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Abstract. In this paper, we present methods for checking and inferring all valid
polynomial relations in Z2w . In contrast to the infinite field Q, Z2w is finite and
hence allows for finitely many polynomial functions only. In this paper we show,
that checking the validity of a polynomial invariant over Z2w is, though decid-
able, only PSPACE-complete. Apart from the impracticable algorithm for the
theoretical upper bound, we present a feasible algorithm for verifying polyno-
mial invariants over Z2w which runs in polynomial time if the number of program
variables is bounded by a constant. In this case, we also obtain a polynomial-time
algorithm for inferring all polynomial relations. In general, our approach provides
us with a feasible algorithm to infer all polynomial invariants up to a low degree.

1 Introduction

In reasoning about termination of programs, the crucial aspect is the knowledge about
program invariants. Therefore, it is not surprising that the field of checking and finding
of program invariants has been quite active, recently.

Many analyses interpret the values of variables regarding the field Q. Modern com-
puter architectures, on the other hand, provide arithmetic operations modulo suitable
powers of 2. It is well-known that there are equalities valid modulo 2w, which do not
hold in general. The polynomial 231x(x + 1), for example, constantly evaluates to 0
modulo 232 but may show non-zero values over Q. Accordingly, an analysis based on
Q will systematically miss a whole class of potential program invariants.

1 int b = ?;
2 int c = 1 << 31, y = 0, x = 0;
3 while(y-b!= 0){
4 x = c*x*x + (c+1)*x + 1;
5 y = x*x + y;
6 }

Fig. 1. Computing the square power sum on 32bit machines

Example 1. As an example, consider the program from figure 1. This program repeat-
edly increases the value of program variable x in line 4 by 1 – if arithmetic is modulo
232. Therefore, the program powersum() computes a square sum. Thus, at program
line 6 the polynomial invariant 2 · x3 + 3 · x2 + x − 6 · y = 0 holds modulo 232 — but
not over the field Q.
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An exact analysis of the example program should take into account the structure of
polynomials over the domain Z232 : The right hand side in the assignment in line 4 of
the example can be rewritten as 231x(x+1)+x+1 where the first summand 231x(x+1)
is equivalent to the zero polynomial over Z232 . Such polynomials are called vanishing.
Singmaster [17] investigates the special structure of univariate vanishing polynomials
over Zm and provides necessary and sufficient conditions for a polynomial to vanish
over Zm. Hungerbühler and Specker extend this result to multivariate polynomials and
introduce a canonical form for polynomials in quotient rings [3]. Shekhar et.al. present
an algorithm to compute this canonical representation over the quotient ring Z2w [16].
A minimal Gröbner base characterising all vanishing polynomials in arbitrary quotient
rings is given by Wienand in [18]. In contrast to the infinite field Q, the ring Z2w is
finite. Therefore, there are just finitely many distinct k-ary polynomial functions. In
fact, it will turn out that we can restrict ourselves to polynomials in k variables up to a
total degree 1.5(w+k). Due to this upper bound on the total degrees of the polynomials
of interest, the problem of checking or inferring of polynomials over Z2w becomes an
analysis problem over finite domains only and therefore trivially is computable. Hence,
the key issue is to provide tight upper complexity bounds as well as algorithms which
also show decent behaviour on practical examples.

In this paper, we first consider the problem of checking whether a given polynomial
relation is valid at a given program point. While being decidable over Q, we show that
this problem becomes PSPACE-complete over Z2w . Furthermore, we present a practi-
cal algorithm for this problem which is based on effective precise weakest precondition
computation. In case that the number of variables is bounded by a (small) constant, this
algorithm even runs in polynomial time.

Secondly, we consider the problem of inferring all polynomial relations which are
valid at a given program point. This problem, though not known to be computable in
Q, turns out to be computable in exponential time over Z2w . Again, we present an
algorithm for inferring all polynomial invariants of a given shape, whose runtime turns
out to be polynomial given that the number of variables is bounded by a constant. Both
algorithms have been implemented, and we report on preliminary experiments.

Related Work

The pioneer in the area of finding polynomial relations was Karr [4] who inferred the va-
lidity of polynomial relations of degree at most 1 (i.e., affine relations) over programs
using affine assignments and tests only. An algorithm for checking validity of poly-
nomial relations over programs using polynomial assignments is provided by Müller-
Olm and Seidl [7] and was extended later to deal with disequality guards as well [9].
Their approach is based on effective weakest precondition computations where con-
junctions of polynomial relations are described by polynomial ideals. Termination of
a fixpoint computation in Q thus is guaranteed by Hilbert’s base theorem. In [9], the
authors also observe that their method for checking the validity of polynomial rela-
tions can be used to construct an algorithm for inferring all polynomial invariants up
to a fixed degree. In [13,14] Rodriguez-Carbonell et al. pick up the idea of describ-
ing invariants by polynomial ideals and propose a forward propagating analysis, based
on a constraint system over these ideals. As infinite descending chains of polynomial
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ideals cannot be avoided in Q when merging execution paths [8, Example 1], they
provide special cases or widening techniques to infer polynomial identities. Sankara-
narayanan et al. also investigate polynomial invariants[15]. They propose to use poly-
nomial templates to capture the effect of assignments in their analysis. These templates
describe parametric polynomial properties. When determining the generic parameters
via Gröbner bases, certain inductive invariants can be inferred. In contrast to the former
approaches, Colon [2] provides an interprocedural forward analysis for polynomial
programs. This analysis is based on ideals of polynomial transition invariants. In or-
der to deal with infinite descending chains, Colon abstracts ideals with pseudo-ideals,
which essentially are vector spaces of polynomials up to a given degree. The applica-
tion of weakest precondition computations to interprocedural analysis of polynomial
relations over Q is discussed in [8]. An exact (even interprocedural) analysis of affine
relations for programs using affine assignments over the domain Zm is provided in
[10,11].

This paper is organised as follows. In Section 2 we specify the concrete semantics
for the program class that is inspected by our analysis by means of control flow graphs.
Section 3 gives a detailed description of the characteristics of polynomials in Z2w . In
Section 4, we first provide the complexity class for the general case of verifying poly-
nomial invariants in Z2w . We then specify our abstraction for the concrete semantics
with the help of polynomial ideals. In Section 5 we present our specific concrete rep-
resentation of polynomial ideals in Z2w . We show how they contribute in the case of
constantly many program variables to a better runtime complexity than the theoretical
worst case in Section 4. We then illustrate in Section 6, how to extend this procedure
to infer valid invariants up to a fixed degree and thus for inferring all valid relations.
Section 7 finally summarises our results.

2 Fixpoint Semantics

In this section we introduce the programs to be analysed together with the concrete
semantics our polynomial analysis is based on. Basically, we emanate from the same
concrete semantics as in [9].

The vector of variables x = (x1, . . . ,xk) from the set of program variables X =
{x1, . . . ,xk} can take values in the ring Z2w . A program state, which assigns values to
variables, can be modelled by a k-dimensional vector x = (x1, . . . , xk) ∈ Z

k
2w , where

xi is the value assigned to variable xi.
We assume that the basic statements in the considered program class are either

polynomial assignments of the form xj := p or non-deterministic assignments of
the form xj :=? where xj ∈ X or polynomial disequality guards of the form p �=
0 where p ∈ Z2w [X]. Recalling, that finding polynomial invariants in presence of
equality guards turns out to be indecidable, we keep to non-deterministic branching
instead. Non-deterministic assignments xj :=? represent a safe abstraction of state-
ments our analysis cannot handle precisely, e.g. non-polynomial expressions or user
input.

Let Lab denote the set of basic statements and polynomial disequality guards. A
polynomial program is given by a non-deterministic control flow graph, consisting of:
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• program points N ,
• a set of edges E ⊆ N × N ,
• a mapping A : E → Lab from edges to statements or polynomial disequality guards
• a special start point st ∈ N .
The program executions reaching a given program point are characterised by a con-

straint system, for which our analysis provides a precise abstract interpretation. A pro-
gram execution r (also called run) is a finite sequence r ≡ r1; . . . ; rm where each ri

is a basic statement or disequality guard. Runs denotes the set of runs, which can be
characterised as the smallest solution of a system of subset constraints on run sets R,
reaching the target program point t.

[R1] R(t) ⊇ {ε}
[R2] R(u) ⊇ fe(R(v)) , if e = (u, v) ∈ E

Constraint [R1] expresses, that the set of runs reaching program point t when starting
from t contains the empty run, denoted by “ε”. By [R2], a run starting from u is obtained
by considering an outgoing edge e = (u, v) and concatenating a run corresponding to
e with a run starting from v, where fe(R) = {r; t | r ∈ R(e) ∧ t ∈ R}. If edge e is
annotated by A(e) ≡ p �= 0 or A(e) ≡ xj := p, it gives rise to a single execution:
R(e) = {A(e)}. The effect of an edge e annotated by xj :=? is captured by collecting
all constant assignments:

R(e) = {xj := c | c ∈ Z2w}

Each run induces a partial transformation of the underlying program state x ∈ Z
k
2w .

In the case of a disequality guard p �= 0 this results in a partial identity function:

dom([[p �= 0]]) = {x ∈ Z
k
2w | p(x) �= 0}

A polynomial assignment xj := p causes the transformation with dom([[xj := p]]) =
Z

k
2w and

[[xj := p]] x = (x1, . . . , xj−1, p(x), xj+1, . . . , xk)

Extending these definitions to runs, we obtain: [[ε]] = Id, where Id is the identity
function and [[r; rrest]] = [[rrest]] ◦ [[r]] where “◦” denotes composition of partial func-
tions. The partial transformation f = [[r]] induced by a run r can always be represented
by polynomials q0, . . . , qk ∈ Z2w [X] such that dom(f) = {x ∈ Z

k
2w | q0(x) �= 0} and

f(x) = (q1(x), . . . , qk(x)) for every x ∈ dom(f). For the identity transformation in-
duced by the empty path ε the polynomials 1,x1, . . . ,xk would hold. Transformations
induced by polynomial assignments or guards can thus be represented in this manner
and are closed under composition, similarly to [9].

3 The Ring of Polynomials in Z2w

In order to develop an analysis inferring all polynomial relations modulo m = 2w, we
fix a bit width w ≥ 2 of our numbers in the following. For X = {x1, . . . ,xk}, let
Z2w [X] denote the ring of all polynomials with coefficients in Z2w . Each polynomial
p can be written as a sum of terms, i.e., have the form p =

∑
δ cδ · xδ1

1 . . .xδk

k , with
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its degree δ ∈ N
k, c ∈ Z2w and x ∈ X. We call xδ1

1 . . .xδk

k a monomial of total
degree

∑
δi and cδ its coefficient. We agree on the terms for each polynomial to be

sorted lexicographically on the string of degrees in the variables from X . Then each
polynomial p has a head term (respectively head coefficient or head monomial), that
leads the trailing terms.

Recall that the coefficient ring Z2w is not a field. More precisely, only all odd ele-
ments are invertible while every even element is a zero divisor. Thus, e.g., 2 · 2w−1 ≡ 0
in Z2w . Useful facts about this ring can be found in [10] or basic text books on commu-
tative ring theory, as [5].

Similarly to the case of fields [10], the set of polynomials p ∈ Z2w [X] which evaluate
to 0 for a given subset X ⊆ Z

k
2w , is closed under addition and multiplication with

arbitrary polynomials. A non-empty subset I of a ring with this property is also called
an ideal. Thus, our program analysis maintains for every program point an ideal of
polynomials.

Recall that the ring Z2w is a principal ideal ring meaning that every ideal I ⊆ Z2w

can be represented as the set I = {z · a | z ∈ Z2w} of all multiples of a single ring
element a. Thus by Hilbert’s basis theorem, every ideal I ⊆ Z2w [X] can be represented
as the set of all linear combinations of a finite set G = {g1, . . . , gn} ⊆ Z2w [X], i.e.,
I = {p1g1 + . . . + pngn | pi ∈ Z2w [X]}. In this case, we also refer to G as the set of
generators of I and denote this by I = 〈G〉.

Assume p, p′ ∈ G are polynomials which share the same monomial t in their head-
term, i.e., are of the form: p = a ·2e ·s · t+prest and p′ = a′ ·2e′ · t+p′rest with e ≥ e′,
some monomial s and odd a, a′ ∈ Z2w . In this case, we say that p is reducible by p′.
More generally, we call p reducible by a set R of polynomials if p is reducible w.r.t.
some p′ ∈ R. If p is reducible by the polynomial p′, p can be reduced to the polynomial
q = a′ · p − a · 2e−e′ · s · p′. If q = 0, p is a multiple of p′ and thus redundant in every
set G of generators containing p′, i.e., 〈G\{p}〉 = 〈G〉. If q �= 0, we can replace the
polynomial p in G with the (simpler) polynomial q, i.e., the set G generates the same
ideal as the set G′ = (G\{p}) ∪ {q}.

Starting from a set G of generators, we can successively apply reduction to eventu-
ally arrive at a reduced set Ḡ generating the same ideal as G. Here, we call the set Ḡ
reduced iff no polynomial p ∈ Ḡ is reducible w.r.t. Ḡ\{p}.

Lemma 1. Assume that p ∈ Z2w [X] and G ⊆ Z2w [X] is a finite reduced set of polyno-
mials. Then a reduced set Ḡ ⊆ Z2w [X] can be constructed with 〈{p} ∪ G〉 = 〈Ḡ〉. The
algorithm runs in time O(k · r2) if r is the number of different exponents of monomials
occurring during reduction, and k the number of program variables.

Proof. A single reduction of a polynomial by a set of reduced polynomials is carried out
by as many subtractions (each of cost k) as a polynomial has monomials. This number is
bounded by the number of different exponents r occuring during the reduction. Adding
p to G is carried out by reducing potentially |G| ≤ r many polynomials. �

Here, the total degree of a monomial xr1
1 . . .xrk

k is d = r1 + . . . + rk, and the total
degree of a polynomial is the total degree of its head monomial. Thus, the number r of
possibly occurring different exponents of monomials is bounded by:
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Proposition 1. The number of different exponents of monomials is given by

r ≤
(

d + k
k

)

≤ min( (d + 1)k , (k + 1)d )

Note that the upper complexity bound is a crude worst-case estimation only. The practi-
cal run-time might be much smaller if the occurring polynomials are short, i.e., contain
only few monomials.

Now assume that the ideal I is generated from a set G of generators and p is a
polynomial. If p can be reduced (perhaps in several steps) to the 0 polynomial by means
of the polynomials in G, then p ∈ I . The reverse, however, is only true for particularly
saturated sets of generators such as Gröbner bases [1].

In the case of polynomials over a field, the constant zero polynomial is the only
polynomial which evaluates to 0 for all vectors x ∈ Z

k
2w . This is no longer the case

for the polynomial ring Z2w [X]. Let Iv ⊆ Z2w [X] denote the ideal of all polynomials
p with p(x) = 0 for all x ∈ Z

k
2w . The elements of Iv are also called vanishing poly-

nomials. Only recently, a precise characterisation of the ideal Iv has been provided by
Hungerbühler and Specker [3], which is recalled briefly, here. The first observation is
that whenever 2e divides r! = r(r−1) . . . 1, then 2e also divides (x+r−1)·. . .·(x+1)·x
for all x. Let ν2(y) denote the maximal exponent e such that 2e divides y. Thus, e.g.,
ν2(1!) = 0, ν2(2!) = ν2(3!) = 1 and ν2(2s!) = 2s − 1 for all s ≥ 1. In particular,
ν2(r!) ≥ w for r ≥ w + log(w) + 1. Since 1.5w + 1 ≥ w + log(w) + 1, this implies
that ν2(r!) ≥ 2

3r − 1.
Now consider the polynomial pr(xi) = xi · (xi +1) · . . . · (xi + r −1) . Then 2ν2(r!)

divides the value pr(z) for every z. Thus we obtain the following family G(k, w) of
vanishing polynomials:

2a · pr1(x1) · . . . · prk
(xk)

where a ≥ 0, and a + ν2(r1!) + . . . + ν2(rk!) ≥ w.

Example 2. Take Z22 as domain. Then p = x4 + 2x3 + 3x2 + 2x = x(x + 1)(x +
2)(x + 3) = p4(x). Since ν2(4!) = 3 ≥ 2, p(x) is a vanishing polynomial. �

Note that Wienand [18] proves that the set G(k, w) is not only contained in Iv but that
Iv is in fact generated by G(k, w).

Two polynomials p, p′ ∈ Z2w [X] are semantically equivalent if they define the same
function Z

k
2w → Z2w , i.e., if p − p′ ∈ Iv . We observe that for every polynomial in

Z2w [X], we can effectively find a semantically equivalent polynomial of small total
degree. We have:

Lemma 2. Every polynomial p ∈ Z2w [X] in k variables is semantically equivalent to
a polynomial p′ ∈ Z2w [X] of degree less than 1.5(w + k).

Proof. Let p′ denote a polynomial of minimal total degree r and minimal number of
monomials of total degree r which is semantically equivalent to p. Assume for a con-
tradiction that r ≥ 1.5(w + k) and t is a monomial in p′ of maximal total degree.
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Then t can be written as t = a · xr1
1 . . .xrk

k where w.l.o.g. all ri ≥ 1. Then ν2(rj !) ≥
2
3rj − 1 for all j. Consequently, the sum of these values is at least

∑

j

(
2
3
rj − 1) =

2
3

∑

j

(rj − 1.5) =
2
3
(1.5(w + k) − 1.5k) = w

Therefore, the polynomial q = pr1(x1) · . . . · prk
(xk) is vanishing. Note that the

polynomial q has exactly one monomial of maximal total degree. We conclude that
p′′ = p′ − a · q is a polynomial which is still semantically equivalent to p. Moreover
the total degree of p′′ is not larger than the total degree of p′ and if the respective
total degrees are equal, then p′′ has less monomials of maximal total degree – thus
contradicting our assumption. �

Example 3. Consider the polynomials p = x4 + 3x and p′ = 2x3 + x2 + x over Z22 .
Subtracting p′ from p results in q = p − p′ = x4 + 2x3 + 3x2 + 2x ∈ Iv . Thus, p and
p′ are equivalent. �

In [16], Shekhar et al. prove that a polynomial p is vanishing iff p can be reduced to 0 by
means of the polynomials in G(k, w). In the worst case, this takes O((d+1)k) reduction
steps if d is the total degree of p. As each of these reductions involves O((d+1)k) many
different monomials in the worst case, checking a polynomial for vanishing by means
of reduction costs O((d + 1)2k). Here, we sketch an alternative method. It consists in
evaluating the polynomial for a finite set of selected arguments. The latter technique is
based on the following observation.

Lemma 3. A polynomial p ∈ Z2w [{x}] of degree d is semantically equivalent to the
zero polynomial, i.e., ∀x ∈ Z2w .p(x) = 0 iff p(h) = 0 for h = 0, 1, . . . , d.

Proof. “⇒” is trivial.
“⇐” by induction on degree d:
case d = 0: If the degree is zero, the polynomial is just described by a constant function
p(x) ≡ c. This polynomial is only zero for any h, if the constant value c is zero.
Therefore p ≡ 0 and the assertion follows.
case d > 0: Let p(h) = 0 for h = 0, . . . , d. We consider the polynomial q of degree
d − 1 with q(x) = p(x + 1) − p(x) that has q(h′) = 0 at least for h′ = 0, . . . , d − 1.
By induction hypothesis, q(x) = 0 for all x ∈ Z2w . Thus, p(x) and p(x + 1) are
semantically equivalent. Since p(0) = 0, then also p(1) = 0 and thus, by induction,
p(x) = 0 for all x ∈ Z2w , and the assertion follows. �

Lemma 3 shows that an arbitrary polynomial p is vanishing iff it vanishes for suitably
many argument vectors. Substituting in a polynomial p of degree d all k different vari-
ables by d + 1 values each indicates that p /∈ Iv, if it does not evaluate to zero each
time. Otherwise p ∈ Iv . As evaluating p can be done in |p|, we conclude:

Corollary 1. Assume p ∈ Z2w [X] is a polynomial where each variable has a maximal
degree in p bounded by d. Then p ∈ Iv can be tested in time O((d + 1)k · |p|). �
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4 Verifying Polynomial Relations in Z2w

Similarly to [9] we denote a polynomial relation over the vector space Z
k
2w as an equa-

tion p = 0 for some p ∈ Z2w [X], which is representable by p alone. The vector y ∈ Z
k
2w

satisfies the polynomial relation p iff p(y) = 0. The polynomial relation p is valid at a
program point v iff p is satisfied by [[r]]x for every run r of the program from program
start st to v and every vector x ∈ Z

k
2w . In [6], Rüthing and Müller-Olm prove that decid-

ing whether a polynomial relation over Q is valid at a program point v of a polynomial
program is at least PSPACE-hard. Their lower-bound construction is based on a reduc-
tion of the language universality problem of non-deterministic finite automata and uses
only the values 0 and 1. Therefore, literally the same construction also shows that valid-
ity of a polynomial relation over Z2w is also PSPACE-hard. Regarding an upper bound,
we construct a Turing machine which non-deterministically computes a counterexam-
ple for the validity of a polynomial relation p. This counterexample can be found by
simulating the original program on vectors over Z2w representing the program state.
The representation of such a program state can be done in polynomial space in Z2w .
The Turing machine accepts if it reaches program point v with a state x ∈ Z

k
2w which

does not satisfy p. Thus, we have a PSPACE-algorithm for dis-proving the validity of
polynomial relations. Since the complexity class PSPACE is closed under complemen-
tation, we obtain:

Theorem 1. Checking validity of polynomial invariants over Z2w is PSPACE
-complete. �

This is bad news for a general algorithm for the verification of polynomial invariants
over Z2w . The theoretical algorithm providing the upper bound in theorem 1 is not suit-
able for practical application. Therefore, we subsequently present an algorithm which
has reasonable runtime behaviour at least for meaningful examples. In particular, it has
polynomial complexity — given that the number of program variables is bounded by a
constant.

This algorithm is based on the effective computation of weakest preconditions. Fol-
lowing [9], we characterise the weakest precondition of the validity of a relation pt at
program point t by means of a constraint system on ideals of polynomials.

In order to construct this constraint system, we rely on the weakest precondition
transformers [[s]]� for tests, single assignments, or non-deterministic assignments:

[[p �= 0]]� q = {p · q}
[[xj := p]]� q = {q[p/xj ]}
[[xj :=?]]� q = {q[h/xj ] | h = 0, . . . , d}

where d is the maximal degree of xj in q. The transformers for assignments and dis-
equality tests are the same which, e.g., have been used in [9]. Only for non-deterministic
assignments xj :=?, extra considerations are necessary. The treatment of non-
deterministic assignments in [9] for Q consists in collecting all coefficient polynomials
pi not containing xj in the sum q =

∑
i≥0 pi · xi

j . This idea does no longer work over
Z2w . Consider, e.g., p = 231x2

1x2 + 231x1x2. Equating every x1-coefficient with zero
would lead to the polynomial 231x2 = 0 — which is not the weakest precondition, as
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p = 0 is trivially valid. The correctness of the new definition of [[xj :=?]]� for Z2w on
the other hand, follows from lemma 3.

The weakest precondition transformers [[s]]� for polynomials can be extended to
transformers of ideals. Assume that the ideal I is given through the set G of generators.
Then:

[[s]]� I = 〈
⋃

{[[s]]� g | g ∈ G}〉

Note that [[s]]� q is vanishing whenever q is already vanishing. Therefore,

[[s]]�(Iv) ⊆ Iv

for all s. Using the extended transformers, we put up the constraint system R�
pt

to
represent the precondition for the validity of a polynomial pt at program point t:

[R1]� R�
pt

(t) ⊇ 〈{pt}〉
[R2]� R�

pt
(u) ⊇ [[s]]�(R�

pt
(v)) , if e = (u, v) ∈ E ∧ A(e) ≡ s

For all program points, we may safely assume that all vanishing polynomials are valid.
Therefore, we may consider the given constraint system over ideals I subsuming Iv ,
i.e., with Iv ⊆ I . This implies that we only consider ideals I where p ∈ I whenever
p′ ∈ I for every polynomial p′ which is semantically equivalent to p. Note that the set
of ideals subsuming Iv (ordered by the subset relation ‘⊆”) forms a complete lattice.
Since all transformers [[s]]� are monotonic, this system has a unique least solution.
Since all transformers [[s]]� transform Iv into (subsets of) Iv and distribute over sums
of ideals, the least solution of the constraint system precisely characterises the weakest
preconditions for the validity of pt at program point t in a similar way as in [9]. We
have:

Lemma 4. Assume that R�
pt

(u), with u a program point, denotes the least solution of
the constraint system R�

pt
. Then the polynomial relation pt ∈ Z2w [X] is valid at the

target node t iff R�
pt

(st) ⊆ Iv . �

5 Computing with Ideals over Z2w [X]

In order to check the validity of the polynomial relation pt at program point t, we must
find succinct representations for the ideals occurring during fixpoint iteration which
allow us first, to decide when the fixpoint computation can be terminated and secondly,
to decide whether the ideal for the program start consists of vanishing polynomials only.

The basic idea consists in representing ideals through finite sets G of generators. In
order to keep the set G small, we explicitly collect only polynomials not in Iv . Thus, G
represents the ideal 〈G〉v = 〈G〉 ⊕ Iv = {g + g0 | g ∈ 〈G〉, g0 ∈ Iv}.

Keeping the representation of vanishing polynomials implicit is crucial, since the
number of necessary vanishing polynomials in G(k, w) is exponential in k. By lemma 2,
only polynomials up to degree 1.5(w + k) need to be chosen. By successively applying
reduction, we may assume that G is reduced and consists of polynomials which cannot
be (further) reduced by polynomials in G(k, w) only. Let us call such sets of generators
normal-reduced. Then by the characterisation of [16], 〈G〉v ⊆ Iv iff G = ∅.
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Example 4. Consider the polynomials p = x5+x4+2x2+3x and p̄ = 6x5+7x3+2x
over Z23 . In order to build a normal-reduced set of generators G, 〈G〉v = 〈{p, p̄}〉v,
we begin with a first round, reducing p and p̄ with the vanishing polynomial pv =
x4+2x3+3x2+2x: p′ = p+(7x+1)pv = 7x3+3x2+5x and p̄′ = p̄+(2x+4)pv =
5x3 + 2x. Next, p′ can be reduced by p̄′, leading to p′′ = p′ + 5p̄′ = 3x2 + 7x. p̄′ and
p′′ are nonreducible with respect to each other and Iv . Then 〈{, p′′, p̄′}〉v = 〈{p, p̄}〉v

where the set {p′′, p̄′} is normal-reduced. �

Concerning the computation of the fixpoint for R�
pt

, consider an edge e = (u, v) in
the control-flow graph of the program labelled with s = A(e). Each time when a new
polynomial p is added to the ideal R�

pt
(v) associated with program point v which is not

known to be contained in R�
pt

(v), all polynomials in [[s]]�p must be added to the ideal
R�

pt
(u) at program u. The key issue for detecting termination of the fixpoint algorithm

therefore is to check whether a polynomial p is contained in the ideal R�
pt

(u). Assume
that the ideal R�

pt
(u) is represented by the normal-reduced set G of generators. Clearly,

the polynomial p is contained in 〈G〉v = R�
pt

(u) whenever p can be reduced by G ∪
G(k, w) to the 0 polynomial. The reverse, however, need not necessarily hold.

Exact ideal membership based on Gröbner bases requires to extend the set G with
S-polynomials [1]. However, for generating all S-polynomials, virtually all pairs of gen-
erators must be taken into account. This applies also to the vanishing polynomials. The
number of vanishing polynomials in G(k, w) of degree O(w + k), however, is still ex-
ponential in k and also may comprise polynomials with many monomials. This implies
that any algorithm based on exhaustive generation of S-polynomials cannot provide de-
cent mean- or best case complexity at least in some useful cases. Therefore, we have
abandoned the generation of S-polynomials altogether, and hence also exact testing of
ideal membership.

Instead of ideals themselves, we therefore work with the complete lattice D of
normal-reduced subsets of polynomials in Z2w [X]. The ordering on the lattice D is
defined by G1 � G2 iff every element g ∈ G1 can be reduced to 0 w.r.t. G2 ∪ G(k, w).
The least element w.r.t. this ordering is ∅. Thus by definition, G1 � G2 implies 〈G1〉v ⊆
〈G2〉v, and 〈G〉v = Iv iff G = ∅. In order to guarantee the termination of the modified
fixpoint computation, we rely on the following observation:

Lemma 5. Consider a strictly increasing chain:

∅ � G1 � . . . � Gh

of normal-reduced generator systems over Z2w [X]. Then the maximal length h of this
chain is bounded by w · r with r as the number of head monomials occurring in any Gi.

Proof. For each Gi consider the set Hi, which denotes the set of terms t = 2s ·
xr1

1 . . .xrk

k for which a · t (a invertible) is the head term of a polynomial in Gi. Then
for every i, Hi contains a term t which has not yet occurred in any Hj , j < i. The value
h thus is bounded by the cardinality of H1 ∪ . . . ∪ Hh, which is bounded by w · r. �
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In case that we are given an upper bound d for the total degree of polynomials in lemma
5, then by prop. 1, the height h is bounded by h ≤ w · r ≤ w · (d + 1)k and thus is
exponential in k only.

The representation of ideals through normal-reduced sets of generators allows us
to compute normal-reduced sets of generators for the least solution of the constraint
system R�

pt
. We obtain:

Theorem 2. Checking the validity of a polynomial invariant in a polynomial program
with N nodes and k variables over Z2w can be performed in time O(N · k · w2 · r3)
where r is the number of monomials occurring during fixpoint iteration.

Proof. Verification of a polynomial invariant pt at a program point t is done via fix-
point iteration on sets of generators. Considering a set G[u] of generators representing
the ideal R�

pt
(u) of preconditions at program point u, we know from lemma 5, that

an increasing chain of normal-reduced generator systems is bounded by w · r. Each
time, that the addition of a polynomial p leads to an increase of G[u], the evaluation of
[[s]]�(p) is triggered for each edge (u, v) labelled with s. Each precondition transformer
creates only one precondition polynomial, except for the nondeterministic assignment.
Essentially, each [[xj :=?]]� causes d + 1 (d the maximal degree of xj) polynomials to
be added to the set of generators at the source u of the corresponding control flow edge.
Since the degree d of any variable xj in an occurring generator polynomial is bounded
by 1.5(w +1), we conclude that the total number of increases for the set G[u] of gener-
ators for program point u along the control flow edge (u, v) amounts to O(w2 · r). As
we can estimate the complexity of a complete reduction by O(k · r2) with the help of
lemma 1, we find that the amount of work induced by a single control flow edge there-
fore is bounded by O(k · w2 · r3). This provides us with the upper complexity bound
stated in this theorem. �

Assume that the maximal degree of a polynomial occurring in an assignment of the
input program has degree 2. Then the maximal total degree d of any monomial occurring
during fixpoint iteration is bounded by 1.5(w + k) + 3w + 2 = 4.5w + 1.5k + 2. By
prop. 1, the number r of monomials in the complexity estimation of theorem 2 is thus
bounded by (4.5w+k+3)k. From that, we deduce that our algorithm runs in polynomial
time – at least in case of constantly many variables. Of course, for three variables and
w = 25, the number r of possibly occurring monomials is already beyond 27·4 = 228

— which is far beyond what one might expect to be practical.
We implemented our approach and evaluated it on selected benchmark programs,

similar to the ones from [12]. We considered the series of programs power-i which
compute sums of (i − 1)-th powers, i.e., the value x =

∑
y yi−1. In the case i = 6, for

example, the invariant 12x− 2y6 − 6y5 − 5y4 +y2 could be verified for the end point
of the program. Additionally, we considered programs geo-i for computing variants
of the geometrical sum. An overview with verified invariants is shown in table 1. All
these invariants could be verified instantly on a contemporary desktop computer with
2.4 GHz and 2GB of main memory.
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Table 1. Test programs and verified invariants in w = 32

Name Computation verified invariant
power-1 x1 =

∑K
k=0 1 x2 =

∑K
k=0 1 x1 = x2

power-2 x1 =
∑K

k=0 k x2 =
∑K

k=0 1 2x1 = x2
2 + x2

power-3 x1 =
∑K

k=0 k2 x2 =
∑K

k=0 1 6x1 = 2x3
2 + 3x2

2 + x2

power-4 x1 =
∑K

k=0 k3 x2 =
∑K

k=0 1 4x1 = x4
2 + 2x3

2 + x2
2

power-5 x1 =
∑K

k=0 k4 x2 =
∑K

k=0 1 30x1 = 6x5
2 − 15x4

2 − 10x3
2 + x2

power-6 x1 =
∑K

k=0 k5 x2 =
∑K

k=0 1 12x1 = 2x6
2 − 6x5

2 − 5x4
2 + x2

2

geo-1 x1 = (x3 − 1)
∑K

k=0 xk
3 x2 = xK−1

3 x1 = x2 + 1
geo-2 x1 =

∑K
k=0 xk

3 x2 = xK−1
3 x1 · (x3 − 1) = x2x3 − 1

geo-3 x1 =
∑K

k=0 x4 · xk
3 x2 = xK−1

3 x1 · (x3 − 1) = x4x3x2 − x4

6 Inferring Polynomial Relations over Z2w

Still, no algorithm is known which, for a given polynomial program, infers all valid
polynomial relations over Q. In [9] it is shown, however, that at least all polynomial
relations up to a maximal total degree can be computed. For the finite ring Z2w , on the
other hand, we know from lemma 2 that every polynomial has an equivalent polynomial
of total degree at most 1.5(w + k). Therefore over Z2w , any algorithm which computes
all polynomial invariants up to a given total degree is sufficient to compute all valid
polynomial invariants.

For a comparison, we remark that, since Z2w is finite, the collecting semantics of a
polynomial program of length N is finite and computable by ordinary fixpoint iteration
in time N · 2O(wk). Given the set X ⊆ Z

k
2w of states possibly reaching a program point

v, we can determine all polynomials p of total degree at most 1.5(w+k) with p(x) = 0
for all x ∈ X by solving an appropriate linear system of |X | ≤ 2wk equations for the
coefficients of p. For every program point u, this can be done in time 2O(wk). Here,
our goal is to improve on this trivial (and intractable) upper bound. Our contribution is
to remove the w in the exponent and to provide an algorithm whose runtime, though
exponential in k in the worst case, may still be much faster on meaningful examples.

For constructing this algorithm, we are geared to the approach from [9]. This means
that we fix a template for the form of polynomials that we want to infer. Such a template
is given by a set M of monomials m = xr1

1 . . .xrk

k with r1 + . . . + rk ≤ 1.5(w + k).
Note that for small maximal total degree d the cardinality of M is bounded by (k + 1)d

while without restriction on d, the cardinality is bounded by an exponential in k (see
prop. 1). Given the set M , we introduce a set AM = {am | m ∈ M} of auxiliary
fresh variables am for the coefficients of the monomials m in a possible invariant. The
template polynomial pM for M then is given by pM =

∑
m∈M am · m.

Example 5. Consider the program variables x1 and x2. Then the template polynomial
for the set of all monomials of total degree at most 2 is given by: a1x2

1 + a2x2
2 +

a3x1x2 + a4x1 + a5x2 + a0. �
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With the help of the verification algorithm from section 4, we can compute the weakest
precondition for a given template polynomial pm. Since during fixpoint computation,
no substitutions of the generic parameters am are involved, each polynomial p in any
occurring set of generators is always of the form p =

∑
m∈M am · qm for polynomials

qm ∈ Z2w [X]. In particular, this holds for the set of generators computed by the fixpoint
algorithm for the ideal at the start point st of the program. We have:

Lemma 6. Assume that G is a set of generators of the ideal R�
pt

(st) for the template
polynomial pM at program point t. Then for any am ∈ Z2w , m ∈ M , the poly-
nomial

∑
m∈M amm is valid at program point t iff for all g ∈ G, the polynomial

g[am/am]m∈M is a vanishing polynomial. �

It remains to determine the values am, m ∈ M for which all polynomials g in a finite set
G are vanishing. First assume that the polynomials in G may contain variables from X.
Assume w.l.o.g. that it is xk which occurs in some polynomial in G where the maximal
degree of xk in polynomials of G is bounded by d. Then we construct a set G′ by:

G′ = {g[j/xk] | g ∈ G, j = 0, . . . , d}

The set G′ consists of polynomials g′ which contain variables from X\{xk} only.
Moreover by lemma 3, g[am/am]m∈M is vanishing for all g ∈ G iff g′[am/am]m∈M

is vanishing for all g′ ∈ G′. Repeating this procedure, we successively may remove all
variables from X to eventually arrive at a set Ḡ of polynomials without variables from
X. This means each g ∈ Ḡ is of the form g =

∑
m∈M am · cm for cm ∈ Z2w . There-

fore, we can apply the methods from [11] for linear systems of equations over Z2w

(now with variables from AM ) to determine a set of generators for the Z2w -module of
solutions. Thus, we obtain the following result:

Theorem 3. Assume p is a polynomial program of length N with k variables over the
ring Z2w . Further assume that M is a subset of monomials of total degree bounded by
1.5(w + k). Then all valid polynomial invariants

∑
m∈M cmm with cm ∈ Z2w can be

computed in time O(N · k · w2(r0r)3) where r0 is the cardinality of M and r is the
maximal number of monomials occurring during fixpoint iteration.

Proof. Generator sets of polynomials over M and X are always composed of poly-
nomials p of the form p =

∑
m∈M am · xd1

1 . . .xdk

k . Thus, the number of occurring
different monomials is bounded by r0 · r. Therefore, the maximal length of a strictly
increasing chain of normal-reduced sets of generators is bounded by w · r0 · r. As the
number of monomials in a polynomial is bounded by r0 · r, the costs for updating
a normal-reduced set of generators with a single polynomial is now O(k · (r0 · r)2).
Again, we have to account 1.5(w+1) for the number of polynomials which can be pro-
duced by weakest precondition transformers in a single step. Altogether, we therefore
have costs O(w · wr0r · k(r0r)2) which are incured at each of the control flow edges of
the program to be analysed. �

Finding all valid polynomial invariants means to compute the precondition for a tem-
plate with all monomials up to degree d = 1.5(w+k). We thus obtain (1.5(w+k)+1)k
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as an upper bound for the number r0 of monomials to be considered in the postcondi-
tion. For input programs where the maximal degree of polynomials in assignments or
disequalities is bounded by 2, the number r of occurring monomials can be bounded
by (4.5w + k + 3)k. Summarising, we find that all polynomial invariants which are
valid at a given program point can be inferred by an algorithm whose runtime is only
exponential in k. This means that this algorithm is polynomial whenever the number of
variables is bounded by a constant.

Example 6. Consider the program geo-1 next
to this paragraph which computes the geometri-
cal sum. At program end, we obtain the invariant
x−y+1 = 0 as expected. Beyond that, we ob-
tain the additional invariant 231y + 231x = 0
which is valid over Z232 only. This invariant ex-
presses that x and y are either both odd or both
even at a specific program state. �

1 int count = ?;
2 int x = 1, y = z;
3 while (count != 0){
4 count = count - 1;
5 x = x*z + 1;
6 y = z*y;
7 }
8 x = x*(z-1);

We used a prototypical implementation of the presented approach for conducting a test
series whose results on our 2,4 GHz 2 GB machine are shown in table 2. The algorithm
quickly terminates when inferring all invariants up to degree i for sums of powers of
degree i − 1 for i = 1, 2 and 3 and also for the two variants of geometrical sums. Inter-
estingly, it failed to terminate within reasonable time bounds for i = 4. In those cases
when terminating, it inferred the invariants known from the analysis of polynomial rela-
tions over Q — and quite a few extra non-trivial invariants which could not be inferred
before. It remains a challenge for future work to improve on our methods so that also
more complicated programs such as e.g. power-4 can be analysed precisely.

Table 2. Test programs and inferred invariants in w = 32

Name inferred polynomial time space
power-1 x0 − x1 0.065 sec 51 MB
power-2 x2

1 − 2x0 + x1 0.195 sec 63 MB
power-3 2x3

1 − 3x2
1 − x1 − 6x0,

230x2
1 − 231x0 + 230x1,

3·229x0x1+15·227x2
1−5·228x0+15·227x1,

3 · 228x2
0 − 25 · 126x0x1 − 77 · 224x2

1 − 25 ·
225x0 − 77 · 224x1,
21·224x3

1+191·223x2
1+65·224x0+149·223x1,

−19 ·226x3
0 +224x2

0x1 −235 ·222x0x2
1 −191 ·

223x0x1 +57 ·225x2
1 −27 ·226x0 +37 ·225x1

1.115 sec 89 MB

power-4 n.a. >24 h > 1 GB
geo-1 x0 − x1 − 1,

231x1 + 231x2 0.064 sec 48 MB
geo-2 231x1x2 + 231x2 , 231x1 + 231x2,

228x2
1 +230x1x2 −7 ·228x2

2 −3 ·229x2 +231,
x0x2 − x1x2 − x0 + 1 0.636 sec 65 MB

geo-3 23 polynomials . . . 2.064 sec 96 MB



Analysing All Polynomial Equations in Z2w 313

7 Conclusion

We have shown that verifying polynomial program invariants over Z2w is PSPACE-
complete. By that, we have provided a clarification of the complexity of another analysis
problem in the taxonomy of [6]. Beyond the theoretical algorithm for the upper bound,
we have provided a realistic method by means of normal-reduced generator sets. In
case of constantly many variables, this algorithm runs in polynomial time. Indeed, our
prototypical implementation was amazingly fast on all tested examples.

We extended the method for checking invariants to a method for inferring polynomial
invariants of bounded degree — which in case of the ring Z2w also allows to infer all
polynomial invariants. Beyond the vanishing polynomials, the algorithm finds further
invariants over Z2w , which would not be valid over the field Q and thus cannot be
detected by any analyser over Q. While still being polynomial for constantly many
variables, our method turned out to be decently efficient only for small numbers of
variables and low degree invariants. It remains for future work to improve on the method
for inferring invariants in order to deal with larger numbers of variables and moderate
degrees at least for certain meaningful examples.
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