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Abstract. Although learning vector quantization (LVQ) based on learn-
ing concept is a typical clustering method, we cannot necessarily obtain
satisfactory classification results for linearly separable data. In this pa-
per, a new clustering method based on LVQ and a split and merge proce-
dure is proposed to realize reliable classification. Introducing a criterion
of whether or not there is only one cluster in each class after clustering by
LVQ, split subclasses in a class are merged into appropriate neighboring
classes except one subclass. And the validity of the classification result
is checked. Under several classification experiments, the performance of
the proposed method is provided.

1 Introduction

An important and fundamental research issue for pattern recognition, image
processing and data mining is clustering [1-9], whose aim is to classify unla-
beled data forming clusters to classes correctly. In this paper, a new clustering
method based on learning vector quantization (LVQ) [1-3] and a split and merge
procedure is investigated.

Focusing on split and merge procedures for classification, Ueda et al. [10,11]
provide remarkable results on parameter estimations of mixture models, where
split and merge procedures are incorporated into the EM algorithm and the
Variational Bayesian learning to avoid local minima of object functions.

The ideal of clustering is to classify data without any external restrictions.
Although it is assumed that the number of clusters is provided, the K-Means al-
gorithm (KMA) [8,9] and LVQ are typical algorithms for clustering, where KMA
is derived from the viewpoint of minimizing the sum of squared-error distortion
and LVQ is derived on the basis of learning concept. The value of the distortion
function in KMA like the EM algorithm depends on initial cluster centers, and
a local minimum may be captured. To avoid its defect and acquire the global
minimum, a split and merge procedure is introduced into vector quantization
(VQ) by Kaukoranta et al. [12], where VQ being almost equivalent to KMA
is used for data compression. By using KMA with the split and merge proce-
dure, i.e., Kaukoranta’s method, we may obtain the minimum distortion or its
approximations.
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However, when there are big differences among statistical distributions of class
data, even KMA attaining the minimum distortion reveals bad classification
results, which are well known and stated in the research book [9]. Although
KMA provides good classification with the high possibility, clustering by the
criterion of minimizing the distortion cannot necessarily find correct clusters,
especially for those distributions. The motivation of this research is to recover
those bad situations.

Fig.1 shows a typical bad classification result by KMA, where data are di-
vided into three regions by three lines, and those cluster centers seem to attain
the minimum squared-error distortion. Concerning the detail of the data, refer
Section 3. Table 1 shows three of the sum of squared-distortion DKMA, DCEN

and DOPT , where DKMA may be the minimum distortion by KMA, DCEN is
the distortion by correct centroids of clusters and the Voronoi partition, and
DOPT is the distortion by the optimum partition with no classification error.
Note that DOPT > DKMA.
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Fig. 1. A typical bad classification result by KMA with K = 3

Table 1. Comparison of the distortion DKMA, DCEN and DOPT

DKMA DCEN DOPT

Distortion 373.0 397.8 412.9

After classifying data by an appropriate method such as Kaukoranta’s method
and obtaining good cluster centers, in order to deal with these bad situations
too, LVQ started with those cluster centers is applied to the data, and a new split
and merge procedure and another classification criterion being not the distortion
criterion are introduced. KMA and LVQ are relations just like brothers. LVQ in
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comparison with KMA seems to have the high possibility of acquiring correct
centroids of clusters. Hence we adopt LVQ in this paper.

By classifying the data by LVQ, suppose that we obtain samples classified into
K classes. A method determining whether or not there is only a cluster in each
class is introduced, where LVQ is applied to samples in each class again, and a
measure of splitting a class into subclasses is introduced. When it is determined
that the class must be split into subclasses, by comparing the dissimilarities
between samples in the subclasses and samples in adjacent classes, the other
subclasses except one subclass are merged into appropriate adjacent classes. This
classification method by LVQ is a LVQ type version of the method by KMA [13].

This procedure is described in Section 2 in detail. In Section 3, several ex-
perimental results by this clustering method using LVQ and the split and merge
procedure are shown for data composed from pseudo random numbers [14].

2 Clustering Based on LVQ and a Split and Merge
Procedure

Let us consider classification of linearly separable data, where a set X of n
samples xi = (xi1, . . . , xiD), i = 1, . . . , n is partitioned into K disjoint subsets
(classes) Xk, k = 1, . . . , K.

Assume that we obtain appropriate cluster centers which satisfy the minimum
squared-error distortion or its approximation by using random initialization or
a classification method such as Kaukoranta’s method. Subsequently, to realize
more reliable classification, a clustering method based on LVQ and a split and
merge procedure shown below is excuted.

(LVQ Algorithm)
(LVQ1) Set initial values of cluster centers {ck(1), k = 1, . . . , K}. Repeat
(LVQ2) and (LVQ3) for t = 1, 2, . . . untill convergent.
(LVQ2) Set

cl(t) = arg min
1≤k≤K

‖ x(t) − ck(t) ‖ . (1)

(LVQ3) Compute

cl(t + 1) ← cl(t) + α(t)[x(t) − cl(t)], (2)

and determine x(t) ∈ class Xl.
(End of LVQ)

In the LVQ algorithm, we use x(1) = x1, · · · , x(n) = xn, x(n + 1) = x1, · · · ,
x(2n) = xn, x(2n + 1) = x1, · · ·, and a learning rate α(t) = constant/t.

Next, for classes Xk, k = 1, . . . , K classified by LVQ, let us consider a criterion
determining whether or not there is only a cluster in each class by using LVQ
again.

After classifying the samples in X by using LVQ, assume that we obtain classes
{Xk} and cluster centers {ck}. When it is determined that there is only a cluster
in each Xk, the processing of clustering stops. However, if it is determined that
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there are two or more clusters in Xk, only a correct subcluster must survive in
Xk by splitting Xk and merging other incorrect subclusters into adjacent classes.
A method to dissolve this issue is proposed and investigated, where LVQ is used
for the samples in each Xk again, and a split and merge procedure is applied to
Xk and the subclasses of Xk.

After LVQ with K = m for 2 ≤ m ≤ M is applied to the samples in Xk, Xk

is split into m subclasses, whose subclasses and their cluster centers are denoted
by {X

(m)
k,p , p = 1, . . . , m} and {c

(m)
k,p , p = 1, . . . , m}, respectively. In the ordinary

situations of clustering, 2 or 3 as the value of M is used.
The squared-distortion for Xk is defined as

D
(m=1)
k =

∑

xi∈Xk

‖xi − ck‖2. (3)

Under the definition of the distortion for X
(m)
k,p by

D
(m)
k,p =

∑

xi∈X
(m)
k,p

‖xi − c
(m)
k,p ‖2, m = 2, . . . , M, (4)

the distortion for X
(m)
k , which means Xk with m subclasses, is provided as

D
(m)
k =

m∑

p=1

D
(m)
k,p . (5)

Let us introduce a measure of splitting Xk given by

ρk(m) = D
(m)
k /D

(m−1)
k , m = 2, . . . , M. (6)

The abrupt decrease of ρk(m) on m states that Xk should be split into m sub-
classes when Xk has m clusters. Consider the situation that for the partition of
Xk into m−1 subclasses, each cluster center does not become a correct represen-
tative of the cluster in the subclass, but for the partition of Xk into m subclasses,
each cluster center has the high possibility of becoming a correct representative.
Then, the value of D

(m)
k decreases abruptly in comparison with the value of

D
(m−1)
k . This matter is demonstrated through classification experiments shown

in Section 3.
Calculating

ρk(m∗) = min
m

{ρk(m), m = 2, . . . , M}, (7)

for a predetermined value ζ, if

ρk(m∗) < ζ, (8)

we split Xk into m∗ subclasses. Otherwise, Xk is not split. The value of ζ is
usually chosen on the basis of some experiential results, and the small value of
ζ lowers the possibility of splitting.
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When the class Xk must be split into the subclasses {X
(m∗)
k,p , p = 1, . . . , m∗}

and the cluster centers {c
(m∗)
k,p , p = 1, . . . , m∗} of {X

(m∗)
k,p } are obtained by LVQ,

only one subclass becomes the new class Xk renewing the old Xk and the other
m∗ − 1 subclasses must be merged into adjacent classes.

Let us define the dissimilarity between X
(m∗)
k,p and the classes being adjacent

to Xk as

d(X(m∗)
k,p ) = min

xi∈X
(m∗)
k,p ,xj∈Xl,l �=k

d(xi, xj), (9)

where d(·, ·) expresses the Euclidean distance. Then, the subclass X
(m∗)
k,p∗ given

by

d̂(X(m∗)
k,p∗ ) = max

p
{d(X(m∗)

k,p ), p = 1, . . . , m∗} (10)

becomes the new class Xk. The other subclass X
(m∗)
k,p being p �= p∗ are merged

into the adjacent classes satisfying (9).

(Validity of classification)
After the classification by the split and merge procedure, the validity of the
classification result must be checked. When there is only one cluster in each
class Xk by using (8), the classification result is adopted. When otherwise, we
do not adopt the classification result and the processing process is outputted.

When happening the inconsistency of processing, for example the exchange
of subclasses in different classes, the classification result is not adopted.

3 Clustering Experiments

Let us consider the data shown by Fig.2, whose data are composed from three
clusters. Cluster 1 is composed from 10 pseudo random numbers with mean
(x1, x2) = (0.086, −0.113), variance(x1, x2) = (0.167, 0.076). Cluster 2 is com-
posed from 100 pseudo random numbers with mean(x1, x2) = (4.98, 0.163),
variance(x1, x2) = (1.78, 2.23). Cluster 3 is composed from 20 pseudo random
numbers with mean((x1, x2) = (1.10, 4.04), variance(x1, x2) = (0.17, 0.306).
Then the centroids for the clusters are provided by (0.0861, −0.113), (4.98, 0.163)
and (1.10, 4.04).

Fig.3 shows the classification result by LVQ. We obtain c1 = (0.695, −0.0738),
c2 = (5.24, 0.132) and c3 = (1.28, 3.98) as the cluster centers. Then, 11 samples
among 130 samples are misclassified. The classification result is summarized by
Table 2.

Selecting M = 3 as the maximum number of subclasses, let us split each class
into m subclasses by using LVQ with K = m. Partition results of the classes
{Xk} by LVQ with m = 2, 3 are shown by Table 3 and Table 4.

The distortions {D
(m)
k } for {Xk} and {X

(m)
k } calculated from (3) and (5) are

provided in Table 5. Table 6 shows the splitting measures {ρ
(m)
k } by (6).
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Fig. 2. Data composed from 3 clusters
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Fig. 3. Classification by LVQ with K = 3

Focusing on the values of {ρ
(m)
k } in Table 6, we recognize that the values

of ρ
(m=2)
k=1 and ρ

(m=2)
k=3 are very small. When ζ ≈ 0.35 in (8) is settled, it is

determined that m∗ = 2 and the classes X1 and X3 must be split into two
subclasses, respectively.

Next, based on (10), appropriate subclasses among {X
(m∗=2)
k,p , k = 1, p =

1, 2} and {X
(m∗=2)
k,p , k = 3, p = 1, 2} must be merged into adjacent classes. The

dissimilarities between the subclasses and the adjacent classes, and {d(X(m∗=2)
k,p )}

of (9) are provided by Table 7. From Table 7, X
(m∗=2)
1,2 is merged into X2, and

X
(m∗=2)
3,2 is merged into X2.
Fig.4 shows the situation of classification by applying LVQ with m∗ = 2

to each Xk. The class X1 is split into two subclasses X1,1, X1,2. The right
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Fig. 4. Classification by LVQ for K = 3 and m∗ = 2

Table 2. Classification result by LVQ

Class Number Cluster center
X1 17 c1 = (0.695, −0.0738)
X2 89 c2 = (5.24, 0.132)
X3 24 c3 = (1.28, 3.98)

Table 3. Partition results by LVQ with m = 2

Subclass Number Cluster center

X
(m=2)
1,1 10 c

(m=2)
1,1 = (0.0866, −0.110)

X
(m=2)
1,2 7 c

(m=2)
1,2 = (2.51, −0.363)

X
(m=2)
2,1 74 c

(m=2)
2,1 = (4.85, −0.0461)

X
(m=2)
2,2 15 c

(m=2)
2,2 = (7.85, 0.0548)

X
(m=2)
3,1 20 c

(m=2)
3,1 = (1.10, 4.04)

X
(m=2)
3,2 4 c

(m=2)
3,2 = (3.81, 2.91)

subclass X1,2 is merged into the class X2. The class X3 is split into two subclasses
X3,1, X3,2. The right subclass X3,2 is merged into the class X2.

The final classification result is provided by the same figure as Fig.2. We
recognize that the perfect classification for the data is realized with no error.

Lastly, the validity of the final classification result must be checked. According
to (5)-(10), we apply LVQ with K = m(2 ≤ m ≤ M) to the samples classified
as Fig.2. We obtain Table 8 and Table 9. From Table 9 and (8), it is concluded
that there is one cluster in each classified class.
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Table 4. Partition results by LVQ with m = 3

Subclass Number Cluster center

X
(m=3)
1,1 6 c

(m=3)
1,1 = (−0.222, −0.0676)

X
(m=3)
1,2 4 c

(m=3)
1,2 = (0.652, −0.143)

X
(m=3)
1,3 7 c

(m=3)
1,3 = (2.52, −0.355)

X
(m=3)
2,1 37 c

(m=3)
2,1 = (4.55, −0.967)

X
(m=3)
2,2 40 c

(m=3)
2,2 = (5.37, 1.31)

X
(m=3)
2,3 12 c

(m=3)
2,3 = (7.99, −0.171)

X
(m=3)
3,1 19 c

(m=3)
3,1 = (1.07, 4.08)

X
(m=3)
3,2 1 c

(m=3)
3,2 = (2.34, 3.67)

X
(m=3)
3,3 4 c

(m=3)
3,3 = (3.81, 2.91)

Table 5. Distortions {D
(m)
k } for {Xk} and {X

(m)
k }

D
(m=1)
k D

(m=2)
k D

(m=3)
k

k = 1 35.6 7.83 6.49
k = 2 306.8 250.0 142.6
k = 3 41.2 11.1 10.7

Table 6. Splitting measures {ρ
(m)
k }.

ρ
(m=2)
k ρ

(m=3)
k

k = 1 0.22 0.83
k = 2 0.82 0.57
k = 3 0.27 0.96

Table 7. Dissimilarity table

Subclass X1 X2 X3 d(X(m∗)
k,p )

X
(m∗=2)
1,1 2.66 3.09 d(X(m∗)=2

1,1 ) = 2.66
X

(m∗=2)
1,2 0.333 1.82 d(X(m∗)=2

1,2 ) = 0.333

X
(m∗=2)
3,1 1.97 2.18 d(X(m∗)=2

3,1 ) = 1.97
X

(m∗=2)
3,2 1.82 0.628 d(X(m∗)=2

3,2 ) = 0.628

Table 8. Validity: Distortions {D
(m)
k } for {Xk} and {X

(m)
k }

D
(m=1)
k D

(m=2)
k D

(m=3)
k

k = 1 2.43 0.995 0.693
k = 2 401.0 260.0 195.9
k = 3 9.52 5.44 3.94
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Table 9. Validity: Splitting measures {ρ
(m)
k }

ρ
(m=2)
k ρ

(m=3)
k

k = 1 0.410 0.697
k = 2 0.648 0.753
k = 3 0.571 0.725

4 Conclusion

We proposed a new clustering method based on LVQ and the split and merge
procedure to improve the classification performance of the ordinary LVQ algo-
rithm. After introducing the splitting measure and the dissimilarity measure
for merging, the classification method proposed in this paper was applied to
the data that reveal the typical bad performance by the ordinary LVQ algo-
rithm. Under some classification experiments, the performance of this method
was investigated. As a future issue, we would like to develop this method to a
general and robust method under the consideration of research results by the
papers [10,11,12,13]. And it is also an important issue to estimate the number
of clusters correctly.

References

1. Kohonen, T.: Self-Organizing Maps, 2nd edn. Springer, Berlin (1997)
2. Pal, N.R., Bezdek, J.C., Tsao, C.-K.: Generalized Clustering Networks and Koho-

nen’s Self-Organizing Scheme. IEEE Trans. Neural Network 4(4), 549–557 (1993)
3. Miyamoto, S.: Intoduction of Cluster Analysis: Theory and Applications of Fuzzy

Clustering. Morikita-Syuppan (1999) (in Japanese)
4. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley

& Sons, INC., Chichester (2001)
5. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Englewood

Cliffs (1988)
6. Gordon, A.D.: Classification, 2nd edn. Chapman & Hall/CRC, Boca Raton (1999)
7. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms.

Plenum Press, NY (1981)
8. MacQueen, J.: Some Methods for Classification and Analysis of Multivariate Ob-

servations. In: Proc. 5th Berkeley Symp. on Math. Stat. and Prob. 1, pp. 281–297.
Univ. of California Press, Berkeley and Los Angeles (1967)

9. Linde, Y., Buzo, A., Gray, R.M.: An Algorithm for Vector Quantizer Design. IEEE
Trans. Commun. 28, 84–95 (1980)

10. Ueda, N., Nakano, R.: EM Algorithm with Split and Merge Operations for Mixture
Models. Systems and Computers in Japan 31(5), 930–940 (2000)

11. Ueda, N., Ghahramani, Z.: Bayesian model search for mixture models based on
optimizing variational bounds. Neural Networks 15, 1223–1241 (2002)



66 F. Morii

12. Kaukoranta, T., Franti, P., Nevalainen, O.: Iterative split-and-merge algorithm for
vector quantization codebook generation. Optical Engineering 37(10), 2726–2732
(1998)

13. Morii, F., Kurahashi, K.: Clustering by the K-means algorithm using a split and
merge procedure. In: Proc. of SCIS and ISIS 2006, pp. 1767–1770 (2006)

14. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes
in C. Cambridge University Press, Cambridge (1988)


	Clustering Based on LVQ and a Split and Merge Procedure
	Introduction
	Clustering Based on LVQ and a Split and Merge Procedure
	Clustering Experiments
	Conclusion


