficult to estimate the influence of many such wrong decisions
on the global lower bound. Fortunately, any ε > 0 leads to a sequence of
stopping times (18.19) and, consequently, to a global lower bound v0(x0).
What the global upper bound is concerned, we have 0 ≤ γi,v − γi < ε when
γi,v < ε and hence the error in estimating V0 is small due to (18.18). The
choice of ε can be based on some heuristics and the empirical analysis of
overall errors in estimating true γi’s.

18.3.4 Kernel Interpolation

The computational complexity of the whole procedure can be substantially
reduced by using methods from the interpolation theory. As discussed in the
previous sections, the set of independent paths

PM
def
= {Xi,m, i = 1, ..., L, m = 1, ...,M}

and the sequence of local lower bounds {v1
i , ..., v

l
i} deliver the set of the

upper consumption values {γi,v(mXi), i = 0, ..., L, m = 1, ...,M}, where

vi
def
= max{v1

i , ..., v
l
i}. If M is large one may take a subset P

M̃
of PM contain-

ing first M̃ ! M trajectories

P
M̃

def
= {Xi,m, i = 1, ..., L, m = 1, ..., M̃} (18.21)

and compute {γi,v(Xi,m), i = 0, ..., L, m = 1, ..., M̃}. The remaining con-

sumption values γi,v(nXi) for n = M̃ + 1, ...,M can be approximated by

γ̂i,v(Xi,n)
def
=

∑
{

m:Xi,m∈Bk
P

M̃
(nXi)

}wn,mγi,v(mXi),

where Bk
P

M̃
(nXi) is the set of k nearest neighbors of nXi lying in the P

M̃
for

fixed exercise date ti and

wn,m
def
=

K(‖nXi −Xi,m‖/h)∑{
m:Xi,m∈Bk

P
M̃

(nXi)
} K(‖nXi −Xi,m‖/h)
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with K(·) being a positive kernel. A bandwidth h and the number of nearest
neighbors k are chosen experimentally. Having found γ̂i,v(nXi), we get the
global upper bound at (t0, x0) according to (18.18) by plugging estimated

values γ̂i,v(mXi) with m = M̃+1, ...,M in place of the corresponding γi,v(mXi)
.
The simulations show that an essential reduction of computational time can
be sometimes achieved at small loss of precision. The reason for the success
of kernel methods is that the closeness of the points in the state space implies
the closeness of the corresponding consumption values.

18.4 Simulations

18.4.1 Bermudan Max Calls on d Assets

This is a benchmark example studied in Broadie and Glasserman (1997),
Haugh and Kogan (2004) and Rogers (2001) among others. Specifically,
the model with d identical assets is considered where each underlying has
dividend yield δ. The risk-neutral dynamic of assets is given by

dXk
t

Xk
t

= (r − δ)dt + σdW k
t , k = 1, ..., d, (18.22)

where W k
t , k = 1, ..., d, are independent one dimensional Brownian motions

and r, δ, σ are constants. At any time t ∈ {t0, ..., tL} the holder of the option
may exercise it and receive the payoff

f(Xt) = (max(X1
t , ..., X

d
t )−K)+.

In applying the method developed in this paper we take ti = iT/L, i =
0, ..., L, with T = 3, L = 9 and simulate M = 50000 trajectories

PM = {Xi,m, i = 0, ..., L}M
m=1

using Euler scheme with a time step h = 0.1. Setting M̃ = 500, we define the
set P

M̃
as in (18.21) and compute adaptively the lower continuation values

for every point in P
M̃

. To this end we simulate N = 100 points

nX
(ti, Xi,m)
i+1 , 1 ≤ n ≤ N,

from each point (ti, Xi,m) with i < L and m ≤ M̃ . For any natural l such
that 0 ≤ l ≤ L− i− 1, values

v
(j)
i+1

(
n
X

(ti, Xi,m)
i+1

)
, 0 ≤ j ≤ l,
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based on local lower bounds of increasing complexity, can be constructed

as follows. First, v
(0)
i+1

(
n
X

(ti, Xi,m)
i+1

)
= f

(
n
X

(ti, Xi,m)
i+1

)
and v

(j)
i+1 for j = 1, 2 are

values of the American option on the intervals [ti+1, ti+1+j] . If j > 2 then

v
(j)
i+1 is defined as value of the Bermudan option with three exercise instances

at time points {ti+1, ti+j, ti+j+1}. Now, we estimate the corresponding lower
continuation value by

ĉi,l(Xi,m) =
e−r(ti+1−ti)

N

N∑
n=1

max
0≤j≤l

{
v

(j)
i+1(nX

(ti, Xi,m)
i+1 )

}
.

Clearly, ĉi,l is the Monte-Carlo estimate of ci,v, where v = max0≤j≤l v
(j)
i+1.

Let us fix a maximal complexity l∗. Sequentially increasing l from 0 to
l∗i = min{l∗, L− i− 1}, we compute ĉi,l until l ≤ l∗, where

l∗
def
= min{l : fi(Xi,m) < ĉi,l(Xi,m)}

or l∗
def
= l∗i if

fi(Xi,m) ≥ ĉi,l(Xi,m), l = 1, . . . , l∗i .

Note, that in the case l∗ < l∗i the numerical costs are reduced as compared
to the non-adaptive procedure while the quality of the estimate ĉi,v∗, where

v∗ = max0≤j≤l∗ v
(j)
i+1 is preserved. The estimated values ĉi,v∗(Xi,m) allow us,

in turn, to compute the estimates for the corresponding upper consumptions

γi,v∗(Xi,m) with m = 1, . . . , M̃ . The upper consumptions values for m = M̃ +
1, . . . M are estimated using kernel interpolation with an exponential kernel
(see Subsection 3.4). In Table 18.1 the corresponding results are presented
in dependence on l∗ and x0 with X0 = (X1

0 , . . . , X
d
0 )T , X1

0 = ... = Xd
0 = x0.

The true values are quoted from Glasserman (2004). We see that while the
quality of bounds increases significantly from l∗ = 1 to l∗ = 3, the crossover
to l∗ = 6 has a little impact on it. It means that either the true value is
achieved (as for x0 = 90) or deeper analysis is needed (as for x0 = 100).

18.4.2 Bermudan Basket-Put

In this example we consider again the model with d identical assets driven
by independent identical geometrical Brownian motions (see (18.22)) with
δ = 0. Defining the basket at any time t as X̄t = (X1

t + ... + Xd
t )/d, let us

consider the Bermudan basket put option granting the holder the right to sell
this basket for a fixed price K at time t ∈ {t0, ..., tL} getting the profit given
by f(X̄t) = (K − X̄t)

+. We apply our method for constructing lower and
upper bounds on the true value of this option at the initial point (t0, X0). In
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l∗ x0 Lower Bound Upper Bound True Value
v0(X0) V0(X0)

90 7.892±0.1082 8.694±0.0023 8.08
1 100 12.872±0.1459 15.2568±0.0042 13.90

110 19.275±0.1703 23.8148±0.0062 21.34
90 8.070±0.1034 7.900±0.0018 8.08

3 100 13.281±0.1434 14.241±0.0038 13.90
110 19.526±0.1852 21.807±0.0058 21.34
90 8.099±0.1057 7.914±0.0018 8.08

6 100 13.196±0.1498 13.844±0.0038 13.90
110 19.639±0.1729 21.411±0.0056 21.34

Table 18.1. Bounds (with 95% confidence intervals) for the
2-dimensional Bermudan max call with parameters K =
100, r = 0.05, σ = 0.2, L = 9 and l∗ varying as shown in
the table.

order to construct local lower bounds we need to compute the prices of the
corresponding European style options vt+θ

t (x) = e−rθ E(f(X̄t+θ)|Xt = x) for
different θ and t. It can be done in principle by Monte-Carlo method since
the closed form expression for vt+θ

t (x) is not known. However, in this case it
is more rational to use the so-called moment-matching procedure from Brigo,
Mercurio, Rapisarda and Scotti (2002) and to approximate the distribution
of the basket X̄t+θ by a log-normal one with parameters r̃ − σ̃2/2 and σ̃θ1/2,
where r̃ and σ̃ are chosen in a such way that the first two moments of the
above log-normal distribution coincide with the true ones. In our particular
example r̃ = r and

σ̃2 =
1

θ
log

⎧⎪⎨⎪⎩
∑d

i,j=1 X i
tX

j
t exp(1{i=j}σ

2θ)[∑d
i=1 X i

t

]2

⎫⎪⎬⎪⎭ . (18.23)

In Table 18.2 the results of simulations for different maximal complexity l∗

and initial values x0 = X1
0 = ... = Xd

0 are presented. Here, overall M =

50000 paths are simulated and on the subset of M̃ = 500 trajectories the
local analysis is conducted. Other trajectories are handled with the kernel
interpolation method as described in Subsection 3.4. Similar to the previous
example, significant improvements are observed for l∗ = 2 and l∗ = 3. The
difference between the upper bound and lower bound for l∗ > 3 is less than
5%.
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l x0 Lower Bound Upper Bound True Value
v0(X0) V0(X0)

100 2.391±0.0268 2.985±0.0255 2.480
1 105 1.196±0.0210 1.470±0.0169 1.250

110 0.594±0.0155 0.700±0.0105 0.595
100 2.455±0.0286 2.767±0.0238 2.480

2 105 1.210±0.0220 1.337±0.0149 1.250
110 0.608±0.0163 0.653±0.0094 0.595
100 2.462±0.0293 2.665±0.0228 2.480

3 105 1.208±0.0224 1.295±0.0144 1.250
110 0.604±0.0166 0.635±0.0090 0.595
100 2.473±0.0200 2.639±0.0228 2.480

6 105 1.237±0.0231 1.288±0.0142 1.250
110 0.611±0.0169 0.632±0.0089 0.595
100 2.479±0.0300 2.627±0.0226 2.480

9 105 1.236±0.0232 1.293±0.0144 1.250
110 0.598±0.0167 0.627±0.0087 0.595

Table 18.2. Bounds (with 95% confidence intervals) for the
5-dimensional Bermudan basket put with parameters K =
100, r = 0.05, σ = 0.2, L = 9 and different l∗.

18.5 Conclusions

In this paper a new Monte-Carlo approach towards pricing discrete Amer-
ican and Bermudan options is presented. This approach relies essentially
on the representation of an American option as the European one with the
consumption process involved. The combination of the above representation
with the analysis of the market over a small number of time steps ahead
provides us with a lower as well an upper bound on the true price at a given
point. Additional ideas concerning adaptive computation of the continuation
values and the use of interpolation techniques help reducing the computa-
tional complexity of the procedure. In summary, the approach proposed has
following features:

� It is Monte-Carlo based and is applicable to the problems of medium
dimensionality.

� The propagation of errors is transparent and the quality of final bounds
can be easily assessed.

� It is adaptive that is its numerical complexity can be tuned to the
accuracy needed.
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� Different type of sensitivities can be efficiently calculated by combin-
ing the current approach with the method developed in Milstein and
Tretyakov (2005).

Bibliography

L. Andersen and M. Broadie (2004). A primal-dual simulation algorithm for pricing multi-
dimensional American options. Management Science 50, no. 9: 1222–1234.

V. Bally, G. Pagès and J. Printems (2005). A quantization tree method for pricing and
hedging multidimensional American options. Mathematical Finance 15, No. 1, 119-168.

D. Belomestny, and G.N. Milstein, (2004). Monte Carlo evaluation of American options
using consumption processes. WIAS-Preprint No. 930, Berlin

P. Boyle, M. Broadie and P. Glasserman (1997). Monte Carlo methods for security pricing.
Journal of Economic Dynamics and Control 21: 1267-1321.

M. Broadie and P. Glasserman (1997). Pricing American-style securities using simulation.
J. of Economic Dynamics and Control 21: 1323-1352.

D.Brigo, F. Mercurio, F. Rapisarda and R. Scotti (2002). Approximated moment-matching
dynamics for basket-options simulation. Working paper.

E. Clément, D. Lamberton and P. Protter (2002). An analysis of a least squares regression
algorithm for American option pricing. Finance and Stochastics 6: 449-471.

P. Glasserman (2004). Monte Carlo Methods in Financial Engineering Springer.

M. Haugh and L. Kogan (2004). Pricing American options: a duality approach. Opeations
Research 52, No. 2: 258–270.

F. Jamshidian (2003). Minimax optimality of Bermudan and American claims and their
Monte Carlo upper bound approximation. Working paper.

A. Kolodko and J. Schoenmakers (2004). Iterative construction of the optimal Bermudan
stopping time. WIAS-Preprint No. 926, Berlin.

D. Lamberton and B. Lapeyre (1996). Intoduction to Stochastic Calculus Applied to Finance
Chapman & Hall.

F.A. Longstaff and E.S. Schwartz (2001). Valuing American options by simulation: a simple
least-squares approach. Review of Financial Studies 14, 113-147.

G.N. Milstein and M.V. Tretyakov (2005). Numerical Analysis of Monte Carlo evaluation of
Greeks by finite differences. J. of Computational Finance 8, No. 3.

L.C.G. Rogers (2001). Monte Carlo valuation of American options. Mathematical Finance
12, 271-286.

A.N. Shiryaev (1999). Essentials of Stochastic Finance: Facts, Models, Theory. World Sci-
entific



19 High-Frequency Volatility and

Liquidity
Nikolaus Hautsch and Vahidin Jeleskovic

19.1 Introduction

Due to the permanently increasing availability of high-frequency financial
data, the empirical analysis of trading behavior and the modelling of trading
processes has become a major theme in modern financial econometrics. Key
variables in empirical studies of high-frequency data are price volatilities,
trading volume, trading intensities, bid-ask spreads and market depth as
displayed by an open limit order book. A common characteristic of these
variables is that they are positive-valued and persistently clustered over time.

To capture the stochastic properties of positive-valued autoregressive pro-
cesses, multiplicative error models (MEMs) have been proposed. The basic
idea of modelling a positive-valued process in terms of the product of positive-
valued (typically i.i.d.) innovation terms and an observation-driven and/or
parameter driven dynamic function is well-known in financial econometrics
and originates from the model structure of the autoregressive conditional het-
eroscedasticity (ARCH) model introduced by Engle (1982) or the stochastic
volatility (SV) model proposed by Taylor (1982). Engle and Russell (1997,
1998) introduced the autoregressive conditional duration (ACD) model to
model autoregressive (financial) duration processes in terms of a multiplica-
tive error process and a GARCH-type parameterization of the conditional
duration mean. The term ’MEM’ is ultimately introduced by Engle (2002)
who discusses this approach as a general framework to model any kind of
positive-valued dynamic process. Manganelli (2005) proposes a multivariate
MEM to jointly model high-frequency volatilities, trading volume and trad-
ing intensities. Hautsch (2008) generalizes this approach by introducing a
common latent dynamic factor serving as a subordinated process driving the
individual trading components. The resulting model combines features of a
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GARCH type model and an SV type model and is called stochastic MEM.
Engle and Gallo (2006) apply MEM specifications to jointly model differ-
ent volatility indicators including absolute returns, daily range, and realized
volatility. Recently, Cipollini et al. (2007) extend the MEM by a copula
specification in order to capture contemporaneous relationships between the
variables.

Given the growing importance of MEMs for the modelling of high-frequency
trading processes, liquidity dynamics and volatility processes, this chapter
gives an introduction to the topic and an overview of the current literature.
Given that the ACD model is the most popular specification of a univariate
MEM, we will strongly rely on this string of the literature. Finally, we will
present an application of the MEM to jointly model the multivariate dynamics
of volatilities, trade sizes, trading intensities, and trading costs based on limit
order book data from the Australian Stock Exchange (ASX).

The chapter is organized as follows: Section 19.2 presents the major princi-
ples and properties of univariate MEMS. In Section 19.3, we will introduce
multivariate specifications of MEMs. Estimation and statistical inference is
illustrated in Section 19.4. Finally, Section 19.5 gives an application of the
MEM to model high-frequency trading processes using data from the ASX.

19.2 The Univariate MEM

Let {Yt}, t = 1, . . . , T , denote a non-negative (scalar) random variable. Then,
the univariate MEM for Yt is given by

Yt = µtεt,

εt|Ft−1 ∼ i.i.d. D(1, σ2),

where Ft denotes the information set up to t, µt is a non-negative condi-
tionally deterministic process given Ft−1, and εt is a unit mean, i.i.d. variate
process defined on non-negative support with variance σ2. Then, per con-
struction we have

E [Yt|Ft−1]
def
= µt, (19.1)

Var [Yt|Ft−1] = σ2µ2
t . (19.2)

The major principle of the MEM is to parameterize the conditional mean µt

in terms of a function of the information set Ft−1 and parameters θ. Then,



19 High-Frequency Volatility and Liquidity 381

the basic linear MEM(p,q) specification is given by

µt = ω +

p∑
j=1

αjYt−j +

q∑
j=1

βjµt−j, (19.3)

where ω > 0, αj ≥ 0, βj ≥ 0. This specification corresponds to a generalized
ARCH model as proposed by Bollerslev (1986) as long as Yt is the squared
(de-meaned) log return between t and t − 1 with µt corresponding to the
conditional variance. Accordingly, the process (19.3) can be estimated by
applying GARCH software based on

√
Yt (without specifying a conditional

mean function). Alternatively, if Yt corresponds to a (financial) duration,
such as, e.g., the time between consecutive trades (so-called trade durations)
or the time until a cumulative absolute price change is observed (so-called
price durations), the model is referred to an ACD specification as introduced
by Engle and Russell (1997, 1998).

The unconditional mean of Yt is straightforwardly computed as

E[Yt] = ω/(1−
p∑

j=1

αj −
q∑

j=1

βj). (19.4)

The derivation of the unconditional variance is more cumbersome since it
requires the computation of E[µ2

t ]. In the case of an MEM(1,1) process, the
unconditional variance is given by (see, e.g., Hautsch (2004))

Var[Yt] = E[Yt]
2σ2(1− β2 − 2αβ)/(1− (α + β)2 − α2σ2) (19.5)

corresponding to

Var[Yt] = E[Yt]
2(1− β2 − 2αβ)/(1− β2 − 2αβ − 2α2) (19.6)

in case of σ2 = 1 which is, e.g., associated with a standard exponential
distribution. Correspondingly, the model implied autocorrelation function is
given by

ρ1
def
= Corr[Yt, Yt−1] = α(1− β2 − αβ)/(1− β2 − 2αβ), (19.7)

ρj
def
= Corr[Yt, Yt−j] = (α + β)ρj−1 for j ≥ 2. (19.8)

Similarly to the GARCH model, the MEM can be represented in terms of an

ARMA model for Yt. Let ηt
def
= Yt − µt denote a martingale difference, then

the MEM(p,q) process can be written as

Yt = ω +

max(p,q)∑
j=1

(αj + βj)Yt−j −
q∑

j=1

βjηt−j + ηt. (19.9)
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The weak stationarity condition of a MEM(1,1) process is given by (α+β)2−
α2σ2 < 1 ensuring the existence of Var[Yt].

Relying on the GARCH literature, the linear MEM specification can be ex-
tended in various forms. A popular form is a logarithmic specification of a
MEM ensuring the positivity of µt without imposing parameter constraints.
This is particularly important whenever the model is augmented by explana-
tory variables or when the model has to accommodate negative (cross-) au-
tocorrelations in a multivariate setting. Two versions of logarithmic MEM’s
have been introduced by Bauwens and Giot (2000) in the context of ACD
models and are given (for simplicity for p = q = 1) by

log µt = ω + αg(εt−1) + β log µt−1, (19.10)

where g(·) is given either by g(εt−1) = εt−1 (type I) or g(εt−1) = log εt−1 (type
II). The process is covariance stationary if β < 1, E[εt exp{αg(εt)}] <∞ and
E[exp{2αg(εt)}] <∞. For more details, see Bauwens and Giot (2000). Notice
that due the logarithmic transformation, the news impact function, i.e., the
relation between Yt and εt−1 is not anymore linear but is convex in the type
I case and is concave in the type II parameterization. I.e., in the latter case,
the sensitivity of Yt to shocks in εt−1 is higher if εt−1 is small than in the case
where it is large.

A more flexible way to capture nonlinear news responses is to allow for a
kinked news response function

log µt = ω + α{|εt−1 − b|+ c(εt−1 − b)}δ + β log µt−1, (19.11)

where b gives the position of the kink while δ determines the shape of the
piecewise function around the kink. For δ = 1, the model implies a linear
news response function which is kinked at b resembling the EGARCH model
proposed by Nelson (1991). For δ > 1, the shape is convex while it is con-
cave for δ < 1. Such a specification allows to flexibly capture asymmetries
in responses of Yt to small or large lagged innovation shocks, such as, e.g.,
shocks in liquidity demand, liquidity supply or volatility. A similar specifi-
cation is considered by Cipollini et al. (2007) to capture leverage effects if
Yt corresponds to a volatility variable. For more details on extended MEM
specifications in the context of ACD models, see Hautsch (2004) or Bauwens
and Hautsch (2008).

The error term distribution of εt is chosen as a distribution defined on posi-
tive support and standardized by its mean. If Yt is the squared (de-meaned)
log return, then

√
εt ∼ N(0, 1) yields the Gaussian GARCH model. If Yt

denotes a liquidity variable (such as trade size, trading intensity, bid-ask
spread or market depth), a natural choice is an exponential distribution.
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Though the exponential distribution is typically too restrictive to appropri-
ately capture the distributional properties of trading variables, it allows for
a quasi maximum likelihood (QML) estimation yielding consistent estimates
irrespective of distributional misspecifications. For more details, see Sec-
tion 19.4. More flexible distributions are, e.g., the Weibull distribution, the
(generalized) gamma distribution, the Burr distribution or the generalized F
distribution. The latter is proposed in an ACD context by Hautsch (2003)
and is given in standardized form (i.e., with unit mean) by the p.d.f.

fε(x) = [a{x/ζ(a, m, η)}am−1[η + {x/ζ(a, m, η)}](−η−m)ηη]/B(m, η), (19.12)

where a, m, and η are distribution parameters, B(m, η) = Γ(m)Γ(η)/Γ(m +
η), and

ζ(a, m, η)
def
= {η1/aΓ(m + 1/a)Γ(η − 1/a)}/{Γ(m)Γ(η)}. (19.13)

The generalized F-distribution nests the generalized gamma distribution for
η →∞, the Weibull distribution for η →∞, m = 1, the log-logistic distribu-
tion for m = η = 1, and the exponential distribution for η →∞, m = a = 1.
For more details, see Hautsch (2004).

19.3 The Vector MEM

Consider in the following a k-dimensional positive-valued time series, denoted

by {Yt}, t = 1 . . . , T , with Yt
def
= (Y

(1)
t , . . . , Y

(k)
t ). Then, the so-called vector

MEM (VMEM) for Yt is defined by

Yt = µt � εt

= diag(µt)εt,

where � denotes the Hadamard product (element-wise multiplication) and εt

is a k-dimensional vector of mutually and serially i.i.d. innovation processes,
where the j-th element is given by

ε
(j)
t |Ft−1 ∼ i.i.d. D(1, σ2

j ), j = 1, . . . , k.

A straightforward extension of the univariate linear MEM as proposed by
Manganelli (2005) is given by

µt = ω + A0Yt +

p∑
j=1

AjYt−j +

q∑
j=1

Bjµt−j, (19.14)
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where ω is a (k×1) vector, and A0, Aj, and Bj are (k×k) parameter matrices.
The matrix A0 captures contemporaneous relationships between the elements
of Yt and is specified as a matrix where only the upper triangular elements

are non-zero. This triangular structure implies that Y
(i)
t is predetermined for

all variables Y
(j)
t with j < i. Consequently, Y

(i)
t is conditionally i.i.d. given

{Y (j)
t ,Ft−1} for j < i.

The advantage of this specification is that contemporaneous relationships
between the variables are taken into account without requiring multivariate
distributions for εt. This eases the estimation of the model. Furthermore,
the theoretical properties of univariate MEMs as discussed in the previous
section can be straightforwardly extended to the multivariate case. However,
an obvious drawback is the requirement to impose an explicit ordering of the
variables in Yt which is typically chosen in accordance with a specific research
objective or following economic reasoning. An alternative way to capture
contemporaneous relationships between the elements of Yt is to allow for

mutual correlations between the innovation terms ε
(j)
t . Then, the innovation

term vector follows a density function which is defined over non-negative k-
dimensional support [0, +∞)k with unit mean ι and covariance matrix Σ,
i.e.,

εt|Ft−1 ∼ i.i.d. D(ι,Σ)

implying

E [Yt|Ft−1] = µt,

Var [Yt|Ft−1] = µtµ
�
t �Σ = diag(µt)Σ diag(µt).

Finding an appropriate multivariate distribution defined on positive support
is a difficult task. As discussed by Cipollini et al. (2007), a possible can-
didate is a multivariate gamma distribution which however imposes severe

restrictions on the contemporaneous correlations between the errors ε
(i)
t . Al-

ternatively, copula approaches can be used as, e.g., proposed by Heinen and
Rengifo (2006) or Cipollini et al. (2007).

In correspondence to the univariate logarithmic MEM, we obtain a logarith-
mic VMEM specification by

log µt = ω + A0 log Yt +

p∑
j=1

Ajg(εt−j) +

q∑
j=1

Bj log µt−j, (19.15)

where g(εt−j) = εt−j or g(εt−j) = log εt−j, respectively. Generalized VMEMs
can be specified accordingly to Section 19.2.

A further generalization of VMEM processes has been introduced by Hautsch
(2008) and captures mutual (time-varying) dependencies by a subordinated
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common (latent) factor jointly driving the individual processes. The so-called
stochastic MEM can be compactly represented as

Yt = µt � λt � εt, (19.16)

where λt is a (k × 1) vector with elements {λδi
t }, i = 1, . . . , k,

log λt = a log λt−1 + νt, νt ∼ i.i.d. N(0, 1), (19.17)

and νt is assumed to be independent of εt. Hence, λt serves as a common
dynamic factor with process-specific impacts δi. Then, the elements of µt

represent ’genuine’ (trade-driven) effects given the latent factor. They are
assumed to follow (19.15) with g(εt) = Yt � µ−1

t . The model corresponds
to a mixture model and nests important special cases, such as the SV model
by Taylor (1982) or the stochastic conditional duration model by Bauwens
and Veredas (2004). Applying this approach to jointly model high-frequency
volatilities, trade sizes and trading intensities, Hautsch (2008) shows that the
latent component is a major driving force of cross-dependencies between the
individual processes.

19.4 Statistical Inference

Define f(Y
(1)
t , Y

(2)
t , . . . , Y

(k)
t |Ft−1) as the joint conditional density given Ft−1.

Without loss of generality the joint density can be decomposed into

f(Y
(1)
t , Y

(2)
t , . . . , Y

(k)
t |Ft−1) =f(Y

(1)
t |Y (2)

t , . . . , Y
(k)
t ;Ft−1)

×f(Y
(2)
t |Y (3)

t , . . . , Y
(k)
t ;Ft−1)

×f(Y k
t |Ft−1). (19.18)

Then, the log likelihood function is defined by

L(θ)
def
=

T∑
t=1

k∑
j=1

log f(Y
(j)
t |Y (j+1)

t , . . . , Y
(k)
t ;Ft−1). (19.19)

For instance, if Y
(j)
t |Y (j+1)

t , . . . , Y
(k)
t ;Ft−1 follows a generalized F distribution

with parameters a(j), m(j) and η(j), the corresponding log likelihood contri-
bution is given by

log f(Y
(j)
t |Y (j+1)

t , . . . , Y
(k)
t ;Ft−1)

= log[Γ(m(j) + η(j))/{Γ(m(j))Γ(η(j))}] + log a(j)

− a(j)m(j) log µ̃
(j)
t + (a(j)m(j) − 1) log Y

(j)
t

− (η(j) + m(j)) log
(
η(j) + Y

(j)
t /µ̃

(j)
t

)
+ η(j) log(η(j)), (19.20)
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where µ̃
(j)
t = µ

(j)
t /ζ(a(j), m(j), η(j)) and ζ(·) defined as above.

Constructing the likelihood based on an exponential distribution leads to the
quasi likelihood function with components

log f(Y
(j)
t |Y (j+1)

t , . . . , Y
(k)
t ;Ft−1) = −
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t
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,

where the score and Hessian are given by
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Building on the results by Bollerslev and Wooldridge (1992) and Lee and
Hansen (1994), Engle (2000) shows the consistency and asymptotic normal-

ity of θ̂, where the asymptotic covariance corresponds to the Bollerslev and
Wooldridge (1992) QML covariance matrix.

Model evaluation can be straightforwardly performed by testing the dynamic
and distributional properties of the model residuals

e
(j)
t

def
= ε̂

(j)
t = Y

(j)
t /µ̂

(j)
t . (19.21)

Under correct model specification, the series e
(j)
t must be i.i.d. with distribu-

tion D(·). Portmanteau statistics such as the Ljung-Box statistic (Ljung and
Box (1978)) based on (de-meaned) MEM residuals can be used to analyze
whether the specification is able to capture the dynamic properties of the pro-
cess. The distributional properties can be checked based on QQ-plots. Engle
and Russell (1998) propose a simple test for no excess dispersion implied by
an exponential distribution using the statistic

√
n
{

(σ̂2
e(j) − 1)/σ̃(j)

}
,

where σ̂2
e(j) is the sample variance of e

(j)
t and σ̃(j) is the standard deviation of

(ε
(j)
t − 1)2. Under the null hypothesis of an exponential distribution, the test

statistic is asymptotically normally distributed with σ̂2
e(j) = 1 and

(
σ̃(j)

)2
=√

8.
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Alternatively, probability integral transforms can be used to evaluate the in-
sample goodness-of-fit, see, e.g., Bauwens et al. (2004). Building on the work
by Rosenblatt (1952), Diebold et al. (1998) show that

q
(j)
t

def
=

∫ ∞

−∞
fe(j)(s)ds

must be i.i.d. U[0, 1]. Alternative ways to evaluate MEMs are Lagrange
Multiplier tests as proposed by Meitz and Teräsvirta (2006), (integrated)
conditional moment tests as discussed by Hautsch (2006) or nonparametric
tests as suggested by Fernandes and Grammig (2006).

19.5 High-Frequency Volatility and Liquidity
Dynamics

In this section, we will illustrate an application of the VMEM to jointly
model return volatilities, average trade sizes, the number of trades as well
as average trading costs in intra-day trading. We use a data base extracted
from the electronic trading of the Australian Stock Exchange (ASX) which is
also used by Hall and Hautsch (2006, 2007). The ASX is a continuous double
auction electronic market where the continuous trading period between 10:09
a.m. and 4:00 p.m. is preceded and followed by a call auction. During con-
tinuous trading, any buy (sell) order entered that has a price that is greater
than (less than) or equal to existing queued buy (sell) orders, will execute
immediately and will result in a transaction as long as there is no more buy
(sell) order volume that has a price that is equal to or greater (less) than the
entered buy (sell) order. In case of partial execution, the remaining volume
enters the limit order queues. Limit orders are queued in the buy and sell
queues according to a strict price-time priority order and may be entered,
deleted and modified without restriction. For more details on ASX trading,
see Hall and Hautsch (2007).

Here, we use data from completely reconstructed order books for the stocks
of the National Australian Bank (NAB) and BHP Billiton Limited (BHP)
during the trading period July and August 2002 covering 45 trading days.
In order to reduce the impact of opening and closure effects, we delete all
observations before 10:15 a.m. and after 3:45 p.m. To reduce the complexity
of the model we restrict our analysis to equi-distant observations based on
one-minute aggregates. For applications of MEMs to irregularly spaced data,
see Manganelli (2005) or Engle (2000).

Table 19.1 shows summary statistics for log returns, the average trade size,
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the number of trades, and the average (time-weighted) trading costs. The
log returns correspond to the residuals of an MA(1) model for differences in
log transaction prices. This pre-adjustment removes the effects of the well-
known bid-ask bounce causing negative first-order serial correlation, see Roll
(1984). The trading costs are computed as the hypothetical trading costs
of an order of the size of 10, 000 shares in excess to the trading costs which
would prevail if investors could trade at the mid-quote. They are computed
as a time-weighted average based on the average ask and bid volume pending
in the queues and yield natural measures of transaction costs induced by a
potentially lacking liquidity supply. Conversely, trade sizes and the number
of trades per interval indicate the liquidity demand in the market.

We observe that high-frequency log returns reveal similar stochastic proper-
ties as daily log returns with significant overkurtosis and slight left-skewness.
For the average trade size and the number of trades per interval we find
a highly right-skewed distribution with a substantial proportion of observa-
tions being zero. These observations stem from tranquil trading periods,
where market orders do not necessarily occur every minute. As illustrated
below, these periods typically happen around noon causing the well-known
’lunch-time dip’. On the other hand, we also find evidence for very active
trading periods resulting in a high speed of trading and large average trade
sizes. On average, the number of trades per one-minute interval is around 2.5
and 3.5 for NAB and BHP, respectively, with average trade sizes of approxi-
mately 2, 300 and 5, 800 shares, respectively. The excess trading costs asso-
ciated with the buy/sell transaction of 10, 000 shares are on average around
60 ASD for BHP and 188 ASD for NAB. Hence, on average, excess trading
costs for NAB are significantly higher than for BHP which is caused by a
higher average bid-ask spread and a lower liquidity supply in the book. The
Ljung-Box statistics indicate the presence of a strong serial dependence in
volatilities and all liquidity variables, and thus reveal the well-known clus-
tering structures in trading processes. The significant Ljung-Box statistics
for log returns are induced by the bid-ask bounce effect causing significantly
negative first order autocorrelation. Obviously, the MA(1) filter does not
work very well in the case of NAB data. Alternatively, one could use higher
order MA-filter. The empirical autocorrelations (ACFs) shown in Figure 19.1
confirm a relatively high persistence in volatilities and liquidity variables in-
dicated by the Ljung-Box statistics. A notable exception is the process of
trade sizes for NAB revealing only weak serial dependencies. Figure 19.2
displays the cross-autocorrelation functions (CACFs) between the individual
variables. It turns out that squared returns are significantly positively (cross-
)autocorrelated with the number of trades and excess trading costs, and –
to less extent – with the average trade size. This indicates strong dynamic
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BHP NAB
LR TS NT TC LR TS NT TC

Obs. 14520 14520 14520 14520 14503 14503 14503 14503
Mean 6.81E-7 5811.52 3.53 60.20 -3.19E-4 2295.24 2.69 188.85
S.D. 7.41E-2 8378.09 3.20 18.47 3.83E-2 7228.38 2.72 97.37
Min -0.50 0 0 2.99 -0.31 0 0 16.52
Max 0.44 250000 24 231.38 0.38 757500.50 23 1043.35
q10 -0.10 0 0 5.00 -0.04 0 0 84.48
q90 0.10 13475 8 8.80 0.04 5150 6 317.48
Kurtosis 5.23 - - - 9.85 - - -
LB20 29.61 1585.04 34907.77 22422.32 939.05 95.94 22825.72 23786.09
LB20(SR) 2073.77 - - - 2808.75 - - -

Table 19.1. Descriptive statistics of log returns (LR), trade sizes (TS),
number of trades (NT), and trade costs (TC) for BHP and NAB. Eval-
uated statistics: mean value, standard deviation (S.D.), minimum and
maximum, 10%- and 90%-quantile (q10 and q90, respectively), kurtosis,
and the Ljung-Box statistic (associated with 20 lags). LB20(SR) repre-
sents the Ljung-Box statistic computed for the squared log returns (SR).
XFGdescriptive

interdependencies between volatility and liquidity demand as well as supply.
Similarly, we also observe significantly positive CACFs between trade sizes
and the speed of trading. Hence, periods of high liquidity demand are char-
acterized by both high trade sizes and a high trading intensity. Conversely,
the CACFS between trading costs and trade sizes as well as between trading
costs and the trading intensity are significantly negative. Ceteris paribus this
indicates that market participants tend to exploit periods of high liquidity
supply, i.e. they trade fast and high volumes if the trading costs are low and
thus liquidity supply is high.

A typical feature of high-frequency data is the strong influence of intra-day
seasonalities which is well documented by a wide range of empirical studies.
For detailed illustrations, see Bauwens and Giot (2001) or Hautsch (2004).
One possibility to account for intra-day seasonalities is to augment the spec-
ification of µt by appropriate regressors. An alternative way is to adjust
for seasonalities in a first step. Though the effect of a pre-adjustment on
the final parameter estimates is controversially discussed in the literature
(see e.g. Veredas et al. (2001)), most empirical studies prefer the two-stage
method since it reduces model complexity and the number of parameters to
be estimated in the final step. Here, we follow this proceeding and adjust

the individual variables Y
(i)
t for deterministic intraday-seasonalities based on

cubic spline regressions with 30-minute nodes between 10:30 and 15:30. Fig-
ure 19.3 shows the resulting estimated seasonality components. Confirming
empirical findings from other markets, we observe that the liquidity demand
follows a distinct U-shape pattern with a clear dip around lunch time. How-
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Figure 19.1. Sample ACF of squared log returns (SR), trade
size (TS), number of trades (NT), and trade costs (TC)(from
top to bottom) for BHP (left) and NAB (right). The x-axis
shows the lags. The broken line shows the asymptotic 95%
confidence intervals. XFGacf

ever, a clearly different picture is revealed for the trading costs. Obviously,
the liquidity supply is lowest during the morning and around noon inducing
high trading costs. Then, (excess) trading costs decline during the after-
noon and reach a minimum before market closure. This indicates that not
only liquidity demand but also liquidity supply is highest before the end of
the trading period. For volatility, we observe a rather typical picture with
the highest volatility after the opening of the market and (but to less ex-
tent) before closure. The high volatility at morning is clearly associated with
information processing during the first minutes of trading.

Conceptual difficulties are caused by the relatively high number of zeros in the
liquidity demand variables which cannot be captured by a standard MEM re-
quiring positive random variables. In order to account for zeros, we augment
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Figure 19.2. Sample CACF for BHP (top) and NAB (bot-
tom). The solid, dash-dotted and dashed lines show the
CACF between TC and SR, TC and TS, TC and NT, re-
spectively, on the left side and between SR and TS, SR and
NT, TS and NT, respectively, on the right side. The dotted
line shows the asymptotic 95% confidence interval. The x-axis
shows the lags. XFGcacf

a Log-VMEM by corresponding dummy variables:

log µt = ω + A0[(log Yt)� 1{Yt > 0}] + A0
0 � 1{Yt = 0} (19.22)

+

p∑
j=1

Aj[g(εt−j)� 1{Yt−1 > 0}] +

p∑
j=1

A0
j � 1{Yt−1 = 0}

(19.23)

+

q∑
j=1

Bj log µt−j, (19.24)

where 1{Yt > 0}} and 1Yt = 0 denote k × 1 vectors of indicator variables
indicating non-zeor and zero realizations ,respectively, and A0

j , j = 0, . . . , p,
are corresponding k × k parameter matrices.
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Figure 19.3. Deterministic intra-day seasonality patterns for
SR, TS, NT and TC (from top to bottom) for BHP (left)
and NAB (right). The seasonality components are estimated
using cubic spline functions based on 30-minute nodes. The
x-axis gives the time of the day. XFGseasonality

Then, the log likelihood function is split up into two parts yielding

L(θ) =
T∑

t=1

k∑
j=1

log f(Y
(j)
t |Y (j+1)

t , . . . , Y
(k)
t ; Y

(j)
t > 0,Ft−1) (19.25)

× log P[Y
(j)
t > 0|Y (j+1)

t , . . . , Y
(k)
t ;Ft−1]. (19.26)

If both likelihood components have no common parameters, the second part
can be maximized separately based on a binary choice model including past
(and contemporaneous) variables as regressors. Then, the first log likelihood
component is associated only with positive values and corresponds to the log
likelihood given by (19.22).

We estimate a four-dimensional Log-VMEM for squared log returns, trade
sizes, the number of trades and transaction costs standardized by their cor-
responding seasonality components. For simplicity and to keep the model
tractable, we restrict our analysis to a specification of the order p = q = 1.
The innovation terms are chosen as g(εt) = εt. For the process of squared
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returns, Y
(1)
t = r2

t , we assume Y
(1)
t |Y (2)

t , . . . , Y
(4)
t ,Ft−1 ∼ N(0, µ

(1)
t ). Ac-

cordingly, for Y
(j)
t , j ∈ {2, 3, 4}, we assume Y

(j)
t |Y (j+1)

t , . . . , Y
(4)
t ,Ft−1 ∼

Exp(µ
(j)
t ). Though it is well-known that both the normal and the exponential

distribution are not flexible enough to capture the distributional properties
of high-frequency trading processes, they allow for a QML estimation of the
model.

Hence, the adjustments for zero variables have to be done only in the liquidity
components but not in the return component. Moreover, note that there
are no zeros in the trading cost component. Furthermore, zero variables
in the trade size and the number of trades per construction always occur
simultaneously. Consequently, we can only identify the (2, 3)-element in A0

0
and one of the two middle columns in A0

1, where all other parameters in A0
0

and A0
1 are set to zero.

For the sake of brevity we do not show the estimation results of the binary
choice component but restrict our analysis to the estimation of the MEM.
Figure 19.2 shows the estimation results for BHP and NAB based on a spec-
ification with fully parameterized matrix A1 and diagonal matrix B1.

We can summarize the following major findings: First, we observe significant
mutual correlations between nearly all variables. Confirming the descriptive
statistics above, volatility is positively correlated with liquidity demand and
liquidity supply. Hence, active trading as driven by high volumes and high
trading intensities is accompanied by high volatility. Simultaneously, as in-
dicated by significantly negative estimates of A0

24 and A0
34, these are trading

periods which are characterized by low transaction costs.

Second, as indicated by the diagonal elements in A1 and the elements in
B1, all trading components are strongly positively autocorrelated but are not
very persistent. As also revealed by the descriptive statistics, the strongest
first order serial dependence is observed for the process of trading costs. The
persistence is highest for trade sizes and trading intensities.

Third, we find Granger causalities from liquidity variables to future volatility.
High trade sizes predict high future return volatilities. However, the impact
of trading intensities and trading costs on future volatility is less clear. Here,
we find contradictive results for both stocks. Conversely, we do not observe
any predictability of return volatility for future liquidity demand and supply.
For both stocks all corresponding coefficients are insignificant.

Fourth, trade sizes are significantly negatively driven by past trading inten-
sities and past trading costs. This finding indicates that a high speed of
trading tends to reduce trade sizes over time. Similarly, increasing trading
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BHP NAB
Coeff. Coeff. Std. err. Coeff. Std. err.
ω1 -0.0673 0.0663 0.0023 0.0302
ω2 0.1921 0.0449 0.1371 0.0254
ω3 -0.4722 0.1009 -0.1226 0.0432
ω4 -0.4914 0.1066 -0.5773 0.0485
A0,12 0.0549 0.0092 0.1249 0.0056
A0,13 0.3142 0.0173 0.6070 0.0122
A0,14 0.4685 0.0489 0.7876 0.0094
A0,23 0.0673 0.0074 0.0531 0.0070
A0,24 -0.1002 0.0289 0.0176 0.0093
A0,34 -0.2181 0.0618 -0.0235 0.0123
A0

0,12 -3.8196 0.0402 -1.5086 0.0176
A1,11 0.1446 0.0080 0.0804 0.0038
A1,12 0.0043 0.0090 0.0804 0.0041
A1,13 -0.0939 0.0173 0.2036 0.0125
A1,14 0.1487 0.0602 -0.0833 0.0214
A1,21 0.0004 0.0034 -0.0002 0.0015
A1,22 0.0488 0.0049 0.0259 0.0025
A1,23 -0.0377 0.0115 -0.0116 0.0093
A1,24 -0.1911 0.0398 -0.1329 0.0226
A1,31 0.0100 0.0053 -0.0022 0.0020
A1,32 0.0095 0.0071 0.0045 0.0031
A1,33 0.1088 0.0152 0.0894 0.0109
A1,34 0.3420 0.0932 0.0341 0.0377
A1,41 0.0064 0.0113 0.0044 0.0067
A1,42 0.0091 0.0163 0.0081 0.0081
A1,43 0.0524 0.0321 0.0537 0.0249
A1,44 0.4256 0.0898 0.5105 0.0431
A0

1,21 1.1467 0.0911 -0.5181 0.0204
A0

1,22 0.1497 0.0212 0.0341 0.0134
A0

1,23 0.0946 0.0318 0.0985 0.0132
A0

1,24 -0.0006 0.0755 0.0115 0.0579
B1,11 0.4027 0.0252 0.2616 0.0078
B1,22 0.7736 0.0179 0.9109 0.0081
B1,33 0.9731 0.0074 0.9673 0.0070
B1,44 0.5369 0.1024 0.7832 0.0374
Log Likelihood -60211 -58622
BIC -60378 -58790

Table 19.2. Quasi-maximum likelihood estimation results of a MEM for
seasonally adjusted (i) squared (bid-ask bounce adjusted) log returns, (ii)
average trade sizes, (iii) number of trades, and (iv) average trading costs
per one-minute interval. Standard errors are computed based on the OPG
covariance matrix. XFGestimates
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Descriptive statistics of seasonally adjusted data
BHP NAB

SR TS NT TC SR TS NT TC
Mean 1.000 1.001 1.000 1.000 1.002 1.001 1.000 0.999
S.D. 1.963 1.528 0.834 0.300 3.152 2.644 0.991 0.507
LB20 1159.456 202.001 8782.762 19210.412 800.808 124.806 3775.762 19707.831

Descriptive statistics of MEM-residuals
BHP NAB

SR TS NT TC SR TS NT TC
Mean 1.000 1.000 1.000 1.000 1.000 0.999 1.001 1.000
S.D. 1.568 1.348 0.629 0.228 2.595 2.280 0.675 0.386
LB20 63.559 61.388 519.348 1568.428 63.455 14.201 751.317 163.426

Table 19.3. Summary statistics of the seasonality adjusted time
series and the corresponding MEM residuals for BHP and NAB.
XFGdiagnostic

costs deplete the incentive for high order sizes but on the other hand increase
the speed of trading. Hence, market participants observing a low liquidity
supply reduce trade sizes but trade more often. A possible explanation for
this finding is that investors tend to break up large orders into sequences of
small orders.

Fifth, (excess) transaction costs depend only on their own history but not on
the lagged volatility or liquidity demand. This indicates that liquidity supply
is difficult to predict based on the history of the trading process.

Sixth, as shown by the summary statistics of the MEM residuals, the model
captures a substantial part of the serial dependence in the data. This is in-
dicated by a significant reduction of the corresponding Ljung-Box statistics.
Nevertheless, for some processes, there is still significant remaining serial
dependence in the residuals. This is particularly true for the trading cost
component for which obviously higher order dynamics have to be taken into
account. For the sake of brevity we refrain from showing results of higher pa-
rameterized models. Allowing for more dynamic and distributional flexibility
further improves the goodness-of-fit, however, makes the model less tractable
and less stable for out-of-sample forecasts.

In summary, we find strong dynamic interdependencies and causalities be-
tween high-frequency volatility, liquidity supply, and liquidity demand. Such
results might serve as valuable input for trading strategies and (automated)
trading algorithms.
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20 Statistical Process Control in Asset

Management
Vasyl Golosnoy and Wolfgang Schmid

20.1 Introduction

Statistical process control (SPC) suggests tools for the on-line detection of
changes in the parameters of the process of interest. For the purpose of the
data analysis the observations are divided into two parts, historical and on-
line observations. The historical observations are used to make statements
about the distributional properties of the process. Such results are necessary
for the calculation of the design of control charts, which are the most im-
portant monitoring instruments in SPC. Every newly incoming information
is immediately exploited. The new observations are analyzed on-line. It is
examined at each time point whether the process parameters identified from
the historical observations remain unchanged. The control chart gives a sig-
nal if the process parameters have changed in a statistically significant way.
A decision maker should carefully analyze possible causes and consequences
of any signal.

Although the methods of SPC have been used for a while in engineering
and medical applications Montgomery (2005), they have only recently been
applied to economic and financial problem settings. Theodossiou (1993) pro-
posed tools for predicting business failures, Schmid and Tzotchev (2004) in-
troduced control procedures for the parameters of the Cox-Ingersoll-Ross
term structure model, Andersson et al. (2005) considered the surveillance of
business cycle turning points, while Andreou and Ghysels (2006) monitor the
variance of risky assets. A comprehensive review of SPC methods in finance
is provided in Frisén (2007).

This chapter provides an overview about possible applications of SPC in asset
management. Financial decisions are based on the knowledge of the process
parameters, usually estimated from historical data. However, the parameters
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may change over time. SPC suggests methods for a quick detection of im-
portant changes in the parameters. This presentation intends to show how
both active and passive portfolio investors can successfully apply the tools of
SPC for their activities. A passive portfolio investor buys a well-diversified
fund hoping that the fund manager can beat the market on the basis of his
high professional skills. Such investor needs a tool for the on-line monitoring
of the manager’s performance. As long as the manager performs well, the
investor should hold this fund. However, as soon as his performance can be
considered unsatisfactory, the investor should reconsider his wealth allocation
decisions, and probably choose another investment fund. In order to differ-
entiate between a satisfactory and a non-satisfactory manager’s performance
we discuss a method proposed by Yashchin et al. (1997) and Philips et al.
(2003). They make use of a cumulative sum (CUSUM) chart to monitor the
success of the portfolio manager.

An active portfolio manager does not hire a fund manager but composes his
portfolio on his own. Hence he needs to monitor the optimal portfolio propor-
tions maximizing his objective function. Here the surveillance of the global
minimum variance portfolio (GMVP) weights is investigated. The GMVP
purely consists of risky assets and exhibits the lowest attainable portfolio
variance in the mean-variance space. Since the vector of the GMVP weights
is high-dimensional, multivariate control charts are needed for this task. A
signal indicates on possible changes in the GMVP proportions. We consider
two multivariate exponentially weighted moving average (EWMA) charts.
The presentation of the charts which are suitable for an active portfolio in-
vestor goes along the lines of Golosnoy and Schmid (2007).

The rest of the chapter is organized as follows. Section 20.2 provides a brief
review of the terminology, instruments, and procedures of SPC. Section 20.3
discusses the application of SPC in asset management for passive as well as for
active portfolio investors. In particular, Section 20.3.1 deals with monitoring
a fund manager’s performance, while in Section 20.3.2 the monitoring the
GMVP weights is discussed. Section 20.4 concludes.

20.2 Review of Statistical Process Control
Concepts

The methods of SPC are of great importance in many fields of science. SPC
deals with the question whether the process under investigation shows a sup-
posed behavior or not. Because the data are sequentially analyzed a change
in the parameters of the process of interest (target values) can be detected
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quicker than by using conventional statistical fixed-sample tests.

The first sequential monitoring procedure was suggested by Walter Shewhart
about 80 years ago. Juran (1997) described in his memories the beginning
of SPC by the remarkable sentence ”Shewhart invented the control chart on
May 16, 1924”. Shewhart control charts have gained widespread applications
in industry. Because they are able to find an error in a production process
at an early point in time their application allows to reduce production costs
dramatically. Nowadays control charts refer to the most important and widely
used devices in applied statistics Stoumbos et al. (2000).

The work of Shewhart has been the starting point of many new fruitful de-
velopments. Because Shewhart charts make exclusively use of the present
sample, they are not effective for small and moderate changes. In such
cases, control schemes with memory like, e.g., the chart of Page (1954) and
the EWMA scheme of Roberts (1959) provide better results. Many further
control schemes have been introduced in the literature Montgomery (2005),
Schmid (2007) for considering among others autocorrelated processes, multi-
variate extensions etc.

A control chart is a rule dealing with a decision problem. It should provide
a differentiation between the two hypotheses H0 and H1. H0 says that there
is no change in the pre-identified process while H1 means that there is a
change at a certain unknown point in time q ≥ 1. Thus the hypothesis H0 is
equivalent to q = ∞ and H1 to q <∞. Frequently the parameter of interest
is a location parameter. Assuming a change point model the hypothesis H0
states that E(Xt) = µ0 for all t ∈ N. Then under H1 it holds that E(Xt) = µ0
for 1 ≤ t < q and E(Xt) = µ0 + a for t ≥ q. Here the parameter a �= 0
describes the size of the shift. The parameter µ0 is called target value, which
is assumed to be known in the majority of applications. If the null hypothesis
remains valid the observed process is said to be in control, otherwise it is
denoted as being out of control.

In classical statistics a sample of fixed size is taken to differentiate between the
hypotheses H0 and H1. In SPC, however, a sequential procedure is chosen.
At each time point t ≥ 1 it is analyzed whether based on the information
contained in the first t observations the null hypothesis can be rejected or not.
If at time point t the null hypothesis is not rejected then the analysis continues
and the decision problem at time t + 1 using the first t + 1 observations is
analyzed. Otherwise, if the alternative hypothesis is accepted at time t the
procedure stops. This shows that a control chart is a sequential tool with a
random sample size.

A decision rule is based on a control statistic Tt, t ≥ 1 and a non-rejection
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area A. In practice, A is frequently an interval of the type A = [−c, c] or
A = (−∞, c], and c is called control limit. If Tt ∈ A then it is concluded
that the observed process is in control. The analysis continues and the next
observation is taken. Else, if Tt �∈ A, the process is considered to be out of
control. The monitoring procedure stops. Note that there exists a possibility
of a false alarm, i.e. a signal is given although the observed process is ac-
tually in control. The following actions depend on the specific situation. In
engineering applications the machine would be maintained while in finance
the portfolio would be adjusted.

The behavior of a chart heavily depends on the choice of the control limit
c. If c is small then the chart will give a signal very fast, however, the
rate of false alarms would be high. If c is large, the rate of false signals
is smaller but the chart will react on an actual change at a later point in
time. The choice of c is closely related with the choice of a performance
criterion of a control chart. Note that a control chart is based on a sequential
approach. Consequently it is a priori unknown how many observations will be
analyzed. This is a great difference with respect to classical statistics where
the underlying sample size is fixed. For that reason it is also not possible to
assess the performance of a control chart with the criteria commonly used
in testing theory, e.g., the power function. In SPC all relevant information
about the control chart performance is contained in the distribution of the
run length, defined as N = inf{t ∈ N : Tt �∈ A}. The performance criteria
are based on the moments of the run length. The most popular measure
is the average run length (ARL). The in-control ARL is defined as E∞(N),
while the out-of-control ARL is given by Ea,q=1(N). Here the notation Ea,q(.)
means that the expectation is calculated with respect to the change point
model presented above and E∞(N) is used for q = ∞. Note that the out-
of-control ARL is calculated under the assumption that the change already
arises at the beginning, i.e. for q = 1.

The control limit is usually chosen such that the in-control ARL, i.e. E∞(N),
is equal to a pre-specified value, say ξ. The choice of ξ depends on the
amount of data and the nature of the monitoring task. In engineering ξ is
frequently chosen equal to 500. In financial applications this value is too
large if daily data are considered. Then a smaller value fits better like ξ = 60
or ξ = 120 which roughly corresponds to three and six months of the daily
observations at the stock exchange, respectively. Then the control limit c is
the solution of E∞[N(c)] = ξ. For each chart its own control limit has to be
determined. This step is similar to the determination of the critical values
for a significance test. Based on these control limits different control charts
can be compared with each other in the out-of-control case.
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There is a huge discussion about performance criteria of control charts and
statements about optimal charts in literature. A recent review can be found
in Frisén (2003). The most frequently applied performance measure is the
out-of-control average run length. An extensive comparison of the Shewhart,
EWMA, and CUSUM mean charts for an independent sample is given in Lu-
cas and Saccucci (1990). The authors give recommendations about the mem-
ory parameters of the EWMA and CUSUM charts as well. These quantities
are denoted as smoothing parameters for the EWMA scheme and reference
values for the CUSUM chart. The main disadvantage of the out-of-control
ARL lies in the assumption that the process is out of control already from the
beginning at q = 1. For this reason many authors prefer to work with mea-
sures based on the average delay. The average delay is equal to the average
number of observations after the change, i.e. Ea,q(N − q + 1|N ≥ q). Since
this quantity depends on q the supremum over q or the limit for q tending to
infinity is considered in practice.

Contrary to testing theory, it has turned out that there is no globally op-
timal control scheme. Statements about local optimality could be obtained
only for the most simple control schemes, see Lorden (1971) and Moustakides
(1986). There are several papers as well dealing with the asymptotic opti-
mality of certain procedures, see Srivastava and Wu (1993), Lai (1995) and
Lai (2004). This evidence shows that each monitoring problem requires a
separate analysis.

The practical calculation of the performance measures turns out to be compli-
cated. Explicit formulas are only known for the no memory Shewhart chart.
The Markov chain approach of Brook and Evans (1972) has turned out to be
quite successful for the EWMA and CUSUM schemes. However in general,
e.g. for multivariate processes or for dependent data, this method cannot be
used. Then the critical values as well as the performance criteria can only be
estimated by a simulation study.

20.3 Applications of SPC in Asset Management

The application of control charts to financial problems has been recently
suggested in literature Schmid and Tzotchev (2004), Andreou and Ghysels
(2006), Frisén (2007). Our presentation focuses on possible applications of
SPC for financial management problems. Both actively trading and passively
holding investors need sequential monitoring instruments for making on-line
decisions concerning their wealth allocation.

A passive investor, holding a well-diversified fund, is interested in sequential
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procedures for the evaluation of the fund manager’s abilities. As soon as the
signal is given, the performance of the manager is considered to be unsatis-
factory. This issue is investigated in the studies of Yashchin et al. (1997) and
Philips et al. (2003).

Different from a passive investor, an active investor is willing to select his
portfolio proportions on his own. He estimates the optimal portfolio weights
using historical information. Since suboptimal portfolio holdings may cause
significant economic losses, he requires instruments to check whether his port-
folio proportions are still optimal at a later time point. For this task suitable
schemes have been developed by Golosnoy (2004) and Golosnoy and Schmid
(2007).

This chapter provides a review of monitoring procedures for the problems
described above. For each approach we introduce hypotheses to be checked
in a sequential manner. Then the appropriate monitoring schemes (control
charts) are discussed. Each case is illustrated with studies based on Monte
Carlo simulations. The instruments used for the control of a fund manager’s
performance are univariate control charts. On the contrary, the tools for the
surveillance of the optimal portfolio proportions are multivariate schemes.
These examples provide a brief illustration of SPC methods which can be
useful in asset management.

20.3.1 Monitoring Active Portfolio Managers

An investor following a passive trading strategy buys a fund hoping that a
fund-manager can achieve high returns on the portfolio by taking a reason-
able level of risk. Thus it is important to evaluate the level of proficiency of
the fund manager.

Monitoring Problem

The passive portfolio investor evaluates the performance of a fund manager
relative to some pre-specified benchmark portfolio. Usually, an appropriate
stock market index can serve as a benchmark. Thus the results of the man-
ager’s activity must be evaluated sequentially compared to the benchmark
performance. If the manager succeeds in outperforming the benchmark in
the long run, i.e. the return on his portfolio 1 + rM is significantly larger
than on the benchmark 1+rB, his performance is believed to be satisfactory.
In case that he underperforms compared to the benchmark, the performance
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of the manager is said to be unsatisfactory. If no clear decision can be taken,
the manager performance is considered to be neither satisfactory nor unsat-
isfactory. In this case the evaluation of the manager should be proceeded.

Yashchin et al. (1997) suggest to evaluate the performance of fund managers
at the end of the period t using the information ratio Rt. The information
ratio denotes the excess return over the benchmark normalized by its standard
deviation. It is given by

Rt = E(∆t)/
√

Var(∆t) with ∆t = log
1 + rM,t

1 + rB,t
.

This measure has a clear interpretation due to its link to the Sharpe ratio,
moreover, it is adjusted for heteroscedasticity. An estimator of this quantity
is given by

R̂t =
∆t

σ̂t−1
. (20.1)

The investor willing to monitor the information ratio of his fund manager
should differentiate at each point of time t between the two hypotheses:

H0,t : E(R̂t) = R0 against H1,t : E(R̂t) = Ra. (20.2)

The information ratio R0 corresponds to the desired level of the manager’s
performance, while the alternative Ra represents a non-satisfactory perfor-
mance. Accordingly, the process of interest {R̂t} is considered to be in control

for E(R̂t) = R0, and to be out of control for E(R̂t) = Ra.

Yashchin et al. (1997) suggest to use a conditional standard deviation in
(20.1) given by the recursion

σ̂2
t = (1− λ)σ̂2

t−1 + λ(∆t −∆t−1)
2/2, t ≥ 2 (20.3)

with the starting values σ̂2
0 = σ̂2

1 = σ2
0 and the memory parameter λ ∈ (0, 1].

The one period lagged standard deviation σ̂t−1 is chosen in (20.1) in order

to reduce the autocorrelation in the observed R̂t. The resulting process is
weakly autocorrelated Philips et al. (2003). The parameter λ reflects the
impact of innovations on the volatility estimate. A small value of λ implies
a long memory and only a minor impact of incoming news on the volatil-
ity measure, while the value λ = 1 determines the case of no memory. Of
course, other approaches (e.g. GARCH) can be applied for estimating the
conditional covariances as well.
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Univariate CUSUM Scheme

Since the aim is to quickly detect an unsatisfactory performance of the fund
manager, a univariate one-sided CUSUM procedure is mostly appropriate
for this task. The CUSUM approach originates from the classical likelihood
ratio test Ghosh and Sen (1991). The first CUSUM control chart has been
introduced by Page (1954).

For an independent sequence {Xt} the CUSUM control statistic is computed
via the recursion for t ≥ 1

Tt = max

{
0, Tt−1 + log

f(xt|process is out-of-control)

f(xt|process is in-control)

}
T0 = 0, (20.4)

where f(·) denotes the probability density function of Xt.

In our case the process of interest is {R̂t}. Assuming normality the formula
(20.4) can be written as

Tt = max{0, Tt−1 − R̂t + h} for t ≥ 1, T0 = 0, (20.5)

where h = (R0 + Ra)/2 and R0 and Ra are the means of the process in
the acceptable and unacceptable states, respectively. The recursion (20.5) is
suitable to differentiate between a satisfactory and a non-satisfactory perfor-
mance. The scheme provides a signal if Tt > c > 0, where the control limit c
is chosen to achieve a desired trade-off between the rate of false alarms and
the sensitivity of the control chart.

Application for Manager Performance Evaluation

The CUSUM procedure in (20.5) is in a certain sense optimal if R0 and Ra

are both known. Following the analysis of Yashchin et al. (1997), p. 199,
assume that a satisfactory annualized information ratio is R0 = 0.5. This
choice implies that the probability to outperform the benchmark is about
0.807 at the end of a three year period.

In order to calculate h we have to fix R0 as well as Ra. A natural choice of
Ra is Ra = 0 which can be seen as a boundary between a satisfactory and
an unsatisfactory performance. Consequently the reference value is equal to
h = R0/2. In this chapter the neutral (or boundary) performance information
ratio Ra = 0 as well as the unsatisfactory information ratio R∗a = −0.5 are
taken as the parameters in the out-of-control state.
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For the parameter λ = 1, i.e. the case of no memory, the in-control informa-
tion ratio {R̂t} is an independent and normally distributed random variable
with variance equal to one. Since the parameter value λ should be taken
smaller than 1 for the purpose of volatility smoothing, the resulting process
{R̂t} is positively autocorrelated. In this case numerical techniques are re-
quired for calculating both the in-control and the out-of-control ARLs. Since
the sequence {R̂t} is assumed to be Gaussian, Monte Carlo simulations are
appropriate for this task.

A monthly time scale is a natural choice to illustrate the usefulness of the pro-
cedure. If there is no signal then the investor considers the fund manager’s
performance as satisfactory, while a signal indicates that the performance
may not be satisfactory any more. According to RiskMetrics recommenda-
tion the smoothing parameter for the conditional variance in (20.3) is selected
to be λ = 0.1.

The last step of the procedure is to determine the control limit c. This is
done in such a way that the in-control ARL exhibits a pre-specified value.
Philips et al. (2003) provide control limits for various in- and out-of-control
ARLs (see Table 20.1).

c R0 = 0.5 Ra = 0 R∗a = −0.5
11.81 24 16 11
15.00 36 22 15
17.60 48 27 18
19.81 60 32 21
21.79 72 37 23
23.59 84 41 25

Table 20.1. Control limit c and ARLs (months) for various
values of the information ratio for the reference value h =
0.25.

The control limits c reported in the first column of Table 20.1 are calculated
in order to achieve the desired in-control ARL which is given in the second
column. The out-of-control ARLs are calculated for the neutral performance
Ra = 0 and the unsatisfactory performance with R∗a = −0.5. The results are
given in the third and fourth column, respectively. Table 20.1 reports that
the signal for the unsatisfactory performance is given much quicker as for the
neutral case. For example, in the case of an in-control ARL of 60 months, the
chart would give a signal on average after 21 monthly observations for the
information ratio R∗a = −0.5. Thus the introduced control chart allows to get
a signal more than two times earlier in case of an unsatisfactory performance
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of the fund manager.

This example illustrates the importance of the introduced monitoring tool for
an investor willing to evaluate the performance of the fund manager. Further
discussion on this issue can be found in Yashchin et al. (1997) and Philips et
al. (2003).

20.3.2 Surveillance of the Optimal Portfolio Proportions

An active investor wants to manage his portfolio by his own. In order to make
decisions about his wealth allocation he has to estimate the optimal portfolio
proportions, which may change over time. For this reason he requires a tool
for the sequential detection of changes in the optimal portfolio weights. The
following presentation relies on ideas and results given in Golosnoy (2004)
and Golosnoy and Schmid (2007).

Monitoring Problem

Let us consider an investor who wants to invest his money. The k-dimensional
vector Xt denotes the vector of the asset returns at time point t. The portfolio
theory of Markowitz (1952) requires the knowledge of the expectation and
the variance of the asset returns, denoted by E(X) = µ and Cov(X) = Σ, for
any investment decisions. The covariance matrix Σ is assumed to be positive
definite. The unknown true moments of the normal distribution have to be
estimated using historical information. However, the portfolio performance
is often severely hampered by errors arising due to the estimation of the
expected returns Best and Grauer (1991).

A pure volatility timing investor selects the global minimum variance portfolio
(GMVP). In that case the portfolio proportions do not depend on the mean
vector µ at all. The GMVP allows to get the smallest attainable level of risk.
Choosing the GMVP implies that the investor has no reliable information
about the expected returns, but hopes to profit from the allocation into
risky assets. The GMVP weights w are obtained by minimizing the portfolio
variance subject to the constraint w�1 = 1, where 1 is a vector of ones of
corresponding dimension. The vector of the GMVP weights w is given by

w =
Σ−11

1�Σ−11
. (20.6)

The unknown covariance matrix Σ must be estimated as well. Hereafter it is
replaced by the sample estimator, based on n period returns Xt−n+1, ...,Xt,
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i.e.

Σ̂t,n =
1

n− 1

t∑
j=t−n+1

(Xj −Xt,n)(Xj −Xt,n)
�, Xt,n = n−1

t∑
v=t−n+1

Xv.(20.7)

Here usually n is assumed to be fixed. The matrix Σ is estimated using an
equally-weighted rolling window. Alternative weighting schemes have been
proposed by, e.g., Foster and Nelson (1996) and Andreou and Ghysels (2002)
but stay beyond the scope of the presentation. The weights of the GMVP
are estimated at time t as a function of Σ̂t,n by

ŵt,n =
Σ̂−1

t,n1

1�Σ̂−1
t,n1

, (20.8)

where Σ̂t,n is given in equation (20.7). Assuming that the returns {Xt}
follow a stationary Gaussian process with mean µ and covariance matrix Σ
Okhrin and Schmid (2006) prove that the estimated optimal weights ŵt,n

are asymptotically normally distributed. Moreover, they derive the exact
distribution of ŵt,n under the assumption that the underlying returns on risky
assets are independent and normally distributed random variables. The joint
distribution of ŵt,n is degenerated. It holds that

E(ŵt,n) = w, Cov(ŵt,n) = Ω =
1

n− k − 1

Q

1�Σ−11
, (20.9)

Q = Σ−1 − Σ−111�Σ−1

1�Σ−11
. (20.10)

Because from one point in time to the next one there are n − 1 overlapping
values, the process of the estimated weights {ŵt,n} is strongly autocorrelated,
although the process of returns {Xt} is assumed to be i.i.d. Golosnoy and
Schmid (2007) propose to approximate the autocovariance function of the
estimated GMVP weights. It is shown that for fixed s ≥ 1 and large n it
holds that

Cov
0

(ŵt,n, ŵt−s,n) ≈
n− s− 1

n− 1

1

n− k − 1

Q

1�Σ−11
. (20.11)

Further investigations show that this approximation is reasonable for n ≥ 30
and s ! n. For small values of n this approximation seems to be strongly
biased and, consequently, it is not suitable.

An active investor is interested in monitoring the optimal portfolio propor-
tions because he makes his investment decisions in terms of the weights. He
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should detect changes in the optimal portfolio weights as soon as possible
in order to adjust his asset allocation and to minimize utility losses due to
suboptimal portfolio holdings. Next we formalize the task of the surveillance
of the optimal portfolio weights.

The estimator of the optimal portfolio weights ŵt,n is unbiased if the under-
lying process is equal to the target process, i.e. E∞(ŵt,n) = w. The actual
(observed) process {ŵt} is considered to be ”in control” if the actual process
is equal to the target process, else it is denoted to be ”out of control”.

In the out-of-control situation the returns are assumed to be independent
and normally distributed, however, the parameters of the distribution have
changed. The changes have occurred in the covariance matrix of the asset
returns. Note that not every change in the covariance matrix Σ leads to al-
terations in the GMVP weights. The time points of the changes are unknown
and should be determined. Further it is assumed that there are no changes
in the process up to time point t = 0. The investor requires an instrument
for deciding between the two hypotheses at each time point t ≥ 1

H0,t : E(ŵt,n) = w against H1,t : E(ŵt,n) �= w . (20.12)

The validity of the hypothesis H0,t is analyzed sequentially. Due to the re-
striction ŵ�

t,n1 = 1, it is sufficient to monitor the vector of the first k − 1
components of ŵt,n, denoted as ŵ∗

t,n. The (k−1)×(k−1)-dimensional matrix
Ω∗ is obtained from the matrix Ω by deleting the last row and column. Next
we discuss sequential procedures for differentiating between the hypotheses
(20.12). Both considered multivariate schemes belong to the family of the
exponentially weighted moving average (EWMA) control charts.

Multivariate Control Charts

A Chart Based on the Mahalanobis Distance

weights ŵ∗
t,n and the target weights w∗ = E∞(ŵ∗

t,n). It is given by

Tt,n = (ŵ∗
t,n −w∗)� Ω∗−1 (ŵ∗

t,n −w∗) , t ≥ 1 .

The quantities T1,n, ..., Tt,n are exponentially smoothed. The EWMA recur-
sion is given by

Zt,n = (1− λ)Zt−1,n + λTt,n with Z0,n = k − 1, (20.13)

The Mahalanobis distance measures the distance between the estimated GMVP
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since Z0,n = E∞(Tt,n) = tr[Ω∗−1 E∞{(ŵ∗
t,n − w∗)(ŵ∗

t,n − w∗)�}] = k − 1.
Again, the parameter λ ∈ (0, 1] is a smoothing parameter. A small value of
λ leads to a larger influence of past observations. The special case λ = 1.0
corresponds to the classical no-memory Shewhart control chart. The control
chart gives a signal at time t if Zt,n > c1. The constant c1 > 0 is a given
value determined via Monte Carlo simulations as a solution of (20.16).

Note that previous values X1−n, ..,X1 are required for calculating T1,n. Hence,
a starting problem is present. Since our surveillance procedure is started at
time t = 1 we need these past observations. However, in financial applications
this is usually no problem. If all observations at times t ≤ 0 are realizations
from the target process, only the first observation used for the calculation of
the GMVP weights may be contaminated at time t = 1. Consequently, its
influence on the estimated weights may be small. This evidence may cause
delays in the reaction on changes. Thus this chart suffers under an inertia
property.

A Chart Based on the Multivariate EWMA Statistic

A multivariate EWMA (MEWMA) chart has been initially suggested for i.i.d.
observations by Lowry et al. (1992). In our case each component of ŵ∗

t,n is
exponentially smoothed by an own smoothing factor. The k− 1-dimensional
EWMA recursion Zt,n can be written using the matrix notation as follows

Zt,n = (I−R)Zt−1,n + Rŵ∗
t,n , t ≥ 1. (20.14)

I denotes the (k− 1)× (k− 1) identity matrix and R = diag(r1, ..., rk−1) is a
(k−1)×(k−1) diagonal matrix with elements 0 < ri ≤ 1 for i ∈ {1, ..., k−1}.
The initial value Z0,n is taken as Z0,n = E∞(ŵ∗

t,n) = w∗. Then the vector Zt,n

can be presented as

Zt,n = (I−R)tZ0,n + R
t−1∑
v=0

(I−R)vŵ∗
t−v,n.

It holds that E∞(Zt,n) = w∗. The covariance matrix of the multivariate
EWMA statistic Zt,n in the in-control state is given by

Cov
∞

(Zt,n) = R

(
t−1∑

i,j=0

(I−R)i Cov
0

(ŵ∗
t−i,n, ŵ

∗
t−j,n) (I−R)j

)
R.

Since the evaluation of this formula is not straightforward, Golosnoy and
Schmid (2007) derive an approximation to Cov∞(Zt,n) as n tends to∞. How-
ever, from the practical point of view, it is often more suitable to estimate
the required finite sample matrix within a Monte Carlo study.
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A corresponding control chart is constructed by considering the distance be-
tween Zt,n and E∞(Zt,n) = w∗ which is measured by the Mahalanobis statistic.
The chart provides a signal at time t if

{Zt,n − E
∞

(Zt,n)}� Cov
∞

(Zt,n)
−1 {Zt,n − E

∞
(Zt,n)} > c2. (20.15)

Again, the in-control ARL of the control chart is taken equal to a pre-specified
value and c2 is determined as the solution of this equation.

Application for the Optimal Portfolio Weights

Next we illustrate an application of the methodology described above. We
restrict ourselves to the case of equally smoothed coefficients, i.e. r1 = · · · =
rk−1 = λ. The control limits c1, c2 for both control procedures are required
for monitoring the optimal portfolio weights. They are obtained by setting
the desired in-control ARL equal to a predetermined value ξ conditional on
the given values of λ, Σ, n and k, i.e.

ARL(c|Σ, n, λ, k) = ξ. (20.16)

Due to the complexity of the underlying process of the estimated GMVP
weights, the equation (20.16) can only be solved with respect to the control
limits c1 and c2 by combining a numerical algorithm for solving a nonlinear
equation with Monte Carlo simulations. In our study we make use of the
Regula falsi algorithm and a Monte Carlo study based on 105 replications.

In order to illustrate the application of this methodology, we consider an
example with k = 10 assets in the portfolio, see Golosnoy (2004). It should
be noted that the number of assets k has a significant influence on the control
limits resulting from (20.16).

The simulation study is organized as follows. The investment decisions are
made on the basis of daily data. The annualized diagonal elements of the
k = 10 dimensional in-control covariance matrix Σ are chosen to be σ2

i =
0.1 + (i− 1)/100, the correlation coefficient is ρ = 0.3 for all pairs of assets.
These parameter values are typical for asset allocation problems in practice
Ang and Bekaert (2002). The optimal portfolio weights ŵt,n are calculated
for n = 60. The control limits for the considered control charts are given
in Table 20.2 for the in-control ARLs ξ = 100 and ξ = 200 for values λ ∈
{0.1, 0.25, 0.4, 0.55, 0.7, 0.85, 1.0}. The control limits are calculated to achieve
an ARL precision of ±0.5%.

There exists a large number of different possibilities to model the out-of-
control situation. For illustration purposes we provide an example where
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λ Mahalanobis MEWMA Mahalanobis MEWMA

ARL=100 ARL=100 ARL=200 ARL=200
0.10 11.72 9.700 14.07 12.16
0.25 13.37 12.61 16.07 15.33
0.40 14.15 13.72 16.97 16.57
0.55 14.64 14.37 17.52 17.26
0.70 15.01 14.83 17.92 17.76
0.85 15.32 15.21 18.27 18.20
1.00 15.61 15.61 18.62 18.62

Table 20.2. Control limits c1 and c2 for different in-control
ARLs and different values of λ.

the calm time on the market is changed to the turmoil period. Such per-
turbations are usually characterized by a sudden simultaneous increase both
of the volatilities and the correlations of the risky assets Ang and Bekaert
(2002). The detection of changes from calm to turmoil periods is of immense
importance for portfolio investors.

Although we monitor changes in the GMVP weights, the alterations are mod-
eled in the elements of the covariance matrix of the asset returns. In partic-
ular, changes in the variance of the ith asset are assessed as

σ2
i,1 = δiσ

2
i , δi = 1 + δ + δ log(i)

where the factor δ captures the dynamics of the change for all assets. Ac-
cording to this model, the largest increase in the variance occurs for the most
volatile asset. Changes in the correlations are given by

ρij,1 = θρij for i �= j.

Thus, we capture the transition of the market from calm to turmoil situations
with two parameters, δ and θ. The values δ = 0 and θ = 1 describe the
in-control situation. The out-of-control cases are modeled by taking θ ∈
{1.0, 1.3, 1.7, 2.0} and δ ∈ {0, 0.2, 0.6, 1.0}. The corresponding out-of-control
ARLs for the in-control ARL=200 days are reported in Table 20.3. The best
smoothing values λ and r are provided in parentheses.

The results in Table 20.3 can be characterized as follows. Large changes can
be easily detected, while it is relatively hard to detect small changes in the
volatility only, see case δ = 0.2, θ = 1. Both charts are equivalent for λ = 1,
which is the case of the no-memory Hotelling procedure Montgomery (2005).
As expected, the choice λ = 1 is the best one for large changes, while λ < 1
is more appropriate for small ones. The important large perturbations could
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δ/θ 1.0 1.3 1.7 2.0
0 Mahalanobis 84.4 (0.85) 40.2 (1.0) 30.2 (1.0)

MEWMA 84.0 (1.0) 40.1 (1.0) 30.2 (1.0)

0.2 201.7 (0.1) 68.3 (0.1) 31.7 (0.7) 22.2 (1.0)
188.8 (0.1) 70.5 (0.1) 31.7 (1.0) 22.2 (1.0)

0.6 77.5 (0.1) 36.1 (0.7) 17.8 (1.0) 12.9 (1.0)
78.8 (0.1) 36.1 (1.0) 17.8 (1.0) 12.9 (1.0)

1.0 16.0 (1.0) 19.2 (1.0) 11.2 (1.0) 8.56 (1.0)
15.9 (1.0) 19.1 (1.0) 11.2 (1.0) 8.55 (1.0)

Table 20.3. Out-of-control ARLs, for increasing volatilities δ
and correlations θ, n = 60, in-control ARL=200 calculated
based on 105 replications. The best smoothing parameters
are given in parentheses.

be detected within 8-12 days on average, which corresponds to about 2 weeks
of observations. Both schemes seem to be nearly equivalent with a slightly
better performance of the MEWMA chart. Compared to an in-control ARL of
200, this speed of detection advocates the usage of the introduced monitoring
instruments for the GMVP problem.

In general, SPC provides no recommendation concerning the actions after
the signal has occurred. The portfolio investor should carefully analyze all
available market information and then make his wealth allocation decisions.
Control charts primarily serve as instruments for the detection of statistically
significant changes in the parameters of interest.

20.4 Summary

The procedures of statistical process control allow to quickly detect changes
in the parameters of interest which are required in asset management. Al-
though this field of research is relatively new, the main instruments of SPC,
called control charts, are already available for various investment problems of
practical relevance. This chapter presents two possibilities of applying SPC
tools to wealth allocation decisions.

First, a scheme for monitoring the performance of a fund manager is consid-
ered. This issue is of great interest for passive investors concerned with the
proficiency of their fund manager. A signal indicates that the fund manager’s
performance is no more satisfactory. Another example presents the tools for
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monitoring the optimal portfolio weights. A signal suggests that the optimal
portfolio proportions may have changed. An active investor requires such
analysis for adjusting his portfolio and for avoiding non-optimal positions.
Methodological issues for both cases are illustrated with examples based on
Monte Carlo simulations.

The described applications stress the necessity of sequential monitoring for
practical financial management. Neglecting on-line surveillance approaches
may lead to suboptimal investment decisions and cause significant financial
losses. Much further research should be done in order to establish this field
of analysis in financial practice.
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21 Canonical Dynamics Mechanism of

Monetary Policy and Interest Rate
Jenher Jeng, Wei-Fang Niu, Nan-Jye Wang, and Shih-Shan Lin

21.1 Introduction

Interest rates are the fundamental elements of financial and economic activi-
ties, and their movements are the major risk factors driving the global capital
flows. In the United States, the central bank (Federal Reserve Bank) uses
the Fed Funds Rate (FFR, the overnight borrowing rate between banks) as
the key tool to anchor its monetary policy for maintaining both sustainable
growth and price stability. It has been a sophisticated art and science for the
Federal Open Market Committee (FOMC, the primary unit of the FRB for
setting the FFR) to balance growth and inflation by tuning the FFR. Among
a few models trying to quantitatively assess the FOMC’s efforts on FFR de-
termination is the popular Taylor Rule (Taylor (1993)) for best outlining the
thoughts of arguments from the beginning.

The Taylor Rule formulates the FFR with the weighted estimated real GDP
output gap and inflation bias (as measured by the deviation of the GDP de-
flator from the 2% target level) by a linear model. However, a detailed exam-
ination on the difference between the actual FFR series (01/1958 - 12/2007)
and the expected FFR series estimated based on the Taylor Rule reveals
the fact that the linearity assumption leads Taylor’s response model to se-
riously overestimate the FOMC’s moves at critical economic junctures in a
systematically biased manner(see Figure 21.3). Despite the simplicity and
rigidity of the Taylor Rule, it indeed sheds some lights on several crucial
questions about monetary-policy making, such as “how does the Fed adapt
to the business cycles for balancing growth and inflation?”, “which set of
economic measures is the key to determine the FFR?”, “how does the Fed
perceive major macroeconomic risks – inflation crisis and depression?”, “how
does the FFR decision-feedback affect the on-going business cycles?”, and so
on.
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To carefully approach these questions in a rapidly changing economic and fi-
nancial system nowadays since the new global financial infrastructure emerges
based on the internet after the late 1990s, we need to establish a much
more sophisticated statistical modeling framework which is capable of pattern
recognition and structural interpretation on the nonlinear dynamic nature of
the macroeconomic game (between the FOMC and the economy, and even the
capital markets). Toward this goal, we will start with a basic nonparametric
statistical methodology called Projection Pursuit Regression (PPR).

Besides the above academic questions on monetary-policy decision-making
from perspectives of economists, there are some practical issues surrounding
the movement of the FFR from perspectives of capital markets. In the capi-
tal markets, along with the growth of the hedge fund industry, interest-rate
speculation (especially by the practice of the “macro” hedge funds) is getting
increasingly furious, and thus making the Fed’s job more and more difficult.
Therefore, hedging the interest-rate risk has become a major task of asset
management. Currently, the popular financial instruments for hedging in-
flation and interest-rate risk have all focused on the Consumer Price Index
(CPI), such as TIPS (Treasury Inflation Protection Security) and CPI fu-
tures. Therefore, from the practical viewpoint, it would be urgent to develop
an FFR-response model with a dynamic indicator based on the CPI rather
than the GDP deflator.

Based on a dynamic indicator as our primary gauge of inflation implicitly
deduced as a linear combination of the two CPI components – core and non-
core – from the principal component analysis of the PPR framework , a
nonlinear 3-phase structure of the interest-rate response curve is discovered
in this study. The term “3-phase” means that the FOMC implicitly adopts
various strategies during three different inflation scenarios – careful, tense
and panic. These different regimes of inflation are quantitatively sectored
by the new inflation measure, and the FOMC’s behavioral patterns in FFR
decision-making are then shaped in the geometrical structure of the response
curve. We found that such a PPR modeling interpretation seems matching
quite well with most FOMC meeting statements and thus provide a way of
getting deeper insights into the Fed’s views and actions toward inflation bias
and the Fed’s strategies on keeping business cycles on track.

This paper is based on the R&D works from the Seminar On Adaptive Re-
gression (SOAR) jointly sponsored by G5 Capital Management, LLC. and
SIFEON, Ltd., which is founded by Dr. Jeng (Ph.D. of Statistics, UC Berke-
ley). We would like to thank all the members who contributed to numerous
discussions and simulations in SOAR.
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21.2 Statistical Technology

In this section we review the popular monetary-policy formulation by Taylor
(1993), the nonparametric multiple regression technique Projection Pursuit
Regression and some classical original mean-reversion interest-rate models.

The Taylor Rule Taylor (1993) proposed a simple mathematical formula,
for estimating the GDP-based feedback FFR in the following way:

rt = πt + r∗ + p1(πt − π∗) + p2yt, (21.1)

where rt is the estimated FFR, r∗ is the (subjective) equilibrium real FFR
(2%), πt is the inflation rate (to be gauged by GDP deflator), π∗ is the
(subjective) target inflation rate, yt is the output gap, and the feedback
weights p1 and p2 are (subjectively) equally set to be 0.5. First of all, we
note that, obviously, this formula is actually an empirically subjective rule
rather than a rigorously statistical result for the parameters here can be
more accurately assessed through a statistical linear regression instead of
being subjectively set.

Taylor’s simple “rule” quite successfully sketches the evolution of the funda-
mental interest rate in the 1990s; however, its call for the monetary policy
makers to set target values of interest rate can be questionable. This draws
criticism, for example, from McCallum’s comment (1993) that Taylor’s for-
mula was not “operational”. Another viewpoint was presented by Chairman
Greenspan (1997) precisely: “As Taylor himself has pointed out, these types
of formulations are at best guideposts to help central banks, not inflexible
rules that eliminate discretion.”

Following the Taylor Rule, there are many model varieties addressing the
problem of formulating monetary policy based on the different aspects of
dynamic macroeconomic analysis. A typical example is the New Keyne-
sian model, which has been analyzed by Hansen & Sargent (2002), Giannoni
(2001, 2002), and Giannoni & Woodford (2002). This model has purely
forward-looking specification for price setting and aggregate demand, and no
intrinsic persistence is assumed. On the other hand, the model of Rudebusch
and Svensson (1999) has purely backward-looking structure and significant
intrinsic persistence. Further (2000) suggested a model that utilizes ratio-
nal expectations but exhibits substantial intrinsic persistence of aggregate
spending and inflation. Moreover, Levin and Williams (2003) considered the
question - “is there any simple rule capable of providing robust performance
across very divergent representations of the economy?” Their research re-
veals that a robust outcome is attainable only if the object function places
substantial weight on stabilizing both output and inflation.
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As a matter of fact, we believe that many questions surrounding the Taylor
Rule originate from the philosophical issue – what is the real meaning of
the hypothetical response interest-rate estimated from statistical regression
based on a set of monetary-policy related macroeconomic indicators? Ap-
parently, as mentioned by the former FOMC Chairman Alan Greenspan, it
is very unlikely for the FOMC to simply adopt a rigid mathematical rule for
being adaptive to the complex financial world. But then, excepting quantita-
tively analyzing the FOMC’s behavior, what could the hypothetical response
function try to tell in a forward-looking sense? According to our analysis
in this paper, the answer should be embedded in a canonical framework of
monitoring interest-rate dynamics centered on mathematically formulating
the core idea of “neutral” interest-rate level, as proposed in sections ?? and
21.3.3.

Projection Pursuit Regression based on Cubic Splines Since func-
tional nonparametric statistical modeling techniques are not broadly used
by most macroeconomic and econometric researchers, we would like to recall
some details on the basic methodology Projection Pursuit Regression (PPR),
which is first proposed by Friedman and Stuetzle (1981). In general, given
the covariate random variable Y and the random vector of input variates
X = (X1, ...., Xd)

�, we can formally model their association in the following
way:

Y = f(X) + ε (21.2)

for some response curve f with the background (e.g. macroeconomic) noise
ε.

For linear regression, f is simply in the shape of a line. For a well-structured
nonlinear form, say a polynomial, the modeling task well fall into the para-
metric framework of Generalized Linear Model (GLM), which is currently
popular for building most financial scenario simulation and risk manage-
ment systems. Unfortunately, the real world is far more complicated from
what most researchers assume – in mathematics, the response curve f can
be highly nonlinear enough to make the GLM techniques generate serious
modeling risks (either systematically underestimate or overestimate). There-
fore, we need to keep in mind that a reasonable response function might need
infinitely many parameters to be figured out (note that, for the linear model
(21.1) of Taylor, only the four parameters (r∗, π∗, p1, p2) are needed. On the
other hand, we cannot allow the structure of the response curve to be as free
(wild) as possible for no advanced statistical estimation techniques can come
close without any suitable restrictions based on certain feasible realistic as-
sumptions. The PPR methodology proposes the following model-structural
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form

f =
J∑

j=1

fj(a
�
j X), fj ∈ S (21.3)

where aj, j = 1, ..., J are deterministic vectors in R
d and S is the functional

space of all functions which has a continuous second-order derivative. Note
that all we need assume is that all thefj’s have continuous second-order
derivatives (this smoothness assumption only asserts that the “response”
cannot absurdly fluctuate). Apparently, one cannot find a finite set of param-
eters to identifiably mark all the members in S. This requirement of infinity
in function-parameter dimension is exactly the essence of “nonparametric”
modeling.

Such a structural assumption in (21.3) is mainly motivated by the following
heuristics. Technically speaking, once we move beyond the territory of GLM,
we need face the formidable challenge of “curse of dimensionality” when the
regression surface is not a hyper-plane. Such a problem usually results in
the situation of data insufficiency for a complicated combination of the non-
parametric nature of the response surface and the multiplicity of the input
variable. Therefore our first statistical task is essentially “dimension reduc-
tion” for which the well-known method is principal component analysis. The
PPR modeling technique can be regarded as taking the sum of the separate
“nonlinear” effects on the principal components. That is, mathematically,
we can express f as T ◦ F ◦ A, where A is the M × n PCA transforma-
tion matrix constituted by the columns aj’s, F is the nonlinear transform
(f1, ..., fJ), and T is simply the sum operator. Now, we are left to deal with
the core problem about how to estimate the nonparametric nonlinear compo-
nent - functions of F . There have been many statistical methods developed in
nonparametric estimation, including the most advanced wavelet-based meth-
ods (see Donoho, Johnstone, Kerkyacharian and Picard (1995); Jeng, 2002).
However, in this paper, since we try to focus on the economical issue of dis-
covering the genuinely nonlinear structure of the response curve rather than
the deep statistical issue of estimation efficiency and adaptivity, it is enough
for us to adopt the fundamental nonparametric regression technique Penal-
ized Least Square Regression (PLSR) based on cubic splines. For introducing
the basic materials about the PLSR, we follow the convention of Green and
Silverman (1994).

The Penalized Least Square Estimator (PLSE) is defined as following. Let
f ∈ S2[a, b] where S2 is the space of the functions that are differentiable on
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(a, b) and have absolutely continuous derivative. If f̂ satisfies

f̂ = arg min
f∈S2[a,b]

∑
i

{yi − f(xi)}2 + α

∫ b

a

{f ∗(t)}2dt (21.4)

where {(xi, yi)} is the sample of data and f ∗(x) is an integrable function such

that f
′
(b)−f

′
(a) =

∫ b

a f ∗(t)dt, then f̂ is called the penalized least square esti-
mator. To solve the above functional minimization problem, it is required to
gradually (along with the sample size) “parameterize” the functional classes
taken as our submodels based on a certain kind of function building blocks.
One classical choice of building block is the cubic spline (local cubic poly-
nomial), as defined in the following. f : [a, b] → R is called a cubic spline
if

(i) f ∈ P3[(ti, tt+1)]i = 0, 1, . . . , n, where a ≤ t1 ≤ . . . ≤ tn ≤ b are called
knots.

(ii) f ∈ C2[a, b]

Basically speaking, a cubic spline is a second continuously differentiable func-
tion constituted by local 3-degree polynomials from knot to knot.

According to certain theorems of functional and statistical analysis, the pe-
nalized LSE f̂ must be a natural cubic spline (NCS) with the additional con-
dition f ′′(a) = f ′′(b) = f ′′′(a) = f ′′′(b) = 0 Thus, a natural cubic spline f has
the property that it can be completely determined by the values f(ti)’s and
f ′′(ti)’s. Therefore, with the sample data, we can solve the above functional
minimization problem through a quadratic-form equation for any smoothness
penalty weight α. Moreover, the smoothing parameter α can be further em-
pirically decided by the sample of data via minimizing the cross validation
scores in the way

α̂ = arg min
α∈(0,∞)

N−1
n∑

i=1

mi∑
j=1

{yij − f̂(ti; α)}2 (21.5)

where N is the total numbers of the data at knots {ti, i = 1, · · · , n} and

f̂−(i,j)(x; α) is the minimum of the penalty LSE from all the data omitting yij

under α(2). Finally, it comes down to the aggregation work of simultaneously
estimating the PCA part and the PLSR part (as the linear and the nonlinear
parts). For simplicity of mathematical discussion, we only describe how this
is done for the case M=1 (the way by which we deal with the data in this
paper) via the following iterative algorithm:

Step (1): Initialize current residuals as ri and the iteration-loop counter K,
ri ← yi K = 0 where

∑
yi = 0
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Step (2): Find the cross-validation α̂a of {ri} and {sa
i }

and the cubic spline f̂a between {ri} and {sa
i } under α̂a.

Step (3): Let I(a) = 1 −
N∑

t=1
(rt−f̂â(sâ

t ))2

N∑
t=1

r2
t

where â = arg min I(a) and the corre-

sponding smooth function is f̂â

Step (4): Termination Condition:

If the figure of merit is smaller than a user-specified threshold, stop.

Otherwise, update the initialized condition ri ← yi − f̂â(s
a
i ) K = K + 1 and

go to step (2)

Interest-Rate Dynamics Vasicek (1977) proposes an interest rate model
for treasury debt pricing through a mean-reversion type stochastic differential
equation:

drt = −k(rt − µ)dt + σdWt (21.6)

where k is the constant strength of mean-reversion, µ is the equilibrium level,
σ is the volatility and Wt is a standard Brownian motion. Note that Equation
(21.6) can be solved explicitly and represented as

rt � N{rt−1e
−k + µ(1− e−k),

σ2(1− e−2k)

2k
} (21.7)

In check with the big swing in the trend of the actual FFR time series from
1960 to 2005, the above model of mean-reversion with a constant equilib-
rium is obviously too na¨ive to approach the dynamics of the FFR decision-
making. To be more realistic, Hull and White (1990) proposed the local
mean-reversion model with a dynamic equilibrium level

drt = −k(drt − θ(t))dt + σdWt (21.8)

Now, the real problem is that, for the FFR, it is extremely difficult to analyze
how the dynamic equilibrium level – or the neutral interest rate level - or
the neutral interest rate level θ(t) is determined by monetary-policy related
economic conditions. In this paper (see 21.3.3), we will propose a fundamental
canonical framework where the dynamic equilibrium level θ(t) is determined
by the response curve f on a certain set of exogenous economic factors which
are carefully monitored by the FOMC.
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21.3 Principles of the Fed Funds Rate
Decision-Making

21.3.1 Fairness of Inflation Gauge

This section presents our original intuition and modeling incentives as the
basis for further interpretations and improvements on the modeling works.

The FFR is the key instrument for the FOMC to keep price stable while
maintaining sustainable growth. However, balancing between inflation and
growth is a very subtle task, especially when it is compounded with the ques-
tion – “what is a fair gauge of inflation?”. Among what have been proposed
by many central bank officials and economists, Consumer Price Index (CPI),
Personal Consumption Expenditures (PCE) and GDP deflator are the most
commonly referred as measurements of inflation. However, even these three
“standard” inflation indices may still have quite divergent movements from
time to time, especially at critical junctures (See Figure 21.1). Theoreti-
cally, at the very beginning of modeling, it is very difficult to judge which
index should serve as the best primary dynamic indicator for modeling the
FOMC’s FFR decision-making behavior according to the comparison result
by Rich and Steindel (2005). Perhaps, within a general canonical nonpara-
metric statistical modeling framework, we can try to compare the best models
under certain statistical criteria based on the different indices for selecting
the optimal inflation indicators. But this could involve the very challeng-
ing issue of sharp adaptation in nonparametric modeling (see Jeng, 2002).
Therefore, at this point, we turn to focus on the practical end. Currently,
the popular financial instruments under certain statistical criteria of hedging
inflation and interest-rate risk are still mainly focused on the CPI, such as
TIPS (Treasury Inflation Protection Security) and the CPI futures issued by
CME. Therefore, from the practical viewpoint, it would be urgent to develop
an FFR-response model with a dynamic indicator based on the CPI rather
than the GDP deflator, as suggested in the Taylor Rule.

As one of the premier indices closely monitored by the FOMC for watching
inflation. the CPI weights on a broad range of goods prices which are mainly
divided into two component categories – the core CPI and the non-core CPI
(see Figure 21.2). The non-core component consists of only food and energy
prices. One important reason why the economists like to focus on the core
part is that the prices of food and energy are very volatile from time to
time (mainly due to short-term non-economical factors, such as weather and
commodity futures market speculation). Hence, it is usually concerned that
the unstable non-core part of the CPI could mislead the prospect on inflation.
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Figure 21.1. Inflation Indices (Jan. 1958 - Dec. 2007):
PCE (dotted), core CPI (solid) and GDP deflator (dashed).
XFGinflation

However, we believe that the high volatility of the non-core CPI should not
make the FOMC completely ignore the potential contribution of the non-core
CPI into the inflation trend (as usually mentioned as the spill-over effect).
Then, how does the FOMC weight the core and the non-core components
of the CPI (either explicitly by a mathematical rule or implicitly in their
sophisticated minds)? In this study, we simply formulate a “fair” gauge of
inflation q∗t as a linear combination of the two CPI components:

q∗t = βp,1q1,t + βp,2q2,t (21.9)

where q1,t and q2,t stand for the core and the non-core CPI respectively. We
call q∗t the principal dynamic indicator for the PPR. Its meanings together
with the arguments on the term “fair” will be further clarified in 21.3.3 and
supported by our data analysis in 21.4.

21.3.2 Neutral Interest Rate Based on Fair Gauge of
Inflation

In this study, for the sake of emphasizing model-structural meanings rather
than detailed macroeconomic factor analysis, we assume (following the clas-
sical viewpoint) that containing inflation is the FOMC’s primary focus for
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Figure 21.2. The Fed Funds Rate (solid), Core (dot-dash-dot)
and non-Core CPI (dotted) XFGrate

setting the FFR.Therefore, it is statistically feasible to formulate the FFR
response of the FOMC on our inflation gauge in the following compact way

rt = f(q∗t ) + ε (21.10)

where f is called the inflation response curve of the FOMC and the extra
stochastic term ε simply represents the aggregated effect on the FFR ad-
justment decision from all the other secondary economic conditions, such as
unemployment rates, exchange rates, asset prices, geopolitical and financial
crises, and so on. Apparently, the geometrical structure of the response curve
f is supposed to quantitatively depict the FOMC’s behavioral patterns on
monetary-policy decision-making. Of course, it would be nãive to presume
any geometrical structure with a couple of parameters for the FOMC could
act in a very flexible and subtle way at some critical junctures of inflation
trends. Moreover, note that the term “response” could be misleading in some
sense. It is clear that the FOMC does not exactly respond in the way which
f describes because there are certainly other factors to distract them from
what the response curve indicates based on the implicit inflation gauge q∗t ,
but the response curve indeed formulates the sense that, without the other
factors’ appearances, the FOMC should have set the FFR at the level as
indicated by the response curve based on the implicit inflation gauge q∗t , and
no matter what happens, the FOMC will eventually corrects back onto the



21 Canonical Dynamics Mechanism 427

“fair track” once the effects of the non-primary factors subside in the long
run. Note that this is the pivot idea supporting our modeling framework as
suggested in the title of the paper. In 21.3.3, we will explain why such an
idea is fundamental to analyze the FFR dynamics.

Now, combining (21.9) and (21.10), we build a simple (basic functional non-
parametric) PPR framework for modeling the FFR decision-making based on
the CPI indices:

r = f(βp,1q1,t + βp,2q2,t) + ε (21.11)

To interpret this model in plain terminology, the inflation gauge βp,1q1,t +
βp,2q2,t measures the FOMC’s consensus over inflation and the response func-
tion f depicts the FOMC’s mind-set of configuring strategies for maintaining
prices stability through accommodative-tightening cycles.

Furthermore, for the interest of comparative pattern recognition, we also con-
sider a comparison model via bivariate linear regression (BLR) to heuristically
distinguish the interesting nonlinear geometrical features of the PPR model.
The comparison model is designed as

r = βb,1q1,t + βb,2q2,t + ε (21.12)

where βb,1 and βb,2 are the weights on core and non-core CPI, and α is the
interception. Inside the general framework of 21.10, the BLR model can be
regarded as a special case with the imposed modeling bias of linearity. That
is,

r = fb(βb,1q1,t + βb,2q2,t) + ε (21.13)

where, similarly, we have βb,1q1,t + βb,2q1,t as another “inflation gauge” with
the identity response function, which simply means that the FFR should be
set to be the inflation gauge plus a inflation-risk control premium α (or “real
neutral” interest rate).

21.3.3 Monetary Policy-Making as Tight-Accommodative
Cycles Along Neutral Level as Dynamic Principal

In 21.4, by plotting together the actual FFR and the estimated response FFR
series

r∗t = f̂(β̂b,1q1,t + β̂b,2q1,t), (21.14)

where (f̂ , βb,1, βb,2) are the estimated PPR model based on the real data,
we found that the time series rt actually fluctuates along the track of the
PPR time series r∗t in a quite perfect manner of mean-reversion. Thus, at the
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very beginning point, the simplest quantitative way of describing the mean-
reversion phenomenon is quite intuitive to assume that the deviation spread
or residue zt = rt − r∗t follows an Ornstein-Uhlenbeck process

dzt = −kztdt + σdWt (21.15)

Under the proposition that the model-projection level r∗t represents the “neu-
tral” interest rate, the mean-reversion phenomenon of the actual-projection
spread zt then indeed quantitatively formulates the FOMC’s language on
monetary policy – the policy cycle is accommodative when the spread is neg-
ative while an ongoing positive spread means a tightening cycle. Note that,
for exploring the dynamic of the FFR, this observation reveals a canonical
framework which directly generalizes the model of Hull and White (1990)
in the following way. The FFR actually follows a process with the dynamic
local mean-reversion equilibrium level r∗t which is completely determined by
the principal dynamic indicator q∗t through the dynamic mechanismf . Note
that if we, in addition, assume that r∗t also follows some stochastic diffusion
process, simply say

dr∗t = µtdt + δdYt (21.16)

then it is formally straightforward to reach the stochastic version of Hull and
White model

drt = (θt − krt)dt + σ′dZt (21.17)

where the stochastic process θt = kr∗t + µt is stochastic (rather than a deter-
ministic θ(t)).

21.4 Response Curve Structure and FOMC
Behavioral Analysis

The section presents all the empirical results by data analysis with our inter-
pretations.

21.4.1 Data Analysis and Regressive Results

Based on the 571 monthly data of the effective Fed Funds rate and the CPI
(from March 1958 to September 2005), the PPR results with the BLR com-
parison are listed as following: Projection Pursuit Regression (PPR):

r = f(0.9593q1 + 0.2824q2) (21.18)
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wheref is the non-parametric function plotted in Figure 21.3.

Bivariate Linear Regression (BLR):

r = 2.0670 + 0.9427q1 + 0.3097q2 (21.19)

Interestingly, in the two different models, first note that the two inflation
gauges are very close to each other with the nonlinear one weighting a bit
more on the core. Figure 21.3 shows the estimated PPR response curve
and BLR regression line - note that, for convenience of comparison, we use
the same x-axis to indicate the two slightly different inflation gauges. Or
precisely, the response surfaces with respect to (q1, q2) can be compared in
Figure 21.4 and 21.5. Moreover, the three FFR series (the actual and the
three model-projected) are plotted together in Figure 21.6. .
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Figure 21.3. The Response Functions: by Bivariate Linear
Regression (dashed) and PPR method (solid) XFGresponse

21.4.2 The Structure of the FOMC’s Response Curve –
Model Characteristics, Interpretations

To comprehend the complicated reasoning behind the PPR modeling, we,
first of all, note the long-lasting debate, both in the academic and Wall
Street, on the issue V what are the proper weights should be put on the
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Figure 21.5. The Response Surface XFGsurface2

different price components for watching inflation? For giving credit to the
principal component analysis embedded in the PPR modeling, note that the
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Figure 21.6. Effective and Model-projected Neutral Fed Fund
Rates: Effective Fed Fund Rate (dashed line), by Taylor rule
(dot-dash-dot line), by PPR method projected (solid line) and
by Bilinear Regression (dotted line) XFGrate2

PPR inflation-gauge weighting (0.9699q1+0.2437q2) almost fully takes the
highly focused core CPI and puts a much less significant, but not ignorable,
weighting factor on the non-core CPI. This suggests that, in the FOMC’s
mindset, although the volatile non-core CPI cannot be taken too seriously
from time to time, but still not negligible (especially deserving a close watch
on the “spill-over” effect from the non-core to the core at critical junctures).
More importantly, the BLR inflation gauge (0.9605q1+0.2513q2) comes very
close to the PPR measurement. This interesting but not very surprising fact
actually implies that this inflation gauge is robust under different models
from linear to nonlinear.

Secondly, despite the two models’ coincidence on gauging inflation, the PPR
response curve has a very subtle geometrical structure distinct from a straight
line – we call it a 3-phase structure. The twisted non-parametric curve can be
divided into 3 phases, including careful, tense and panic, meaning FOMC’s
different response sentiments and actions inside three distinct ranges of in-
flation gauge, as shown in Figure 21.3.

The careful phase, with the inflation gauge less than 4.3% or so and FFR
approximately below 7%, reflects the FOMC’s mindset for rate adjustment
against the inflation movement in the “normal” economic situation. In this
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phase, the steepest (most aggressive) FFR ascending along with the inflation
increment indicates the FOMC’s sensitive and determinate will on “inflation
targeting” (quick action at a spark). Moreover, in comparison with the BLR
model, note that the BLR model tends to overestimate the rate-hike speed
when the inflation is low (or when the Fed likes to give the capital markets a
break) while underestimating the Fed’s aggressiveness when the inflation is
about to get out of the gate.

The tense phase, with the PPR inflation gauge ranging within 4.5% ∼ 6.5%
and the FFR hanging around 7% ∼ 8%, has a flattened response curve seg-
ment. In this phase, it seems quite clear that the FOMC’s mind-set is getting
nervous and reluctant to further hike the FFR when the rate reaches the level
7%. It is reasonable to infer from this pattern that the FOMC should have
learned from the past lessons that even a bid further aggressive action be-
yond this level could trigger a recession anytime soon. These “lessons” can
be checked in Figure 21.6 where we notice that a stay near or over the 8%
level is always followed by a sharp FFR drop which must have been reacting
to a economic recession. Also, notice that, in Figure 21.3, the divergence
(variance) of the scatter diagram from the regression curve indeed increase
significantly – note that the dispersion of the scatter diagram is nicely homo-
geneous in the inflation range of the careful phase. As a matter of fact, the
economy is usually going through a high-growth period in the second phase.
The Fed should be glad to wait and see and try not to ruin the economic
party once the inflation gauge can be controlled within 6.5%. Of course,
the BLR model completely misses this interesting decision-making sentiment
feature.

The panic phase, with the inflation gauge over 6.5% and the FFR above 8%,
shows the Fed’s determination to fight the possibly out-of-control inflation
once the inflation gauge is heating up over the 6.5% level. The scatter diagram
in this phase exhibits a much larger variance than those in the other phases
and the inflation is usually far beyond controlled. In this phase, the reason
for the FOMC to rekindle the rate-hike from the halting pace is that the
cost to pay for falling into a recession is far smaller than taking the risk of
stagflation or even depression due to an inflation crisis.

21.4.3 The Dynamics of the FFR – Model Implications

The 3-phase structure subtly reveals the intriguing fact that it is a much
tougher game than usually thought in the “linear” way for the FOMC to
balance growth and inflation, especially at critical junctures which usually
takes place in the tense phase. At these junctures, the FOMC often overre-
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acted and then cut back the rate in a hustle. Such consequences are clearly
shown as the spikes of the actual FFR time series. It leaves us to ponder
what if the FOMC took the suggestion of the PPR model - could these ab-
surd spikes be just removed so that the economy thus becomes healthier and
the capital market turns more stable? Through these research works from
static regression to dynamic analysis, based on the pivot idea of dynamic
equilibrium principal, the key observation is that, as shown in Figure 21.7,
the actual FFR time series fluctuates along with the PPR-projection series
(the FFR series projected by the PPR model) with a quite robust tight-
accommodative (up-down mean-reversion) cyclic pattern. Thus, it is simply
intuitive to take the PPR-projection series as the dynamic equilibrium level
(see Section 21.3.3), from which the cyclic pattern of deviation is obviously
created by the self-correcting efforts of the FOMC.
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Figure 21.7. The FFR series projected by the PPR model
XFGffr

Now, the really intriguing question is: if the dynamic equilibrium level has
done a good statistical job to precisely shape the so-called “neutral interest
rate level” in the FOMC’s mindset under changing economic conditions, why
would the FOMC have not just followed this “neutral track” more closely?
The following two possible reasons might be able to provide some crucial
heuristics for modeling the dynamics of the FFR:

(I) The dynamic equilibrium level precisely pinpoints the consensus of the
FOMC members on the “neutral interest rate level”, but there is still the
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variance of opinions among the members and even the uncertainty around
each member’s judgment. For the sake of risk control, such a variance and
those personal uncertainties could push the policy makers to do a bid more or
less than the “neutral” estimate. In a nonlinear dynamic system, such a bid
action could eventually push the whole system away from the equilibrium and
thus need the follow-up self-correcting efforts from the FOMC, and, therefore,
the cycles are formed.

(II) The second reason provides a deeper insight into the dynamics of the
FFR, and thus a more active incentive for not simply keeping the actual
FFR on the “neutral track”. Since the FOMC’s mission is not only control-
ling inflation, but also minimizing unemployment rate, it becomes an art and
science to balance growth and inflation. Regarding the monetary-policy mak-
ing task as a game between the FOMC and the economy, the Octave Diagram
shown in Figure 21.8 illustrates the tight-accommodative cyclic mechanism
in the FFR dynamics:

Figure 21.8. Tight-accommodative cyclic mechanism in the
FFR dynamics

Note that how the trend of the CPI evolves must depend on the strategy of
the FOMC. The dynamic equilibrium level only indicates the “neutral rate”
level in the FOMC’s mindset to provide a principal guidance for tightening or
loosing monetary policy. In the model (21.13), it is more adequate to call f
the FOMC’s “neutral” response curve, and ε represents the FOMC’s strate-
gic spread to form the tight-accommodative cycle for conditional economical
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purposes. Just like a box attached to a spring which carries non-zero mo-
mentum whenever reaching the equilibrium position in a harmonic motion,
the FFR must naturally exhibit the cyclic pattern according to the dynamic
mechanism in the Octave Diagram. If the FOMC naively holds its targeted
FFR at the neutral level long enough, the inflation could quickly get out of
control as the growth momentum is positive; on the other hand, the econ-
omy could soon dip into recession or even stall to dive into a depression as
the growth momentum is negative. By carefully checking the mean-reversion
pattern of the spread (the difference between the actual FFR time series and
the dynamic equilibrium level series, i.e. the PPR-projected FFR time series)
in Figure 21.7, we may reach the conclusion that a healthy interest rate cycle
is essential for price stability.

To reason with the reality, the key relies on the justification of the concept
of “neutral real interest rate”, as focused for researching monetary policy in
the classic booklet of Blinder (1999). In Blinder’s viewpoint, the neutral real
interest rate is difficult to estimate and impossible to know with precision,
but is most usefully thought of as a concept rather than as a number, as a
way of thinking about monetary policy rather than as the basis for a me-
chanical rule. However, as a significant consequence of our modeling works
in this paper, the dynamics of the inflation indeed reveals a sharp pattern
reflecting on monetary policy through a mathematical transform introduced
by the perception of neutral real interest rate. Here we define the neutral
real interest rate as the difference

p∗t = r∗t − q∗t = f(q∗t )− q∗t , (21.20)

Figure 21.9 illustrates the process of real neutral rate of interest from 1958 to
2007. The patterns shown in the process of p∗t could provide lots of clues to
many debates over monetary policies in the past 50-plus years. To compre-
hend some important features in the process, first we propose the following
basic hypotheses implied by the simple original modeling framework set in
the Taylor Rule:

(I) 2-percent annual inflation rate is a commonly favorable control target for
central bankers in normal economic conditions.

(II) If the inflation measure stays at the level of 2 percent, the real rate
sufficient for keeping the inflation process at equilibrium is 2 percent.

(III) When the inflation measure deviates from the 2-percent equilibrium
target level, the “neutral” real rate will incorporate an extra right effort for
bringing inflation back on track while reflecting the current inflation scenario
with growth prospect.
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Figure 21.9. Neutral Real Interest Rate: by Bilinear Regres-
sion (bold solid), by PPR method (solid) and by Taylor Rule
(dot-dash-dot). XFGneutral

Based on the above hypotheses and our interpretation about the response
curve, we compare the three neutral real rate processes in Figure 21.9. In
comparison with the Taylor model, the BLR takes the simplest assumption
that the neutral real rate is an all-time constant of estimation value 2.067
with respect to the BLR inflation measure in 21.19. Clearly, contrary to what
being suggested by the first and third hypotheses, the statistical bias of com-
pact formulation by BLR modeling has completely ignored the inflation bias
of the central banker due to inflation targeting. Thus, the general neutral
real rate level is nothing more than just a number which neither guarantees
stabilization of inflation (as suggested by the second hypothesis) nor provides
clues for figuring out thoughts of the central bankers in face of various infla-
tion scenarios. When we turn to the more sophisticated PPR model, Figure
21.9 shows that it provides rich clues more than just a number for under-
standing the central bankers mindsets on monetary policy-making. Due to
the intriguing structural pattern of formulating the neutral real rate, the PPR
model indeed sheds some light on Hypothesis (III) which suggests a canoni-
cal framework of setting inflation-control principal strategies toward various
inflation scenarios. To fully comprehend how the PPR modeling deeply digs
into Hypothesis (III), we establish a theory of co-integrating the dynamic
mechanisms of interest rate and inflation in the following section.
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21.4.4 General Dynamic Mechanism for Long-Run
Dependence of Interest Rate and Inflation

The movements of the FFR and the CPI numbers can be regarded as the
sequential outcomes of the constantly interactive game between the FOMC
and the economy. The basic goal of the FOMCs game strategy can be math-
ematically described as the optimization problem - maximizing employment
under price stability

max
I�K

E, (21.21)

where I and E stand for inflation and employment rate respectively, and K is
the inflation-targeting bound of the so-called comfort zone. Then, according
to the findings of the PPR modeling works, we can decompose the general
strategy of the FOMC into two parts V the principal part for dealing with
the primary inflation condition and the adaptive part for dealing with the
secondary economic and financial conditions{

r∗t = f(q∗t )
q∗t = h({rs − r∗t }|s=t−1

s=t−l ) + ε∗
(21.22)

where f outlines the FOMC principal strategy for setting the neutral inter-
est rate and the r − r∗ sequence details the FOMCs adaptive strategy Γ in
tight-accommodative cycles in response to the reaction (the game-strategy)
of the economy as described by h (mainly due to inflation expectation) plus
a random factor, and the efforts of combining these two components are set
to achieve

arg maxIh(f,Γ)�KEh(f, Γ) (21.23)

For figuring out the interactive dynamic mechanism of inflation and interest
rate and constructing quantitative monetary policy-making strategy based
on the interaction mechanism, the key relies on the decomposition

r = [r − f(q∗)] + [f(q∗)− q∗] + q∗ (21.24)

that is, the interaction of r and q∗ is intermediately dominated by the prin-
cipal strategy on the neutral real rate and the adaptive strategy along tight-
accommodative cycles. Therefore, the canonical formalism of 21.24 induces
the following five layers of problems about monetary policy-making by the
above works:

(I) Nature of Economy – nonparametric modeling of the strategic function h
of the economy via co-integrative autoregression of the three processes (see
Figure 21.10) in the above decomposition.
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(II) Goal of Monetary Policy V set a suitable q∗0 as the upper limit of the
comfort-zone of inflation in 21.4.2, then under the assumption that inflation
normally rises as economy grows, the central banker would like to have the
neutral real rate staying at the equilibrium level c = f(q∗0)− q∗0.

(III) Mechanism of Strategic Design V suppose h does not depend on f ,
under some regular conditions on f , there exists a stationary solutionqs, with
q∗ = q∗0 as the mean-reversion level, corresponding to a well-set adaptive
strategic sequence rs for the equation f(q∗t )− h({rs − f(qs)}s) = c.

(IV) Interaction of Interest Rate and Inflation V combine a model like 21.15
for setting an autoregressive mechanical rule of adaptive strategy, we can
iteratively simulate the interactive evolutions of interest rate and inflation.

(V) Match of Principal and Adaptive V formulate sophisticated inflation-
control functional I and economic performance measure functional E so that
a sound optimization framework 21.24 emerges to provide a good match of
the principal component and the adaptive component of a monetary policy-
making strategy for ensuring sustainable growth and price stability.

Obviously, the above problems have gone far beyond the three former hy-
potheses about thinking monetary policy. However, the complex framework
for comprehending the art and science of monetary policy-making indeed re-
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veals a simple motto V better principal strategy implies more stable inflation
and smaller tight-accommodative cycle.

21.5 Discussions and Conclusions

Although the PPR-oriented nonlinear modeling methodology remarkably es-
tablishes a benchmark of neutral interest rate which is beyond the scope of
the Taylor Rule for providing deep principal insights into sentiments and
strategies of the FOMC, it relies on many deeper technical explorations in
data analysis and further understandings of the nature of nonlinear dynamic
systems. The foundations are in the following list of confounded economical
and statistical issues surrounding the intriguing ε in 21.10, which represents
the tight-accommodative cycles along the benchmark:

� Extension to a multi-pursuit (M >1) regression over unemployment
rate, exchange rates and asset price changes.

� Autocorrelation and memory process modeling on the FOMC’s self-
correcting efforts.

� Hetereoscedasticity in the variance of ε, as shown in the three different
phases of the PPR modeling.

� The co-integrated evolution of the trio (rt, q1,t, q2,t) with a dynamically
more adaptive inflation gauge.

This paper is only the beginning of a new series of research works toward
building a more advanced and complete framework than the fundamental one
proposed in Section 21.3.3. Unfortunately, the statistical modeling challenge
to solve these problems is ar beyond the reach of the PPR modeling based
on cubic splines.

Note that, due to the fact of long-range dependency in ε within the regression
framework in 21.10, the PPR estimation accuracy of f can be seriously ques-
tionable (see Opsomer, Wang and Yang (2001)). However, while the request
of statistical rigor needs more efforts, the practical interpretations seems giv-
ing good credits to the PPR modeling results as the mean-reversion nature
might well offset the estimation bias. Limitation of smoothing technique and
correlation structure of uncertainty are the two major factors for affecting
estimation accuracy on pin-pointing the singular structure of the response
curve which corresponds to the reaction of the FOMC to critical times of the
inflation process.
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In the near future, we can employ the advanced wavelet-based PPR model-
ing methodology to crack these core problems of interest-rate dynamics. Al-
though, in this paper, the fundamental PPR modeling framework is surely not
perfect due to the problems presented above, it indeed heuristically demon-
strates the need and power of functional nonparametric modeling. Without
the PPR modeling, we would have not found out the systematical risk of
overestimating the FFR by the Taylor Rule and thus miss the phenomenon
of cyclic mean-reversion along the dynamic equilibrium level of FFR driven
by a fair inflation gauge via the response mechanism. Moreover, without en-
tering the world of functional nonparametric modeling, the 3-phase response
curve structure, which is the key to comprehend the sentiments and strategies
of central bankers toward balancing growth and inflation, could have never
been systematically discovered.
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Fréchet-Hoeffding, 6, 13
Frank generator, 8
fx data, 317

GARCH, 84
Gauss-Poisson Approximations, 165
Gaussian Approximation, 177, 180
Gaussian copula, 7, 163, 305
General market risk, 37
Generalized ARCH, 83, 313
geometric Brownian process, 296
global minimum variance portfolio

(GMVP), 400
Gumbel copula, 297

HAC, 14

HAR model, 285
hedonic regression, 329, 333
Hierarchical Archimedean copulae,

13
high-dimensional American, 363
High-Frequency Volatility, 387
HiSim, 37
Historical Simulation, 49
Homogeneous Markov Chain, 116
Hotelling procedure, 413
house price growth rate, 335

IBT, 209
Idiosyncratic Bond Risk,

→ HiSim
Implied Binomial Trees,

→ IBT
Implied volatility, 211
implied volatility smile, 193
INAAA data, 40, 41, 48, 56, 60
Instantaneous volatility, 211

Jumps, 252

Kalman filter, 233
extended, 238

Kendall’s τ , 9
Kernel density estimates, 341
kernel functions, 195
Kernel interpolation, 373
Kernel Smoothing, 194
Kullback – Leibler divergence, 347
Kullback-Leibler divergence, 29

least squares kernel estimator, 195
Liquidity, 379, 387
local change point (LCP), 346
Local change point selection, 349
local model selection (LMS), 346
local parametric approach, 347
Local volatility, 211
long range memory effects, 345

Mahalanobis Distance, 410

Index



446 Index

Mark-to-Model, 54
Market microstructure effects, 277
Markov chain, 105, 116
Markov Chain Simulation, 249
Marshal-Olkin Method, 22
MCMC Algorithm, 257
Mean Spread, 47
MEWMA, 414
MGARCH, 85
migration

correlation, 108, 110
counts, 107
events, 106
probability,
→ transition probability

rates, 108
mixing coefficient, 352
MMPL data, 55
model

Implied Binomial Trees,
→ IBT

multivariate volatility,
→ BiGARCH

Monitoring problem, 404, 408
mortgage loans, 327
multi-dimensional options, 295
multi-period transitions, 115
multiplicative error models, 379
Multivariate Control Charts, 410
Multivariate Copulae, 11
Multivariate EWMA Statistic, 411
multivariate GARCH, 315
Multivariate Volatility Models,

→ BiGARCH

nonparametric regression, 196

optimal portfolio, 408, 412
Option Pricing, 363
oracle estimate, 348

P-P Plots, 59
passive portfolio, 400

performance evaluation, 406
PL data, 55

portfolio
composition, 107
weights, 120

Portfolio Migration, 119
prediction equations, 237
Process Control, 399
propagation condition, 352
Propagation of Losses, 75

Q-Q Plots, 60
QML, 91
quartic kernels, 198

rating, 105
migrations, 105

dependence, 108
independence, 108

transition probability,
→ transition probability

rating transition, 107
Rating Transition Probabilities, 106
Real Estate Valuations, 327
Realized Betas, 287
Realized Volatility, 275
Realized volatility models, 284
recovery value, 339
Residual risk, 38
Risk Aversion, 146
Risk Factor, 53, 61
risk horizon, 107
risk-neutral probability, 162

saddle-point method, 164
sales comparison, 327, 329
semiparametric method, 295
Sharpe ratio, 405
Shewhart control chart, 401, 411
sigmaprocess data, 320
simulation based method, 301
single-family houses, 331

Poisson approximation, 165, 171, 181



447

Skewness, 47
small modelling bias (SMB), 348
Snell envelope, 365
SPC, 399, 414
SPD, 233

estimation, 233, 236
Spectral Allocation Measures, 145
Spectral Capital Allocation, 139
Spectral Risk Measures, 143
spread, 162
Spread Risk, 37
stagewise aggregation (SA), 346
standardized CDO, 69
state price density,

→ SPD, 236
state-space model, 237
Statistical process control, 399
Stein’s equation, 166
Stein’s method, 165, 171
stochastic

volatility
models, 249

Stochastic Recovery Rate, 177
Stochastic Volatility, 249
stochastic volatility model, 275
structural breaks, 345
SV, 249
SV Model with Jump Components,

253
SV-in-Mean Model, 254
SVt Model, 252

t-copula, 7
TGARCH, 97
threshold normal model, 109
Time Homogeneous, 345
Time-varying Betas, 285
transition matrix, 105
transition probability, 105, 107

chi-square test, 112
estimator, 108
simultaneous, 110

standard deviation, 108, 110
test of homogeneity, 112
time-stability, 111

updating equations, 237
USTF data, 40, 41

Value-at-Risk, 25, 49
VaR Computation, 184
VaR Scenarios, 185
Vector MEM, 383
Volatility, 47
volatility clustering, 345
volatility signature plots, 278
volatility smile, 209
Volatility Updating, 51

weak estimate, 351

Yield Spread, 39

Index




