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Abstract. We propose a novel method for image sequence restorations.
It is based on the wavelet domain image restoration method proposed
by Belge et al. for static images [1]. In this paper, by combining the it-
eration procedure in the Belge’s method with the renewing process for
sequentially given images and by employing Kalman filer for predicting
the foreground movement of the images in the wavelet domain, consider-
able reduction of the computational cost is shown to be achievable. This
is verified by computer simulations on artificially degraded images.

Keywords: Multiresolution wavelet analysis, Video restoration, Motion
dynamics, Nonlinear optimization.

1 Introduction

A video sequence acquired by a camera often contains blur and/or disturbance
by various causes. In many applications like image surveillance or broadcast-
ing, these degradation factors need to be automatically removed in order to
facilitate higher level recognitions. So far many restoration methods have been
proposed especially for static images [1,2]. In recent years the number of restora-
tion method for video sequences is gradually increasing. Pizurica et al. proposed
a method [3] which combines spatially adaptive noise filtering in the wavelet
domain and temporal filtering in the signal domainD Rares et al. presented an
algorithm dealing with degradation related to severe artifacts [4]. In [5,6], Korn-
probst et al. proposed some restoration methods utilizing motion compensation.
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Fig. 1. Block diagrams for the multiresolution wavelet decomposition of an image

For further references, please see [7,8]. With these developments, however, to
handle the degradation like optical blur and disturbance which happens more
frequently in real environment, more work is needed for restoration.

In this paper, we propose a restoration method for video sequences which
are degraded by optical blur and noise. In our previous work [9], we proposed
a video restoration method by extending Belge et al.’s restoration method for
static images to video case. This method could reduce the computational cost
compare to the method of [1] by modeling a class of image sequences by a state
equation and predicting future frames based on it. However, there was yet a
room for further improvement since we had to execute a multiresolution wavelet
reconstruction (MWR, to be described) for making a prediction of the future
image in state space. In the present paper, we propose an improved method.
Here the prediction of the future image is directly realized in the wavelet domain.
This contributes not only reducing the above redundancy but also making the
prediction more efficient by utilizing the property of multiresolution wavelet
decomposition (MWD) images. We verify our method by computer simulation
of an artificially degraded image sequence.

2 Image Restoration Using Multiresolution Wavelet
Decomposition

2.1 Multiresolution Wavelet Decomposition

Let g be a lexicographically ordered static image. The block diagram of the
MWD of g is shown in Fig. 1. In the figure p(·) and q(·) generally represent an
1-D low-pass and high-pass filter, respectively. From the input image, four down-
sampled images are obtained [1]. Furthermore, by repeating the decomposition,
we can get multiresolution images [10]. An MWD image ĝ calculated by L level
MWD is presented as

ĝ :=
(
ĝT
(L,0), · · · , ĝT

(L,3), ĝ
T
(L−1,1), · · · , ĝT

(1,3)

)T

. (1)
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ĝ ĝ ĝ ĝ
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Fig. 2. An example of the MWD images

An MWD result for the image ’Cameraman’ is shown in Fig. 2 as an example. In
Fig. 2(b), component ĝ(3,0) represents a scaled down image of the original one and
other components ĝ(l,j) correspond to extracting the 1-D features (horizontal,
vertical and diagonal) of the original image. Note that the number of the total
pixels is unchanged during the decomposition. Since the decomposition operation
has the orthogonal property, we can get the reconstruction operation and it can
completely recapture the original image from the decomposed one. We call it the
wavelet multiresolution reconstruction (MWR).

2.2 Degradation Process and Its Restoration for MWD Images

Given the low-resolution image sequence g = {g[1], g[2], · · · , g[K]} of the origi-
nal image sequence f = {f [1], f [2], · · · , f [K]} of length K. The sequences ĝ =
{ĝ[1], ĝ[2], · · · , ĝ[K]} and f̂ ={f̂ [1], f̂ [2], · · · , f̂ [K]} denote respectively the MWD
of g and f . In this paper, we consider a restoration problem for a given degraded
MWD image sequence {ĝ[1], · · ·, ĝ[K]} which is degraded from its original image
sequence {f̂ [1], · · ·, f̂ [K]}, where the superscripts denote the frame number. First,
we formulate a degradation process for MWD images [1] by

ĝ[k] = Ĥf̂ [k] + û[k]. (2)

In equation(2), the vector û[k] is an additive noise and the matrix Ĥ represents
an linear distortion or optical blur, which can be assumed to be constant with
respect to frames since the change is sufficiently small.

When considering a restoration for the degradation process of equation (2),
one natural way would be to apply some of the known restoration procedures
to each frames one by one, regarding them as static images, and then make
necessary modifications to make the computation more efficient and improve
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Fig. 3. Block diagram of the image sequence restoration [9]

restoration by considering relationships existing among the frames. In this pa-
per, we follow this way. As a basic restoration method for static images, the
one proposed by Berge et al. will be used. The method has been derived by
considering minimization of the cost function given by

Jk

(
f̂ [k], λ

)
=

∥∥∥ĝ[k] − Ĥf̂ [k]
∥∥∥

2

2
+ λ(L,0)

∥∥∥f̂
[k]
(L,0)

∥∥∥
p

p
+

L∑
l=1

3∑
j=1

λ(l,j)

∥∥∥f̂
[k]
(l,j)

∥∥∥
p

p
. (3)

The first term of equation (3) represents the closeness of the original image. The
second and the third terms express the closeness to the statistical prior knowl-
edge of the natural image in the wavelet domain. Lambdas are the regulariza-
tion parameters. The optimal restored images can be calculated by a numerical
optimization [1]. The algorithm can realize the edge preserving restoration by
assigning different parameters to each decomposed image.

However, generally the calculation will become very huge since we have to
repeat iterative computations with big size matrices for every frames. To cope
with this problem, in [9] by combining the iterative procedure in the Berge’s
method with the renewing process for sequentially given images and employing
Kalman filter, we showed that considerable reduction of the calculation cost can
be realized. The block diagram is shown in Fig. 3. In the ’Restoration Calcula-
tion’ box, the optimal restored image (denoted by f̂

[k]
rst) is calculated by using

the following modified equation of the optimization method in [1]:
(
ĤT Ĥ +

p

2
D

[k]
prd

)
f̂

[k]
rst = ĤT ĝ[k] (4)

D
[k]
prd = diag

[
λ(i)

(|f̂ [k]
prd(i)|2 + β)1−p/2

]N2

i=1

. (5)
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Notice that instead of restored image f
[k]
rst in [1] its predicted image f

[k]
prd is

used here. Predicted image f
[k]
prd is computed in the ’Predictor’ box. To carry

out the computations in Predictor box we had made the following assumptions.

A1 An original image sequence consists of a foreground and a background.
A2 The change of the background is small enough to be set as a static image.
A3 The change of the foreground can be formulated or approximated by a

known dynamic equation.
A4 The foreground is assumed to be a single rigid body and maintain its

orientation.

With the assumptions A1 and A2, we can utilize the restoration result of pre-
vious frame directly as an initial estimation of the background for each frame.
On the other hand, we can predict a new position of the foreground from the
previous restoration result and the information about motion dynamics (A3) by
using Kalman filter.

This algorithm can reduce the calculation cost for an image sequence restora-
tion compared to the frame by frame optimization based on Belge et al.’s method,
while the qualities of the restoration results being almost unaffected. However,
yet some redundant calculations are included because it needs MWR calculations
of restored images for the sake of making prediction for next frames, and again
calculate MWD after a predicted image is obtained. If we could get a predicted
image directly in the wavelet domain, the redundancy of this algorithm can be
reduced. We state this modified image sequence restoration method in the next
section.

3 Video Restoration Algorithm in Wavelet Domain

At first, we show the overall sketch to our new video restoration algorithm
in wavelet domain (Fig. 4). In the following, the restoration image and the
predicted image of f̂ will be represented as f̂rst = {f̂

[1]
rst, f̂

[2]
rst, · · · , f̂

[K]
rst } and

f̂prd = {f̂
[1]
prd, f̂

[2]
prd, · · · , f̂

[K]
prd} respectively. According to the structure of MWD,

f̂ [k] (similarly for f̂
[k]
rst or f̂

[k]
prd) will be represented as

f̂ [k] :=
(
f̂

[k]T

(L,0), · · · , f̂
[k]T

(L,3), f̂
[k]T

(L−1,1), · · · , f̂
[k]T

(1,3)

)T

.

Step 1 Initialization. Let

f̂
[1]
prd = ĝ[1],

f̂
[1]
rst is given by (4) and (5),

f̂
[2]
prd = f̂

[1]
rst,

f̂
[2]
rst is given by (4) and (5).
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Step 2 With using f̂
[k−1]
rst and f̂

[k]
rst, for all

(l, j) = (L, 0), (L, 1), (L, 2), (L, 3), (L−1, 1), · · · , (1, 3),

compute the followings in turn

f̂
[k]
fg(l,j) : foreground (Sec. 3.2),

f̂
[k]
bg(l,j) : background (Sec. 3.2),

f̂
[k]
bd(l,j) : background domain (Sec. 3.2),

v
[k]
(L,0), and v

[k]
l (l = L, L−1, · · · , 1).

Step 3 Compute the prediction of v
[k+1]
l using Kalman filter for (11).

Step 4 Compute

f̂
[k+1]
bd(l,j) and f̂

[k+1]
fg(l,j) (by (8)),

f̂
[k+1]
prd(l,j) by inserting estimated f̂

[k+1]
fg(l,j) into f̂

[k]
bg(l,j).

Step 5 Compute f̂
[k]
rst by (4) and (5).

Step 6 Compute f
[k]
rst by MWR.

Step 7 If k=K, stop. Othewise k=k+1 and go to Step 2.

In executing the algorithm if it happens that we can not continue computation
by the frame out of the moving object or by a sudden change of the background
we have to cancel the prediction till the next movement is observed.

3.1 Definition of the Dynamics for the MWD Image Sequence

Based on the above assumptions made in 2.2, we model the dynamics of an
original MWD image sequence as follows. First, we define the variables as in
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Table 1. Definition of the variables for kth frame

Item name Definition
f̂ [k] Original image
f̂

[k]
bd Original background domain (0: foreground, 1: others)

f̂bg Original background image
f̂

[k]
fg Original foreground image

ĝ[k] Degraded image

Table 1. By these definitions, each component of the original MWD image se-
quence is represented as:

f̂
[k]
(l,j) =

{
I(N/2l)2 − diag

[
f̂bd(l,j)(i)

](N/2l)2

i=1

}
· f̂

[k]
bg(l,j) +f̂

[k]
fg(l,j). (6)

((l, j) = (L, 0) and l=1,· · ·, L, j=1, 2, 3)

We introduce a transition of a foreground between kth and k+1th frames. For
this, a motion of a foreground object is described by

[
v

[k+1]
l

a
[k+1]
l

]
=

[
I2 I2

02×2 I2

][
v

[k]
l

a
[k]
l

]
, (7)

where v
[k]
l and a

[k]
l are velocity and acceleration per a frame of a characteristic

point for each decomposed image of kth frame, respectively. I2 denotes a 2 × 2
identity matrix. Equation (7) represents an uniform accelerated motion on a 2-D
plane. In correspondence with the difference of the initial condition, the various
movement (straight lines or parabola-shaped motions in the 2-D plane, for ex-
ample) can be described in this way. Since from assumption A4, the distance
between each element of f̂

[k]
bd(l,j) and its corresponding element of f̂

[k+1]
bd(l,j) remains

the same, the relationship between f̂
[k]
bd(l,j) and f̂

[k+1]
bd(l,j) is written by

f̂
[k+1]
bd(l,j) ((n−1)N +m)

= f̂
[k]
bd(l,j)

([{
(n−v

[k+1]
lv ) mod N/2l

}
−1

]
N/2l+

{
(m−v

[k+1]
lh ) mod N/2l

})
.

(n = 1, · · · , N/2l, m = 1, · · · , N/2l)

(8)

Equation (8) can be expressed using a matrix Tl(v
[k]
l ) as follows:

f̂
[k+1]
bd(l,j) = Tl

(
v

[k+1]
l

)
f̂

[k]
bd(l,j) (9)

Tl

(
v

[k+1]
l

)
=diag

(
Clh

v
[k+1]
lh , . . . , Clh

v
[k+1]
lh

)
· Clv

v
[k+1]
lv . (10)

We call Tl

(
v

[k+1]
l

)
the transition matrix of level l. Clv and Clh in equation (10)

are an (N/2l)2 × (N/2l)2 dimension block circulant matrix and N/2l × N/2l
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dimension circulant matrix respectively, which are the same as in [9]. The tran-
sition of foreground image f̂

[k+1]
fg(l,j) can also be described exactly in the same way

as in (9).

3.2 Foreground Extraction and Motion Prediction

First, we estimate optical flow for (L, 0) image by taking squared error between
local areas of k−1th and kth frames. To avoid mismatching, squared errors over
a certain threshold would not be recognized as a motion. Second, we extract the
foreground object domain, in which the optical flows are similar each other. To
detect a motion vector v

[k]
(L,0) of the foreground object, we take an average of the

flows within the foreground object domain.
Since from the properties of MWD, (L, 1), (L, 2) and (L, 3) images are reflect-

ing the vertical, horizontal and diagonal characteristics of an original image more
strongly [11], we will use them to detect motions along one direction only. We
detect motion of these three images for each one dimension ((L, 1) for horizon-
tal direction, (L, 2) for vertical direction and (L, 3) for diagonal direction) (Fig.
5(a)) within the corresponding domain detected by (L, 0) image, and extract
foreground objects of each image. Then, we take averages of the motion within
the foreground object domains for (L, 1) and (L, 2) images and assign these val-
ues to the motion vector v

[k]
L . Repeat the above process from level L−1 to level 1,

and detect the motion vector for each level. Motion search in each level is done
within the foreground object domain detected in the upper level (Fig. 5(b)). By
this hierarchical searching method, calculation cost can be smaller than the full
searching method. The motion vector for level l is denoted as v

[k]
l := (v[k]

lv , v
[k]
lh ),

of which v
[k]
lv and v

[k]
lh are results of the 1-D (vertical and horizontal) motion

estimations. (l, 3) images are not used for motion estimations, since they may
be strongly affected by noise in the original image [11].

Now, with the detected motion vector v
[k]
l as above and with the assumed

model (7) for the movement of the foreground object, we can get a prediction
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(a) Degraded image of 3rd frame (b) Restored image of 3rd frame

(c) Degraded image of 10th frame (d) Restored image of 10th frame

Fig. 6. Simulation result of the proposed method (3rd and 10th frames)

concerning the foreground location of the next frame image, by constructing a
Kalman filter for

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
v

[k+1]
l

a
[k+1]
l

]
=

[
I2 I2

02×2 I2

] [
v

[k]
l

a
[k]
l

]
+ w

[k]
(l,j)

[
v
[k]
lv

v
[k]
lh

]
=

[
I2 02×2

]
[

v
[k]
l

a
[k]
l

]
+ n

[k]
(l,j).

(11)

4 Simulation

We performed a simulation of the proposed method with known degradation
parameters and we verified the performance of the proposed method. We gener-
ated an artificial image sequence in 64×64 pixels and 10 frames. We used a test
image ’Text’ for the background and a triangle object with changing pixel value
for the foreground. The foreground was supposed to move with constant velocity.
We made the original image sequence f [k] by equation (6) and calculted its de-
graded image sequence g[k] by equation (1). We considered an optical blur for H
in equation (1) and used a Gauss function of the variance σ2 = 1.2 with the 7×7
discretized elements. The disturbance u[k] was assumed to be a Gaussian noise
of average zero and the SN ratio of 30dB independently for each frames. In the
restoration calculation, the level of the wavelet multiresolution decomposition
(L) was assumed to be three and we selected the three tap wavelet [11].
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The degraded and the restored images for some frames are shown in Fig. 6.
In both frames, the background and the foreground of the restored images could
be much clearly recognized than the original degraded images by the proposed
method. The total calculation time for 10 frames was 90 sec. and the predic-
tion time (Steps 2–5) was about10 sec. The calculation time for our prediction
algorithm is sufficiently short.

5 Conclusion

We proposed an effective restoration method for degraded video sequence in
this paper. The dynamics of the MWD image sequence is modeled and a novel
calculation algorithm is proposed. Computer simulation for an artificial image se-
quence shows favorable result qualitatively. More quantitative verifications such
as calculation time or restoration quality are remained for future works.

Since this formulation is based on several restrictive assumptions, further
extension is needed such as for multiple moving objects, more complex movement
other than parabolic translation or shape change in an image sequence.
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