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Abstract. This paper concerns methods to check for atomic-set seri-
alizability violations in concurrent Java programs. The straightforward
way to encode a reentrant lock is to model it with a context-free lan-
guage to track the number of successive lock acquisitions. We present
a construction that replaces the context-free language that describes a
reentrant lock by a regular language that describes a non-reentrant lock.
We call this replacement language strength reduction. Language strength
reduction produces an average speedup (geometric mean) of 3.4. More-
over, for 2 programs that previously exhausted available space, the tool
is now able to run to completion.

1 Introduction

Vaziri et al. [1] define an atomic set as a set of memory locations that share
a consistency property, and a unit-of-work as a code fragment that preserves
the consistency property. They specify eleven forbidden data-access patterns on
atomic sets; and show that an atomic-set serializability violation occurs iff one
of the data-access patterns is observed during a unit-of-work.

Empire [2] is a static violation1 detector for Java. Empire abstracts a concur-
rent Java program into a program written in the Empire Modeling Language
(EML). An EML program consists of a finite set of processes, a finite set of
global variables, and a finite set of locks. Each process consists of a set of (re-
cursive) functions with the standard control operators. As in Java, an EML lock
is reentrant, i.e., it can be acquired multiple times by the process that owns
the lock, but it also must be successively released the same number of times.
An EML lock is acquired and released by entering and exiting, respectively, a
function that is synchronized on the lock. (Java synchronized blocks are mod-
eled as inlined anonymous function invocations in EML.) EML provides a unit
block that denotes a unit-of-work. The unit blocks are allowed to be nested. An
example EML process is given in Fig. 1.

An execution trace of an EML process is described by a string of actions, where
an action corresponds to reading (writing) a variable, acquiring (releasing) a lock,
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1 l o ck : l ;
2 var : v ;
3

4 p roc e s s P0 {
5 synchron ized ( l ) ge t { read v ; }
6

7 synchron ized ( l ) s e t { wri te v ; }
8

9 synchron ized ( l ) testAndSet {
10 get ( ) ;
11 i f ( ∗ )
12 s e t ( ) ;
13 }
14

15 main {
16 unit {
17 testAndSet ( )
18 }
19 }
20 }

Fig. 1. Example program that makes use of reentrant locking

or entering (exiting) a unit block. The set of all execution traces of an EML
process is described by a context-free language (CFL) of actions. Similarly, the
set of all behaviors of an EML lock is described by a CFL. Finally, the set of all
interleaved execution traces of an EML program is described by the intersection
of a set S of CFLs—one for each EML process and one for each EML lock.
Intersection ensures that the mutual-exclusion property of locks is obeyed.

Violation detection is performed by determining the emptiness of the inter-
section of the set S, augmented with a regular language Ldata that defines a
data-access pattern. Determining the emptiness of the intersection of two or
more CFLs is undecidable. This issue is addressed by translating the EML pro-
gram, along with Ldata, into a communicating pushdown system (CPDS) [3,4],
for which a semi-decision procedure is implemented in the CPDS model checker
[4]. The semi-decision procedure over-approximates each CFL by a regular lan-
guage and then checks whether the intersection of the regular languages is empty
(which is decidable). If the intersection is empty or it contains a valid string in
each of the original CFLs, then the model checker terminates. Otherwise, the
process is repeated using a tighter regular over-approximation of each CFL.

If a language is known to be regular (e.g., Ldata), then the CPDS model
checker can be directed to treat it as such (determining if a CFL is regular is
also undecidable). This has two key advantages:

1. Precision increases because the model checker uses the exact language.
2. Cost decreases because the model checker avoids approximating a CFL.

This paper presents a generic technique that we use to reduce the number of
CFLs necessary to model an EML program. It is based on the observation that
the CFL for an EML lock can be replaced by a regular language because the
EML lock’s acquisitions and releases are synchronized with function calls and
returns. We call the process of replacing a CFL by a regular language language
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strength reduction. For an EML program with m processes and n locks, applying
language strength reduction allows the program to be described by m CFLs and
n regular languages, versus m + n CFLs.

Contributions. The observation that pushdown automata are closed under
intersection when the stacks are synchronized was formalized in the work of
Alur and Madhusudan [5,6]. They defined nested-word languages, which make
stack operations explicit in the words of the language, and nested-word au-
tomata (NWA), which accept such languages. They showed that these lan-
guages are closed under intersection. However, their result does not apply in our
setting.

In our setting, a CPDS consists of a set of extended weighted pushdown sys-
tems (EWPDSs) [7]. EWPDSs are a generic formalism for modeling recursive
programs (cf. §3.1). They are able to model more powerful program abstractions
than the pushdown automata used in [5,6]. (EWPDSs can model infinite-state
data abstractions, as opposed to pushdown automata, which can only model
finite-state data abstractions.) EWPDSs allow one to compute meet-over-all-
valid-paths (MOVP) values for the abstraction, which goes beyond the capa-
bilities of the approach proposed by Alur and Madhusudan. The MOVP values
capture the set of behaviors of the program modeled by the EWPDS.

Our approach is similar in spirit to [6]. We use an NWA A to model the
locking behavior of an EML process. We define the nested-word language of an
EWPDS (cf. §4.1) by associating a nested-word with every path of the EWPDS.
This makes its stack operations explicit. We give a generic construction that
combines A with an EWPDS E to produce another EWPDS EA whose nested-
word language is the intersection of the nested-word languages of E and A.
Computing the MOVP value over EA captures the set of all behaviors of the
program modeled by E that respect the locking behaviors described by A.

The key to language strength reduction is distinguishing between the lock
acquisitions and releases that change the owner of a lock l and those that do
not. We show how to achieve this using the NWA A. We then transfer this ability
to the EWPDS E for an EML process via the construction of EA. This enables
us to perform language strength reduction for the lock l (cf. §5).

Our work makes the following contributions:

– We define the notion of the nested-word language of an EWPDS (§4.1). We
give a construction to combine an NWA A with an EWPDS E to produce
another EWPDS EA (§4.2). This generalizes previous results, and permits
verification to be performed using a broader class of abstract domains (see
Defn. 2).

– We show how the construction allows one to perform language strength re-
duction (§5).

– We analyzed 5 programs from the concurrency testing benchmark suite by
Eytani et al. [8]. Our technique obtained an average speedup of 3.4 on 3
of the programs. Moreover, for the 2 programs that previously exhausted
available space, the tool is now able to run to completion.
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S → U
M → ε | M M | ( M )
U → M | M U | ( U

(a)

S → Uo

Mo → ε | Mo Mo | (o Mn )o

Uo → Mo | Mo Uo | (o Un

Mn → ε | Mn Mn | (n Mn )n

Un → Mn | Mn Un | (n Un

(b)

S → (o )o S | (o | ε

(c)

Fig. 2. (a) Grammar for the CFL of a reentrant lock. (b) Grammar that distinguishes
between outermost and nested parentheses. (c) Grammar for the regular language of a
non-reentrant lock.

The remainder of the paper is organized as follows: §2 provides an overview.
§3 presents definitions and examples. §4 presents the nested-word language of
an EWPDS and the construction that combines an NWA with an EWPDS. §5
presents the language-strength-reduction transformation. §6 describes our ex-
periments. §7 discusses related work.

2 Overview

Consider the EML process in Fig. 1. Let “(” and “)” denote entering and exiting
a synchronized(l) function, “[” and “]” denote entering and exiting a unit
block, and Rv and Wv denote reading and writing to the variable v, respectively.
The program path

Path 1: main → testAndSet → get → set → testAndSet → main

can be described by the word wpath = “[((Rv)(Wv))]”. Removing all symbols that
do not model a change in the state of the lock l produces the word wl = “(()())”.
In general, due to recursion, the language that describes the set of possible
program behaviors with respect to l is a partially-balanced matched-parenthesis
language, whose grammar is shown in Fig. 2(a).

For Path 1, there are two distinct types of lock acquisitions: ownership-
changing acquisitions (OC) and non-ownership-changing acquisitions (nOC).
The dual also holds for lock releases. With respect to wl, these two distinct types
correspond to outermost parentheses, denoted by “(o)o”, and nested parenthe-
ses, denoted by “(n)n”, respectively. Using this notation, wl can be rewritten
as “(o(n)n(n)n)o”. Fig. 2(b) extends this to the language level by distinguishing
between the outermost and nested parentheses of Fig. 2(a).

Observation 1. With respect to the executions of an EML program, only the
OC lock acquisitions and releases enforce mutual exclusion. For a program trace,
projecting out the nOC lock acquisitions and releases does not change the set of
instructions that are guarded by locks.

Projecting out the nested parentheses for wl results in “(o)o”. Performing the
projection on the grammar in Fig. 2(b) results in a regular language whose
grammar is shown in Fig. 2(c).
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This paper presents a technique that allows us to use the simpler language in
Fig. 2(c) in place of the language in Fig. 2(a). We call this replacement language
strength reduction. Language strength reduction provides the precision and cost
benefits highlighted by items 1 and 2 of §1.

Language strength reduction relies on the ability to distinguish between the
OC and nOC lock acquisitions of an EML process. In §3.3, we show how this
distinction can be captured by an NWA. Having defined the language of Fig. 2(b)
via an NWA A, we combine it with the EWPDS E that represents an EML
process. This results in another EWPDS EA on which we then project out all
nOC lock acquisitions and releases—the end result being that each EML lock is
modeled by the regular language shown in Fig. 2(c) in the CPDS model checker.
Using the simpler language of Fig. 2(c) leads to the speedups reported in §6.

The goal of language strength reduction is to model reentrant locks with
non-reentrant locks without sacrificing soundness or precision. This problem can
be tackled by either source-code modification or by manipulating the program
model. In our model checker’s tool chain, a CPDS is produced from a concurrent
Java program, and thus we followed the approach of modifying the EWPDSs
that make up the generated CPDS. A benefit of this approach is that we have
developed generic techniques that apply to a declarative specification of the set
of locks. That is, given the set of lock names, the techniques we present perform
language strength reduction automatically.

3 Definitions and Examples

3.1 Extended Weighted Pushdown Systems

Definition 1. A pushdown system (PDS) is a triple P = (P, Γ, Δ), where P
is a finite set of states, Γ is a finite set of stack symbols, and Δ ⊆ P ×Γ ×P ×Γ ∗

is a finite set of rules. A configuration of P is a pair 〈p, u〉 where p ∈ P and
u ∈ Γ ∗. A rule r ∈ Δ is written as 〈p, γ〉 ↪→ 〈p′, u〉, where p, p′ ∈ P , γ ∈ Γ ,
and u ∈ Γ ∗. These rules define a transition relation ⇒ on configurations of P
as follows: if r = 〈p, γ〉 ↪→ 〈p′, u′〉, then 〈p, γu〉 ⇒ 〈p′, u′u〉 for all u ∈ Γ ∗. The
reflexive transitive closure of ⇒ is denoted by ⇒∗.

Without loss of generality, we restrict PDS rules to have at most two stack
symbols on the right-hand side [9]. A rule r = 〈p, γ〉 ↪→ 〈p′, u〉, u ∈ Γ ∗, is called
a push, step, or pop rule if |u| = 2, |u| = 1, or |u| = 0, respectively.

A PDS naturally models a program’s control flow. The standard approach is as
follows: P contains a single state p, Γ corresponds to the nodes of the program’s
interprocedural control flow graph (ICFG), and Δ corresponds to edges of the
program’s ICFG (see Fig. 3). We denote the entry point of a program’s main
function by emain, and let cinit = 〈p, emain〉. A run of P is a rule sequence ρ =
[r1, . . . , rj ] that transforms cinit into some other configuration c.2 We denote the

2 It is not necessary to restrict the definition of a run to start from the initial config-
uration. However, this simplifies the discussion.
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Rule Control flow modeled
〈p, n1〉 ↪→ 〈p, n2〉 Intraprocedural edge n1 → n2

〈p, nc〉 ↪→ 〈p, ef rc〉 Call to f , with entry ef , from nc that returns to rc

〈p, xf 〉 ↪→ 〈p, ε〉 Return from f at exit xf

Fig. 3. The encoding of an ICFG’s edges as PDS rules

set of all runs of P by Runs(P), which represents the set of all interprocedurally-
valid paths in the program.

An extended weighted pushdown system (EWPDS) is obtained by augmenting
a PDS with a weight domain [10,3] and a set of merging functions [7]. Weights
encode the effect that each statement (or PDS rule) has on the data state of
the program. Merging functions are used to fuse the local state of the calling
procedure as it existed just before the call with the global state produced by the
called procedure.

Definition 2. A weight domain is a tuple (D, ⊕, ⊗, 0, 1), where D is a set
whose elements are called weights, 0, 1 ∈ D, and ⊕ (the combine operation)
and ⊗ (the extend operation) are binary operators on D such that

1. (D, ⊕) is a commutative monoid with 0 as its neutral element, and where ⊕
is idempotent (i.e., for all a ∈ D, a ⊕ a = a). (D, ⊗) is a monoid with the
neutral element 1.

2. ⊗ distributes over ⊕, i.e., for all a, b, c ∈ D we have
a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) and (a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c) .

3. 0 is an annihilator with respect to ⊗, i.e., for all a ∈ D, a ⊗ 0 = 0 = 0 ⊗ a.
4. In the partial order 
 defined by ∀a, b ∈ D, a 
 b iff a ⊕ b = a, there are no

infinite descending chains.

Example: The Prefix Weight Domain for CPDSs [3]. For a CFL L over
finite alphabet Σ, the prefix abstraction precisely models each word w ∈ L whose
length is less than a bound k. If |w| ≥ k, then w is approximated by the regular
language w|kΣ∗, where w|k denotes the prefix of w of length k. Because there
are only a finite number of words and prefixes whose lengths are less than or
equal to k, the prefix abstraction produces a regular approximation of L.

For two words w1 = a1 . . . ai and w2 = b1 . . . bj, let w1 �	k w2 be the word
(a1 . . . aib1 . . . bj)|k. We extend �	k to finite sets in the obvious way. For a finite
alphabet Σ and bound k, let D be the powerset of

⋃
0≤i≤k Σi. The prefix weight

domain is defined as S|k = (D, ∪, �	k, ∅, {ε}).

Definition 3. A function m : D ×D → D is a merging function with respect
to a weight domain (D, ⊕, ⊗, 0, 1) if it satisfies the following properties:

1. Strictness. For all a ∈ D, m(0, a) = m(a, 0) = 0.
2. Distributivity. The function distributes over ⊕. For all a, b, c ∈ D,

m(a ⊕ b, c) = m(a, c) ⊕ m(b, c) and m(a, b ⊕ c) = m(a, b) ⊕ m(a, c)
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Rules Weight dconst

1 〈p, emain〉 ↪→ 〈p, n16〉 1
2 〈p, n16〉 ↪→ 〈p, n17〉 { [ }
3 〈p, n17〉 ↪→ 〈p, etestAndSet n18〉 { ( } { ) }
4 〈p, etestAndSet〉 ↪→ 〈p, n10〉 1
5 〈p, n10〉 ↪→ 〈p, eget n11〉 { ( } { ) }
6 〈p, eget〉 ↪→ 〈p, xget〉 {Rv}
7 〈p, xget〉 ↪→ 〈p, ε〉 1

Rules Weight dconst

8 〈p, n11〉 ↪→ 〈p, n12〉 1
9 〈p, n12〉 ↪→ 〈p, eset xtestAndSet〉 { ( } { ) }

10 〈p, eset〉 ↪→ 〈p, xset〉 {Wv}
11 〈p, xset〉 ↪→ 〈p, ε〉 1
12 〈p, xtestAndSet〉 ↪→ 〈p, ε〉 1
13 〈p, n18〉 ↪→ 〈p, xmain〉 { ] }
14 〈p, xmain〉 ↪→ 〈p, ε〉 1
15 〈p, n11〉 ↪→ 〈p, xtestAndSet〉 1

Fig. 4. EWPDS rules that encode EML process P0 from Fig. 1 (subscripts correspond
to the line numbers). Only the constant weight dconst is shown for the merging functions.

Example: The Prefix Merging Functions of Empire. The prefix merging
functions used by Empire are of the form λd1.λd2.d1 ⊗d2 ⊗dconst, where dconst is
either 1 for invoking non-synchronized functions, or { ) } for invoking a function
that is synchronized on a lock l. Note that placing the close-parenthesis symbol,
corresponding to the release of a lock, inside of a merge function accurately
reflects the behavior of returning from a synchronized function.

Definition 4. Let M be the set of all merging functions on weight domain S,
and let Δ2 denote the set of push rules of a PDS P. An extended weighted
pushdown system is a quadruple E = (P , S, f, g) where P = (P, Γ, Δ) is a
PDS, S = (D, ⊕, ⊗, 0, 1) is a weight domain, f : Δ → D is a map that assigns
a weight to each rule of P, and g : Δ2 → M assigns a merging function to each
rule in Δ2.

Example: An EWPDS for an EML process. For an EML process π, an
EWPDS E〈π〉 is generated using the schema from Fig. 3, the prefix weight do-
main, and the prefix merging functions. Fig. 4 presents the rules that encode
process P0 from Fig. 1.

Run of an EWPDS. A run of an EWPDS E is simply a run of its underly-
ing PDS. We denote the set of all runs of E by Runs(E), and the set of runs
ending in configuration c as Runs(E , c). Using f and g, we can associate a
value to a run ρ, denoted by val(ρ). To do so, we define the helper functions
val[r], build, and flatten. The function val[r](z, S) takes a weight and a weight-
rule stack, and returns a weight and weight-rule stack:

val[r](z, S) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(z ⊗ f(r), S) if r = 〈p, γ〉 ↪→ 〈p′, γ′〉
(1, (z, r)||S) if r = 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉
(g(rc)(zc, f(rc) ⊗ z ⊗ f(r)), S′) if r = 〈p, γ〉 ↪→ 〈p′, ε〉

and S = (zc, rc)||S′

(z ⊗ f(r), S) if r=〈p, γ〉 ↪→ 〈〉p′, ε and S =∅
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The function build(ρ) maps a run to a weight and weight-rule stack as follows:

build([]) = (1, ∅)
build([r1, . . . , rj ]) = val[rj ](build([r1, . . . , rj−1]))

The function flatten(z, S) “flattens” a weight and weight-rule stack by using the
extend (⊗) operation:

flatten(z, ∅) = z
flatten(z, (zc, rc)||S′) = flatten(zc ⊗ f(rc) ⊗ z, S′)

Given these definitions, val(ρ) = flatten(build(ρ)).

Example: Valuation of Path 1. Using the EWPDS rules of Fig. 4, and for a
prefix bound k > 10, one can verify that val([r1, . . . , r14]) = { [((Rv))(Wv))] },
which is the set containing only the word given in §2 for Path 1.

Definition 5. For EWPDS E and a set of configurations C, the meet-over-all-
valid-paths value MOVPE(C) is defined as

⊕
{val(ρ) | ρ ∈ Runs(E , c), c ∈ C}.

The MOVP value captures the net effect of all paths leading to a set of config-
urations. An algorithm for computing MOVP is given in [7].

Example: MOVP for EML process P0 from Fig. 1. Let E〈P0〉 be the
EWPDS for process P0 with rules given in Fig. 4. For a prefix bound k > 10,
MOVPE〈P0〉(〈p, xmain〉) = { [((Rv)(Wv))] , [((Rv))] }. The first string describes
the path that follows the true branch of the if statement at line 11 in Fig. 1,
and the second string describes the path that follows the false branch. Because
process P0 has only two valid paths and k > 10, the MOVP weight precisely de-
scribes the behavior of process P0. However, if k was instead the value 8, then the
result of the same MOVP computation would be { [((Rv)(Wv)Σ∗ , [((Rv))] }.
Note that the first string has been approximated by an infinite set of strings.

3.2 Communicating Pushdown System

A CPDS consists of a set of EWPDSs E1, . . . , En, where each EWPDS Ei uses the
prefix weight domain and merging functions, and a set of target configurations
C1, . . . , Cn. The CPDS model checker computes: S =

⋂
1≤i≤n MOVPEi(Ci). The

set S is the intersection of the prefix abstractions for each CFL that is modeled
by an EWPDS. If S = ∅, then so is the intersection of the CFLs. Otherwise, let
w be the shortest word in S. If |w| = k, then k is incremented and the process
repeats. Otherwise, w represents a concrete execution of the EML program that
reaches the target configurations.

3.3 Nested Word Automata

Alur et al. [6] define a nested word to be a pair (w, v), where w is a word a1 . . . ak

over a finite alphabet and v, the nesting relation, is a subset of {1, 2, . . . , k} ×
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({1, 2, . . . , k} ∪ {∞}). The nesting relation denotes a set of properly nested hier-
archical edges of a nested word. For a valid nesting relation, v(i, j) implies i < j,
and for all i′, j′ such that v(i′, j′) holds and i < i′, then either j < i′ or j′ < j.
Given v, i is a call position if v(i, j) holds for some j, a return position if v(k, i)
holds for some k, and an internal position otherwise.

A set of nested words is regular if it can be modeled by a nested-word au-
tomaton (NWA) [6]. An NWA A is a tuple (Q, Σ, q0, δ, F ), where Q is a fi-
nite set of states, Σ is a finite alphabet, q0 ∈ Q is the initial state, F ⊆ Q
is a set of final states, and δ is a transition relation that consists of three
components:

– δc ⊆ Q × Σ × Q defines the transition relation for call positions.
– δi ⊆ Q × Σ × Q defines the transition relation for internal positions.
– δr ⊆ Q × Q × Σ × Q defines the transition relation for return positions.

Starting from q0, an NWA A reads a nested word nw = (w, v) from left to right,
and performs transitions (possibly non-deterministically) according to the input
symbol and the nesting relation. That is, if A is in state q when reading input
symbol σ at position i in w, then if i is a call or internal position, A makes a
transition to q′ using (q, σ, q′) ∈ δc or (q, σ, q′) ∈ δi, respectively. Otherwise, i is
a return position and v(j, i) holds for some j. Let qc be the state A was in just
before the transition it made on the jth symbol; then A uses (q, qc, σ, q′) ∈ δr

to make a transition to q′. If, after reading nw, A is in a state q ∈ F , then A
accepts nw [6].

We use L(A) to denote the nested-word language that A accepts, and L(A, q)
to denote the nested-word language such that for each nested word nw ∈ L(A, q),
A is left in state q after reading nw. We extend this notion to sets of states in
the obvious way. Thus, L(A) = L(A, F ).

Table 1. An NWA template for the locking be-
havior of an EML process

δc δr δi

(q, esync, �) (�, qc, xsync, qc) (q, σ, q)
(q, e, q) (q, q, x, q)

An NWA Template for
Lock Behavior. For an EML
lock l and process π with set
of functions Sync synchronized
on l and set of functions Fun
not synchronized on l, the lock-
ing behavior of π on l is de-
fined by an NWA A〈π〉 =
(Q, Σ, q0, δ, F ), where Q = {�, �}, Σ is the set of control locations of π, q0 = �,
F = Q, and δ is defined in Tab. 1. (The transitions in Tab. 1 are instantiated for
all q ∈ Q, esync ∈ {ef | f ∈ Sync}, e ∈ {ef | f ∈ Fun}, xsync ∈ {xf | f ∈ Sync},
x ∈ {xf | f ∈ Fun}, and σ ∈ (Σ − {esync, xsync, e, x}).)

A〈π〉 consists of two states: locked (�) and unlocked (�). The entry to and exit
from a function f are denoted by ef and xf, respectively. When an l-synchronized
function is called, A〈π〉 makes a transition to the locked state via the transitions
(q, esync, �). When returning from a function, the state of the caller is restored.
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For example, the transitions (�, qc, xsync, qc) ensure that A〈π〉 goes to state qc

of the caller.

Template Usage. For EML process P0 from Fig. 1, let E〈P0〉 be the EWPDS
that models P0 with the rules shown in Fig. 4, and let A〈P0〉 be the NWA that re-
sults from instantiating the above template with P0. With respect to the locking
behavior of P0, E〈P0〉 cannot distinguish between OC and nOC lock acquisitions
and releases, while A〈P0〉 is able to do so via its state space. The transitions
(�, esync, �) and (�, esync, �) in δc are the OC and nOC lock acquisitions, re-
spectively; and transitions (�, �, esync, �) and (�, �, esync, �) in δr are the nOC
and OC lock releases, respectively.

We show how to combine E〈P0〉 and A〈P0〉 in §4 to construct another EWPDS
EA〈P0〉, such that EA〈P0〉 contains the same behaviors as E〈P0〉, but is able to
distinguish between the OC and nOC lock acquisitions and releases. Once such
a distinction can be made, we leverage Observation 1 to remove all nOC lock
acquisitions and releases from EA〈P0〉. This makes it possible to model an EML
lock with the trivial language shown in Fig. 2(c).

4 Combining an NWA with an EWPDS

We first define the notion of the nested-word language of an EWPDS, which
establishes a relationship between the NWA and EWPDS formalisms. Addition-
ally, it allows us to formally reason about the construction of §4.2 that combines
an NWA with an EWPDS.

4.1 The Nested-Word Language of an EWPDS

The nested-word language of an EWPDS E = (P , S, f, g), denoted by L(E), is
defined in terms of the set of runs of E . Intuitively, if (w, v) is a nested word in
L(E), w consists of the sequence of left-hand-side stack symbols γ1 . . . γj for a
run [r1, . . . , rj ] of Runs(E), and v encodes the matching calls and returns. We
additionally require that the valuation of the run not be equal to the weight
zero, i.e., val(ρ) �= 0. This notion is formalized by defining the function post,
which maps a run of E to a nested word. The function post is defined recursively
in terms of the helper function post [r](w, v).

For a nested word nw = (w, v) and rule r ∈ Δ, post [r](w, v) is defined as
follows:

post [r](w, v) =
⎧
⎪⎪⎨

⎪⎪⎩

(wγ, v) if r = 〈p, γ〉 ↪→ 〈p′, γ′〉
(wγ, (v − {〈i, ∞〉}) ∪ {〈i, |wγ|〉}) if r = 〈p, γ〉 ↪→ 〈p′, ε〉,

i = max({j | 〈j, ∞〉 ∈ v})
(wγ, v ∪ {〈|wγ|, ∞〉}) if r = 〈p, γ〉 ↪→ 〈p′, γ′ γ′′〉
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Using post [r], we define the function post([r1 . . . rj ])3 as follows:

post([]) = (ε, ∅)
post([r1, . . . , rj ]) = post [rj ](post([r1, . . . , rj−1]))

Definition 6. For an EWPDS E, the nested-word language L(E) is defined as
L(E) = {post(ρ) | ρ ∈ Runs(E) ∧ val(ρ) �= 0}.

We will sometimes wish to further restrict L(E) by an acceptance criterion, which
we call ϕ-acceptance.

Definition 7. The ϕ-accepted nested-word language for an EWPDS E and
function ϕ : D → B is defined as Lϕ(E) = {post(ρ) | ρ ∈ Runs(E) ∧ val(ρ) �=
0 ∧ ϕ(val(ρ))}.

4.2 Construction

The construction that combines an EWPDS E with an NWA A produces another
EWPDS EA. The weight domain of EA models the transition relation of A in
addition to the original weight domain of E . This is accomplished via a relational
weight domain.

Definition 8. A weighted relation on a set G, with weight domain S =
(D, ⊕, ⊗, 0, 1), is a function from (G×G) to D. The composition of two weighted
relations R1 and R2 is defined as (R1; R2)(g1, g3) = ⊕{w1 ⊗w2 | ∃g2 ∈ G : w1 =
R1(g1, g2), w2 = R2(g2, g3)}. The union of the two weighted relations is defined
as (R1∪R2)(g1, g2) = R1(g1, g2)⊕R2(g1, g2). The identity relation is the function
that maps each pair (g, g) to 1 and others to 0. The reflexive transitive closure
is defined in terms of these operations, as usual. If R is a weighted relation and
R(g1, g2) = z, then we write g1

z−→ g2 ∈ R.

Definition 9. If S is a weight domain with set of weights D and G is
a finite set, then the relational weight domain on (G, S) is defined as
(2G×G→D, ∪, ; , ∅, id): weights are weighted relations on G, combine is union,
extend is weighted relational composition (“;”), 0 is the empty relation, and 1 is
the weighted identity relation on (G, S).

This weight domain can be encoded symbolically using techniques such as alge-
braic decision diagrams [11].

The weight domain of EA will be a relational weight domain on (G, S), where
G encodes the state space of A, and S is the weight domain of E . Intuitively,
for a run ρ of EA, the valuation val(ρ) in EA is a weighted relation R such
that if q1

z−→ q2 ∈ R, then (i) the valuation val(ρ) in E must be equal to
z, and (ii) starting from state q1, A can make a transition to state q2 on the
nested word post(ρ). We now introduce some notation needed to show how this
is accomplished by the construction.
3 post [r](nw) is not always defined because of max; and thus neither is post. However,

for a run of a PDS from the initial configuration, both will always be defined.
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First, for an NWA A = (Q, Σ, q0, δ, F ), we define Σε = Σ∪{ε}. The relational
weight domain of EA is over the finite set Q × Σε. The pairing of Q with Σε is
used below to properly model the return relation δr of A. We denote an element
(q, σ) of this set by qσ, but omit σ when σ = ε.

Second, we define the restriction of δi to σ, denoted by δ
|σ
i , to be the relation

with (q1, q2) ∈ δ
|σ
i iff (q1, σ, q2) ∈ δi. Note that by representing (q1, q2) as (qε

1, q
ε
2),

δ
|σ
i can be embedded into (Q × Σε) × (Q × Σε) using only states in which q ∈ Q

is paired with ε (i.e., qε). Henceforth, we abuse notation and use δ
|σ
i to mean the

version that is embedded in (Q × Σε) × (Q × Σε). We define δ
|σ
c similarly. δ

|σ
i

and δ
|σ
c will be the relational part of the weights that annotate step and push

rules in EA. By restricting δi (δc) to σ, a run of EA enforces that E and A are
kept in lock step (see Construction 1 ).

Third, we define the function expand(σ), which takes as input a symbol σ ∈ Σ
and generates the relation {(qε, qσ) | q ∈ Q}. This is used to pass the return
location to EA’s merging functions, which is needed for properly modeling the
return relation δr of A.

Fourth, we define δ̂ so that (qσ
r , qc, q) ∈ δ̂ iff (qr, qc, σ, q) ∈ δr. Notice that δ̂

combines the input symbol σ used in δr with the return state. This is used by
EA’s merging functions to receive the return location passed via expand.

Construction 1. The combination of an EWPDS E = (P , S, f, g) and an
NWA A = (Q, Σ, q0, δ, F ) is modeled by an EWPDS EA that has the same
underlying PDS as E , but with a new weight domain and new assignments of
weights and merging functions to rules: EA = (PA, SA, fA, gA), where PA = P ,
SA = (DA, ⊕A, ⊗A, 0A, 1A) is the relational weight domain on the set Q × Σε

and weight domain S, and fA and gA are defined as follows:

1. For step rule r = 〈p, n1〉 ↪→ 〈p′, n2〉 ∈ Δ, fA(r) = {q1
f(r)−−−→ q2 | (q1, q2) ∈

δ
|n1
i }.

2. For push rule r = 〈p, nc〉 ↪→ 〈p′, e rc〉 ∈ Δ, fA(r) = {q1
f(r)−−−→ q2 | (q1, q2) ∈

δ
|nc
c } and

gA(r)(wc, wx) =
⎧
⎨

⎩
q1

z−→ q2 | ∃a, b :

⎛

⎝
q1

z1−−→ a ∈ wc

∧ a
z2−−→ b ∈ (fA(r) ⊗ wx)

∧ δ̂(b, a, q2)

⎞

⎠ , z = g(r)(z1, z2)

⎫
⎬

⎭

3. For pop rule r = 〈p, x〉 ↪→ 〈p′, ε〉 ∈ Δ, fA(r) = {q
f(r)−−−→ qx | (q, qx) ∈

expand(x)}.

The properties of Construction 1 are that (i) EA’s nested-word language is
the intersection of those of E and A, and (ii) the behaviors of EA (summarized by
its MOVP values) are those of E restricted by A. Formally, these are captured
by Thm. 1 and Cor. 1.
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Theorem 1. An NWA A combined with an EWPDS E results in an EWPDS
EA such that Lϕ(EA) = L(A, Q)∩L(E), where for a run ρ of EA with z = val(ρ),
ϕ(z) = ∃q ∈ Q : q0

y−→ q ∈ z, and y �= 0.

Proof. See [12].

Corollary 1. An NWA A combined with an EWPDS E results in an EWPDS
EA such that MOVPEA(C) =

⊕
{val(ρ) | ρ ∈ Runs(E , c), c ∈ C, post(ρ) ∈

L(A, Q)}.

Complexity of EA versus E. The complexity of computing MOVP on an
EWPDS is proportional to the height of the weight domain, which is defined to
be the length of the longest descending chain in the domain.4 If H is the height
of the weight domain of E , then the height of the weight domain of EA is H |Q|2,
where Q is the set of states of A. Because E and EA have the same PDS, the
complexity of computing MOVP on EA only increases by a factor of |Q|2.

5 Language Strength Reduction for the Empire Tool

Thm. 1 and Cor. 1 show that the EWPDS EA created by Construction 1 is able to
model both E and A simultaneously (for nested words in their intersection). This
capability allowed us to use language strength reduction to improve the Empire
tool’s performance. To make the discussion clear, we focus on EML process P0
from Fig. 1. The first three steps are as follows:

1. E〈P0〉 is generated using the original Empire translation. Recall that the
weight domain of E〈P0〉 is the prefix weight domain.

2. Let Locks be the set of locks of the EML program. For each lock l ∈ Locks, an
NWA Al〈P0〉 is generated using the NWA template from §3.3. Define A〈P0〉
to be

⋂
l∈Locks Al〈P0〉. The state space Q of A〈P0〉 is equal to 2|Locks|. That

is, each q ∈ Q represents a set of locks that are held. Note that in Fig. 1,
there is only one lock l, and thus A〈P0〉 = Al〈P0〉, and Q = {�, �}.

3. EA〈P0〉 is generated from E〈P0〉 and A〈P0〉 using Construction 1. The NWA
template from §3.3 is instantiated for A〈P0〉, and thus L(A〈P0〉) = L(E〈P0〉).
Hence, EA〈P0〉 contains the same behaviors as E〈P0〉. Additionally, due of
Thm. 1, EA〈P0〉 is able to distinguish between OC and nOC lock acquisitions
and releases in the same manner as A〈P0〉.

From Fig. 2(a) to Fig. 2(b) The weight domain of EA〈P0〉 is a relational
weight domain over Q and the prefix weight domain of E〈P0〉. In E〈P0〉, the rule
r = 〈p, n12〉 ↪→ 〈p, eset xtestAndSet〉 is annotated with the weight { ( }. In EA〈P0〉,
r is annotated with the weight
4 EWPDSs can also be used when the height is unbounded, provided there are no

infinite descending chains. To simplify the discussion of complexity, we assume the
height to be finite.
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Table 2. For Path 1 of EA〈P0〉, a prefix bound of 7, and ρ = [r1, . . . , r14] from Fig. 4,
cols. (a) and (b) present val(ρ)(�,�) before and after distinguishing between OC and
nOC lock acquisitions and releases, respectively. Col. (c) presents val(ρ)(�,�) after
removing all nOC lock acquisitions and releases from EA〈P0〉. Note that for cols. (a)
and (b), the valuation is an approximation, whereas col. (c) is able to describe Path 1
exactly within the given prefix bound.

(a) (b) (c)
[((Rv)(WvΣ∗ [(o(nRv)n(nWvΣ∗ [(oRvWv)o]

R = {� { ( }−−−−→ �, � { ( }−−−−→ �}

Observe that the state space of A〈P0〉 is encoded in the weight, and that R(�, �)
denotes an OC lock acquisition, and R(�, �) denotes an nOC lock acquisition.
This is represented in R by annotating the two open-parenthesis symbols with
the open and nested subscripts, respectively:

R = {� { (o }−−−−→ �, � { (n }−−−−−→ �}

In other words, we perform the following transformation: For a weighted rela-
tion R, if R(�, �) = { ( }, then R(�, �) = { (o }; and if R(�, �) = { ( }, then
R(�, �) = { (n }. Performing this transformation, and its dual for lock releases,
on the weight of each rule and merging function induces a homomorphism, with
respect to lock acquisitions and releases, from Fig. 2(a) to Fig. 2(b), on the
language computed by MOVP(EA〈P0〉). This is illustrated by the weighted val-
uations for Path 1 in Tab. 2, columns (a) and (b).

From Fig. 2(b) to Fig. 2(c). Once EA〈P0〉 is able to distinguish between OC
and nOC lock acquisitions and releases, we leverage Observation 1 to remove
all nOC lock acquisitions and releases. For a weighted relation R, if R(�, �) =
{ (n }, then we set R(�, �) = 1. Performing this transformation, and its dual
for lock releases, induces a homomorphism on the language from Fig. 2(b) to
Fig. 2(c). This is exemplified by the weighted valuation of Path 1 in Tab. 2,
columns (b) and (c). Note that the valuation shown in column (c) is not an
approximation like those in columns (a) and (b). This is because the string that
describes Path 1 is shorter after performing language strength reduction.

Removing nested parentheses that denote nOC acquisitions and releases guar-
antees that all lock acquisitions and releases modeled by E are OC. Thus, all
EML locks can now be modeled in the CPDS by the trivial language shown in
Fig. 2(c). Because the open and close-parenthesis symbols for nOC acquisitions
and releases have been removed, a path in an EML process that uses reentrant
locking can now be described by a shorter string. This can be seen in Tab. 2.
In fact, there is now no cost to model a successive synchronized call, including
recursive synchronized functions. Thus, in some cases, the CPDS model checker
can find the same counterexample using a smaller bound k.
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Fig. 5. Execution time for the CPDS model checker with the original encoding (Orig)
and after language strength reduction (LSR)

6 Experiments

We implemented Construction 1 and the transformations from §5 in the Empire
tool. Five Java benchmark programs from the concurrency-testing benchmark by
Eytani et al. [8] were analyzed. All experiments were run on a dual-core 3 GHz Pen-
tium Xeon processor with 16 GB of memory. The machine ran a Windows XP Pro-
fessional x64 Edition host OS, and an Ubuntu guest OS configured with the 32-bit
Linux kernel 2.6.22. Ubuntu ran on top of VMware Server 1.0.4. A virtual machine
was required because the CPDS model checker is only 32-bit Linux compatible.

Each benchmark was analyzed with the original encoding (Orig) and then
again after applying language strength reduction (LSR). The analysis times are
shown in Fig. 5. The Y-axis of Fig. 5 gives the benchmark names, with each name
being preceded by the number of locks in the EML program (e.g., “BufWriter”
uses 1 lock). For benchmark programs “AllocationVector”, “BubbleSort”, and
“BuggyProgram”, the average speedup (geometric mean) is 3.4. In addition,
analysis of the benchmark programs “BufWriter” and “Shop” exhausted all re-
sources in the original version of Empire, whereas the analysis ran to completion
after performing language strength reduction.

7 Related Work

Alur and Madhusudan [5,6] introduced the concept of an NWA. For programverifi-
cation, they showed that a property specification and a programcan be modeled by
NWAs, and thatverification canbe solvedby taking their intersection.Ourworkex-
tends this result to property checking where the program is specified by an EWPDS
and the property by an NWA. Because EWPDSs allow programs to be abstracted
using more than just predicate-abstraction domains (i.e., abstract programs canbe
more than just Boolean programs), our work has broadened the class of program
abstractions for which one can use an NWA as the property specification.

Chaudhuri and Alur [13] instrument a C program with an NWA that defines a
property specification. This approach diffuses the NWA throughout the program
proper. Our approach combines the NWA with an EWPDS, but keeps the NWA
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separated by modeling it using weights. This is beneficial for reporting error-
paths back to a user when model checking a C program because the internals of
the NWA are not exposed in the error-path. Additionally, by keeping the NWA
separated in the weight domain, one can use symbolic encoding of weights [9]
for handling the potentially exponential size of the NWA.

Kahlon et al. [14,15] analyze concurrent recursive programs that use nested
locking, where nested locking means that all locks are released in the opposite
order in which they are acquired. Their locks, however, are not reentrant and are
not syntactically scoped. If one enforces syntactically scoped locks, then one can
apply our techniques for language strength reduction to model a program with
reentrant locks using only non-reentrant locks. This would produce a model to
which their model-checking algorithm could be applied.
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